Toolkit for Establishing Laws to Control the Use of Lead in Paint

Module Bi & Bii Health and Environmental Hazards of Lead

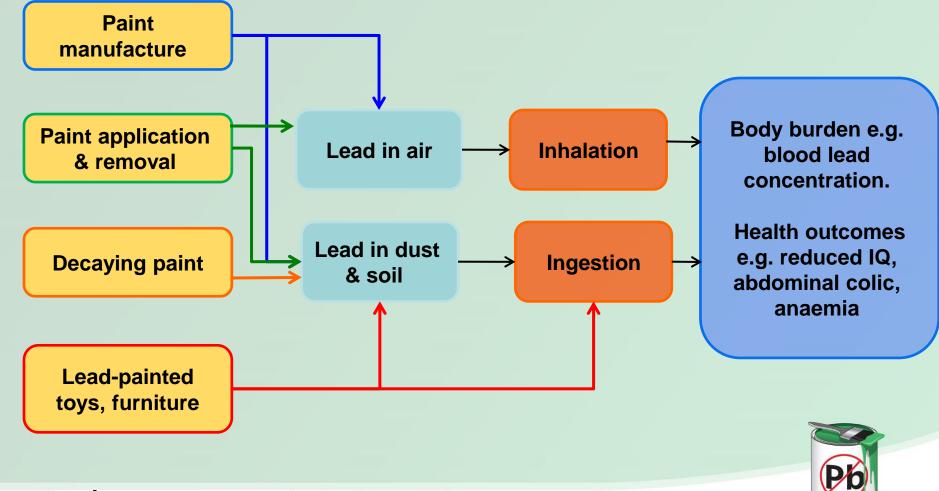
Central and Eastern Europe and Central Asia Regional Workshop on the Establishment of Legal Limits on Lead in Paint, 19-20 May 2016, Chisinău, Republic of Moldova

GLOBAL ALLIANCE TO ELIMINATE LEAD PAINT

Outline

- Sources of lead release
- Sources and routes of exposure to lead from paint
- Health effects in humans
- Who is at risk?
- Societal impact of lead
- Environmental impacts of lead
- Summary

Sources of lead release


- Natural (volcanic, weathering of rocks)
- Anthropogenic sources:
 - mobilization of lead in raw materials such as fossil fuels and other extracted and treated ores and metals
 - releases during the manufacture, use and disposal of products using lead (e.g. paint, batteries, toys)
 - direct releases from waste to soil and aquatic environments
 - prior to the removal of lead from gasoline in most countries, leaded gasoline was a significant source of lead
- Lead emitted to the atmosphere is mainly in particle form

Multiple pathways of exposure to lead from paint

LEAD PAINT ALLIANCE

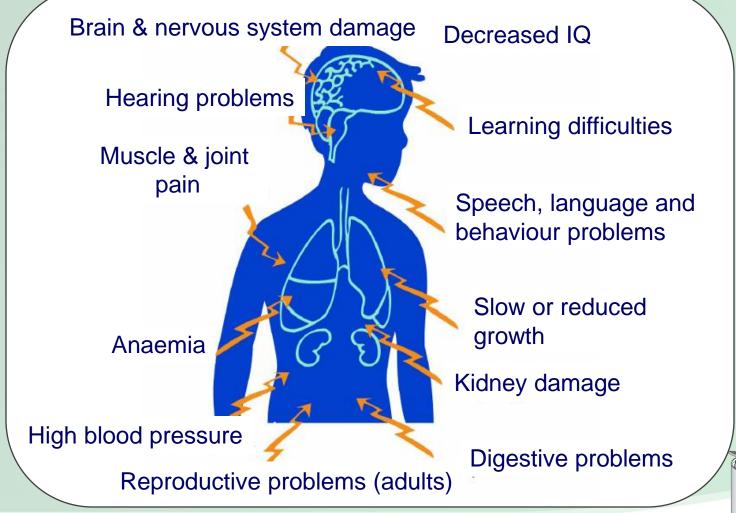
4

Ingestion is an important route of exposure for children

- Children may ingest contaminated dust and paint chips
- Children with pica are at particularly high risk – severe poisoning may occur
- Picture is a radiograph of a child with lead poisoning from eating lead paint, showing paint chips (white spots) dispersed throughout the gut

Figure 2 – A large quantity of lead paint chips can be seen in this radiograph of the abdomen and pelvis of a 2-year-old boy with lead poisoning.

