Programme des Nations Unies pour l'environnement

UNEP(DEC)/MED WG.231/Inf.5
30 avril 2003
FRANCAIS
Original : ANGLAIS

PLAN D’ACTION POUR LA MEDITERRANÉE

Réunion des Coordonnateurs nationaux pour le MED POL

Sangemini, Italie, 27 au 30 mai 2003

RÉCUPÉRATION ET RÉUTILISATION DES EAUX USÉES
DANS LA RÉGION MÉDITERRANÉENNE

En coopération avec

OMS

PNUE
Athènes, 2003
RÉCUPÉRATION ET RÉUTILISATION DES EAUX USÉES
DANS LA RÉGION MÉDITERRANÉENNE
AVANT-PROPOS

Les régions méditerranéennes se caractérisent par un grave déséquilibre hydrologique au cours des mois d'été en raison de la faiblesse des précipitations, de l'inégalité de leur répartition et des températures élevées. Dans le même temps, il existe une demande accrue d'eau pour l'irrigation et l'usage domestique par suite de l'afflux de touristes. D'autre part, l'eau est recyclée à travers le cycle hydrologique global. Mais la réutilisation d'eau planifiée au plan local acquiert une importance croissante pour deux raisons : en premier lieu, le rejet d'effluents d'eaux usées dans des eaux de surface devient de plus en plus difficile et onéreux puisque les conditions requises pour leur épuration sont de plus en plus rigoureuses en vue de protéger la qualité des sites récepteurs; en second lieu, les eaux usées municipales représentent souvent une ressource en eau importante qui peut être utilisée à un certain nombre de fins, notamment dans les zones manquant d’eau. La réutilisation la plus courante l’est aux fins d’eau non potable comme l’irrigation agricole et paysagère. Il s'impose donc de traiter l’effluent afin de répondre aux normes de qualité pour l’utilisation escomptée. En dehors des aspects sanitaires, il existe des aspects esthétiques et publics qui doivent susciter l’adhésion de la population, surtout lorsque celle-ci est directement concernée.

Une autre ressource en eau à prendre en compte dans les zones arides et semi-arides consiste dans les effluents d'eaux usées traitées. À l'heure actuelle, dans plusieurs États et pays comme la Californie, l'Arizona, la Floride, l'Australie, Israël, l'Afrique du Sud et le Japon, la technologie de récupération et réutilisation des eaux usées est bien établie et la valeur de l'eau récupérée, en tant que ressource en eau, est reconnue. Cette technologie novatrice de traitement et réutilisation des eaux usées a été adoptée dans de nombreux pays méditerranéens. Aujourd'hui, les pays méditerranéens suivants sont, par ordre alphabétique, Parties contractantes à la Convention de Barcelone: Albanie, Algérie, Bosnie-Herzégovine, Chypre, Croatie, Égypte, Espagne, France, Grèce, Italie, Israël, Liban, Libye, Malte, Maroc, Monaco, Slovénie, Syrie, Tunisie et Turquie.

Le présent rapport a pour objet essentiel d'exposer les pratiques de récupération et réutilisation des eaux usées (quand elles existent) dans les pays méditerranéens. De plus, il vise aussi à présenter les concepts de base des technologies de récupération et réutilisation des eaux usées, et en traitant de celles qui conviennent plus spécialement aux pays méditerranéens, de montrer leur importance pour l'ensemble de la région.

Le contenu du présent rapport est agencé en deux chapitres. Le premier comporte un examen de la récupération et réutilisation des eaux usées, et le second un bilan des pratiques de réutilisation des eaux usées dans chacun des pays méditerranéens. En outre, il est procédé à une revue succincte des développements actuels concernant les critères de qualité assignés à la réutilisation des eaux usées.
Table des matières

Page

1. RÉCUPÉRATION ET RÉUTILISATION DES EAUX USÉES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Rôle de la récupération et de la réutilisation des eaux usées dans le cycle hydrologique</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Opérations et procédés de traitement pour la récupération des eaux usées...</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Diagrammes fonctionnels types de systèmes de récupération</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Historique</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Les membranes dans le traitement et la réutilisation des eaux usées</td>
<td>5</td>
</tr>
<tr>
<td>1.7 Catégories de réutilisations des eaux usées traitées</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1 Irrigation agricole</td>
<td>8</td>
</tr>
<tr>
<td>1.7.2 Irrigation paysagère</td>
<td>10</td>
</tr>
<tr>
<td>1.7.3 Réutilisation dans l’industrie</td>
<td>10</td>
</tr>
<tr>
<td>1.7.4 Retenues et utilisations à des fins récréatives, et zones humides servant d’habitats</td>
<td>10</td>
</tr>
<tr>
<td>1.7.5 Recharge des eaux souterraines</td>
<td>11</td>
</tr>
<tr>
<td>1.7.6 Utilisations diverses</td>
<td>12</td>
</tr>
<tr>
<td>1.7.7 Aquaculture</td>
<td>12</td>
</tr>
<tr>
<td>1.7.8 Utilisations aux fins d’eau potable</td>
<td>12</td>
</tr>
<tr>
<td>1.8 Conditions requises pour la réutilisation</td>
<td>12</td>
</tr>
<tr>
<td>1.9 Questions concernant la réutilisation de l’eau</td>
<td>13</td>
</tr>
<tr>
<td>1.9.1 Valeur économique de l’eau</td>
<td>13</td>
</tr>
<tr>
<td>1.9.2 Questions techniques</td>
<td>14</td>
</tr>
<tr>
<td>1.9.3 Exigences en matière de réglementation</td>
<td>14</td>
</tr>
<tr>
<td>1.9.4 Questions sociales</td>
<td>14</td>
</tr>
<tr>
<td>1.10 Gestion des biosolides</td>
<td>15</td>
</tr>
<tr>
<td>1.10.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>1.10.2 Propriétés d’amendement des sols - pratiques d’exploitation agricole</td>
<td>15</td>
</tr>
<tr>
<td>1.10.3 Propriétés énergétiques</td>
<td>16</td>
</tr>
<tr>
<td>1.10.4 Propriétés physico-chimiques</td>
<td>17</td>
</tr>
<tr>
<td>1.10.5 Conclusions</td>
<td>17</td>
</tr>
</tbody>
</table>

Références | 18 |
2. PRATIQUES DE RÉCUPÉRATION ET DE RÉUTILISATION DES EAUX USÉES DANS LA RÉGION MÉDITERRANÉENNE

2.1 Introduction ... 20
2.2 Les réponses aux pénuries d’eau.. 23
2.3 Situation de la réutilisation des eaux usées dans la région méditerranéenne.. 24

2.3.1 Albanie... 25
2.3.2 Algérie ... 25
2.3.3 Bosnie - Herzégovine... 26
2.3.4 Chypre... 26
2.3.5 Croatie... 27
2.3.6 Égypte ... 27
2.3.7 Espagne .. 30
2.3.8 France ... 31
2.3.9 Grèce... 35
2.3.10 Israël.. 38
2.3.11 Italie... 39
2.3.12 Liban.. 44
2.3.13 Libye.. 45
2.3.14 Malte.. 45
2.3.15 Monaco.. 46
2.3.16 Maroc .. 46
2.3.17 Slovénie... 48
2.3.18 Syrie .. 48
2.3.19 Tunisie... 49
2.3.20 Turquie .. 51

2.4 Les deux principales approches concernant les critères de réutilisation des eaux usées aux fins d’irrigation... 54
2.5 Législation et lignes directrices sur la réutilisation des eaux usées au niveau européen... 56
2.6 Lignes directrices et/ou réglementations relatives au recyclage et à la réutilisation des eaux usées aux États-Unis... 60
2.7 Nécessité d’instaurer des lignes directrices régionales pour les pays méditerranéens ... 60

Références ... 63

ANNEXES ... 67

A1. DÉFINITION DE TERMES UTILISÉS ... 69

A1.1 Introduction
A1.2 Types d’eau et leurs réutilisations
A1.3 Qualité

A2. ABRÉVIATIONS ... 72
1. RÉCUPÉRATION ET RÉUTILISATION DES EAUX USÉES

1.1 Introduction

La région du sud de la Méditerranée et du Moyen-Orient se caractérise par l’une des quantités d’approvisionnement en eau par habitant les plus faibles au monde; cet approvisionnement est inégalement réparti dans l’espace et le temps tant au niveau régional qu’au sein de chaque pays. Dans l’étude du Plan Bleu (PB/PAM, 2000), "Vision méditerranéenne sur l’eau", il est indiqué que 28 millions de personnes, soit 7% de la population totale de la Méditerranéenne, vivent sous le seuil de pauvreté de 500 m³/an par habitant et que 115 millions de personnes, soit 29% de la population totale, vivent sous le seuil de 1000 m³/an par habitant (Margat et Valée, 2000). Sur la base d’une analyse récente, en l’absence de transformations structurelles et d’un meilleur rendement dans le secteur de l’eau, il est à envisager que l’écart ne cessera de se creuser entre l’approvisionnement et la demande prévisible à moyen et long terme pour diverses utilisations. Une analyse aussi alarmante se fonde principalement sur la dynamique démographique et socio-économique actuelle, et elle trace la perspective des limitations que les ressources en eau et les écosystèmes fragiles entraînent pour le développement durable ainsi que pour l’intégration régionale et mondiale. Plus concrètement, la population totale des partenaires méditerranéens, de 200 millions d’habitants aujourd’hui, atteindra 340 millions en 2020, et cette croissance démographique sera marquée par une tendance renforcée à l’urbanisation. Au cours de la même période, l’évolution probable des principaux secteurs économiques conditionnant la demande en eau incite à penser que l’agriculture irriguée gagnera en importance là où elle sera possible, parallèlement à l’essor des secteurs de l’industrie, de l’énergie et du tourisme. Une projection valable est que la forte utilisation d’eau traditionnelle pour l’agriculture (60-90% de l’utilisation d’eau chez les partenaires méditerranéens) deviendra de plus en plus soumise à la pression d’autres utilisations, industrielles ou domestiques.

En conclusion, toutes les données, éléments d’information et scénarios concernant l’état futur des ressources en eau en Méditerranée et au Moyen-Orient démontrent que l’approvisionnement en eau sera mis à rude épreuve au cours des 20 prochaines années. Il s’ensuit que tous les efforts devraient porter sur les domaines suivants: a) accroître le rendement d’utilisation des ressources en eau conventionnelles, et b) accroître l’utilisation des ressources non conventionnelles comme le recyclage de l’eau. Dans le présent rapport, ce sont les questions liées au recyclage de l’eau qui sont abordées.

Les précipitations atmosphériques inégales (dans l’espace et le temps) dans la plupart des pays méditerranéens, la croissance démographique soutenue, la contamination des ressources en eau, le développement rapide du secteur touristique et les sécheresses périodiques ont contraint les divers services et agences de l’eau à rechercher des sources d’eau nouvelles et fiables. Le recours aux eaux usées récupérées ou recyclées pour diverses utilisations d’eau non potable s’est avéré être la plus fiable des sources d’eau et a été adoptée comme telle par la société méditerranéenne (Angelakis et Tchobanoglous, 1995). Les types de traitement d’eaux usées permettant d’obtenir des effluents appropriés à la réutilisation sont examinés dans le présent chapitre.

Les systèmes de traitement naturels des eaux usées, notamment ceux qui reposent sur l’épuration en milieu édaphique et comprennent une réutilisation de l’eau, se recoupent à la fois avec l’irrigation (agricole et paysagère) et la recharge artificielle des eaux souterraines. Des considérations concernant la réutilisation des effluents, et notamment les avantages d’une réutilisation de l’eau et des éléments nutritifs, sont également abordées dans ce chapitre qui porte en outre sur les réglementations et/ou les lignes directrices ainsi que sur diverses questions touchant l’utilisation des eaux usées traitées.
1.2 Le rôle de la récupération et réutilisation des eaux usées dans le cycle hydrologique

L'intégration planifiée de la récupération, du recyclage et de la réutilisation des eaux usées dans les systèmes de gestion des ressources en eau traduit l'application de développements technologiques complémentaires, la prise en compte de risques sanitaires et le ralliement de la collectivité à une solution permettant de souager les contraintes imposées par la rareté croissante des ressources en eau. Comme le lien entre eaux usées, eaux recyclées et réutilisation de l'eau est désormais mieux défini, des boucles de recyclage de plus en plus réduites peuvent être développées. Le cycle hydrologique est un modèle conceptuel de transport continu de l'eau dans l'environnement. Le cycle de l'eau se compose de ressources en eau de surface douce et salée, en eau souterraine, en eau associée à diverses fonctions d'utilisation des sols, et en vapeur d'eau atmosphérique. De nombreux cycles secondaires existent au sein du grand cycle hydrologique, y compris le transport de l'eau permis par l'ingénierie, comme dans le cas des aqueducs. La récupération, le recyclage et la réutilisation des eaux usées sont devenus des éléments importants du cycle hydrologique dans les domaines municipal, industriel et agricole. Un aperçu général du cycle de l'eau, depuis les ressources en eaux de surface et en eau souterraine jusqu'aux installations de traitement de l'eau, à l'irrigation, aux applications industrielles et municipales et aux installations de récupération et réutilisation des eaux usées, est présenté sur la figure 1.1 (Asano, 1998).

La réutilisation de l'eau peut comporter un circuit fermé fonctionnant dans des conditions bien définies avec stockage intermittent, ou elle peut comporter un mélange d'eau recyclée et d'eau naturelle soit indirectement par des apports d'eau de surface ou recharge d'eau souterraine soit directement par un système d'ingénierie. Les principales filières de réutilisation de l'eau sont illustrées sur la figure 1.1 et comprennent la recharge des eaux souterraines, l'irrigation, l'utilisation industrielle et la réalimentation des eaux de surface. La réalimentation des eaux de surface et la recharge des eaux souterraines s'effectuent également par drainage naturel et par infiltration de l'eau d'irrigation et ruissellement des eaux pluviales. La possibilité d’utiliser les eaux usées récupérées pour les traiter en eau potable est également indiquée, bien que cette application soit réservée à des situations exceptionnelles. La quantité d’eau transférée par chaque filière dépend des caractéristiques du bassin hydrographique, des facteurs climatiques et hydrogéologiques, du degré d’utilisation de l’eau à diverses fins et du degré de réutilisation directe ou indirecte de l’eau (Asano, 1998).
L’eau utilisée ou réutilisée pour l’irrigation agricole ou paysagère comprend des applications agricoles, domestiques, commerciales et municipales. La réutilisation industrielle constitue une catégorie générale englobant toute une série d’installations telles que les centrales nucléaires, l’agroalimentaire et d’autres secteurs consommant des quantités d’eau élevées. Dans certains cas, il a été mis au point des systèmes en boucle qui traitent l’eau d’un seul procédé de fabrication et la restituent au même procédé avec un certain volume d’appoint. Dans d’autres cas, les eaux usées municipales récupérées sont utilisées à des fins industrielles telles que les tours de refroidissement. Les systèmes en boucle font aussi l’objet d’une évaluation par la National Aeronautics and Space Administration (NASA) pour la récupération et la réutilisation de l’eau au cours de mission spatiales au long cours.

1.3 Opérations et procédés de traitement pour la récupération des eaux usées

S’agissant du traitement des eaux usées, il est désormais possible d’obtenir n’importe quelle qualité requise d’effluent traité. Si le coût peut être élevé avec certaines technologies décentralisées (comme les systèmes de traitement naturels des eaux usées), les développements surviennent à une telle vitesse que l’on est fondé à prévoir que les coûts de traitement seront compétitifs avec ceux des installations conventionnelles centralisées ou qu’ils seront même inférieurs, notamment si les coûts de la collecte et/ou du transport des eaux usées sont également pris en compte. Ainsi a été introduit le concept de qualités multiples pour le traitement des eaux usées (Tchobanoglous, 1999), si bien que différents niveaux de traitement devraient être utilisés en fonction du site d’élimination et/ou de la pratique de réutilisation prévus (fig. 1.2). Dans un tel schéma, les systèmes de traitement naturels des eaux usées jouent un rôle important.

Figure 1.2 Concept de traitement à qualités multiples et schéma de réutilisation pour un immeuble résidentiel (Tchobanoglous, 1999)
Les opérations et procédés de traitement pour la récupération et la réutilisation des eaux usées comprennent habituellement la filtration sur lit granulaire, la filtration sur membranes (microfiltration, ultrafiltration, nanofiltration et osmose inverse), la précipitation chimique (pour l’élimination du phosphore), et la désinfection (au chlore, à l’ozone ou aux UV). Les trois principaux procédés de traitement tertiaire sont le traitement complet, la filtration directe et la filtration sur lit de contact. Le traitement complet est essentiellement un traitement de l’eau qui comporte coagulation, flocculation, clarification, filtration et désinfection. Le rendement d’un tel traitement en ce qui concerne le total des solides en suspension et les agents pathogènes est important et l’on peut obtenir une eau exempte de virus à la suite de désinfection et utiliser ainsi l’effluent secondaire comme source d’alimentation (Crites et Tchobanoglous, 1998).

La filtration directe est un procédé de traitement complet avec élimination par décanter quand la turbidité de l’effluent secondaire dépasse 7 à 9 UTN; une valeur de la turbidité égale à 2 de l’effluent filtré nécessite habituellement l’adjonction de produits chimiques et il se peut que l’on ait à actionner les filtres à des taux de charge inférieurs. La filtration indirecte n’est que partiellement efficace pour l’élimination des ookystes et kystes de protozoaires.

Dans la filtration par contact, les phases de flocculation et clarification sont absentes et le système repose sur la coagulation en ligne avant la filtration. Il a été démontré en Californie (dans une étude sur le virus Pomona) qu’avec un temps de contact de désinfection approprié, une élimination virale équivalente à celle du traitement complet pouvait être obtenue (Crites et Tchobanoglous, 1998). La filtration de contact n’est également que partiellement efficace pour l’élimination des ookystes et kystes de protozoaires. Des critères types pour la conception du traitement tertiaire effectué avant réutilisation sont présentés sur

Tableau 1.1

Critères types pour la conception du traitement tertiaire avant réutilisation
(d’après Crites et Tchobanoglous, 1998)

<table>
<thead>
<tr>
<th>Paramètre de conception</th>
<th>Unité</th>
<th>Valeur</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mélange rapide de coagulation</td>
<td>sec</td>
<td>0,5-5</td>
<td><1</td>
</tr>
<tr>
<td>Temps de séjour hydraulique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flocculation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temps de séjour hydraulique</td>
<td>Mn</td>
<td>10-30</td>
<td>20</td>
</tr>
<tr>
<td>Gradient de vitesse G</td>
<td>sec⁻¹</td>
<td>20-100</td>
<td>40</td>
</tr>
<tr>
<td>Énergie de mélange x temps de séjour (G·t)</td>
<td>SO*</td>
<td>20 000-150 000</td>
<td>50 000</td>
</tr>
<tr>
<td>Sédimentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taux de surverse maximum</td>
<td>m³/m²·d</td>
<td>32,56-40,70</td>
<td>32,56</td>
</tr>
<tr>
<td>Filtration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taux avec filtre hors service</td>
<td>m³/m²·d</td>
<td>0,16-0,24</td>
<td>0,20</td>
</tr>
<tr>
<td>Chloration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temps de séjour du mélange rapide</td>
<td>Sec</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Temps de contact modal à débit maximal</td>
<td>Min</td>
<td>30-120</td>
<td>90</td>
</tr>
<tr>
<td>Conception du réacteur</td>
<td>SO*</td>
<td>Écoulement piston (plug-flow)</td>
<td></td>
</tr>
</tbody>
</table>
Désinfection aux UV

<table>
<thead>
<tr>
<th>Dosage à débit maximal hebdomadaire</th>
<th>mW·sec/cm²</th>
<th>100-160</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conception du réacteur</td>
<td>SO*</td>
<td>Écoulement piston (plug-flow)</td>
<td></td>
</tr>
</tbody>
</table>

* Sans objet

1.4 Diagrammes fonctionnels types de systèmes de récupération

Avec la technologie aujourd'hui disponible, il peut être mis au point des systèmes de récupération qui produisent des eaux usées traitées de n’importe quelle qualité souhaitée. Dans tous les cas, les problèmes à envisager sont le coût, l’énergie requise, l’élimination des sous-produits et l’adhésion de la collectivité.

