

UNEP(DEC)/MED W
1

MEDITERRANEAN ACTION PLAN

Meeting of the MED POL National Coordinators

Sangemini, Italy, 27 - 30 May 2003

MEDITERRANEAN POLLUTANT RELEASE AND TRANSFER REGISTER (PRTR
 PILOT PROJECT:

DEVELOPMENT OF DATABASE AND WEB SITE

UNEP
Athens, 2003
G.231/Inf.11
7 April 2003

ENGLISH

)

TABLE OF CONTENTS

page

Introduction 1

Search for the Solution 1

Analysis of the Stand-Alone Solution 2

Analysis of the Web Site Implementation 4

Analysis of the Site Engine Implementation 5

PRTR Structure 13

Platforms 14

UNEP(DEC)/MED WG.231/Inf.11
Page 1

INTRODUCTION

This white paper contains the description of the software written for the PRTR and
specifically the data access application. The application described in this white paper and
developed within the framework of PRTR project is a Web application.

The task of the PRTR project and therefore of the software developed is to memorize data
on the emission of toxic agents and to centralize the repository, in order to be able to process
data and generate reports.

To centralize the data means to put at disposal a system to which all the interested parties
can connect in order to insert the data and to request the reports.

These two concepts lead to the logical consequence of creating an Internet site that provides
these services.

The Internet site has to recognize the single user, in order to allow only his own data entry or
modification and the report requests. Therefore, appropriate web-forms are needed to allow
user’s identification as well as data entry or reports generation. This idea could be put into
practice if all the interested parties had an Internet connection. Unfortunately this is not the
actual situation in the interested region. Consequently, in order to obtain the widest possible
data collection, the Internet solution is not sufficient. A stand-alone program is needed to
satisfy the lack of connection. It should allow the users to input the data in a local database,
which should be afterwards sent to the central location of the PRTR project, that would
provide the update of the central repository.

This macro-analysis depicts the need of the following three applications:

1. A web-site that can provide web-forms connected to the central database for users

identification and for data entry;
2. A stand-alone application that replicates the data entry web forms (as per point 1)

connected to a local database, which is a simplified copy of the central database;
3. A system for the reports generation.

SEARCH FOR THE SOLUTION

In the previous paragraph the necessity of the development of two applications, one web-
based and one stand-alone has been evidenced.

The scope of these applications is to provide a tool which is both user-friendly and
performing in terms of installation and maintenance. It means that:

1. PRTR operators should be able to easily modify the graphical layout as well as the

contents of both the applications;
2. The users should not notice any difference between the stand-alone and the web-based

application, this in order to facilitate the work continuity at the moment the user moves
from the stand-alone to the web-site application.

According to point 1:

Modifications of a web-site connected to a database involve some insurmountable difficulties,
even if the front-end can be simply modified with development tools. On the opposite, the
modification of a layout in a stand-alone application can be problematical, because to this
purpose application source code has to be available and then modifiable.

UNEP(DEC)/MED WG.231/Inf.11
Page 2

The development of a web-based system that can work also as a stand-alone application
could present the solution to the matter. In this way, the two individual applications’ creation
could be ignored and the requirement mentioned in the above point 2 could be satisfied.

This web site should be installed to the parties that lack Internet connection. The web site
forms should aim to a “local and simplified” version of the central database. In this case, the
application would be a single-user solution; therefore the user identification forms wouldn’t be
necessary. It could be identified as a “light” version of the site.

Such solution implies the installation of a web server. The installation of a web server can
cause a fall in the computer performances, as well as objective difficulties in the creation of
the installation program for the local web site, because different versions of web servers are
available for different operating systems (note that on Windows platforms only there are:
personal web servers for win9x and IIS for NT, 2000 and XP) and there are also different
installation procedures, comprising service packs or patches for the web server.

The “light” web-site is a valid solution. However, a methodology is needed to “replace” the
web server, or rather to simulate in a single application all the interactions that run through
Internet between the user, the browser and the web site, as well as the major number of
implemented web server functionalities, in order to achieve a unique environment for
application execution and application use.

