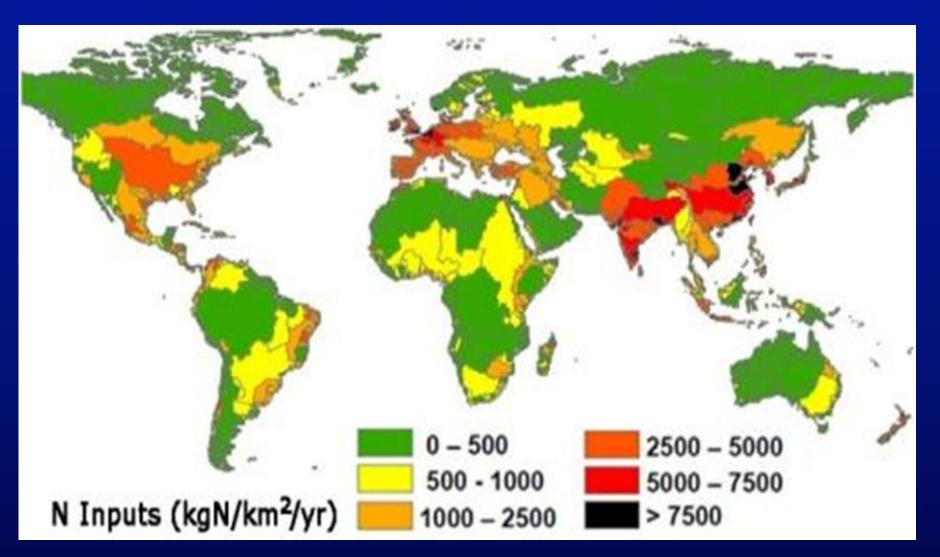
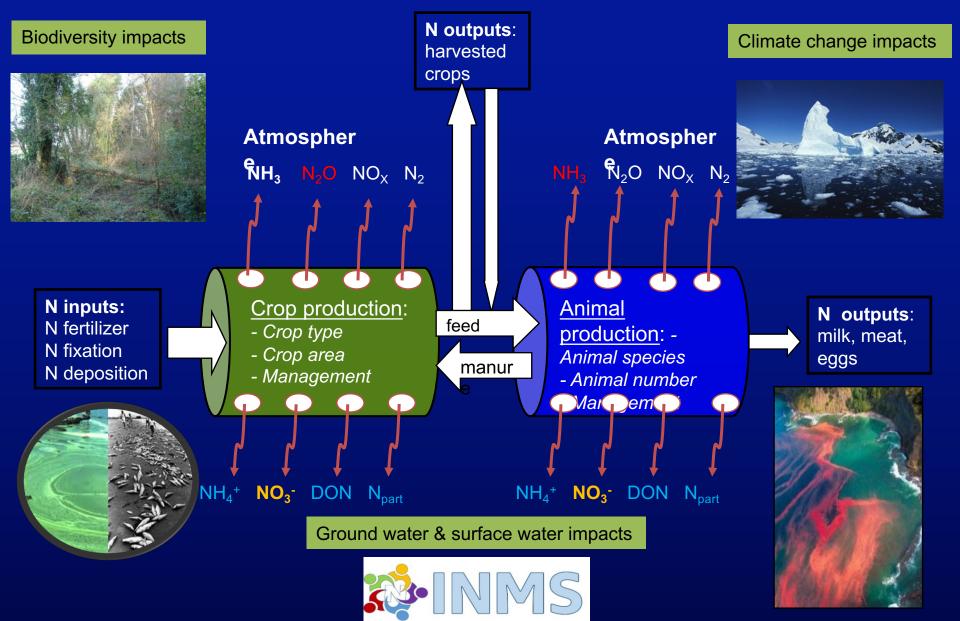
Indian Nitrogen Assessment and nutrient management for Sustainable Development

