QUINTOZENE
HEALTH AND
SAFETY GUIDE

UNITED NATIONS
ENVIRONMENT PROGRAMME

INTERNATIONAL
LABOUR ORGANISATION

WORLD HEALTH
ORGANIZATION

WORLD HEALTH ORGANIZATION, GENEVA
Other HEALTH AND SAFETY GUIDES available:

Acrylonitrile
Kelevan
Methylene Chloride
Tetrachloroethylene
1-Butanol
2-Butanol
tert-Butanol
Isobutanol
2,4-D
Epichlorohydrin
Tetradifon
12. Tecnazene
13. Chlordane
14. Heptachlor
15. Propylene Oxide
16. Ethylene Oxide
17. Endosulfan
18. Dichlorvos
19. Pentachlorophenol
20. Dimethoate
21. Aldrin and Dieldrin
22. Cypermethrin
Health and Safety Guide No. 23

QUINTOZENE
HEALTH AND
SAFETY GUIDE

This is a companion volume to
Environmental Health Criteria 41: Quintozene

Published by the World Health Organization for the International
Programme on Chemical Safety
(a collaborative programme of the United Nations Environment
Programme, the International Labour Organisation, and the World
Health Organization)
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1. PRODUCT IDENTITY AND USES</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Identity</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Physical and chemical properties</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Analytical methods</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Production and uses</td>
<td>8</td>
</tr>
<tr>
<td>2. SUMMARY AND EVALUATION</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Quintozene toxicity</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Human exposure to quintozene</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Evaluation of health risks for man</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Evaluation of effects on the environment</td>
<td>10</td>
</tr>
<tr>
<td>3. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Conclusions</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Recommendations</td>
<td>11</td>
</tr>
<tr>
<td>4. HUMAN HEALTH HAZARDS, PREVENTION AND PROTECTION, EMERGENCY ACTION</td>
<td>12</td>
</tr>
<tr>
<td>4.1 Main human health hazards, prevention and protection, first aid</td>
<td>12</td>
</tr>
<tr>
<td>4.1.1 Advice to physicians</td>
<td>12</td>
</tr>
<tr>
<td>4.1.2 Health surveillance advice</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Explosion and fire hazards</td>
<td>12</td>
</tr>
<tr>
<td>4.2.1 Explosion hazards</td>
<td>12</td>
</tr>
<tr>
<td>4.2.2 Fire hazards</td>
<td>12</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>4.3 Storage</td>
<td>13</td>
</tr>
<tr>
<td>4.3.1 Leaking containers in store</td>
<td>13</td>
</tr>
<tr>
<td>4.4 Transport</td>
<td>13</td>
</tr>
<tr>
<td>4.5 Spillage and disposal</td>
<td>13</td>
</tr>
<tr>
<td>4.5.1 Spillage</td>
<td>13</td>
</tr>
<tr>
<td>4.5.1.1 Solid products</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1.2 Liquid products</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1.3 All products</td>
<td>14</td>
</tr>
<tr>
<td>4.5.2 Disposal</td>
<td>14</td>
</tr>
<tr>
<td>5. HAZARDS FOR THE ENVIRONMENT AND THEIR PREVENTION</td>
<td>15</td>
</tr>
<tr>
<td>6. INTERNATIONAL CHEMICAL SAFETY CARD</td>
<td>18</td>
</tr>
<tr>
<td>7. CURRENT REGULATIONS, GUIDELINES, AND STANDARDS</td>
<td>22</td>
</tr>
<tr>
<td>7.1 Previous evaluations by international bodies</td>
<td>22</td>
</tr>
<tr>
<td>7.2 Exposure limit values</td>
<td>22</td>
</tr>
<tr>
<td>7.3 Specific restrictions</td>
<td>26</td>
</tr>
<tr>
<td>7.4 Labelling, packaging, and transport</td>
<td>26</td>
</tr>
<tr>
<td>7.5 Waste disposal</td>
<td>26</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>27</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Environmental Health Criteria (EHC) documents produced by the International Programme on Chemical Safety include an assessment of the effects on the environment and on human health of exposure to a chemical or combination of chemicals, or physical or biological agents. They also provide guidelines for setting exposure limits.

