“Solar” Geoengineering:
Reflecting Sunlight to Cool the Climate

What role might it play in an
overall climate strategy?
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Marine Cloud Brightening
Ship tracks due

to aerosols
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Climate Impacts

What is the (possible) role for
geoengineering?

Business as

usual .
Cut emissions

aggressively

CO, removal
(HCDRII)

2 BECCS
Solar geoenglneerlng? Direct air capture
Afforestation

Stratospheric aerosols
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Climate Impacts

NOT a substitute for mitigation

Business
as usual
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Solar geoengineering?

Time

* Would require
high forcing

— Risks scale
with amount

* Would require
practically
indefinite
commitment

 Doesn’t address
all impacts of
climate change

— E.g. ocean
acidification



A specific scenario...
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Simulations with
stratospheric aerosols

Impacts

Business as

Cut emissions
usual

Geoengineering?

1° warming from CO, 1° warming offset by 1° cooling

Temperature

o
Temperature (° C)

Precipitation
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Key Observations for Solar geoengineering

* Alimited deployment in addition to mitigation might reduce
many climate risks and avoid tipping points

— ldeally (if used at all) as part of an integrated strategy

« We don’t know enough today to make an informed decision
— My guess is we need ~20 years
— Research needs to address impacts to most vulnerable
— Research will likely require small outdoor experiments
— There will always be uncertainty; this will always be a difficult tradeoff

* There are both physical climate risks and societal risks
associated with solar geoengineering



Stratospheric Aerosol Geoengineering:
What we know

* It would cool the planet (everywhere), and quickly

— Reduces many climate impacts but not all, e.g. ocean acidification
e Reduces precipitation changes in most (not all) places

* Reduces stratospheric ozone if sulfate aerosols are used
before ~2040s

* Reversible (stop injecting, effect stops after a few years)

* Relatively cheap: could have S ———
an effect for a few SB 2= s Fired goal
- amp
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Stratospheric Aerosol Geoengineering:
What don't we know?

What size distribution of aerosol particles are created?
Effect on stratospheric dynamics and heating, atmospheric chemistry

What is the effect on cirrus clouds? (A positive or negative feedback?)

Regional precipitation response remains uncertain (ditto for CO,)

Effect on ecosystems? Impacts?

This will take a LOT

orrwe aesign the system given uncertamty,
nonllnearlty, and variability?

What are the limits to how well we can know the system?

Societal response:
— Would people emit more CO,?
— Would people blame everything on the deployment?
— How might this be governed, how would amount be adjusted over time?
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Physical-Science Research

 Research to date extremely limited

— By a few academics mostly in US, Europe, and China

 What are the impacts of a (responsible) deployment strategy?
— Evaluate impacts on ecosystems, agriculture, etc.
— In every country of the world
— Need to ensure that the right questions are being asked

* How confident are we?
— What is the range of possible outcomes?

— Reducing uncertainty is likely to require some small-scale
outdoor experimentation



Big Questions

How confident do we need to be?

— Some uncertainty will not be resolvable

Who gets to decide?
— Everyone is affected

What happens if some places are harmed?
— Or are perceived to be harmed?

How do you manage deployment for centuries?

— Without any interruption...

How do you ensure that this isn’t taken as an excuse
not to mitigate?



Not all variables respond the same way

* Solar geoengineering
would overcompensate
global mean
precipitation

e QOther variables like
ocean pH would hardly
be affected
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Summary

Context:

Mitigation is necessary, it probably won’t be sufficient to avoid serious risks
— 2°Ctarget requires

* extremely aggressive reductions in emissions, combined with
* negative emissions (or CO, removal)

— 1.5°Cis much harder than 2°C

— Current INDC commitments are more likely to lead to ~3°C

A strategic approach for managing climate change
* Developing capability for CO, removal is essential

It is plausible that an additional, limited deployment of solar
geoengineering could reduce aggregate climate risks
— Not enough is known today to make informed decisions

— Raises challenging issues in ethics, governance, etc.
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Extremes of heat and
precipitation

* Effective at reducing
temperatures in general and
therefore extreme heat
events
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RINAS

Sea level rise

* Projected that SRM could
significantly slow (but not
stop) rising sea levels

Efficacy of geoengineering to limit
21st century sea-level rise
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Effects on plant life and agriculture

* Many factors,
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Median over
12 models:

2.7°C, no geo

* Temperature
is reduced
everywhere

* Precipitation
changes are
reduced in
most places

e Median
hides model
uncertainty!

2.7°C 2 1.5°C, geo

* Solar
reduction;
not same as
stratospheric
aerosols

1.5°C, no geo
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Options

CO,-removal

BECCS (bio-energy with carbon
capture and sequestration)

Direct air capture (DAC)
Afforestation/reforestation
Carbon-smart soil management
Enhanced mineral weathering
Ocean iron fertilization??

Typically either expensive or hard
to do at sufficient scale

Low climate risk but potentially
significant local issues if deployed
at scale

Solar geoengineering

Stratospheric aerosols

— Guaranteed to “work”, relatively
straightforward to implement

Marine cloud brightening
— Cloud aerosol interactions

Cirrus cloud thinning??
Ocean albedo, land albedo,...

Cools quickly

Doesn’t affect the climate the
same way as increased CO,

Novel risks, both climate and
socio-political



Detection: Moderate Scenario
(1.5°C with RCP4.5)

66% Confidence 95% Confidence

(a)
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Precipitation
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