Les niveaux de traitement que l’on peut obtenir en combinant diverses opérations et procédés unitaires utilisés pour l’épuration des eaux usées sont indiqués sur le tableau 1.2. Il est intéressant de noter que les diagrammes fonctionnels comportant des fosses septiques et des filtres percolateurs intermittents donnent des qualités d’effluent qui sont comparables, voire supérieures, aux systèmes des boues activées avec filtration (Crites et Tchobanoglous, 1998). L’utilisation de procédés à membranes, tels que l’osmose inverse, peuvent être intégrés dans tout diagramme fonctionnel pour réduire la teneur en éléments nutritifs et autres constituants de l’effluent. Il est manifeste que l’on dispose aujourd’hui d’une technologie permettant d’obtenir, à partir des eaux usées, un effluent de haute qualité, et ce quelle que soit la taille du système.

1.5 Historique

1.6 Les membranes dans le traitement et la réutilisation des eaux usées

Le traitement des eaux usées au moyen de membranes s’est avéré être un domaine essentiel de l’application des membranes au regard des exigences de la protection de l’environnement, de la récupération et de la réutilisation de l’eau. Malheureusement, des activités industrielles incontrôlées ont créé une pollution grave de nombreuses ressources en eau naturelles, dégradant considérablement la qualité de celles-ci. La technologie des membranes doit être utilisée pour épurer les eaux usées avant que les déchets ne pénètrent dans les ressources en eau, ainsi que pour la récupération et la réutilisation de constituants précieux comme l’eau elle-même et certains de ses éléments. Par ailleurs, les gisements d’eau diminuent constamment alors que le coût du drainage augmente, si bien que l’idée d’une récupération et réutilisation industrielles des eaux usées gagne du terrain puisque de tels investissements sont viables au plan économique. Les pays confrontés à de graves
Tableau 1.2

Niveaux de traitement qu’il est possible d’obtenir avec diverses combinaisons d’opérations et procédés unitaires utilisés pour la régénération des eaux usées (d’après Crites et Tchobanoglous, 1998)

<table>
<thead>
<tr>
<th>Procédé de traitement</th>
<th>Qualité type de l’effluent en mg/l sauf pour la turbidité, NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS</td>
</tr>
<tr>
<td>Boues activées + filtration</td>
<td>4-6</td>
</tr>
<tr>
<td>Boues activées + filtration + adsorption sur charbon</td>
<td><5</td>
</tr>
<tr>
<td>Boues activées/nitrification, stade unique</td>
<td>10-25</td>
</tr>
<tr>
<td>Boues activées/nitrification-dénitrification, stades séparés</td>
<td>10-25</td>
</tr>
<tr>
<td>Addition de sels métalliques aux boues activées + nitrification-dénitrification + filtration</td>
<td><5-10</td>
</tr>
<tr>
<td>Déphosphoration biologiqueª</td>
<td>10-20</td>
</tr>
<tr>
<td>Désazotation et déphosphoration biologiqueª + filtration</td>
<td><10</td>
</tr>
<tr>
<td>Boues activées + filtration + adsorption sur charbon + OI</td>
<td><1</td>
</tr>
<tr>
<td>Boues activées/nitrification-dénitrification et déphosphoration + filtration + adsorption sur charbon + OI</td>
<td><1</td>
</tr>
<tr>
<td>Fosse septique avec chambre de filtration d’effluent</td>
<td>25-40</td>
</tr>
<tr>
<td>Fosse septique avec filtre percolateur interne</td>
<td>20-40</td>
</tr>
<tr>
<td>Fosse septique avec chambre de filtration d’effluent + filtres percolateurs intermittents</td>
<td>0-5</td>
</tr>
<tr>
<td>Fosse septique + biofiltre absorbant</td>
<td>5-15</td>
</tr>
</tbody>
</table>

ª Le processus d’élimination se produit dans l’écoulement principal à la différence du traitement dans le courant latéral.
problèmes de qualité de l’eau dus au développement ont commencé à promulguer des directives de plus en plus rigoureuses pour les rejets d’eaux usées, et donc à exiger des traitements très poussés des eaux usées.

Tableau 1.3
Exemples chronologiques de récupération et réutilisation des eaux usées en diverses parties du monde

<table>
<thead>
<tr>
<th>Année</th>
<th>Emplacement</th>
<th>Exemples de réutilisation des eaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>1926</td>
<td>Parc national du Grand Canyon, Arizona, USA</td>
<td>Chasses d’eau, arrosage rotatif, eau de refroidissement, alimentation des chauffe-eau.</td>
</tr>
<tr>
<td>1929</td>
<td>Ville de Pomona, Californie, USA</td>
<td>Irrigation des pelouses et jardins.</td>
</tr>
<tr>
<td>1942</td>
<td>Ville de Baltimore, Maryland, USA</td>
<td>Refroidissement des métaux et procédés sidérurgiques à la Bethlehem Steel Company.</td>
</tr>
<tr>
<td>1960</td>
<td>Ville de Colorado Springs, Colorado, USA</td>
<td>Irrigation paysagère pour les terrains de golf, parcs, cimetières et autoroutes.</td>
</tr>
<tr>
<td>1961</td>
<td>District d’Irvine Ranch Water, Californie, USA</td>
<td>Irrigation, utilisations industrielles et domestiques,, notamment chasses d’eau de tours d’habitation.</td>
</tr>
<tr>
<td>1962</td>
<td>Districts d’assainissement de Los Angeles County, Californie, USA</td>
<td>Recharge des eaux souterraines au moyen de bassins d’étalonnage à Montebello Forebay.</td>
</tr>
<tr>
<td>1962</td>
<td>La Soukra, Tunisie</td>
<td>Irrigation avec de l’eau récupérée pour les cultures d’agrumes et pour réduire l’intrusion d’eau salée dans les eaux souterraines.</td>
</tr>
<tr>
<td>1968</td>
<td>Ville de Windhoek, Namibie</td>
<td>Système perfectionné de récupération directe des eaux usées pour augmenter les approvisionnements en eau potable.</td>
</tr>
<tr>
<td>1969</td>
<td>Ville de Wagga Wagga, Australie</td>
<td>Irrigation paysagère de terrains de sport, de pelouses et de cimetières.</td>
</tr>
<tr>
<td>1970</td>
<td>Groupe de pâte à papier et papier Sappi, Enstra, Afrique du Sud</td>
<td>Utilisation industrielle d’eaux usées municipales récupérées pour les procédés de fabrication de pâte à papier et papier.</td>
</tr>
<tr>
<td>1976</td>
<td>District des eaux d’Orange County, Californie, USA</td>
<td>Recharge des eaux souterraines par injection directe à la Water Factory 21.</td>
</tr>
<tr>
<td>1977</td>
<td>Projet de la région de Dan, Tel-Aviv, Israël</td>
<td>Recharge des nappes aquifères par des bassins. L’eau souterraine pompée est transportée par un réseau de 100 km de long au sud d’Israël pour une irrigation sans restriction des cultures.</td>
</tr>
<tr>
<td>1977</td>
<td>Ville de St. Petersburg, Floride, USA</td>
<td>Irrigation de parcs, terrains de golf, terrains scolaires, pelouses de résidences et eau d’alimentation de tours de refroidissement.</td>
</tr>
<tr>
<td>1984</td>
<td>Autorités de l’agglomération de Tokyo, Japon</td>
<td>Projet de recyclage de l’eau dans le district Shinjuku de Tokyo fournissant de l’eau récupérée pour les chasses d’eau de 19 tours d’habitation dans une zone surpeuplée de la ville.</td>
</tr>
</tbody>
</table>
1.7 Catégories de réutilisations des eaux usées traitées

Une réutilisation de l’eau planifiée au niveau local revêt une importance croissante pour deux raisons (Bower, 1993). L’une est que le rejet d’effluents d’eaux usées dans les eaux de surface devient de plus en plus difficile et coûteux du fait que les normes d’épuration sont de plus en plus strictes pour protéger la qualité des eaux réceptrices en ce qui concerne la flore et la faune aquatiques, les activités récréatives et les utilisations en aval. La deuxième raison est que les eaux usées traitées constituent souvent une ressource d’eau importante qui peut servir à diverses fins, notamment dans les zones souffrant de pénuries. Une vaste gamme d’options s’offre pour la réutilisation de l’eau (Angelakis et Tchobanoglous, 1995). Pour les réseaux d’assainissement de petite taille et décentralisés, la réutilisation la plus courante est la production d’eau non potable, par exemple aux fins d’irrigation agricole et paysagère, ce qui nécessite un traitement de l’effluent répondant aux critères de qualité de l’utilisation visée. Les réutilisations les plus courantes d’eaux récupérées comprennent: a) l’irrigation (agricole et paysagère, b) l’industrie, c) la recharge des eaux souterraines, d) les utilisations récréatives, environnementales et les zones humides servant d’habitat, e) les utilisations diverses, f) l’aquaculture et g) l’eau potable. Ces catégories, avec les problèmes et limitations qui peuvent y être associés, sont indiquées sur le tableau 1.4.

1.7.1 Irrigation agricole

Les avantages et améliorations environnementales tirés de la réutilisation pour l’irrigation comprennent notamment:

a) la prévention de la pollution des eaux de surface qui se produirait si les eaux usées étaient rejetées dans les cours d’eau ou les lacs;

b) la conservation des ressources en eaux douces et leur utilisation rationnelle, ce qui est d’une grande importance dans des régions arides et semi-arides comme la Méditerranée;

c) l’accroissement de la fertilité du sol, puisque les effluents sont riches en éléments nutritifs (azote, phosphore et potassium notamment) et permettent ainsi de réduire l’application d’engrais artificiels;

d) l’amélioration des caractéristiques physiques du sol grâce à l’apport de matières organiques. En outre, l’accumulation dans le sol peut prévenir l’érosion de celui-ci.
Table 1.4

Catégories de réutilisations des eaux usées municipales avec les problèmes et limitation qui peuvent y être associés (d’après Tchobanoglous et Angelakis, 1996)

<table>
<thead>
<tr>
<th>Catégories de réutilisations des eaux usées</th>
<th>Problèmes/limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation agricole</td>
<td>a) Pollution des eaux de surface et souterraines si gestion malaisée; b) produits mal acceptés sur le marché; c) incidences de la qualité de l'eau - notamment des sels - sur les sols et les cultures; d) préoccupations de santé publique liées aux agents pathogènes (bactéries, virus et parasites); e) utilisation pour une région comportant une zone tampon; f) peut se traduire par un coût plus élevé pour l'utilisateur.</td>
</tr>
<tr>
<td>Irrigation de cultures</td>
<td></td>
</tr>
<tr>
<td>Nourriceries commerciales</td>
<td></td>
</tr>
<tr>
<td>Irrigation paysagère</td>
<td>a) Constituants des eaux usées récupérées occasionnant entartrage, corrosion, proliférations d'organismes et salissures; b) préoccupations sanitaires, notamment transmission d'agents pathogènes par aérosols avec les eaux de refroidissement.</td>
</tr>
<tr>
<td>Parcs</td>
<td></td>
</tr>
<tr>
<td>Terrains scolaires</td>
<td></td>
</tr>
<tr>
<td>Bandes de séparation des chaussées d’autoroute</td>
<td></td>
</tr>
<tr>
<td>Terrains de golf</td>
<td></td>
</tr>
<tr>
<td>Cimetières</td>
<td></td>
</tr>
<tr>
<td>Ceintures vertes</td>
<td></td>
</tr>
<tr>
<td>Immeubles résidentiels</td>
<td></td>
</tr>
<tr>
<td>Recyclage et réutilisation industriels</td>
<td></td>
</tr>
<tr>
<td>Eau de refroidissement</td>
<td>a) Produits chimiques organiques dans les eaux usées récupérées et leurs effets toxicologiques, b) solides en suspension, nitrates, et agents pathogènes dans les eaux usées récupérées.</td>
</tr>
<tr>
<td>Alimentation des chaufte-eau</td>
<td></td>
</tr>
<tr>
<td>Eau à usage industriel</td>
<td></td>
</tr>
<tr>
<td>Secteur du bâtiment</td>
<td></td>
</tr>
<tr>
<td>Recharge des eaux souterraines</td>
<td>a) préoccupations sanitaires en raison des bactéries et virus; b) eutrophisation due à l’azote et au phosphore dans les eaux réceptrices; c) toxicité pour la flore et la faune aquatiques.</td>
</tr>
<tr>
<td>Reconstitution des eaux souterraines</td>
<td></td>
</tr>
<tr>
<td>Lutte contre l’intrusion d’eau salée</td>
<td></td>
</tr>
<tr>
<td>Lutte contre la subsidence</td>
<td></td>
</tr>
<tr>
<td>Utilisations récréatives,</td>
<td>a) constituents dans les eaux usées récupérées. Notamment produits chimiques organiques en traces et leurs effets toxicologiques; b) acceptation au plan esthétique, adhésion de la collectivité; c) préoccupations sanitaires concernant la transmission d’agents pathogènes, en particulier de virus</td>
</tr>
<tr>
<td>Zones humides servant d’habitats</td>
<td></td>
</tr>
<tr>
<td>Lacs et étangs</td>
<td></td>
</tr>
<tr>
<td>Valorisation des marais</td>
<td></td>
</tr>
<tr>
<td>Réalimentation des cours d'eau</td>
<td></td>
</tr>
<tr>
<td>Pêche</td>
<td></td>
</tr>
<tr>
<td>Production de neige artificielle</td>
<td></td>
</tr>
<tr>
<td>Utilisations diverses</td>
<td>a) Préoccupations de santé publique en raison des agents pathogènes transmis par aérosol; b) effets de la qualité de l’eau sur l’entartrage, la corrosion, les proliférations d’organismes et les salissures; c) liaisons croisées</td>
</tr>
<tr>
<td>Lutte contre les incendies</td>
<td></td>
</tr>
<tr>
<td>Climatisation</td>
<td></td>
</tr>
<tr>
<td>Vidange des W.-C.</td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>a)</td>
</tr>
<tr>
<td>Production d’eau potable</td>
<td></td>
</tr>
<tr>
<td>Mélange pour les approvisionnements en eau</td>
<td></td>
</tr>
<tr>
<td>Apport d’eau en continu</td>
<td></td>
</tr>
</tbody>
</table>
1.7.2 Irrigation paysagère

L’irrigation paysagère, également appelée réutilisation urbaine, consiste à irriguer notamment: a) les parcs; b) les terrains de sport; c) les terrains de golf; d) les bandes de séparation des chaussées d’autoroute; e) les espaces aménagés autour centres commerciaux, immeubles de bureaux et établissements industriels; et f) les espaces aménagés autour des immeubles résidentiels. De nombreux projets d’irrigation paysagère comportent des systèmes de double distribution, un réseau d’eau potable et un autre d’eau récupérée. Le réseau de distribution d’eau recyclée devient le troisième service d’eau d’utilité publique après le réseau de réutilisation des eaux usées et celui d’eau potable, et il est exploité, entretenu et géré comme le réseau d’eau potable. La distribution double la plus ancienne des États-Unis se trouve à St. Petersburg, Floride (US.EPA, 1992). Le système fournit de l’eau recyclée pour toute une série d’usages, y compris une centrale électrique, la récupération et l’irrigation de terrains scolaires, un stade de baseball, des lotissements résidentiels, des centres commerciaux et des parcs industriels.

1.7.3 Réutilisation industrielle

1.7.4 Retenues et utilisations à des fins récréatives, et zones humides servant d’habitats

Les retenues à des fins récréatives peuvent remplir toute une série de fonctions, depuis les usages purement esthétiques jusqu’au canotage, à la pêche ou à la natation. Le niveau requis de traitement varie selon l’utilisation projetée de l’eau et le degré de contact de cette eau avec le public. L’aspect de l’eau recyclée pose aussi problème car les éléments nutritifs qu’elle contient peuvent stimuler la croissance des algues et des herbes aquatiques. Il est généralement nécessaire d’éliminer le phosphore et, éventuellement, l’azote pour prévenir la croissance des algues dans les lacs à usage récréatif. Si l’on ne limite pas la teneur en éléments nutritifs, il existe un fort potentiel d’efflorescences algales qui s’accompagnent d’odeurs, d’aspects inesthétiques et de conditions eutrophes.

Les bassins d’eau recyclée peuvent être intégrés dans les aménagements paysagers urbains. Les lacs artificiels, les bassins de stockage et pièges à eau des terrains de golf peuvent être alimentés par de l’eau recyclée. On trouve aux États-Unis de tels exemples de retenues à usage récréatif à Las Colinas(Texas), Santee (Californie), Lubbock (Texas) et à l’usine Tillman de récupération d’eau de Los Angeles (US.EPA, 1992; WPCF, 1989).

Les zones humides naturelles ou aménagées servant d’habitats peuvent tirer un grand parti de l’eau recyclée. Les zones humides remplissent de nombreuses fonctions d’une grande utilité, notamment pour l’atténuation des inondations, comme réserves de flore et faune sauvages, comme habitats de la sauvagine, pour la productivité d’appui aux
chaînes alimentaires, la recharge des nappes aquifères et l’amélioration de la qualité de l’eau. La distinction entre une zone humide ‘aménagée’ et une zone humide ‘ Créée’ est que la première est conçue comme une unité de d’épuration qui peut être modifiée ou abandonnée après que sa vie utile est achevée. En revanche, une zone humide créée est destinée à être entretenue et protégée durablement en raison de ses avantages pour la flore et la faune sauvages.

L’eau récupérée a été appliquée aux zones humides pour toute une série de raisons, à savoir notamment: a) la création, la restauration et le renforcement d’habitats; b) l’octroi d’un traitement supplémentaire avant le rejet dans les eaux réceptrices et c) une alternative d’évacuation dans des conditions météorologiques humides pour l’eau recyclée. Il existe des exemples de zones humides servant d’habitats à Orlando (Floride), à Showlow (Arizona) et à Arcata (Californie). Les zones humides d’Arcata se composent de trois marais de 4 hectares et ont attiré plus de 200 espèces d’oiseaux, fourni une écloserie pour le saumon, créé une attraction touristique pour la ville d’Arcata, et directement concouru au développement du Sanctuaire de marais et de flore et faune sauvages d’Arcata (US.EPA, 1992).

1.7.5 Recharge des eaux souterraines

La recharge des aquifères ôte son identité à l’eau recyclée en l’assimilant à l’eau souterraine, ce qui a un impact psychologique important et positif dans la perspective d’une réutilisation. En effet les réserves et le peu d’emprise que suscite dans l’opinion l’utilisation de l’eau recyclée peuvent être levées par la recharge des eaux souterraines et par la récupération et utilisation ultérieures de ces dernières (Bower, 1993).

La recharge des eaux souterraines peut s’opérer soit par épandage en surface soit par injection. La recharge artificielle de la nappe avec de l’eau douce et de l’effluent d’eaux usées prétraitées continue de se développer, en particulier dans les régions arides et semi-arides du monde. En utilisant de l’effluent d’eaux usées prétraitées dans un système de traitement sol-aquifère (TSA), avec des taux de charge hydraulique relativement élevés (50–100 mm/an) et des pertes par évaporation restreintes à un faible fraction de l’effluent appliqué, la plus grande partie de celui-ci percolé à travers le profil du sol au site du traitement (Angelakis, 1997). Les principales questions à examiner dans un système de conception TSA sont : a) le prétraitement des eaux usées qui est requis; b) les méthodes d’application; et c) l’élimination de divers constituants. La recharge artificielle de l’aquifère a été utilisée avec succès dans le monde pour combattre l’appauvrissement en eau souterraine, pour éliminer et/ou traiter les eaux usées et lutte contre l’intrusion d’eau de mer dans les zones côtières.