(Reference 1


Lead accumulates in the body

- Bound to red blood cells and distributes to soft tissues, e.g. brain and kidneys, and to bone
- Stored in bone for many years (half-life = 10 25 years)
- Lead in bone provides a pool from which lead can move back into blood and to target organs
- Lead can remobilize from bone during pregnancy, lactation and the menopause

Lead is a multi-system toxicant

LEAD PAINT ALLIANCE

No known threshold for toxic effects – US National Toxicology Program assessment of evidence

Table 1.1: NTP conclusions on health effects of low-level Pb by life stage

Life Stage	Blood Pb Level	NTP Conclusion	Principal Health Effects	Bone Pb Evidence	
Children	<5 µg/dL	Sufficient	nitive easures; increased	z- Tibia and dentin Pb are associated with attention- d cognition.	
		Limited		ademic achievement & dren does not bwth.	
	<10 µg/dL	Sufficient	Delayed puberty, IQ, and decreased hear IQ, & increased	IQ, & increased problem behaviours	
		Limited	Increased hypersensitivity allergens and increased IgE		
		Inadequate	9 rdiovascilla	ey, reduced fetal	
Adults	<5 μg/dL	Sufficient	growth	e general pop- i bone Pb and reduced feta	
		Limited	Increased incidence of essential tremor	No data	
	<10 µg/dL	Sufficient	Increased blood pressure, increased risk of hypertension and increased incidence of essential tremor	The association between bone Pb and cardiovascular effects is more consistent than for blood Pb.	
		Limited	Psychological effects, decreased cognitive function, de creased hearing, increased incidence of ALS, and increase cardiovascular-related mortality; maternal blood Pb asso ciated with increased incidence of spontaneous abortic and preterm birth	The association between bone Pb and cognitive decline is more consistent than for blood Pb.	
		Inadequate	Immune function, stillbirth, endocrine effects, birth defect fertility or time to pregnancy**, sperm parameters**	No data	

Abbreviations: ALS, amyotrophic lateral sclerosis; IgE, immunoglobulin E; IQ, intelligence quotient

*Increased serum IgE is associated with hypersensitivity; however, as described in Section 1.4.3, increased IgE does not equate to disease.

**The NTP concludes that there is *inadequate* evidence that blood Pb levels <10 µg/dL are associated with fertility, time to pregnancy, and sperm parameters; however, given the basis of the original nomination, the NTP evaluated the evidence that higher blood Pb levels (i.e., >10 µg/dL) are associated with reproductive and developmental effects,

and those conclusions are discussed in Section 1.4.6 and presented in Table 1.2.

Who is at risk? Children

- Children have greater exposure:
 - play on the ground, hand-to-mouth activity, mouthing objects
 - absorb 4-5 times more lead from the gut than adults
 - nutritional deficiency, e.g. iron or calcium, increases bioavailability of lead
- Exposure may already occur in utero