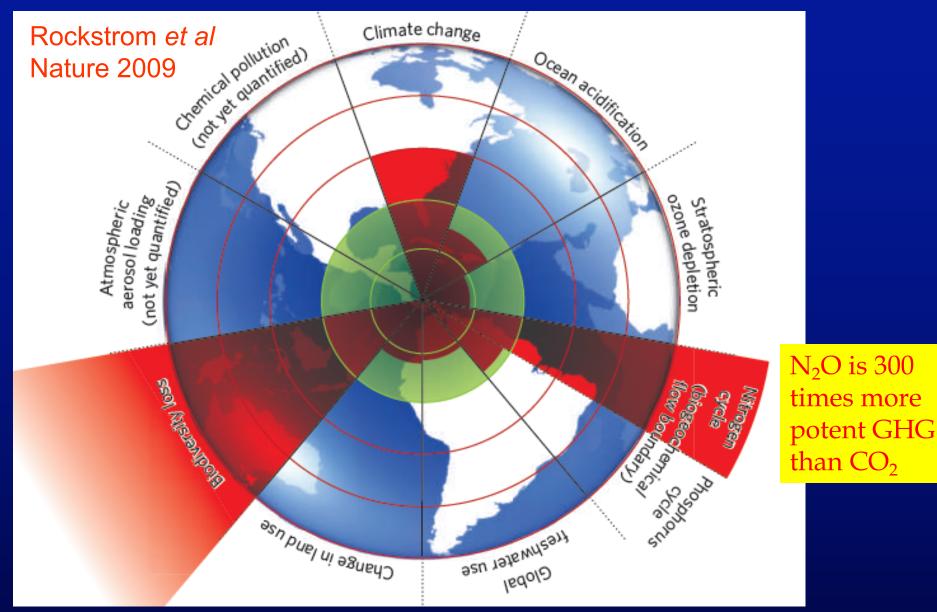
N. Raghuram


President, Society for Conservation of Nature Co-Founder, Indian N Group, SC Member, UNEP-GPNM Professor and Dean, School of Biotechnology, GGS Indraprastha University, New Delhi Editor-in-Chief, Springer journal, *Physiology and Molecular Biology of Plants*

Nutrients at the heart of global environmental concerns

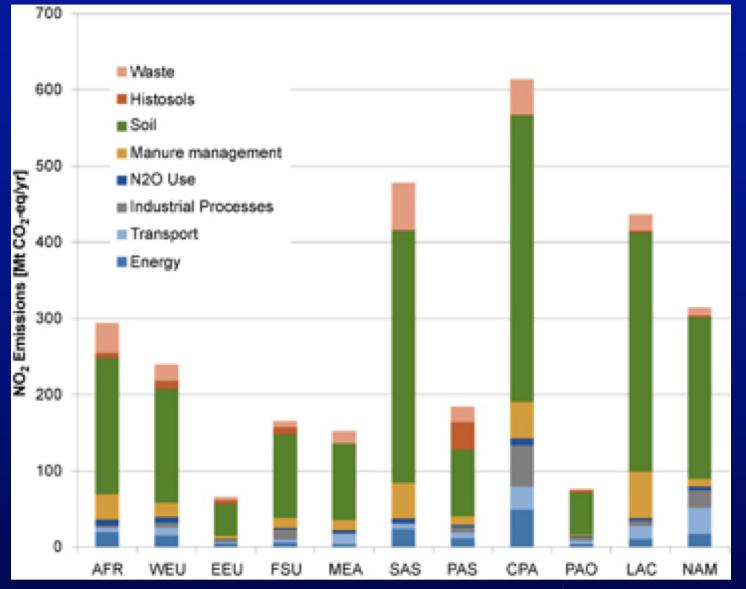
Nitrogen: UNFCC, CBD, LRTAP, GPNM, GSP, ITPS etc.


