United Nations Environment Programme

UNEP's work on Hg release inventories

Gunnar Futsæter, Chemicals Branch, Division of Technology, Industry and Economics, UNEP

Types of inventories

- Global Hg release inventories
- National Hg release inventories

Tools:

 UNEP Toolkit for the Identification and Quantification of Hg Releases

Main challenge: obtain data

Toolkit for Identification and Quantification of Mercury Releases

> Reference Report and Guideline for Inventory Level 2

> > Version 1.2 April 2013

UNEP

Why national inventories ?

- Inventories are the basis for prioritizing actions
- Identify key sectors and stakeholders
- Initiate Hg communication with stakeholders
- Helps identifying environments and populations at risk
- Monitoring progress in reduction efforts

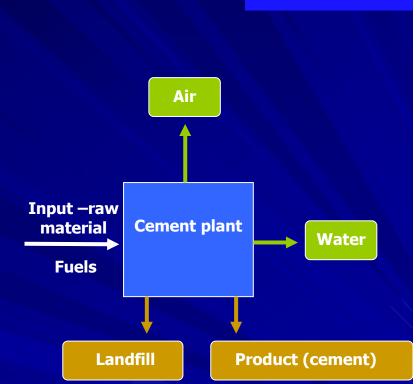
Toolkit for Identification and Quantification of Mercury Releases

> Reference Report and Guideline for Inventory Level 2

> > Version 1.2 April 2013

UNEP's Mercury Inventory Toolkit – 2 levels of detail

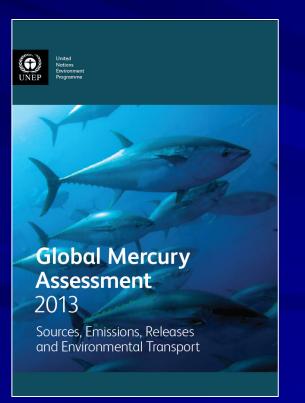
Level 1:


- Default factors and guidance provided;
- Simplified and standardised procedure and tools for basic inventories

Level 2: Open framework; encourages use of specific national data

THE TOOLKIT IS FOR GUIDANCE ONLY

Toolkit key principle


- Mass balance principle used:
 - Hg inputs
 - Hg output distribution
- Hg releases in the whole life cycle of product/material
- Hg releases to all media/pathways

Global Mercury Assessment 2013

- Summary report for policy makers
- Technical Background Report

Global Hg Assessment 2013 - Emissions estimates

New and improved methodology:

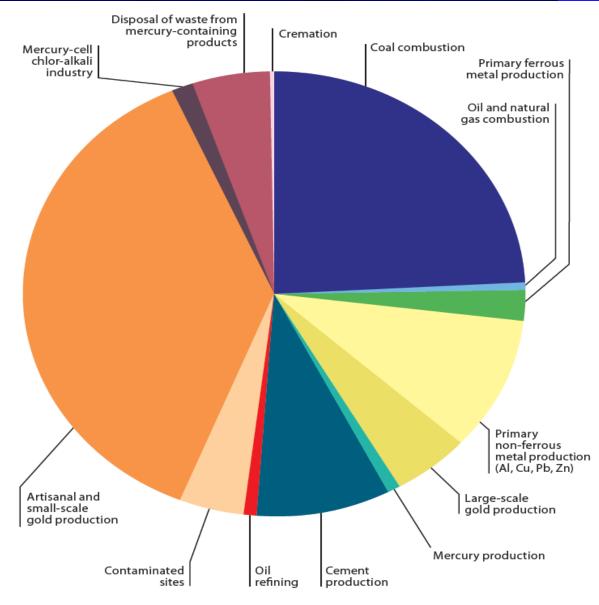
- Differences in pollution control technologies factored into the calculations
- Differences in Hg content in fuels and raw material factored into the calculations.
- A more detailed analysis of some major sectors (e.g. ASGM, combustion of fossil fuels, oil refineries, aluminium production)