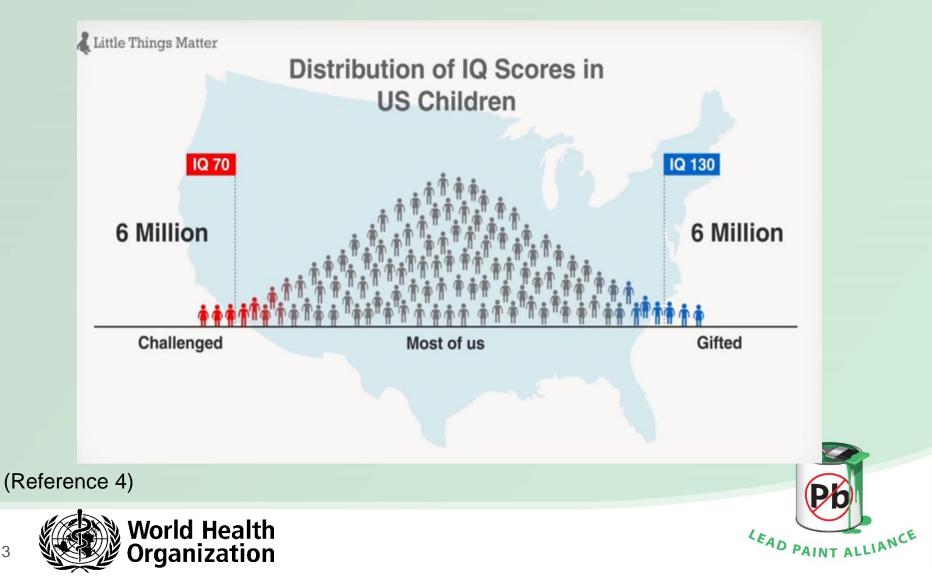
Who is at risk? Children

- Fetal period and early childhood are critical periods for neurological and other organ development
- Damage to the neurological system may be permanent
 - reduces a child's potential for intellectual development
 - increases the likelihood of behavioural disorders
- Children have more years of future life for expression of long-term effects

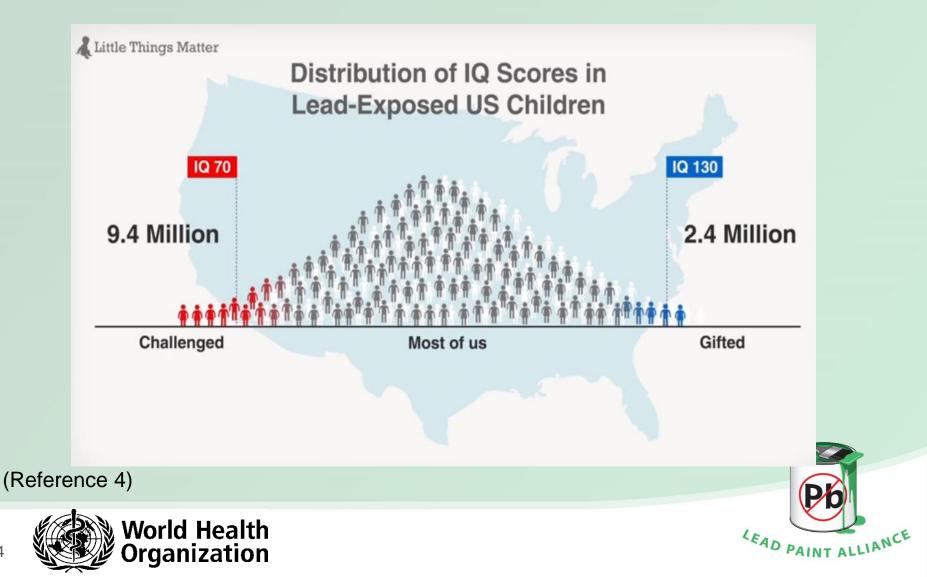
Who is at risk? Pregnant women

- Pregnancy mobilizes lead stored in bone, releasing it back into blood where it can be circulated to maternal tissues and the fetus
- Further exposure from the environment raises the blood lead concentration even higher
- Increased risk of hypertension during pregnancy may be greater risk of pre-eclampsia
- Exposure of pregnant women can result in exposure of the fetus – may cause reduced fetal growth

Lead causes significant burden of disease


- 0.6% of global burden disease
- 143,000 deaths per year
- 8.977 million disability adjusted life years (DALYs)
 - 7.2 million DALYs mild mental retardation
 - 1.8 million DALYs cardiovascular disease
- Childhood lead exposure contributes ~ 600,000 new cases of children with intellectual disabilities per year

(Reference 3)



Small IQ reduction has significant societal impact (mean IQ 100)

Small IQ reduction has significant societal impact (mean IQ 95)

Environmental impacts of lead

Impacts on the ecosystem

- Terrestrial exposure to lead is greatest near point sources (e.g. smelters)
- Plants absorb lead from the soil and retain most of the lead in their roots
- Aquatic exposure to lead is strongly dependent on environmental conditions (pH, salinity, etc)
- Lead bioaccumulates in organisms, in particular those that feed primarily on particulate matter
- Secondary poisoning may occur e.g. in predators feeding on contaminated animals

