

Statistical analysis and interpretation of marine community data

Reference Methods For Marine Pollution Studies No. 64
Prepared in co-operation with

FAO

IMO

NOTE: This docmment has been prepared by the Plymouth Marine Latoratory, UK., in collabaration with the Intergovernmental Oceanographic Commission (IOC), the Food and Agricultural Organization (FAO), the Inlertational Atomic Energy Agemey, Marime Environment Laboratory (LAEAMEL), and the United. Nations Enviromrent Programme (UNEP) under the project FP/ME/5101-93-03(30333).

For bibliograptice parposes this document may be cited as:
UNEP/IOCFADMMO/AEA: Statisucal analysis and imerpretation of maxine connumity data. Reference Methois for Marinc Polution Studies No. 64, UNEP 1995.

Aㅂ․․

This mantial describes atrategy for the statistical analysis and interpretation of biological data on connmunity structure, consisting of abundance or biomass readings for a set of speciess and a number of samples. The litter usually consist of one or more replicalas taken:
a) at a number of sltes at one time (spatial analysis),
b) at the same site at a number of times (temporal analysis),
c) far a conmminity subject to different mampulative "treatments" (laboratory or fleld experiments),
or some combination of these. The species thy-samples arrays ane typically larige, and patterns in community structure are often not readily apparent. Statistical analysis therefore centres around reducing the cumplexity of these matrices, usually by some graphical represemtation of thebiological relationships between the samples. This is followed by statistical testing to identify and characterise changes in community structure in time or space and retate these to changing envirommental or experimental condtione

Emphasis

Of principle concern are the biological effects of contamiryants, though, since the same analysis techndques are appropriate wider studies of community structure, a number of examples are inchuded which are not pollution-related. In general these illustrate some important aspect of the methodofogy which is applicable to pollution studies. The scope of the examples is specifically marine (thongh the techniques have wider appilication) and, though the examples range ower different community types (benthic infauna, corals, plankton, fish etc.), there is a bias towands soft-sediment benthos, reflecting both the authors' own research intereats and the widespread use of such commanity data in pollution monitoring.

Scope

Thene is a vast array of sophisticated statistical techniques for handilingspecie-by-samplesmatrices, ranging from their reduction bo mimple diversity indices, through curvilinear or distributional repre-
sentations of richness, dominance, evenness etcir to a plethors of inmltivariate approaches involving derstering or ordination methods. This manmel does not attempt to give an overview of all the options, or even the majority of them. Instead it presents a strategy which has evoived over several years, within the Community Eoology group at Plymouth Marine Laboratary, and which has a proven trark record in published analysis and intripretation of a wide range of marine community data. The manual attempts ts explein horit and why the selected techniques work, to a level of understanding suificient to appreciate when they are (ard are not) applicable, and to interpret their outcome. It is aimed atecologists with no more than an introductory background in statistics, who meed to apply these statistical techniques to answer specific questions about changes in community structure.

This volume is also nok a software mannal, describing how to isse a particular comuputer program or package to carry out the analyses discussed here, though the advocated approach is mirroned in the software package PRIMER (Plymouth Routines In Mallivariale Ecological Reseanch), developed at the Plymouth Marine Laboratory and avallable commerclaily. Pootnotes in the text make brief reference to the PRIMER modules which have been used to obtain the analyses presented. The PRIMER package has been used throughout (though the figures have in many cases been subjected to further annotation efc. using a presentation graphics program, Harvard Graphicst. Note, however, that PRMMER is not the only option for computation. The major statistical packagea such a SAS, BMDP, SPSS, GENSTAT, etc. have always included mulilvariate opHons, as do some PC pockages such as SYSTAT, STATCRAPHFCS etc. In addition, more specialised software, such as CLISSTAN, the Comell Ecology programs, KYST, CANOCO, PATN etc., is fairly widespreed. Norte of these packages will offer precisely the comblnation of options discussed here, and some take a rather different (but equally valid) approach to the problems posed. Anover-riding thrust of the currentexposition is, however, to retain as grat a simeplicity of explanation and transparency of interpretation as is possiblein what, conventionally, has been megariled as a difflcult anea for practitioners lacking a strong skatistical backgrourd.

- -
 PREFACE

The Regional Seas Programme was initated by UNEP in 1974. Since then the Governing Council of UNEP has repeatedly eadorsed a regional approact to the control of marine pollomion and the maragement of matime and coastal mesoures and has requested the development af regional action plans. The Regional Seas Programme at presemit incindes 12 regions and bas come 140 coastal States patticfpaling in it (l), (2).

One of the basic components of ite action plans sponsoned by UNEP in the frameraork of the Regional Seas Programme is the assessment ix the statc of the marine envinonurnent and of its resources and of the sources and trends of the pollution, and the impact of pollotikn on haman health, manise erosystems and amenties. In ender to assist those participating in this activity and to ensure that the data obtained through this assessment can ge compared on a world-wide basis and thus conlribute to the Global Environment Monforing System (GEMS) of UNEP, a sel of Reference Methods and Guidelines for marine pollution stuxties is being developed as part of a programme of compreheasive technical support which includes the provision of expert advice, reference methoik and material, training and data quatity assurames (3). The methods are recommended to be adopted by Govemaments participating in the Regional Seas Programme.

The methods and guidelizes are prepared in co-aperation with the relevant specialized bodies of the United Nations systems ass well as ather organizations and are tested by a muber of experts competent in the field relevant to the methods described.

In the description of the methods aud gutdelines the style used by the Imternational Organization for Standardization (1SO) is followed as chasely as possible.

The methods and guidelines, as poblished in UNEP's series of Reference Methods for Marine Pollution Studies, ate not consldered as final. They are planned to be periodically reviged taking into account the development of sur understanding of the problems, of analytical instrumentastos and the actual need of the users. In order to facilitate these revisions the users dre invited to convey their comments and suggestions to:

> Marine Environmenial Studics Laboralory
> LAEA Marine Environment Laboratory
> B.P. No. 800
> MC-98012 MONACO Cedex
which is respensible for the techrical co-ordination of the development, iosting and intercalitration of Reference Methods.

[^0]
CONTENTS

PREFACE

ACKNOWLEDGEMENTS

INTRODUCTION

CHAPTER 1: A framerrork for studying changes in community struclume
CHAPTER 2: Measures of similarity of species abundancerbiomass berween samples
CHAPTER 3: Hierarchieal clustering
CHAPTER 4: Ordination of samples by Princfpal Components Analysis (PCA)
CHAPTER 5: Ordination of samples by Mulil-Dimensional Scaling (MDS)
CHAPTER 6: Tesling lor differentess betwecn groups of samples
CHAPTER 7: Species andyses
CAAPTER 8: Diversity mensures, domitrance curve and other graphical analyses
CHAPTER 9: Transformations
CHAPTER 10: Species removal and aggregation
CHAPTER 11: Linking commusity amalyses to emvirtemental variables
CHAPTER 12: Causality: community experiments in the field and labocalory
CHAPTER 13: Data requirements for biological effects stadies: whith components znd aluributes of the bitta to examine?

CHAPTER 14: Relative sensitivilies and merits of mivariate, graphical/distributional and multivariate techniques

CHAFTER 15 Multivarinte measones of cummunity slress
APPENDIX 1 Index of example data
APPENDDX 2 Principal literature sources and further reading
APPENDIX 3 References ched

The purpose of this opening chapter is twofold:
a) to introduce a few of the data sete which are used most extensively, as illustrations of techniques, throughout the manual;
b) to outline a framework for the various possible stages in a community analysis ${ }^{1}$.

Examples are given of some core elements of the recommended approactues, foreshadowing the analyses explained in detail ister and explidtly neferring forward to the rolevant chapters. Thoughat this stage the details are likely to remain mystifying, the intention is that this opening chapter should give the reader some feel for where the various techniques are leading and haw they slot togethpr. As such, it may serve both as an introduction and a summary.

Stages

Itis convendent to categorise possibleanalyses broadly into four main stinges.

1) Representing commanities by graphical dencription of the relationships between the biota in the varfous famples. This is thought of as "pure" desctiption, rather than explanation or testing, and the emphasis is on redacing the complexity of the multivariate information in typical spectes/samples matrices, to obtain some form of low-dimensional proture of how thé biological samples interrelake.
2) Discriminating sites/conditions on the basis of their biatic composition. The paradigm here is that of the hypothesis best, examinung whether there are "provers" community differences between groups of samplesidentificod a priori, for exampledemonstrating differences between control and putabively impacted sites, establishing before/after impact differenoss at a single site, etc.
3) Determining levels of "stress" or disturtance, by attermpting to coristruct biological measures from the

[^1]community data which are indlcative of disturbed conditions. These may be absolute measures ("this observed structural feahure is indicative of pollution") or retative crikeria ("under impact, this coefficient is expected to decrease in comparison with control levels*). Note the contrast with the previous stage, however, which is restricted to demonstrating differences between groups of samples, not ascribing directionality to the change (e.g. deleterious consequence).
4) Lirking to environmentalvariobles and examining issucs of chasidity of any changes. Having allowed the biological inforatation to "tell its own story ${ }^{n}$, any associated physical or chernical variables, matched to the same set of samples, can be examined for their own structure and its relation to the biotk pattern (its "explanatory power"). The extent to which Identified environmental differences are actually catusel to observed community changes can only really be determined by manipulative experiments, either in the field or through laboratory/mesocosm studief.

Techuigues

The spread of methods for extracting workable representations and sumutaries of the biological data can be grouped into three categories.

1) Union riate method's collapse the full set of species counts for a sample into a single coefficient, for example a itpersity index. This might be some measure of the numbers of different species for a fixed number of individuals (species richness) or the extent to which the community counts are dominated by a small number of species (domlnance/evenness index), or some combination of these. Clearly, the a pioriselection of a singletaxon as an indicator species, amenable to specific inferences about its response to a particular environmental gradient, also gives rise to a unlvariate analysis.
2) Distributional tecontiques, also bermod graphical or curvilinest plots (when they are not strictly distriburtional?, are a class of methods which summarise the set of spedes counts for a single sample by a curve or histogram. One example is k-dowinance curves (Lambshead at aI., 1983), which rank the species in decreasing order of abundance, wonvert the values to percentage abundance relative to the total number of
be condensed into one (or a small number of key summary statistics. Simple (or multiple) regression of Shannorn diversity as the dependent variable, against the environmental descriptors as independent variables, is then tecknically feasible, though in practire rarcly very informative given the over-condensed nature of the information utilised.

For impact studies, much has been written about the effect of pollution or disturbance on diversity measures: whilst the response is not nevessarily unidirectiond (under the hypothesis of Huston, 1979, diversity is expected to rise at internediate disturbance levels before its strong decline with gross disturbance), there is a sense in which determining stress levels is possible, through relation bo historical diversity patiens for particular environmental gradients. Similarly, emprical evidence may exist that particular indicator taxa (c.g. Capitellids) change in abundance along specific poltution gradients (e.g. of orgatic enrichment). Note though that, urlike the diversity measures constructed from abundances across species, averaged In some way ${ }^{3}$, indicator species levels or the number of species in a sample (S) may not initally satisfy the assumptions necessary for classical statistical analysis. For thenumber of species, S, the wormality and constant variance conditions can usually be produced by transformation of the varlable (e.g. $\log 5$). However, for most indivdual species, abundance actoss the set of samples is likely to be a very poorly-hehaved variable, statistically speaking. Typically, a species will be absent from many of the samples and, when it is present, the counts are often highly variable, with an abundance probabilily distribution which is heav vily right-skewed ${ }^{4}$. Thus, for all but the most common individual species, transformation is no real help and parametric statistical amalyses cannot be applied to the counts, in any form. In any case, it is not valid to "snoup" in a large data matrix, of typically 100-250 taxa, far one or

to thucuce stafictical mampality

4. It is the authors anteriente, cittainiy in the stady of henthic commurities, thay the individuals of a species are toot diststitutal at rozulow in space (a Paisson process) but are often highly chustered, either through local oariation in forcing environimental variablites or mecthanions of recruiturni, mortatity atud combsimity interactions. This teads to counts wficht, is statiolical terns, ane atcecribed as aver-dispursed, combinad widh a high preiulence of zeros, cousing major problews in attempting parakitatric moddling by categoricatllog-linear methods.
marc "interesting" species to analyse by univarlate techniques (any indicator or keystone spectesselection must be done a priori). Such arguments lead to the tenets underlying this manual:
a) conmmunity data is inherently muld varlate (highly so) and usually needs to be analysed en masse in order toelicit the importantbiological structure and its relation to the environment;
b) standard parametrrc modelling is totally invalid.

Thus throughorut, zather litile emphasse is given to representing communities by univariate measures, though some possiblities for construction can be found at the start of Chapter B, some brief remarks on hypothesistesting (ANOVA) at the startof Chapter 6,a discussion of transformations (to approxdmate normality and constant variance) at the start of Chapter 9, and an cxample given of a anivariate regression betweem bicta and environumentuChapter 11. Finally, Chapter 14 gives a series of detailed comparisons of univariate with distributional and multivariate tectr riques, in ordertogauge their relative sensitivitiesand merits in a range of practical studies.

The first example is from the IOC/GEEP practical workshop on biological effects of pollutants (Baync et al., 1988), heh at the University of Osio, August 1986. This attempted to contrast a range of bochemical, cellular, physiological and commurity analyses, applied to fiekd samples from potentially contaminated and control sites, in a fordic complex (Frierford/Langesundford) lluked to Oslofiord (ff), Fig. 1.1). For the benthic macrofaunal component of this study (Gray et al., 1988), fow replicate $0.1 \mathrm{~m}^{2}$ Day grab samples were taken at each of stx sites (A-E and G, Flg, 1.1) and, for each sample, organisms retained on a 1.0 mm sieve were identified and counted. Wet weights were deternined for each species th each sample, by pooling individuals within species.
Part of the resulting data matrix can be seen in Table 12: in total there were 110 different taxa categorised from the 24 samples. Such matrices \{abundaroc, A, and biomass, B) are the starting point for all the analyses of this manual, and this example is typical in respectof therelatively high ratioof species to samples (always $\gg 1$) and the prevalence of zeros. Here, as elsewhere, cven an unilesirabie reduction to the 30 "most important" species (see Chapter 2) leaves more than 50% of the matrix consisting of zeros. Standard multivariate normal analyses (e.g. Mardia et al., 1979) of these counts are clearly ruled out, they require both

Table 1.3. Distributional techutiquan. Supmary of analyses for the four staye.

	Distributional examples	
3tagm	ABC (k -dominance) caives (CM aj)	Sperder abuadumce dixkrilutione (Chs)
1) Representing communtiles		
2) Pibcriminating aites/conditions	ANOVA on umituriate ANOSM mast (Ch6) on "distunces" befuan every pair of curves	(e.g. W, Ck 8), or: Twis for comingonelity of distributions (eg. chi-squamad), if vailid
3) Defermining stress levelt	Bionnass curne drups below sumbers curre under disturbance	Specrist odnumdenef distribution hes "longer tail" with disturturne
4) Linking to envitonment	Difficurit, exappt far knivariate (Caus	ies of the curoce (by regnession) Ch 12)

DISTARETIONAL TECANOURS

A less condensed form of surunary of each sample is offered by the distributional/graphical methods. outlined for the four stages in Table 1.3 .

Representationis by curves dr hiskograms (Chapter 8), eithur photted for each replicate sample separalcly or for pooled data withon sites or conditions. The former permits a visual judgement of the sampling variation In the curves and, as with diwersity indices, replication is nequired to discrimituate sities, f.e. test the mull hypothesis that two or more stres (/conditions etc.) have the same curvilinear struchure. The easiest approach to testing is then to summariseesach replicate curve by a singlestatisticand apply ANOVA as before: for the $A B C$ method, nentioned earlier, the Wetatistic (Chapter 8) is a convenient measure of the extent to which the bionass curve "donimates" the abundance curve, or vice-versa. This is cffective in practice though, in theory, it simply amwunts to computing another diversity index and is therefore just a tunivariate approach. A mone general test, which honours the curvilinear structure, could be constructed by the ANOSIM procedure (described later under multivariate techniques), computed between every pair of replicate ABC curves. ${ }^{6}$

The distributional/graphical techniques have been proposed specifically as a way of determining stress levels. For the ABC method, the strongly polluted (/disturbed) state is indicated if the abundance k-dominance curve falls above the biomiss curve throughout fis kength(e.g. seet the iater plotsin Fig. 1.4):
the phenomenon is linked to the lass of large-bodited "climax" spectes and the rise of small-bodied opportunists. Note that the ABC procedune ctaints to give an absolute measure, In the sense that disturbance status is attributable on the basis of samples from a single site; in practice however it is always wise to design collection from (matched) fimpacted and control sites to conffrm that the control condition exhiblts the "undisturbed" ABC pattern (biomass curve above the abundance curve, throughout). Sinilarly, the species abundance distribution has features characteristic of disturbed status (e.g. see the middle plots in Fig. 1.6), thatrely a move to a less "]-shaped" distritution by a reduction in the first one or two abuwdarce classes (oss of rarer species), combined with the gain of some highar abomdance classes (very numerous opporfunist species).

The distributional/graphical methods may thus have particular nerits in alowing recognùtion of "stressed" states (Chapter 14), though they have the disadvantage of being more difflcult to work with statistically

[^2]

Fig. 1.4. Lach Lnablemacnofaverefl. Top heft: Shammon diacrsity ocer the 11 arnual sampless, flso indisafing timing of atart of effluent disCharge athe a Lator interease and decrease in tuvel; remaining piots show ABC curns for the eqporate years 1963-1973 ($B=3$ bromass, thin lixes $A=$ abundanue, thick İte).
twelve sites, i.e. at site 1 , lwelve species were represented by a single individual two species hy 2-3 individuals, three species by $4-7$ indivictuals, etc. (Gray and Pearson, 1982). For the middle sites close to the dump centre, the hypothesised loss of lese-aburdant species, and gain of a few species in the higher geometric classes, can clearly be seen.

MOL WARMTR MRMMOLES: *****

Tabte 1.5 summarises the analyses possible tader the four stages, when adopting one of three multivariate metheds: hierarchical clustering (CLUSTER), multidimensional scalling (MDS) and prixcipal cumponent analysis (PCA).

The first two muthods startexplicity froma triangular matrix of similarity coefficients computed between every pair of samphes (e.g. Table 1.6). The cocfficient is usually some simplealgebraic measure (Chapter 2) of how close the abundance levels are for each species, averaged over all species, and defined such that 100% represents total similarity and 0% complete dissimilarity. There is a range of properties that such a coefficient shoula possess but still some flexibritity intits choice: it is important to realise that the definition of what constitutes similarity of two communitics may vary, depending on the biological question under consideration. As with the carlier methods, a multivariate analysis tow must attempt to reduce the complexity of the (high-dimensional) community data by taking a

 the epecescomposition for any two samples.
 омч әџุ чр!

 ardination mettods onozihte in PRIMER.

 same avanasesover of main axes of the plot.

 However, a description of its operation is included in comparable with the number of samples. b) it requires exclusion of the species wheh are less

 a) It deffines dissimslarty of samples in an inflexible
way (Eudidean distanke in the foulddimensioual
(Causslity: sec Ch 72)

 84unutiopad (ε			
		sxtuss fo mundayma	sppupnumeo
	(s97) ougruppa saw		mesors

tested by a standand multivariate equivalent of ANOVA (MANOVA, eg. Mardia ct od., 1979).

Part of the process of discriminating sites, times, treatments etc, where successful, is the ability to identify the species that are princlpally responsible for these distinctions: it is all too easy to lose sight of the basic data matrix in a welfer of sophisticated multivariate analyses! Similarly, one might as a result of acluster analysis determinc certain sites/times that group together, and again wish to identify which species are mainly responsible for the observed clustering. Note the distinction here between a prort grotups, identifled before examination of the data, and a posteriori groups, identified as a result of the data analybia (the ANOSIM tests are only applicable to a priort hypotheses). These ideas are pursued in Chapter 7, both through nesarangement of the data matrix ard through a possible partition of the average Bray-Curtis dissimilarity between groups of samples, into components from different species (similarity percentage breakdown, SIMPER, Clarke, 1993).

In the determinafion of stress levels, whilst the multvariate techniques are sensitive (Chapter 14) and wellsuited to establishing community differerces assoclated withitifferent sites/timps/freatmentsetc., their species-specific besis would appear to make them unsuitablefordrawinggeneral inferencesabout the "polLution status" of an isolated group of samples. Evert in comparativestudies, on the face of it therais nota clear sense of "directionality" of change (e.g. deleterlousness), when it is established that comununities at putatively impacted sites differ from those at control sitest Noxnetheless, thereane a number of ways in which such directipnality has been ascribed in recent stucties, whilst retaining an essentially multivariate form of analysis (Chapter 15):
a) a "meta-analysis" - a combined ordination of data from NE Atlantic shelf waters, at a coasse level of taxonomdc discrimination ${ }^{12}$ - suggesks a comunon directional chatge in the balance of taxa under a varietyof types of pollution/disturbance (Warwick and Clarke, 1993a);
b) a number of studies demonstrate increased "multivariate dispersion ${ }^{\text {a }}$ among replicates under impacted conditions, in comparison to controls (Warwick and Clarke, 1993b);
12. The effect of arrying out the warious graptical and woulipariote analyses at itsoulomic lexels highter thai species is the subject of Chapter 10.
c) amother feature of disturbance, demonstrated in a particular cozal conmmunity shady, but with the potential for wider applicability, is a loss of snwoth "seriation" pattemisalong transects (e,gofincreasing depth), agsin in comparison to controls in the or space (Clatke et ol., 1993).
Two methods of limking multivariata biotic prattems to environomentalmariahles areexploredinchapter 11; these are illustrated here by the Garroch Head dump-ground study described earlier (Fig. 15). The MDS of the macrufaunal communtics from the 12 sites is shown in Fig. 1.9a; this is based on Bray-Curtis sinularities computed from (transformed) species biomass values. ${ }^{13}$ A steady change in the community is apparcnt as the dump centre (site 6) is approached along the West arm of the transect (sites 1 to 6), with a minrored structure along the East arm (sites 6 to 12), so that the samples from the two ends of the transect have similar species composition. That this biotic pattern correlates with the organic koading of the sediments can best be seen by superimposing the values for a single environmental variable, such as Cartion concentration, on the MDS confggration. Fig. 1.9b represents C values by circles of differing diameter, placed at the corresponding site lucations on the MDS, and the pattorn across sites of the 11 available enviranmental variables (seditment conoentrations of $\mathrm{C}, \mathrm{N}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Zn}, \mathrm{Nl}$, etc.) can be viewed in this way (Chapter 11). ${ }^{14}$

A different approach is required in order to answer questions about combinations of envirommentai varjables, for example to what extent the biotic pattern can be "explained" by knowledge of the full set, or a

[^3]

Spectea	Contral				Low dose				High dove			
	Cl	C2	C3	C4	4	12	13	14	H!	H2	H3	H4
	0	0	1	J.	26	23	8	16	0	1	0	0
Danjelscanis fusi)anmis	1	2	1	1	1	3	8	5	1	0	0	3
Tispe sp. 1 (gracils group)	0	0	0	0	0	0	0	0	2	\boldsymbol{V}	119	31
Tishe \%p. 2	0	0	0	0	45	22	39	25	6	0	3	37
Tishe sp. 3	0	0	0	0	86	\$3	38	0	5	29	0	20
Tiskesp. 4	0	0	0	0	151	249	264	87	8	0	0	34
Tisle sp. 5	0	0	0	0	129	0	0	125	4	0	1	49
Thazhlamphiascis typhop	4	2	2	4	5	8	4	3	0	0	0	0
Buthauphiescus !	1	0	0	2	0	0	0	0	0	0	0	0
Stewhedia refiexs	3	1	0	1	2	0	0	0	0	0	0	0
Ampiniscus tenwiratis	1	0	0	0	0	0	2	6	0	0	0	0
Ammina parculo	0	0	0	0	4	2	3	2	2	0	1	2
Prowneins staplex	0	0	0	0	0	2	0	5	0	0	0	0
	0	0	1	0	0	θ	0	0	0	0	0	0
Enthydmsoma lentifurcotum	2	2	1	2	3	1	0	0	0	0	0	0
Lephoolidee tadet.	0	0	0	0	0	0	1	0	0	0	0	0
Ancrabablis mivabils	3	0	4	4	2	18	3	3	27	3	1	0
Unidentibed Copepodtes	0	0	1	0	1	1	1	3	0	1	0	0

Fig 1.10. Nutrient mulchinest apperiment (N). Separnate MDS ardimatians of $\sqrt{ } \sqrt{ }-$-tranesfurmat abunsiances for copeped and Mematade species, in four repticate boxes from anch of three fratimenda (C, L, H).

A fremework has been outlined of three categories of technique (n*ivariats, graphicalddisfributional and multioariate) and four analysis stages (nepresenting conmrumities, discriminnting sites/conditions, determining leaels of stress and linkfing to ewoinommental pariabless. The least familiar tools, and the most powerful, are in the multivariate category, and those that underlie the PRIMER prograns in particular are now examined from first principles.

Data matrix

The available biological data is assumed to consist of an array with p sows (species) and r columns (samples), whose entries arecotints of each species for each sample, or the total biomass of all individuals of each species in each sample. For the moment nothing further is assumed about the structure of the samples. They might consist of one or nere replicates (nepeated sampies) from a number of different sitcs, times or experimental "Ireatments" but this information is not used in the inftial analysts. The strategy outlined in Chapter 1 is to observe any pattern of similarities and differences across the samples(i.e. let the biology "tell its own story') and, only later, compare this with known or hypothesised inter-relations between the samples basod on mpironmental or experimental factors.

Similarity coefficient

Thestarting point for many of the analyses that follow is the concept of similarity (5) between any pair of samples, in terms of the biological communites they contain. Inevitably, bectause the information for each sample is multivariate (many species), there are many ways of defining similarity, cach giving different weight to different aspects of the commurity for example, some definitions might concentrate on the similarity in aburudance of the few commonest species whereas others pay more attention to concurrence of rare species.
The dafia matrix ltwelf may first be modified; there are three main possibilities.
a) The absolute numbers (or biomass), i.e. the fully quantitative data observed for each species, are most counnonly used. In this case, two samples are considered perfectly similar only if they contain the same specties In exactly the same abundance.
b) The relative numbers (or biomass) are sometimes used, ie the data is stardardised to give the perocntage of total abundance/biomass (over all species) thatis accounted for by each speries. Thus eachmatrixentry is dividedbyibs columm total(and
multiplied by 100) to form the new array. Such standardisation will be essential if; for example, differing and unionown volumes of sediment or water are sampled, so that absolute numbers of individuals are thot comparable between samples. Even if sample volumes arte the same for, if different, aboundances are adjusted to a unit sample volume), it may still sometimes be biologically more relevant to define two samples as being pertectly similar when they have the same of comprosition of specles, fluctuations in total abundance (or biomass) being of mo interest
c) A reduction to simple presence or absence of each species may be all that is justifiable. For example, sampling artefacts may make quantitative counts totally unreliable, or concepts of abundance may be difficult to define for some important faumal components.

A similarity coefficient S is conventionalily deffined to take values in the range ($0,100 \%$), ur less comunonly $(0,1)$, with the ends of the range repreanting the extremepossibilitics:
$S=100 \%$ (or 1) if two samples are totally similar;
$S=0$ if two samples are totally dissimilar.
What constitules total similarity, and particuiarly total dissimilarity, of two samples deperids on the specific similarity cocflicient adopted but there are clearly some properties that it would be desirable for a coefficient to possess. For example, S should equal zero when two samples have no species in common and S must equal 100% if two simples have identical entries (after datz reduction, in cases \mathbf{b} and \mathbf{c} above).