The purpose of a Health and Safety Guide is to facilitate the application of these guidelines in national chemical safety programmes. The first three sections of a Health and Safety Guide highlight the relevant technical information in the corresponding EHC. Section 4 includes advice on preventive and protective measures and emergency action; health workers should be thoroughly familiar with the medical information to ensure that they can act efficiently in an emergency. Within the Guide is an International Chemical Safety Card which should be readily available, and should be clearly explained, to all who could come into contact with the chemical. The section on regulatory information has been extracted from the legal file of the International Register of Potentially Toxic Chemicals (IRPTC) and from other United Nations sources.

The target readership includes occupational health services, those in ministries, governmental agencies, industry, and trade unions who are involved in the safe use of chemicals and the avoidance of environmental health hazards, and those wanting more information on this topic. An attempt has been made to use only terms that will be familiar to the intended user. However, sections 1 and 2 inevitably contain some technical terms. A bibliography has been included for readers who require further background information.

Revision of the information in this Guide will take place in due course, and the eventual aim is to use standardized terminology. Comments on any difficulties encountered in using the Guide would be very helpful and should be addressed to:

The Manager
International Programme on Chemical Safety
Division of Environmental Health
World Health Organization
1211 Geneva 27
Switzerland
THE INFORMATION IN THIS GUIDE SHOULD BE CONSIDERED AS A STARTING POINT TO A COMPREHENSIVE HEALTH AND SAFETY PROGRAMME
1. PRODUCT IDENTITY AND USES

1.1 Identity

Common name: Quintozene
Chemical formula: C₆Cl₅NO₂
Chemical structure:

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\]

Common trade names: Avicol, Botrilex, Brassicol, Earthcide, Fartox, Folosan, Fomac 2, Fungiclor, GC 3944-3-4, Kobu, Kobutol, KP 2, NCI-C00419, Olpisan, PCNB, Pentagen, Terraclor, Terrafum, Tilcarex, Tritisan (a complete list of trade names is available from IRPTC (1983))

CAS chemical name: pentachloronitrobenzene
CAS registry number: 82-68-8
Relative molecular mass: 295.36

Hexachlorobenzene is often found as a contaminant in quintozene and levels can range up to 3%. (in the past, levels as high as 30% were found, but regulations have been introduced in many countries to restrict these levels).

1.2 Physical and Chemical Properties

Quintozene is a pale yellow-to-white (depending on the purity) solid with a musty odour and a melting point of 142–146 °C. It is soluble in carbon disulfide, benzene, chloroform, ketones, and aromatic and chlorinated hydrocarbons, but is practically insoluble in water.
It is quite stable in soil, but eventually degrades to pentachloroaniline (PCA).

1.3 Analytical Methods

Gas chromatography combined with electron capture detection is used for the analytical determination of quintozene.

1.4 Production and Uses

Quintozene has been used as a soil fungicide and as a seed dressing since the 1930s. It is available as a wettable powder, dust, emulsifiable concentrate, granules, or in combination products.
2. SUMMARY AND EVALUATION

2.1 Quintozene Toxicity

On the basis of the oral LD$_{50}$ in the rat of 12 000 mg/kg, WHO (1986) classified quintozene in the category of technical products unlikely to present an acute hazard in normal use.

No-observed-adverse-effect levels in long-term studies on the rat and the dog were 1.25 and 0.75 mg/kg body weight (25 and 30 mg/kg diet), respectively. In long-term studies on rats and at higher dosages (63 mg/kg diet), quintozene gave rise to liver hypertrophy with some histopathological changes; dogs administered 5000 mg quintozene/kg diet exhibited more severe liver damage with fibrosis. In short-term studies on female rats, quintozene caused induction of mixed-function oxidases.

Quintozene is partly metabolized and partly excreted unchanged and does not accumulate in tissues.

Purified quintozene is not considered to be teratogenic.

Quintozene is generally negative in short-term tests for genetic activity.

Equivocal or negative findings have been reported in carcinogenicity studies on rats and mice. Hexachlorobenzene, an impurity in technical quintozene, is carcinogenic for mice, rats, and hamsters.

Quintozene is a weak skin sensitiser, but not an irritant.

