

Continuing Regional Support for the POPs Global Monitoring Plan under the Stockholm Convention and new POPs tools and methods

GMP2 Africa Inception Workshop

6-8 July 2016

Accra, Ghana

DTIE/UNEP Chemicals and Waste Branch
UNITAR Chemicals and Waste Management Programme

Overview

2005-2008 • Global laboratory capacity building

2009-2013 • GMP 1

2012-2015 Development of tools to analyse New POPs

2015-2019 • GMP 2

Timeline

Objective of GEF GMP 2

To strengthen the capacity for implementation of the updated POPs Global Monitoring Plan (GMP) and to create the conditions for sustainable monitoring of the **23 POPs in each region**

Timeframe

48 months (2015-2018)

Implementing Agency

UNEP / DTIE / Chemicals and Waste Branch

Executing agencies

UNEP and SCRC-Uruguay for GRULAC

GMP2: Organigram

Each project will:

✓ **Component 1:** Securing conditions for successful project

implementation

✓ Component 2: Capacity building and data generation on analysis

of core abiotic matrices (air and water)

(2 years of PAS and water sampling)

✓ Component 3: Capacity building and data generation on analysis

of core biotic matrices (human milk)

(1 round of human milk sampling)

✓ Component 4: Assessment of existing capacities and

reinforcement of national POPs monitoring

(2 rounds of interlaboratory assessments and national samples)

✓ Component 5: Securing conditions for sustainable POPs monitoring

Component 1:

- ✓ **Component 1:** Securing conditions for successful project implementation
 - ✓ Organize regional inception workshop
 - ✓ <u>Detail activities and responsibilities with a workplan and budget</u>
 - ✓ <u>Update POPs laboratory databank</u>

We need to address/have:

- Names for coordinators
- To discuss on agreements
- Identify laboratories update information

rne solution to pollution

Component 2:

- ✓ Component 2: Capacity building and data generation of core abiotic matrices
 - ✓ <u>Identify sampling sites for AIR MONITORING in the region</u>
 - ✓ <u>Identify strategic sampling sites for AIR monitoring</u>
 - ✓ Provide equipment, training and quidelines to operational national laboratory
 - ✓ Summarize results of analysis from region in two reports (air water)

We need to:

- Name of air coordinator
- Name of water coordinator
- Verify coordinates of sampling sites
- Names and addresses to where materials need to be sent

Component 3:

- ✓ **Component 3:** Capacity building and data generation of core biotic matrices
 - ✓ <u>Provide materials and guidelines to countries in the region for human milk for the</u>
 6th round of UNEP/WHO survey
 - ✓ <u>Provide materials and guidelines to national laboratories in the region to undertake</u> <u>the analysis of human milk samples</u>

Now we need to:

- Names and addresses to where materials need to be sent
 - Ethical committe process undertaken

Funding

Region	GEF funds	Co-financing	Total
Africa	4,208,000	10,190,200	14,398,200
Asia	3,936,000	13,164,900	17,100,900
GRULAC	3,636,000	13,375,401	17,011,401
Pacific Islands	1,995,000	6,448,604	8,443,604
Grand total	13,775,000	43,179,105	56,954,105

CHEMICALS and Was STE The solution to pollution

Cofinance committed:

- All participating countries
- Executing agencies (UNEP and Uruguay Centre)
- BRS Secretariat
- CVUA UNEP/WHO Reference Laboratory
- Recetox
- MTM Örebro University
- IVM VU University Amsterdam
- CSIC Barcelona
- EULA, Chile
- University of Queensland, AUS
- Government of Japan (MOEJ)