Similarity matrix

Similarities are calculated between every pair of samples and it is conventional to set these $n(n-1) / 2$ valuesoutina lower triangularmatrix. This isa square array, with row and columa labels being the sample numbers 1 to n, butitis not noceessary to fill ineither the diagotals (similarify of sample j with itself is always 100\%1) or the upper right triangle (the similarity of sample j to sampla k is the same as the similarity of sample k to sample j, of course).
Similarity matrices ane the basis (explicitly or implicitly) of many multivariate methods, both in the representation given by a clustering or ondination

Table 21a). Of course, $S=100$ if two samples are identical, since $\left\lfloor y_{i j}-y_{j} \mid=0\right.$ for all i.
b) A scale change in the measurements does not change S. For example, biomass could beexpressed in g rather than mg or abundance changed from numbers per cm^{2} of sediment surface to numbers per m^{2}; all y values, are simply multiplicd by the sarme constant and this cancels in the numerator and demmminator terms of equation (2.1).
c) "Joint absences" also have no effect on S. In Table 2.1a the last spectes is tubent in all samples; omitting this species clearly makes no difference to the two summations in equation (2.i). That simllarity should depend on spectes which are presentin oneorather (orboth) samples, and not on species which are absent fiom both, is usualiy a desirable property. As Field ef al. (1982) put it "Taking account of joint absences has the effect of saying that estuarine and abyssal sampiea are simitar because both lack outer-shelf species". Nonetheless, independence of joint absencos is a property rot shared by all similarity coefficients.

Trangformation of raw data

Ingneortwo ways, the similaritics of Table 2.1b arenot a good reflection of the overall match between the samples, taking all species into account. To start with, the similarities all appear too low; samples 2 and 3 would seem to descrve a similarity rating higher than 50%. As will be seen later, this is not an important consideration sincs the most useful multivariate methods depend on the relative order (ranking) of the similarities in the triangular matrix, rather than their absolute values. More importanty, the similaritics of Table 2.1b are unduly dominated by the counts for the two mnst abundant specles (4 and 5), as can be seen from studying the form of equation (2.1) terms involving species 4 and 5 dominate the sums in both numerator and denominator. Yet the larger aburdances in the origital data matrix will often be extromely varíable in replicate samples (in statistical terms, vatiance is often found to increase with the square of the mean) and it is quite undesirable to base an assossment of similatity of two communitics only on the counts for a handful of very abundant species.
The answer is to transform the original y values (counts or biomass) befire computing the Bray-Curtis simflarties. Two useful transformations are the log transform, $\log (1+y)$, and the dowble roat (cr 4th root) transform $\sqrt{ } \mathrm{V} y$. There is more on the effects of transformation later in the manual; for now it is only necessary to note that the $\log (1+y)$ and $\sqrt{ } \sqrt{\prime} y$ transforms
have an approximately siurilar and fairly scvere effect in dowtr-weighting the importance of the very abundant species so that the less dominant, and even the rare species, play some role in determining similarity of two samples. The result of the V transform for the previous exāmple is shown in'Table 2.2a and the Bray-Curtis similarities computed from these transformed abundances, using equation (2.1), are given in Table 2.2b. ${ }^{1}$

Table 2.2. Loch Linwhe nuacrofature (L) subset. (a) \sqrt{W} -irameformainabunduacefor the four years and strspeciesof Table 2.1. (b) Resulling Bray-Cartis simelarity matrix.

(a) Year: (Sample:		$\begin{array}{r} 68 \\ 2 \end{array}$		$\begin{gathered} 73 \\ 4) \end{gathered}$	$\underset{\text { Sampl }}{\text { (b) }}$		2	3	4
Speites					1	-			
Estinnca.	1.7	0	,	0	2	26	-		
Myriocte.	2.1	0	0	13	3	0	68	-	
Labidopl.	1.7	25	0	1.8	4	52	68	42	-
Антепит	0	19	35	17					
Capiterla	0	3.4	4.3	1.2					
Mytilus	0	0	0	0					

There is a general increase in similarity levels but, of more importance, the rank order of similarities is no longer the same as in Table 2.1b (eg $S_{24}>S_{14}$ and $S_{34}>$ S_{12} now), showing that (ransformations can have a significant effect on the final urdination or clustering display. In fact, for very variable data, choice of trambformation can sometimes be more critical than choice of similarity coefficientor ordination technique, and the sulbject therefore merits a chapter to itsclf (Chapter 9).

Canberra coefficient

Analternativeto transformationis to select a simularity coefficfent that atitonintically adjussts the weighting given to each species when computed on original counts (or biomass). One such possibility given by lance and Wilitams (1967) and referred to as the Cotberra coefficient, defines similarity between sample j and sample k as:

Clearly, this has a strong likeness to the Bray-Curtis coefficient, but the absolute differences in counts for each species are separately scaled, i.e. the denominator

[^4]The "simpie watching" sixwilarity between samples j and k is defined as:

$$
\begin{equation*}
S_{j}=100(a+d) /(a+b+c+d) \tag{2.5}
\end{equation*}
$$

so called because it represents theprobability ($\times 100$) of a singlespecies picked at random (from the full species list) being present in both ssmples or absent in both samples. Note that S is a function of d here, and thus depends on joint absences.
If the "simplematching" coefficient is adjusted, by first removing all species which are jointly absent from samples j and k, one obtains the facond coefficient:

$$
\begin{equation*}
S_{j p}=100 . a f(a+b+c) \tag{2.6}
\end{equation*}
$$

Le. S is the probability ($\times 100$) that a single species picked at randon (from the reduced species list) will be present in both samples.
A popular coefficient found under several names, commonly Sorensot or Dice, is:

$$
\begin{equation*}
s_{*}=100.2 a(t 2 a+b+c) \tag{27}
\end{equation*}
$$

Note that this is identical to the Bray-Cur'is coefficient when the latter is catculated on (0,1) presence/absence dats, as can beseen most clearly from the second form of equation (2.1). ${ }^{2}$ For example, reducing Table 2.1a to $(0,1)$ data, and comparing samples 1 and 4 as previously, equation (2.1) gives:

$$
s_{14}=160\left(\frac{2(0+1+1+0)+0+0]}{1+2+2+1+1+0}\right)=57.1
$$

This is ciearly thesame construction as substtuting $a=$ $2, b=1, c=2$ into equation (2.7).
Among the many other coefficients that have been proposed, one that can be fourd occasionally in marine ecological studies is that of MoConsaaghey (1964):

$$
\begin{equation*}
S_{j k}=100[a(2 a+b+c)] /[2(a+b)(a+c)] \tag{2.8}
\end{equation*}
$$

1) In mostecological stiudies, it seemstomake sense to use acoefficient which does not depend on the number of species which are jointly absent from both sarnples.

[^5]2) Similarities calculated on original abundance (or biontass) values cim often be over-dominated by a small number of highly abundant (or large-bodied) species, so that they fail to reflect similarity of oyerall community composition.
3) Some cocfficients (such as the Canberra) which separately scale the contribution of each species to adjust for this, have a tendency to over-compensate, ie rare species, which may be arbitrarily distributed across the samples, are given equal weight to very commononos. The same critidismapplics toreduction of the original matrix to simple presence/absence of each species. In addition, the latter loses potentially valuable information about the approximate prevalence of a species (absent, rare, present in modest numbers, common, very aboudant etc).
4) A balanood compromise is often to apply a similarity ooefficient such as Bray-Curtis to counts or bitmass values which have been moderately (Vy) or tairly severely transformed ($\log (1+y)$ or $\sqrt{ } / \sqrt{y})$. All species then contribute something to the definition of similarity whilst the retention of some information on the prevalence of a species ensures that the commoner species are generally given greaber weight than the rare ones.
5) Initial standardisation is occasionally desirable, dividing each count by the total abundance of all species in that sample; this is essential when non-comparable, ankiorm sample yolumes havebeen taken. Without this columen standardisationt, the Bray-Curtis codfficient will reflect differences between two samples due both to differing community composition and/or differing total aboundance. The glandardisation mernoves any effect of the latker; whether this is desirable is a biologicat rather than statistical question. (Experience with bentuic communitiensuggests that the standardisation should usually be avoided, valuable biological information being contadned in the abundance or blomass कotals). Note, however, that column standardisation does not remove the need subsequently to transfom the data matrix, if the similarities are to take account of mone than fust the few commonest species. ${ }^{3}$
 satiple simildarities but, if sctected, it is therefore carrige out before any transormationt.
arbitrary to some degrec．Field et at．（1982）suggest removal of all species that never constitute more than p\％of the total abundarice（／biomass）of any sample． where p is（arbitrarily）chosen to leave in around 50 or
 simply retaining the 50 or 60 species with the highest total abundance across all samiples，since the latter slrategy may result in omitting several species which are key constituents of a site whichischaracterised by a low total number of individuals．${ }^{4}$ it is important to nute，however，that this inevitably arbitrary process of omitting speciss is mot necestary for the more usual between－sample similarity calculations．There the computation of the Bray－Curtis coefficient down－ weights the contributions of the Iess common species in artertirely natural and continuous fashion（the ramer the species the less it contributes，on average），and all species should be retained in these calculations．

The converse concept to stmilarity is that of dissimilarity，the degree to which two samples are unlike each other．Thuugh sirnilarity and dissimilarity are fust opposite sides of the same coin，the latter is a more natural starting point in constructing ordina－ tions，in which dissimaturities（ 8 ）between pairs of samples are tumed into distances（d）between sample docations on a＂map＂．Thus lange dissimilarity implies that samples should be located at a large distance from each other，and dissimilaritles near 0 imply nearby location；δ must therefore always be positive，of course．

Sínilarities can easily be turned into discimilarities， by：

$$
\begin{equation*}
\delta=700-5 \tag{2.17}
\end{equation*}
$$

For example，for the Bray－Curtis coefficient this gives：

$$
\delta_{i k}=100 . \frac{\sum_{i=1}^{\#}\left(y_{i j}-y_{i j}\right)}{\sum_{i=1}^{\#}\left(y_{i j}+y_{i j}\right)}
$$

which has limits $\delta=0$（no dissimilarity）and $S=100$ （total dissimilarity）．

[^6]However，rather．than－conversion from similarities， other important disstmflarity measures arise in the first place as distances．Their mole as implicit dissimilarity matrices underlying particular ordina－ fion tecluiques will be seen more clearly later（e．g．in Principal Components Analysis，Chapter 4）．

Euclidear flistance

The natural distance between any two points in space is referred to as Euclidean distance（from classical or Euclidean geometry）．In the context of a species abundance matrix，the Euclidean distance between sampies j and k is defined algebratcally as：

$$
\begin{equation*}
d_{j k}=\sqrt{i} \sum{ }_{i=1}^{v}\left(y_{i j}-y_{i k}\right)^{2} j \tag{2.13}
\end{equation*}
$$

This can best be understood，geometrically，by taking the special case where there are only two spectes so that samples can be represented by points in 2－dimensional space，namely their position on the two axes of Speryes 1 and Species 2 counts．This is illustrated below for a specific two samples by two species abindance matrix．The co－ordinate points（2， 3）and（5，1）on the（Sp．1，Sp．2）axes are the two samples j and k The direct distance d_{j} between thern of $\sqrt{ }\left[(2-5)^{2}+(3-1)^{2} I(\right.$ Pythagoras）chearly corresponds to equation（2．13）．

It is easy to envisage the extension of this to a matrix with three species；the two points are now simply located on 3－dimensinnal spectes axes and their straight line distance apart is a natural geometric concept．Algebriaically，it is the noot of the sums of squared distances apart along the thrce axes，equation （2．13）．Extension tu four and higher numbers of species（dimensions）is harder to envisage geometri－ Ellly（in our 3－dimensional world）but the concept remains unchanged and the algebra is no more difficult to understand in higher dimensions than three：ad ditional squared distances apart on each new species axis are added to the summation under the square root in（2．13）．In fact，this suncept of representinga specics－by－samples matrix as points in high－dimensional species space is a very fund amental and important one and will be met again in Chapter 4，

The previous chapter has shown how to replace the original data matrix with pairwise similarities, chosen to reflect the particuiar abpect of similarity in communitystructure (simdlarity fin counts of abundant spectes, similarity ingeneral disposition of rarespecien etc) which the biologist requires to emphasise for the study in question. Typically, the number of pairwise similarities is large, $n(n-1) / 2$ for n samples, and it can often be no exsier to detect a pattern in the resulting lower triangular similarity matrix than it is in the originaldata. Tabie3.1 illustrates this for justa portion (roughly a çuarter) of the similarity matrix for the Frierford macrofauna data (F). Close examination shows that the four replicates within site A generaily have higher within-site similarities than do pairs of replicates within sites B and C, or replicates between sites, but the pattern is far from clear. Whatismesied is a graphical display tinking samples that have mutually high levels of similarity.

Table 3.I. Erierfierd anacrofouna cownts (F). Bray-Curtis simmilarities, after $\sqrt{ } \sqrt{ }$ ' iransfornidion of counts, for enery prir of noplicate samples from sites $\boldsymbol{A}, \mathbf{B}, \mathrm{C}$ onty four repricate samples per sitel.

	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4
A1	-											
A2	67	-										
A3	69	60	-									
A4	65	61	66									
B1	37	28	37	35	-							
B2	42	34	31	32	55	-						
D3	45	39	39	44	66	66	-					
B4	37	29	29	37	59	63	60	-				
C1	35	37	27	25	28	56	40	34	-			
C2	40	34	26	29	48	69	62	56	56	-		
C3	40	37	37	39	59	61	67	53	40	66	-	
C4	36	28	34	37	65	55	69	55	38	64	74	-

Cluster analysis (or classificationt aims to flnd "natural groupings" of samples such that samples within a group are more similar to each other, Eenerally, than sartiples in different groups. Cluster analysis is used in the present controxt in the following ways.
a) Different sites (Dr different times at the same site) can be seen to have differing community composi-
tions by noting that replicate samples within a site form a cluster that is dislinct from replicates within other sites. This gan be an important hundle to overcome in any antalysis; if replicates for a site are clustered more or less randomly with replicates from every others site then further interpretation is Hkely to be dangerous. (A more formal statístical testfor distingudshing sites is the subject of Chapter 6).
b) When it is established that gites can be distirguished from one another (or, when replicaless ane not taken, it is assumed that a single sample is representative of that siteor time), sites or times can be partitioned into groups with similar community structure.
c) Custer amalysis of the species similarity matrix can be used to define species assemblages, le groups of species that tend to 0 -uocuz in a parallel manner across sites.

Range of methods

Literally hundreds of clustering methods exist, some of themoperatingon simularity/dissimilaritymatrices whist others are based on the original data. Everitt (1980) and Cormack (1971) giveexcelkentand readable reviews. Cliffurd and Stephenson (1975) is arrother well-established text on classification methods, from an ecoloyical viewpoint.

Five. classes of clustering meftuds can be distinguished, following the categories of Commack (1971).

1) Hierandtical methods. Samples are grouped and the groups themseives form clusters at lower kevels of simslarity.
2) Optimising techaiques. A single set of mutually exclusive groups (usually a pre-spedified number) is formed by optimising some clustering criberion, for example minimising a within-cluster distance measure in the species space.
3) Made-seeking methods. These are based on considerations of density of samples in the neighbourhond of other samples, again in the species space.
4) Chumping tedtriques. The term "clumping" is rescrved for nuethods in which samples can be placed in tume than one cluster.
5) Miscellaneous techriotues.

Year: Sample:	$\begin{array}{r} 64 \\ 1 \end{array}$	$\begin{array}{r} 68 \\ 2 \end{array}$	$\begin{array}{r} 71 \\ 3 \end{array}$	$\begin{array}{r} 73 \\ 4 \end{array}$		Sample	1	2	3	4		Sample	1	284	3		cample	1	28384
Species -						1	-					I	-				1	-	
Ecilimad.	1.7	0	0	0	\rightarrow	2	25.6	-			\rightarrow	28.4	38.9			\rightarrow	2883甡4		-
Myriache.	2.1	0	0	13		3	0.0	679	-			8	0.0	55.0	-				
L Labidopt.	1.7	2.5	0	1.8		4	52.2	68.1	420	-									
Avmearna	0	19	3.5	1.7															
Cipitelita	0	3.4	43	1.2															
Mytilus	0	0	0	0															

a) Sikgle litricage. $S(1,2(-4)$ is the matimuth of $S(1,2)$ and $S(1,4)$, i.e. 52.2%.
b) Contrpietelinkage. $S(1,284)$ is the wintmum of $S(1,2)$ and $S(1,4)$, i.e. 25.6%.
c) Group-averuge link. $S(1,2 \& 4)$ is the Roerage of $S(1$, 2) and $5(7,4)$, i.e. 38.9%.

Table 3.2 adopts group-average linking, henve
$S(2 \& 4,3)=[S(2,3)+S(4,3)] / 2=55.0$
The new matrix is again cxamined for the highest similarity, defining the next fusing; here this is between "2\&4" and "3", at similarity level 55.0\%. The matrix is agait reformed for the two new ciusters " 1 " and " $2 \& 384$ " and there is only a single simliarity, $S(1,2 \& 3 \& 4)$, to define. Forgrostp-averagelinking, this is the mean of $S(1,2\{44$) and $S(1,3)$ but it must be a wrighted meat, allowing for the fact that there are twice as many samples in clustar "2\$84" as in cluster "3". Here:

$$
\begin{aligned}
S(1,28.384) & =[2 \times S(1,284)+1 \times S(1,3)] / 3 \\
& =(2 \times 38.9+1 \times 0) / 3=25.9
\end{aligned}
$$

Though it is computationally efficient to form each successive similarity matrix by taking weighted averages of the similarities in the previous matrix, an alternabive which is entirely equivalent (and perhaps conceptually simpler) is to define the similarity between two groups as the simple (tunweighted) average of all between-group similarities in the initial triangular matrix. Thus:

$$
\begin{aligned}
S(1,2 \varepsilon 384) & =[S(1,2)+S(1,3)+S(1,4)] / 3 \\
& =(25.6+0.0+52.2) / 3=25.9,
\end{aligned}
$$

the seme answer as above.
The final merge of all samples into a single group therefore takes place at similarity level 25.9%, and the clustering process for the group-average linking
shown in Table 3.2 can be displayed in the following dendrogram.

Dendrogram features

This example raises a number of more general points about the use and appearance of dendrograms.

1) Samples need to re-ordered alang the y axis, for clear presentation of the dendrogrom; it is always possible to arrange samples in such an order that none of the dendrogrambranches cross each other.
2) The resulting order of samples on the x axis is not unique. A simple analogy is with a child's "mobile"; the vertical littes are strings and the horizontal lines rifid bars. When the whole stritcture is suspended by the top string, the bars can rotate frecly, genterating many possible re arrangements of samples on the x axds. For example, in the above figure, samples 2 and 4 could switch phaces (sequence 4, 2, 3, 1) or sample 1 move to the oppostre side of the diagram (sequence 1, 2, 4, 3), but a sequence such as $1,2,3,4$ is not possible. It follows that to use the xaxis sequence as an ordering of samples is mislesding.
3) Cluster analysis attempts to group samples intu discreteclustersnotdisplay thefrinter-relationship - on a continuous scale; the latter is the province of ordinatian and this would be preferable for the simpleexampleabove. Clusteringimposes a rather arbitrary grouping on what appesars to be a continuum of change from an unpolluted year (1964), through steadily increasing impact (loss of some species, increase in abundance of "opportu-
page 3-5

Fig. 3.2 Bristoi Chanhel zooplankton (B). Sampling sifes,

2

Collins and Wuliams (1982) perform hiemarchical cluster analyses of zooplaniton samples, collected by double oblique hauls at 57 sites in the Bristol Chermel UK, for three different seasons in 1974 fB). Thisis nota pollution study but a baseline survey carried out by the Plymouth laboratory, as part of a major programme to understand and model the ecosystem of the estuary. Fig. 3.2 is a map of the sample locitions, sites 1-58 (site 30 not sampled).

Fig. 3.3 shows the results of a hierarchical clustering using group-average linking un data sampled during April 1974. The raw data were expressed as numbers per cubic metre for each of 24 holnzooplankton spocies, and Bray-Curtis similartties calculated on $\sqrt{ } /$-transformed abumdances. From the nesulting dendrogram, Collins and Williams sclect the four groups detemined at a 55% similarity level and characterise these as true estuaritue (sites 1-8, 10, 12), estuatine and marine (9, 71, 13-27, 29), earyhaline marine (2B, 31, 33-35, 42-44, 47-50, 53-55) and stemokaline marine (32, 36-41, 45, 46, 51, 52, 56-58). A corresponding clustering of species and a re-ordering of the nows and columns of the original data matrix allows the identification of a number of species groups characterising these main site clusberts, as is seen later (Cluapter 7).

The dendrogram provides a sequence of faitly convincing groups; once cach of the four man groups thas formed it remains separate from other grotupsover a relatively large drop in similarity. Even so, a cluster analysis gives an incomplete and disjofnted picture of the sample pattern. Remembering the aralogy of the "mobile ${ }^{*}$, it is not cloar from the dexdrogram alone whether there is any natural sequence of community change across the four main clusters (impilcit in the designations true estuarine, estuarine and marine, euryhaline marime, stenohaline marine). For example, the stenchaline marine group could just as correctly have been rotated to tle between the estuarine and marine and euryhaline marine groups. In fact, there is a strung (and more-or-less continuous) gradient of comrmunily change across the region, associatod with the changing salinity levels. This is best seen in an ordination of the 57 samples on which are superimposed the salinity kevels at each site; this example is therefore returned to in Chapter 11.

1) Hierarchical clustering with group-average linking, based on sample similarity or dissimilarity matrices such as Bray-Curtis, has proved a usefu] techniquae in a number of ecological stwalies of the last two decades. It is appropriate for delinesting groups of sites with distinct community structure

An ordination is a marp of the samples, usually in two or three dimensions, in which the placement of samples, rether than representing thelr simple grographical location, reflects the similarity of their biological communities. To be more precise, distances belwect samples on the ordination attempt to mateh the corresponding dibsimilarities in community structure: nearby points have very similar communities, samples which are far apart have few species in commonor the same species at very different levels of abundance (or biomass). The word "attempt" is important heresinge there is no uniquely defined way in which this can be achleved. (Indeed, when a large number of species fluctuate in abundance in response tu a wide variely of environmental variables, each species being affectov in a different way, the community struchure is essentially high-dimetrional and it may be impossible to oblain a useful twu ur three-dimensional representation).

So, as with cluster analysis, several methodshave boen proposed, cach using different forms of the original data and vary'ng in their technique for approximating bigh-dimensional information in low-dimensional plots. They include:
a) Principal Components Atalysig, PCA (see, for example, Chatfield and Collins, 1980);
b) Prittcipal Co-ordinates Analysis, PCoA (Gower, 1966);
c) Correspondence Antalysis and Defrended Com: spondence Analysis, DECORANA (Hill and Gauch, 1980);
d) Multi-Dimensional Scaling, MDS; in particular non-metric MDS (sec, for pxample, Kruskal and Wish, 1978).

A comprehensive survey of ordination methods is outside the scope of this volume. As with clustering methods, detalled explanation is given only of the techniques requiced for the analysis strategy adopted throughout the manual. Thisisnottor deny the validity of other methods but simply to affirm the importance of applying, with zidersianding, oneor two tachniques
of provenutility. The twoondination methodsselected are therefore the simplest (arguably) of the various options, at lcast in concept.
a) PCA isthe longest-established methed, though the relative inflexibilfty of its definition limits its practical usefulness more to multivariate analysis of environmental data rather than specics abundances or biomass; nonetheless it is still widely encountered and is of fundamental importance.
b) Non-metric MDS is a more recent development, whose complex algorithm could only have been contemplated inan era of advanced computatiunal power; however, its rationale can be very simply described and understood, and many people would argue that the need to make few (if any) assumptions about the datamakeit the most widely applicable and effective methoct a vailable.

The slarting point for a PCA is the original data matrix rather than a dertyed similarity matrix dthough there is an imblicil dissimilarity matrix underlying PCA, that of Euclidean distance). The data array is thought of as defining the positions of samples in relation to axes representing the full set of species, one axis for each species. This is the very important conceptintroduced in Chapter 2 (following equation (2.13)). Typically there are many species so the samplos are points in a very high-dimersional spack

A simple 2-dimensional example

It helps to visualise the process by again considering an (artificial) example in which there are only two species (and nine samples).

	Sample	1	2	3	4	5	6	7	8	9
Abundance	Sp. 1:	6	0	5	7	11	10	15	78	14
	Sp. 2:	2	0	8	6	6	10	3	14	14

The nine samples ure therefore points in two dimensions, and labelling these podnts with the sarnple number gives the followity plot.
(perpendicular) distances of the points from the line ${ }^{1}$ The second approach comes from nuting in the above examplethat the biggest differencers between samples take place along the PC1 axis, with relatively smail! changes in the PC direction. The PC1 axis is therefore defined as that direction in which the rapiance of sample points projected perpendicularly onto the axis. is huximised. In fact, these two separate definitions of the PCl axis tum out tobe bobally equizalent and one can use whichever concept is easier to visualise.

Extension to 3-dimensional data

Suppose that the simple example above is extended to the following matrix of coumts for three specics.

-	Sampk	1	2	3	4	5	6		7	8	9
Abundance	Sp. 1	6	0	5	7	11	10			18	14
	Sp. 2	2	0	\%	6	6	10		8	14	14
	Sp. 3	3	1	6	6	9	11	10	0	16	15

Samplesarenow puintsiritureedimensions (Sp.1,Sp. 2 and Sp. 3 axcs) and there are therefore three principal component axes, again simply a rotation of the three species axes. The defindion of the (PC1, $\mathrm{PC} 2, \mathrm{PC} 3$) uxes generalises the 2 -dimensional case in a riatural way:
PC1 is the axis which matimises the variance of points projected perpendicularly onto it;
PC2 is cunstralned to be perpendicular to PC1, but is then again chosen as the direction in which the varianceof points projected perpendicularly ontoit is maximised;
PC 3 is the axis perpondicular to both PC 1 and PC 2 (there is no choice remaining heme):

[^7]An equivalent way of visualising thisis againin terms of "best fit": PC1 is the "best fiting" fint to the sample points and, together, the PC1 and PC2 axes define a plane (stippled in the above diagram) which is the "best fitting" planc.

Algebraic definition

The above geometric formulation can be expressed algebraically. The three new varíbles (PCs) are yust linear combinations of the old variables (species), such that PC1, ГC2 and PC3 are uncorrelated. In the above example:

$$
\begin{aligned}
& P C 1=0.62 \times S p n+0.52 \times S p .2+0.58 \times 5 p .3 \\
& P C 2=-0.73 \times S p .1+0.65 \times 5 p .2+0.20 \times 5 p, 3 \quad(4.1) \\
& P C 3=0.29 \times S p .1+0.55 \times 5 p .2-0.79 \times S p .3
\end{aligned}
$$

The principal components are therefore interpretable (in theory) in terms of the counts for each original specics axis. Thus PCl is a sum of roughly egual (and positive) contributions from each of the species; it is cseentially ordering the samples fromtlow tu high total abundance. At a more subte level, for samples with the same total abundánce, PC2 then mainly distinguishes melatively high ouunts of Sp .2 (and low Sp .1) from low Sp .2 (and high Sp .1); Sp .3 values do not feature strongly in PC2 because the corresponding coefficient is small. Simitarly the PC3 axis matnly contrasts Sp3 and $5 p .2$ counts.