Some regions use excess N while others don't have enough

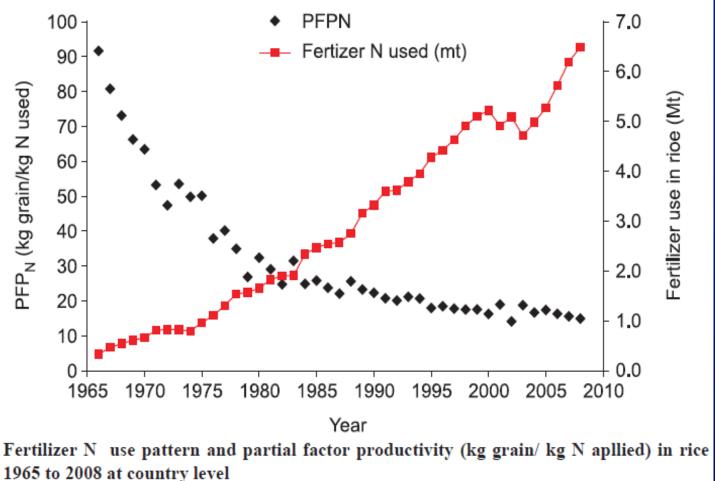

Sutton et al., Our Nutrient World (2013)

Reactive N flows and impacts:

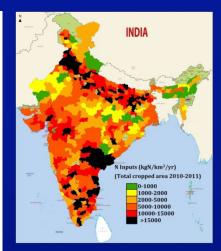
air, soil and water quality, health, climate and biodiversity



Reactive nitrogen, biodiversity loss cross planetary limits


Reactive N species include NO_3^- , NO_2^- , NH_3 , NH_4^+ , NO_4 , N_2O_4 , urea, amides...

Soils are globally the biggest sources of nitrous oxide


Winiwarter et al., Environ. Res. Lett. (2018)

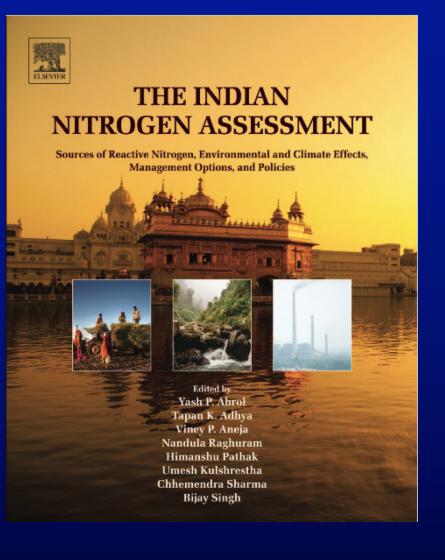
Nitrogen fertilizer use & NUE in India

Source: FAI, 2008–9. Adhya et al., (2010)

A 20% increase in National NUE for India: Saving 2.8 Mt N = £1.7 billion / year (over 400 crores for rice)

Sutton, Abrol, Raghuram, Pathak etal (2013)

Our Nutrient World


The challenge to produce more food and energy with less pollution

Prepared by the Global Partnership on Nutrient Management in collaboration with the International Nitrogen Initiative

The Indian Nitrogen Assessment

Sources of Reactive Nitrogen, Environmental and Climate Effects, Management Options, and Policies

1st Edition – Elsevier, 2017 (Sept)

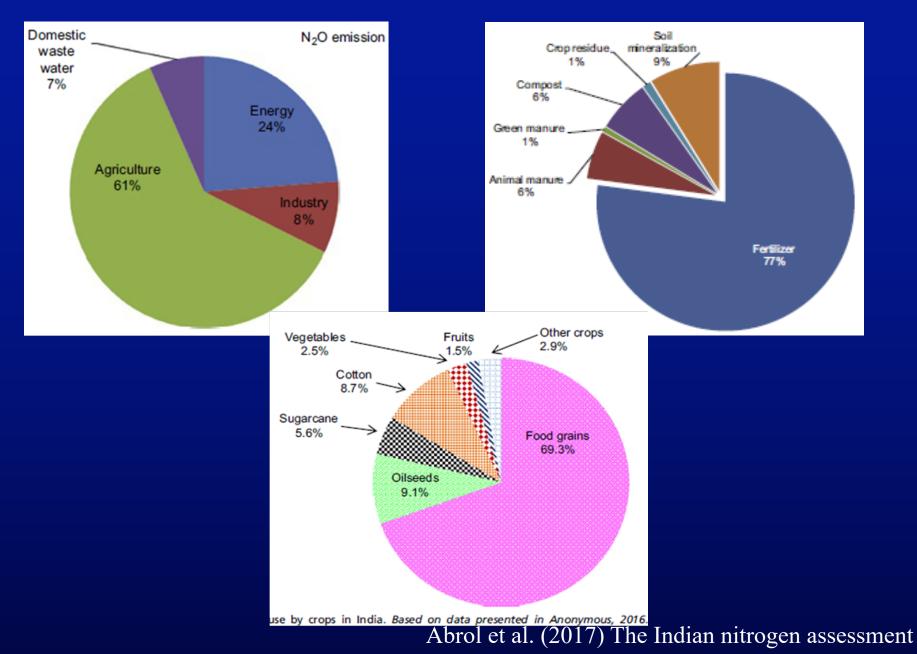
Editors: YP Abrol TK Adhya Viney P. Aneja Nandula Raghuram Himanshu Pathak Umesh Kulshrestha Chhemendra Sharma Bijay Singh