With the exception of a single case of conjunctivitis in an occupational setting, no other cases of poisoning or adverse effects have been reported in man.

2.2 Human Exposure to Quintozene

The general population can be exposed through residues in food, especially in oils and fats. Information on exposure from other sources is

\[a\] In a recent (1986) NTP study on purified PCNB in mice, no evidence of carcinogenicity was found at high dose levels.
lacking. No cases of accidental or occupational overexposure have been reported.

2.3 Evaluation of Health Risks for Man

With the exception of some data on residues in food, no human exposure data are available for quintozene. It is therefore difficult to evaluate the hazard for man of present exposures to this substance. Nevertheless, the low toxicity of quintozene that has been demonstrated in short-term and long-term animal studies indicates a low degree of concern in relation to human health effects.

2.4 Evaluation of Effects on the Environment

Quintozene persists in soil with a half-life within the range of 4–10 months. Part of it is lost from the soil by volatilization. Biodegradation, mainly to pentachloroaniline, is an important route of conversion. Photo-degradation is not important.

The only significant adverse effect reported for quintozene is on earthworms. In laboratory tests, quintozene applied as a soil fungicide, at recommended doses, appeared to have long-term toxic effects on the earthworm. Unfortunately, no observations of the effects on earthworms of quintozene alone, during field use, are available.

There is no evidence that quintozene represents a threat to non-target organisms. It has a very low acute toxicity for fish and *Daphnia*.

Its bioaccumulation by fish is low, and no effects have been reported on terrestrial plants, birds, or microorganisms.
3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

(a) The general population does not appear to be at risk from residues of quintozene in food.

(b) Exposure of the general population via air and drinking-water could not be evaluated because of lack of data.

(c) Occupational exposure has not been reported to cause any adverse effects.

(d) There is limited information on the effects of quintozene in the general environment. It has been shown to be toxic for earthworms in laboratory tests. Data on other organisms suggest that quintozene does not pose a problem in the general environment.

(e) Quintozene does not biomagnify.

(f) The major toxicological concern with quintozene is the presence of hexachlorobenzene as an impurity.

3.2 Recommendations

Levels of impurities in quintozene, especially hexachlorobenzene, should be kept to a minimum.
4. HUMAN HEALTH HAZARDS, PREVENTION AND PROTECTION, EMERGENCY ACTION

4.1 Main Human Health Hazards, Prevention and Protection, First Aid

Quintozene is a practically non-toxic organochlorine fungicide. Nevertheless, the correct precautions should be observed in its handling and use.

For details see the International Chemical Safety Card on pages 18–21.

4.1.1 Advice to physicians

Poisoning is unlikely to occur unless a massive overdose is swallowed. In this case, it is not necessary to induce vomiting. If gastric lavage is undertaken, a cuffed endotracheal tube should be used. Otherwise, a clear airway should be maintained and respiration should be safeguarded.

4.1.2 Health surveillance advice

No routine medical supervision is required.

4.2 Explosion and Fire Hazards

4.2.1 Explosion hazards

The explosion hazard will depend on the solvent used in the formulation or on the characteristics of the dust.

4.2.2 Fire hazards

Liquid formulations containing organic solvents may be flammable. Extinguish fires with alcohol-resistant foam, carbon dioxide, or powder. With sufficient burning or external heat, quintozene will decompose, emitting toxic fumes. Fire-fighters should be equipped with self-contained breathing apparatus, eye protection, and full protective clothing.
The use of water spray should be confined to the cooling of unaffected stock, thus avoiding the accumulation of polluted run-off from the site.

4.3 Storage

Products should be stored in locked buildings, preferably dedicated to pesticides, and kept out of reach of children and unauthorized personnel. They should not be stored near foodstuffs or animal feed.

4.3.1 Leaking containers in store

Take precautions and use appropriate personal protection (see the International Chemical Safety Card on pages 18–21). Empty any product remaining in the damaged/leaking containers into a clean empty drum, which should then be tightly closed and suitably labelled.

Sweep up spillage with sawdust, sand, or earth (moisten for powders), and dispose of safely (section 4.5.2).