La recharge de la nappe dans la technologie de récupération des eaux usées a pour objet principal: a) de renforcer la capacité en aquifères d’eau potable et/ou non potable; b) d’assurer un traitement complémentaire de l’eau récupérée; c) d’assurer le stockage de l’eau récupérée; d) de maîtriser ou prévenir la subsidence; et e) de faire obstacle à l’intrusion d’eaux usées dans les aquifères côtiers. Un autre avantage de la recharge est d’ôter aux effluents d’eaux usées leur identité, avec un impact psychologique positif pour l’acceptation par l’opinion de la réutilisation des eaux usées. Des valeurs de perméabilité dépassant 25 mm/h sont nécessaires pour une infiltration rapide. Par conséquent, le terreau sablonneux et les graviers ou sables fins sont préférables pour les sols de surface dans les systèmes TSA. Pour les eaux usées municipales, le niveau approprié de traitement est habituellement la sédimentation primaire. Un niveau équivalent d’élimination du total des solides en suspension peut être obtenu en bassin avec un bref temps de séjour.
1.7.6 Utilisations diverses

L’eau récupérée a donné lieu à toute une série d’utilisations: a) alimentation d’installations sanitaires; b) alimentation de blanchisseries publiques ou commerciales; c) lutte contre les incendies; d) production de neige artificielle; e) lavage des égouts domestiques; f) vidange des égouts sanitaires; et g) lavage des agrégats et production de ciment.

1.7.7 Aquaculture

L’aquaculture est l’élevage de poisson et d’autres organismes aquatiques destinés à la consommation humaine. Les eaux usées ont été utilisées dans diverses exploitations aquacoles dans le monde. Cependant, dans la plupart des cas, la production de biomasse était le premier objectif du système, et toute épuration des eaux usées ainsi obtenue n’était qu’un avantage secondaire. La plus grande partie de l’épuration obtenue dans les exploitations aquacoles a été attribuée aux plantes aquatiques flottantes. Peu d’éléments plaident en faveur d’une contribution directe du poisson à l’épuration. La combinaison de l’épuration des eaux usées et de l’aquaculture en une seule opération appelle des recherches plus poussées. En particulier, les risques sanitaires associés à l’utilisation d’organismes aquatiques élevés dans des eaux usées doivent être bien définis (Metcalf et Eddy, 1991). En tout cas, un degré élevé de prétraitement des eaux usées municipales devrait être exigé. À cet égard, seules les eaux usées traitées à un niveau de qualité défini devraient servir à l’aquaculture.

L’aquaculture peut être réalisée dans des eaux de qualité non potable, y compris les eaux usées municipales, pour autant que leurs incidences sur la vie du poisson et la qualité de sa chair soient acceptables. Comme pour toute industrie alimentaire, les agents pathogènes, les métaux lourds, les composés toxiques et autres matières organiques en traces sont particulièrement dangereux et doivent faire l’objet d’une investigation soigneuse et régulière pour éviter des effets nocifs sur la santé publique. Enfin, des mesures concertées devraient être prises, notamment l’octroi d’incitations, d’une formation appropriée, d’une assistance et d’autres mesures visant à protéger la santé publique (Angelakis, 1997).

Bien que l’utilisation des eaux usées pour l’approvisionnement direct d’exploitations aquacoles ne puisse être exclue, comme sa faisabilité repose en fait sur la qualité proprement dite de ces eaux, il semble qu’une action gouvernementale appropriée visant à promouvoir des méthodologies plus avancées faisant appel à des ressources en eaux conventionnelles serait une solution beaucoup plus commode, sûre et pratique à mettre en œuvre (Pescod, 1990).

1.7.8 Utilisations aux fins d’eau potable

Les approvisionnements en eau potable peuvent être augmentés au moyen d’eau récupérée; cependant, pour de petits réseaux, les perspectives sont généralement restreintes. La réutilisation indirecte aux fins d’eau potable a été effectuée dans le Comté de Fairfax, en Virginie et dans le Comté de Clayton, en Géorgie (Reed et Crites, 1984). La réutilisation directe en circuit fermé n’est réalisée qu’à Windhœk (Namibie), et ce de façon intermittente (US.EPA, 1992). Des recherches sur la réutilisation directe aux fins d’eau potable sont menées à Denver (Colorado), à Tampa (Floride) et à San Diego (Californie) (Asano et Tchobanoglous, 1995).

1.8 Conditions requises pour la réutilisation

L’acceptabilité des eaux usées récupérées à une fin quelconque dépend de leur qualité physique, chimique et microbiologique et principalement des risques sanitaires liés à
cette qualité. Dans tous les cas, une infrastructure appropriée à la réutilisation doit exister. Cette infrastructure comprend les procédés de traitement et de récupération des eaux usées, l’ensemble du réseau de distribution et, s’il y a lieu, des installations de stockage.

L’évaluation de la fiabilité du traitement, et, d’une manière générale de l’ensemble de l’infrastructure de réutilisation, est une mesure de contrôle incontournable, parfois négligée. La conception et les performances des réseaux de distribution sont importantes pour garantir que les eaux usées récupérées ne se dégradent pas avant leur utilisation et qu’elles ne sont pas utilisées de manière impropre. Le stockage en plein air peut se traduire par une dégradation de la qualité des eaux en raison de microorganismes, algues ou solides en suspension, et elle peut être à l’origine de mauvaises odeurs ou conférer une couleur aux eaux usées récupérées. Néanmoins, s’ils sont bien gérés, les systèmes de stockage peuvent améliorer la qualité de la ressource.

Le contrôle des zones où les eaux usées sont réutilisées est d’une importance primordiale si l’on veut obtenir une réduction notable du risque sanitaire et environnemental. Il convient de rappeler que la réduction du risque à des niveaux acceptables est l’objectif final de toutes les règles et réglementations relatives à la réutilisation.

S’agissant de la récupération et réutilisation des eaux usées, chaque utilisateur potentiel doit garder à l’esprit les contraintes juridiques existant dans le pays. Les réglementations peuvent repose sur l’instauration de règles de qualité concernant le produit final (eaux récupérées) ou sur la définition du matériel de récupération des eaux usées (à titre obligatoire ou de référence). Dans l’un et l’autre cas, le matériel et les réglementations pourraient être complétées par la formulation de bonnes pratiques de réutilisation ou d’indications similaires.

Dans certaines pratiques non agricoles de récupération des eaux usées, divers problèmes juridiques se posent, généralement en rapport avec la législation sur l’eau ou les ressources en eau en vigueur dans chaque pays. Par exemple, quand les eaux souterraines sont rechargées avec des eaux usées récupérées, il doit être clairement établi qui est le propriétaire de l’eau afin d’éviter des prélèvements illicites. Aux États-Unis, ces problèmes ont donné lieu à des poursuites judiciaires (NRC, 1994), et, en Espagne, quand un aquifère est rechargé, l’eau souterraine appartient à l’État – elle est dite “domaine hydraulique public”. Dans les zones non côtières et arides, il arrive souvent que les eaux usées municipales traitées ou non traitées constituent pratiquement les seuls cours d’eau existants. Les utilisateurs en aval sont tributaires de ce cours d’eau et ont des droits sur lui; aussi n’est-il pas toujours possible que l’eau soit récupérée et réutilisée à d’autres fins.

1.9 Questions concernant la réutilisation de l’eau

Les principales questions soulevées par le développement de la réutilisation des eaux usées sont: a) la valeur économique de la ressource; b) les questions technologiques; c) les besoins en matière de réglementation; et les questions sociales. Ces diverses questions sont évoquées brièvement ci-dessous (Tchobanoglous, 1999).

1.9.1 Valeur économique de l’eau

En maintes parties du monde, l’eau est une ressource sous-évaluée. Au plan historique, les approvisionnements en eau ont été abondants et à bas prix (Linsky, 1998) si bien que l’eau n’est pas perçue à sa juste valeur. De même, en raison de cette sous-évaluation et comme la réutilisation de l’eau n’a pas été considérée comme un facteur important dans la disponibilité et l’utilisation de l’eau à l’échelle mondiale, il est difficile d’inculquer la dimension économique de la réutilisation. Cependant, comme la population mondiale s’accroît (d’environ 78x10⁶/an, Linsky, 1998), les pénuries d’eau sont désormais
devenues monnaie courante dans de nombreuses parties du monde. Un moyen d’optimiser l’utilisation des approvisionnements en eau existants consiste à recourir à des stratégies multiples de réutilisation de l’eau. En libérant des ressources en eau douce pour l’approvisionnement en eau potable et d’autres usages prioritaires, la réutilisation des eaux usées contribue à la conservation de l’eau et revêt une dimension économique. Il est manifeste que, à mesure que la tarification de l’eau va s’imposer comme un fait admis, le prix de l’eau va évoluer dans l’avenir et que le rôle et l’importance de la réutilisation de l’eau vont continuer de croître. La tarification de l’eau est une question d’une grande importance dans la gestion de cette ressource car elle peut avoir des incidences sur les quantités attribuées, sur la conservation de l’eau, sur les modes de culture, la répartition des revenus, l’efficacité de la gestion de l’eau et la génération d’un revenu supplémentaire pouvant servir à exploiter et entretenir des réseaux de distribution d’eau.

1.9.2 Questions techniques

Toute une gamme de techniques appropriées sont désormais disponibles et peuvent servir à produire une eau de la qualité voulue, quelle qu’elle soit. De plus, comme on l’a relevé plus haut, le coût de ces techniques ne cesse de diminuer. Mais les éléments suivants font défaut: a) un ensemble de critères cohérent pouvant être utilisé pour évaluer les performances et permettre des comparaisons valables entre les techniques existantes et celles qui sont cours de mise au point; b) des mesures bien élaborées de la fiabilité définie en termes d’application de la réutilisation proposée, et c) des mesures bien documentées de sûreté intégrée. Ces questions doivent être résolues si l’on souhaite obtenir une large adhésion à la réutilisation de l’eau.

1.9.3 Exigences en matière de réglementation

Pour protéger l’environnement et la santé publique sans dissuader pour autant le recours à la récupération et à la réutilisation des eaux usées, de nombreuses réglementations ont été instaurées pour préciser notamment les conditions requises en matière de qualité de l’eau, de procédés de traitement, d’échantillonnage et de surveillance continue, d’exploitation des installations et de fiabilité des procédés. Cependant, la plupart des normes existantes reposent sur l’expérience passée et sur des connaissances limitées, voire très fragiles. Il s’ensuit que des normes différentes sont en vigueur dans l’ensemble du monde. En outre, la corrélation existant entre nombre des indicateurs de qualité de l’eau et la santé publique reste floue. Par exemple, aux États-Unis, les normes concernant les mollusques/crustacés sont basées sur les coliformes. Mais en fait, s’agissant de ces organismes, ce sont plutôt les oocystes de *Cryptosporidium* et les kystes de *Giardia* qui sont préoccupants. Enfin, bon nombre des normes édictées sont peu concordantes, y compris l’utilisation du coliphage Ms2 comme indicateur pour l’évaluation de la performance des procédés. Selon des études récentes, il apparaît que le coliphage Ms2 est un organisme beaucoup plus résistant que certaines des organismes employés dans le passé pour élaborer des normes de qualité de l’eau et de rendement d’épuration (Tchobanoglous, 1999).

1.9.4 Questions sociales

L’esthétique et l’adhésion du public sont des aspects importants de la réutilisation de l’eau, notamment si la population est directement affectée. Les principales questions sociales posées par la réutilisation sont: a) la perception qu’en a le public; b) la confiance qu’y place le public; et c) l’adhésion du public. Bien que difficile à évaluer, la perception qu’en a le public est d’une importance majeure pour l’acceptation des projets de récupération. Dans de nombreux cas, le public ne croit pas en la capacité qu’a l’agence d’exploitation de produire de manière régulière une eau épurée répondant à toutes les conditions voulues. Il va de soi que cette méfiance doit être dissipée si l’on veut que la réutilisation des eaux usées soit acceptée par le public (Tchobanoglous, 1999). Des
institutions puissantes et bien organisées pour la collecte, le traitement et l’élimination des eaux usées, ainsi que la participation des usagers et des incitations à la réutilisation (prix inférieur à celui de l’eau douce) sont des facteurs déterminants de l’adhésion du public.

1.10 Gestion des biosolides d’épuration

1.10.1 Introduction

L’importante contribution que les biosolides d’eaux usées (boues d’épuration) peuvent apporter à la durabilité des ressources en eau est souvent sous-évaluée, ignorée ou même dénaturée. La présente section vise à y remédier en insistant sur les avantages et usages potentiels de leur utilisation, dont les principaux peuvent se concrétiser si la confiance du public et des utilisateurs à leur sujet est acquise et maintenue.

Les biosolides proviennent de l’épuration des eaux usées urbaines et sont des sous-produits inévitables du cycle de l’eau. À titre indicatif, plus de 12 millions de tonnes de matières sèches sont produites chaque année dans l’Union européenne, soit une fraction restreinte du total des déchets générés chaque année (250 millions de tonnes), mais qui va en augmentant à mesure qu’une quantité plus importante d’eaux usées est collectée et traitée (EUREAU, Union des associations nationales de distributeurs d’eau et de services d’assainissement de l’UE et de l’AELE).

Heureusement, les biosolides d’épuration sont une ressource qui se prêtent à un emploi durable selon plusieurs modalités. À vrai dire, ils représentent un lien écologiquement durable entre le milieu urbain, où sont produits la plupart d’entre eux, et le milieu rural où ils peuvent être recyclés dans l’agriculture. Ils peuvent également servir de source d’énergie, réduisant ainsi la dépendance à l’égard des combustibles primaires, et servir aussi à plusieurs applications spécialisées comme la régénération des sols contaminés. Pour tous ces cas, il faut que les biosolides d’épuration présentent une qualité compatible avec l’utilisation prévue et qu’ils fassent l’objet d’une gestion avisée et de contrôles efficaces.

Les biosolides des eaux usées brutes contiennent des traces des substances utilisées ou produites par la collectivité, dont certaines peuvent être rejetées dans les égouts et retenus dans les boues. Une mesure essentielle et qui entre progressivement en vigueur dans l’UE consiste, pour les gouvernements et les producteurs, à imposer aux utilisateurs qu’ils réduisent à la source les substances dangereuses et/ou persistantes. Une législation spécifique de l’UE relative à l’utilisation des biosolides dans l’agriculture, actuellement en cours d’actualisation, fixe les normes de qualité et les conditions dans lesquelles ces biosolides peuvent être épandus en toute sécurité sur le sol. Une directive sur l’incinération garantit que, lorsque les biosolides sont brûlés, les émissions se situent dans des limites acceptables. La qualité des biosolides fait l’objet d’une surveillance régulière pour s’assurer qu’elle répond aux normes requises et à l’usage prévu.

1.10.2 Propriétés d’amendements des sols – pratiques d’exploitation agricole

L’emploi des biosolides dans l’agriculture est lié à la valeur fertilisante des éléments nutritifs, de l’azote et du phosphore. 1 à 5 % de la matière sèche sont constitués de
phosphore et 1 à 5% d’azote. D’autres composés utiles à l’agriculture présents dans les biosolides sont le potassium, le soufre, le magnésium, le sodium et des éléments comme le bore, le cobalt et le sélénium. Les biosolides contiennent également des contaminants potentiels à l’état de traces. Ils sont soumis aux valeurs seuils fixées dans les réglementations pour garantir une utilisation sans danger dans l’agriculture. Ils sont en outre utilisés indirectement dans l’agriculture, par exemple après addition de chaux. Ces traitements sont particulièrement indiqués pour certains sols et permettent un épandage à différents moments et dans des conditions qui, sinon, ne s’y prêteraient pas.

Les biosolides peuvent servir à renforcer la croissance des cultures industrielles (comme le lin) ou énergétiques (biomasse). Dans l’horticulture, les biosolides peuvent être soumis à un traitement thermique ou compostés avec des résidus de culture, des déchets solides municipaux, des résidus de la transformation du bois, etc. Ces produits sont acceptables au plan esthétique et peuvent servir à l’amendement des sols et à des épandages d’engrais dans des cas où une application directe de biosolides ne serait pas possible, comme dans les jardins, les parcs publics et sur les accotements des routes.

Gestion de l’érosion des sols. Les biosolides d’épuration sont une excellente source de matières organiques pour les sols de qualité médiocre et ils peuvent représenter une contribution substantielle à la réduction de l’érosion.

Régénération et mise en valeur des sols. La couche superficielle des terres en friche et dégradées est souvent appauvrie en matières organiques, en azote et en phosphore. En certains sites, aucune terre n’est disponible et il est nécessaire d’y apporter des matériaux de couverture qui sont alors convertis en une couche superficielle se prêtant au maintien d’une croissance végétale. Les biosolides d’eaux usées ont une teneur en matières organiques et une valeur fertilisante qui offrent un milieu stable et contribuent à l’implantation de végétaux.

Revêtements de décharges. Les biosolides peuvent servir de revêtement quotidien et final sur les sites de décharge en formant une couche cohérente qui permet de réduire les nuisances au cours des opérations et, en fin de compte, de remettre en état le site comblé en vue d’une utilisation bénéfique ultérieure.

Sylviculture. Certains sols se prêtent mieux au développement de zones boisées, comme la plantation de taillis aux fins de cultures énergétiques et de produits tirés du bois (clôtures, etc). Les biosolides stimulent la croissance des arbres en leur apportant les éléments nutritifs dont ils ont besoin.

1.10.3 Propriétés énergétiques

Les biosolides ont une teneur en matières organiques qui peut être transformée en combustible ou utilisée comme telle. Une combinaison de techniques - digestion, séchage et incinération – le rend possible. La digestion des biosolides donne lieu à la production de biogaz qui servent d’énergie « verte ». Les biogaz peuvent être utilisés sur le site de la station d’épuration à des fins de chauffage ou de transformation. Ou bien ils sont convertis en électricité distribuée à travers des réseaux nationaux. Les biogaz peuvent aussi être convertis en carburants verts faisant fonctionner les autocars, camions et voitures qui utilisent comme carburant le gaz fossile. La co-incinération dans des usines qui ne sont pas aménagées à l’origine pour les déchets permet d’utiliser les biosolides séchés comme combustible secondaire. Des exemples en sont les fours à ciment et les centrales électriques. Les biosolides séchés ont une valeur calorifique comparable à celle du lignite. La co-incinération d’une tonne de biosolides séchés évite l’émission d’une tonne de CO₂. L’incinération des biosolides séchés donne le même résultat. La mono-incinération de biosolides déshydratés peut être réalisée par voie autothermique, autrement dit sans aucun
autre apport de combustible. Les biosolides peuvent aussi être gazéifiés pour donner un biocombustible pur, pouvant remplacer le gaz ou les hydrocarbures. De même, les biosolides peuvent servir à renforcer la croissance des cultures industrielles ou de celles utilisées pour la production de biomasse végétale.

1.10.4 Propriétés physico-chimiques

Leurs propriétés physiques et chimiques permettent aux biosolides d’épuration de servir à la fabrication de toute une série de produits de substitution, bien que la plupart de ceux-ci ne présentent pas actuellement de viabilité économique.

Produits. Un certain nombre de produits pourraient être directement obtenus à partir des biosolides ou comme mélanges de ceux-ci avec d’autres matières. Ils comprennent les matériaux de construction comme les briques, les matériaux d’étanchéité des décharges. Les cendres provenant de leur incinération peut être une source de phosphore pour la fabrication d’engrais ou servir à la fabrication de matériaux de construction comme les blocs et les agglomérés ou servir aussi de matière première dans l’industrie du ciment.

Matières extractibles. Divers constituants des biosolides d’épuration peuvent en être extraits pour tel ou tel usage. Ce sont notamment des graisses, des métaux comme l’argent ou le platine, des protéines, des vitamines et des coagulants. En général, les concentrations sont si faibles et les coûts de transformation si élevés par comparaison avec les méthodes de production conventionnelles que ces utilisations seraient dénuées d’intérêt commercial. Par contre, l’extraction de phosphore à partir des cendres d’incinération pour la fabrication d’engrais est plus prometteuse.