Authors: Over 60 from India and abroad Paperback ISBN: 9780128118368 Page Count: 416

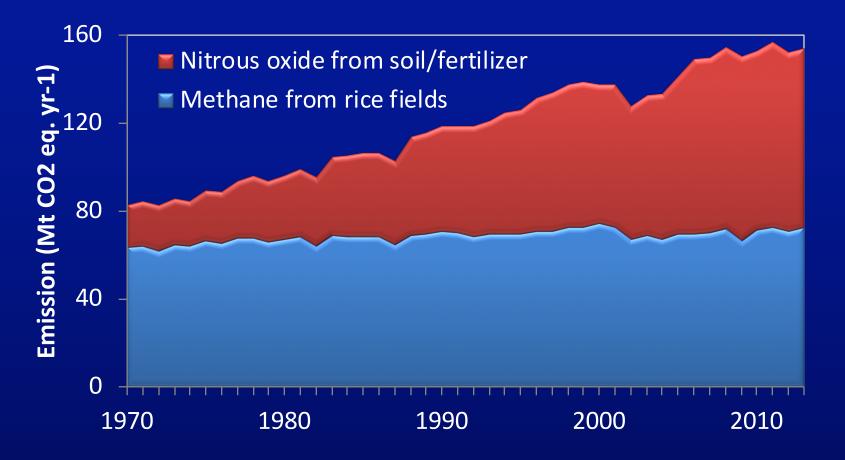
The Indian Nitrogen Assessment Table of Contents

- 1. Reactive N assessment: Technical summary
- 2. Nitrogen in India in a global perspective
- 3. Concepts & design considerations for N assessment
- 4. N fertilizer production and consumption
- 5. N processes in agricultural ecosystems of India
- 6. N balances in rice-wheat in Green revolution states
- 7. Efficient N management in cropping systems
- 8. N inputs from BNF in Indian agriculture
- 9. N management paradigms in horticulture in India
- 10. N management and NUE in cereals
- 11. Plant nitrogen use efficiency
- 12. N nutrition in crops, its importance for soil quality
- 13. N dynamics in grasslands
- 14. Reactive Nitrogen in Agro-forestry systems
- 15. Nitrogen and soil quality
- 16. Reactive N in livestock production

- 17. N use efficiency in poultry husbandry
- 18. Assessment of N in freshwater aquaculture
- 19. N management in brackish water aquaculture
- 20. N in coastal/marine waters & marine aquaculture
- 21. Nitrogen flows (air, soil, water)
- 22. Reactive N dynamics in mangroves of India
- 23. N assessment in Indian coastal systems
- 24. Nr & impact on climate change: Indian synthesis
- 25. Reactive N and air quality in India
- 26. Atmospheric emissions and deposition of Nr
- 27. Managing N in relation to key societal effects
- 28. Pathophysiology of nitrate toxicity to humans
- 29. Assessment of Nr emissions in transport sector
- 30. Emissions of Nr in energy and industry sectors
- 31. Issues and policies for Nr management in India