ANALYSIS OF THE STAND-ALONE SOLUTION

In general, the interaction between the user’s browser and the web site is based on the
following concept: the user who needs to visualize one page of a web site sends through the
browser an HTTP request to the web site. This request is received by a web server, which is
actually the service that reacts on HTTP requests, analyzes the requested URL and, based
on this, generates a result which is sent via HTTP to the user’s browser.

An example of the functionality logic of a site, published using Internet Information Service, is
described hereafter:

Request Action

HTML Page IIS returns the page immediately in HTML format.

ISAPI extension IIS loads the ISAPI DLL (if it is not already running)
and the request is sent to the extension through the
Extension_Control_Block data structure.

File name extension mapped to a
particular ISAPI extension

IIS loads the appropriate DLL file and presents the
request through the Extension_Control_Block data
structure. The .asp extension, for example, is mapped
to Asp.dll, so that all requests for files with an .asp
extension will be directed to Asp.dll.

In graphical terms:

UNEP(DEC)/MED WG.231/Inf.11
Page 3

Figure 1

As illustrated in Figure 1, in order to simulate a web environment, the following has to be
implemented:

1) Replication of a browser;
2) Replication of an HTTP request;
3) Capacity to react on a HTTP request;
4) Capacity of analyzing the URL;
5) Capacity of generating dynamic web pages if necessary, thus executing

programs;
6) Capacity of sending a page to the browser.

With the creation of an application that we call “web-client”, which satisfies the above 6
points, it is possible to make a “dynamic” web site inside a stand-alone application without
actually installing a real web server (see Scheme 1).

Scheme 1

Scheme 1 shows that in any case the application can be divided in 3 parts:

1) UI, that simulates the browser;
2) A stream that simulates the HTTP;
3) An object that simulates the web server.

These 3 parts depend on the chosen technologies in the sense that the conceptual solution
is strictly connected to the technical solution.

This suggests that the analysis of the program could be performed after the development
technology is chosen. The local version of the final application consists of the “web-client”
application and the “light” site application. According to this logic, the final application is

WEB server

browser

HTTP

site

WEB-client
application

UNEP(DEC)/MED WG.231/Inf.11
Page 4

executed on the “light” site only, just like in the on-line version. This is much simpler when
compared to a recompilation of source-code in a standard stand-alone application.

ANALYSIS OF THE WEB SITE IMPLEMENTATION

In the previous paragraph, the criteria for the development of a stand-alone solution have
been defined. The stand-alone solution consists of a “web-client” application that represents
the runtime environment for the “light” web site.

From the above considerations, some features that the web site should provide have been
pointed out:

1) The “web-client” and the “real web” execution environments should be
distinguished because of the following reasons:

a. In the “real web” environment, the site should contain a part that
“recognizes the user”, while in the “web-client” environment it is useless;

b. Depending on the execution environment, the site should generate the
connection strings that would point to the proper data source: the “local
database” in the “web-client” case, and the “central database” in “real web”
case.

2) The site should provide forms that could be easily modified, and form content
which should be as much as possible independent from the graphical layout.

These features can be implemented by the use of the “multi-tier” development technique.
The functionality is divided in different homogeneous layers that enable the partial
modification of the product.

Scheme 2 shows a web-site project realized with the use of these techniques.

Scheme 2

As shown in the scheme, all functionalities are allocated in separated blocks:
1) DAL – Data Access Layer: this “logic” block contains all the functions that allow

the interaction with the database, i.e. opening the connections, data retrieve or
data modification;

DB

1)Data Access Layer
DAL

2)Business Logic
Layer

3)Presentation Layer

Html

XSL

UNEP(DEC)/MED WG.231/Inf.11
Page 5

2) BLL – Business Logic Layer: this block contains all the functions that define “how
and where to read or write the data”. It also provides other functions such as user
authentication;

3) PL – Presentation Layer: this block
a. Contains all the functions that transform data to XML form, and afterwards

to HTML form;
b. Provides all the methods and properties for the “use” of subordinate

blocks.

The construction of the blocks actually does not follow precise rules. This technique instead
suggests a plan to be followed in the development process, but it does not impose strict
limitations.