1.10.5 Conclusions

Les biosolides d’épuration résultent de la demande, par la collectivité, d’un milieu aquatique propre. Leur production est difficile à réduire et ils ne cessent de s’accumuler et d’être disponibles en quantités plus importantes puisque les eaux usées sont collectées et traitées en quantités toujours plus élevées. Ils représentent aussi une ressource très sous-évaluée. Ils contiennent un certain nombre de constituants potentiellement intéressants - éléments nutritifs, matières organiques, etc. – et ont une capacité calorifique qui leur permet de servir à toute une série d’usages. Les biosolides pourraient même être transformés pour donner une gamme flexible de produits plus appropriés à l’usage escompté. La qualité des biosolides d’épuration s’est progressivement améliorée au fil des années, notamment du fait que l’industrie manufacturière en déclin a été contrainte de se restructurer et que la gestion et la maîtrise de ses rejets dans les réseaux d’assainissement se sont développées. Leur qualité est prévisible et uniforme au plan local, compte tenu de l’échelle de leur collecte et de leur traitement. Les biosolides forment l’objet d’une législation rigoureuse et d’une gestion soigneuse. L’instauration régulière de normes environnementales, le respect des codes de bonne pratique, le relevé et la publication de données détaillées sur les rendements ont permis d’enregistrer de bons résultats d’exploitation et l’absence d’effets préjudiciables sur l’environnement. Néanmoins, les exploitants cherchent encore à améliorer ces résultats pour rassurer le public et certains secteurs comme l’agro-alimentaire. Pour résumer, les biosolides d’épuration sont une ressource précieuse, notamment comme engrais, pour l’aménagement des sols et à des fins énergétiques, et ils sont susceptibles de contribuer significativement à l’avènement d’une société plus durable.
Références

2. PRATIQUES DE RÉCUPÉRATION ET DE RÉUTILISATION DES EAUX USÉES DANS LA RÉGION MÉDITERRANÉENNE

2.1 Introduction

Les pays du sud-est de la Méditerranée et du Proche-Orient ont recours aux importations pour couvrir plus de 50% de leurs besoins alimentaires, et la demande alimentaire croît plus vite que le taux d'augmentation de la production agricole. Il s'ensuit que la mobilisation de terres et de ressources en eau se produit à un rythme rapide. Le développement de l'irrigation s'intensifie notamment du fait qu'il est le facteur de plus important pour l'augmentation de la production agricole. Seuls 30% de la superficie cultivée de la région sont irrigués mais ils génèrent environ 75% de la production agricole totale. Dans de nombreuses zones, l'agriculture est impossible sans irrigation (Papadopoulos, 1995).

Ce développement rapide de l'irrigation se traduit par une augmentation brutale de la demande en eau, et les ressources en eau les plus accessibles, comme les cours d'eau et les eaux souterraines peu profondes, sont désormais presque entièrement mises à contribution. Il faut donc recourir à d'autres ressources en eau pour répondre aux nouveaux accroissements de la demande. Il s'agit là avant tout d'une nécessité dans les régions qui se caractérisent par une grave inadéquation entre l'approvisionnement et la demande en eau, souvent associée à une disponibilité généralement faible de ressources, à des asymétries de la disponibilité et de la demande sur une base temporelle et régionale, et à une relation singulière entre l'eau et l'environnement qui soulève des problèmes spécifiques (Sano et al., 1999).

Les experts en eau et les responsables politiques conviennent qu'un très grave problème de pénurie d'eau se pose dans la région de la Méditerranée et du Moyen-Orient. Ils conviennent aussi que le problème doit être abordé dans un contexte régional. C'est une question qui ne peut plus attendre (Institute for Peace Implementation, IPI).

La croissance démographique, l'urbanisation et le développement industriel sont les principaux facteurs qui aggravent la pénurie d'eau en augmentant constamment la demande. Une démarche à laquelle on a largement recours pour évaluer les disponibilités en eau consiste à mesurer l'indice d'exploitation, à établir quelles les ressources en eau renouvelables par an et par habitant qui sont disponibles pour répondre aux besoins domestiques, industriels et agricoles (Lazarova et al., 2002). Sur la base des expériences passées de pays modérément développés concernant leurs zones arides, le chiffre de 1 000 m³/habitant/an de ressources en eau douce renouvelables a été proposé comme un seuil au-dessous duquel la plupart des pays doivent s'attendre à connaître un manque d'eau chronique d'une ampleur suffisante pour entraîner le développement et porter préjudice à la santé humaine. Selon certains experts, en dessous de 500 m³/habitant/an, les pays connaissent un stress hydrique total (Lazarova et al., 2000b). Dans certains pays, les indices d'exploitation des ressources en eau douce naturelles renouvelables ont atteint ou dépassé 100%, imposant ainsi un fardeau supplémentaire à l'exploitation des réserves d'eau non renouvelables (fossiles).

Les projections des Nations Unies (Division de la population du Secrétariat de l'ONU, 1994) indiquent que quatre pays méditerranéens ont déjà moins que le minimum de disponibilités en eau requis pour subvenir à leur propre production vivrière (1000 m³/habitant/an). En 2025, huit pays seront pratiquement dans la même situation. Tous ces pays se trouvent essentiellement sur la rive Sud de la Méditerranée (voir figure 2.1). La crise est déjà si aiguë qu'à Malte, par exemple, la consommation d'eau domestique dépasse de 50% les ressources disponibles. Dans de telles régions, au début du siècle prochain, les ressources en eau conventionnelles seront insuffisantes pour répondre ne serait-ce qu'à la
demande en eau domestique. En revanche, l’on prévoit que tous les pays méditerranéens de l'UE se maintiendront au niveau de 3 000 m³/habitant/jour ou au-dessus (Angelakis et al., 2000b).

La diversité climatique naturelle de la région méditerranéenne est grandement renforcée par plusieurs caractéristiques, géographiques et hydrologiques notamment, ce qui a des incidences quand on les rapporte au chiffre de la population. Comme exemple de cette situation, l’on peut observer que la pluviométrie varie approximativement de 300 à 3000 mm, autrement dit de 1 à 10, et les ressources internes par habitant de 1 à 160 (Correia, 1997).

En ce qui concerne la gestion des eaux usées dans le bassin méditerranéen, les eaux usées épurées ont servi pendant des siècles de ressource pour l’irrigation. Outre qu’il fournit une source d’eau à faible coût, le recours aux eaux usées épurées pour l’irrigation dans l’agriculture combine trois avantages. Primo, grâce aux propriétés fertilisantes de ces eaux (fertirrigation), l’on supprime une partie de la demande en engrais de synthèse et l’on contribue ainsi à diminuer les niveaux d’éléments nutritifs dans les cours d’eau. Secundo, cette pratique accroît les ressources en eau disponibles pour l’agriculture et, tertio, elle peut éviter la nécessité d’un traitement tertiaire onéreux. L’irrigation au moyen d’eau recyclée paraît aussi avoir quelques effets intéressants sur les sols et les cultures. Il s’ensuit que l’utilisation des eaux usées récupérées aux fins d’irrigation a été progressivement adoptée par la majorité de pays méditerranéens (Marecos do Monte et al., 1996). Comme l’irrigation représente de loin l’utilisation la plus importante de l’eau dans le monde et que les normes de qualité requises sont généralement les plus faciles à obtenir pour les divers types de récupération/réutilisation des eaux usées, elle constitue aussi de loin la plus importante application de la réutilisation en termes de volume.

Cependant, les eaux usées sont souvent associées à des risques environnementaux et sanitaires. De ce fait, son acceptabilité pour remplacer d’autres ressources en eau aux fins d’irrigation dépend fortement de l’acceptabilité des impacts entraînés par ces risques. Aussi s’impose-t-il de prendre des précautions avant de réutiliser des eaux usées (Asano, 1998). À cet égard, bien que l’irrigation de cultures ou de sites paysagers au moyen d’effluents d’eaux usées constitue en soi une méthode efficace de traitement de ces eaux, un traitement plus efficace est nécessaire pour certains polluants et un système de stockage et de distribution adéquat doit être mis en place avant que les eaux usées ne soient utilisées pour l’irrigation agricole ou paysagère (Asano et al., 1985).

La présente section fournit des informations sur les pratiques actuelles de récupération et réutilisation des eaux usées dans le bassin méditerranéen, expose les avantages et inconvénients qui en résultent et trace les perspectives de cette ressource en eau non conventionnelle.
Figure 2.1. Disponibilités annuelles des ressources en eau douce renouvelables pour 1990, 2025 et 2050 dans les pays méditerranéens (Division de la population du Secrétariat général de l’ONU, 1994)

* Ex-Yugoslavie is not differentiated among Slovenia, Croatia, Bosnia-Herzegovina, and Serbia
2.2 Les réponses aux pénuries d’eau

Plusieurs régions de pays méditerranéens sont confrontées régulièrement à de graves déséquilibres entre leur approvisionnement et leur demande en eau, notamment au cours des mois d’été. Il faut l’attribuer à la convergence d’une faible pluviométrie, d’une forte évaporation et de demandes accrues pour l’irrigation et le tourisme. Cependant, les pénuries d’eau touchent maintenant des régions jusqu’alors épargnées par ces phénomènes et où les périodes de sécheresse gagnent en fréquence et en longueur, peut-être par suite du changement climatique mondial. De nombreuses régions de France, d’Italie, de Belgique et du Royaume-Uni ont souffert des effets néfastes de sécheresses successives au cours des dix dernières années.

Plusieurs stratégies ont été élaborées pour faire face au manque d’eau. L’une consiste à opérer des transferts d’eau de bassins versants riches en cette ressource aux bassins versants déficitaires. Ces projets nécessitent des investissements très lourds et d’importants ouvrages de génie civil, susceptibles d’avoir des effets marqués sur l’environnement. De plus, comme la plupart des projets « faciles » ont déjà été réalisés (par exemple: canal de Provence en France, transfert Tage-Segura en Espagne), une telle approche devient de plus en plus difficile étant donné que les zones susceptibles de bénéficier de transferts d’eau sont de plus en plus éloignées. Il convient aussi de noter que cette pratique pose des problèmes économiques, institutionnels, culturels et politiques.

Il existe d’autres solutions comme les économies d’eau (par exemple, en supprimant les fuites des réseaux de distribution, en utilisant des techniques d’irrigation plus efficaces comme le goutte-à-goutte ou la micro-aspersion), l'appel à d'autres ressources (comme le lessalement d'eau de mer ou d'eau saumâtre), et la pratique du recyclage et de la réutilisation de l'eau (Lazarova et al., 2000). La réduction de la demande par la tarification est aussi une option possible mais elle soulève de nombreuses difficultés politiques, en particulier dans les pays où l’eau est gratuite ou payée à un prix forfaitaire pour des utilisations plus importantes.

La réutilisation des eaux usées peut avoir deux avantages majeurs. Le plus manifeste est la mise à disposition d'une ressource en eau supplémentaire stable. Le deuxième est l'atténuation des impacts sur l'environnement grâce à la suppression ou à la réduction de l'élimination des eaux usées, ce qui permet de préserver la qualité de l'eau en aval. Par conséquent, envisagée dans le cadre d'une stratégie intégrée de gestion de l'eau à l'échelle d’un bassin versant, la réutilisation d’eaux usées épurées devrait toujours être évaluée en tenant compte du fait qu’elle contribue à la fois à accroître les ressources en eau d’une région et à réduire au minimum le débit de déversement d’eaux usées. En outre, en recourant aux usées récupérées pour l’irrigation, il est possible de réduire les besoins en engrais grâce aux éléments nutritifs qu’elles contiennent. Cette option permet aussi de supprimer la nécessité d’un traitement tertiaire des eaux usées dans les zones sensibles.

L’utilisation de l’eau recyclée pour l’irrigation a été progressivement adoptée par la plupart des pays méditerranéens (Marecos do Monte et al., 1996). Bien que l’irrigation par les eaux usées soit en elle-même un traitement efficace (une sorte biorégénération progressive des sols), il convient d’effectuer un traitement préalable pour la protection de la santé publique, la prévention des nuisances au cours du stockage et la prévention des dommages aux cultures et aux sols (Asano et Levine, 1996). Jusqu’ici, c’est seulement dans un petit nombre de pays du monde que le recyclage et la réutilisation des eaux usées ont été une pratique suffisamment établie pour conduire à l’instauration de règlements ou lignes directrices spécifiques. Dans un certain nombre d’autres pays (comme Chypre et l’Espagne), des règlements relatifs à l’utilisation de l’eau recyclée pour l’irrigation sont en préparation. Il convient de noter que ces règlements ont trait à des dispositions effectives qui sont promulguées et dont l’exécution est confiée à des agences gouvernementales. Par contre, les lignes directrices n’ont pas de force exécutoire mais peuvent servir de guide lors de la mise en place d’un programme de réutilisation.
2.3 Situation de la réutilisation des eaux usées dans la région méditerranéenne

Dans le bassin méditerranéen, Israël a été un pionnier dans le développement de pratiques de réutilisation des eaux usées, bientôt suivi par Chypre et la Tunisie. Toutefois, au plan mondial, le grand intérêt d’une récupération des eaux usées n’a été vraiment reconnu que dans un petit nombre de pays (Israël, Tunisie, Afrique du Sud et certains États des États-Unis comme la Californie, la Floride et l’Arizona). Dans ces pays, des réglementations très complètes ont fixé les conditions de base d’une réutilisation sans danger des eaux usées. Dans d’autres régions (comme au Texas), les réglementations prescrivent la réalisation d’une étude préalable pour explorer les possibilités d’utiliser l’eau récupérée pour des applications faisant présentement appel à l’eau potable ou l’eau douce (Crook et Surampalli, 1996). Aux États-Unis, en 1992, 18 États avaient adopté une forme de réglementation relative à la réutilisation de l’eau récupérée, 18 États avaient émis des lignes directrices détaillées ou des normes de conception, et 14 États n’avaient pris aucune disposition (US.EPA, 1992). Dans les 18 États n’ayant pas de réglementation ou de lignes directrices spécifiques, les projets de réutilisation des eaux usées pouvaient être autorisés au cas par cas. La poursuite de la mise en œuvre de la réutilisation des eaux usées dans les pays de l’UE dépendra très vraisemblablement de la fiabilité du contrôle des entérovirus. Il y a lieu de noter que les l’élaboration de normes de qualité pour la réutilisation de l’eau a été amorcée au niveau méditerranéen par l’Institut méditerranéen de l’eau, par l’Entité métropolitaine des services hydrauliques et de traitement des déchets de Barcelone, par l’Agence catalane de l’eau, le Ministère espagnol de l’environnement (Tecniberia), la Fondation Agbar et l’Université de Barcelone, et d’autres organisations méditerranéennes, et que ces diverses instances se sont réunies une fois à Barcelone (Espagne), les 27 et 28 janvier 2000, et une autre fois à Rabat (Maroc) du 8 au 10 octobre 2001, sans parvenir à un accord.

Ce ne sont pas les normes pour l’eau potable qui sont sujettes à controverse, mais la fiabilité des procédés. Cependant, les réticences du public et la question des polluants en traces ont jusqu’ici restreint à des cas exceptionnels la réutilisation des eaux usées pour produire de l’eau potable. Comme la recharge des aquifères offre aussi une forme de traitement de l’eau qui s’est avérée efficace, les discussions sur la qualité de l’eau rechargeée restent généralement limitées aux concentrations d’éléments nutritifs (phosphates et nitrates) et aux normes de résidus de pesticides en cas de percolation. La recharge par injection directe est soumise à des normes de qualité plus strictes en raison des risques de colmatage des installations.

Comme on l’a vu plus haut, certains pays riverains de la Méditerranée, comme Israël, la Tunisie et d’autres, sont activement engagés dans la réutilisation de l’eau. Cependant, jusqu’à présent, dans ces pays, cette pratique a rarement été considérée
comme un élément intégré de la gestion globale des ressources en eau et de l’assainissement. Un panorama des pratiques actuelles de réutilisation des eaux usées dans les divers pays méditerranéens est présenté aux sections suivantes.

2.3.1 Albanie

Le projet de construction de stations d’épuration des eaux usées de la ville de Vlora prévoit la possibilité de réutilisation de leurs effluents. Un programme de surveillance continue de la qualité des eaux résiduaires urbaines est mis en œuvre depuis deux ans en Albanie (Hema, 2002).

2.3.2 Algérie

Le climat algérien est méditerranéen et se caractérise par son passage progressif d’un climat humide dans l’extrême Nord (1000 mm/an) à un climat de type désertique dans l’extrême Sud (moins de 100 mm/an), avec une transition analogue de l’extrême Est (plus de 1200 mm/an) à l’extrême Ouest (400 mm/an).

Selon des estimations récentes, les ressources totales en eau renouvelables se monteraient à 19,1x10^9 m^3/an réparties entre les eaux souterraines (30%) et les eaux de surface (70%), soit environ 600 m^3/habitant/an. Le secteur agricole est de loin le plus important consommateur d’eau, avec environ 68%, suivi par le secteur domestique et par le secteur industriel, soit respectivement 9% et 23% des prélèvements d’eau totaux. À la différence de la plupart des pays européens, les ressources en eaux souterraines de l’Algérie, qui sont plus stables, sont moins importantes que celles en eaux de surface. Outre leur quantité limitée, les ressources en eaux de surface sont soumises à une faible perméabilité des sols et à un couvert végétal pauvre, ainsi qu’aux irrégularités des précipitations et des régimes hydrologiques. Qui plus est, la mobilisation et la gestion des ressources en eaux sont entravées par leur inégale disponibilité dans l’espace et le temps, l’envasement rapide des barrages, la pollution et les coûts élevés des investissements. Aussi les ressources en eau de l’Algérie sont-elles limitées, vulnérables et inégalement réparties dans l’ensemble du pays (Tamrabet, 2002).

Il résulte de ce qui précède que l’Algérie cherche à améliorer la situation en adoptant une nouvelle politique de ressources en eau et de nouvelles solutions propres à atténuer la crise. Les eaux usées traitées représentent une alternative prometteuse qui n’est pas seulement disponible en permanence mais qui l’est aussi de plus en plus avec l’expansion des villes, l’essor du tourisme et de l’industrie. Dans le secteur agricole, la réutilisation des eaux usées est une technique qui offre une valorisation supplémentaire des ressources en eau tout en protégeant l’environnement.

En Algérie, plus de 350x10^6 m^3 d’eaux usées ont été éliminées en 1979, et 660x10^6 m^3 en 1985. Le total des eaux usées éliminées devrait atteindre 1,5x10^9 m^3 en 2010, mais compte tenu des conditions des réseaux d’assainissement transportant les effluents, du taux de population raccordé au réseau et de la disponibilité d’installations d’épuration d’eaux usées, les projections donnent à penser que l’on ne pourrait pas réutiliser plus de 600x10^6 m^3 lors de cette même année (Tamrabet, 2002).

Si la réutilisation d’eaux usées brutes ou d’eaux usées traitées est rigoureusement interdite par la législation algérienne pour l’irrigation de cultures de légumes consommés crus; elle est autorisée l’irrigation des cultures fourragères, des pâturages et des arbres. La législation algérienne oblige les villes de plus de 10^5 habitants à traiter leurs effluents avant toute élimination ou réutilisation, au moyen soit d’une station d’épuration soit, dans les zones moins peuplées, de bassins de stabilisation ou de bassins de décantation. Par conséquent, ces dernières années, les autorités algériennes ont lancé un programme ambitieux qui
prévoit avant tout: a) la réhabilitation de 20 stations d'épuration d'eaux usées; b) la construction de nouvelles stations d'épuration pour les villes de plus de 10^5 habitants (32); et c) l'aménagement de bassins de stabilisation (8) et de bassins de décantation (435) pour les zones peu peuplées. Pour que ce programme soit couronné de succès, il faut procéder à un suivi efficace et à une évaluation périodique de manière à ce que la valorisation des eaux usées devienne fructueuse et que les ressources en eau et l'environnement soient protégés contre les impacts négatifs de la pollution (Tamrabet, 2002).