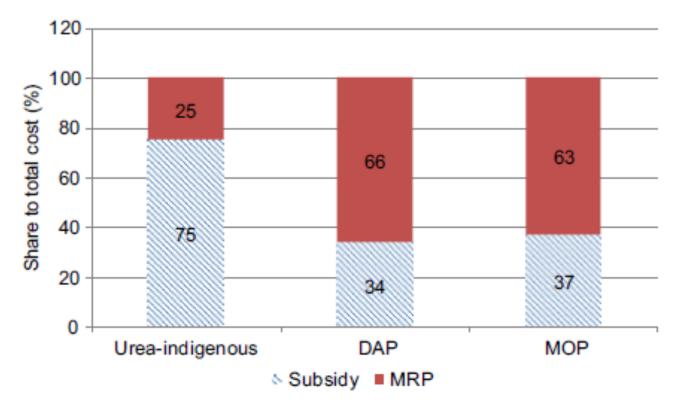

Key source analysis of N₂O emissions (NATCOM, 2012 and INDBUR1, 2015)

Source (2010 data)	N ₂ O (Gg)	Cumulative	% of total
Agriculture Soils	261.55	261.55	
Waste water-domestic	43.67	305.22	82.4
Residential/commercial	21.5	326.72	88.2
Electricity Generation	11.48	338.2	91.3
Chemicals	8.19	346.39	93.5
Road Transport	7.4	353.79	95.5
Crop residue burning	7.07	360.86	97.4
Railways	2.58	363.44	98.1
Forest fires	1.87	365.31	98.6
Non specific Industries	1.82	367.13	99.1
Iron and steel	1.5	368.63	99.5
Cement	0.57	369.2	99.7
Aviation	0.35	369.55	99.8
Solid fuels	0.3	369.85	99.9
Navigation	0.13	369.98	99.9
Pulp and paper	0.1	370.08	99.9
Manure Management	0.08	370.16	99.9
Refinery	0.07	370.23	100.0


N₂O emissions by source in India as of 2010 (NATCOM, 2012 & INDBUR1, 2015)

	2000 - N2O (Gg)	2010- N2O (Gg)	CAGR (%)
Energy Industries	7.78	11.85	4.30
Electricity	7.75	11.68	4.19
Refinery	0.03	0.07	8.84
Solid fuels	NE	0.3	-
Manufacturing Industr	y15.2	12.28	-2.11
Cement	NE	0.57	-
Iron and steel	0.85	1.5	5.84
Non-ferrous metals	0.03	0.03	0.00
Chemicals	13.14	8.19	-4.62
Pulp and paper	0.08	0.1	2.26
Food and beverage	0.2	NE	-
Non-metallic minerals	0.01	NE	-
Mining and quarrying	0.02	0.04	7.18
Textlie and Leather	0.08	0.03	-9.34
Non specific Industries	0.79	1.82	8.70
Transport	6.22	10.46	5.34
Road	4	7.4	6.35
Aviation	0.12	0.35	11.30
Railways	2.06	2.58	2.28
Navigation	0.04	0.13	
Other Comm/Instt	0.03	1.08	43.10
Agriculture	192.73	268.7	3.38
Manure Management	0.07	0.08	1.34
Agriculture Soils	186.49	261.55	3.44
Crop residue burning	6.17	7.07	1.37
Forest fires	6.74	1.87	-12.03
Waste water-domestic	13.23	43.67	12.68
Grand Total	264.16	370.38	3.44