After emptying, leaking containers should be rinsed with at least 1 litre of water per 20-litre drum. Swirl round to rinse the walls, empty, and add the rinsings to the sawdust or earth. Puncture the container to prevent re-use.

4.4 Transport

Local requirements regarding movements of hazardous goods should be complied with. The product should not be transported in the same compartment as foodstuffs. Containers should be checked before despatch to ensure that they are sound and that the labels are undamaged.

4.5 Spillage and Disposal

4.5.1 Spillage

Before dealing with any spillage, the necessary precautions should be taken and appropriate personal protection should be used (see the International Chemical Safety Card on pages 18–21).
4.5.1.1 Solid products

The remaining spilled product should be absorbed on moist sawdust, sand, or earth, swept up, and transferred in a suitable container to a safe place for disposal (section 4.5.2).

4.5.1.2 Liquid products

The liquid can be prevented from spreading or contaminating other cargo, vegetation, or waterways, by making a barrier of the most suitable material available, e.g., earth or sand.

Spilled liquid should be absorbed on sawdust, sand, or earth, swept up and placed in a closeable container for later transfer to a safe place for disposal (section 4.5.2).

4.5.1.3 All products

As soon as possible after the spillage and before re-use, all contaminated areas should be covered with damp sawdust, sand, or earth. This should be swept up and placed in a closeable container for later transfer to a safe place for disposal. Care should be taken to avoid run-off into water courses.

4.5.2 Disposal

Surplus product, contaminated absorbents, and containers should be disposed of in an appropriate way. Waste material should be burned in a proper incinerator designed for organochlorine waste disposal (1000 °C and 30 min residence time with effluent gas scrubbing). If this is not possible, it should be buried in an approved dump or landfill where there is no risk of contamination of surface or ground water. Local legislation regarding disposal of toxic wastes should be complied with. Containers must be punctured to prevent re-use.
Although there is limited information on the effects of quintozene in the general environment, it has been shown to be toxic for earthworms. Data on other organisms suggest that quintozene is not a problem in the general environment. Its bioaccumulation by fish is low. It does not biomagnify.

Discharges arising from the manufacture, formulation, and use of quintozene should not be allowed to pollute the environment and should be treated properly.
This card should be easily available to all health workers concerned with, and users of, quintozene. It should be displayed at, or near, entrances to areas where there is potential exposure to quintozene, and on processing equipment and containers. The card should be translated into the appropriate language(s). All persons potentially exposed to the chemical should also have the instructions on the chemical safety card clearly explained.

Space is available on the card for insertion of the National Occupational Exposure Limit, the address and telephone number of the National Poison Control Centre, and for local trade names.
INTERNATIONAL CHEMICAL SAFETY CARD