Variation explained by each PC

The definition of principal components given above is in berms of successively maximising the variance of sample points projected along cach axis, with the variance therefore decreasing from CC 1 to PC 2 to PC 3 . It is thus natural to quote the values of these variances (in nefation to their total) as a measure of thesmount of "Information" contained in each axis. Furthenmore, it turas out that the total of the variances along all FC axes is equal to the tutal variance of points projected successively onto each of the original spesies axes. That is, letting var (P C ${ }^{\prime}$) demote variance of samples on the ith PC. axis and vay (Sp,i) denote variance of points on the ith species axis ($f=1,2,3$);

$$
\begin{equation*}
\Sigma_{i} \operatorname{var}(\rho C i)=\Sigma_{i} \operatorname{var}^{\prime}(S p . i) \tag{4.2}
\end{equation*}
$$

Thus, the relative varlation of points along the ith PC axis (as a percentage of the tutal), namely

$$
p_{i}=100 \cdot \frac{\operatorname{var}(P C i)}{\Sigma_{i} \operatorname{var}(P C l)}=100 \cdot \frac{\operatorname{van}(P C i)}{\Sigma_{i} \operatorname{var}(S p(i)}(4.3)
$$

hasa useful interpretation as the \% of the original total variance explained by the ith PC . For the simple
nal abundance data (L) is shown in Fig. 4.1. The origirial matrlx contained a total of 115 species for the 11: emples, one for each year of the period 1963-1973. Pulp-inill eflluent was first discherged to the toch in 1966 with an increased discharge in 1969/70 and a subsequent decrease in 1972/73.

Exclude lesg-common species

The retention of rarer epecles in a PCA ordination will have a strongly distorting effect, even supposing that the matrix operations to construct the ordination are possible. For the Loch Linnhe data there are 11 samples in 115-dimensional species spacel. An initial and drastic reduction. in the number of species is necessary for the PCA algoritum ω work. In fact many of the species are represcnted onjy by a single individual in a single year and thetr omission will nots be a serious loss to interpretation, but the nocessity of making an (essentially arbltrary) decision about which species to exclude is one of the problems with applying PCA to biologecal community dato. By contrast, the clustering methods of the last chapter were applicd to a simularity matrix which could beconstructed from all specles, the rarer ones either being emphasised, as in reduction to proscnce/absence, or down-weighted autometically (though not ignored totally) by the choice of similarity coefficient and transformation: An ordination method based on this similarity matrix for example, the MDS method of Chapter5) cienty scorey over PCA, in this respect.

In fact, Fig 4.1 is based on a data matrix of only 29 species, those making up mone than 3 \% of the totat abundarce in at least one of the samples. (The rationale for this type of selection procedure was

Fig. 4.1, Lack Linsthe wacrofaums (LL' $\mathbf{2}$-dimensional PCA nndination uf sampheabundunces $(\sqrt{ } \downarrow \mathbf{f}$-transforned) from the 11 yeors 1863-1973. PC1 (x-axib) and PC2 (y-axis) fogether account for 57 笛 of the total sample twarability.
disctissed in the section on species similarities in Chapter 2). Calculation of the principal components is now possible though, even so, the software package needs to handle its computations carefully. A-total of 11 sample points will always fit perfectly into 10 dimenginons (think of the lower-dimensional analogy again: 3 points in 3-dimensional space will always lie ona 2-dimensional plane). Thus, only 10 (at most) PC axes canbeconstructed, or to putit another way, all the sample variance can be explained by the first 10 CC . In fact, the first two PCs for Fig, 4.1 explain 57% of the tolal variability 90 the 2 -dimensional ordination does not give a fully satisfactory picture of the changing community pattern over the years. If this example were being pursued further, it would be advisable to look also at the third PC (at least), perhaps with some form of 3-dimensioral parspective plot or by the thrie separate 2-dimensional plots of ($\mathrm{PC} 1, \mathrm{PC} 2$), (PC 1 , $\mathrm{PC} 3)$ and (PC2, PC 3). Nontheless, onemain featureis clear from Fig, 4.1: the relatively large change in community composition between 1970 and 1971, and the reversion in 1973 to a community which is more like the earlier ycars.

Transformation of abundance/biomass

Inmuch the same way as was seen for the calcukation of similarity toefficients in Clapter 2, it may benecrssary to make an initial transformation of the abundance or bromass values to avotd over-domination of the resulting analysisby the very commonspecies. For the Loch Liunhe data; Capitella numbers ina ycarly sample range from 0 to over 4,000 individuals, whereas the bulk of the other species have counts in single or double figures. For untransformed data (and using a covariance-based analysis, as discussed below), the Copitella axis will clearly contain a substantial part of the overall variation of simpies in the specties space, so that the direction of the PC1 axis will tend to be dictated by that specics alone. A more balanced picture will emerge after transformation: Fig. 4.1 is based on $\sqrt[\downarrow]{ }$-transformed aburdances.

ScaIe and location changes

The data matrix can also be normalised (after any transformation has taken place). For each species aburdance, subtract the mean count and divide by the standard deviation over all samples for that species. This makes the variance of samples along all species axes the same ($=1$) so all species are of potentially equal importance in determining the principal compontents. This nomalised analysis's referred to as correlafion-based. PCA rather than the covarianczlased PCA obdained when the data is not nomalised
different veriables in the environmental analysis, e.g. contaminant concentrations will often be rightskewed (and require something like log transformation), salinity may be left-skewed (neverse log (transformation) and sedimient granulometry measures like "t\% mud" or "silt/clay" may need no transformation at all. These issues are zetumed to in Chapter 9.

1) PCA is conceptually simple, Whilst the algebraic basis of the PCA algorithm requires a facility with matrix atgebra for its understanding, the geometric concepts of a "bost fitting" plane in the spenles space, and perpendicular projaction of samples onto that plane, are relatively casily grasped. Some of the nere recently proposed ordination methods, which either extend or rupplant PCA (eg PrincipaI Co-ordinates Analysis, Deftended Comespondence Analysis) can be very much harder to understand for practitioners without a mathematcal background.
2) It is computationally straightfortuard Again, this statement needs to be seen ln relative terms. Prorided the number of species is reduced, usually drastically, the required matrix operations pose no real problems to modem computing power and packages are widely available which carry out the necessary eigenvalue (latent roat) extraction. That multryariate methods have only come to the fore as a practicaldata analysfs tool in the last two decades should not be a surprise to anyone. Even the computationally simplest of techniques, PCA, could never becarried out manually in any realistic example. Noneiheless, PCA tends to take oniy seconds, rather than minutes or hours; of processing time on a persortal computer. The constraints are mainly on the number of species handled, and large numbers of samples can usually beaccommodated. This is in comtrast to dusterand MDS analyses which ternd to be more constrained by the number of somples they can handle; once the data is reduced to a similarity matrix between samplew (the imput form to both clustering and MDS) the number of species in the original matrix is irrelevant. PCA could therefore have a role, when there are large numbers of samples, in providing an initial picture which would suggest separation of the data into two (or more) distinct sets of samples, each of which is analysed by more accurate (but
more computationally-intensive) ordinations such as MDS.
3) Ordination axes ans inkerpetable. The PCaxes are simple linear combinations of the values for each species, as in equation (4.1), so in theory have some potential for interpretation. In practice though, when there ane more than a handful of spacies (as is usual), this rarely kezds to any useful information. Environmental data arrays ofter contain a smaller number of variables however, and interpretation of the PCA axes may be informative in that case (see, for example, Chapter 11).

4) There is little flexthility in defining dissimilarity. An ordination is essentially a technique for converting dissinilarities of community composition between sampics into (Euclidean) distances between these samples in a 2- or higher-dimensional ordination plot. Implicilly, PCA defines dissimilarifybetween two samples as their Euclideandistance apart in the full p-dimensional specics space; howover, as was seen in Chapter 2, this is rather a pour way of defining sample dissimilarity: something like a Bray-Curtis coefficient would be preferred but standard PCA cannot accommodate this. The only flexibility it has is in transforming (and/ar normalising) the specics axcs so that dissimilarity is defined as Euclidean distance on these new scales.
5) Its disforce-preserving properties ave poor. Having defined dissimilarity as distance in the p-dimensional species space, PCA converts these distances by profection of the samples onto the 2-dimensional ordination plane. This may distort some distances rather badly. Taking the usual visual amalogy of a 2-dimensional ordination from three species, it can be seen that samples which are relatively farapart on thePC3 axiscanend upbeing co-incident when prujected (perhaps from "opposite sides") unto the (PC1, P(2) plane.

Prinicipal Co-ordinates Analysis

The two main weaknesses of PCA, identifigd at theend of Chaphier 4 ; are its inflexibility of difssmilarity measureand its poord intance-preservation. The first problemis addressed in an important peper by Gower (1966), describing an extansion to PCA termed Principal Co-ardinates Aitenlysis (PCoA), alyo sometimes referred to as classical scaliag. This allows a much wider definition of dissirrilarity than simple Euclidean diskance in the species space (the basis of PCA). Other dissimilarity measures are converted to distances, in high-dimensional space, but the final strep is again a projections onto a law-dimensional ordination space (eg a 2 -dimensional plane), as in ordinary. PCA. Thus, PCA is a spedal case of. PCoA, when the original dissimilarity is just Euclickan distance. It follows that PCoA is still subject to the second criticism of PCAi lts lack of emphasis on diffance-preservation when the information is difficult to represent in a low number of dimensions.

Detrended Correspondence Antlysis.

Corrappondence analyses are a class of ordination methods featuring strongly in French data-analysis literature (for a review in Engish see Greenacre, 7984). Key papers in ecology are Hill (1473 a) and Hill and Gauch (1980), wha introdiced detrended comespondence analysis (DECORANA). The methods start from the data matrix, rather than a sat of dissimilarity coefficients, so are rather inflexible in their definition of sample dissimilarity;in effect, multinnmial assumptions generate an implicit dissimilarity measure of "chi-squared" distance: Basic correspotidence analysis (CA) has its genesis in a particular model of unlmodal species response to underlying (but urrmeasured) environmental gradients; an acoount is outtd de the scopeof this mandial but a comprehensive expusition (by C F. J. ter Braak) of CA and related technicques can be found in Jongmanet al. (1987). ${ }^{1}$

[^8]The popular DECORANA: version of CA : bas :a primary motivation of straightening out an "arch effect" in a CA ordination, which is expected on theoretical grounds if speries abundances have unimndal (CGau selan) responses along a single strong envirenmental gradient. Where such models ame not appropriake, it is inclear what artefacts the algoritions may introduce inth the Ginal picture. In the Hill and Gauch (1980) procediure, the detrending is essentially carried out by first splitifig the ofdination space intrs segments, stretching or stitinking the scale in each segment and them realigning the segments to remave wide-scale curvature. For some people, this is uncomfortablyclosetonattaciking the data with scissors and ghueand, though the method isnotassubjective as this would imply, some arbitrary decistions about where and how the segnentation arid rescaling are defined are rather hidden from the userin the program code. Thus Plelou (1984) and others have criticized DECORANA for its "overzestious" maripulation of the data. It is also ä pity that the mitultivariate techniques which histronically have ben applied. most frequently in the ecologigal litcrature are often either inedequately suited to the dats or are based on conceptually complex aggorthnts (e.g. DECORANA and TWINSPAN, Hill 1979a, b), erecting a commuincation barrier between data analyst and ecologst.
The ondination techinique which is adopted in this. manual's strategy, now-metric MDS, is itself a complex numerical algorithen but it çan (and will) be arguted that it is conceptualiy simple. It makes few (if any) model assumptions about the form of the data or the inter-relationstupof thesamples, and the link between the firal picturc and the user's original data is relativeiy transpanentandeasy to explain. It addresses both the major crittcisms of PCA made earliert it has graar fexibility both in the definstiom and conversson of dissimilarity to distance and its rationale is the preservation of these relationships in the low-dimensionat ordination space.

The nuethod of mot-metric MDS was introduced by Shepard (1962) and Kruskal (1964); for application to problems in psychology; a useful introductory text is
 rank simitarity matrix astd the resulting 2-dinemsional MDS ondination.

Three replicate sediment corcs were taken for meiofaunal analysis on each occasion, and nematudes identified and counted. This amalysis considers only the mean nematode abundances actoss replicalcs and season (no scasonal differences wereevidentina more detailed analysis), so the data matrix consists of $\mathbf{1 8 2}$ specles and 19 samples.

This is not an example of a pollution study: the Exe estuary is a relatively unimpacted environment. The aim. here is to display the biological rotationships among the 19 stations and then to link these to a setuf environmental variables (gramulometry, inlerstitial salinity etc.) measured at thesesites, to reveal potential determintants of nematode community structure. Fig. 5.1 shows the 2-dimensional MDS ordination of the 19 samples, based on $\sqrt{ } \downarrow$-transformed abundarces and a Bray-Curtissinularity matrix. Distinctelusters of sites emerge (in agreement with those from a matching clustcr andysis), beating no clear-cut relation to geographical position or tidal level of the samples;

Fig. 5.1. Exesstuary nematodes [X]. MDS ordinetion of the 19 aites bosed on V -tramsformed alnustatices and Bray-Curtis simbloritics (5ncesg $=0.05$).

Inskead they appear to relate to variables such as sediment type and organic content, and these links are discussed further in Chapter 11. For now the question is: what are stages in the oonstruction of Pig. 5.1?

The non-metric MDS algorithm, as employed in Kruskal's original MDSCAL program for example, is an iterative procedure, cmstructing the MDS plot by successively refining the positions of the points until they satisf y, as clusedy as possible, the dissimilarity relations between samples. ${ }^{3}$ Ithas the following steps.

1) Specify the number af dibrentions (it) required for the final ordination plot. If, as will sometiones be desirable, one wishes to compare configurations in two and three dimensions then they have to be constructed separalely. For the moment think of m as 2.
2) Constryctastarting configuration of the wazaples. This could be the result of an ordination by another method, for example PCA or PCoA, or it could literally be just a random set of n points in m (= 2) dimersions.
3) Regress the interpoint distances from this plot on - the correspanding dissimilarities, Let $\left\{d_{j} \mid\right.$ denote the distance between the j th and k th sample points on the current ordination plot, and $\left.\mid \delta_{\mathrm{w}}\right\}$ the correspondingdissimilarity in the original dissimilarity matrix (of, say, Bray-Curtis coefficients). A scatter plot is then drawn of distance against dissimilarity for all $n(n-1) / 2$ suth pairs of values. Thisis temed a Strepard diagram and Fig 5.2 shows thetype of graph that results. (in fact, thisis at a late
3. TTuis is alk the algurithan used in the PRIMER prognam MDS. The requived ingut is a similarity matrix (e.g.aspraduced by CLUSTEK), sund the output includes a piot file wishith can be inpul to CONPLOT to display the $2-d$ MDS confliguration.
three dimensions, with just a 2 -dimumstonal paranueter space (the x, y plane) and the vertical axis (z) denoting the stress at each (x, y) point. In reality the stress surface is a function of more parameters than this of course, but we have seen before how useful it can be to wisualise high-dimensional algebraic operations in terms of 3 -dimensional geometry: An appropriate analogy is to imagine a rambler walking across a range of hills in a thick log(!), attempting to find the lowest point within an cncircling range of high peaks. A good strategy is always to walk in the direction in which the ground slopes away most steeply (the method of slecpest descent, in fact) but theric is no guarantee that this strategy will nexessarily find the lowest point overall, le the glabal mintimam of the stress funclion. The rambler may reach a low point from which the ground rises in all directions (and the thus the steepest descont algorithm converges) but there may be an cyen lower point on the other side of anadjacenthill. Heis then trapped ina bocalminimum of the stress function. Whether hefinds the global or a local minimum depends very much on where le starts the walk, i.e. the starting configuration of points in the ordination plot.
Such local minima do oceur in many MDS analyses, ugually comrespording to configurations of sample points which are orly slightly diffarent from one another. Often this may be because there are one or two points which bear little relation to arly of the other samples and there are scveral choices as to where they may be placed, or perhaps they have a more complex relationship withother samplesand may bedifficult to fit intu (say) a 2-dimensional picture. There is no guaranteed method of ensuring that a global minimum of the atress function has been reached; the priactical solution is therefore to repeat the MDS analysis sevaral times starting with different raniom positions of samples in the initial configuration (step 2 above). If the same(loweststress) solution re-appears froma number of diffementstarts then there is a strong assurance, though never a total guarantee, that this is indeed the best solution. Note that the easicst way to determine whether the same solution has been reaclred as ith a previous attempt is simply to check for equality of the stress values; remember that the configurations themselves could be arbitrarily rotated or reflected with respect to pach other. ${ }^{4}$ In gimuime applications, converged stress values are rarely precisely the same if corfigurations differ materially.
Degenenate solutions can also vccur, in which groups of samples collapse to the same point (even though they are not 100% similar), or to the vertices of a
triangle , or are strung eut round a circle. In thesecases 2 the stress may go to zero. (This is akin to our rambler starting hils walk outside the encircing hilis, so that he setsoffin totally thewrongdirectionand endsupat the sea!). Artefactual solutions of this sort are relatively rare and easily detected: repatition from different random starts will find many solutions whicharemore sentible. (In fact, a more likely cause of an ordination in which points tend to be placed around the oircumference of a circle is that the input matrix is of similartics when the program is expecting disgimilarithes, or vice-versa; in such cases the stress will also be very high.) A much more common form of degenerate solution is repealable and is a genufne result of a disjunction in thedata. For example, if the data divide into two groups, which hive no species in common, then there is clearly no yardstick for determindng how far apart the groups should be placedin the MDS plot. They are infinitely far apart, in effect, and it is not surprising to find that the samples in cach group then collapse to a poinL. The solution is to split the data and carry out an ordination separately on each group.

Another feature of MDS mentioned earlier is that, unlike PCA, there is not any direct relationship between ordinations in different numbers of diment sions. In PCA, the 2-dimensional picture is fust a projection of the 3 -dimensional one, and all PC axes can be generated in a single analysis. With MDS, the minimisation of stress is clearly a quite different optimisation problem for each ordination of different dimensionality; indeed, this explaits the greater success of MDS in distance-preservation. Samples that are in the sameposition with respect to (PC1, PC2) axes, though are far apart on the PC3 axis, will be projected on top of each other in a 2-dimensional PCA but they will termain separate, to some degree, in a 2-ifmensiunal as well as a 3-dimensional MDS.
If the ultimate aim is a 2 -dimensional ordination, it may still be useful to carry out a 3-dimensional MDS initlally. Its first two dimensions will often provide a reasonablestarfingpoint tu the iterativecomputations

[^9]

Fig. 5.3. Exe ascrary Mentro todes (X) D Detarogrism of the 19 statians, using groupaverage chastering from Bryy-Curtis simatharities on $\sqrt{ }$-trensfirnued aturdances. The four groups of stations sepanded al a 15% similarity threshoid (dotted finep are andicated fine tur tightiy chustered sub-groups within groty 1 trene designoted 1Aand $1 B$ by Ftidalal. 1982).
accurate placement, or simply comesponds to a major crror in the data matrix.
3) Is there distartian when similar sampiles ane connscted in the ordinctionplot? Onesimplecheck on the success of theordinationindissinularity-preservathon is to identify the top 10% or 20% (say) of values in the similarity matrix and draw a line between the corresponding points on the MDS configuration. An inaccurate representation is indicated if several connections are made between points which are fur ther apart on the plot than other tmeonnected pairs of points.
4) Is 放e "minimurn spanning trea" consistent with the ardination picture? A similar idea to the above is to construct the mithimum spannity tree (MST Gower and Ross, 1969). All samples are. "connerted" by a single line which is allowed to branch but does not form a closed loop, such that one minimises the sum along this line of dissimitarifics (taken from the original difsimilarity matrix not the distance matrix from the ordination, note). This line is then plotted on the 2-dimensional ordituation and inadequacy is mgain Indicated by connections which look unnatural in the context of placement of samples in the MDS configurstion.
5) Do superimposed growis from a ciuster analysis distort the erdination plot? The combination of chustering and ordination analyses can be a very effoctive way of checking the adequacy and mutual consistency of buth representations. Fig, 5.3 shows the dendrogran from a cluster analysis of the Exe entuary nematode data (XJof Fig. 5.1. Two or more (arbitrary)
similarity values are chosen at a spreadi of hieranchical kevels, each debermining a particular grouping of samples. In Fig. 5.3, fourgroups ame formed at around a 15% smblarity level and eight groups would be determined for any similarity threshold between 30 and 45%. These two sets of grouptings are superimposed on the MDSordination, Fig. 5.4, and itis clear that theagreemund between the two techniquesis excellent: the clusters are sharply defined and would be delemined in much the same way If one were to select clugters by cye from the 2 -dinsensional ondination alone The stress for Fig. 5.4 is also Iow, at 0.06 , gring confidence that the 2-dimenskonal plot is

Fig. 5.4. Exe estwary mematodes (X). 2-dimensional MDS configuration, es in Fig. 5.1, trith superimposed ciusters from Fig. 5,3 , at similarity levela of 15% (doshod line) and $30 \%-4.5 \%$ (continuous line).

2-dimensional PCA of Fig. 4.2 but with superimposed groups from a cltuster analysis of the Euclidean distance matrix ${ }^{10}$ between the 16 samples (Fig. 5.5b). With the same division into five dusters (thin lines) and ten clusters (thicik lines), a much more distorbed picture results, with samples that ane virtually coincident in the PCA plot being placed in separate groups and samples appearing distant from each other forming a common groap.

The onkomeone would expecton theoretical grounds is therefore appanent in practioe here: MDS can provide a mure realistic pictare In situations where PCA gives a distorted representation of the true "distances ${ }^{*}$ between samples. In fact, the biological conclusions from this particular study are entirely negative the test described in Chapter 6 shows that there are no statistically significant differences in commanity stoucture between any of the four dosing levels in this experiment.

txantweetty

In situations whete the samplesare strongly grouped, is in Pig. 5.3 and 5.4, both clustering and ordination analyses will demonstrate this, usually in equally adequate fashion. The strength of ordination is in displaying a gradation of community composition acrossa setof samples. An exampleis provided by Pig. 5.6 , of zxoplankton data from the Celtic Sca (C). Samples were coilected from 14 depths, scparately for day and night time studies at a single site. The changing comununity composition with depth can be traced on the resulting MDS (from Bray-Curtis sintilarities). There is a greater degree of variability in community structure of the near-surface sampies, withamarked changeincompositionatabout 20-25m; deeper than this the changes are stcady but less pronounced and they step in parallel for day and night time samples. Another obvions feature is the strung difference in composition between day and night near-surface samples, contrasted with their relatively higher similarity at greater depth. Clustor analysis of the same data would clearly not permit the accuracy and subtety of interpretation that is possible from ordination of a gradually changing community pattern.

[^10]

Hig. 5.6. Caltic Sar zoroplankton (C). MDS plot for night (bated) and doy time samuphes fromen 14 deprets (5 to 7 Tow, den oted A, B, ..., N), taken at a single site during Sephentiber 7978.
 12

1) MDS is simpile in concequt. Though the mumerical algorithm is undeniably complex, it is always clear whatMDS is trying to achiever the construction of a sample map whose inker-point distanices have the same rank order as the corresponding dissimilarities between sarnples.
2) It is based on the teleonant sampte informations. MDS works on the sample dissimilarity matrix not on the original data ariay, so there is complete freedom of chnise to define similarity of commumity composition in whatewer terms are biologically most meaningful.
3) Spectes deletions mere yrmecessary. Another advantageof starting from the sampledissimilarity matrixis that the number of species on which it was based is largely irrelevant to the amount of calculation required. Of course, if the orginal matrix contained a large number of spedes whose patterns of abundance actoss the samples varied whely and priur transformation (or choice of similarity coeffictent) dictated that all species were given gqual weight, then the structurein the sample dissinnilarities might be more diffictult to represent in a low number of dimensions. More usually, the similarity measure will autoratically downweight the contribution of species that are rarer (and thus more prone to random and uninterpretable fluctuations). There is then no ncoesisity to delete species, either to oblain realistic low-dimensional

Fig. 5.7. Non-metric MDS worfigumatian of the poad distances (partly giten in Taule 5.2) bet warn relected UK towntsand cities (stress $=0$ (04).
5) SimiIarities can be given anequal weight. If some sarnples are inherently less ncliable than others because they are based on smaller amounts of material sampled (perhaps combining theresults of fewer replicatss), then similarities involving these samples can be given less indluence in the cmstructlon of the MDS configuration: a weighting term could be added to the definition of stress in equation(5.1). It is also true, 锁ough not of practical signilicance hers, that the algorithm can operate perfectly successfully when the similarity matrix is subject to a certain amount of missing data. ${ }^{1 / 2}$

1) MDS is computationally demanding. Togeneratea single configuration with moderate to large numbers of samples takes some time on a modern personal computer, though speed has become muchless of a problem than ftonce was. However, MDS onmuch more thar $n=100$ samples is not only rather computationally intensive (pmocessor time increases roughly proportional to n^{2}) but also increasing sample size generdly brings increasing complexity of the sample relationships, and a 2 -dimensional rapresentation is unlikely to be adequate in any case. (Of coltrse tuis last point is

 cities as in Table 5.2, but starfing fyom the matrix of direct ("as the crow fits") distances betwotitery pair (blyess $=$ of).
just as true, if not more true, for other ordination methuds). This scenario was touchedonin Chapter 4, whene it was suggested that large data sets can often be sub-divided a priori, or on the basis of well-defined subsets from a cluster analysis, and the groups analysed separately by MDS. Representatives (or averages) from each group can then be input to an MDS to display the large-scale stucture.
2) Canoergence to the globalmininnem of stress is not guarantegd. As we haveseen, theiterative nature of the MDS algorithm makes it necessary to repest each analysis a number of times, from different starting configurations, to be fairly confident that a solution that re-appears several times (with the lowest observed stress) is indeed the global minimum of the stress function. Gencrally, with higher stress, the greater is the likelihood of

[^11]

Many commurity data sets possess some a priori defined structure within the sct of samples, for example there may be replicates from a number of different sites (and/or times). A pre-requisite to interpacting comumunity differences between sites should be a demomstration that there are statistically sigrificant differences to interpret.

When the species abundarce (orbiomisy) information In a sample is reduced to a single index, such as Shannon diversity (see Chapter 8). the existence of replicatesamples from cach of the gmups (sites/times ctc.) alluws formal statistical (reptment by analysis of veriance (Alv(NA). This requites the assumperen that the univariate index is normally distributed and hats constant variance across the groups, conditions which are normally not difficult to justify (perhaps after transformation, see Chapter9). A so-called ghobul test of the nutl hypothesis $\left(\mathrm{H}_{0}\right)$, that there are no differences between groups, involves comptating a particular ratio of variability in the group means to vartability among replicates within each group. The resulting F stutistic takes values near 1 if the null hypothesis is true, larger values indicating that H_{0} is false: standard tables of the F distilbution yield a sifgrificance level (p) for the observed F statistic Roughly speaking, p is interprcted as the probability that the group means we have observed for a set of means which appeart to differ from each other to an even greater extenl) could have cocurred if the null hypothesis H_{0} is actually truc.
Fig. 6.1 and Table 6.1 provide an illustration, fot the 6 sites and 4 replicates per site of the Frierfond macrofauna samples. The mean Shanmondiversity for the 6 sites is seen in Fig. 6.7, and Table 6.1 shows that the F ratio is sufficiently high that the probability of obscrving means as disparate as this by chance is $p<$ 0.001 (or $p<1.1 \%$), if the true mear diversity at all edtes is the same. Thisis deemed to beasufficiently unlikely chance event that the moll hypothesis can safely be rejected. Convention dictates that values of $p<5 \%$ (say) are sufficiently small, in a single lest, to discount the possibility that H_{0} is true, but theye is nothing sacrosanct about this figures clearly, valucs of $p=4 \%$ and 6% should clicit the same inferance. It is equally clear that repeated significance tests, each of which has

Fig. 6.1. Frienflord mactofaunc (F). Motins anf \$55 comfiderce inkervals of shannon diversity (IN^{\prime}) at tha 6 fipeld sites (A-E, G) shotem in Fig. T.I.
(say) a 5% possibility of describlng a chance event as a real difference, will cumulatively nin a much greater thsk of drawingat least one false inference. This is one of the (many) reasons why it is notusually appropriate to handle a multi-spocies matrix by performing an ANOVA on cach species in turn. (More decisive reasons are the complexitics of dependerce between species and the inappropriateness of normality assumptions).

Fig. 6.1 shows the main difference to be a higher diversity at the outer site, A. The intervals displayed are 95 宽 coufidence intervals for the true mean diversity ateach site;note that these are of expual width bccause they are based on the assumption of constant variance, that is, they use a pooled estimate of replication variability from the residual mean square in the ANOVA table.