GMP2: POPs to be monitored

	Compounds to Be Monitored				
	Air	Human Milk	Human Blood	Water	
Initial POPs				•	
Aldrin	Aldrin	Aldrin	Aldrin		
Chlordane	cis- and trans-chlordane; and cis-	cis- and trans-chlordane; and cis-	cis- and trans-chlordane; and cis-		
	and trans-nonachlor, oxychlordane	and trans-nonachlor, oxychlordane	and trans-nonachlor, oxychlordane		
DDT	4,4'-DDT, 2,4'-DDT and	4,4'-DDT, 2,4'-DDT and	4,4'-DDT, 2,4'-DDT and		
	4,4'-DDE, 2,4'-DDE, 4,4'-DDD,	4,4'-DDE, 2,4'-DDE, 4,4'-DDD,	4,4'-DDE, 2,4'-DDE, 4,4'-DDD,	Water has not	
	2,4'-DDD	2,4'-DDD	2,4'-DDD	been	
Dieldrin	Dieldrin	Dieldrin	Dieldrin	recommended as	
Endrin	Endrin	Endrin	Endrin	a core matrix for	
HCB	HCB	HCB	HCB	the lipophilic and	
Heptachlor	Heptachlor and heptachlorepoxide	Heptachlor and heptachlorepoxide	Heptachlor and heptachlorepoxide	nonpolar initial	
Mirex	Mirex	Mirex	Mirex	twelve POPs;	
PCB	ΣPCB ₇ (7 congeners): 28, 52, 101,	ΣPCB ₇ (7 congeners): 28, 52, 101,	ΣPCB ₇ (7 congeners): 28, 52, 101,	therefore,	
	118, 138, 153, and 180	118, 138, 153, and 180	118, 138, 153, and 180	analysis of	
	PCB with TEFs 1 (12 congeners):	PCB with TEFs* (12 congeners):	PCB with TEFs* (12 congeners):	surface waters is	
	77, 81, 105, 114, 118, 123, 126,	77, 81, 105, 114, 118, 123, 126,	77, 81, 105, 114, 118, 123, 126,	not included	
	156, 157, 167, 169, and 189	156, 157, 167, 169, and 189	156, 157, 167, 169, and 189		
PCDD/PCDF	2,3,7,8-chlorosubstituted	2,3,7,8-chlorosubstituted	2,3,7,8-chlorosubstituted		
	PCDD/PCDF (17 congeners)	PCDD/PCDF (17 congeners)	PCDD/PCDF (17 congeners)		
Toxaphene	Congeners P26, P50, P62	Congeners P26, P50, P62	Congeners P26, P50, P62		
New POPs listed at COP-4					
Chlordecone	Chlordecone	Chlordecone	Chlordecone		
α-НСН	α-НСН	α-НСН	α-НСН		
β-НСН	β-НСН	β-НСН	β-НСН		
γ-НСН	у-НСН	у-НСН	у-НСН		
Hexabromobiphenyl	PBB 153	PBB 153	PBB 153		
Pentachlorobenzene	PeCBz	PeCBz	PeCBz		
c-penta BDE	BDE 47, 99, 153, 154, 175/183	BDE 47, 99, 153, 154, 175/183	BDE 47, 99, 153, 154, 175/183		
c-octa BDE	(co-eluting)	(co-eluting)	(co-eluting)		
	Optional: BDE 17, 28, 100	Optional: BDE 100	Optional: BDE 100		
PFOS ²	PFOS, PFOSA, NMeFOSA,	PFOS, PFOSA	PFOS, PFOSA	PFOS, PFOSA	
	NEtFOSA, NMeFOSE, NEtFOSE				
New POPs listed at COP-5					
Endosulfan	α-, β-endosulfan; and endosulfan	α-, β-endosulfan; and endosulfan	α-, β-endosulfan; and endosulfan		
	sulfate	sulfate	sulfate		

DR Congo

Photo 2: Préparation des échantillonneurs avant leur installation sur le site

FROM GMP 1

Figure 1: Donor mother from Kiribati

More than 85 national pools of human milk from 2000 to 2012 analysed

Shipment of glass bottles

Figure 1. Sum of drins in PAS, 3 months exposure time

Source: AFRICA REGION REGIONAL REPORT

The solution to pollution

Figure 3. Sum of DDT in PAS 3 months exposure times

Source: AFRICA REGION REGIONAL REPORT

GHANA

Figure 10. Level of selected POPs in human milk in Ghana

Source: AFRICA REGION REGIONAL REPORT

GMP2: Next Steps

- **Expert laboratories** contracted for training courses, provision of consumables, analysis of abiotic and biotic samples etc.
- **Regional inception workshops** to be held:
 - ➤ GRULAC: BCCC Uruguay (December 2015)
 - > Asia Region: Vietnam Environment Agency (January 2016)
 - Pacific Islands: University of the South Pacific (April 2016)
 - Africa Region: Ghana, EPA(July 2016)
- Preparation of SSFAs for national activities (national workplans and budgets)
- Identification of capacities and training needs within countries
- Update of the POPs laboratory databank
- Others

DURING THIS WORKSHOP

Air Sampling and analysis

Human milk Sampling and analysis

Water Sampling and analysis

National samples

Interlaboratory assessments

Thank you very much!

Science and Risk Unit Leader
Chemicals and Waste Branch
DTIE/UNEP
Jacqueline.alvarez@unep.org