QUINTOZENE

C₆Cl₅NO₂

CAS chemical name: pentachloronitrobenzene
CAS registry number: 82-68-8

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES</th>
<th>OTHER CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point (°C)</td>
<td>142 - 146</td>
</tr>
<tr>
<td>Density (25 °C)</td>
<td>1.718</td>
</tr>
<tr>
<td>Vapour pressure (kPa at 20 °C)</td>
<td>10^-8 x 667</td>
</tr>
<tr>
<td>Relative molecular mass</td>
<td>295.36</td>
</tr>
<tr>
<td>Solubility in:</td>
<td>Pale yellow-to-white solid with a musty odour; technical grade may contain hexachlorobenzene as a contaminant; it is rather stable in soil; it is used as a fungicide in agriculture, horticulture, and in soil and seed treatment</td>
</tr>
<tr>
<td>water (20 °C)</td>
<td>0.44 mg/litre (practically insoluble)</td>
</tr>
<tr>
<td>ethanol (25 °C)</td>
<td>2%</td>
</tr>
<tr>
<td>most other organic solvents</td>
<td>soluble</td>
</tr>
<tr>
<td>HAZARDS/SYMPTOMS</td>
<td>PREVENTION AND PROTECTION</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>SKIN: Repeated contamination may cause sensitization</td>
<td>Avoid skin contact, wear clean overalls and protective gloves; launder contaminated clothing before re-use</td>
</tr>
<tr>
<td>EYES: May cause irritation, redness</td>
<td>Avoid working in a dusty atmosphere</td>
</tr>
<tr>
<td>INHALATION: Dust may irritate</td>
<td>Avoid working in a dusty atmosphere</td>
</tr>
<tr>
<td>INGESTION: Unlikely occupational hazard</td>
<td>Do not eat, drink, or smoke during work; wash hands before eating, drinking, or smoking</td>
</tr>
<tr>
<td>Massive accidental or intentional ingestion may cause poisoning</td>
<td></td>
</tr>
<tr>
<td>REPEATED EXPOSURE – SKIN, INHALATION, INGESTION: unlikely to cause adverse effects, unless massive exposure; may, however, cause skin sensitization</td>
<td>Same as above; take shower and put on clean clothing after work</td>
</tr>
<tr>
<td>HAZARDS/SYMPTOMS</td>
<td>PREVENTION AND PROTECTION</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ENVIRONMENT: Toxic for earthworms</td>
<td>Do not pollute the environment with waste material or discharges</td>
</tr>
<tr>
<td>SPILLAGE</td>
<td>STORAGE</td>
</tr>
<tr>
<td>Take appropriate personal precautions; prevent liquid from spreading or contaminating other cargo, vegetation, or waterways, with a barrier of the most suitable material available, e.g., earth or sand</td>
<td>Products should be stored in locked buildings preferably dedicated to insecticides; keep products out of reach of children and unauthorized personnel; do not store near foodstuffs or animal feed</td>
</tr>
<tr>
<td>Absorb spilled liquid with sawdust, sand, or earth; sweep up and place it in a closeable container for later safe disposal</td>
<td></td>
</tr>
<tr>
<td>FIRE AND EXPLOSION</td>
<td></td>
</tr>
<tr>
<td>Liquid formulations containing organic solvents may be flammable; emulsifiable concentrates are miscible with water; extinguish fires with alcohol-resistant foam, CO₂, or powder; with sufficient burning or external heat, quintozone will decompose, emitting toxic fumes; the smoke and fumes could be injurious through inhalation, or absorption through the skin; therefore, protective clothing and self-contained breathing apparatus should be worn; the use of water spray should be confined to the cooling of unaffected stock, thus avoiding the accumulation of polluted run-off from the site</td>
<td></td>
</tr>
<tr>
<td>WASTE DISPOSAL</td>
<td>NATIONAL INFORMATION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Waste material should be burned in a proper incinerator designed for organochlorine waste disposal; if this is not possible, bury in an approved dump or landfill where there is no risk of contamination of surface or ground water; comply with any local legislation regarding disposal of toxic wastes</td>
<td>National Occupational Exposure Limit:</td>
</tr>
<tr>
<td></td>
<td>National Poison Control Centre:</td>
</tr>
<tr>
<td></td>
<td>Local Trade Names:</td>
</tr>
</tbody>
</table>
7. CURRENT REGULATIONS, GUIDELINES, AND STANDARDS

The information given in this section has been extracted from the International Register of Potentially Toxic Chemicals (IRPTC) legal file and other UN sources. The intention is to give the reader a representative, but non-exhaustive, overview of current regulations, guidelines, and standards.

The reader should be aware that regulatory decisions about chemicals taken in a certain country can only be fully understood in the framework of the legislation of that country.a

7.1 Previous Evaluations by International Bodies

The FAO/WHO Joint Meeting on Pesticide Residues (JMPR) reviewed residue and toxicity data on quintozene in 1969, 1973, 1974, 1975, and 1977. The conclusion in 1977 was that 25 mg/kg diet, equivalent to 1.25 mg/kg body weight was a no-observed-adverse-effect-level in the rat and 30 mg/kg diet, equivalent to 0.75 mg/kg body weight, in the dog. On the basis of these data, the estimate of an acceptable daily intake (ADI) for man was $0 - 0.007 \text{ mg/kg body weight}$.

IARC (1974) did not come to a conclusion on the carcinogenicity of quintozene, because of lack of data at the time. FAO/WHO (1978) concluded that there were no indications that administration of quintozene resulted in carcinogenic activity.

In the *WHO recommended classification of pesticides by hazard and guidelines to classification* (WHO, 1986), quintozene is classified in the category of technical products unlikely to present an acute hazard in normal use.