Tabte 6.t. Frterford macrofauna \{F]. ANCIVA table sinwing nejection (at a significance kted of 0.74% of the ghobel lyppothasis of "no site-to-site differencs" in Shamon diversity (H ").

	Surn of s.puares	Theg. of freedom	Mean \$риате	$\begin{aligned} & \text { F } \\ & \text { ration } \end{aligned}$	Sig . level
Sites	3.938	5	0.788	15.1	40.18
Residual	0.9 .97	18	d,052		
Total	4.574	23			

ANOSDM test (analysis af similurities)', by analogy with the acronym ANOVA (analysis of variance). The history of such penmutation tests dates back to the epidemiological work of Mantel (1967), and this is combined with a general randomization approact to the generation of significance levels (Monte Carlo tests, Hope 1968). In the context below, it was described by Clarke and Green (1988).

Fig.6.3 displays the MDS based orly on the 12 samples (4 replicales per site) from the B,C and D sites of the Frierfjord macrofauna data. The null hypothesis (H_{0}) is that there are no differences in community composition at these 3 sitiss. In order to exarnine H_{4} there are 3 main steps:

1) Compute a test statistic reflecting the observed differences setween sites, contrasted with differences among replicates within sites. Using the MDS plot of Fig. 6.3, a natural thwice might be to calculate the average distance between every pair of replicates within a site and contrast this with the average ditance apart of all pairs of samples corresponding to replicates from differentsites. A test could certainly be constructed from these distances but has a number of drawbacks.
a) Such a stathstic could only apply to a sitnation in which the method of display was an MDS rather than, Gay, a cluster analysis.
b) The result would depend on whether the MDS was constructed in two, three or higher dimensions. There is ofton to "correct" dimensionality and one may erdil up viewing the picture in several different dimensions-it would be unsalisfackory to generate different kest statistics in this way.
c) The configuration of B, Cand Dreplicates in Fig. 63 also differs slightly from that in Fig. 62a, which includes the full set of sttes A-E, G. It is again undesirable thatatest statistic for comparingorly B , C and D should depend on which other sites are included in the pisture.
These three difficulties disappcar if the testis based not on distances betwem samples in an MDS but on the corresponding (rank) similaritics between samplew in

[^12]

1ig. 63. frierfford macrofasase (F). MDS orrinaliont ds for
 B, C and D (stress $=0,12)$.
the underlying triangular simularity matrix. If \bar{F}_{w} is defined as the average of all rank similarities among replicates mithin sites, and \bar{r}_{s} is the average of rank similarities arising from all pairs of replicates betwern different sites, then a suitable test statistic is

$$
\begin{equation*}
R=\left(\bar{r}_{\mathrm{B}}-\bar{r}_{\mathrm{W}}\right) / f(M / 2) \tag{6,1}
\end{equation*}
$$

where $M=n(n-1) / 2$ and n is the total number of samples under consideration. Note that the highest similarity correspondstoa rank of 1 (the lowest value), following the usual mathematical convention for assigning ranks.

The denominutor constant in equation (6.1) has been chosen so that:
a) R can never technically lie outside the range $(-1,1)$;
b) $R=1$ only if all replicates within sites are more similar to cach other than any replicatas from diffcrent sites;
c) R is approximately zero if the null hypothesis is truc, sat that similaritfes between and within sites will be the same on dverage.
R will usually fall between 0 and 1, indicating some degree of discrimination betwoen the sites. R substantially less than zero is unlikely gince it would correspond to similarities across differcnt sites being higher than those within sites; such an occurrence is meve likely to indicate an incorrect labelling of samples. The \boldsymbol{R} statistic itself is a uscful comparative measure of the degree of separation of sites, though the main interest usually centres on whether it is
computed; 12% of these values are equal to or larger than $0.23 \mathrm{so}_{\mathrm{H}}$ cannol bernjected. By cuntrast, $\mathrm{R}=0.54$ for the comparison of B against D, which is the most extreme value possible under the 35 permutations. B and D ane therefure inferred to be sigorificantly different at the $p<3$ 枼 level. For C against $\mathrm{D}, \mathrm{R}=0.57$ simitarly leads to rejoction of the null hypothesis (p $<$ 3%).

There is a danger in such repeated significance tests which should be noted (although little can be done to ameliorate it here). To reject the null hypothesis at a significance level of 3% implies that a 3% risk is being run of drawing an incornect corklusion (a Type I error, in statistical tememogy). If many such tests ane performed this risk will cumulate. For example, all pairwise comparisons betwom to sites, each with 4 replicates (allowing 3% level tests at best), would involve 45 tests, and the overall risk of drawing at least one faise conclusion is high. For the anatogous pairwise comparisons following the glohal F test in a univariate ANOVA, there exist mwitiple comparison lests which attempt to adjust for this repitition of risk. No such ounstructs are possible here, and the pragmatic course is to excrcise teppropriate caution in interpretation and/or enhance the potential significancenf the ind ividual tess by a modestinctease in the number of replicates. Enfuation (6.2) shows that 5 replicatesfrom each site would allowa 1% level test fur a pairwise comparison (126 permutations), and 6 replicates gives close to a 0.2% Ievel test (462 permutations); compourding these smaller values is cicariy preferable to cumulating 3% risks (or the 10% Type Ieror, at best, frompairwise comparisons of only 3 replicaten!).

This also raiscs the issue of Type il earor of such a promutation test, related to its pozper to detect a differente between sites if ore genuinely exists. Such concepts ane not easily examined for non-parametric procedures of this type, which make no distributional assumptions and for which it is difficult to specify a precise non-null hypothests; all that can be obviously said is that power will improve with increasing replication.

Generality of application

It is evident that few, if any, assumptions have been made about the data In constructing the 1 -way ANOSIM test, and it is therefore very gencrally applicable. It is not restricted to Bray-Cuttis similarities or even to similaritios computed from species abundance data: it could provide a non-para-
metric alternative to Wilks' \boldsymbol{A} test for data which ant morenearly multivariate normally distributed, eg. for lesing whether groups (sites or times) can be distinguished on the basis of their environmentaldala (see (hapter 11). The latter would invulve computing a Euclidean distance matrix between samples (after suitable transfomation of the environmental variables) and entering this as a dissimilarity matrix to the ANOSIM procedure. Clearly, if multivariate normality assumptions are genuinely justiffed then the ANOsim testmustlack scnsitivity in cumparison with standard MANOVA, but this would seem to be more then compensated for by its greater gencrellity.
Note also that there is no mestriction to a balanced number of replicates. Some groups could even have unly one roplicate provided enough replication exists inother groups to generate sufficient permutations for the gobual test (though there will be a sense in which the puwer of the test is compromised by a markedly unbalanced design, here as elscwhere). More usefully, note that no assumptions have been made about the variability of withan-group replication needing to be similar for all groteps. This is seem in the folluwing cxample, fur which the groups in the 1 -way layous an: not sitea but samples from different years at a single site.

Warwick et at (1990 b) examined data from 10 replicate transects acruss a single coral-reef site in S. Tikus Island, Thousand Islands, Indonesia, foreach of thesix years 1981, 1983, 1984, 1985, 1987 and 19\$KK. The community data are in the form of \% cover of a transent by ewch of the 58 coral species identified, and the analysis used Bray-Curtis similarities on untransformed data to oblain the MDS of Fig, 6.5. There appears to be a strong change in community pattern between 7981 and 1983 (putatively linked to the 1982/3 El Nifto) and this is confirmed by a 1 -way ANOSIM test for these two years alone: $R=0.43$ ($y<$ 0.1%). Note that, though not really designed for this situation, the test is perfectly valid in the face of much greater "variability" in 1983 than 1981; in fact it is mainly a change in vardablity rather than location in the MDS plot that distinguishes the 1981 and 1983 groups (a pcint returned to in Chapter 15). This is in contrast with the standard urivariate ANOVA (or multivariate MANOVA) test, which will have no power to detect a variability changer tudeed it is invalid withoutanassumptionof approximately equal variances (or variance-covariance matrices) across the groups.
a

Fig. 6.6. Chyle nematodes (Y), a) MDS of species abitionaces frow throe 'polluter' (PI-F3) and thres 'coltrol' sites (C]-C3), tuils three repticate shmples at mast sifes (sfress $=0.09$), b) Sinulated distrobution of the test statistic R, under the hypnthesig HI of'no site differences' wifthin each comditiont the otserved R is 0.75.
demonstrated that there are, in effect, only three "replicates" (the sites 1-3) ateach of the twoconditions (C and P). This isa 1-way layout, and H 2 can be tesfed by 1-way ANOSIM but one first needs to combine the information from the three original replicates at each site, to define a similarity matrix for the $6^{\prime \prime}$ new $w^{\prime \prime}$ replicates. Consistent with the overall strategy that tests shuuld ondybedepondenton the rank similarities in the original triangular matrix, une first averages over the appropriateranks to nbtain a reduced matrix. For example, the similarity between the three P1 and three P2 replicatcs is defined as the average of the nine inter-group renk simularities; this is placed into the new similarity matrix along with the 14 otheraverages (C 1 with $\mathrm{C} 2, \mathrm{Pl}$ with C 1 etc) and all 15 values are them re-ratited; the 1 -way ANOSIM then gives $R=0.74$. There are only 10 distinct permatemons so that, although thls is actually the most extreme R value possible, H 2 is only able to be rejected at a $p<10 \%$ sigulficance level.

The other scenario to consider is that the first test fails to reject H1; there are then two possibilites for examinuing H 2 :
a) Proceed with the average ranking and re-ranking exactly as above, on the assumption that even if it cannot be proved that there are no diffenences betweer sites it would be unwise to asswewe that this is so; the test may have had rather litte power to defect such a difference.
b) Infer from the test of H 1 that thereareno differences between sites, and treat all replicates as if they were separate sites, e.g. there would be 7 replicates for ountrol and 9 replicates for polluted conditions in Fig. 6.6a.
Which of these two courses to take is a matter for debate, and the argument here is exactly that of whether "ko pool" or "not to prool" in forming the residual for the analogous univariate 2-way ANDVA. Optiun b) will certainly have greater power but rumsa real risk of being invalld; option a) is the conscrvative lest and it is certainly unwise to design a study with anything other than option a) in mind. ${ }^{2}$

An example of a two-sway crossed design is given in Warwick et af. (1990a) and is introduced more fully here in Chapter 12. This is a so-called natural experiment, studying disturbance effects on meiobenthic communitics by the continual reworking of sedimentby soldier crabs. Twn replicate samples were taken fromeach of four disturbos pateles of sediment, and from adjacent undisturbed areas, on a sand flat at Eaglehawk Neck, Tammaia; Fig. 67a is a schematic representalion of the 16 sample locations. There are two factors: the presence or absence of disturbance by the crabs and the "block cffect" of the four different dishurbance patches. It might be anticipated that the community will change naturally across the samit flat, from block to black, and it is important to be able to separate this effext from any changes associatced with the disturbance itself. There are parallels here with impact studies in which pollutants affect sections of several bays so that matched control and polluted conditions can be compared against a background of changing community pattern across a wide spatial scale Thencearepresumed tube replicate samples from
2. The ANOSMM FFogram in the PRIMER packnge shavys takas thus first options.

Fig. 6.8. Wesfarschefic mewatodes experitutst (W) MDS of steties abuidances from 16 different nutrient-emrichntat treatemersts, A te P appoliat to stidinent cores in each of four mesneram ilasimss 1 to $4($ stress $=0.28)$.
cores were randomly divided between 4 mesocosm babins, 16 to a basin. The experiment involved 15 different nutrient entichment conditions and one control, the treatments being applied to the surfare of the undisturbed sediment cores. After 16 weeks controlled exposure in the mesocosm enviromment, the meiofaunal communities in the 64 cores were identified, and Bray-Curtis similarities on root-transformed abindances pave the MDS of Fig. 6s. The futl sct of 16 trentments is repeated in each of the 4 basins (blocks), no the structure is a 2-way treatmentex blocks layout with unly one rçlicate per cell. Litle, if any, of this structureis apparent from Fig. 6.8 and a formbl test of the null hypothesis
H_{0} : there are no treatment differences (but allowing the possibrility of basin effects)
is clearly necessary before any interpretation is attempled.

In the absence of replication, a tesit is still pussible in the thiturate case, under the assumptiun that interaction effects are small in relation to the main troatment or biock differences (Scheffé, 1959). In a similar spirit, a global test of H_{o} is possible here, relying on the observation that if certain treatmonts are responsible for community changes, in a more-or-less consistent way actoss blocks, separate MDS analyses for each block should show a repeated treatment pattern. This isillustrated schernatically in the top half of Fig. 6.9: the fact that treatment A is consistently close to B (and C to D) can only arise if H_{o} is falsc. The analogy with the
univariale test is clear: large interaction effects tmply that the treatrnent pattern differs from block to block and there is little chance of identifying a trexment effect; on the other hand, for a treatment xblock design such as the current musocosm experiment there is no neabon to expect treatments to behave very differently in the different basins.

What is therefore required is measure of how welt the treatonent patterns in the ordinations for the different blocks match; this stabistic can then be reoumputed under all possible (or a random subset of) permutations of the treatment labels within each block. As previvusly, if the observed stabistic does not fall within the body of this (simulated) distribution there is significantevidence to reject H_{0}. Note that, as required by the statement of \mathbf{H}_{is} the test makes no assumption aboul the absence of block effects; breween-block similarities are irrelevant to a statistic based only on agreement in within-block pritterns.

In fact, for the same reasons advanced for the previous ANGXIM tests (e.g. abtitrariness in choice of MDS dimensionality), it is more satisfactory to define agneement between treatment patterns by reference to the underlying similarity matrix and not the MDS locations. Fig. 6.9 indicates two rouths, which lead to equivalent formulations. If there are in treatments and thus $N=n(n-1) / 2$ similarities within a block, a natural choice for agreement of two blocks j and k is the Spearman comtelation coefficient

Fig. 6.10, Wasterschelde mematiodes experinueut (W). MDS for the 16 trawmends (A to P), performed apparately for anch of the four bestaty no shaned treentrent pathemis मfppanemi (stress nongs from 0.16 to 020).
nematode communities at 19 sites in the Exe estuary, seenin Chapter5. In fact, this is based onanaverage of data over6 successivebi-monthly samplingoccasions. For the individual times, the samples remain strongly clustered into the 4 or 5 mafn grimps apparent from Fig.6.11. Lesscicar, however, is whether any structure exists within the largest group (sites 12 to 19) or whether the scatter in Fig, 6.11 is simply the consequence of sampling variation.

Fig. 6, 11. Exe estrary nempatodes \{X\}. MDS, for 79 inter-diLaI sitts, of species abmedamess ameraged oler 6 bi-monifly sampling octasions; ste also Fig. 5, 1 (stress $=0.05$).

Rejection of the null hypothesis of "no site to site differences" would be suggested by a common site pattern in the separate MDS plots for the 6 times (Fig. 6.12). At some of the times, however, one of the site samples is missing (site 19 at times 1 and 2 , site 15 at time 4 and site 18 at time 6). Instcad of removing these sites from all pluts, in arder to achieve ratathing sets of similarittes, one can zemove for each pair of times only those sites missing for either of that pair, and compute the Spearman correlation ρ between the remaining rank similaribes. The p values for all pairs of times are then averaged to give ρ_{av}, ie. the left-hand route is taken in the lower half of Fig. 6.9. This is usually referred to as pairuise removal of missing data, in contrast to the listwise remayal that would be needed for the right-hand route. Thuugh increasing the computation time, palrwise removal clearly utiliscs more of the available information.

Figure 6.12 shows evidence of a consistent site pattern, for example in the proximity of sites 12 to 14 and the tendencyof site 15 to be placed on its own; the fact that site 15 is missing on one accasion does not undermine this perceived structure. Pairwise computat in gives $\boldsymbol{\rho}_{\mathrm{au}}=0.36$ and its sigudifance can be determined by a Monte Carto test, as before. The (non-missing) site labels are permuted amongst the available samples, separately for cach time, and these desigrations fixed whilst all the paired ρ values are compubed (using pairwise removal) and avcraged. Here, the largest

Chapter 2 (page 2-6) describes how the original data matrix can be used todefinesimilarities between c very pair of हpecties; two species are thwughtof as "similar" If their numbers (or biomass) tend to fuctuate in paralle] across sites. The resulting species similarity matrix can be input to a cluster analysis or ordination in exactiy the same way as for' sample similarities. ${ }^{1}$
Fig. 7.1 displays the results of a duster analysis on Exe estatary nematode data (X J., extensively illustrated in Chapler 5. The dendrogram is based on Bray-Curtis similarities computedon standardised abundancess, as given in equations (2.9) and (2.10). Following the recommendations on page 2-6, the number of species was first reduced, retaining only those that accounted for more than 4% of the total abundanceatany one site. Clusber analysis with a greater number of spectes is possible but the "hit-and-miss" occurrence of the

1. Computation of sfectios simetarities is an option axaliable is the PRIMER proyrum CLUSTER, and is referred to as inverse analysicic by Fiolid at al (1982).
ramer specins across the sites tends to confuse the picture. In fact, at a similarity of around 10%, the dendrogram divides fairly neatly into 5 clusters of species, and these groups can be identifled with the 5 clusters that emerge from the sample dendrogram, Fig. 5.3. (This identification comes simply from categurising the species by the site groups in which they have the greatest abundance, the correspondence between site and spectes groupingsonthisbasisisseen to be very close.)

Fig7.2 shows the 2-dimensional MDS plot of the sarme species similaritics. The groups determingd from the cluster analysis are superimposed and indicate a good measure of agreement. However, both clustering and MDS have worked well here because the sitos ane strongly grouped, with many species characteristic of orly one site group. Typically, speciens cluster analyses are less clearly delineated than this and the corresponding MDS ordinations have high stress. A more informative appruach is often to concentrate on the sanople similarities and highlight the spocies principally responsible for determining the sample groupings in the cluster or ordination analyses.

Fig, 7.2. Exp extuary mematodés $\{X]$ Dentog using group-aturage linking on Bray-Curtis spectessimllarities from standarizent adrandance data; the 57 moss inportant spacies were retrinad fropt an original ilist of 182. TTe 5 graups definati al arbitmary siantiderty leow of 10\% are indicated.

Graup 2: $9,24,11,29,77,17,11,20, \mathrm{I} 5,16,12,21,18,25,79,22,26,23$
Group 3: $67,35,48,69,50,59,64,43,33,35,54,55,47,31$
Gralap 4: $5 \mathrm{~T}, 5 \mathrm{I}, 65,37,32,36,38,57,56,56,28,39,40,46,52$
Fig. 7.3. Rriator Chaturl zowplanktan fBl. Silade matrix for the 24 species and 57 gites. The originat alhtidntins hane heen oatgorized utrd nombersted ly symbuls of increasing dersiths amd the frut end colunturs of tha array rearderat vet lice tasis of cluster and MDS amalyses of the siles and species.

Similarity breakdown

An alternative, more analytical way of achieving the same characterisation is to compute the average dissimilarity $\overline{0}$ betwhen all prirs of inter-group samples (i.e every sample in group 1 paried with every sample in group 2, say) and then break this average down into the separate contributions from each species to $\overline{8} .^{3}$

For Bray-Curtis dissimilarity $\delta_{j k}$ betweentwo samples j and k, the contribution from the i th species, $\delta_{3}(i)$, could simply be definco as the ith term in the summation of equation (2.11), namely:

$$
\begin{equation*}
\delta_{j k}(j)=700.1 y_{y j i}-y_{i k} I / \sum_{i=1}^{N}\left(y_{i j}+y_{k k}\right) \tag{7.1}
\end{equation*}
$$

$\delta_{j k}(2)$ is then averaged over all pairs (j, k), with j in the first ard k in the seound group, to give the average contribution δ_{1} from the ith species the overall

[^13]dissimilarity $\overline{8}$ between groups 1 and $\mathbf{2}^{4}$ Typically, there are manty pairs of samples (f, k) making up the average $\delta_{\text {, }}$ and a useful measure of how consistentily a species contributes to δ_{1} across all such pairs is the standard deviation $\operatorname{SD}\left(\delta_{j}\right)$ of the $\delta_{j k}(i)$ values. ${ }^{5}$ If $\bar{\sigma}_{1}$ is large and $S D\left(\delta_{1}\right)$ small (ard thus the ratio $\bar{\delta}_{i} / S D\left(\delta_{1}\right)$ is large), then the thspecies notonly contributes much to the dissimilarity between groups 1 and 2 but it also does so consistently in fiter-comparioms of all samples in the two groups; it is thus a good discriminating species.

Tibble 7.1. Bristol Chatal zooplankton fRy. Breakdiown of average discimitarity fetwerm growhy I and 2 intocemaributions frown each pperies; speciestare ordered indecreasing conspibutinn (part ondy given).

Sp. Name	δ	$S D\left(\delta_{i}\right) \delta_{i} / S D\left(\delta_{j}\right) 5 \Sigma_{i} \%_{1}$		
6 Eurytimury affimis	7.7	2.8	2.74	13.0
4 Geniropages hamatus	73	4.4	17^{7}	25.2
3 Cularms helyolandicas	6.8	40	1.74	36.7
1 Apartia bifilosa	5.7	4.0	7.4*	46.3
23 Tinuta longicumis	5.8	3.3	1.7*	55.6
18 Pseudocalunus elongatus	4.7	15	3.14	6.3 .5
13 Pararalanas \dagger \#urtus	3.3	4.2	0.8	69.1
15 Plemortrachia prieus jo	3.1	2.5	1.1	74.3
20) Sagitar elcegtrs pr	2.5	19	7.6*	75.1
19 Sagithatestegats	2.1	1.6	1.3	82.5
8 Caxtromenus spinifer	20	1.8	1.1	85.9
14 Pdeurobrattha pileus	7.5	16	1.2	89.0
10 Mesupoxiopsis skableri	1.7	1.4	1.3	51.5
21 Schistontysis sphrlius	1.6	1.4	1.1	94.5
17 Pulychacte Jartuax	25	13	1.2	97.7
2 Amotia clatsi	0.7	18	0.4	98.3
	'*	*'	'.	\cdots

For the Bristol Channel zooplankton data (B) of Fig. 7.3 . Table 7.1 shows the results of breaking down the dissimilarilies between sample groups 1 and 2 intu species contributions. Species are ordered by their average contribution δ_{i} to the total average dissimilarity $\bar{\delta}=\Sigma \bar{\delta}_{1}=59.5$. Specles which are likely to
4. Thookgh this is a matural defintition, it shauld be matedt that thowe is no unarnergetors pantition of ofk into contributions from each stecies, since the standardising term in the desontimptor of equation (7.1) is a function of all species ixtlues.
5. The wstal definition of standard deviation from elemantary statistics is a comennent menapue of parjability flete, bul there is no etose in which the $\mathcal{S}_{\mathrm{k}}(\mathrm{f})$ whlues are "indepandent abserwations", ond one commbt use stathard statistical inference tu define, sayy, "95\% confidence intervals" for the mean cartribution from the ith spucies.

A variety of different indices (single numbers) an be used as measures of some attributc of community structure in a sample. These include the total number of individuals (N), intal number of species (S), the total biomass (B), and also ratios such as B / N (the a verage sizeof anorganismin the sa mple) and N / S (the avernge number of individuals perspecies). Thoseindicestend tobe lessinformative than some measure of the way in which the total number of individuals is divided up among the different speciss, i.e dipergity indices.

Indices of diversity and evenness

A single index of specses (or higher tacon) diversity is commonly employed in oummunity studies, and is amenable to simpie statistical analysis, A bewildering variety of diversity indices has boen used, and it is not appropriate here to discuss their relative merits and disadvantagesi Good accounts can be found in Heip of al. (1988) ${ }^{1}$ and Magurran (1991).

Two different aspects of community structure contribute to the concept of commurity diversity:
a) Species richness. This is a measure related to the total number of species present. Obyiously we would consider a sample containing more spectics than another to be the more diverse.
b) Equifalility. This expresses how everly the individuals are distribruted among the different specles, and is often termed everoress. For example, If two samples each comprising 100 individualsand four specles had species abundances of $25,25,25,25$ and 97, 1, 1, 1, we wauld intuitively consider the former to be more diverse although the species richness is the sime. The former has highevenuess, but low dominance (essentially the reverse of evenness), while the latter has low evenness and high dominance (the sample being highly dominated by one spectec).

1. Although this book relutes specifrocily to the meioberth hos the treatmrent of statistiont methods is applicable to all compranity stadics.

Different diversity indices may emphasize the species richntess or equitability components of diversity to varying degrees. Several of these indices areincluded as special casesima unified scries of diversity numbers of differenl orders proposed by Hill (1973b). ${ }^{2}$ However, thesc numbert do not as yet seem to have been widely adopted. The nosl conmonly used diversity measure is the Shannon-Wiemer diversity index:

$$
\begin{equation*}
H^{\prime}=-\Sigma_{B}(\log p) \tag{8.1}
\end{equation*}
$$

where p_{i} is the proportion of the total count (or biomass etc) arising frum the ith species.

This incorporates both the species richness and equitability components. Note that logarithms to the base 2 ard often used in the cakulation, giving the diversily units as 'bits per individual', Loge is also frequently usend, so when carnparing pubitshed indices it is Important to check that the samelogarithun base hass been used in each case.

Species richness

Species rickuess is often given simply as the total number of specrics (5), which is obviously very dependent on sample size (the bigger the sample, the more specfes there are likely to bo). More cominonly Margalef's index (f) is usced, which also incorporates the total number of individuals (N) and is a mansure of the number of species present for a given number of individuals:

$$
\begin{equation*}
d=(\mathrm{S}-1) / \log \mathrm{N} \tag{8.2}
\end{equation*}
$$

Equitability

Thisis mostcommonly expressed as Pielon's evenness index:

$$
\begin{equation*}
J^{\prime}=H^{\prime} \text { (ubserved) } / H^{\prime} \text { mex } \tag{8.3}
\end{equation*}
$$

where H^{r} marr is the maximum possible diversity which. would be achievod if all species were equally abuthant ($=\log \$$).

[^14]
Determining stress levels

Increasing levels of environmental stress have gencrally been considered to decroase diversity (e.g. H^{\prime}), decrase species richness (e.g. d) and decrease everuess (e.g. f), i.e. intrease dominance. This interpretation may, however, be an uwer-simplification of the situation. Nore recent theories on the influerave of disturbarice or stress on diversity suggest that in situations where disturbance is minimal. species diversity is reduced because of competitlye exclusion between species; with a slightly increased level or frequency of disturbance competition is relaxed, resulting in an increased diversily, and thenat still hígher or more frequent levels of disturbance species start to become eliminated by stress, so that diversity falls again. Thusitisat intermediate levelsof difturbance that diverslty is highest (Connell, 1978; Huston, 1979). Therefore, depending on the starting point of the community in relation to existing stress leveis, Increasing levels of stress (eg. indoced by pollution) may ether tesultin an increase or decrease in diversity. It is difficult, if not impossible, to sey at what point on this continurum the commmunity under investigation exists, or what value of diversity orve might expect at that site if the community were not subjected to any anturopogenic stress. Thus, changes in diversity can only be assessed by comparisons between stations along a spatial contamination gradient (e.g. Fig.8.3) or with historical data.(Fig. 8.2).