Extensive expert engagement

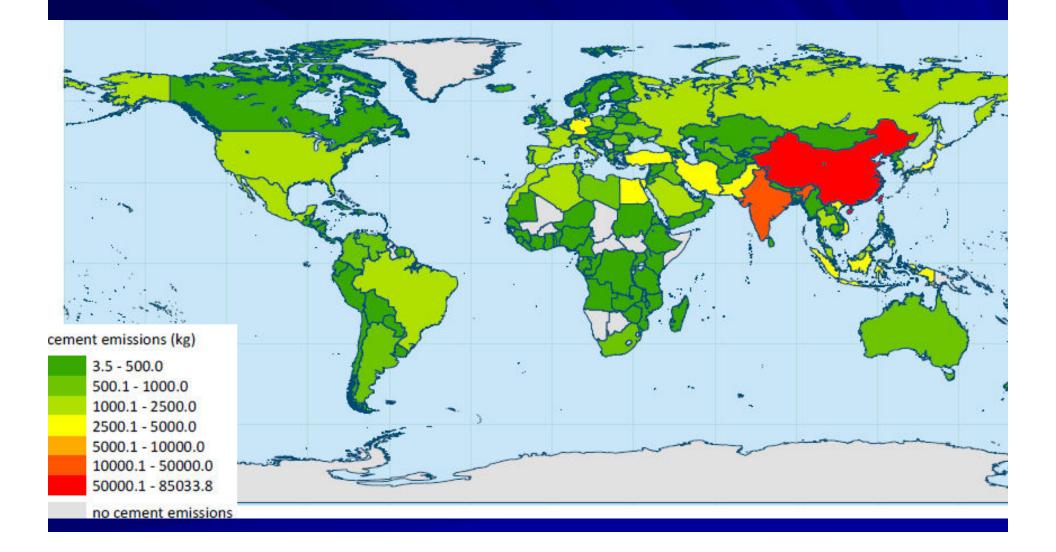
Methodology

Traditional approach (1990, 1995, 2005) **Total activity** (Abated) Emission (to air) (Abated) Emission Factor * = (amount used/produced) UNEP Toolkit approach **Total activity** Distribution * (Abated) Emission (to air) Input Factor * Output Scenario * = (amount used/produced) Factor (to air) **Unabated EF** Abated EF 2010 Inventory approach **Unabated** emissions (Abated) Emission (to air) = -(to air) Different activity components Different emissions reduction technologies Unabated Unabated = Activity = Abatement * EF * emission application Unabated Unabated Unabated = Abatement = Activity * * emission emission application EF Unabated Unabated = Activity = Abatement -# EF application emission Sum = 100% Sum = Total activity

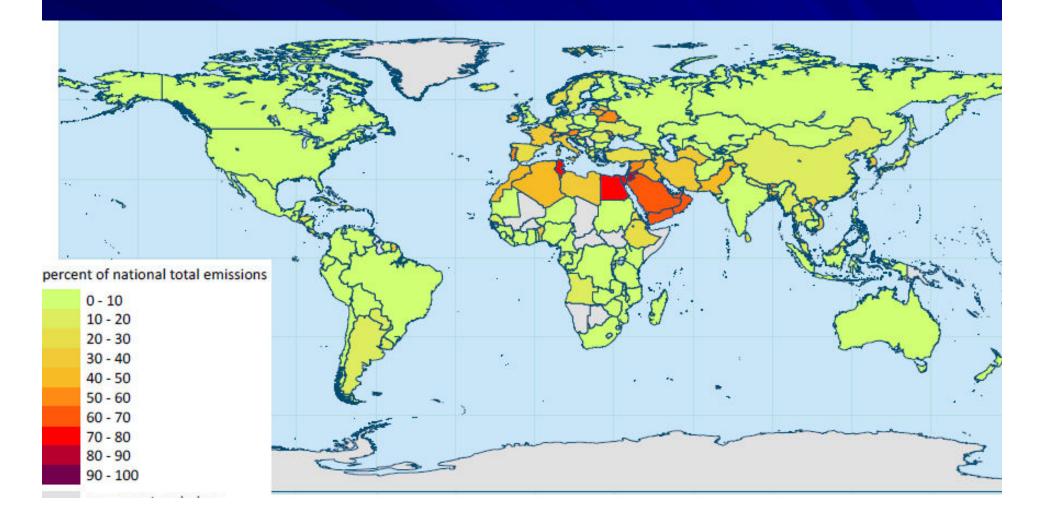
Why this complex methodology ?