7.2 Exposure Limit Values

Some exposure limit values are given in the table on pages 23–25.

When no effective date appears in the IRPTC legal file, the year of the reference from which the data were taken is indicated by (r).

a The regulations and guidelines of all countries are subject to change and should always be verified with the appropriate regulatory authorities before application.
CURRENT REGULATIONS, GUIDELINES, AND STANDARDS

EXPOSURE LIMIT VALUES

<table>
<thead>
<tr>
<th>Medium</th>
<th>Specification</th>
<th>Country/Organization</th>
<th>Exposure limit description</th>
<th>Value</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td>Work-place</td>
<td>Bulgaria</td>
<td>Maximum permissible concentration (MPC)</td>
<td>0.5 mg/m³</td>
<td></td>
</tr>
<tr>
<td>USSR</td>
<td></td>
<td></td>
<td>Maximum allowable concentration (MAC) - Ceiling value for vapour, aerosol</td>
<td>0.5 mg/m³</td>
<td>1977</td>
</tr>
<tr>
<td>AIR</td>
<td>Ambient</td>
<td>USSR</td>
<td>Maximum allowable concentration (MAC) - 1 x/day - Average per day</td>
<td>0.01 mg/m³</td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>Intake from</td>
<td>FAO/WHO</td>
<td>Acceptable daily intake (ADI)</td>
<td>0.007 mg/kg body weight</td>
<td>1977</td>
</tr>
<tr>
<td>USSR</td>
<td></td>
<td></td>
<td>Acceptable daily intake (ADI)</td>
<td>0.007 mg/kg</td>
<td>1983</td>
</tr>
<tr>
<td>Medium</td>
<td>Specification</td>
<td>Country/Organization</td>
<td>Exposure limit description</td>
<td>Value</td>
<td>Effective date</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>FOOD</td>
<td>Plant</td>
<td>Brazil</td>
<td>Acceptable limit</td>
<td>0.01–5 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Czechoslovakia</td>
<td>Maximum residue limit (MRL)</td>
<td>0.01–0.1 mg/kg</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAO/WHO</td>
<td>Maximum residue level</td>
<td>0.01–5 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finland</td>
<td>Maximum residue limit</td>
<td>0.2–0.3 mg/kg</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germany, Federal</td>
<td>Maximum residue limit (MRL)</td>
<td>0.01–0.3 mg/kg</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Republic of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kenya</td>
<td>Maximum limit</td>
<td>0.02–10 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Netherlands</td>
<td>Maximum residue limit (MRL)</td>
<td>0.02–3 mg/kg</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Certain foodstuffs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sweden</td>
<td>Maximum tolerable concentration</td>
<td>0.2–1 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>Acceptable residue limit</td>
<td>0.1–1 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(interim tolerance limit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>Animal</td>
<td>Germany, Federal Republic of</td>
<td>Maximum residue limit (MRL)</td>
<td>0.01–0.2 mg/kg</td>
<td>1984</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td></td>
<td>Maximum tolerable concentration</td>
<td>0.005–0.1 mg/kg</td>
<td>1983</td>
</tr>
<tr>
<td>FEED</td>
<td>Argentina</td>
<td></td>
<td>Maximum limit</td>
<td>0 mg/kg</td>
<td>1969</td>
</tr>
<tr>
<td></td>
<td>USSR</td>
<td></td>
<td>Prohibition</td>
<td>0 mg/kg</td>
<td>1981</td>
</tr>
<tr>
<td>GOODS</td>
<td>Argentina</td>
<td></td>
<td>Maximum limit</td>
<td>0 mg/kg</td>
<td>1971</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Tobacco</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germany, Federal Republic of</td>
<td></td>
<td>Maximum residue limit (MRL)</td>
<td>0.2 mg/kg</td>
<td>1984</td>
</tr>
</tbody>
</table>
7.3 Specific Restrictions

The use of quintozene is permitted with certain restrictions in, among other countries, the Federal Republic of Germany, Finland, Japan, the Netherlands, the United Kingdom, the USA, and the USSR. In the USA, the hexachlorobenzene level must be reduced to less than 0.1% in technical products. In the Netherlands, the technical material used in the formulation may not contain more than 1 g hexachlorobenzene and 10 g pentachlorobenzene per kg. The use of quintozene was prohibited in Italy in 1973.