Caswell's netaral model

The equitability component of divensity can, however, be compared with some theoretical expectation of diversity, given the number of individuals and species present. Observed diversity has been compared with predictions from Caswell's metutral model (Caswell, 1976). This mudel constructs an ecologically 'neutral' community with the same number of species and individuals as the observed communitys assuming certain community assembly rules (random births/ dealhs and random immigrations/emigrations) and tw interactiuns betweer species. The deviation statistic V is then determined which compares the observed diversity (H^{\prime}) with that predicted from the neutral model ($E\left(H^{\prime}\right)$):

$$
\begin{equation*}
V=\frac{\left[H^{\prime}-E\left(H^{\prime}\right)\right]}{S . D \cdot\left(H^{\prime}\right)} \tag{8.4}
\end{equation*}
$$

A value of zero for the V statistic indicates neutrality; positive values indicate greater diversity than predicted and negative values lower diversity. Values
$3+2$ m <-2 indicate significant departures from neutrality: The computer program of Goldman \& Lambshead (1989) is uscful, ${ }^{4}$

Table 8.1 gives the V statistics for the macrobenthos and nematode component of the meiobenthos from Hamilton Harbour, Bermuda (cf. Fig. 8.1). Note that the diversity of the mocrobenthas at stations H 4 and H3 is sigruficantly below neutral model prodictions, but the nematodes are dosetoneutrality atallistations. This indicales that the macrobenthic communities are under some kind of stress at these two stations. I Howevar, it must bekornein mind that devation in H^{\prime} from the neutral model prediction depends only on differencesin equitability, since the species richness is fixed, and that the equitability component of diversity may behave differently from the speciss richuress component int response to stress (see, for example, Fig. 82). Also, it is quite possible that the intermediate disturbance hypothesis' will have a bcaring on the behaviour of V in response to disturbance, and increased disturbance may either cuuse it to decrease or increase. Usingthis method, Caswell found that the flora of tropical rain forests had a diversity below neutral model predictions!

Table 8.2. Hamilton Harbonrir Benwuda (H), V stafisfics for sumned replicates of thatrobenthos and metiokentitic nematode samples at six stations.

Station	Macrobenthos	Nematodes
H 2	+0.5	-0.1
H 3	-5.4	+0.4
H 4	-4.5	-0.5
H 5	-1.9	-0.4
H 6	-1.3	-0.4
H 7	-0.2	

The purpose of graphical/distributional representatims is to extract information on patterns of relative species abundarwes without reducing that fnformation to a single summary statistic, such as a diversity index. This class of techniques an be thought of as intermediate between umionriate summarles and full multivariate analyses. Unlike multivariate methods,' these distributions may extract universal features of commanity structure which are rot a function of the

[^15]

Fig. 8.4. Gantoch Head macrofauna (G). Plots of $\times 2$ gromatricspeciesaburdance clagsesp for the 12 sempling stationts shozem in Fig. 8.3.
polluted (outer) stations is much flatter, with low dominarce. Fig. 8.5b shows k-dominance curves for the same data. Here the curve for the inner stations is elevated, indicating lower diversity than at the $\mathbf{2 5 0 m}$ 1 km stations.

Abundance/biomass camparison (ABC) plots

The advantage of distribution plots such as k-domidnance curyes is that the distribution of species abundancesamongindividualsand the distribution of species biomasses among individuals can be comrpared on the same terms. Since the two have different units of measurement, this is nut possible with diversity indices.

This is the basis of the Aburdames/Biomass Compartson (ABC) method of determining levels of disturbance (pollution-induced or otherwise) on benthic macrofauna communties. Under stable conditions of infrequent disturbance the competitive dominants in menrobenthic communitics are K-sclected or conservative species, with the attributes of large body size and long life-span: these are rarely dominant numerically trut are dominant in terms of binmass. Also present in these communitics are smalter r-selected or opportmistic species with a short ife-span, which are usually numerically dominant but do not represent a large proportion of the cormmunity biomass. When polltation perturbs a community, conservative species are less favoured and opportunisic specles often become the biomass dominants as well as the numerical dominants. Thus,

Fig. 8.5. Ekofisk macrabemftes (E). a) Average ramked speries abundance owrids (x-atis Iogyed) for 6 slations within 250 m of the centre of drillingactivity (doltent lime) ama 10 sfahivns betweer 250 m and I ter from the conirc (sollif lime); b) b-dominance curves for the sarite groups of stations.

Fig. 8.7. Lach Livnthe stacrofinune (Lh. Shan nunt diversity (H^{\prime}) and ABC piols ofer the 11 years, 1963 to 1973. Aburadante $=$ thish linc biomass $=$ ftin Lixe.
method of data analysis would have indicated gross pollution. However, the biomass and abundance curves start to beconne transposed at some distance from the dump-centre, when species diversity is still hlgh.

Transformations of k-dominance curves

Very often k-dominance curves approach a cumulative frequency of 100% for a large part of their length, and in highly dominsted communities this may be after the first two or threetop-ranked spectes. Thus, it may be difficult to distinguish between the forms of these curves. The solution to this problem is to transform the y-axis so that the cumulative values are
closer to linearity. Clarke(19\%() suggests the modified logistic transformation:

$$
\begin{equation*}
y_{i}^{\prime}=\log \left[\left(1+y_{i}\right) / f\left(101-y_{i}\right)\right] \tag{8.5}
\end{equation*}
$$

Anexample of theeffect of this transformation on $A B C$ curves is given in Fig. 8.9 for the macrofauna at two stations in Fricrijond, Norway [Fl, A being an unimpacted reference site and C a potentially impacted sitc. At site C there is an indication that the biomass and abundance curves crossatabout the tenth species, bui since both curves are close to 100% at this point, the crossover is unclear. The logistic transformation enables this crossover to be better vistalised, and illustrates more clearly the differences in the $A B C$ configuralions between these two sites.

Fig. 89. Friertiond macrofacmat (F). a), b) Slardoni $A B C$ pioks for sites A (refienerce) and C (podenifially ingactal), d, d) ABC plats for sites A and C woisk the y-axis sulfleted to modified Elogistic transtormation. Abundance $=$ thick lines, bioculsts = thin lime.
thebiomasscurve, showinga slightandsteadydectine before the inevitable final rise.

Under polluted conditions there is still a change in postition of partial dominance curves for aboundance and biomass, with theabondancecurvenowabove the biomsas curve in places, and the abundance curve becoming much moge variable. This implies that

Fig. S.10. Frieffordmacrofanarffl. Partialdomindmectartes (charndancelbiomuss amparison) for referemee site A (c.f. Figs 8,9a and c for cornesponding standard and tratsoformed ABC plots).
pollution effects are not just seen In changes to a few dominant species but are a phervanetion which pervades the complete suite of species in the community For example, the time series of nacrobenthnsdala fromLoch Linnhe (Fig.8.11) shows that in the most polluted years 1971 and 1972 the abundiance curve is above the biomass curve for most of its length (and the dbundance curve is very atypically erratic), the curves cross over in the moderatcly polluted years 1968 and 1970 and have an unpolluted configuration pricr to the pollution impact in 1966. In 1967, there is perhaps the suggestion of incipient change in the initial rise in the abundance curve. Although these curves are not so smooth (and thercfore not so visually appesling!) as the original ABC curves, they may providea useful altrmative aid to interpretation and are certainly more robust to random fluctuations in the abundance of a smal!sized, numerically dominant species.

Phyletic role in ABC method

Warwick and Clarke (1994) have recently shnwn that the $A B C$ resporse results from (0) a shift in the proportions of different phyla present tn communitles, some phyla having langer-bodied species thanothers, and (ii) a shift in the relative distributions of aboudance and biomass among specics within the Podychaeta butnot within any of theother major phyla

Fis 8.12. Hamilton Harbowr macnobenthos (Hi. Dofference ($B-A$) betwan cumulation dominatice curars for bionnast and atoundance for four replicate smpuices at stations ID (thick Ibre) and HI (thim line).

W statistics

When the number of sites, limes or replicates is large, presenting $A B C$ plots for ezory sample can be cumbersome, and it would be convertient to reduce each plot to a single summiary statistic. Clearly, some information must be lost in such a condensation: one plots cumulative domfnatice curves rather than quoting a diversity index precisely because of a relnctance to reduce the diversity information to a single statistic. Nonetheless, Warwick's (1986) contention that the bionass and abundance curves incrcasingly overlap with moderate distarbenite, and transpose altogether for the grossly disturbed condition, Is a uniditectional hypothesis and very amenable to quantification by a single summary statistic.

Fig. 8.12 displays the diffenence curves B-A for each of four replicate macrofauna samples from two 5tations (H 2 and H 4) in Hamilton Hartoour, Bermuda; theseare simply the result of subtracting the abundance (A_{i}) from the biomass (B_{1}) value for each species rank (i) in an ABC curve. ${ }^{7}$

For ald four replicates from H2, the biomass curve is above the abundance curve throughout its length so the sum of the $B_{i}-A_{;}$values across the ratuks i will be strongly positive. In contrast, thissum will be atrongly

[^16]megative for the replicates at H 4 , for which abundance and biomasscurves are langely transposed. Intermediate cases in whick A and B curves are intertwined will tond togive $\Sigma\left(B_{i}-A_{i}\right)$ values near sero. The sumutation requires some form of statcdardisation to a common scale, so that comparisons can be made between sarmples with differing numbers of specles, and Clarke (1990) proposes the W (for Warwick) statstic*
\[

$$
\begin{equation*}
W=\Sigma_{i=1}^{s}\left(B_{i}-A_{4}\right) /[50(S-1) \tag{8.7}
\end{equation*}
$$

\]

ltcanbe shownalgebraically that Wtakes values in the range ($-1,1$), with $W \rightarrow+1$ for even abundance across species but biomass dominated by a single species, and $W \rightarrow-1$ in the converse case (though neither ?imit is likely to be attained in practice).
An cxample is given by the changing macrofama communites along the transect sicross the sludgedumping ground at Garrech Head $\{G \mid$. Fig. 8.13 pkots the W values for each of the 12 stations against the station number. These summarise the 12 component ABC plots of Fig. 8. B and clearly delneate a similar pattern of gradual change from unpolluted to disturbed conditions, as the centre of the dumpsite is approached.

Hypothesis testing for dominance curves

There are mo zeplicates in the Garroch Head data to allow testing for statistical significance of observed changes in ABC pattertis but, for studies involving replication, the Wstatistic provides anobvious rouke to hypothesls testing. For the Bermuda samples of Fig, 8.12 . Wtakcs values $0.431,0.253,0.250$ and 0.349 for the

Fig. 8.13. Garmoch Hend macmofown (G). W valies corresponding to the 12 ABC curres of Fig. 8.8, piothed against station munder: statipn 6 is the centre of the dampground (Fig. 8.3).

There are two distinct roles for transformations in cornmunity analyses:
a) to validate statistical assumptions for parametric techniques - in the approach of this mamual such methods are restricted to uninariate tests;
b) to weight the contributions of common and rare spedies in the (non-parametric) multivariate representaitons.

The second reason is the only one of relevance to the preceding chapters, with the exception of Chapter 8 where it was seen that standard parametric analysis of verlance (ANOVA) could be applied to diversity indices computed from replicate samples at differtent sites or times. Being composite indioss, derived from all species counts in a sample, some of these will already be approxdmately continumus varlates with symmetric distributions, and other's can be readily tranaformed to the normality and comstant variance requirementsof standard ANOVA. Also, there may be interest in the abundance patterns of individual species, specified apriori (e.g. keystonespecies), which are sufficiently common across most sites for there to be some possibility of valid parametric analysis after transformation.

For purely illustrative purposes, Table 9.1 extracts the counts of a singte Thyasira species from the Frierfjond macrofauna data (F), cornsisting of four replicates at each of six sites.
Table 9.1. Frierfiond macrofawsan (F). Abuxdance of a single sperias (Thyasira so) in four merlicatic grabs at crich of the six sites (A-E, G).

Stex	A	B	C	D	E	G
Replicate						
1	1	7	0	1	62	66
2	4	0	0	8	102	68
3	3	3	0	5	93	52
4	11	2	3	13	69	36
Mean	48	3.0	0.8	6.8	81.3	55.5
Stand. dev.	43	29	1.5	5.1	18.7	14.s

Two features are apparent:

1) the replicaber are not symmetrically distributed (they tend to be right-skewed);
2) the replication variance tends to increase with increasing mean, ss is clear from the mean and standard deviation (s.A.) values given in Table 9.1.

The lack of symmetry (and thus epproximate normality) of the replicationdistribution is probably of less importance than the large difference in variability; ANOVA relles om an assumption of constant variance across the groups. Fortunately, both defects can be overcones by a simpletransformation of theraw data; a power transformation (such as a square root), or a logarithmic transformation, have the effect both of reduding right-skewness and stabilising the variance.

Power transformations

The poucer transformations $y^{*}=y^{\lambda}$ form a simple and uscful family, in which decreasing values of λ produce increasingly severe transfomments. The log transforms $y^{*}=\log (y)$, can also be encompassed in tuls series (technically, $\left(y^{\lambda}-1\right) / \lambda \rightarrow \log _{e} y$ as $\left.\lambda \rightarrow 0\right\rangle$. Box and Cox (1964) give a formal maximum likelithood procedure for optimal selection of λ but, in practice, a precise value is not important, and indeed rather artifcial if one were to use slighty different vaiues of λ, for each new analysis. The aim should be to select a transformation of the right order for all data of a particular type, choosing only from, cay: none, square root, 4 th moot or logarithrnic. It is nol necessary for a valid ANOVA that the variance be precisety stabilised or the non-somality tofally removed, just that gross departures from the parametrk assumptions (e.g. the order of magnitude change in s.d. in Table 9.1) are avolded. One useful techniquee is to plotlogs.d. against \log mean and estimate the approximate slope of thds relationship ($\mathbf{\beta}$). This is shown here for the data of Table 9.1.

lt can be shown that, approximatcly, if λ is set roughly equal to 1- β, the transformed data will have constamt variance. That is, a slope of zero imples no transformation, 0.5 implies the square root, 0.75 the 4 th root and 1 the kg transform. Here, the square noot is indicated and Table 9.2 gives the mean and standand
transform. However, in this form, the transfiomation is impractical because the (many) zero vailwes produce $\log (0) \rightarrow \rightarrow$ Thus, common practice is touse $\log (1+y)$ rather than $\log (y)$, since $\log (1+y)$ is always positive for positive y and $\log (1+y)=0$ for $y=0$. The modified transformation wo longer falls strictly within the power sequence; on large aburdances it does produce a more severe transformation than the 4 th root but for small abundances itis less severe than the 4th root. In fact, thereare rarely any practical differences between cluster and orchination rewilts performed folluwing $y^{0.25}$ or $\log (1+y)$ transformations; they are effectively equivalentin focusing attention on patterns within the whole community, mixing contributions from both common and rare species.

Tible g.4. Loch Lixwhe wacrofauna (L) subsor. The changing simeibrity betwarn samples 2 end 4 (of Thble 9 .3) ass exach of the six speciss is ownithed in turns for both urivansformet and 4th robt-transformesi abuadances.

Untrausforimed							
Species omitted:	Nane	1	2	3	4	5	6
Bray-Curtis (S):	21	21	21	14	13	54	21
$\sqrt{\text { d-tremeforuned }}$							
Species amited:	None	1	2	3	4	5	6
Bray-Curtis (S).	68	68	75	61	59	76	68

The logical end-print of this transformation sequence is therefore not the log transform buta reduction of the quantitative data bo presercefabserce, the Bray-Curtis coefficient (say) being somputed on the resulting matrix of 1's (presence) and ors (absence). This computation is illustrated in Table 9.5 for the subset of the Loch Linnhe macrofauna data used earlier. Comparing with Table 93, note that the rank order of similarities again differs, though it is cioser to that for the4th root transformation than for the untransformed data. In fact, reduction to presence/absence can be thought of as the ultimate transformation in down-

1. Though practionl differences are iikeiy to be negligible, on pureiy thewreticar grounds it comid be argwed that the ath nowt is the rowe atisfactory of the trut transformations becmuse Bray-Curtis similority is then inouriant to a scale change in p. Similarity maines ywould be alterad under a $\log (1+y)$ transformation if shourdances mere converter from absolute asines io sumbers per in ${ }^{2}$ of the shimpled substrate, or if ifiomass readings हere converled from mgtog. Thisdpes not hupperw with a sirict power transformation, it is cies fram equotian (2.1) that any mulliphying canslont applied fo y umil cancel ow tle topand boftom lifres of that shmitutions.
weighting the effects of common sprecies. Spectes whition are sufficlently ubiquitous to appear in all samples (producing a 1 in all columis) clearly cannot discriminalebelween thesamplesinany way, and thus do not contribute to the final multivariate description. The emphesis is therefore shifted fimmy towards patterrs in the intermudiate and sarer species, the generally larger numbers of thesetending to over-ride the contributions from the few ntimueical or bromass domdnants.

Thbla 9.5. Loch Limine nuacrofarma (L) sribset. Hresence (1) or absence (0) of the six species in the four samples of Table 9.3 , and the resulting Brey-Curtis similaritiss.

Presencehbsence									
Sample:	1	2	3	4	Samp		2	3	4
Sperics					1	-			
Echimacz	1	0	0	0	2	33	-		
Myrivecte.	1	0	0	1	3	0	80	-	
LabidopL	1	1	0	7	4	57	86	67	-
Aтпасома	0	1	1	1					
Capritela	0	1	1	1					
Mytibus	0	0	0	0					

Ore inevitable consequence of "widening the franchise" in this way, allowing niany morespecies to have a say in determining the overall community pattern, is that it will become increasingly hander to obtals 2-d ordinstions with kow stress: the "view" we have chosen to take of the community is inherently high-dimersional. This can be seen in Fig. 9.1, for the dosingexperiment (D)in theSolbergstrand mesocosm (CEEP Oslo workshop), previously met in Fig. 4.2 and 5.5. Four levels of contaminant dosing (designated Control, Low, Medium, High) were each rejresented by four replicate samples of the resulting nematode communities, giving the MDSondinations of Fig. 9.1. Note that as the severity of transformation increases, through none, root, 4th roat and presence/absence (Fig. 9.7a to $9.1 d$ respectively), the stress values rise from 0.08 to 0.19. Itisimportant to realisethat thisisfor an argument for deciding against trarsformation of the data. Fig. 9.1a is not a betier representation of the between-sample relationsthips than the other plots: it is a different one. The choice of transformation is determined by which aspects of the community we wish to study. If interest is in the response of the whole community then we have to accept that it may be more difficult to capturethis in a low-dimensional picture (a 3-d or higher-dimensional MDS may be desfrable). On theo ther hand, if the data are totally dominated by one or two spedes, and it is these that are of key biological interest, then of course it will be possible to visualise in a 1-or 2-d picture how their numbers (or

For some undvariate and graphical/distributional mothods of datia analysis it is important to include all spectes present at cach site, since the omission of some of them will affect the outcome of the analysis. (This is obviously true for diversity measures such as species richness, for exarnple). In certain dircumstances, however, it is not passible or not advisable to include all species in multivariate analyses. There are two main circumstances where eliminating species is necessary:
a) Sample PCA (not MDS) ordmations. The spectes number must be reduced to (say) <50 spectes, or clsc there will be problems with computing eigenvalues (see Chapter 4). ${ }^{1}$
b) Specties ordinations. Although MDS and cluster analyses are possible for all species, the rarer species, whose occumence at a particular station may largely be due to chance, must be excluded for ant interpretable outcome (see Chapter 7). ${ }^{2}$

The way in which sperips are eliminated requires careful consideration. A comtronlyemployed method is to remove those speries which are zare in respect of their total abundance at all stations in the survey, for example those species comprising less than 1 or 2% of the total number of individuals. This however can be dangerous in situations where total abnundance beween stations is very variabie, as is often the case. Situations frequently arise where certain stations have a very low overall abmindance of organisme, but there maybe many species whichareabsolntely characterdstic of those stations. Using the above method of species reduction, all these speries could be eliminated! To avercome this problemitis recommended that specles

[^17]accoumting for $3 p \%$ of the totat score (abundance or biomass) in any one sampie are retalned ϕ is chosen to reduce species to the required number; typically $p=3$ or 4).

We have already seen (Chapters $4 \& 5$) that sample relationships can often be well summarised in a 2-dimensional ordination, which is reduced from a very much hdgher-dimensional species space. This implies that máary species must be interchargeable in the way they characterise the samples, and that an anatysis of a small subset of the total number of species may give a similar result to that for the fuil species analysis. This can be confirmed by performing MDS on a randomly chusen subset of species. Gray et aI. (1989), for example, compared the configurations produced froman MDSof 110 species of macrobenthos at six statlons in Frierjiord, Norwiny with a similar analysis using just 19 randomty selected species (Fig. 10.1). Notethat the drdinations are remarkably similar In the way in which they discriminate between sites (although there is a slight difference in that the replicate samplesat stations G and E are transposed in location.

Thus, there appears to be considerable rednndancy in the species which characterise the commmunity composition. Although theabovie example, extracting a randorn subset of species, is of no real practions interest, attempts have been made to explcit this redundancy in the context of taxonomicaggregation.

y

The painstaking work involved in sorting and identifying samples to the species level has resulted in comrmunity analysis for environmental impact studies being traditionally regarded as labour-intensive, time-consuming and therefore relatively expensive. One practical means of overcoming this problem is to exploit the redundaticy in community data by analysing the samples to highcr taxonomiclevels such as family or phyla, zather than to species. If results from Identiffations to higher taxonomic levels are comparable to a full species analysis, this means that:

Species

Genera

Families

2) Digtributional methods. Aggregation for ABC curves is possible, and family level analyses are often identical to speries level analyses (see Fig. 10.7).
3) Lutidariate metionds. The concept of pollution indicator groups rather than indicator species is well-established. For example, at organically enriched sites, polychates of the family Capitellidaebecome abundant (nntjust Capilella capitata), as do meiobenthic nematodes of the family Cncholai-
midae. The nematodelcopeqnod ratio (Raffaelli and Mason, 1981) is an example of a pollution index based on higher taxonomiclevels. Such indices are likely to be of more general applicability than those based on species level information. Diversity tndices themselves can be defined at hierarctical taxonomic levels for internal comparative purposes, although this is not commonly done in practies

Fig. 10.3, Loch Lembie macrofarma Rl. MDS (using Bray-Curtis simiarities) of samples frutn If years. Ahandances are
 (Randing across rows, stress $=0.09,0.09,0.70,0.09,0.09,0.02$).

the left in 1973 associated with reduced pollution levels and conmmunity stresss. This pattern is equally clearat all tevels of taxonomic aggregation. Again, the separationof the most polluted yearsismost distinctat the phylum level, at least for the double square root transformed data (and theconfigurationis more linear with nespect to the pollution gradient at the phylum level for the untransformed data).

Amoco-Cadiz oil-spill

Mactofauna species wene sampled at station Pierre Noire' in the Bay of Morlaix on 21 occasions between April 1977 and Febrary 1982, spanning the period of the wrock of the 'Amoso-Cadiz' in March 1978. The species abundance MDS has been repeated with the data agreregated into five'phyla': Antrelida, Mollusca, Arthropoda, Echinodermata and 'others' (Fig. 10.4). The analysis of phyla closely reflects the timing of pollution events, the configuration beingslightly more
linear than in the species anslysis. All pre-spill samples (A-E) are in the top left of the conflguration, the immediate post-spill sample (F) shlfts abruptly to thebottomnightafter which thereisagradual recovery in the pre-spill direction. Note that in the specios analysis, although results are similar, the inmmediate post-spill response is rather more greadual. The community reponse at the phylum level is renarkably sensitive, considezing that the samping ste was some 40 km away from the ail-spill.

Indonesian reef corals

The El Nifto of 1992-3 resulked in extensive bleaching of recf corals throughout the Pacific. Fig. 105 shows the coral community response at South Pan' Island over six years in the period 1981-1988, based on ten replicate line transects along which coral spectes cover was determined. Note the izunediate post-EL Nifo location shift on the species MDS and a cincuitous

Fig. 10.6. Ekofisk oil-platform macnobentkos (E), a) Map of otation positions, indicating symbol/shading conventions for distance
 $0.12,0.11,0.13)$.

Fig. 10.8 Indonessian raef corgls (f). Mears and 95\% confiturne intervals for humber of texa dend Shanton dipersily at South Tikus Letood, shostoing the impact atid pantial rexonery from the 1982-3 EI Nino. Specties data (left) haxe been sgregated jato genere (right).
again shown to be surprisingly sensitive in defecting pollution-induced community change.

Loch İnnhe macrofauna

ABC plots for the Loch Linnbe macrobenthos species data are given in Chapter 8, Fig. 8.7, where the perfornance of these curves with respect to the time-course of pollution events is discussed. In Fig. 10.7 the species data are aggregated to farnily level, and it is seen that the curves are virtually identical to the specdes level analysis, so that thore would have been no ioss of information had the samples only beem sorted otiginally into familics.
Simblar results were produced by replotting the ABC curves for the Garroch Head sewage sludge dumping ground macroberthus $\{G /$ (Fig. 8.8) at the family level (Warwick, 1988b).

Indonesian reef corals

Fig. 10.8 shows results from another survey of 10 replicate line transects for coral cover over the perfiod

1981-1988, in this casageat South Tikus Island, Indonesia [II. Note the similarity of the spedes and genus analyses for the number of taxa and.Shanoondiversity, with an immediate post-EI Nifodropand subsequont suggestion of partial recovery

Clarly the operational taxumomic level for environmental impact studies is anather factor to be considered when planning such a survey, along with decisions about the number of stations to be sainpled. number of replicates, types of statistical analysis to be employed ctc. The choice witl depend on several factors, particularly the time, manpower and expertise available and the extent to which that component of the biota being studiod is known to be robast to taxonomle aggregation, for the type of statistiond analysis being emplnyed and the type of perturbation expected. Thus, it is difficult to give any firm recommendations and each case must be treated on its individual merits. For routine monitoring of organic enrichmentsituations using macrobenthos, one can be relatively certain that family level analysis will be perfectly adequate, but for other components of the fauna, and for other types of perturtation, sufficient evidence has not yet accumulated to be sure of this.

In many stucies, the biotic data is matchedby a suiteof cnvirunmental variables measured at the same set of sites. These could be natural tariables describing the physical properties of the substrate (or water) from which the samples were taken, e.g. median particle diameter, depth of the water column, salinity etc., or they could beconfaminanf variables such as sediment concentrations of heavy metals. The requirement here is to examine the extent to which the physico-chemical data is related to ("explains") the abserved biokgical patters.
The approach adopted is firstly to analyse the biotic data and then ask how well the information on environmental variables, taken either singly (Field et gi.c t982) or in combination (Clarke and Ainsworth, 1993), matches this community structure ${ }^{1}$. The motivation here, as in earlier chapters, is to retain simplicity and tramsparency of analysis, by letting the species and envirommental data "tell thetr own stories" (under minimal moded assumptions) before judging the extent to which one provides an "explanation" of the othet.

An analogous range of multivariate methods is available for display and teating of environmental samples as has been described for Guunistic data: species are simply replaced by physion/chemical variables. However, the matrix cntrics are now of a rather different type and lead to different analysis choides. Nolonger do zeros predominate; the readings are usually mpre ncarly continuous and, though their distributhons are often right-skerved (with variability increasing with the meenan), it is often possible to transform them to approximate nommality land

[^18]stabilise the variance) by a simple root or logarithmic transformation, see Chapter 9. Under these condjthons, Euclidean calstance is an appropriate measure of dissimilarity and PCA (Chapter 4) is an effective ondination techrique, though note that this will need to be perfonmed on the correlation rather than the covariance matrix, i.e. the variables will usually have different unsts of measurement and nued normalsinc to a comenon scale (see the discussion on p4-6).

In the typical case of samples from a spatial contaminent grodtent, it is also usually true that the number of variables is either much smaller than for a biotic matrix or, if a large number of chemical determinations has been mede (eg, GC/MS madysis of a zange of specific aromatic hydrocarbons, PCB congeners etc.), they are often highly inter-correlated, tending to preserve a fixed relation to each other in a simple dilution model. A PCA can thus beexpected to do an adcquate job of representing th (say) two dimensions a pattern which is inherendy low-dimensional to start with.

In a case where the samples are replicates from differeat groups, defined a priori, the ANOSIM lests of Chaptrer 6 are equally available for testing envirormental hypotheses, e.g. establishfng differences between sites, times, conditions efc., where such tests aremeaningfus. ${ }^{2}$ The appropriate (rank) dissimilarity matrix would use Euclidean distances.