Impacts on organisms

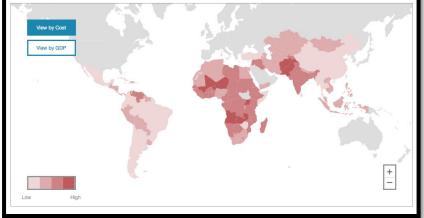
- Effects on micro-organisms from soil with lead concentrations as low as 10 mg/kg (10 ppm)
- Ingestion of lead-contaminated bacteria and fungi by nematodes can cause impaired reproduction
- In higher animals lead is shown to damage multiple organ systems (blood, central nervous system, kidneys, reproductive & immune systems)
- Fish can develop spinal deformity and blackening of the skin in the caudal region (black tail)
- Birds may be poisoned by eating lead shot and sinkers

- Lead exposure causes toxic effects in multiple body systems; some effects are permanent
- There is no known level of lead exposure that is considered safe
- Lead exposure has both a personal and a societal impact
- Lead has negative environmental impacts

Additional information

- More information and references are in the Toolkit for Establishing Laws to Control the Use of Lead in Paint http://web.unep.org/chemicalsandwaste/noleadinpaint/tool kit
- Module Bi Health hazards of lead
- Module Bii Environmental impact of lead

Reducing the Economic and Health Impacts of Childhood Lead Poisoning:


US Actions to Eliminate Lead in Paint

Central and Eastern Europe and Central Asia Regional Workshop on the Establishment of Legal Limits on Lead in Paint May 19, 2016

> Jeanette Tyson Political/Economic Officer United States Embassy, Chișinău

Global Economic Impact Data Visualization: Economic Cost of Childhood Lead Exposure

- Annual economic costs of lead exposure in low and middle-income countries is \$977 billion
 - \$ 135 billion in Africa
 - \$ 142 billion in Latin America
 - \$ 700 billion in Asia

- For comparison: US \$ 50.9 and EU \$ 55 billion
- NYU School of Medicine on-line tool shows data by country

Select Country Results

Country	Annual Cost (I\$)	% GDP
Armenia	413 million	2.23
Azerbaijan	2.49 billion	2.68
Georgia	427 million	1.73
Kazakhstan	8.18 billion	3.75
Kyrgyzstan	463 million	3.75
Tajikistan	463 Million	3.47

- Calculation: The cost is estimated using Lost Economic Productivity per IQ Loss due to blood lead levels
- Full report by New York University researchers available online and by request.
- For comparison: US cost \$50 B, 0.33 GDP EU cost \$ 55 B, 0.30 GDP

Levels of Lead Detected in Paint and Blood in

Select Countries (US: paint limit 90 ppm; 2.5% children above 5 ug/dl)

Country	Average Level in Paint (ppm)	% Children with BLL > 5 ug/dl	References (Paint/Blood)
Argentina	17,000		UNEP 2013
Cameroon	23,100	50	CREPD 2011/UNEP Workshop, Dec 2015
China	15,100	38.5	Clark, 2009 (sampled in 2006)/WHO 2004
Ethiopia	18,500		UNEP 2013
India	32,700	36.3	Johnson, 2009/ WHO 2004
Kazakhstan	16,000		Clark, 2014 (sampled in 2011)
Russia	11,000	51.8	Clark, 2015 (sampled in 2011)/WHO 2004
Uruguay	9.8		UNEP 2013

Action to Reduce Economic and Health Impacts of Lead Exposure

- Lead in paint is a major source of childhood lead exposure
- Alternatives to lead additives in paint are available and affordable
- Government action needed to establish and enforce effective laws or regulations to limit lead in paint
- Lead Paint Alliance goal is for all countries to do this by 2020
- Guidance and tools are available through the Lead Paint Alliance

Thank You

- NYU Research: Trasande and Attina, Environmental Health Perspectives, volume 121, number 9, Sept 2013; http://ehp.niehs.nih.gov/1206424/
- Next week: NYU Research Web Tool link available
- Technical Contact information

Angela Bandemehr Co-Chair of the Lead Paint Alliance US EPA, Office of Global Affairs and Policy +1 202 564 1427 Bandemehr.angela@epa.gov