7.4 Labelling, Packaging, and Transport

No specific guidelines found.

7.5 Waste Disposal

In the USA, any non-domestic waste containing quintozene must be treated as hazardous waste. Specific instructions are given for incineration. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended, unless in compliance with a specified permit or procedure, owners/operators of vessels or onshore or offshore facilities must notify the USA government of any release of pentachloronitrobenzene (quintozene), in or on navigable waters, adjoining shorelines, the contiguous zone, or beyond the contiguous zone, or to any other environmental media (air, land, or ground water) in an amount equal to or greater than one pound (0.454 kilogram). The United States Environmental Protection Agency, on March 16 1987, proposed raising this reportable quantity to 100 pounds (45.4 kilograms), but has not yet done so.

In Finland, any waste containing quintozene is classified as hazardous waste and must be treated according to specific instructions.
BIBLIOGRAPHY

WHO publications may be obtained, direct or through booksellers, from:

ALGERIA: Enterprise nationale du Livre (FNAL), 3 bd Zitoun Youcef, ALGIERS

ARGENTINA: Carlos Hirsch, SRL, Florida 165, Galerías Güemes, Escritorio 453/465, BUENOS AIRES

AUSTRALIA: Hunter Publications, 58A Gipps Street, COLLINGWOOD, VIC 3066 – Australian Government Publishing Service (Mail order sales), P.O. Box 84, CANBERRA A.C.T. 2601; or over the counter from: Australian Government Publishing Service Bookshops at: 70 Alma Street, CANBERRA CITY A.C.T. 2600; 294 Adelaide Street, BRISBANE, Queensland 4000; 347 Swanston Street, MELBOURNE, VIC 3000; 101 Pitt Street, SYDNEY, N.S.W. 2000; Mt Newman House, 280 St. George's Terrace, PERTH, WA 6000; Industry House, 12 Pine Street, ADELAIDE, SA 5000; 156-162 Macquarie Street, HOBART, TAS 7000 – R. 1118 & Son Ltd., 698 St. Kilda Road, MELBOURNE, VIC 3004; Lawson House, 10-12 Clark Street, CROW'S NEST, NSW 2065

AUSTRIA: Gerold & Co., Graben 31, 1011 VIENNA 1

BANGLADESH: The WHO Representative, G.P.O. Box 250, DHAKA 5

BELGIUM: For books: Office International de Librairie s.a., avenue Marnix 30, 1050 BRUSSELS. For periodicals and subscriptions: Office International des Periodiques, avenue Louise 485, 1050 BRUSSELS – Subscriptions to World Health only: Jean de Lannoy, 202 avenue du Roi, 1000 BRUXELLES

BHUTAN: see India, WHO Regional Office

BOTSWANA: Botsalo Books (Pty) Ltd., P.O. Box 1532, GABORONE

BRAZIL: Biblioteca Regional de Medicina OMS/OPS, Sector de Publicações, Caixa Postal 20.381, Vila Clementino, 04023 SÃO PAULO, S.P.

BURMA: see India, WHO Regional Office

CANADA: Canadian Public Health Association, 1335 Carling Avenue, Suite 210, OTTAWA, Ont. K1Z 8N8

CHINA: China National Publications Import & Export Corporation, P.O. Box 88, BEIJING (PEKING)

DEMOCRATIC PEOPLE’S REPUBLIC OF KOREA: see India, WHO Regional Office

DENMARK: Munksgaard Export and Subscriptions Service, Norre Sogade 35, 1370 COPENHAGEN K

FIJI: The WHO Representative, P.O. Box 113, SUVA

FINLAND: Akateeminen Kirjakauppa, Keskuuskatu 2, 00101 HELSINKI 10

FRANCE: Librairie Arnette, 2 rue Casimir-Delavigne, 75006 PARIS

GERMAN DEMOCRATIC REPUBLIC: Buchhaus Leipsig, Postfach 140, 701 LEIPZIG

GERMANY, FEDERAL REPUBLIC OF: Gowi-Verlag GmbH, Ginnheimer Straße 20, Postfach 5360, 6236 ESCHBORN