乡ल

For the 12 samplling stations (Fig. 8.3) across the sewage-sludge dump ground at Garroch Head (G), the biotic infomation was supplemented by sediment chemical data un metalcuncentrations ($\mathrm{Cu}, \mathrm{Mn}, \mathrm{Co}, .$.) and organic loading ($\%$ carbon and nitrogen); also recorded was the water depth ateach station. Thedata matrix is shown in Table 11.1; it follows the nomal convention in classical multivariate analysis of the

[^19]strong pattern of incremental change on moving from the ends of the transect to the centre of the dump elte, which (unsurprisingly) has the greatest levels of organic enrichment and metal concentrations (a significant exception being Mn).

Univariate community measures

If the biotic data are best summarised by onte, or a few, simple univariate masures (such as diversity indices), one possibility is to atternpt to correlate these with a similarly small number of environmental variables, takeri one at a time. The summary provided by a principal component fronti a PCA of environmental variablescanbe exploited inthis way. In the case of the Garroch Head dump ground, Fig. 11.2 shows the relation between Shannon diversity of the macrofauna samples at the 12 sites and the overall contaminant load, as reflected in the first PC of the environmental data (Fig. 11.1). Here the relationship appears to be a simple linear decrease in diversity with increasing load, and the fittod linear regression line clearly has a significantly non-zero slope ($\beta=-0.29, p<0.1 \%$).

「kg.11.2. Garroch Head macrofauna(G). Lbrear wegression of Shannondixuersity (H^{\prime}), at the 12 samppling stations, against the first PC axis scove from the enotronthental PCA of Fty. 11.1, which brosdly represents an axis of imereasing contomintant bowd (egraction 71.7).

Mullyariate community measures

In most cases however, the biotic data is best described by e miuldivatiate summary, such as an MDS ordination. Its relation to a unfivatiate environmental nepasure can then be visualizad by representing the values of this variable as symbols of differing size and superimposing these symbols on the blotic ordination of the corresponding samples. This, or the simpler. superimposition of coded values for the variable, can be an effective means of noting any consistent differences in the environmental variable between bletic clusters or obesrving a smooth relationship with ordination gradients (Field es al., 1982). ${ }^{4}$

The clustor analysis of zooplankton samples from 57 sites in the Bristol Channel [B] was seen in Chapter 3, and the dendrogram suggested a division of the samples into 4 or 5 main clusters (Ftg. 3.3). The matching MDS (Flg. 113), whilst in good agreement with the cluster analysis, reveals a more informetive picture of a strong gradient of change from the Inner Channel to the Celtic Sea sites. This is seen most graphically by superimposing a code representing the sallinty levels for each sample (Fig, 11.4). Biological considerations suggest that a simple linear coding is not appropriate: one would expect speries turnover to bemuch greater through a salinity differential of 1 ppk in fully saline water than the turnover from a similar 1 ppt change at (kay) 25 ppt . This motivates application of a reverse logaritionic transformation, $\log (36-s)$, ar mose precisely:

$$
\begin{equation*}
\mathbf{s}^{*}=a-b \log (36-s) \tag{17.2}
\end{equation*}
$$

where $a=8.33, b=3$ are simpleconstantschosen for this data to constrain the transformed variable s^{*} to the range 1 (low) to 9 (high salinity). Fig 11.4 then clearly

[^20]

The maxrofauna samples from the 12 stations on the Garroch Head transect (G /lead to the MDS plot of Fig. 11.5a. For a chande، this is based not onabundance but biomass values (root-transfortmed). ${ }^{6}$ Earlier in the chapter, it was seem that the contaminant gradient induced a marked response in species diversity (fig. 11.2), and there is an even more graphicreptesentation of skeady communty changein themultivariateplotas the dump centre is approached (stations 1 through to 6), with pradual reversion to the original commutity structure on moving away from the centre (stations 6 through to 12). The correlation of the blote pattern with particular contaminant variables is clearly illustrated by the superimposition technique introduced above; Fig. 11.5bdisplays the values of \% carbon in the sediment (Table 11.1) as cirdes of varying diameter, which confirms the main axis of tha biolte MDS as one of incrasing organic enrichment. Several of the metal concentrations from Table 11.1 show a similar pattern, one exception belng Mn, which displays a strong gradient in the other direction (Fig. t1.5c). In fact, some of the metal and organic variables are so highly correlaticd with ench other (eg. compare theplot for Pbin Fig. 1t 5d with 11.5b) that thereis little

6. Chappler 14 argwes that, where it is arailibile, biomacss can

 sometives be mars bial ogically referamt than abuntonce, thought in practice MDS plots from both will be broodly simion, espectally timier hestry iramsformuthow ats the data tends towearde fresencefabsence (Clapher 9).pointin retainingall of themin the environmental data matrix. Cloarly, when two abiotic variables are so strongly related (collinear), separate putative effects on the biotic structure could never be disentangled (their effects are said to be confonnded).

The Carroch Head data is an example of a smooth gradation in faunal structure reflected in a matching gradation in several contamùnant variables. In contrast, the Exe estuary nematode commanities [X I, ; discussed extensively in Chaptor 5, separate into tive well-definted dusters of samples (Fig. 11.6a). For.each of the 19 intertidal sites, six environmenital veriables were also recorded: the median partide diameter of the sedimert (MPD), its percentege organic content (\% Org), the depth of the water table (WT) and of the blackened hydrogen sulphide layer ($\mathrm{H}_{2} \mathrm{~S}$), the interstitial salinity (Sal) and the height of thesampieon the shore, it relation to the inter-tidal range (H t). When each of these is superimposed in turn on the biotic ordination, some instructive pattems emerge. MPD, represented appropriately by pircies of differing size (Fig. 11.6b), appears to increase monotonically aiong the maln MDS axis but cannot be responsible for the division, for example, between sites 1-4 and 7-9. On the other hand, the telation of salinity to the MDS conflguration is non-mionotonic (rig. 11.6c), with larger values for the "middle groups, but now providinga contrast between the 1-4 and 7-9 clusters. Other variables, such is the height up the shote,

Fig. \#1.5. Garrach Head macrofauma [G]. a)MDS of Bray-Curis simularites frow \downarrow-tremsformed speriss bionnass data at the 12 statians (Fig. 83), b)-d) the satose MDS but with suptrimposed circhts of increasing size prith increasing scediment concentration of $\mathrm{C}_{r} \mathrm{MnH}$ end Pb, from Table 2hti. (Stress = 0,05).

Fig. 01.7. Exe ceturry mentronies [X]. MDS ordirextions of the 79 aites, basel on: a) species pituthelthetes, as in Fig. 5.I: b) trap gedinnemi varimbles, depth of ike $H_{2} S$ legyer and intergtitial salinity; c) fhe anminomental comblination "best matching" the biotic potterns $\mathrm{H}_{2} \mathrm{~S}_{6}$ sodinity und madian particke diametcr; d) all six abintic wariahters. (Stress $=0.05$ 0,0.04,0.064.

Fig. 11.7b is effeclively just a seather plot, since it inwolves only two variables).

The point to notice here is the remarkable degree of concordance between biotic and abiotic plots, particularly Figs. 1t. 7a and c; both gruup the samples in very similar fashion. Leaving out MPD (Fig. 11.7b), the (7-9) group is less clearly distinguished from (6,17) and one also loses some matching structure in the (12-19) group. Adding variables such as depth of the water table and height up the shore (Fig. 11.7d), the (1-4) group becomes more widely spacod than is in kecping with the biotic plot, sample 9 is separated from 7 and 8, sample 14 split from 12 and 13 etc, and the fit again detcriorates. In fact, Fig. 11.7c reprosents the best fitting environmental combination, in the sense defined below, and therefurebest "explains" the community patterin.

Measuring agreement in pattert

Quantifying the match betweenany two plots could be accomplished by a Procrustes analysis (Cower, 1971), in whichone plot is rolated, scaled or reflected to fit the other, in such a way as to minimize a sum of squared. distances between the superimposed configurations. This is not wholly consistent, however, with the approach in earlier chapters; for exactly the same reasons as advanced in deriving the ANOSIM statistic in Chapter 6, the "best match" should not be
depervient on the dimensionality one happens to choose to view the two patterns. The more furdamental constructs are, as usuat, the similarity matrices underlying both biotic and abiotic ordinations. ${ }^{7}$ These are chosen differently to match the respective form of the data (e.g. Bray-Curtis for biota, Euclidean distance fur environmental variables) and will not be scaled in the same way. Their ratiks, however, can be compared through a rank correlation coefficient, a very natural measure to adopt bearing in mind that a successful MDS is a function only of the similarity ranks.

The procedure is summardsed schematically in Fig: 11 8, and Clarke and Ainsworth (1993) describe (the approach in detail. Two possiblematching coefficients are defined between the (unravelled) elements of the respectuv rank similarity matrices (r_{j}, $i=1, \ldots, N$) and $\left\{\begin{array}{l}i ;\end{array} ;=1, \ldots, N\right\}_{\text {, where }} N=n(n-7) / 2$ and n is the number of samples. These are the simple Spearman coefficient (e-g. Kerdall, 1970):

[^21]and 6 to 9 have lower values than for samples 5, 10 and 12 to 19, with sample 11 intermedlate).
The best 2 -variable combination also involves depth of the $\mathrm{H}_{2} \mathrm{~S}$ layer but adds the interstitial salinity. The correlation ($\rho_{\mathrm{w}}=0.76$) is markedly better than for any other 2 -variable subset, and this is the combination shown in Fig . 11,7b. The best 3 -variable combination retains these two but adds the median particle diameter, and gives the overall optimum value for ρ_{w} of 0.80 (Fig. 11.7c); ρ_{w} dropsslighty to 0.79 for the best 4-and tugher-way combinations. The results in Table 11.2 do therefore seem to accord with the visual impressions in Fig. 17.7. ${ }^{10}$ In thiscose, the first colutur of Table 11.2 has a tieranthical structure: the best combination at one kevel is al ways a subset of the best combination on the line below. This is not guaranterd (although it seems to happen surprisingly often) since all combinations have been evaluated and simply ranked.

Table 11.2 Enf estwiry stemalodes [X]. Combinationts of the 6
 matches of biatic and abionic simibrify matrices for tach k_{s} as
 ipalicates mparall optinum. See amiter kext for oariable abbrertutions.

k	Bent variable combinations (ρ_{0})
1	$\begin{array}{llll} \mathrm{H}_{2} \mathrm{~S} & \text { №rgg } & \mathrm{Sal}_{\mathrm{al}} & \cdots \\ (52) & (54) & (53) & \end{array}$
2	
3	$\mathrm{H}_{2} \mathrm{~S}_{\mathrm{s}}$ Sal, MPD $\mathrm{H}_{2} \mathrm{~S}$, Saz , \%org $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Sal}$, WT ... (.56) (.75) (.73)
4	$\mathrm{H}_{2} \mathrm{~S}$, Sal, MPD, \%Ong H H_{2}, $\mathrm{Sal}, \mathrm{MPD}, \mathrm{Ht}$.. (79) (.78)
5	$\mathrm{H}_{2} \mathrm{~S}$, Sal, MPD, womg. Ht .. (.79)
6	$\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{Sal}, \mathrm{MPD}, \mathrm{FOHg}_{\mathrm{g}}, \mathrm{H}, \mathrm{WT}$ (.77)

[^22]An exhaustive search over v variables involves

$$
\begin{equation*}
\Sigma_{k=1}^{D} \frac{\partial f}{k f(v-k)!}=2^{v-1} \tag{11.5}
\end{equation*}
$$

combinations, ice 63 for the Exe estuary stuciy, though this number quickly becomes prohilitive when v is larger than 11 or 12 . Above that level, one could consider stepwise (and related) poocedures which search in a more hierarchical fashion, adding and delcting variables one at a time. These are not guaranteed to find the global minimum of ρ, and run the significant risk of focussing attention on a single "best" combination when, in reality, there maybe very many ambinations giving an essentially similar match to the biota. In practice, it may be desirable to limit the scale of the scanch initially, for a number of reasons, es. always to include a variable known from previous expertence or external information to be potentially causal. Alternatively, as discussed earlier, scatter plots of the environmental variables may demonstratethat someare highlyinter-correlated and nothing in the way of improved "explanation" could be achleved by entering them all into the analysis.

An example is given by the Garroch Head macrofauna study $|G|$, for which the 11 abiotic variables of Table 11.1 are first transformed, to validate the use of Euclidean distances and standard product-moment cormelations (page 11-2), and then examined for evidence of collinearity (page 11-5). A possible rule-of-thumb would be to reduce al subsets of (transfomed) variables which have mutual correlations averaging more than about 0.95 (say) to a single representative. Here, this leaves 8 ablotic varhables in the full BIO-ENV search, which results in an oplimal match of the bintic pettern with $\mathrm{C}_{\mathrm{p}} \mathrm{N}$ and Cd ($\mathrm{p}_{\mathrm{w}}=$ 0.78). The corresponding ordination plots are reen in Fig. 11.9. The biotic MDS of Fig. 119a, though structured mainly by a aingle strong gradient towards the dump centre (e.ge theorganic enrictment gradient seen in Fig. 11.9b), is not wholly 1-dimensional. Additional information, on a heavy metal, appesss io improve the "explanation".

Design

Two final points can be made about the sampling design. The general subject of experimental and field survey design is an imnkense one, requiring a manual of its own ${ }^{14}$. It is also a problematic area for many of the (non-parametric) multivariate techniques because the lack of formal model structures makes it difficult to define paruer of statistical procedures, such as the randomisationtestsdescribed above and in Chapters6 and 15. In the context of linking biotic and abiotic pattrens, it is intuitively clear that this has the greatest prospect of success if there are a moderately large number of sample conditions, and the closest possible matching of environmental withbiologicaldata. In the case of a number of replicates from each of a number of sites, this could imply that the biotic samples, which would be well-seppratedinorder torepresentgenuine variation at a site, would eanh have a closely-matched environmental replicate.

Another lesson of the earlier Garroch Head example is the difficulty of drawing conclusions about causality from ony obscryational study. In that case, a subset of ablotic vayiables were so highly correlated with each other that it was desirable to omit all but one of them from the computations. Theremay somelimes be pood external reasons for retalning a particular number of

[^23]the set brit, in gereral, one of them is chosen arbitrarily as a proxy for therest. If that vartabledoes appear to be linked to the biotic pattern then any member of the subset could be mmplicated, of course. More importantly, there cannot be a definitive causal implication here, since each retained varlable is also a proxy for any pobentially causal variable which correlates highly with it, but remains unareasured. Clearly, inan environmental impact study, a design in which the main pollution gradient (e.g. chemical) is highly correlated with veriations in some natural environmental measures (e.g. salinity, sediment structure), cannot be very informative, whether the latter variables are measured or not. A desirable strategy particulaty for the non-parametric multivariate analyses considered here, is to limit the influence of important matural variables by attempting to select sites which have the same environmental conditions but a range of contaminant impacts (including control sites ${ }^{15}$ of course). Even then, in a purely observational study one can never entirely escape the stricture that any apparent change in community, with changing pollutionimpact, could betheresultofan unmeasured natural variable with which the onntaminant levels happen to corrclate. Such issucs of causality motivate the following chapter on experimental approaches.

[^24]

In Chapter 11 we have seen how both univariate and multivariate community altributes can be correlated with natural and anthropogenic environmental variables. With careful sampling design, these mettods can provide strong evidence as to which environmental variables appear to affect community structure most, but they cannot actually prowe cause and cffect. In experimental sttuations we can investgate the effects of a single factor (the treatment) on community structure, while other facturs are held constant or controlled, thus establishing cause and effect. There are three main calegorics of experinnents that can be uscd:

1) 'Naturas exprerintenfs'. Nature provides the treatment: i.e. we compare places or times which differ in the intensity of the envirommental factor in question.
2) Field experintenty. The exprimenter provides the treaturent i.e. environmental factors (biological, chemical or physical) are manipulated in the field.
3) Laboratoryexperiments. Envirommental factorsare manipulated by the experimenter in laboratory mesocosms or microcosms.

The degree of 'naturalness' (hence realism) decreasess from 1-3, but the degree of control which can be exerted over confounding environmental variables increases from 1-3.

In this chapter, each class of experiments is illustratad by a single example. Unfortunately all these concern the meiobenthos, since this component of the biota is very amenable to commurity level experiments (see Chapter 13), whereas experiments with other components of the blota have mainly been concerned with populations of individual species, rather than communities.

In all cases care should be taken to avoid pseudorepifcation, i.e. the Ireatments should be replicated, rather than a series of 'repifcate' samples takem from a single treatment (psendoreplicates, e. .g. Hurlbert, 1984). This is because other confounding variables, ofter unknown, may alen differ between the trealments. It is also important to run experiments long enough for communitychanges to occur: thisfavours components of the fauna with short gemeration times (see Chapter 13).

It is arguable whether so colled matural experiments are actually experiments at all, and tot simply well - designed field surveys, since they make comparisons of places or times which differ in the intensity of the particular environmental factor under consideration. The obvious logical flaw with this approach is that its validity rests on the assumption that places or times differ only in the intensity of the selected envirommental fackor (treatment); there is no possibilIty of randomly allocating tmabments to experimental units, the central tool of experimentation and one that ensures that the putential effects of urneasured, uncontrolled variables are averaged out across the experimental groups. Design is ofteon a problem, but atabistical tectriques such as two-way ANOVA, e.g. Sokal and Rohlf (1981), or two-way ANOSIM (Chapter 6), may enable us to examine the treatment effect allowing for differences betwem sites, for example. This is illustrated in the first example below:

In some cases nalural experiments may be the only possible approach for hypothesis testing in community ecology. because the attribute of community structure under consideration may result from evolutionary mechanisms rather than ecological mechantigms, and we obvinusly cannot conduct manipulative field or laboratory experiments over evolutionary time. One example of a community attribute which may be detemined by evolutionary mechanisms relates to size spectra in marine benthic communitics. Sevcral hypotheses, some complementaty and some contradictory, have been invoked to explair biomass size spectra and species stze distributions in the metazoan benthos, both of which haveblmodal patternsin shallow temperate shelf seas. Ecological explanations involve physical constraints of the sedimentary environument, animals needing to be small enough to move between the particles (i.einterstitial) or big enough to burrow, with an intermediate size range caprahle of neither (Schwinghamer, 1981). Evolutionary explanations invoke the optimisation of two size-related sets of reproductive and feeding traits: for example small animals (melobenthos) have direct benthic development and can be dispersed as adults, large animals fmacrobenthos) have planktonic larval development and

Fkg. 12.2. Tastataia, Ers ${ }^{\text {Lehamok Neck fT). Reph }}$ onte k-dominathe curves for thematade abundruce in exach sampling block $D=$ disturturi, $U=$ undito turived.

For the nematodes, species richncss, species diversity and evenucss were significantly recuced in disturbed as opposed to undisturbed areas, although total abundanoe was unaffected. For the copepods, howewer, there were no significant differences in any of these univariale mpasures.

Graphical/distributional piots. k-dominance curves (Fig. 122) also revealed significant differences in the relative specics abundance distributions for nematodes (using both the ANOVA and ANOSIM-based testa referred to briefly at the end of Chapter B, and detailed in Clarke, 1990). For the copepods, however,
(plots given in Chapter 13, Fig. 13.4), k-dominance curves are intermingled and crossing, and there is no significant treatment effect.

Multipariate ardinations. MDS revealed significant differences inspecies composition for both nematodes and copepods: the effects of crab dfsturbance were similar within each block and simular for nematodes and copepods. Note the slmilarities in Fig. 12.3 between the nematode and copepod configurations: both disturbed samples within each block are above both undisturbed (except for one block for the copepods), and the blecks are arranged in sequerce

 (\$tress $=0.12,0.09,0.11$ nespectively $)$.

Ftg. 12.5. Nutrientenvichmenf experiment (N). k-dominance curtes for nemstodes, tofal copepors ond coppods otruiting the 'woced' specice of Tishe, for surnturd noplicales of cerch twathutht. $C=$ cuntrol, $L=$ low and $H=$ hight done.

Moreor less natural conumuruties of somecomponents of the biota can be mantained in laboratory (and also outdoor) experimental containers and subjected to a varlety of manipulations. Many types of experimental systems have been used for marine studies, ranging from microcosms (containers less than $1 \mathrm{~m}^{3}$) to mesocnsms $\left(1-1000 \mathrm{~m}^{3}\right.$). Macrocosms (larger than 10^{3} m^{3}). usunlly involving the actifiofal enclosure of natural areas in the field, have also. been used, but so far mainly for reseanch on fish.

Effects of organic enrichment on meiofaunal community structure (N)

Gee et al. (1985) collecked undisturbed box cores of sublithoral sediment and transferred them to the experimental mesocosms established at Solbergstrand, Osiofford, Norway: They effected organic enrichment by the addition of powdened Ascophylluan notusum in quantities equivalent to $50 \mathrm{~g} \mathrm{C} \mathrm{m}^{-2}$ (four replicate broxes) and $200 \mathrm{~g} \mathrm{Cm}^{-2}$ (four replicate boxes), with four undosed boxes as controls, in a randomised design within one of the large mesocoumbasins. After 56 days, five small core samples of sediment wete taken from pach box and combined to give one sample. The structure of the meiofaunal commundties in these samples was then compared.

Univariate indices. Table 12.3 shows that, for the nevisatodes, there were no significant differences in species richness or Shannon diversity between traatments, but evenniss was significantly higher in enricited boxes than controls. For the coppepods, there were significant differences in spccies richness and evenness between treatments, bit not in diversily.

Graphical/distributional plots. Fig. 12.5 shows the average k-dominamee curves over all four boxes in each treatment. For the memutudes these are clnsely coincident, suggesting no obvious treatment effect.

For the copepods, liowever, there are apparent differences between the rurves. A feature of the topepod assembiages in the enriched buxes was the presence, in highly variable numbers, of several species of the large epibenthic harpacticoid Tisht, which are 'weed' species often found in old axpuaría and associated with organic enrichment. If this genus is omitted from the analysis, a clear sequence of increasing elevation of the k-dominance curves is evident from control to high dase boxes.

Table 123. Nutthent-enricktwent experiment (N). Univariate measurts for all replicates at the end of the experiment, with fhe F-ratio and significance levels from one-argy ANOVA.

	Species richness (d)	Shannum diversity (H)	Species cvennest (f)
Nematodes			
Contral	3.02	275	0.750
	3.74	239	0.774
	3.36	2.47.	0.824
	4.59	2.76	0.747
Low dose	4.39	2.86	0.877
	2.65	2.47	0.840
	4.67	2.59	0.875
	2.33	2.27	0.860
High dose	2.86	2.17	0.782
	2.52	2.39	0.843
	4.30	2.40	0.829
	4.09	2.47	0.859
F ratio	0.04	1.39	5.13
Sigrijinance (p)	ns	ns	5\%
Copepods			
Conitol	2.53	1.93	0.927
	1.92	1.56	0.969.
	2.55	1.77	0.908
	2.47	1.94	0.931
Low dose	1.80	1.60	0.645
	1.66	1.28	0.532
	1.66	1.16	0.484
	1.79	754	0.640
High dube	1.75	159	0.767
	0.97	1.00	0.620
	1.83	030	0.165
	1.18	1.70	0.872
	17.72	2.65	4.56
Significance (p)	$\times 0.1 \%$	Hs	<5\%

The binlogical effects of pollutants can be studied on asscmblages of a wide variety of organisms:

reiagos

- plankton(both phytoplanktonand zooplankton)
- fish (pelagic and demersal)

Benthos (soft-bottom)

- macrobenthos
- meiobenthos
- Imicrobenthos, not much used for community studles)

Benthos (hard-hoitom)

- eplfaund (encrusting forms, eg. corals)
- motile fauma (both macrofauna and meiofaunaint eg. algae, holdfasts and epifauna)

These various components of the biota each have certain practical and conceptual advantages and disadvantages for use in biological effects studies. These are discussed in this chaptex, and an example is given for each of the components falthough not all of thesc examples are directly concerned with pollution effertu).

The advantages of plankton are that:
a) Long tows over relatively largedistances result in community samples which reflect integrated exological conditions over large ancas. They are therefore useful in monttoring more global changes.
b) Identification of macro-planktonic organtisms is moderately easy, bceause of the ready availa bility of appropriate literature.
The disaduantage of plankton is that because the water macses in which they are suspended are continually mobile, they are not useful for monitoring the local effects of a particular pollutant source.

Example: Continuous Plankton Recorder

Phankton samples have been collected from 'shipe of opportunity' plying their uṣual commercial nouter across the NE Attantic since the late 1940s (Colephrook,
1986). The plankton recorders collect sumples through a small aperture, and these are trapped on a continu-ously winding rolli of silk so that each section of silk cortaíns an integrated sample from a relatively large area. This has enabled long term trends in plankton aburdance to be assessed: there has been a gradual decline in both pooplankton and phytoplankton since the early 1950 s, with an uptum in the 1980 s (Fig. 13.1).

The afimantayes of fish are that:
a) Becauscof theit mobility they are again moreuseful for studying general rather than local effects, but some demersal fish communities may show site fidellty, such as the coral-reef fish in the example below.
b) The taxonomy of fish is rctatively easy, at least in Europe and N. Amprica.

Fig. 23.2. Continuous Plankton Recorder Surpey of the NE Atlantic (P). First principai componcrits for zoopionkton and pirytoplanition, oterer tive years of the survey from Colebrook, 1986): Graphs scaled to zero mean and unit wariance.

Fkg 13.3. Antoco-Cadiz sil spitt, Bay of MaralazfAf. MDS for macroberthan ad station "Piorre Noire", at approximately 3 -monthly sampling intervals [stress $=0.09$).
a) Becouse of their smail size and high density in marine sedirnents, quantitative sampling of the meiobenthos is casy from small ships, oper buals ctc.
b) The small volume of the samples means that they can easily be transparted to the laboratory, and need not be prowessed on board ship.
c) Their gencration times are usually measwred in months rather than years, so that their polential response time to pollution everts is much faster than that of the macrobenthos.
d) Because of this fast response time, and direct benthic rather than planktonic development, the meiobenthns are good candidates for cousality expcriments in experimental microcomms and mesocoms.

The disadranifges of mefobenthos are that:

a) Their taxanomy is considered difficult. Identification of almost all the meriobenthic taxa to species level presents difficulties evenin Europeand North America, and in many parts of the world the fauna is ahnost completely unknown. However, three factors miligate to a considerable degree against this prublem:

1. Therobustress of community anal yses to treuse of taxonomic levels higher than species (see Chapter 10).
ii. The cosmopolitan nature of most meiobenthic generd.
iii. The increasing availability of easily used keys to meiobenthic gencra. For example, the picborial
keys to marine nematodes of Platt ard Warwick (1988) have been used successfully worldwide.
b) Community responses of the meiubenthos to pollution are nut well documented, so that there is not an extensive body of information in the Hterature against which particular casc-historics can be evaluated.

Example: Soldier crab digturbance of nematode assemblages, Tasmania

This natural field experinent was described in Chapter 12. It will be remembered that the nematode diversify prufiles were affected by the crab disturbance (Fig. 12.2), whereas no significant effect was noted for copepods (Fig. 13A). Many mematude species are more scidentery in hablt than dupepods, oftemadhering to sand-graing by secretions from their caudal glands, and some species prefer conditions of low oxygen concentration or are obligate amaerobes. The so called 'thiobiotic' melofaunal community contains mary nematode species, but apparemtly no oupepuds. Non-trioturbated sediments will have a vertical gradient in physical and chemíal cunditions ranging from wave-disturbed sediments with an oxiphilic melofauna community near the surface to a stable sediment with a thiobtotic community decper down. Dramsatic digturbance by crabs, of the kind found at this site, will inevitably destroy this girdient, so that the wholesedment column will be well aerated and unstable. This reduction in habitat complexity is probably the most parsimonious explamation for the reduction in nematode species diversity.