- To develop realistic estimates, not just for the global total, but for individual countries
- Our approach is designed to reflect that individual countries can be very different from the 'global average'

GMA 2013: emissions to air


Similar patterns to the 2005 ... with some new features

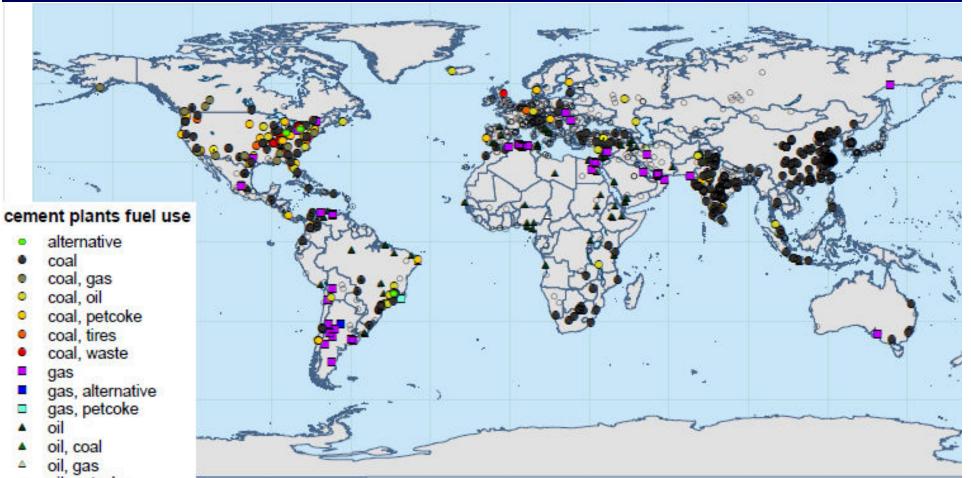
Regional differences



Cement production: Total Global Hg Emissions

NEP

Cement: Hg emissions from cement in % of the national total Hg emissions


U U Cement: Countries with cement emissions > 10% of their national total

		ceme	ent as %
	Cement Total national of national		
Country	emission (kg)emission (kg)total		
Reunion	32.6	32.7	99.6
Guadeloupe	16.0	16.3	98.2
Martinique	15.3	15.6	98.2
Cyprus	172.1	206.3	83.4
Jordan	348.0	421.1	82.6
Tunisia	696.0	903.6	77.0
Barbados	35.0	46.2	75.8
Egypt	4045.5	5380.2	75.2
Lebanon	348.0	493.8	70.5
Yemen	304.5	437.9	69.5
United Arab Emirates	943.8	1389.8	67.9
Luxembourg	58.9	86.8	67.8
Saudi Arabia	2359.4	3534.9	66.7
Qatar	244.8	384.9	63.6
Oman	235.9	385.2	61.2
New Caledonia	9.9	17.1	57.7
Portugal	555.8	981.2	56.6
Switzerland	299.8	533.5	56.2
Bhutan	15.7	28.7	54.7
Austria	469.7	893.0	52.6
Republic of Moldova	53.3	101.6	52.4
Syrian Arab Rep.	390.1	760.0 632.8	51.3
Belarus Bahrain	323.5 47.2	93.4	51.1 50.5
	218.8	437.9	
Ireland	1566.0	3197.3	50.0 49.0
Algeria Morocco	1092.0	2345.3	49.0
Croatia	213.2	459.8	46.6
Trinidad and Tobago	66.1	147.1	40.4
Haiti	22.8	54.2	42.1
Pakistan	2784.0	6613.6	42.1
Iraq	556.8	1330.2	41.9
Lithuania	48.1	120.2	40.1
Jamaica	48.7	127.5	38.2
Albania	56.3	149.5	37.7
Costa Rica	174.0	463.4	37.5
Italy	1698.9	4597.6	37.0
Turkmenistan	68.5	192.0	35.7
Belgium	672.3	1949.7	34.5
Korea- Rep. of	2490.5	7223.4	34.5
Iran	3480.0	10099.7	34.5
Benin	130.5	391.4	33.3
France	1592.4	4926.2	32.3
Vietnam	3646.4	11611.8	31.4
Bangladesh	435.0	1439.3	30.2
Libyan Arab Jamah	522.0	1730.9	30.2
Latvia	13.1	43.6	30.1
Eritrea	3.9	13.6	28.8
Sri Lanka	165.3	586.4	28.2
Dominican Republic	208.8	751.1	27.8
Honduras	125.3	456.9	27.4
Kuwait	118.0	455.0	25.9
Armenia	57.1	222.7	25.6

Fuels used

- oil, petcoke
- oil, waste
- petcoke
- petcoke, coal
- petcoke, waste
- unknown

Accurate Hg emission estimates possible?

Depends on:

- Content in raw material,
- Fuels used (including waste)
- Efficiency of abatement technologies
- Operational conditions

Is it possible to provide reliable data on all issues?

Two approaches to estimate emission: •Measurements of flue gases •Mass balance

Thank you for your attention!