2.3.3 Bosnie-Herzégovine

Avant la guerre, il n'existait en Bosnie-Herzégovine aucune forme de réutilisation des eaux usées. L'on avait songé à réutiliser les eaux usées de la ville de Posusje (l'effluent sortant de la station d'épuration représente un équivalent-habitant d'environ 5 000) pour l'irrigation, mais le projet n'eût pas de suite. De même, le plan agricole combiné de Krajina - Banja Luka prévoyait la réutilisation des eaux usées de parcs d'engraissement de bétail, après traitement, pour l'irrigation de champs de céréales. Il était également prévu de réutiliser les eaux usées de l'usine textile de Bileca (fabrication de tapis) dans l'industrie du savon (réutilisation de matières premières). Maintenant, dans le cadre du nouveau projet national (plan général de gestion de l'eau, Sarajevo, 1998, p.218), il est prévu que la Bosnie-Herzégovine irriguera 10% de ses terres agricoles. Il a été projeté, à cette fin, d'utiliser les cours d'eau naturels et les lacs artificiels (du réseau hydro-électrique). La réutilisation des eaux usées (traitées ou brutes)n'est pas prévue (Bajraktarevic-Dobran, 2002)

2.3.4 Croatie

La Croatie se compose dans l'ensemble de deux régions climatiques. La partie septentrionale appartient à la région de l'Europe centrale et se caractérise par un climat continental type et par l'abondance des ressources en eau. Dans cette région, il n'y a pas de problèmes d'approvisionnement en eau. La partie littorale occidentale appartient à la région méditerranéenne. Les conditions climatiques qui y prévalent se caractérisent par des étés longs et secs et par des périodes automnales-hivernales plus humides. Ces conditions climatiques, associées à des conditions hydro-géologiques karstiques spécifiques, se traduisent par des capacités limitées de ressources en eau. Dans certaines parties de cette région (la plupart des îles), les ressources en eau disponibles ont déjà été exploitées au maximum de leur capacité, engendrant des problèmes d'approvisionnement en eau pour la population, les touristes, l'industrie et plus spécialement l'agriculture.

Les problèmes d'approvisionnement en eau de cette région tiennent au fait que la consommation d'eau la plus importante, tant dans les stations touristiques que dans les zones rurales, coïncide avec la saison sèche.

Jusqu'ici, il n'a pas été pratiqué en Croatie, sous quelque forme que ce soit de distribution, de réutilisation des eaux usées. Le problème de l'approvisionnement en eau de la population et des touristes a été résolu par des transferts d'eau de la côte aux îles au moyen de canalisations sous-marines et à partir de sites riches en eau (cours d'eau et sources du littoral) jusqu’aux autres régions côtières. Mais le développement de ces réseaux sera onéreux dans l’avenir, tant par le coût des investissements que par celui de l’exploitation. Ces solutions ne comportent pas de distribution d’eau à des fins agricoles.

Aussi faut-il faire appel, dans cette région, à de nouvelles sources d’approvisionnement en eau - comme le dessalement - qui ont déjà été utilisées pour la population et les touristes sur les petites îles proches du littoral, ou comme la réutilisation des eaux usées, principalement à des fins agricoles, qui n'a pas encore été appliquée (Margeta, 2002).
La principale raison pour laquelle la réutilisation des eaux usées n'a pas été appliquée est le manque de réseaux d'assainissement efficaces et l'inexistence de stations d'épuration secondaires. La plupart des villes de la région, bien que de taille réduite, se caractérisent par de fortes fluctuations de leur population (touristes) et, par voie de conséquence, de leur production d'eaux usées. Ces eaux usées, canalisées par le réseau d'assainissement, sont rejetées dans la mer au moyen de longs émissaires sous-marins et ne sont soumises au préalable, qu'à un traitement primaire.

La principale utilisation possible, à l'avenir, des eaux usées récupérées, pourrait être l'irrigation des cultures arbustives, des vignobles, des oliveraies, etc., ainsi que l'irrigation paysagère. À ce jour, il n'y a pas de politiques ou plans officiels de réutilisation des eaux usées en Croatie.

2.3.5 Chypre

À Chypre, la pluviométrie annuelle est d'environ 510 mm, dont on estime que 80% sont perdus par évapotranspiration. Ainsi, le potentiel hydrique effectif exploitable à Chypre est d'environ 900 Mm³/an, dont 600 Mm³/an correspondent aux eaux de surface et 300 Mm³/an aux eaux souterraines. La quantité totale d'eau utilisée s'établit à 300 Mm³/an, dont presque 80% vont à l'irrigation.

Il est prévu que les eaux usées générées par les principales villes, soit environ 25 Mm³/an, seront collectées et utilisées pour l'irrigation après avoir subi un traitement tertiaire. En raison du coût élevé du transport, selon les projections, la plus grande partie de l'eau recyclée, environ 55 à 60%, sera utilisée à des fins d'agrément (jardins d'hôtels, parcs, terrains de golf, etc.). Sur la base d'une estimation prudente, 10 Mm³ seraient disponibles pour l'irrigation agricole. Le coût de l'eau recyclée est faible, environ 7,5 cents/m³, ce qui devrait permettre un essor de 8 à 10% de l'agriculture irriguée tout en conservant une quantité d'eau équivalente pour d'autres secteurs (Papadopoulos, 1995).

Les critères provisoires relatifs à l'utilisation des effluents d'eaux usées épurées à des fins d'irrigation à Chypre sont indiqués sur le tableau 2.1. Ils sont plus stricts que les lignes directrices OMS et tiennent compte des conditions propres à l'île. Ils sont assortis d'un code de bonne pratique pour assurer la meilleure utilisation possible des effluents pour l'irrigation (Kypris, 1989). Cependant, ces critères s'écartent quelque peu des principes régissant la réglementation de la Californie.

2.3.6 Égypte

Aujourd'hui, bien que l'importance stratégique de l'eau douce soit universellement reconnue, plus qu'elle ne l'a jamais été auparavant, et bien que les questions concernant la gestion durable de l'eau sont à l'ordre du jour scientifique, social ou politique dans l'ensemble du monde, les ressources en eau semblent exposées à de graves menaces quantitatives et qualitatives. L'accroissement démographique, l'industrialisation et le développement économique accéléré font peser de grands risques sur la disponibilité et la qualité des ressources en eau dans de nombreuses régions de la planète et, naturellement, en Égypte.
Tableau 2.1
Critères de qualité provisoires pour l’irrigation par les eaux usées récupérées à Chypre (Kypris, 1989)

<table>
<thead>
<tr>
<th>Irrigation de:</th>
<th>DBO₅ (mg/l)</th>
<th>Solides en suspension (mg/l)</th>
<th>Coliformes fécaux (NPP/100ml)</th>
<th>Nématodes intestinaux (Nombre/l)</th>
<th>Traitement requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zones d’agrément ouvertes au public</td>
<td>10ᵃ 15ᵇ</td>
<td>10ᵃ 15ᵇ</td>
<td>50ᵃ 100ᵇ</td>
<td>0</td>
<td>Tertiaire et désinfection</td>
</tr>
<tr>
<td>Cultures vivrières. Zones d’agrément d’accès au public réglementé</td>
<td>A) 20ᵃ 30ᵇ</td>
<td>30ᵃ 45ᵇ</td>
<td>200ᵃ 1000ᵇ</td>
<td>0</td>
<td>Secondaire, stockage >1 semaine et désinfection, ou tertiaire et désinfection</td>
</tr>
<tr>
<td></td>
<td>B) - -</td>
<td>-</td>
<td>200ᵃ 1000ᵇ</td>
<td>0</td>
<td>Bassins de stabilisation avec temps de séjour total >30 jours, ou secondaire et stockage >30 jours</td>
</tr>
<tr>
<td>Cultures fourragères</td>
<td>A) 20ᵃ 30ᵇ</td>
<td>30ᵃ 45ᵇ</td>
<td>1000ᵃ 5000ᵇ</td>
<td>0</td>
<td>Secondaire et stockage >1 semaine ou tertiaire et désinfection</td>
</tr>
<tr>
<td></td>
<td>B) - -</td>
<td>-</td>
<td>1000ᵃ</td>
<td>0</td>
<td>Bassins de stabilisation avec temps de séjour total >30 jours ou secondaire et stockage >30 jours</td>
</tr>
<tr>
<td>Cultures industrielles</td>
<td>A) 50ᵃ 70ᵇ</td>
<td>-</td>
<td>3000ᵃ 10000ᵇ</td>
<td>-</td>
<td>Secondaire et désinfection</td>
</tr>
<tr>
<td></td>
<td>B) - -</td>
<td>-</td>
<td>3000ᵃ 10000ᵇ</td>
<td>-</td>
<td>Bassins de stabilisation à temps de séjour total >30 jours ou secondaire et stockage >30 jours</td>
</tr>
</tbody>
</table>

ᵃ Ces valeurs ne doivent pas être dépassées dans 80% des échantillons par mois.
b Valeur maximale tolérée.

Note:
L’irrigation des légumes n’est pas autorisée.
L’irrigation des plantes ornementales à des fins commerciales n’est pas autorisée.
Aucune substance s’accumulant dans les parties comestibles des cultures et qui s’est avérée toxique pour l’homme ou l’animal n’est autorisée dans l’effluent.
Dans ce pays, les investissements limités qui ont été effectués dans le passé dans les infrastructures de collecte et de traitement des eaux usées se sont traduits par une insuffisance marquée de la couverture sanitaire et par un problème grandissant de pollution des eaux de surface. Le rejet de déchets bruts et ou insuffisamment traités dans le Nil et les canaux et rigoles d’irrigation menacent l’environnement et causent une dégradation des ressources en eau douce. La pollution aquatique du Delta tend à s’aggraver par rapport à d’autres régions. Trois stations de pompage pour la réutilisation des eaux d’écoulement agricoles ont dû être fermées en raison du degré élevé de pollution causé par des eaux usées non traitées qui se mélangent avec les eaux du drainage agricole. Les lacs nord sont également atteints par la pollution, ce qui se solde par une perte de la production de poisson. (MWRI, 2001). Dans les zones rurales, tant dans le Delta que dans la vallée du Nil, les eaux usées représentent un problème majeur en certains points le long du réseau d’irrigation. C’est pourquoi le gouvernement a lancé un programme ambitieux en vue de traiter les eaux usées de ces zones avant qu’elles ne soient rejetées dans le réseau de drainage (Bazza, 2002).

La stratégie égyptienne dans le domaine de l’eau comprend le traitement et la réutilisation des eaux usées. Le traitement des eaux usées municipales est primaire ou secondaire. À l’heure actuelle, on estime la quantité d’eaux usées à 4 930 Mm³/an, avec 22 stations d’épuration en service et 150 stations en cours de construction. La capacité totale installée des stations d’épuration se monte à environ 1 752 milliards de m³ par an (FAO, 2000).

La réutilisation des eaux usées en Égypte est une pratique ancienne. L’épandage des eaux usées est une pratique agricole conçue comme l’une des plus écologiquement rationnelles pour éliminer les effluents d’eaux usées. Depuis 1900, les eaux usées servent à cultiver les vergers sur la zone de sol sableux du village d’El-Gabal El-Asfar, près du Caire. La zone s’est progressivement étendue sur 4 500 hectares. Aux termes de la législation, la réutilisation des eaux usées traitées n’est pas autorisée pour les cultures vivrières et textiles. Le Ministère de l’agriculture préconise une utilisation réduite des eaux usées traitées pour les cultures non vivrières comme le bois d’œuvre et pour les ceintures vertes servant à fixer les dunes de sable.

Les questions et problèmes majeurs liés à l’utilisation des eaux usées traitées en Égypte sont résumés ci-après (Shaalan, 2001): insuffisance des infrastructures (stations d’épuration) destinées à traiter les quantités d’eaux usées produites; b) seuls 50% et 3%, respectivement, des habitants des zones urbaines et rurales sont raccordés à un réseau d’assainissement; c) un volume important d’eaux usées est rejeté directement dans des masses d’eau sans avoir subi aucun traitement; d) de nombreuses installations de traitement des eaux usées sont surchargées et/ou ne sont pas correctement exploitées; e) certaines usines rejettent encore leurs eaux usées dans des masses d’eau naturelles après un traitement limité ou sans aucun traitement; f) les déchets solides industriels et municipaux sont principalement éliminés à des décharges non réglementées et/ou immergés dans des masses d’eau (notamment à l’extérieur du Grand Caire; g) la qualité des eaux usées traitées diffère d’une station d’épuration à l’autre en fonction de la qualité du flux entrant, du degré de traitement, de l’efficacité du fonctionnement de la station et d’autres facteurs; et h) les impacts négatifs sur la santé et l’environnement (Bazza, 2002).

D’un points de vue institutionnel, sept ministères s’occupent du traitement et de la réutilisation des eaux usées en Égypte, leurs attributions respectives étant mal délimitées et sans qu’il y ait guère de coordination entre eux. La situation est encore aggravée par l’absence de politiques et d’un plan d’action bien définis en matière de gestion des eaux, par l’impossibilité pratique de faire respecter les normes qui restreint l’efficacité des efforts de lutte antipollution. La diffusion de l’information parmi les diverses organisations et le public
est limitée, d’où la nécessité d’une sensibilisation accrue et d’un renforcement des capacités en matière de gestion de la qualité de l’eau (Shaalan, 2001).

2.3.7 Espagne

Les îles espagnoles des Baléares et des Canaries, ainsi que le littoral et les bassins méditerranéens (autrement dit les zones arides et semi-arides d’Espagne), comme la plus grande partie du Bassin méditerranéen, souffrent de pénuries d’eau structurelles ou occasionnelles. Des sécheresses périodiques ou une demande excessive perturbent la fragile répartition de l’eau entre l’agriculture, l’industrie, l’écologie, les activités récréatives et les besoins urbains. Au cours des dernières décennies, le développement du pays a été fortement lié aux activités touristiques, lesquelles comportent des aspects aussi différents que le tourisme de masse ou la pratique du golf. Pendant la période estivale, la demande exerce une pression très vive sur les ressources existantes. Jusqu’à présent, le problème a été résolu soit en surexploitant les eaux souterraines soit en détournant totalement les eaux de surface. Plusieurs ouvrages de transfert de l’eau ont également été aménagés, ce qui a permis d’accroître la capacité de rétention d’eau au moyen de barrages ou de réaffecter les ressources en détournant des cours d’eau dans des bassins voisins.

Néanmoins, les solutions de cette nature ont atteint une limite au cours des années 1990, en raison de la demande croissante (tourisme, agriculture, industrie), de graves sécheresses et de réseaux médiocres de distribution. Plusieurs îles (Canaries et Majorque) ont dû développer de nouvelles ressources en dessalant l’eau de mer et les eaux saumâtres au moyen du procédé d’osmose inverse. Maintes tentatives de mettre en place un Plan hydrologique national se sont soldées par un échec et, à l’heure actuelle, diverses solutions sont mises en avant, notamment les détournements d’eau à partir de cours d’eau, l’extension de la dérivation des eaux du Rhône de Montpellier (France) à Barcelone, l’augmentation de la capacité de dessalement de l’eau de mer et d’autres options secondaires.

Dans l’ensemble de ces perspectives, une planification de la récupération et de la réutilisation des eaux usées n’est pas envisagée comme une solution, même partielle. Néanmoins, une réutilisation non planifiée a toujours été une solution courante dans les zones arides et semi-arides de tout le littoral méditerranéen de l’Espagne. Il y a plusieurs causes à cette situation illégale. L’une des plus importantes est peut-être l’absence de réglementation de la part de l’État. En Espagne, le gouvernement a promulgué, voici quatorze ans, une loi et un décret où la réutilisation des eaux usées était mentionnée comme une possibilité; une disposition prévoyait tout au plus la nécessité d’une autorisation administrative et d’un rapport des autorités sanitaires, en indiquant que la question appelait de nouvelles dispositions juridiques.

Dans le passé, et en certains sites aujourd’hui, les eaux usées ont été utilisées à l’état brut pour l’irrigation agricole, comme sur tout le pourtour de la Méditerranée, mais le développement du traitement des eaux usées conformément aux dispositions de l’Union européenne entraîne une diminution de la quantité d’eaux usées disponibles et une augmentation de la quantité d’eaux usées traitées à éliminer. Comme il ne pleut pas durant plusieurs mois de l’année, un grand nombre des lits de cours d’eau du littoral méditerranéen n’ont plus d’autre écoulement que celui d’eaux usées traitées ou non traitées Si ces eaux usées sont récupérées et réutilisées, certains de ces cours d’eau deviendront à sec et c’est pourquoi les mouvements écologistes ou des Verts font activement campagne pour que les eaux ne soient pas détournées. Ainsi des problèmes se poseront-ils lorsque sera envisagée une réutilisation des eaux usées à l’intérieur du pays. Inversement, une opinion qui prévaut est que la réutilisation des eaux usées le long du littoral est une bonne solution et doit être encouragée.
De nos jours, les principales utilisations acceptées pour les eaux usées récupérées sont en premier lieu l’irrigation des terres agricoles et des terrains de golf et, en second lieu, la recharge des eaux souterraines et la réutilisation industrielle. De fortes pressions s’exercent également pour que les eaux usées traitées soient déversées dans les cours d’eau, faute de quoi ces derniers deviendraient complètement à sec. Les systèmes de récupération reposent aujourd’hui sur des techniques de traitement tertiaire classiques (coagulation-filtration plus désinfection) et des techniques naturelles sur grande superficie (zones humides, lagunage et infiltration-percolation). Les techniques de désinfection les plus utilisées sont les ultraviolets et la chloration. Les régions où la récupération et la réutilisation sont le plus pratiquées sont les îles Baléares (terrains de golf, parcs urbains et recharge des eaux souterraines), les îles Canaries (terrains de golf et agriculture) et l’ensemble du littoral méditerranéen (agriculture, terrains de golf et autres sites de loisir).

Les distributeurs d’eau s’intéressent de plus en plus activement à la récupération et à la réutilisation des eaux usées; deux des plus grandes compagnies (Agbar et Canal de Isabel II, situées respectivement à Barcelone et Madrid) appuient des activités de recherche et développement (R & D), en collaboration avec les universités, et plusieurs installations de récupération sont déjà en service. Des équipes de recherche universitaires sur la réutilisation des eaux usées travaillent sur le pourtour du Bassin méditerranéen et se consacrent avant tout aux traitements tertiaires (traitements de pointe et traitements naturels en Catalogne, à Valence et Murcia, dispositions et réglementations en Catalogne et en Andalousie).

En dépit de la situation dont on vient de faire état, un brillant avenir s’offre à la réutilisation des eaux usées en Espagne. Pour l’heure, les perspectives sont compromises du fait que, lorsque des projets sont lancés, ils se heurtent à nombre de difficultés par suite de l’absence de dispositions juridiques précises. Une forte tendance se fait jour en Espagne en faveur d’une décentralisation administrative et de l’octroi de pouvoirs renforcés au «gouvernements autonomes» (ou des régions). Pour la réutilisation des eaux usées, les décisions sont désormais prises et les autorisations délivrées au cas par cas, selon les administrations régionales.

Comme il est difficile d’obtenir ces approbations sans avoir une réglementation sanitaire précise, plusieurs autorités sanitaires régionales ont décidé d’élaborer leurs propres lignes directrices pour la réutilisation des eaux usées aux fins d’irrigation. Depuis 2000, trois ensembles de lignes directrices (Îles Baléares, Catalogne et Andalousie) sont en vigueur. Un projet de lignes directrices en vue d’une réglementation nationale espagnole a été proposé en 1996, en s’inspirant davantage des normes de Californie que des lignes directrices OMS. Mais ce projet pourrait ne pas être approuvé sous sa forme actuelle et il n’adaptera pas les critères californiens (Salgot, 2002). Jusqu’à présent, un nouveau «Livre blanc» sur l’eau a été élaboré et publié en 1998 et il fait figurer la réutilisation des eaux usées parmi les ressources en eau disponibles reconnues. Sur cette base, un groupe d’experts réuni par le Ministère de l’environnement a établi une proposition de critères minimaux (physico-chimiques et microbiologiques) pour la réutilisation des eaux usées (Angelakis et al., 2001). La proposition a été soumise au gouvernement pour approbation et elle s’inspire des lignes directrices OMS.