The described technology satisfies the above mentioned features. The first feature is fulfilled
through the use of two BLLs, one for the “light” version and another one for the “on-line”
version. The second feature is fulfilled through the use of a form as an XML document and a
graphic layout as a XSL document in the PL.

ANALYSIS OF THE SITE ENGINE IMPLEMENTATION

In the previous paragraph the main functionality of the system has been identified as well as
the development approach. It is necessary to analyze how to construct the engine which
manages the web forms and the site.

In the engine construction, two approaches have been considered:

The first one assumes the construction of an “ad-hoc” engine on the PRTR database, using
the multi-tier technology. This means that constructed BLL will be strictly connected to the
structure of the PRTR database.

Using this methodology, results in a system designed and implemented for the solution of
one single problem. Such system is very per formant as one single form accesses to several
tables. However, the system re-usability is limited. This approach has been abandoned in
favour of the second one, which assumes the construction of a “generic” engine that should
be able to adapt itself to a certain number of possible cases, among which is also PRTR. In
this way, the software becomes reusable.

It has been decided that the “engine” should have the potential to manage “automatically”
databases with at least the one-to-many relation. To understand how to develop this idea, a
program for the management of relational databases, like Microsoft Access is taken as an
example. Besides the RDBMS functions, Access can generate the forms connected to the
tables and queries for the addition and modification of database records. In case the display
of data from tables with one-to-many relations becomes necessary, it is possible to create a
form (named “main”) connected to the primary table, which holds another form (named
“subform”). The subform visualizes data from the related table. The main form and the
subform are connected in a way that makes the subform show only the records related to the
current record in the main form.

The above mentioned example indicates the type of navigation that can be used to simulate
the form/subform concept. This navigation dictates moving from the grid forms, used for
visualizing table records, to:

a. A “single form” for data insertion or modification. In case of modification, it is first
necessary to select the record in the grid;

b. Other “grid forms” for the visualization of the records related to the selected table.

UNEP(DEC)/MED WG.231/Inf.11
Page 6

At this point, the application of these concepts to the web environment is to be considered.
All the values in the web form fields are usually obtained by using get and post methods,
from one “dynamic” page (could be also the same page that sends them), which collects
them and instantiates the object used for reading/writing from/to the database.

Scheme 3

Examining Scheme 3 and the navigation modes considered in order to simulate the
main/subform forms, it can be noticed that everything resembles a certain similarity with one
sequential or state machine.

The Business Logic Layer (BLL) therefore should manage:
1. The “state machine” for the navigation;
2. The mapping fields - query parameters;
3. The mapping of the fields in the forms. It is clear that every single state generates

one form.

Besides, BLL should be configurable. Therefore it is necessary to create a BLL connected to
an external database called “workflow”, which should allow the configuration of the previous
points.

The structure of the database is given as follows:

Figure 2

Form/
entry

Dynamic
page

db

Data through HTTP

Form/
results

UNEP(DEC)/MED WG.231/Inf.11
Page 7

Table 1: Description of objects in db BLL
tblTable Maps all the forms as states

sTableName The name of the query which
identifies the form. The query can be
parametric.

FormType Distinguishes between “single form”
and “grid form”.

sRecordset The name of the table/view on which
insert/edit should be performed.

stemplateName Name of the XSL template to be
applied when the form is generated.

bStartup Reserved for future use.
sParameters Reserved for future use.

tblTable_Fields Each form contains fields and here it is indicated which
fields represent the parameters for the query indicated in
“sTableName” field of tblTable; which are the table key
fields on which the form is constructed; and which fields are
required to be populated.
bRequired 0,1 – Field required or not required
bParam 0,1 – Represents the parameter of

the query indicated in “sTableName”
bPK 0,1 - Serves for the identification of

the primary key used in “grid forms”
specifically for the record selection or
for the creation of the update queries
by the engine.

bAN 0,1 – The primary key of type
“autonumber” serves as an indicator
to the engine to exclude the field from
the insert operations.

nOrder Numeric order of presentation of the
fields in the form.