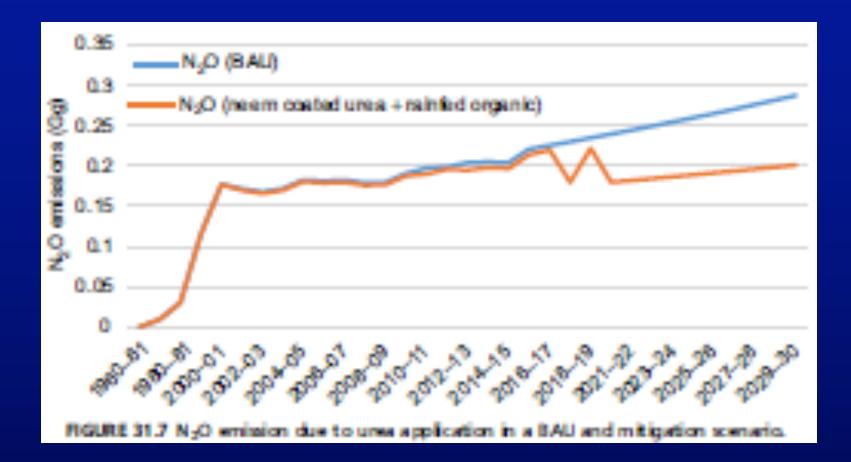
Sources of Nr from Indian agricultural soils 2010


Greenhouse Gas Emissions from Indian Agriculture

From 1970 to 2010 GHGs grew 75%, but nitrous oxide doubled
Upto 2002, methane from rice was the 2nd largest source.
Currently, N₂O from soil/fertilizer is the 2nd largest source.

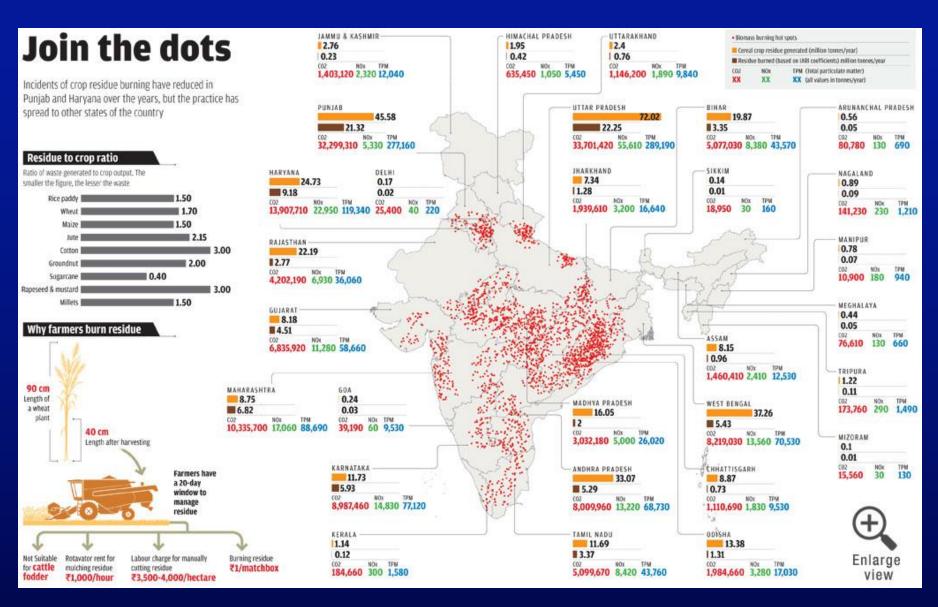
Pathak et al. (2015)

Indian govt. subsidy for fertilizers as % of total cost (2016)


4.3 Share of subsidy to total cost of urea, diammonium phosphate (DAP) and muriate of potash 2015–16.

Govt's major policy changes in 2017:

a) sell only neem-coated urea and b) reduce bag size by 10%


Tewatia and Chandra (2017) The Indian nitrogen assessment

Indian N₂O emission due to urea and outlook scenarios

Bhattacharya et al (2017) The Indian nitrogen assessment

Crop residue burning across India (2014)