2.3.8 France

La disponibilité de la France en ressources en eau s’établit à 3 500 m³/habitant/an et elle est donc considérée comme autosuffisante. Cependant, la répartition inégale de ces ressources, s’ajoutant à l’accroissement de la demande, a conduit à une situation de déficits saisonniers dans certaines parties du pays. Selon des statistiques gouvernementales, la consommation d’eau moyenne s’est accrue de 21% dans le pays entre 1981 et 1990. Le secteur agricole enregistre le plus fort accroissement, soit 42%. Cette tendance est en rapport direct avec l’augmentation de l’irrigation des terres, laquelle a quasiment doublé au
cours de la même période. La consommation d’eau s’est accrue dans les stations de villégiature où l’eau est indispensable pour assurer le développement des terrains de golf et des sites paysagers. Le secteur industriel est le seul qui enregistre une diminution de la consommation en raison des efforts croissants déployés pour recycler les effluents et pour utiliser des technologies de l’eau efficaces.

La France pratique une récupération directe des eaux usées depuis XIXᵉ siècle. Son plus ancien projet a été lancé à Achères, voici un siècle, avec une exploitation utilisant l’épandage d’eaux usées. De nos jours, l’irrigation au moyen des eaux usées reste la première application de la réutilisation en France. La principale raison de cette pratique tient à la nécessité de compenser les déficits locaux et occasionnels et de promouvoir la santé publique et la protection de l’environnement. La majorité des projets de réutilisation des eaux usées se trouvent dans les îles françaises, dans le Midi de la France et dans les zones côtières (fig. 2.2).

Les pénuries d’eau et des préoccupations économiques sont à l’origine d’un certain nombre d’autres projets dans les zones côtières, ainsi que de l’un des plus importants et les plus récents en Europe qui est en cours à Clermont-Ferrand (6 M€), où 700 hectares de champs de maïs sont irrigués.

Un autre élément qui a favorisé le développement de projets de réutilisation des eaux usées en France ces dernières années est en rapport avec le risque de contamination dans les zones à usages récréatif et les aires de conchyliculture. Des projets situés sur le littoral atlantique, comme à Saint-Armel dans la baie du Morbihan, à Beauvoir-Mont-St-Michel dans la Manche ou dans les faubourgs de Royan sont des exemples de ce type d’application. Ces projets ont permis de supprimer totalement les rejets dans certaines îles (comme le Mont-St-Michel). Des solutions du même ordre peuvent également être appliquées aux eaux de surface. Les cas de Melle (Deux-Sèvres) ou de Fulet et Mesnil-en-Vallée (Maine-et-Loire) sont des exemples de réhabilitation de zones dulçaquicoles à usage récréatif menacées par des phénomènes d’eutrophisation.

L’irrigation des terrains de golf est l’application de la réutilisation qui connaît l’essor le plus rapide en France (9 sites de récupération, cf. figure 2.2 et tableau 2.2) en raison de leur forte consommation d’eau et des superficies croissantes concernées. La plupart de ces terrains sont situés sur la façade atlantique en vue de prévenir la pollution des exploitations conchylicoles.

L’un des premiers projets, en Europe, de gestion intégrée de l’eau avec réutilisation a été exécuté dans l’île de Noirmoutier. Le manque de ressources en eau (eau amenée du continent) et l’agriculture intensive (pomme de terre) a favorisé la mise en œuvre de projets de traitement et de récupération des eaux usées (doublement de la capacité de traitement au cours des 10 dernières années, soit respectivement 11 000 et 26 000 e-h. En outre, au cours de la période estivale, la pollution insulaire est multipliée par 7,5. Le traitement est opéré au moyen d’un système aux boues activées (1, 27 Mm³/an) suivi du passage dans 4 bassins de stabilisation avec un volume global de 0, 193 Mm³ pour le stockage et la désinfection. La qualité de l’eau recyclée est supérieure aux normes prescrites par l’OMS et elle assure une protection efficace des exploitations conchylicoles et des zones de baignade. Plus de 220 hectares de cultures de légumes sont irriguées (0, 33 Mm³/an).
Figure 2.2 Emplacement des projets français de réutilisation des eaux usées municipales pour l’irrigation.

Tableau 2.2
Projets de récupération et applications spécifiques à l’irrigation agricole et paysagère en France au cours des 10 dernières années (Lazarova et al., 2001)

<table>
<thead>
<tr>
<th>Projets</th>
<th>Superficie irriguée (ha)</th>
<th>Application spécifique</th>
<th>Zone géographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saint-Armel</td>
<td>120</td>
<td>Cultures maraîchères</td>
<td>Atlantique</td>
</tr>
<tr>
<td>Saint-Georges-de-Didonne</td>
<td>7</td>
<td>Céréales, tournesol</td>
<td>Littoral</td>
</tr>
<tr>
<td>Noirmoutier - La Salaisière</td>
<td>320</td>
<td>Pomme de terre</td>
<td></td>
</tr>
<tr>
<td>Noirmoutier – Barbatre</td>
<td>35</td>
<td>Céréales</td>
<td></td>
</tr>
<tr>
<td>Mont-Saint-Michel</td>
<td>265</td>
<td>Prairies et maïs</td>
<td>Atlantic</td>
</tr>
<tr>
<td>Saint-Pierre-la-Cotinière</td>
<td>25</td>
<td>Terrains de golf</td>
<td>Îles</td>
</tr>
<tr>
<td>Port-en-Ré (600 m³/j)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pornic</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baden (500 m³/j)</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saintes (2600 m³/j)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saint-Palais-sur-Mer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2300 m³/j)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saint-Pierre-d’Oléron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(960 m³/j)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Il existe de nombreux cas non planifiés de réutilisation indirecte aux fins d'eau potable, où des eaux de surface diluées avec des eaux usées servent à cette fin. Tel est le cas, par exemple, à Aubergenville, dans la région parisienne, où les eaux de la Seine contenant 25% d’effluents d’eaux usées sont traitées et utilisées pour recharger l’aquifère d’eau potable.

Chronologiquement, la France est le premier pays à avoir adopté une série de recommandations en matière de réutilisation des eaux usées à des fins d’irrigation et à avoir ensuite admis la récupération des eaux usées comme une alternative au rejet des eaux usées. Depuis le 3 janvier 1992, la législation française exige de chaque municipalité qu’elle définisse les zones affectées à la collecte, au stockage, au traitement, à l’élimination ou à la réutilisation des eaux usées. La notion ci-dessus selon laquelle la réutilisation peut être une alternative viable pour les effluents traités a été reprise dans les recommandations associées au décret 94-469 du 3 juin 1994, et par le Ministère de l’environnement dans son ordonnance du 22 décembre 1994. Ce dernier texte préconise le recours à d’autres solutions que le rejet des eaux usées dans les zones sensibles pour lesquelles les normes de qualité de l’eau ne peuvent être atteintes, pour des raisons économiques et techniques, avant le rejet. En pareil cas, la législation recommande que les municipalités évaluent d’autres solutions, comme le déplacement du point de rejet, le stockage temporaire de l’effluent, l’épandage sur le sol, ou toute autre solution viable (Lazarova et al., 2001).

mais, comme l’ont souligné Bontoux et Courtois (1996), elles ont été rendues plus strictes par l’adjonction de prescriptions complémentaires concernant la gestion de l’irrigation et la prévention des risques sanitaires liés à l’exposition humaine. Par exemple, en cas d’irrigation par aspersion, une distance de 100 m doit être observée entre le système d’aspersion et les résidences, zones de sports et de loisirs, péages d’autoroute, etc. En plus des normes microbiologiques précitées, le texte exige: a) que soit garantie la non contamination de l’aquifère; b) la connaissance de la qualité de l’effluent d’eaux usées traitées et de leur pouvoir fertilisant; c) un personnel d’exploitation et de contrôle qualifié. En dépit de l’existence de ces recommandations, l’approbation d’un projet de récupération et réutilisation des eaux usées dépend encore de la décision du représentant local du Ministère de la santé. Il convient de noter que les réglementations français relatif à la réutilisation sont appelés à devenir plus rigoureux dans un proche avenir, les virus pouvant être ajoutés à la liste des paramètres microbiologiques réglementés (Lazarova et al., 2001).

Eu égard à ces règles et réglementations, la gestion et le développement des projets de récupération et réutilisation des eaux usées en France s’inscrit désormais dans la politique de gestion des ressources en eau du pays. Cependant, les autorités sanitaires locales imposent un contrôle très strict des projets de récupération et réutilisation des eaux usées. La qualité des eaux requises pour ces projets est souvent plus stricte que dans les recommandations formulées par le CSHPF et même par le Titre 22 de Californie dans le cas de certaines applications municipales (recyclage des "eaux grises" par exemple). De plus, les procédures administratives astreignantes requises pour un projet de réutilisation des eaux usées ont freiné le développement de projets de cet ordre en France.

Il convient de noter que les nouveaux règlements provisoires (novembre 2000) se fondent sur les critères suivants:

a) Traitement secondaire (Directive UE, 1991)
 solides en suspension < 35 mg/l, et DCO totale < 125 mg/l; pour les effluents de lagunes: solides en suspension < 150 mg/l, DCO dissous < 125 mg/l, Escherichia coli < 1000/100 ml, et aucune salmonelle ou aucun œuf de ténia
(b) Distance d’éloignement (des routes, habitations, etc.) ≥ 50 m
(c) Aspersion en dehors des heures d’ouverture. Des systèmes d’aspersion à faible portée sont recommandés.
(d) L’irrigation souterraine n’a pas été prise en compte.

2.3.9 Grèce

La Grèce est aujourd’hui peuplée de 10, 6 millions d’habitants vivant sur un territoire d’environ 132 000 km², avec un littoral de 15 000 km de long. Le pays est situé au flanc sud-est de l’Union européenne, et il est bordé par les mers Ionienne, Égée et de Libye qui font partie du bassin méditerranéen. Le climat méditerranéen apporte des étés chauds et secs et des hivers humides.

La demande en eau a enregistré une hausse spectaculaire au cours des 50 dernières années. En dépit d’une pluviométrie suffisante, le pays connaît souvent un déséquilibre hydrique dû à des variations temporelles et régionales de la pluviométrie, une demande en eau accrue au cours des mois d’été et une difficulté à opérer des transferts d’eau en raison du relief montagneux. En outre, dans de nombreuses zones du sud-est, les ressources en eau douce sont soumises de graves pressions qui sont exacerbées par la demande élevée pour le tourisme et l’irrigation. Dans ce contexte, l’intégration de la réutilisation des eaux usées dans la gestion des ressources en eau devient une question très importante. Ainsi convient-il d’envisager le potentiel de réduction des charges polluantes pénétrant dans la mer ou dans les eaux intérieures de même que la possibilité de
développer de nouvelles ressources en eau.

Aujourd’hui, la situation est bien différente. Dans quelques années, presque 60% de la population sera raccordée aux SEEUM*. Environ 50 SEEUM centralisées sont en service avec 1,45 Mm³ d’effluent par jour (tableau 2.3). Tsagarakis et al. (2001) concluent qu’en réutilisant les effluents des SEEUM existantes, l’utilisation de l’eau relevée en 1998, en particulier pour l’irrigation agricole, peut être accrue de 242 Mm³/an, soit 3,2%. Aujourd’hui, l’on estime qu’environ 5, 0% de l’utilisation actuelle de l’eau pourrait être économisée en réutilisant les eaux usées traitées. De l’analyse de la répartition des eaux usées domestiques traitées, il ressort que plus de 83% des effluents sont générés dans des régions au bilan hydrique déficitaire (Tchobanoglous et Angelakis, 1996). Les résultats ci-dessus donnent à penser que la réutilisation des eaux usées dans ces régions répondrait à une demande en eau réelle qui est le facteur déterminant du succès de tout projet de réutilisation des eaux usées. Un autre facteur positif important est que 88% des effluents d’eaux usées se trouvent à une distance de moins de 5 km des terres agricoles disponibles. Par conséquent, le coût supplémentaire serait faible pour l’irrigation (Tchobanoglous et Angelakis, 1996).

Tableau 2.3

<table>
<thead>
<tr>
<th>Année</th>
<th>Population desservie</th>
<th>Nombre de stations</th>
<th>Débit d’effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Nombre d'habitants.)</td>
<td>(%)</td>
<td>(Mm³/j)</td>
</tr>
<tr>
<td>1993</td>
<td>3 344 000</td>
<td>34</td>
<td>0,70</td>
</tr>
<tr>
<td>1999</td>
<td>5 755 000</td>
<td>59</td>
<td>1,30</td>
</tr>
<tr>
<td>2005</td>
<td>7 508 000</td>
<td>75</td>
<td>1,70</td>
</tr>
</tbody>
</table>

* Stations d’épuration des eaux usées municipales
Il n'existe que quelques SEEUM où l’effluent sert directement à l’irrigation de terres agricoles, à savoir notamment (Tsagarakis et al., 2001):

(a) Livadia: 3500 m3/j sont utilisés pour l’irrigation de plants de coton. Un traitement de pointe comporte un contrôle des éléments nutritifs (réseau d’irrigation en circuit fermé).
(b) Amfissa: 400 m3/j sont rejetés dans un réservoir de de 30 000 m3 pour l’irrigation d’oliviers.
(c) Paléokastro (Crète): 280 m3/j sont utilisés pour irriguer des oliviers après chargement dans un réservoir de 20 m3 (réseau d’irrigation en circuit fermé).
(d) Île de Cos: une petite exploitation de plantes agricoles et ornementales est irriguée, mais le processus de planification prévoit d’irriguer davantage dans l’avenir en réutilisant l’effluent de 4 000 m3/j qui peut être généré, avec contrôle des éléments nutritifs.

Aux SEEUM de Pefkochori, Kolindros, Chaniotis et Kalithea, le site d’élimination originel est en cours de réaménagement en vue de l’irrigation de terres agricoles. Il est en outre prévu que les stations desservant les villes de Pérama, Nea Epidavros, Thermisia, Kranidi, Arachova, Nikita, Nea Kalikratia, Nea Potidéa et Thèbes utiliseront leurs effluents traités pour l’irrigation de terres agricoles quand elles entreront en service. Les effluents de certains bassins de stabilisation en service sont utilisés par des exploitants agricoles pour l’irrigation. Des troubles dermatologiques ont été signalés quand l’effluent entre en contact avec les mains de ces exploitants. Les effluents de quatre stations d’épuration sont principalement utilisés pour l’irrigation paysagère, comme suit:

a) Kentarchos (Sérifos): 100 m3/j sont utilisés pour irriguer des arbres, après traitement par filtration sur sable;
b) Aghios Konstantinos (Samos): 200 m3/j sont utilisés pour irriguer des arbres (des pins principalement) en recourant à un système de subsurface;
c) Karystos: 1450 m3/j sont utilisés pour irriguer 14 000 arbres en utilisant la totalité de l’effluent en circuit fermé;
d) Iérissos, 1200 m3/j sont rejetés dans un réservoir avant irrigation d’une forêt;
e) Chalkida, en détournant le site d’évacuation de la mer, une quantité de 13 000 m3/j d’effluent sert à l’irrigation de la zone environnante.

En outre, à Sérifos, Marpisa, Kini, Karterados, Chora (Samos), Nea Artaki et Siviri, il est prévu d’irriguer des aires de sylviculture et d’agrément. Il convient de noter qu’une réutilisation non planifiée a lieu dans certaines régions où les eaux usées sont rejetées dans des cours d’eau éphémères et, après infiltration, sont pompées par les exploitants agricoles à travers des puits attenants aux fins d’irrigation.

Les secteurs industriels qui consomment une quantité d’eau considérable comme l’agro-alimentaire auront de plus en plus recours aux eaux usées récupérées, en particulier dans les régions sous stress hydrique.

En Grèce, il n’a pas encore été adopté de lignes directrices ou de critères pour la récupération et la réutilisation des eaux usées. Des critères de qualité d’effluent sont fixés pour les rejets aux termes des dispositions sanitaires E1b/221/65 (Ministère de la santé publique, 1965). Cependant, une étude préliminaire est en cours sur la nécessité d’instaurer des critères pour la réutilisation des eaux usées traitées (Angelakis et al., 2000a et Tsagarakis et al., 2001). Dans cette étude, six catégories fondamentales de réutilisation sont envisagées (eau urbaine non potable, agriculture, aquaculture, secteur industriel, environnement et recharge des eaux souterraines).
2.3.10 Israël

En Israël, environ 92% des eaux usées sont collectées par des réseaux d’égouts municipaux. Ensuite, 72% sont utilisés, soit pour l’irrigation (42%) soit pour la recharge de l’aquifère (30%). L’utilisation des eaux usées récupérées doit être approuvée par les autorités locales, régionales et nationales. Les effluents servant à l’irrigation doivent répondre à des critères de qualité de l’eau fixés par le Ministère de la santé (tableau 2.4). La tendance est d’amener tous les effluents à une qualité se prêtant à une irrigation sans restriction avec une large rotation des cultures, ce qui nécessitera à l’avenir un plus grand stockage et des degrés de traitement plus élevés.

L’analyse coûts-avantages indique que les eaux usées récupérées sont une source d’eau très bon marché en Israël. Aussi, dans l’approvisionnement global en eau, les eaux usées traitées, particulièrement pour l’irrigation, se sont élevées à 24,4 % des affectations (tableau 2.5). La crise de l’eau en Israël et le coût relativement faible des eaux usées traitées sont les principaux facteurs expliquant le taux élevé de réutilisation.

Tableau 2.4

Critères pour la réutilisation des eaux usées récupérées aux fins d’irrigation en Israël

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Groupe de cultures/cultures principales</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coton,</td>
<td>Fourrage</td>
<td>Fruits décidus<sup>b</sup></td>
<td>Cultures sans restriction, y compris légumes consommés sans cuisson (crus), parcs et pelouses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>betterave à sucre, céréales, semis pour fourrage sec, forêts, etc.</td>
<td>vert, olives, arachide, agrumes, bananes, amandes, noix, etc.</td>
<td>légumes en conserve, légumes épluchés et cuits, ceintures vertes, terrains de football et de golf</td>
<td></td>
</tr>
<tr>
<td>Qualité d’effluent</td>
<td></td>
<td>Qualité d’effluent</td>
<td>Qualité d’effluent</td>
<td>Qualité d’effluent</td>
<td>Qualité d’effluent</td>
</tr>
<tr>
<td>DBO<sub>5</sub> totale, mg/l</td>
<td>60<sup>a</sup></td>
<td>45<sup>a</sup></td>
<td>35</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>DBO<sub>5</sub> dissous, mg/l</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SS, mg/l</td>
<td>50<sup>a</sup></td>
<td>40<sup>a</sup></td>
<td>30</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>OD, mg/l</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>CT par 100 ml</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td>12 (80%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,2 (50%)</td>
<td></td>
</tr>
<tr>
<td>Chlore résid. dispon., mg/l</td>
<td>-</td>
<td>-</td>
<td>0,15</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Traitement obligatoire</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Filtration sur sable ou équivalent</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlororation, temps de contact minim. en mn</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Distances:</td>
<td>-</td>
<td>Aux zones résidentielles, m</td>
<td>Aux routes à revêtement, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>250</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Des normes différentes seront fixées pour les bassins de stabilisation avec un temps de séjour d’au moins 15 jours.