Tblfields Each form has the fields mapped here, because one field
can appear in more than one table.
sFieldName Field name.
nIDTypeField Identifies the field type, the text box,

the combo, etc. It is used by XSL to
obtain the final HTML presentation.

nDimension Defines the field size.
sDefValue The default value of the field. It could

be also a query (combo).
tblTypeField The fields can have multiple “lookups” like text box, combo

or data fields. This table maps every possible field type.
nIDTypefield Denotes the fields.
Populate_wkfl 0,1 – Indicates that the field values

are obtained by a query.
tbl_Workflow Manages the state machine

nIDTable Initial state.
nIDTableto Final state.
nMode The navigation entry

corresponds to
Curr_nMode of the scheme.
Values can be -1, 0, 1, 2

UNEP(DEC)/MED WG.231/Inf.11
Page 8

and are defined by the
navigation based on the
number of tables to be
interrogated.

nOrder Order of entry appearance
in the form.

The Languages, tblfieldCaption, tblTableCaption tables manage respectively the
“multilingual” captions of the forms and fields.

The queries that serve for the extraction of forms configuration and the state machine
“workflow” are standard and are always the same:

1. “wp_qjTableFields”

Extracts the fields of a form starting from the name of the query inserted in the field
STableName of the associated table tblTable.

2. “wp_workflow”

Extracts the final state “curr_sTablename” according to the initial state
“prev_sTableName”, and the entry “curr_nMode” chosen by the user.

UNEP(DEC)/MED WG.231/Inf.11
Page 9

3. “wp_workflow_Modes”

Extracts the acceptable entries for the current form. It defines towards which forms is
possible to navigate starting from the current one.

BLL therefore should only connect to this repository and read the contents; this is translated
in a connection string and the names of the 3 previous queries passed to it as parameters.

All the configuration parameters obtained by the queries form an XML document to which the
field values can be added whenever requested:

1. Grid-form: the fields should be already populated in case the selected recordset is
not empty.

2. Single-form: in edit mode.

The Grid-form principally reveals the necessity for a grid population, which means that for
every field there is a requirement to insert as many values as the number of records that
should be visualized, while the point 2 considers single form only. To overcome such
circumstance, it is necessary to generate 2 XML documents: one for the Single-form and
another for the grid-form.

Normally, the XML document should contain nodes that serve for the state machine, nodes
that define the form, and nodes that contain the field values. The two XML documents are
illustrated below:

UNEP(DEC)/MED WG.231/Inf.11
Page 10

“Grid-form” document:

Figure 3

UNEP(DEC)/MED WG.231/Inf.11
Page 11

 “Single-form” document:

Figure 4

The following table denotes the main nodes:
document / Document root.
Workflow Document/workflow Entails all configura-

tions of the workflow
and therefore the actual
entries, the previous
state memo-ry, and the
parameters for the form
construc-tion.

modes Document/workflow/modes Each state (form) allows
a certain number of
entries, which are
enclosed in this node.

mode Document/workflow/modes/mode Single entry.
sections Document/sections List of nodes with the

field definitions.
Section Document/sections/section Single field.

The difference between documents is mainly seen at the most basic level. The red frame in
Figure 3 (“grid-form”) depicts the inclusion of the node list “values” in the document: the list is
added for each field in the form (and therefore to each node “section”). It memorizes the
values of the records in the current recordset. Figure 4 represents a document in the “single-
form”. Each field has an “rs_value” attribute (see the green frames) in which the value of the
field in the current recordset is inserted. The current recordset contains in this case one
single record.

UNEP(DEC)/MED WG.231/Inf.11
Page 12

As previously mentioned, every form has fields of different types: text box, hidden, etc. This
is defined in the workflow database by the “nIDTypefield” value in the “tblfields” table (all
configuration parameters in the database are listed in the XML document which describes
the single form). The XSL style sheet should interpret the meaning of the value, which
implies that it must have the templates of the types of the fields interested in the typeField
table.

For instance, a field “X” with nIDTypeField =1, that could represent the “textBox” type, should
select the template “1” in the style sheet, in order to get as final result a form, in which field
“X” is represented by a “textbox”.