http://www.downtoearth.org.in/coverage/river-of-fire-57924

Losses from straw burning

Loss of Nutrients

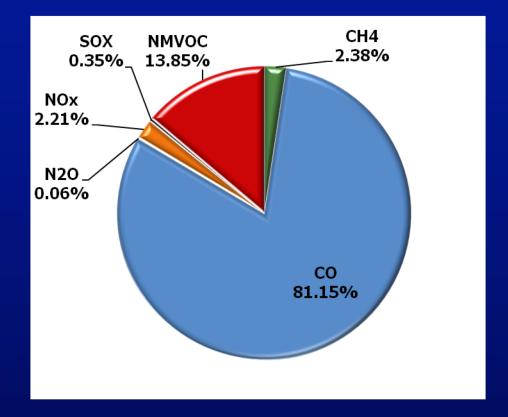
▶ 100% of C

- ≻80% of N
- ≻25% of P
- ≻ 50% of S

▶20% of K

Emissions & aerosols

- ➢ 3 kg particulate matter
- ➢ 60 kg CO
- ➤ 1460 kg CO₂
- ➢ 199 kg ash
- \succ 2 kg SO₂
- \succ N₂O, CH4
- Hydrocarbons



- volatile organic compounds (VOCs)
- semi-volatile organic compounds (SVOCs)
- polycyclic aromatic hydrocarbons (PAHs)
- polychlorinated biphenyls (PCBs)
- Dioxins

Acid deposition, increase in tropospheric ozone and depletion of the stratospheric ozone layer.

Greenhouse gas emissions from burning of crop residues in India (Gg)

> $CH_4 - 257$ > CO - 8822> $N_2O - 6.7$ > NOx - 239> SOx - 38

Jain and Pathak (2010)

Nr losses (Mt) from poultry

Table 17.1 Estimated Poultry Population, Feed Requirement, and Nitrogen Excretion

		Year			
Attributes	Units	2016	2020	2025	2030
Poultry population	Million, number	762.3	839.0	945.8	1066.2
Feed requirement (total)	Million tons	21.20	28.20	40.35	57.84
Feed requirement, broiler	Million tons	10.31	14.20	21.17	31.57
Layer	Million tons	10.10	12.99	17.80	24.39
Ducks and others	Million tons	0.783	1.01	1.37	1.88
Excreta (DM)	Million tons	7.70	10.18	13.48	17.87
Excreta (25% DM basis)	Million tons	30.79	40.72	53.92	71.48
N excretion	Million tons	0.415	0.546	0.770	1.089

Mandal et al (2017) The Indian nitrogen assessment

Estimated N₂O emissions (Gg) from Indian livestock 2014

Table 26.3 Estimated and Projected Nitrous Oxide Emissions (Gg) From Livestock in India

Livestock Category	1961	2010	2025	2050
Cattle	4.2	4.1	4.1	3.9
Buffalo	2.2	4.8	5.4	6.8
Sheep	0.6	1.2	1.3	1.5
Goat	1	2.4	2.7	3.4
Swine	0.29	0.54	0.94	1.2
Poultry	0.3	2.3	3	4.6
Camel	0.014	0.007	0.006	0.005
Ass	0.017	0.005	0.004	0.003
Mule	0.001	0.002	0.002	0.002
Horse	0.004	0.002	0.002	0.001
Total	8.67	15.3	17.5	21.4

Patra, A.K., 2014. Trends and projected estimates of GHG emissions from Indian livestock in comparisons with GHG emissions from world and developing countries. Asian-Australasian Journal of Animal Sciences 27(4), 592–599, http://dx.doi.org/10.5713/ajas.2013. 13342.