The differential respomse of these two components of the meiobenthos has been elaborated here in order to dermmstrate how a knowledge of the biology of these components can add in the interprelation of community respunses to pertubation. The macrobenthos and meinbenthos mayalso respond differently to different kinds of perturbation (e.g. physical disturbance, "pollution") so that a comparative study of both may be indicative of the cause.

Example: Macrobenthos and meiobenthos in Hamilton Harbour, Bermuda

Fig. 13.5 shows the average k-dominance curves for themacrobenthosand the nematodecomponent of the meiobenthos at six stations in Harrilton Harbour. For the mercrobenthus, the curves at three of the statoms $(\mathrm{H} 3, \mathrm{H} 4 \& \mathrm{H} 6$) are much more clevated then the other three, suggesting some kind of perturbation at these sites. For the nematodes, hwwever, all curves ane closely ouincident. There must therefare be some form

Fig. 13.6. Indones inn reef-corais ill. MDS for coral speries percertage anter datn for South Pari Islma' (10 mepicate Efribsects in emach yeart). $1=7981,3=1983$ etc. (tatress $=0.25$).

Is seen in community composition between 1981 and 1983, with a nore steady pattern of change thereafter, though without full reversion to the inital state.

Hard-bottom motile fauna

The motile fauna living on rocky substrates and associated with algae, holdfasts, hydroids etc. has rarely been used in pollutionimpact studies becauscof its many disaduantages:
a) Remote sampling is difficult
b) Quantititative extraction from the substrate, and comparativequantification of abundances between different substrate types, are difficult.
c) Responses to perturbation ane largely unknown.
d) A suitable habitat (e.g. algae) is not always available. A solution to this problem, and also problom (b), might be to deploy standardised artificial substrates, e.g. plastic mesh pan-scrubbers, along suspected pollution gradients in the field, allowing these to become colonised.

Example: Metazoan fauna of inkertidal seaweed samples from the Isles of Scllly

The entire metazoan fauna (macmofauna + meiofauna) was examined from five species of intertidal macro-algac (Chondrus, Laurencia, Lomertaria, Cladophopa, Polysiphonia) each collected at cight sites near low water from rocky shoreson the Isles of Scilly, U.K. (Gee and Warwick. 1994). The MDS plots for meiobenthos and macrobenthos were very similar, with the algal species showing very similar relationships to each other in terms of their meiofaunal and macrofaunal community structure (Fig. 137). The structure of the weed therefore clearly influcnced community structure in both these components of the benthite fauna.

Species abundance data are by far the most commonly usedinenvironmental impact studies at the community level. However, the abunctance of a spedes is perhaps the least ecologically relevant measure of its relative importance in a community, and we have already seen in Chapter 10 that higher taxonomic

Fty. 13.7. Fsics of seilly searuced faxna (S), MDS of standanifsed W W-mansformed mesofouna and tracolfaums spectics ntrundance thata. Tho fine semulead speries are maticutat by different symbol aud stardlug conventions (stress = $0.19,0.18)$.
page 14-1

Two tommunities with a completely different taxonumic composition may have identical untivariate or graphical/distributional structure, and conversely those comprising the same spectes may have very different univariate or graphical structure. This chapter compares univariate, graphical and multivatiate methods of data analysis by applying them to a brnad range of studies on various components of the marine biota from a yariety of localities, in order to addrese the question of whether specics dependent and spectes independent attributes of community structure behave the sameor differently in response to environmental changes, and which are the most sensitive. Within cach clase uf methods we have seen in previouschaptors that thereis a very wide variety of different techniquas employed, and to make this comparativeexercisemoretractable we have chosento examine only one method for each dass:
Shannon-Wiener diversity frdex H^{\prime} (see Chapter 8), k-dominance curves including ABC plots (Chapter 8). non-metric MDSordination ona Bray-Cuxtls similarity matrix of appropriately transformed species abundance or biomass data (Chapter 5).

As part of the GEEP/IOC Oslo Workshop, macrobenthos samples were collected ata series of six stations in Filenfford/Langesundiford (F), station A being the outermost and station G the innermost (6 tation F was not sampled for macrobenthos). For a map of the sampling locations see Fig. 1.1.

Univariate indices

Site A had a higher spexiers diversity and site C the lowest but the others were rot significantly different (Fig. 14.1).

Graphical/distributional plots

ABC plets indtcated thatstatinns C, D and E were most stressed, B was moderately strassed, and A and G were unstressed (Fig. 14.2).

Fig. 14.1. Frierfiend naccobenthas (F). Shanaon diversity (mean ath 95% confifence intertais) far emath station.

Multivariate analysis

An MDS of all 24 samples (4 replicabes ateach station), supported by the ANOSIM tast, showed that only stations B and C were not signifficantly different from each other (Fig. 14.3). Gray et al. (1988) show that the clusters correlate with water depth rather than with measuned levels of anthropogenic variables such as hydrocarbons or metals.

Conclusions

The MDS was much better at discriminating between stations than the diversity measure, but perhaps more importantly, sites with simitar univariate or graphical/distributional oummunity structure did not cluster together on the MDS. For example, diversity at E was not significantly different from D but thry are furthest apart on the MDS; conversely, E and G had different ABC plots but clustreed together. However, $B_{s} C$ and D ail have low diversity and the ABC plots indicate disturbance at these stations. The most likely explanation is that these deep-water stations are affecked by seasonal anoxda, mother thananthropogenic pellation.

Warwick et al. (1990 b) analysed cotal commenity responses to the El Nirno of 1982-3 at two reefs siles in the Thousand Islands, Indonesta [II, based on 10 repilcatrline transectsfor each of theyears $1981,33,84$, 85, 87 and 88.

Univariate indices

At Pari Island there was an immotitate reduction in diverstty in 1983، apparent full recovery by 1985, with a subsequent but not significant reduction (Fig. 14.5).

Graphical/distributional plots

The mean k-dominance curves were similar in 1981 and 1985. with the curves for $1983,84,87$ and 88 more elevaled (Fig. 14.6). Tests on the riplicate curves (see the ent of Chapter 8) confirmed the significance of

Fig. 145. Induncsian reef corols, 「art Lsidnd fi). Shamon dicorrify (means and 95% confidence intervuls) of the species comi cover frome 10 transects lis exch year.

Fig. 14.9. Maldipe Islands, toral-reef fish (Mi). Arẹrage
 anmirol raff-flat sites.

Conclusions

Thene were dienr differences in community composition due to mining activity revealed by multivariate methods, even on the recf-slopes adjacent to the mined flats, but these were not detected at all by univariate or graphical/distributional techudques, evenon the flats where the separation in the MDS is so obvious.

The entire metazoan fauna (mscrolauna + meiofarna) has been aralysed from five species of intertidal macto-algae (Chondrus, Lutrencia, Lonentaria, Cladophora, Polysiphonia) each collected at cither sites near Low water from rocky shores on the Lsles of Selly (S) (Fig. 14.11).

Fig. 14.10. Maldide Islands, coral-reeffish (M). MDS of ith root-iransformeat species aburdence data. Symbris es in Fig. 14.8, ice, circies $=$ reffofint, squares $=$ slope, solid $=$ mineed, wpen \therefore control (

Ftg. 14.17. Isles of Scilly (S). Map of the 8 s sites frow thech of witrich 5 semuread species were collicted.

Univariate indices

The meiofauna and macrofauna showed clearly different diversity pattorns with respect to weed type; for the meiofauna there was a trend of increasing diversity from the coarsest (Chondrus) to the finest (Polysiptoria) weed, but for the macrofauna there was no clear trend and Polysiphorial had the lowest diversity (Fig. 14.12).

Graphlcal/distritoutional plots

These differences in meiofauma and macrofauna diversity profiles were also reflected in the k-dominance curves (Fig. 14.13) which had different sequercing for these two faunal components, for example the Polysiphowia curve was the lowest for meiofauna and highest for macrofauma.

Multivariate analysis

The MDS pluts for meiobenthos and macrobenthos were very similar, with the algal species showing very similar relationships to each other in terms of their mciofaunal and macrofaunal community structure (see Fig. 13.7, in which the shading and symbol conventions for the different weed species are the same as thoce in Fig, 14.12). Two-way ANOSIM (weed species/sites) showed all wend species to be significantly different from each other in the composition of balh macrofauna and meiofaund.

Fig. 14.14. Tiztury entuary meiobenthos (R). Mapt thetoing locnioms of 10 intertidal mud-flat sites.

 EAMPLE\% Mrionant rom Eagtehayl

This cxample of the effect of distubance by burrowing and feeding of soldier crabs fiTi wasdealt within some detail in Chapter 12. For nematodes, univariate graphical and multivariate methods all distinguished disturbed from undisturbed sites. For copepods only the multivarlate mettoris did. Univariate and graphical methods indicated different responses for nematodes and copepods, whereas the multivariate methods indicated a similar respunse fur these two taxa.

CENBRAKONCEBSIONS**

Throe gencral conclusions emerge from these examples:

1) The similarity in community structure between sites or times based on their unvariate or graphtol/distributional attributes is different from their clustering in the multivariate analysis.
2) The speries-dependent multivariats method is much more sensitivethan the specics-independent methods in discriminating between sites or times.
3) Enexamples wheremorethatonecomponent of tive fauna has been studied, univariate and graphical methods may give different results for different tomponents, whemas multivariatemethods tend to give the same results.

The sentitive multivariate methods have hitherto only ben used for detceting differences in community composition between sites. Allhough thase differences can be correlated with measured levels of stressors such as pollutants, the multivariate methods so far described du not in themselves indicate

Fig. 14.15. Tardar estuary mejubenthos (R), k-diominance connes for amalgamated data from 6 replicute corss for mematade siof copapooi spries aburdaumes. Far wherity of presemitafiph, somse sites have beza umitted.

CHAPCET TEMMUTHARHEMEASGRES OFCOMMUNHTYSTRESS

We have seen in Chapter 14 that multi varlate methods of data analysis are very semsitive for detecting differences in community structure between samples in space, or changes over time Until recenly, however, these methods have simply been used to detect differences between curnmunities, and not in themselvesas measures of community shoss in the fame sense that species-independenl mathods (ey, diversity, $A B C$ curves) have been used. Even using the relativelyless sensitivespecies-independent methods there maybe problemy of interpretation in this context. Diversity does not behave consistently or predictably in response to envirommental stress. Both current theory (Connctl, 1978; Huston, 1979) and empirical observation (e.g. Dauvin 1984) suggest that increasing levels of disturbance may either decrease or increase diversity, and it may even remain the same. A monotonicrezponse would beeasior to interpret. False indications of disturbance using the ABC method may also arise when, as occasionally happens, the species responsible for elevated aburdance curves are pollution sensitive rather than pollution tolerant species (e.g. small amphipods, Hydrobia etc.). Knowledge of the actual identilies of the species involved will thercfore aid the interpretation of $A B C$ curves, and the resulting conclusions will be derived from an informal hytrid of specics-independent and species-dependentinformation (Warwick and Clarke, in press). In this chapter we describe three possible approaches to the measurement of community stress using the fully species-dependent mulfivariate methods.

[^25]This method was initially devised as a means of comparing the severity of commurity stress between various cases of both anthropogenic and natural disturbance. Om initial consideration, measures of community degradation which are independent of the taxonomic identity of the species involved would be most appropriate for such comparative studics. Species composition vańes so much from place to place itepending on lucal envionmental conditions that any general specins-dependent response tostress would be masked by this variability. Hownever, diversity measures are also semsitive to clanges in natural environmental variables and an unperturbed community in one locality could easily have the same
diversity as a perturbed community in another. Alsn, to obtain comparative data on species diversity requires a highly skilled and painstaking analysis of species and an unusually high degree of stand ardisation with respect to the degree of taxonomic rigour appliect to the sample analysist e.g, It is not valid to compare diversity at one site where one taxon is designated as "nemertines" with another at which this taxon has been divided into specics.
The problem of natural variability in species composition from place to place can be ovencome by working at taxonomic levels higher than spedes. The taxonomic composition of natural communities tends to become increasingly similer at these higher levels. Although two commundties may have no species in common, they witl almost certainly comprise the same phyla. For soft-bottom marire benthos, we have alrady seen in Chapter 10 that disturbance effectisare detectable with multivariate mothods it the highest taxonomic levels, even in some instarces where these effects are rather subHe and are not cvidenced in univariate measures even at the specics level, e.g. the Anoco-Cadiz (A) and Ekofisk (E) studies.
Meta-analysis is a term widely used in biomedical statistios and refers to the combined analysis of a range of individual case-studies which in themsel ves are of limited value but in combination provide a more' global insight into the problem under investigation. Warwick and Clarke (1993a) have combined macrobenthic data ageregated to phyla from a mange of case-studies (J) relating to varying types of disturbance, and also from sites which ane regarded as uraffected by such perturbations. A choide was made of the most ecologecally meaningful uxits in which to work, bearing in mind the fact that abundance is a rather poor measure of such relevance, biomass is belter and production is perhaps the most relevant of all (Chapter 13). Of course, no studies have measured production (P) of all species within a community, but many studies provide both ubundance (A) and biomass (B) data. Iroduction was therefore approximated using the allometric equation:

$$
\begin{equation*}
\mu=(B / A)^{0.73} \times A \tag{15.1}
\end{equation*}
$$

B / A is of course the mean body-size, and 0.73 is the average exponent of the regression of anmual production on body-size for macrobenthic invertebrates. Since the data from each study are standardised (i.c. production of cach phylum is expressed as a proportion of the total) the intercept of

Fig. 15.2. Joinl NE Atiantic sholfstudtes ("meta-aHalysis") fj). As Fig. 15.1 but with theiridual studies hightighted: a) Garroch Leant (Chyde) dimp-ground; b) Lach Limphe aud Low Eif c) Frierforad and Amaco-Codiz opill (Moviaiz).

Stationsat the two extremities of the transect (1 and 12) are at the extreme left of the wedge, and stations close to the dump centre (6) areat the extreme right.
2) Loch Limute and Loch Eil [L]. In the early years (1963-68) both stations are situated at the turpolluted left-hand and of the configuration (Fig. 15.2b). After (this the L . Eil station moves towards the right, and at the end of the samping period (1973) it isclose to therght-hand end;only the sites at the centre of the Clyde dump-sito are more polluted. The L. Linnhe station is rather less affected and the previously mentioned recovery fn 1973 is evidenced by the return to the left-handend of the wedge.
3) Frierfjord (Oslofjord) (F). Theleft toright sequence of stations in the meta-analysis is $A-G-E-D-B-C$
(Fig.15.2c), exactly matehing theranking in order of increasing stress. Note that the thros stations affected by serasonal anoxia (B, C and D) are well to the right of the other three, bit are not as severely disterbed as the organimilly enriched sites in! 1) and 2) above.
4) Atwoco- Cadiz spill Morlaix (A). Note the shift to the right between 1977 (pre-spill) and 1978 (post-spill), and the subscquent teturn to the leftin 1979-81 (Fig. 15.2 c). Howeyer, the shift is relatively small, suggesting that this is only a mila effect.
5) Skagerrak. 'thebiologeally disturbed 300 m station is well to the right of the undisturbed loum station, although the former is still quite close to the reft-hand end of the wedge.
6-8) Unpolluted sites. The Northumberland, Carmarthen Bay and Keil Bay stations are all sikuated at the left-hand end of the wedge.
An initial premise of this method was that, at the phylum level, the laxonomic composition of communitiesis relatively loss affected by naturalmvironmenttal varlables than by pollutionor disturbance (Chapter 10). To test this Warwick and Clarke (1993s) superimposed symbols scaled in size according to the values of the two most irapurtant environmental vartables consldered to influence community structure, sediment grain size and water dephl, onto the meta-analysis MDS configuration (Chapter 11). Both variables were quite randomly distritmited, which supports the original assumpton.
With respect to individual phyla, annelids comprise a high proportion of the total "production" at the polluted cnd of the wedge, with a decrease at the least polluted sites. Moiluscs are also present at all sites, except the two most polluted, and have increasingly higher dominance towards the non-polluted end of the wedge. Echinoderms anceven morecompentratod at the non-polluted end, with some tendertcy for higher dominance at the bottom of the configuration (Fig . 15,3a). Crustaces ane again concentrated to the left, but this time completely confined to the top part of the configuration (Fig. 15.3b). Clearly, the differencos in relative proportinns of crustaceans and echinoderms are largely responsible for the vertical spread of samples at this end of the wedge, but these differcnocs cannot be explained in terms of the cffects of any necorded natural environmental varlables. Nematoda are clearly more important at the polluted end of the wedge, an obvious consequence of the fact that species associated with organic ennlchment tend to be very lange in compartson with their normal meiofaunal counterparts (e.g. Orwholaimids), and are therefore
location of samples on the MDS or PCA plots and emphasise the worement (to the right) of putatively impacted samples relative to appropriatecontrols. For a new stury, the spread of sample positions in the meta-analysis allows one to scalc the importance of observed changes, in the context of differences hetweencontrol and impacted samples for the training set.

Table 15.1. Joint NE Athantic shelf sfasies ("meta-anolysis ${ }^{\sigma}$) (J). Eigenrectivs for first three principal compronents from
 formed phytum "prodretivn" (mil samplest.

Phylum	PC1	PC2	PC3
Cuddaria	-0.039	0.094	0.039
Platyhulminthes	-0.016	0.026	-0.105
Nemertea	0.769	0.026	0.067
Nermatora	0.349	-0.127	-0.266
Prispulida	-0.079	0010	0.003
Spuncula	-0.156	0.217	0.105
Annolida	0.266	0.109	-0.042
Chelicerata	-0,004	0.033	-0.001
Crustacea	0.265	0.864	-0.289
Mollusca	-0.445	-0.007	0.768
Phoronida	-0.009	0.005	0.008
Echinodurmete	-0.693	-0.404	-0.514
Hemrichordata	-10.062	-0.067	-0.078
Chordata	-0.012	0.037	-0.003

It is perhaps premature, howoves, to make a positive recommendation that new dats sels should be evaluated in elther of the above ways. The training data is unlikely to be fully representative of all types of perturbation that could beencountered. For cxample, all the grossly polluted sumples presently involve organic erríchment of some kind, which is comitucive to the occurrence of the large nematodes which play some part in the posibioning of these samples at the extreme tight of the meta-analysis MDS or PCA. This may not happen with communities subjected to toxic chemical contamination only. Also, the training data are only from the NE European shelf, although data from a tropical locatity (Trindad, West Indies) have also been shown to conform with the same trend (Agard et ail., 19\%3).

Warwick and Clarke (1993b) noted that, in a.varicty of environmental impact studies, the variability among samples collected from impacted areas was much greater than that from control dites. The suggestion was that this variabitity in itself may be an identifiable
symptom of perkubed situations. The four examples examined were:

1) Meiobenthos from a nutrient-enrichment study [N]; a mesocosm experiment to study the effects of threx levels of particulate organic enrichument (coutrol, low dose and high duse) on meiobenthic cummunity structure (nematodes plus copepods), using four replicate box-cores of sedinnent for each treatment level.
2) Macrobenthosfrow the Ekofisk cil field, NSen \{E; agrab sampling survey at 39 stations around theoil field centre. To compare the variability among samples at different levels of poilution impact, the stations were divided into four groups (A-D) with approximately equal variability with respect to pollution loadings. These groups were selected from a scatter plot of the concentrations of two key pollution-related envirommental variables, petrofeum hydrucatbons and bardum. Since the dose/response curve of organisms to pollutant conocntrations is usually logarithmic, the values of these two variables were log-tranformed.
3) Corals from S Tikus island, Indonesia \{I; thanges in the structure of reef-coral communitics between .1981 and 1983, along ten replicate line transects, resulting from the effects of the 1982-83 El Nino.
4) Reef-fith in theMaldive IsIands (M); the structure of fish comumunitles on reef flats at $\mathbf{2 3}$ coral sites, 11 of which had been subjected to mining, with the remaining 12 unmined sites acting as controls.

Data were analysed by non-metric MDS using the Bray-Curtissimilarity measure and either square noot (mesorosm, Ekofisk, Tikus) ur fourth root (Maldives) transformed species abundance data (Fig. 15.4). While the control and low dose treatments in the melofaunal mesgcosm experiment show tight elustering of neplicates, the high dose replicates are rnuch more diffusely distributed (Fig. 15.4a). For the Ekofisk macrobenthos, the Group D (most impacted) stations are much more widely spaced than those in Groups A-C (Fig- 15.4b). For the Tikus Ishand corals, the 1983 replicates are widely scatterd anound a tight cluster of 1981 replicates (Fig. 15.4c), and for the Maldives fish the cantrol sitess are tightly clustered entirely to the left of a more diffuse cluster of replicates of mined sites (Fig. 15.4d). Thus, the increased variability in multivatiate structure with increased disturbance is clearly evident in all examples.
It is possible to construct an index from the relative variability between impacted and control samples. One obvious comparative measure of dispersion would be baged on the differcnce in average distance

For the Ekofisk macrobenthos, strongly positive valuss ane found in comparisons between the group D (mostimpacted) stationsand the other th nee groups. It should be rooted however that stations in groups C. B ond A are increasingly more widely spaced geographically. Whilst groups B and C have similar variability, the degree of dispersion increases between the two vulemost groups B and A_{s} probably due to natural spatial variability. However, the most impacted stations in group D, which fall within a circle of 500 m diameter around the oll-field oentre, still show a greater degree of dispertion than the stations in the outer group A which are situated outside a circle of 7 kilometers diameter around the all-field. Comparison of the impacted versus control conditions for both the Tikus Island corals and the Maldives reef-fish gives strongly poettive IMD valucs. For the Maldives stoudy, the mined sites were more losed y spaced geographically than the control sites, so this is another exampla for which the increased dispersion resulting from the anthropogenicimpactis "workingagainst" a potential increase in variability due to wider spacing of sites. Nonetheless, for both the Ekofisk and Maldives studies the increased disporsion associatod with the impact more than cancels out that induced by the differing spatial scales. For both the mesocosm medobenthos and the Tikus Island coral studtes there are no such differences in spatial layout between the treatanents to dilute the observed dispersion cffects.

Application of the comprative index of multivariate dispersion suffers from the lack of any obvious statistical framework within which to lesthypotheses of comparable variability between groups. As proposed, it is also restricted to the comparison of only two groups, though it can be extended to several groups in straightforward fashion. Let \bar{i} denote the mean of the $N_{i}=n_{4}\left(r_{\text {ta }}-1\right) / 2$ rank similarities among the mamples within the i th group $(i=1, \ldots, g)$, having (as before) re-ranked the triangular mutrix ignoring all between-group similarities, and let N denote the number of sinularities involved in this ranking prucess ($\mathrm{N}=\sum_{i} \mathrm{~N}_{\mathrm{i}}$). Then the dispersion sequence

$$
\begin{equation*}
\overline{\mathrm{r}}_{1} / k_{z} \bar{r}_{2} / k, \ldots, \overline{\mathrm{r}}_{8} / k \tag{15,4}
\end{equation*}
$$

defines the relative varlability within each of the g groups, the larger values corresponding to greater within-group dispersion. The dencminator scaling factor k is $(N+1) / 2$, i, e simply the mean of all N ranks involved, so that a relatioe dispersion of unity corresponds to "average dispersion". (If the number of samples is the same in all groups then the values fn
equation(15.4) will average unity, though this will not quite be the case if the $\left\{\mathrm{m}_{\mathrm{f}}\right\}$ are unbalanced.)
As an example, the rclative dispersion values given by equation (15.4) have beem computed ${ }^{1}$ for the four studies considered above(Table 153). Thiscantreswen as complementary information to the IMD values; Thale 15.2 provides the pairwise comparisons following on from the global picture in Table 15.3. The conclusions from table 15.3 are, of course, consistent with the eartier discubsion, e.g. the increase in variability at the outermost sites in the Ekofisk study, because of thcir groater geographical spread, being nonethrless smaller than the increased dispersion at the contrals tmpacted stations.
Table 15.3. Varlahility staly ($N, E, L_{1} M$). Relative dithersion of thegroups (equation I5.4) in ench of the four stedies.

Meiobenthus	Control	0.58
	Low dosa	0.79
	High dose	1.63
Marrobenthos	Group A	1134
	Group B	0.79
	Group C	0.81
	Group D	166
Corals	1987	0.58
	1983	7.42
Reef-fish	Control recfs	0.64
	Mined reefs	1.44

Clear-cut zonation paticrns in the form of a sental change in community structure with increasing water depth are a striking feature of intertidal and shallow-water benthic communities on both hard and soft substratu. The cuses of these zouation patterns are varled, and may differ according to cireumstances, but include envirunmental gradients such as light or' wave energy, competition ard predation. None of these mecharisms, however, will necrssarily give rise to discontimuous bands of different assemblages of species, which is implical by theterm zomation, and the more general term seriation is perhaps more appropriate for this pathern of community change, zonation (with discontinuites) being a special case. Many of the factors which determine the pattern of

[^26]

Flg. 15.6. Ko Prukest corals
iK]. MDS ondination of the chailging coral comanymitios (sprecies carter data) along thres transats (A to C) at jaur times (1983 to 198s). The ifines indioote the degne of serintion by linking sucetes
 frome oushove (1) to offshove samples (12 ar 17); IMS values ares at top right. Sample 1 from transect A in 1989 is oudited (ase text) and Ho sarples were tolen for transect C in 1986 (nezdiang acmest retish, otress $=0.10$. $0.11,0.09 ; 0.10 .0 .27$; 0.0.0, $0.14,0.17 ; 0.07,0.09,0.10)$.
non-monotondc - with the composition being similar atoppositecrids of the iransect but very differentin the middle - then the IMS will be close to zero. These near-zero values can be negrive as well as positive but ro particular significance attaches to this.

A stadstical significancetest would clearlybeuseful, to answer the question: wher is the IMS cofficiently different from zero to reject the nutl hypothesis of a complete absence of serlation? Such a test can be derived by a Moate Cario permutution proceders. If the null hypothesis is true then the labelling of samples along the transect $\left(1,2_{1, n} n\right)$ isentirelyarbtrary, and the spread of IMS values whicfiare consibent whth thenull hypothesis can be determined by recompuling it for perrinutations of the sample labels in one of the two simularity matrices (holding the other fixed). For T randomly selected perimitations of the sample labels, if only t of the T simulated IMS values are greater than or equal to the observed IMS, the null hypothesis can be rejected at a significance level of $702(t+1) /(T+1) \%$. In structure, the test is analogous to that considered at the cnd of Chapter 6 (implemented in the PRIMER program ANOSIM2), and again referred to briefly in Chepter 11 in the context of the BIO-ENV procedure.

One distinctive feature of the current best is that tied ranks will be much more prevalent, particularly in the similarities computed from the linear sequanne, and it is advisable to make proper allowance for this in calculating the Spearman coefficients. Kerdall \{1970, equation 3.7 gives an appropriate adjustment to $\rho_{\text {si }}$ and this form is used in the analysis below: ${ }^{2}$

In 1983, before the dredging operations, MDS configurations (Fig. 15.6) Indicate that the points along each transect conform rather closely to a linear sequence, and there are no obvious discintinuities in the sequerce of community change (i.e. no discrete

[^27]

The following is a list of all (rad) data sets used as examples in thetext, where they are refenenced by their indexing letter ($\mathrm{A}-\mathrm{Z}$). In audition to the pages on which these examples can be found, the entries give the source reference (see also Appendix 3) for' the original publication of these data. Note that these are not always the appropriate references for the analyses presented in the text, the latter can gencrally be found in Appendix 2.