Special attention should be paid to the fields that commonly have an obligatory list of values
to choose from (like combo and radio buttons). There are 2 types of lists:

1. Fixed list of values;
2. List of values extracted from a table.

Two solutions are given in order to deal with such situations:

Referring to the fixed list of values, it is simply possible to insert the values, separated by a
pipe (I), in sDefValue in the Fields table. The XSL style sheet should parse the values later.

Referring to the list of values extracted from a table, let’s suppose a form in which the value
of a certain field “X” is chosen from a list of a combo box. Such list presents the result of a
query performed on a table. The combo box can be taken as a form with a unique field “X”.
The form is furthermore incorporated in the main form and linked through “X”. In this regard,
it is possible to use the part of the structure which is created for the form generation, to link
the values of “combo” form to the field “X”. Since it is a form, it should be inserted as a record
in the tblTable table. This record includes the name of the query to which it is linked, and the
field which acts as a form that is supposed to be linked to “X”. In the tblFields table, the value
sDefValue of the record corresponding to “X” denotes the name of the form’s query. It is
meant that “X” should have the appropriate field type in order to be recognized and correctly
configured by the “engine”.

From the above contemplations it can be concluded that the task of the XSL style sheet is to
transform everything in HTML form, bearing in mind all mentioned characteristics as well as
further features. One of these could be the case in which, when a field is required
(bRequired=“1”), the transformation should generate the “client side” scripts to take care of
the configuration detail.

Personalisation are “extracted” and located in 2 precise points:

- On the level of BLL, by modifying the database;
- Such modifications should be made only in XSL files and therefore in the PL.

The state machine is transparent to any modification made in the above 2 points.

In conclusion, in the case of the “on-line” version, the site engine should consist of a BLL
containing the system for user identification. The choice of the BLL depends on the
development technologies and on the state machine illustrated in this paper. In the case of a
“light” site version, the BLL should consist of one machine only, as the 2 blocks are virtually
independent

UNEP(DEC)/MED WG.231/Inf.11
Page 13

PRTR STRUCTURE

PRTR database was designed by ICS-UNIDO team in Alexandria and Trieste within the
framework of PRTR project.

In order to determine its structure at the beginning of the venture, the very first steps have
been made by modifying an existing database according to a “Reporting” module standard,
chosen as a paper device for facility reporting. The Repository has been developed by the
Canadian Environmental Protection Act.

An UI stand-alone application has been developed in Visual Basic. Its work is based on
Microsoft Access database with the following scheme not showing the relationships:

Figure 5

However, modifications could not be carried out easily in this case. Therefore, the module
has been analyzed and a new relational database has been constructed and tightly
correlated to the “Reporting” module. Figure 6 shows the analysis result.

Figure 6

UNEP(DEC)/MED WG.231/Inf.11
Page 14

One “company” (tblCompany) can have many “Facilities” (tblFacility) which should be able to
compile several reports (tblReport) (monthly). A report can contain many details
(tblReportDetail), one for each chemical substance (ID_Chemical obtained from table
tblChemicals); every Report detail can have several sections 7a (tblP2_section7a represents
the recycling methods for every single waste material in the production process).

The table of the chemicals (tblChemicals) is already compiled since, for the sake of data
integrity, there is no need for users to insert different names for the same substance.

The scheme shows tables with one-to-many relation (in effect, the relation between tblReport
and tblChemicals is many-to-many and it is represented by table tblReportDetail, but since
tblChemicals is a read-only table, this many-to-many relation can be omitted). Now it is
feasible to apply the state machine mentioned in previous chapter, in order to construct the
applications. The database actually corresponds to a simplified version of the “central”
database, and the tables for user identification can be eventually added to it.

PLATFORMS

In this section the development platform and the data repository will be considered.

For the stand-alone version itself, the platform is connected to the operating system installed
on the computers that lack Internet connection. In a study performed by ICS-UNIDO, it has
been shown that for each “Facility” there is at least one PC with Windows operating system
installed.