Kulshreshtha et al (2017) The Indian nitrogen assessment

Groundwater nitrate content in metropolitan areas 2014

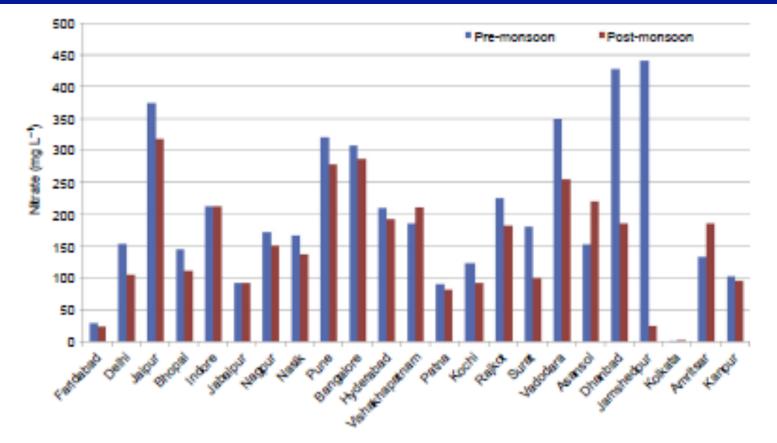
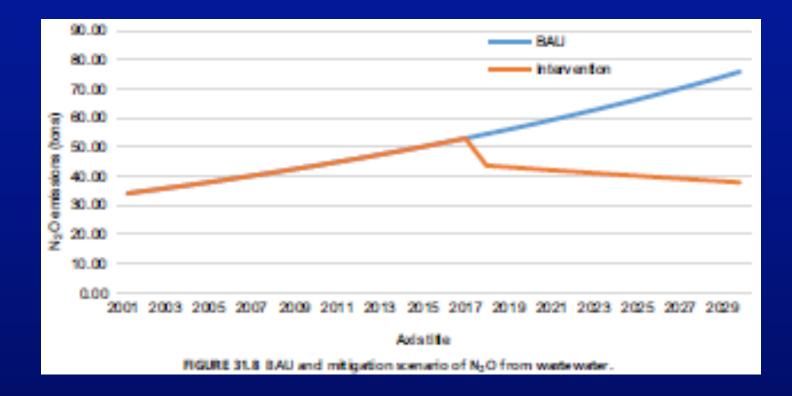
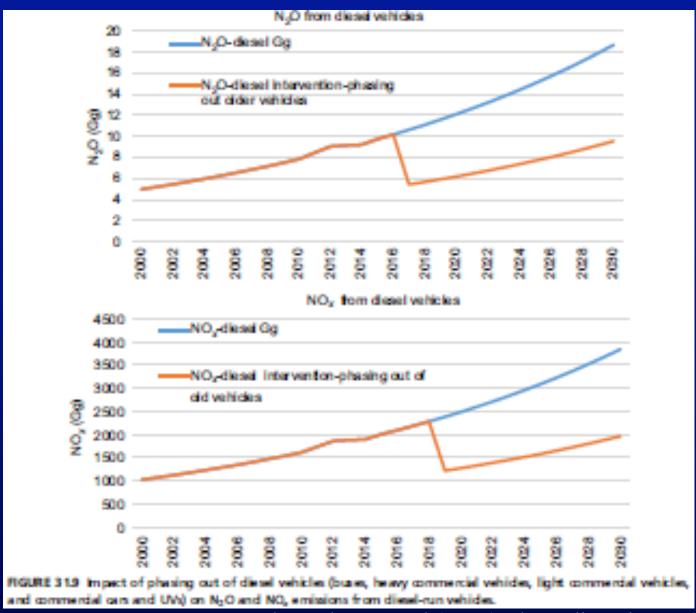



FIGURE 21.1 Nitrate content in groundwater of metropolitan areas. CGWB, 2014a. Concept Note on Geogenic Contamination of Ground Water in India with a Special Note on Nitrate; CGWB, 2014b. Ground Water Year Book, 2013–14.


Nationally, 381 out of 640 districts spanning 21 out of 29 states, 7 UTs are affected Prakasa Rao et al (2017) The Indian nitrogen assessment

Indian N₂O emission due to wastewater and scenarios

Bhattacharya et al (2017) The Indian nitrogen assessment

Vehicular N₂O and NOx emission and mitigation scenarios

Bhattacharya et al (2017) The Indian nitrogen assessment

Where are we with nitrogen policy?

- General fragmentation of issues, ministries, agencies
 - Water, air, GHG, biodiversity, food, fertilizer, etc
- Major barriers to change
 - Cars struggle to go further in reducing NO_x
 - Agricultural lobbies prevent adoption of N policies
 - Insufficient of investment in waste water treatment
- Recent Govt Initiatives (2017)
 - Neem coated urea is the only urea available in retail market
 - Size of urea bag reduced by 10% keeping the price constant
 - PM and agri minister advocate reduction of urea by half in 5 yrs

Thanks!

raghuram98@hotmail.com