^b L’irrigation doit cesser deux semaines avant la cueillette; aucun fruit ne devrait être ramassé par terre.
Tableau 2.5
Rôle de la réutilisation des eaux usées dans l’approvisionnement global en eau d’Israël
(Shelef et Azov, 1996)

<table>
<thead>
<tr>
<th>Utilisations de l’eau</th>
<th>Année</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1985</td>
</tr>
<tr>
<td>Approvisionnement total en eau, Mm³</td>
<td>2 050</td>
</tr>
<tr>
<td>Approvisionnement en eau pour l’agriculture, Mm³</td>
<td>1 490</td>
</tr>
<tr>
<td>Approvisionnement en eau municipale et domestique, Mm³</td>
<td>445</td>
</tr>
<tr>
<td>Eaux usées municipales collectées, Mm³</td>
<td>215</td>
</tr>
<tr>
<td>Réutilisation des eaux usées dans l’agriculture, Mm³</td>
<td>110</td>
</tr>
<tr>
<td>% de la réutilisation des eaux usées dans le total</td>
<td>5,4</td>
</tr>
<tr>
<td>% de la réutilisation des eaux usées dans l’approvisionnement en eau pour l’agriculture</td>
<td>7,4</td>
</tr>
</tbody>
</table>

2.3.11 Italie

Comme la plupart des régions méditerranéennes, l’Italie du Sud (en particulier la Sicile, la Sardaigne et les Pouilles), souffre de pénurie d’eau et de l’absence d’une eau de bonne qualité en raison de sécheresses récurrentes. De plus, les rejets d’eaux usées dans les cours d’eau ou dans la mer se traduisent par de graves problèmes d’environnement et par des phénomènes d’eutrophisation. En dépit d’une diminution continue des disponibilités en ressources conventionnelles, il est rare que la demande en eau pour l’irrigation soit pleinement satisfaite. L’approvisionnement déficient et peu fiable en eau pour l’irrigation a fortement freiné l’essor de cette pratique.

Normalement, les procédés de traitement des eaux usées reposent sur deux phases: le traitement primaire et secondaire (mécanique et biologique) traditionnellement utilisé pour ôter les particules en suspension, pour minéraliser les composés organiques et implicitement pour diminuer la charge bactérienne. Pour une amélioration plus marquée des caractéristiques qualitatives des effluents, des procédés complémentaires de traitement tertiaire doivent être inclus dans le cycle. Cette dernière phase vise généralement à atteindre deux objectifs: a) améliorer les caractéristiques de l’effluent d’eaux usées destiné à la réutilisation, et b) protéger la qualité des masses d’eau réceptrices en diminuant la charge d’éléments nutritifs et par conséquent l’ampleur des phénomènes d’eutrophisation.

Grâce aux trois stades de traitement (primaire, secondaire et tertiaire), les eaux usées municipales acquièrent, d’un point de vue physique, biologique et sanitaire, les caractéristiques d’une eau de surface de bonne qualité (tableau 2.6). Le type de traitement et son coût de gestion correspondant dépendent donc de la qualité exigée par l’usage des eaux traitées.

En Italie, une nouvelle loi n°152 publiée le 11 mai 1999 par le Ministère de l’environnement a totalement révisé les normes concernant le traitement et l’élimination des eaux usées et la loi n°319/76 (dite "loi Merli") a été supprimée. Jusqu’à présent, la réutilisation des eaux usées municipales pour l’irrigation est régie par l’annexe 5 d’une résolution du Comité interministériel national pour la protection des eaux contre la pollution. La réutilisation des eaux usées est considérée comme un rejet sur le sol à des fins agricoles et elle n’est autorisée que si l’adjonction d’eaux usées peut accroître la production. Les eaux
usées sont soumises à des prescriptions précises concernant leur qualité. De fait, la limite supérieure du taux d’absorption du sodium est fixée à 15, mais une valeur de 10 est préconisée. La présence de coliformes totaux dans les eaux usées destinées à l’irrigation est acceptée si elle s’établit à des niveaux très faibles, et ce en fonction de l’utilisation des produits agricoles (tableau 2.7). Aucune limite n’est fixée pour la concentration de substances toxiques, dangereuses ou susceptibles de bioaccumulation, mais il est demandé d’effectuer une évaluation précise du volume annuel d’eaux usées qui peut être épandu en fonction du type de sol et de culture (Barbagallo et al., 2001).

Tableau 2.6
Comparaison entre les caractéristiques des eaux usées traitées par une SEEUM comportant des phases primaire et biologique, par une SEEUM comportant une phase tertiaire, et les caractéristiques des eaux du Pô (valeurs moyennes sur une partie de son cours en Émilie)

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Stations biologiques (traitement secondaire)</th>
<th>Stations avec traitement tertiaire</th>
<th>Cours fluvial du Pô</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7-8</td>
<td>7-7,5</td>
<td>7-8</td>
</tr>
<tr>
<td>DBO, mg/l</td>
<td>30-40</td>
<td>5-10</td>
<td>5-15</td>
</tr>
<tr>
<td>DCO, mg/l</td>
<td>130-160</td>
<td>30-30</td>
<td>15-30</td>
</tr>
<tr>
<td>TSS, mg/l</td>
<td>40-80</td>
<td>10</td>
<td>70-90</td>
</tr>
<tr>
<td>NH₄, mg/l</td>
<td>10-15</td>
<td>0,5</td>
<td>0,7-0,9</td>
</tr>
<tr>
<td>NO₃, mg/l</td>
<td>15-20</td>
<td>5</td>
<td>1-10</td>
</tr>
<tr>
<td>P, mg/l</td>
<td>2-3</td>
<td>0,5-1</td>
<td>0,5-2</td>
</tr>
<tr>
<td>CT Nbre./100 mL</td>
<td>20 000-50 000</td>
<td>1 000-2 000</td>
<td>50 000-500 000</td>
</tr>
</tbody>
</table>

Le nombre de SEEUM en service en fonction du niveau de traitement (primaire, secondaire et tertiaire), relevé selon leur répartition géographique: Italie du Nord (Piémont, Val d’Aoste, Lombardie, Trentin-Haut-Adige, Frioul, Vénétie-Julienne, Vénétie, Emilie-Romagne, Ligurie); Italie centrale (Toscane, Ombrie, Marches et Latium); Italie du Sud (Abruzzes, Molise, Campanie, Pouilles, Basilicate, Calabre, Sicile et Sardaigne) est présenté sur le tableau 2.8. Plus de 55% des stations construites comportent au moins un traitement secondaire (boues activées ou filtres percolateurs généralement).

Les procédés de traitement extensifs tels que les bassins de stabilisation ne sont généralement pas retenus parmi les options possibles, en dépit du fait que ces stations simples et à faible coût devraient présenter un intérêt particulier pour les collectivités de taille moyenne ou petite du sud de l’Italie. Dans ces régions, où le prix du foncier est bon marché (en particulier dans les régions de l’intérieur) et où les conditions climatiques sont très favorables, les procédés extensifs devraient être appliqués comme mesure intégrée pour les SEEUM les plus importantes (en particulier pour atteindre des normes microbiologiques plus rigoureuses) ou comme alternative pour les collectivités de petite ou moyenne taille généralement confrontées à des problèmes de gestion (la loi n° 152/99 préconise, pour moins de 2 000 e-h, le traitement des eaux usées municipales par lagunage ou zones humides aménagées).
Tableau 2.7

Normes microbiologiques pour l’irrigation au moyen d’eaux usées municipales récupérées en Italie; comparaison de lignes directrices régionales d’Italie avec les normes nationales de ce pays et avec les normes OMS

<table>
<thead>
<tr>
<th>Organisation ou région</th>
<th>CT (NPP/100 ml)a</th>
<th>CF (NPP/100 ml)</th>
<th>Streptocoques fécaux (NPP/100 ml)</th>
<th>Œufs de nématode (nombre./l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMS</td>
<td>Non fixé</td>
<td>1000°</td>
<td>Non fixé</td>
<td>1</td>
</tr>
<tr>
<td>Italie</td>
<td>2°, 10°</td>
<td>Non fixé</td>
<td>Non fixé</td>
<td>Non fixé</td>
</tr>
<tr>
<td>Sicile</td>
<td>2000 °</td>
<td>1000°</td>
<td>Non fixé</td>
<td>Non fixé</td>
</tr>
<tr>
<td>Emilie-Romagne</td>
<td>2°, 20°</td>
<td>Non fixé</td>
<td>Non fixé</td>
<td>Non fixé</td>
</tr>
<tr>
<td>Pouilles</td>
<td>2°, 10°</td>
<td>Non fixé</td>
<td>Non fixé</td>
<td>Non fixé</td>
</tr>
</tbody>
</table>

a valeur moyenne sur 7 jours d’échantillonnage consécutifs
b irrigation sans restriction
c irrigation soumise à restrictions

Tableau 2.8

SEEUM en service en Italie en fonction du degré de traitement (ISTAT, 1996).

<table>
<thead>
<tr>
<th>SEEUM en service</th>
<th>TP</th>
<th>TS</th>
<th>TT</th>
<th>NC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italie du Nord</td>
<td>2 877</td>
<td>2 461</td>
<td>242</td>
<td>60</td>
<td>5 640</td>
</tr>
<tr>
<td>Italie centrale</td>
<td>488</td>
<td>879</td>
<td>108</td>
<td>20</td>
<td>1 495</td>
</tr>
<tr>
<td>Italie du Sud</td>
<td>327</td>
<td>985</td>
<td>100</td>
<td>23</td>
<td>1 435</td>
</tr>
<tr>
<td>Total Italie</td>
<td>3 692</td>
<td>4 325</td>
<td>450</td>
<td>103</td>
<td>8 570</td>
</tr>
</tbody>
</table>

TP = traitement primaire; TS = traitement secondaire; TT = traitement tertiaire; NC = non classé

Le nombre de SEEUM, avec leurs e-h, est indiqué en fonction du milieu récepteur. Aujourd’hui, la plupart des réseaux d’égouts publics se déversent dans des cours d’eau de surface (79, 2% des SEEUM et 74,4% des e-h); les autres milieux récepteurs sont la mer (2,1% des SEEUM et 16, 7% des e-h), les lacs (1,3% des SEEUM et 2,1% des e-h) ou d’autres milieux (17, 4% des SEEUM et 6,8% des e-h); ce dernier chiffre tient compte également des rejets dans le sol et le sous-sol, et les volumes réutilisés sont indiqués sur le tableau 2.9. De plus, en raison du régime d’écoulement à débit faible (voir nul) qui caractérise plusieurs cours d’eau italiens sur la plus grande partie de l’année, l’écoulement «naturel» en aval du point de rejet d’une station d’épuration est principalement constitué d’eaux usées (traitées ou brutes).
Tableau 2.9

SEEUM et e-h en fonction du milieu récepteur (ISTAT, 1996)

<table>
<thead>
<tr>
<th>Milieu récepteur</th>
<th>Cours d'eau</th>
<th>Mer</th>
<th>Lac</th>
<th>Autres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEEUM (%)</td>
<td>E-h (%)</td>
<td>SEEUM (%)</td>
<td>E-h (%)</td>
</tr>
<tr>
<td>Italie du Nord</td>
<td>81,5</td>
<td>84,3</td>
<td>0,8</td>
<td>6,3</td>
</tr>
<tr>
<td>Italie centrale</td>
<td>77,6</td>
<td>90,6</td>
<td>1,8</td>
<td>6,2</td>
</tr>
<tr>
<td>Italie du Sud</td>
<td>74,3</td>
<td>49,3</td>
<td>5,9</td>
<td>38,9</td>
</tr>
<tr>
<td>Total Italie</td>
<td>79,2</td>
<td>74,0</td>
<td>2,0</td>
<td>16,0</td>
</tr>
</tbody>
</table>

SEEUM = stations d’épuration des eaux usées municipales; e-h = équivalent-habitant

En Italie du Sud (en particulier en Sicile, Sardaigne et dans les Pouilles), une quantité importante des eaux usées rejetées dans les cours d’eau est déjà utilisée par les exploitants agricoles, notamment au cours de la saison sèche; dans certains cas, ils pompent les eaux usées infiltrées à travers des puits ou bien ils dévourent les eaux usées du lit des cours d’eau (où l’effluent a subi une dilution et une épuration naturelle limitées) ou directement des déversoirs d’eaux usées et de stations d’épuration. Les eaux usées produites pendant l’automne et l’hiver doivent être stockées et il conviendrait de prêter une plus grande attention à la réutilisation des eaux usées produites dans les zones côtières (Barbagallo et al., 2001).

Le potentiel de réutilisation des eaux usées est élevé en Italie du Sud où, du fait de la rareté des cours d’eau à la saison d’irrigation, la ressource est principalement fournie par de grands réservoirs. Les eaux usées peuvent être utilisées dans des zones déjà dotées de réseaux collectifs de distribution ou pour irriguer des champs proches de zones développées qui sont présentement desservies par des eaux conventionnelles. En Italie du Nord, du fait de la présence de cours d’eau pérennes, la réutilisation des eaux usées municipales à des fins agricoles peut jouer un rôle majeur pour lutter contre la pollution des masses d’eau. En particulier, la Région d’Émilie-Romagne a encouragé la réutilisation des eaux usées des villes côtières en vue de limiter les phénomènes d’eutrophisation en mer Adriatique. En Italie, la réutilisation des eaux usées est principalement axée sur l’irrigation agricole, même si certains projets concernent la réutilisation industrielle et l’irrigation paysagère. Ces dernières années, plusieurs systèmes de réutilisation des eaux usées ont été appliqués non seulement dans des régions arides et semi-arides de l’Italie du Sud mais aussi en Italie du Nord (Emilie-Romagne, Val d’Aoste, Vénétie) où les ressources en eau disponibles satisfont généralement à la demande pour divers usages.

Dans le Val d’Aoste, le système de réutilisation des eaux usées municipales de St. Cristophe-Aosta-Quart (148 000 e-h) est opérationnel depuis 2001. Les eaux usées traitées (32 600 m3/j) servent avant tout à l’irrigation et à la protection contre les incendies. Dans la région autonome de Bolzano, bien que la disponibilité en ressources en eau satisfasse à la demande, la réutilisation des eaux usées suscite un intérêt croissant. Récemment, deux petits systèmes de réutilisation ont été conçus à Appiano (1 250 e-h) et à Vérano (1 200 e-h). En Vénétie, le projet de réutilisation des eaux usées (débit d’eaux usées d’environ 70 litres/s) de Rosalina Mare (Province de Rovigo) a été conçu pour l’irrigation paysagère et agricole (30% et 70% du débit disponible, respectivement). En Émilie-Romagne, principalement sur le littoral, il y a de nombreux exemples d’utilisation programmée des eaux usées municipales traitées à des fins d’irrigation et de protection de l’environnement. Le plus important système de réutilisation des eaux usées (station d’épuration de Basso Rubicone, 1 250 m3/j) couvre une superficie d’environ 400 hectares pour l’irrigation de vergers (Angelakis et al., 1999). En Toscane, il y a deux exemples importants de réutilisation des eaux usées à des fins industrielles. À Piombino, les eaux usées municipales traitées (10 000 m3/j) sont réutilisées pour le circuit de refroidissement d’une usine sidérurgique. À Prato, dans la zone industrielle textile, environ 11 000 m3/j d’eaux usées municipales traitées servent à l’industrie de transformation.

Les gouvernements régionaux des Abruzzes et de Basilicate ont récemment inclus des normes concernant la réutilisation des eaux usées dans leurs réglementations régionales sur la gestion des ressources en eau (Abruzzes) et les plans de récupération de l’eau (Basilicate); cependant, aucun système de réutilisation n’a encore été conçu. Dans la région de Sarno (Campanie), dans le cadre d’un projet de récupération concernant le bassin fluvial, 6 nouvelles stations seront aménagées pour le traitement des eaux usées municipales et industrielles (agro-alimentaire). Les eaux usées traitées serviront à l’irrigation (tomates principalement). Dans la région de Salente (Pouilles), où le manque de ressources en eau s’ajoute à la pollution organique des eaux souterraines, environ 16 000 m3/j (près de 100 000 e-h) d’eaux usées traitées (traitement biologique plus filtration finale) sont sur le point de servir à l’irrigation.

En Sardaigne, par suite du manque de ressources en eau exacerbé par les sécheresses de 1990 et 1995, l’état d’urgence a été proclamation en 1995 et le gouvernement italien a élaboré un programme d’affectation de crédits par l’État et les autorités gouvernementales locales dans le but de réduire, du moins en partie, la grave pénurie d’eau. La réutilisation des eaux usées a été envisagée, entre autres, comme l’une des mesures déterminantes pour faire face à la situation critique de l’approvisionnement en eau. Dans le cadre d’un programme du gouvernement local et de mesures financées par l’UE, un nouveau plan de récupération des eaux usées est en cours de réalisation pour utiliser directement l’effluent généré par la station d’épuration "Is Arenas" qui dessert la ville de Cagliari et ses faubourgs. Le volume d’eaux usées traitées se monte à 35 Mm3 par an, avec une prévision à court terme de 60 Mm3. Le plan prévoit une réutilisation directe à des fins agricoles et un stockage transitoire dans des réservoirs pour traitement plus poussé avant utilisation pour l’irrigation agricole. À Villasimius (province de Cagliari), les eaux usées de la station de traitement tertiaire serviront prochainement à l’irrigation d’environ 200 hectares.
En Sicile, où des expériences de réutilisation non réglementée des eaux usées sont si courantes, quelques exemples sont aussi à citer: depuis plusieurs années, les eaux traitées de Grammichele (environ 1 500 m3/j), une petite ville rurale située à l’est de l’île (district de Catane), sont utilisées pour l’irrigation de vergers d’agrumes. Plusieurs municipalités (comme Caltagirone, Mineo, S. Michele di Ganzaria, etc.), proches de Grammichele, ont prévu de réutiliser leurs eaux usées pour répondre à la demande agricole croissante. Récemment, le gouvernement sicilien a autorisé et financé, avec le concours de l’Union européenne, les projets de réutilisation des eaux usées de Palerme (dans une première phase, environ 28 000 m3/j d’eaux usées traitées seront bientôt disponibles) et de Gela (où les 2 SEEUM seront raccordés à des réservoirs de stockage d’une capacité totale de 5 millions de m3). Dans les deux cas, les eaux usées traitées serviront à l’irrigation agricole de plusieurs milliers d’hectares (Borbagallo et al., 2001).

2.3.12 Liban

Au Liban, le traitement et la réutilisation des eaux usées font l’objet d’une législation qui remonte à 1930 (Papadopoulos, 1995). La plupart des régions arides et semi-arides du monde sont dominées par un régime d’eau rare, imprévisible, qui reflète l’écart entre la demande en eau d’une population en augmentation constante et l’approvisionnement permis par des ressources en eau que la nature a limitées. Dans ces régions, l’eau représente le principal facteur de développement. Cependant, la pression accrue sur les ressources naturelles a créé de nouveaux problèmes environnementaux et économiques. L’agriculture est donc confrontée à l’énorme de satisfaire les besoins alimentaires actuels sans compromettre la capacité de maintenir les ressources renouvelables naturelles (Karam, 2002).

Au Liban, comme dans n’importe quel autre pays méditerranéen, la consommation d’eau augmente fortement par suite de la croissance démographique rapide et de la hausse de la demande qui en résulte. En raison de la limitation des ressources en eau, l’on a jugé nécessaire d’interdire l’utilisation des ressources en eau marginales en instaurant un plan de gestion qui vise à fournir une eau de deuxième catégorie se prêtant à l’irrigation. Désormais, au Liban, l’utilisation de l’eau non conventionnelle entre dans la pratique, essentiellement dans l’agriculture, mais sans que les usagers aient conscience de ses effets secondaires sur la santé humaine et la production vivrière. En outre, les effluents municipaux et industriels non traités sont déversés dans les fleuves et autres cours d’eau et sont utilisés sans aucun contrôle, puisqu’il n’existe pas de législation nationale dans ce domaine, pour irriguer des cultures de produits consommés crus où les métaux lourds et d’autres substances toxiques peuvent s’accumuler à des concentrations critiques dans les tissus végétaux, et de là dans l’organisme humain. Dans la vallée de la Bekaa, qui représente à elle seule 45% de l’ensemble des terres cultivées, les eaux souterraines et de surface sont menacées par les effluents industriels et municipaux pollués, dont la charge se déverse directement dans le cours fluviol du Litani et dans le lac de Karaoun, menaçant ainsi la faune et la flore ainsi que les systèmes agricoles (Karam, 2002).