This means that the application should be developed using technologies such as com or the
new .net (DOT NET). Also, the application is based on a dynamic web site, therefore the use
of the same technologies is obvious. Consequently, for the “on-line” version, a site based on
asp-Com or Asp.net would be necessary, and the web server that should be emulated is thus
the IIS Internet Information Server.

Now, the development platform can be chosen.

The .net solution is not considered because of the following reasons:

1. For executing a program developed in this technology, it is necessary to install also
the CLR Common Language Runtime. Actually, CLR is functioning on operating
systems such as Windows XP and Windows 2000.
2. Even if the technologies interoperability allows the integration with com objects, the
performance of such system is bad, unless a .net object is present in the framework.
3. Being a new technology, .net is still not able to guarantee stable functioning.

Our orientation towards the use of com technologies is based on several different
motivations. Com technology today represents the standard for Windows systems, and it is
stable. There are RAD tools, such as Visual Basic, that allow the application development in
a very simple and fast way. One of the main motives for using com technology is the fact
that there are many reusable components that can simplify the solution of problems such as:

In the stand-alone solution there are several requirements:

• To emulate the browser; Internet Explorer/version 3.0 offers an ActiveX (com)
WebBrowser Control, which is in fact a browser itself. This allows the development
of applications where the UI is based on DHTML and XML. It can be noticed that
there is no similar object .net framework.

UNEP(DEC)/MED WG.231/Inf.11
Page 15

• To emulate the IIS; this means that the ISAPI Active Server Page filter has to be
emulated. These pages can be programmed using a script language such as
VBScript or Jscript. The page, before creation, is analyzed by an engine which then
executes the code and generates the final result. A Microsoft Script Control com
component is able to perform the task of a filter. Particularly, this component is an
ActiveX Control without user interface and it can be interfaced to any Windows
Script interface. Concerning language support, it is possible to choose between 2
scripting languages (VBScript and Javascript). The component allows the
adjustment of the other components to the namespace of the script through the use
of AddObj method.

In the site engine construction:

• XML support; the site engine should be able to generate the forms described in
XML documents. Microsoft released version 4 of its XML sdk. Inside sdk there is a
set of components which support XML parsing and XSLT transformations;

• Connections to data sources: the forms and the XML documents are the result of
processing of the recordsets extracted from the db. The technology that provides
such connections is ADO, and it is also based on com.

As a matter of fact, .net supports natively both XML and Database connecting through
ADO.net, and therefore it is equivalent to the com technology. The com technology is
chosen because of the problems in the development of the “stand-alone” version, particularly
in the implementation of “web-client”.

Special attention should be paid to the use of RDBMS for both implementations: in stand-
alone version the database should be installed to each single computer. In a Windows-based
environment, the most used management platform is Microsoft Access. It offers an SQL
engine, the possibility to construct forms and reports, and everything is contained in one
single file. Instruments such as “Microsoft upsizing Tools” enable copying and updating of the
structure and the data from “Access” database format directly to SQL Server. SQL Server
version 2000 includes an analysis tool named “Analysis Service” that allows the development
of “Data Warehouse” which is useful for the report generation. These simple considerations
guided to the choice of repositories: the database in “Microsoft Access” format should be
used for the “stand-alone” version, and the “Microsoft SQL Server 2000” should be utilized
for the “on-line” version.

In conclusion, the following tools and components are to be selected:

• Microsoft Visual Basic as the development environment, because of its RAD
technology and its simple integration with com;

• WebBrowser Control in order to emulate a browser;
• Microsoft Script Control in order to emulate the script engine within ISAPI Active

Server Page filter;
• XML 4 framework;
• ADO for database access.

Results of the implementation can be seen in the White paper “Alexandria PRTR Project:
Database development” specifically under the paragraph “The user Interface”. More details
and source code of the program developed are available from ICS upon request.

	MEDITERRANEAN ACTION PLAN
	UNEP

	INTRODUCTION
	SEARCH FOR THE SOLUTION
	ANALYSIS OF THE STAND-ALONE SOLUTION
	ANALYSIS OF THE WEB SITE IMPLEMENTATION
	ANALYSIS OF THE SITE ENGINE IMPLEMENTATION
	PRTR STRUCTURE
	PLATFORMS