A - Amoco-Cadiz oil spill, Bay of Morlaix, France. Macrofatuac. (Dauvith, 1984)
p 10-4, 10-5, 13-2, 13-3,15-2, 15-3
B - Bristol Channel, England. Zopplankion. (Collins and Williams, 1982)
$\boldsymbol{p}^{3-5,3-6,7-2,7-3,7-4,11-3,11-4}$
C-Celtic Sca. Zooplanhton. (Callins, pers. comm.). p^{5-9}
D - Dosing experment, Solbergetrand mesocosm, Norway (GEEP Workshop). Nemulodes (Warwick ef $a L_{1}$ 1988).
p4-8,5-8,9-4
E-Ekofisk oll platform, N. Sea. Macrofnutina. (Gray et aL, 1990),
$\neq 8-4,8-5,10-5,10-6,74-2,14-3,15-5,15-6,15-7$
F-Frierford, Norway (GEEPWorkshop). Macrofanna. (Gray et al., 1988).
pi-3,1-4,1-9,1-10,3-1,3-2,6-1,6-2,6-3,6-4,8-9, $9-1,10-1,70-2,73-6,14-1,14-2,15-2,15-3$
G-Garmech Head, Scotland. Macnofatho. (Pearsonand Blackstuck, 1984).
p 1-6, 1-7, 1-8, $1-77,1-12,8-4,8-5,8-6,8-8,8-71$, $11-1,11-2,11-3,11-5,11-9,11-10,15-2,1,5-3$
H-Hamilton Harburr, Bermuda (GEET Workshop). Macmfantar, nemabodes. (Warwick et al., 1990c). $\mu^{8-2,8-3,8-11,13-3,13-4}$
I- Indonesian reef corals, S. Parl and S. Tikus [siands.
Coral we corer. (Warwick et ail. 1990b).
$y 6-5,6-6,8-2,10-4,10-5,10-7,13-4,13-5,14-3$,
$14-4,15-5,15-6,15-7$
J - Jbint NE Atlantic shelf studies ("meta-analysis"). Macoofanma "pradnction". (Warwick and Clarke, 1993a)
p^{15-2}, $15-3,25-4,15-5$

K-Ko Phuketcoral reefs, Thailand. Corat species coner: (Clarke et at., 1993).
p15-8, 15-9, 15-10
L - Lach Linnhe and Loch Eil, Scotlanui. Macrofanna. (Pearson, 1975).
$p 1-6,1-7,1-10,4-4,4-5,8-6,8-7,8-10,10-3,20-4$, $10-6,10-7,15-2,15-3$

M - Maldive Islands. Coral racf fish. (Dawson-Shephend et al., 1992).
p13-2, 14-4, 14-5, 15-5, 15-6, 15-7
N - Nutrient-curiclument experiment, Solborgstrand mesocosm, Norway. Nematodes, copequads. (Gee et al., 1985).
p1-12, 1-13, 10-3,10-4, 12-5,12-6, 15-5, 15-6, 15-7
P-Plankton survey (Continuaus Plankton Recorder), N.E Atlantic. Zooplankton, phytoplanktor. (Colebrook, 1986).
\#13-1
R-Tamarestury mud-flat,S.W. England. Nematodes. copepods. (Austen and Warwick, 1989).
p14-6,14-7,14-8
S - Scilly Isles, U.K. Sezaved melazoa. (Gcy and Warwick, 1994).
p13-5, 14-5, 14-6
T-Tasmania, Eagleluwk Neck. Nemafodes, coprepods (Warwick et al., 1990). $p^{6-7,6-8,12-2,12-3,12-4,13-3,13-4,14-7}$

W - Westerschelde estuary corcs, Netherlands; mesocosm experiment on food supply. Nemafodes. (Austen and Warwick, in press)
p6-8,6-9,6-11
X-Exeestuary, Ençland. Nematodes. (Warwick, 1971). p5-3,5-4,5-7,6-11,6-12,7-1,7-2,11-5,11-6,71-7. 11-9

Y-Clyde, Scotland. Nematodes. (Lambshead, 1986) p6-6, 6-7
Z - Azoic sediment rccolonization experiment. Copepods. (Olafsson and Moore, 1992).
$p \mathrm{~J} 2-4$

This manual chiefly reflecls an approach to mulivariate and other graphical cornmunity analyses that has been adopled and develnped at the Plymouth Marine Laboratory (PML) over the last decade, and has been the subject of assessment and training at several IOCC and $\mathrm{EAO} / \mathrm{UNEP}$ workshops (e.g. papcrs in Baynectal. 1988, Addison and Clarke 1990). Methodological papers involving work at TML tnclude: Field et al. (1982), Warwitk (1986), Clarke and Grom (1988), Clarke (1990), Warwick and Clarke (1993a \& b), Clarke and Ainsworth (1993), and Clarke and Warwick (1994). Clarke (1993) and Warwick (1993) review these methods, and a number of PML papersexemplify their use through the PRIMER package: see for example the papers listed under Warwick in Appendix 3.

Of course, the exposition here draws on a wider body of statistical and descriptive techniques, and there follows a brief listing of the main papers and books thatcan beconsulicd for further detailsof the metheds and analyses of each Chepter.

Chapter 1: Pramewark. The cotegorisation here is an extension of that given by Warwick (1988a). The Frierfjord macrofauna data and analyses (Tables 1.2 is T. 6 and Fig6t. 1.1. 1.2 \& 1.7) are extracted and relrawn from Bayte et al. (1988), Cray ef al. (1988) and Clarke and Green (1988), the Lixh Linnhe macrofauna data (Table 14 and Fig. 1.3) from Pearson (1975), and the ABC curves from Warwick (1986). The species aburdance distribution for Garrach Head macrofauna (Fige 1.6) is first found in Pearson et al. (1983), and the multivartate linking to environmental variables (Fig. 1.9) in Clarke and Ainsworth (1993): The Sulbergetrand mesocosm data and athalysis (Table 1.7 and Fig. 1.10) are extracted and redrawa from Cecet al. (1985).

Chapters 2 and 9: Similarity and Clustering. These methods orignated in the 1950 'sand 60 's (e.g. Forek et al., 1\%51;Sineath, 1957; Lance and Williams, 1967). The description here is a widening of the diseusionin Field at al. (1982), wilh some points taken from the recommended genered texts of Everitt (1980) and Cormack (1971). The dendmgram of Frietford macrofaunal samples(Fig.3.1) is redrawn fromGrayet al. (1988), and the zroplankton example (Figs. 3.2 \& 3.3) from Collins and Williams (1982).

Chapter 4: Oridination by PCA. This is one of the founding techniques of multivariate statistics; statrdard modern texts include Chatield and Collins (1980) and Everitt (1978). The concluding example (Flg. 4.2) is from Warwick et ol. (1988).

Chapter 5: Ordination by MDS. Nor-metric MDS was introduced by Shepard (19662) and Kruskal (1964); standard texts are Kruskal and. Wish (1978) and Schiffman et al. (198u). Here, the exposition parallels that in Ficld at af. (1982) and Clarke (1993); the Exe nematode graphs (Figs. 5.1-5.4) are yedrawtr from the former. The dosing experiment (Fig.5.5) is discussed in Warwick et al. (1988).

Chapter 6: Testing. The basic permutation test and simulation of significance levels can be traced to Mantel (1967) and Hope (1968), respectively. In this context (e.g. Figs. 6.2 \& 6.3 and equation 6.7) it is described by Clarke and Green (1988). A futler discussion of the extension to 2 -way nested and crossed ANOSIM tests (including Figs. $6.4 \& 86.6$) is in Clarke (1993) (with some asymptotic results in Clarke, 1988); the coral analysis (Fig. 6.5) is discussed in Warwick ef ail. (1990b), and the Tasmanian meiofaural MDS (Fig, 6.7) is in Warwick ef el, (1990a). The 2-way cuossed design withnut repltcation (Figs. 6.8-6.12) is tackled in Clarks ant Warwick (1994); see also Austen and Warwick (in press).

Chapter 7: Species analyses. Clustering and ondination of species simularities is as illustrated in Field et at. (1982) , for the Exe nematode data (Flgs 7.1 \& 7.2, redrawn); see also Clifford and Stephenson(1975). The SIMPER ("similarity percentages") procedure Is described in Clarke (1993).

Chapter s: Univariatetgraphical analyses. Pielou (1975), Heip et al. (1988) and Magurtan (1991) are uscful texts, summarisinga vast literature on a variety of diversity indices and ranked" species abundance plots. The diversity exampleshere (Figs. 8.1 \&8 8.2) are discussed by Warwick ef aL (1990 c 1990b respectively) and the Caswell V computations (Table 8.1) are frem Warwick ct al. (1990c). The Garroch Head spectes abundance distributions (Fig. 8.4) are first foumd in Pearson el al. (1983); Fig. 8.3 is redrawn from Pearson and Blackstock (1984). Warwick (1986) introduced Abundance-Biomass Comparison curves, and the Loch LInnhe and Garroch Head illustrations (Figs. 8.7

Addison, RF. Clarke, KR. (eds.) (1990). Biological offects of paltutants in rasumtroprical craviconment. J, exp. pmar. Biol. Ecol. 138

Agand, J.B.R., Cobith, I. Werwick, R.M. (1998). Aralysis of marine macrobenthic community structure in relation to pollution, natural oil seepage and seanonal disturbance in a tropical environment (Tritidad, Weri Jtudies). May. Ecol. Prog. Sar. 92: 233-243

Austen, MC. Warwhek, RM. (1989). Comparison of imivariate and mullivarinte aspcets of estuarise meiobenthic community sfructure. Est. cstl. sherf. Sci. 29;23-42

Auster, M.C, Warwick, RM (in press), Effects of experimental manipulation of food supply on estuarine mciobenthog. Hydrobioliggia
Bayne, B.L.; Clarke, K.R, Gray, JS, (edg) (1988). Biological efferts of pollutants: results of a prantical wrankhep. Mav. Ecol. Prog. Ser. 46

Beukema, J.J. (1988). An evaluation of the ABC-ructhod (abundance/biomass comparison) as applied to macrozoobenthic cornmurdties living on tidal flats in the Dutch Wadden Sea, Mar. Biol. 99: 425-433

Box, GE.P., Cox, D.R.(1964). Ananalysis oftrantiformations. J. R. Stot'sut. Soc. Ser. B 26: 211-248

Bray J.R, Curtis, J.T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27:325-39

Caswell, H. (1976). Community sfructurer a neutral model analysis. Ecol. Momogr. 46:327-354

Chatfield, C_{4} Collins, A.J. (1980). Introduction to multrierfole arutlysis. Chapman and Hall, London

Clarke, K.R. (1988). Detacting chatge in benthic communffy structure. Proceedings XIVth International Biometric Conference, Namur: Invited Papers. Societe Adolȩhe Quetelet, Gernbloux, Belgham

Clarke, K.R. (1990). Comparisonts of dominance curves. f. exp. nar. Biol. Ecol. 138: 143-157
Clarke, K.R. (1993). Nom-parametric multivariate analyees of changes in community structure. Awst. I. Ecol. 18: 117-143

Clarke, K.R, Ainsworth, M. (1993). A methed of linking multivariate commundif structure to environmental veriables. Mar. Ecal. Prog. Scr. 92; 205-219
Clarke, K.R.v Green, RH (1988). Stetistical design and analysis for a 'biologkal effects' study. Mar. Ecpl. Prog. Ser. 46: 213-226

Clarke, K.R., Warwick, R.M. (1994). Simllarlty-based testing for community pattern: the 2-way layout with no replication. Mat. Diol. 118: 167-176

Clarke, K.R. Warwick, K.M. Brown, B.E. (1993). An index showing breakdown of seriation, related to disturbance, in a coral-reef assomblage. Mar. Ecol. Prog. Ser. 102: 153-160

Clifford, D.H.T., Stephenson, W. (1975). An iniroduction to numerical classification, Academic Preas, New York.
Colebrook, J.M. (198\%). Environmental influencera on long-term variability in marime plankton. Hydrobiologin 142:309-325

Collins, N.R. Williams, R.(1982), Zooplankton communities inthe Bristol Chanmel and Scvern Estuary, Mar, Ecol. Irog. 5er, 9: 1-11

Connell, J.H. (1974). Field expcriments in marine poology: In: Mariscal, R. (ed.) Experilmertal marine biolagy. Academic Press, New York
Conmell J.H. (1978). Diversity in tropical rain forests and conel reefs. Scituce N.Y. 199: 1302-1310

Cormack R.M. (T971). A review of classification J. R. Statist. Soc. Ser, A 134:321-367
Dauvin, J-C. (1984). Dynamique d'ecobystemes macrobenthiques dea fonds sedimentaires de la Bale de Morlaix et lewr perturbation par les hydrocarbures de l^{\prime} Amoco-Cadiz. Doctoral theris, Univ. Fietre et Marle Curie, Paris
Dawson-Shepherd, A., Warwick, R.M., Clarke, K.R.s Hrown, B.E. (I992). An analysis of fish community respenses to coral mining in the Maldives. Environ. Biol. Fist. 33: 367-380
 Heinemana, London
Everitt, B. (1980). Chuster amslysis, Znd atn. Heinemann, London

Ficld, J.G., Clarke, K.R. Warwick, R.M. (1982). A practical strakegy for analysing multibpecies distribution pattirns. Mar. Ecal. Prog. Ser. 8:37-52
Florek, K., Lukaszewiç, J.s Perkal, J., Steinhaus, H., Zubrzyeki, 5.(1951). Sur la liason et la division des points d'un ctrsemble fini Colloquism Moth. 2: 282-2*5

Gecs, JM., Warwick, R.M. (1994). Metazoan commurity structure in relation to the fractal dimensions of marine micuralgae. Mar. Expl. Prog. Ser. 103: 141-150
Ges, JM, Warwick, RM., Schaanning, M., Berte, IA A_{7} Ambrose jr, W.G. (1\% $1 \% 5$). Effects oforganicemrichment om meiofaunal aburdanoe and community stracture in subhittoral soft setiments. J. exp. mtath Bioh. Ecol. 91:247-262
Goldman, N., Lambshead, T.J.D. (1989). Optimivation of the Ewens/Carwell neutral model program for cummunity diversity analysies, Mar. Ecol. Fog. Ser. 50:255-261
Gower, J.C. (1966). Some distance propertieg of latent root and vector mothods used in multivariate analysis. Biametrika 53,325-328

Matt, H.M., Warwick, R.M. (1988), Freekining manine mentotodes Pari II. Brilist chrommderids. E.J. Brill, Leiden.

Riffaellic, D., Mason, C.F. (1981). Pollution mondtoring with meidguna using the refio of nemabodes to cupepods. Mart Poll. Butl. 12: 158-168

Sanders, H.L. (T968). Marine benthc diversity: a comparative study. Am. Nat. 102 243-282

Scheffe, H (1999). The aralysic of ixtribuce. Wiley, New York
Schfffman, $\mathrm{S}_{\mathrm{S}} \mathrm{S}_{\mathrm{V}}$, Reyiolds, ML, Young, EW. (1981). Introductinn to mulli-dimensional soring. Theory, methods arad mpplications. Academic Prest, London

Schwinghamer, H (1981). Chargateristic sizedistributionis of integral benthic communtities. Come. /. Fish. aquat. Sct. 38: 1255-1243

Scber, G.A.F (1984). Multipariabe abservations. Wiley, New York

Shepart, RN. (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. Pogchometrike 27: 125-146
Sneath, PF.A.A. (1957). The application of computers to taxanorny. /.gen. Microtiol. 17: 20]-226
Steath, PH.A., Sokail, R.R. (1973). Ninnerical tazonomy. Freeman, San Franclsco

Sokal, RK. Rohlf, FJ. (1991): Biomutry. Freman, San Francieco

Sornerfiek, P.J, Ges, J.M. Warwlck, R.M. (1994), Soft sediment meiofaunal cotninurity structire in refation to a Ions-termi heavy metal gridient in the Fal cstiary system. Mar. Eani. Prig. Sar. 105:79-38
ter Braak, C.FJ. (1986). Canonical cornuponderna snalysis: a new elgenvector technique for multivariate direct Fradient analysis. Esolagy 67: 1167-1179
Underwood A.J. (1981). Techriquee of analysis of variance in experimental marithe biolagy and colology. Orexuogr Hatr. Pinl. A. Ruv. 19: 513-605

Underwood, A.J. Peterson, C.H. (1\%88). Towands an cocolugical framework for investigating pollution. Mar. Ecol, Prog. Ser, 46: 227-234

Underwood, A.J. (1992). Beyond BACI: the detection of envinonmental impact on populations in the real, but variable, world. J. exp. mar. Biol. Eaul. 161: 145-178
Warkick, R.M. (9971). Nematude associations in the Exe cstuary. J. marr. biol. Ass. U.K.51: 439-454

Warwick, R.M. (1984). Species size distributiong in marine benthic commorities Deevogia (Berhin) 61: 32-41.
Warwick, R.M. (1986). A new method for detecting pollution effects on marine macrobenthic comumunitie: Mar, Biof. 92:577-562

Warwick, R.M. (198\%a). Effects on community structure of a pollutank gradient - summary. Mar. Ecol. Pryg. Ser. 46: 207-211

Warwick R.M (1988b). The level of taxonomic discrimination requiretil to d etect pollation effects on marine bentho communtities. Mar Ppilut Evill 19: 259-268

Warwick, R.M. (1993). Environmental impact studies on marine communities: pragmatical considerations, Aush.j. Ecol, 18: 63-80

Whanick, RM, Carr, M.R., Clarke, K.R., Gee ${ }_{i}$ JM, Green, RH (1988). A mesocosm experinient on the effects of hydrocarban and copper pollution on a sublittoral soft-sediment meiobenthic community. Mar. Eeid. Prog. Ser. 46: 181-191

Warwick, R.M. Clarke, K.R. (1991), A compatison of methods for analysing changes in benthic community structure. J. mar. birl, Ass. U.K. 71: 225-244
Warwick, R.M, Clarke, K.R. (1993a). Comparing the soverity of disturbance: a meta-analysis of marine macrobenthic community data' Mar. Eool Prog. Ser. 92: 221-231
Warwick, R.M, Clarke, K.R. (199Ab). Itioncased variabinity as
 Bind Ecol. 172: 215-276

Warwick, R.M., Clarke, K.R. (1994). Reloarning the ABC, taxomonuic changes and abundaruce/blomass reàtionships in disturbed benthic commurities. Mar, Biol. IIS: 7.99-744

Warwick, R.M., Clarke, K.R., Gee, J.M. (1990a). The effect of disturbance by soldicr crabs, Mícifyris platycheles H. Milre Efwards, on treiobenthic community strusture, j. exp. mer. Bind. Ecol. 135: 19-33
Warwick R.M., Clarke, XR., Suharsino (1990b). A statistical antalysis of coral community responses to the 1982-3 Ei Niro in the Thousarid Ielands, Indonesia. Corsl Rexfs 8:171-I79
Warwick R.M., Frarson, T.H, Ruswahyumi (1987). Detection of pollution cifsets on marine macrobenthos: further evaluation of the species aburidance/biomass method. Mar Biol 95: 193-200
Warwick, RM., Platt, H.M., Clarke, K.R., Agard, J. Gobin,). ($19 \% \mathrm{lc}$). Analytis of macrobenthic and meigbenthic commundity structure in relation to pollution and diskurbatce in Harnilion Harbons, Bermuda. /. exp nom. Biod. Ecol. 138: 119-142

Additional copies of this publication can be obtained from:

Oceans and Coastal Areas Programme Activity Centre United Nations Environment Programme P.O. Box 30552

Nairobi
KENYA
or from:
Marine Environmental Studies Laboratory
International Atomic Energy Agency
Marine Environment Laboratory
B.P. No. 800 - MC 98012

MONACO CEDEX

[^0]: (1) UNEP: Achiewements and planned dovelopment of the UNEP's Regional Seas Programme and comparable programmes sponspred by other bedies UNEP Regional Stas Reports and Sludies No. J, UNEP, 1982.
 (2) P. HULM: A strategy for the Seas. The Regional Seas Programme: Past and Future, INEP 1983.
 (3) UNEP/IAEA/IOC: Referemce Methods and Matcrials: A Programme of comprehensive support for tigibnal and global marite pollution assessments. UNEP, 1990.

[^1]: 1. The fens community is used throughouf the namual, sonnerthert laocsly, to refer to anty assimuliage data (suriples texding to coundsorbiomass for arange of species); the uspge does mok inecessarily inpply indogenous structuring of the biofa, for example by compethitse itstenadions.
[^2]:
 are testa inf.equality for two ar whare obscroti histogramsarising from spectes abtindance ditiruntionts. Again, the most sitarightforwayd approach fo testing is probably to summorise mek distribtaion by two or thres hrewnes fof hocations, spread,

 spme form of Cramer-bon Mises appmach) for testhag equality of tomo or pore freymency distritwitions, bat this is wificily to be rabid given the specids inderdeptendencties iex a singlo sumple.

[^3]: 13. Chepter 13 and the minto-anslysin seridis in Chapler 15, diccurs tise rebatios merits and dracobacks of using species
 Chapter 13 is a trider dischssion of the meiative adoandages of sepripling particulir comporents of the biota, for a stesty on the pffeds of poiluisnts.

 Sucth situations ure the main motforithen for the modriar construction of the PRMMER paclage, with its stand-alone routines that exchange infornsation vin fils. Thus, a sifotiarity morin is output by CLUSTER RHat inful to MDS (and BIOENV, ANOSIM efc.), wd camfigwntions co-orditutes awe output by MDS (atod FCA) and imput to the plolfing rodtate CONPLOT. This an then be riw repatatedy with differing compergiom fibss of side desidtations, or diffenerd columps of an
 MDS comptutations.
[^4]: 1. Bray-Curtis in the main cofficient calcutated by tlic PRMER CLUSTER program, which alrn allmps a makge of tremoformationss of the data.
[^5]: 2. Thus the Somencen coefficient can be obfained in the PRIMER CLUSTER program by "transforming" the deta to prestenatiabsence and seleoting Bray-Cartis similurity.
[^6]: 4．The PRIMER CLISTER program will compute Broy－Cur－ tis gapies similarities，wither without wow stasdiandisation and transformation（though the defoult it as recomurnded here），arid＇ allowing prior reduction by itsep：criterion，either ty sparifying for the number N of retained rpecies．

[^7]: 1. This sype of them may be famidiar from ondinary initear regression, except that the batter is furmaiatai asymmetricath: Ibe theressuinn of y on x mininnises the suth of squared bertical diatances uf proints fram the line.
[^8]: 1. A couturaicnt texy of carrying out cornsporndence malyses, anid netated conotical melhaus, it to. use ter Braat's cxcelkwi CANOCO package.
[^9]: 4. The arbilyariness of orientrfion can be a practical nuisance whwn comparing diffarent orainations, and it capt be helpfil to minale an MDS so fitat its dircection of maximal variation chuays Lies alang tive x azis. This car be simpty achicoed by applying PCA to the 2-d MDS co-mbinates (this is not the sante thingess applyitrg PCA to the ariginal alata matrix of coursely; the PRIMER MDS routitue does this automationlly but the CONPLOT pwgram alsa mentrits uscr-spexified orientation/reflections.
[^10]: T0. As previously notent, EuciGern distance is tite dissimifarity mesgare implicit in a PCA ordinatim.

[^11]: as similaritios conslructed frem paimoise comparisons of brobogicni muttrials and sowse of those Comparisoms are not mate of are fost. If is mot of relecance if sinularitios ane gemerated from a species-by-samplas data malyix simec, usually, either all or wone of the similaritics butwing a parlicerbar sample man be
 could fonture in the ardimation!

[^12]: 1. The PRTMER progzan ANOSMM arems tests for mpticatts
 ANOSIM2 twathe the specinl case of o 2 -way layout with to mplieation, which metils a modifion styly of test described at the end of tids chacpier.
[^13]: 3. This is implernented in the PRIMER program SIMPER ("similarity percantages"), buth in respect of corterbutions to
 betrycer spoups.
[^14]: 2. The PRIMER program DIVERSE purmits seletion from a dozen of so indiass, including Hill numbers and the uther richness and equilabrity measitus givem inene.
[^15]: 4. Thit is implomented in the PRIMER pragram CASWELL.
[^16]: 7. Note Ithil, as alcuays with an ABC curve, B_{1} ande A_{4} do not necossarily rejer to values for the conve spexies; the ranking is performed scepurately for sburdioncer and biomass.
[^17]: 7. As discused in Chapter 4, PCA is mat normalily reconsmonded for specis dala. If nequired, hapater, PRLMER omp perform it ity first ruming REDUCE, ta retain orty the 50 most itpporiant apacian (in the semse defined helow), and then using SWAP to transpose the matriz for entry into the PCA wuthe, which erpacts dariobles as coitumbs.
 8. Thib could also be carrited out by an inital run of REDUCE but a better opaiong generally is io specify neduction of spretios (/samples) directly in CLLSTER. This verl! retain invoolealge of the origisel row (foclumn) munbers in the deried specties (fsamples) simllarity matrix
[^18]: 1. Methods such as canomical correlation (e.g. Maydia et al., 1979), and the impariant Lecturique of camanical eomspmpretence (ber Brask, 1986), tabe the matise dyferent stance of cmboulting the candrorstrentrol data within the biotic amalysis, onotivnat by specific gradient models defining the speoves-marivanment relatianships.
[^19]: 2. The ANO5IM tests in the PKIMER pactage are not noro the only possiontity; the data zell livue been iransforwisi to approximate norsality 50 , if the munder of pariables is not large. dutassion multionainte (MANOVA) tests sutch as Wiliks A (cag. Mandio el aL, 1979) ane wallid, and will genornlly harre grealer pouser.
[^20]: 4. Superimposing ensivoninental data onto an ordimation is ant option provided in the PRIMER pragram CONPLOT, watich displays MDS configurations. The tecitalque cant aiso be usefu! in a wider onntext: Field al al. (T992) supmimprose moryhoingicat
 in Chapter 7, and Marwick and Clerke (IP93a; seealso Fig.15.3) give an exauple of superimposition of biotic pariables drswow from the same dota matrix as used to create tibe MDS. The later adn prowide insight anto the roks of inditudual tata in shaping the biotic pisture, especially when the momber of taxa is small, is is the case for the phylum-howi "meta-arariysis" of Chapter 15.
[^21]: 7. For exampid, in spite of the very fow stress in fig. 11.7, a 2-d Procruster fit of $11.7 a$ and c will be mather poor, sinter the $(5,10)$ and (12-19) groups art intecchangeal between the plats. Yef, the illterpretation of the tan amalyses is fundamentally the sanse (fore chuslers, with the (5, 10) group ouf on a limbelc.), and this soill be fulty expressed, whilout arbitary dimersionality consmintts, in the underlying similerity matricus.
[^22]: 10. This will thot athous be the case if thre 2-d faneral ordination has now-megliginle stnes. It is the matching of the similatity matrices which is definitive, alltrought it wowted wstally ben good idea to plod theabiotic orimafion for the best combination at and mince of k, in order to gauge the effect of a smatichargez in ρ_{w} ow $t^{\text {the }}$ interpartation. Experiponce so fat suggests ithal combinalions giving thesame oralue of p_{w} io tun dexikniploces fo not give nise to omitmations whith an distify inmprolant may, thas it is recommendeat that ρ_{w} is quoter enty to this acctaracy, as in Tablie TI.2.
[^23]: 14. Green (1979) provides some usefful gurdelines, nminily in the context of unimariate analyses.
[^24]: 15. Note tine piurslity; Undersoood (1992) argues persumsinely tiat tupuact is best establiskitad agsifist a baseifine of sthe-to-site carisuxility in cominil conditions.
[^25]:

[^26]: 1. Botf the LMDapd the relatiredifocrsion watcuspre computed by the PRIMER progam MVDISP.
[^27]: 2. The adeukthons for the tests were carried out using the PRNMER progimen RELATE. The similarity-hased formulation, and the associated perinufation test, ane aise reatily externdabte to more comprice modets ithan a innewr sequesser of whange elony a spatial fransect. In a hoonologous unsy, communily chatger could be related to a femporal trend ar cyclicity, or to the san+pling pasitions in a 2-dimensionalapalial layout. There are nill hypothecsis tesis for all these passibilthies in RELATE, in madition to ageneral test for lack of relationstip
 sets (indegcudchtly derined).