GHANA: Fides Enterprises, P.O. Box 1628, ACCRA

GREECE: G. G. Eletheroudakis S.A., Librairie internationale, rue Nikis 4, ATHENS (G. 126)

HONG KONG: Hong Kong Government Information Services, Beaconsfield House, 6th Floor, Queen’s Road, Central, VICTORIA

HUNGARY: Kultura, P.O. Box 149, BUDAPEST 62

INDIA: WHO Regional Office for South-East Asia, World Health House, Indraprastha Estate, Mahatma Gandhi Road, NEW DELHI 110002

INDONESIA: PT. Kalman Media Pusaka, Pusat Perdagangan Senen, Block I, 4th Floor, P.O. Box 3433/Jkt, JAKARTA

IRAN (ISLAMIC REPUBLIC OF): Iran University Press, 85 Park Avenue, P.O. Box 54/551, TEHERAN

IRELAND: TDC Publishers, 12 North Frederick Street, DUBLIN

ISRAEL: Hellinger & Co., 3 Nathan Strauss Street, JERUSALEM 94227

ITALY: Edizioni Minerva Medica, Corso Bramante 83-85, 10126 TURIN; Via Lammarmora 3, 20100 MILAN; Via Spallanzani 9, 00161 ROME

JAPAN: Maruzen Co. Ltd., P.O. Box 5050, TOKYO International, 100-31

JORDAN: Jordan Book Centre Co. Ltd., University Street, P.O. Box 301 (Al-Jubeilah), AMMAN

KWAIT: The Kuwait Bookshops Co. Ltd., Tahnayan Alghanem Bldg., P.O. Box 2942, KUWAIT

LAO PEOPLE’S DEMOCRATIC REPUBLIC: The WHO Representative, P.O. Box 343, VIENTIANE

LUXEMBOURG: Librairie du Centre, 49 bd Royal, LUXEMBOURG

MALAWI: Malawi Book Service, P.O. Box 3044, Chichiri, BL. ANTIRU 3

MALAYSIA: The WHO Representative, Room 1004, 10th Floor, Wisma Lim Foo Yong (formerly Fitzpatrick’s Buildings), Jalan Raja Chulan, KUALA LUMPUR 05-10; P.O. Box 2550, KUALA LUMPUR 05-02, Parry’s Book Centre, 124 Jalan Tun Sambanthan, P.O. Box 19960, 50730 KUALA LUMPUR

MALDIVES: see India, WHO Regional Office

MEXICO: Librería Internacional, S.A. de CV., Av. Sonora 206, 06100-MEXICO, D.F.

MONGOLIA: see India, WHO Regional Office

MOROCCO: Editions La Porte, 281 avenue Mohammed V, RABAT

NEPAL: see India, WHO Regional Office

NETHERLANDS: Medical Books Europe BV, Noorderw, 38, 7241 BL LOCHTEM

NEW ZEALAND: New Zealand Government Printing Office, Publishing Administration, Private Bag, WELLINGTON; Walter Street, WELLINGTON; World Trade Building, Cubacube, Cuba Street, WELLINGTON. Government Bookshops at: Hannaford Burton Building, Rutland Street, Private Bag, AUCKLAND; 159 Hereford Street, Private Bag, CHRISTCHURCH; Alexandra Street, P.O. Box 857, HAMILTON; T & G Building, Prince Street, P.O. Box 1104, DUNEDIN – R. Hill & Son Ltd., Ideal House, Cnr Gillies Avenue & Eden Street, Newmarket, AUCKLAND 1

NORWAY: Tenum – Karl Johan A.S., P.O. Box 1177, Sentrum, N-0107 OSLO 1
Special terms for developing countries are obtainable on application to the WHO Representatives or WHO Regional Offices listed above or the World Health Organization, Distribution and Sales Service, 1211 Geneva 27, Switzerland. Orders from countries where sales agents have not yet been appointed may also be sent to the Geneva address, but must be paid for in pounds sterling, US dollars, or Swiss francs. UNESCO book coupons may also be used. Prices are subject to change without notice.