En 1991, le volume total d’eaux usées généré dans le pays s’établissait à 165 millions de m3, dont 130 millions provenant des utilisations domestiques et 35 millions des utilisations industrielles. Il était par conséquent évident que ce potentiel considérable pour le traitement et la réutilisation des eaux usées avait été gaspillé. Aujourd’hui, sur 4m3 d’eaux usées traitées, 2 m3 sont utilisés pour l’irrigation et le reste est rejeté dans le milieu marin ou pénètre par infiltration profonde jusqu’à l’eau souterraine. Selon des estimations récentes, 35 à 50% des eaux résiduaires urbaines non épurées gagnent par infiltration la couche aquifère en raison de l’absence de réseaux d’évacuation adéquats dans certaines agglomérations urbaines et rurales, et elles sont pompées à nouveau pour l’irrigation et les usages
domestiques. En outre, des études récentes montrent que 89,6% des déchets solides domestiques et industriels ne sont pas traités et sont déchargés comme ordures dans des sites naturels, et que 10, 4% sont immergés dans les cours d’eau. Cette source diffuse de pollution constitue une menace directe pour des eaux souterraines vulnérables (Karam, 2002).

Face à cette situation, des mesures correctrices sont désormais prises par le gouvernement pour aménager, en divers emplacements, des stations d’épuration dans le but de fournir une eau de deuxième catégorie convenant à l’irrigation et aux utilisations industrielles (Karam, 2002).

2.3.13 Libye

A Hadba El Khadra (à 5 km de Tripoli, en terrain sableux), la réutilisation des eaux a démarré en 1971. Les eaux usées sont soumises à un traitement classique en station d’épuration, puis à une filtration sur sable et à une chloration (12 mg/l). Les eaux usées récupérées sont pompées et transférées dans des cuves d’une capacité de stockage de 3 jours. La réutilisation a d’abord eu lieu sur une superficie de 1 000 hectares pour irriguer des cultures fourragères et des plantations brise-vent. Une superficie supplémentaire de 1 970 hectares - dont 1 160 de cultures fourragères, 290 de légumes, 230 de plantations servant de brise-vent et à la stabilisation des dunes de sable - a également été irriguée avec des eaux usées récupérées. Une quantité de 110 000 m3/j a été appliquée en irrigation par aspersion. Une réutilisation a également eu lieu à Al Marj (nord-est de Benghazi, 50 000 habitants) après traitement biologique, filtration sur sable, chloration et stockage (Angelakis et al., 1999).

2.3.14 Malte

Comme on l’a déjà mentionné, Malte souffre d’un déficit en eau aigü. Comme l’agriculture est la principale source de revenu, la réutilisation des eaux usées pour l’irrigation a été envisagée dès 1884 en vue de préserver l’eau douce pour les usages domestiques.

Depuis 1983, l’effluent de la station d’épuration de Sant Antnin a été utilisé pour l’irrigation. Son débit actuel, de 12 800 m3/j, devrait passer à 25 600 m3/j une fois que la station aura été agrandie. La station utilise un procédé à boues activées suivi d’une filtration rapide sur sable (9 m3/m²·h). L’effluent est alors désinfecté au chlore gazeux (20 mg/l et durée de contact de 30 mn) puis pompé dans des réservoirs pour l’irrigation, avec un chlore libre résiduel de 2 mg/l. Compte tenu de la faible consommation d’eau par habitant, les eaux usées brutes de Malte sont dures (DBO$_5$ = 530 mg/l et SS = 445 mg/l) et elles ont une forte salinité (sodium et chlorures) du fait des niveaux élevés de ces ions dans la distribution d’eau domestique.

L’effluent de la station est utilisé pour irriguer 600 hectares de cultures au moyen de systèmes à raies et par aspersion. La qualité de l’effluent convient à une irrigation sans restriction et permet de produire pommes de terre, fèves, haricots à rames, poivre vert, choux, choux-fleurs, laitues, fraises, trèfle, etc. En dépit de la forte salinité, les cultures ne posent pas de problèmes, ce qu’il faut probablement attribuer à la perméabilité élevée du sol calcaire. La surveillance du sol a mis en évidence une accumulation de sels dans la couche superficielle au cours de la période d’irrigation, suivie d’un transport par lixiviation aux aquifères avec les pluies d’hiver.

En 1986, la possibilité d’une réutilisation des eaux usées industrielles a été envisagée. Il existe à Malte deux installations industrielles consommant une grande quantité d’eau: la centrale thermique d’Enemalta, et les chantiers navals Malta Drydocks. À la
centrale thermique, 1 150 m3j d’eau déminéralisée sont nécessaires pour alimenter la chaudière. L’eau utilisée aux chantiers navals est destinée à laver les coques avant qu’elles ne soient peintes. Outre une haute qualité physico-chimique, des normes très strictes sont aussi fixées au plan sanitaire, du fait que les ouvriers viennent en contact avec l’eau lors des opérations de lavage et qu’ils y sont exposés par l’inhalation d’aérosols. Pour répondre à ces normes, un traitement de pointe des eaux usées devrait être prévu pour l’effluent de la station de Sant Antnin.

L’application du procédé d’osmose inverse a été envisagée. Elle permettrait d’obtenir un effluent contenant 300 mg/l de total de solides en suspension. En utilisant des membranes appropriées, il est possible de réduire jusqu’à 95% des sels et matières organiques et presque totalement les colloïdes, bactéries, virus et parasites. Une élimination préalable des colloïdes doit être prévue pour protéger les membranes contre l’encrassement. Par conséquent, un effluent de qualité adéquate pour la réutilisation dans l’industrie pourrait être obtenu après extension de la station de Sant Antnin. L’utilisation d’eaux récupérées à des fins industrielles dépend avant tout des conditions économiques, à savoir de la comparaison du coût total des eaux récupérées avec d’autres sources d’eau alternatives comme l’eau dessalée. Pour le moment, les eaux récupérées sont exclusivement utilisées dans la blanchisserie industrielle.

2.3.15 Monaco

La situation est peu ou prou celle qui prévaut en France.

2.3.16 Maroc

En dépit de l’influence de l’océan Atlantique qui lui assure localement des précipitations relativement abondantes, le Maroc est considéré comme un pays semi-aride. Sur des chutes de pluie se montant à 150 milliards de m3 par an, l’on estime que seuls 30 milliards sont utilisables (donc 22 gagnent les eaux de surface et 8 alimentent les eaux souterraines). Ces ressources sont très inégalement réparties: les bassins hydrographiques des wadis du Sebou, du Bou Regreg et de l’Oum er Rbia représentent à eux seuls les deux tiers du potentiel hydraulique du pays (tableau 2.10).

Approximativement 11,5 milliards de m3 d’eau sont utilisés chaque année, dont 3,5 proviennent des eaux souterraines. 93% de cette eau est utilisée pour irriguer 1,2 million d’hectares, y compris 850 000 hectares irrigués plus ou moins en permanence tout au long de l’année. L’irrigation par gravité prédomine avec 80 % de la superficie irriguée, se composant avant tout de petites exploitations. Sur les grandes exploitations et dans les plans d’irrigation alimentée par des eaux souterraines, des techniques plus modernes ont été utilisées: asperseurs, rampes mobiles, pivots et goutte-à-goutte. L’eau est vendue aux exploitants agricoles à un prix compris entre 0,01 et 0,02 € le m3.

La plupart des villes marocaines sont dotées de réseaux d’assainissement qui collectent également les effluents industriels. Les volumes collectés d’eaux usées ont été estimés à 546 millions de m3 par an en 1999, et ils devraient atteindre 900 millions de m3 en 2020. Environ 58% des eaux usées actuellement produites sont rejetées sur les façades atlantique et méditerranéenne et les 42% restants sont rejetés dans les cours d’eau et les voies d’inondation. La plupart des eaux usées produites dans les villes de l’intérieur sont utilisées pour irriguer environ 7 235 hectares de cultures (chiffres de 1994) après un traitement insuffisant, voire absent (tableau 2.10). Les eaux usées traitées sont considérées comme une source d’eau mais leur contribution au bilan hydrologique national ne doit pas dépasser 4,2% (Aomar et AbdelMajid, 2002). En outre, ce potentiel d’eaux usées ne peut être totalement mobilisé puisque la plus grande partie en est produite par des installations situées le long du littoral de la mer Méditerranée et de l’océan Atlantique, loin des terres agricoles. Le coût élevé d’un transfert des
eaux usées traitées vers les régions à irriguer constitue un autre obstacle pour que la réutilisation des eaux usées devienne bientôt opérationnelle (Bazza, 2002).

Tableau 2.10
Estimation de la réutilisation des eaux usées aux fins d’irrigation au Maroc
(Conseil Supérieur de l’Eau, 1988 et 1994)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrakech</td>
<td>622</td>
<td>15</td>
<td>2 000</td>
</tr>
<tr>
<td>Meknès</td>
<td>294</td>
<td>14</td>
<td>1 400</td>
</tr>
<tr>
<td>Oujda</td>
<td>419</td>
<td>Nd</td>
<td>1 175</td>
</tr>
<tr>
<td>Fès</td>
<td>541</td>
<td>21</td>
<td>800</td>
</tr>
<tr>
<td>El Jadida</td>
<td>971</td>
<td>Nd</td>
<td>800</td>
</tr>
<tr>
<td>Khourigba</td>
<td>481</td>
<td>4</td>
<td>360</td>
</tr>
<tr>
<td>Agadir</td>
<td>366</td>
<td>Nd</td>
<td>310</td>
</tr>
<tr>
<td>Beni-Mellal</td>
<td>870</td>
<td>3</td>
<td>225</td>
</tr>
<tr>
<td>Ville de Benguerir</td>
<td>nd.</td>
<td>Nd</td>
<td>95</td>
</tr>
<tr>
<td>Tétouan</td>
<td>537</td>
<td>Nd</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>5 101</td>
<td>Nd</td>
<td>7 235</td>
</tr>
</tbody>
</table>

nd: non disponible

Pour l’heure, la réutilisation des eaux usées n’est pas, au Maroc, une question majeure pour la gestion des ressources en eau. Mais les autorités pensent que la situation pourrait évoluer dans quelques années. L’on s’attend à une augmentation rapide de la consommation d’eau de boisson dans les villes par suite de l’accroissement de la population urbaine à raison de 500 000 habitants par an., ce qui nécessitera de transférer des ressources en eau d’un bassin versant à l’autre et de remplacer l’eau douce par des eaux usées pour les besoins de l’irrigation. Le volume d’eaux usées disponible pour la réutilisation augmentera avec l’amélioration des réseaux d’assainissement. Dans ces conditions, la part des eaux usées traitées dans la totalité des ressources en eau pourrait croître de plusieurs points de pourcentage d’ici quelques dizaines d’années, notamment si les eaux usées des villes côtières sont également récupérées (le chiffre de 10%, parfois cité, semble excessif). Bien que les eaux usées ne représentent qu’une part réduite des ressources en eau à l’échelle nationale, elles peuvent contribuer à résoudre des problèmes locaux. C’est en particulier le cas des villes côtières situées dans des régions arides qui sont isolées des principaux réseaux de distribution. Cette perspective est corroborée par le taux élevé de réutilisation spontanée des eaux usées dans les villes de l’intérieur. Les eaux réutilisées sont avant tout des eaux usées brutes, parfois mélangées avec des eaux provenant de wadis dans lesquels elles se déversent. Les cultures irriguées sont principalement des plantes fourragères (4 récoltes de maïs par an dans les environs de Marrakech), des arbres fruitiers, des céréales, etc.(la culture et la vente de légumes destinés à être consommés crus sont interdites).

Le Maroc n’a pas encore de réglementation relative à la réutilisation des eaux usées. Il est habituellement fait référence aux recommandations OMS. Bien que la réutilisation réduise les incidences environnementales des eaux usées sur les eaux réceptrices habituelles, l’absence de traitement avant réutilisation dans les villes de l’intérieur a des impacts néfastes sur la santé. Une amélioration des méthodes de réutilisation des
eaux usées ainsi que de la qualité des eaux utilisées pour l’irrigation est tenue pour essentielle. Dans les régions karstiques, l’infiltration des eaux usées affecte à des degrés variables les ressources en eau souterraine. Enfin, l’insuffisance de l’assainissement, de la collecte et du traitement des eaux usées, en particulier dans les petites villes, entraîne souvent un risque d’eutrophisation des barrages.

Le rejet d’eaux usées non traitées dans la mer sans émissaires adéquats peut entraver le développement du tourisme en altérant la qualité sanitaire des plages, en dégageant des odeurs désagréables et en ayant des effets esthétiques. De grandes améliorations s’imposent de toute urgence du fait de l’exode rural et de l’expansion démographique très rapide des villes qui l’accompagne. Une incidence élevée de maladies dues à l’eau est relevée au Maroc (selon certains auteurs, une proportion de 25% de la population pourrait être infectée). Des études en vue de plans directeurs d’assainissement pour les principales villes sont actuellement en cours et sont un premier pas pour répondre à ces exigences. L’établissement d’un plan directeur national pour les eaux usées est un moyen d’étendre cette procédure à l’ensemble du territoire.

2.3.17 Slovénie

Comme il a été relevé (Vrhovšek, 2002), les autorités slovènes ont récemment commencé à développer des zones humides aménagées pour différents types d’eaux usées. L’une des priorités de ces zones humides aménagées est la réutilisation de l’eau. Malheureusement, jusqu’ici, les zones humides aménagées ne sont utilisées que pour des petites collectivités et, par conséquent, ce ne sont que des quantités d’eau assez limitées qui sont recyclées. Il est prévu, dans un avenir très proche, de recourir aux zones humides aménagées et au recyclage de l’eau à large échelle, principalement pour les installations touristiques. Un petit nombre de projets ont déjà été menés à bien.

2.3.18 Syrie

La pluviométrie moyenne annuelle en Syrie est de 252 mm, soit 46 milliards de m³/an. Le total des ressources renouvelables est de 26,2 milliards de m³/anm tandis que les disponibilités et le taux de dépendance sont respectivement de 1791 m³/habitant/an et de 80,3% (Angelakis, 2003).

Le volume total des effluents industriels et municipaux est estimé à 400, 700 et 1 600 millions de m³ par an pour les années 1990, 2000 et 2025, respectivement. Le rejet de ces déchets à l’état brut dans les fleuves et cours d’eau a entraîné une altération de la qualité des eaux de surface au point qu’elles sont devenues inutilisables pour produire de l’eau de boisson. Cette pollution notable des cours d’eau et autres masses d’eau a entraîné une disparition d’organismes vivants par manque d’oxygène, le développement d’herbes et plantes adventices qui obstruent les voies d’eau dans certaines régions, des odeurs nauséabondes émanant de la décomposition de matières organiques, et une multiplication des insectes et rongeurs. Les conditions sanitaires des personnes vivant dans les zones d’usage intensif d’eaux usées non traitées se dégradent aussi. Des maladies telles que la typhoïde et l’hépatite se propagent à une fréquence plus élevée dans ces régions. Les animaux sont également frappés par plusieurs maladies qui se transmettent par l’eau comme le ténia, la tuberculose et d’autres maladies infectieuses (Bazza, 2002). La superficie totale irriguée par les eaux usées est estimée à environ 40 000 hectares, dont 20 000 à Alep (Zulita et Abboud, 2001).

Pour faire face à cette situation alarmante et obtenir dans le même temps une eau traitée sans danger pour les utilisations agricoles, le gouvernement syrien a lancé un programme de construction de plusieurs stations d’épuration, dont deux sont en service, à Damas et à Alep. La station de Damas traite actuellement 485 m³/j au moyen du procédé des boues activées. La superficie totale irriguée avec des eaux traitées ou non traitées est de
18 000 hectares situés à la périphérie de la ville. À l’exception d’une proportion importante d’eaux usées produite à Damas et à Alep, les eaux usées brutes collectées des villes, villages et autres zones résidentielles sont utilisées sans aucun traitement soit pour irriguer directement des cultures soit pour les rejeter en mer, soit encore pour les rejeter dans des masses d’eau qui servent à une irrigation sans restriction. L’utilisation des eaux usées est limitée aux cultures fourragères, industrielles et aux arbres fruitiers, et il est rare qu’elles servent à d’autres cultures. La situation devrait s’améliorer quand plusieurs stations d’épuration en construction dans toutes les grandes villes du pays entrent en service. Dans les villes et les régions où les systèmes d’assainissement traditionnels ont été inopérants, les habitants sont peu disposés à acquitter des taxes de raccordement à un réseau d’égouts. Le manque d’information et de sensibilisation aux risques et avantages des eaux usées sont également patents (Bazza, 2002).

Comme le traitement et la réutilisation des eaux usées sont des pratiques nouvelles en Syrie, tous les problèmes et obstacles possibles sont courants, y compris l’absence de politique, l’absence de normes et règlements, des compétences techniques et de gestion limitées. Certains de ces problèmes sont aujourd’hui saisis à bras-le-corps, notamment avec l’assistance du PNUD et de la FAO. Une stratégie de traitement et réutilisation des eaux usées est en préparation pour la région de Damas et devrait servir de modèle pour d’autres villes. Des normes nationales et un programme de surveillance continue sont également en cours d’élaboration pour cette même région (Bazza, 2002).

2.3.19 Tunisie

En Tunisie, les eaux usées sont récupérées à environ 45 stations d’épuration, soit une capacité totale de 130 millions de m³ par an. Plusieurs de ces stations sont situées le long du littoral pour protéger les centres balnéaires et prévenir la pollution de la mer. Les eaux usées municipales sont en majorité d’origine domestique (environ 82%), puis industrielle (12%) et touristique (6%) et subissent un traitement biologique secondaire. Il n’est pas opéré de traitement plus poussé en raison du coût. Les procédés de traitement varient selon l’origine des eaux usées et les conditions locales. Sur 44 stations d’épuration, 15 ont recours aux boues activées (débit moyen et faible), 2 aux filtres percolateurs, 6 sont facultatifs, 4 des bassins aérés et 17 des fossés d’oxydation. Cinq stations d’épuration sont situées dans l’agglomération de Tunis et produisent environ 60 millions de m³/an d’eaux usées traitées. Elles représentent 57% des effluents récupérés du pays, estimés à 24 millions de m³ en 1995, ce qui signifie qu’en 1995, par exemple, seuls 21% des eaux usées traitées disponibles ont été réutilisées.

Le VIIIème Plan National (1992-1996) a prévu que le volume annuel d’eaux usées récupérées atteindrait 147 millions de m³, permettant théoriquement l’irrigation d’une superficie supplémentaire de 18 000 hectares. Au début du 20ème siècle, les eaux récupérées représentaient approximativement 10% des ressources disponibles en couche aquifère. Selon les projections actuelles, 266 millions de m³ d’effluents traités devraient être produits en 2011 (tableau 2.11). Ces effluents serviront à éviter une extraction excessive d’eau souterraine occasionnant une intrusion d’eau salée dans les aquifères. Si les projets actuels de réutilisation ont été mis en œuvre après la construction des stations d’épuration, dans les nouveaux projets le traitement et la réutilisation sont programmés au stade de la conception. Comme les rejets d’eaux usées traitées restent plus ou moins constants tout au long de l’année et que leur volume devrait augmenter avec l’expansion urbaine, industrielle et touristique, la réutilisation des eaux usées continuera à se développer en Tunisie, principalement à des fins agricoles.
Tableau 2.11
Production d’eaux usées traitées en Tunisie (Turki et Naassaoui, 1996)

<table>
<thead>
<tr>
<th>Année</th>
<th>Nombre de SEEUM</th>
<th>Volume d’eaux usées collectées (Mm³/an)</th>
<th>Volume d’effluents traités (Mm³/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>49</td>
<td>125</td>
<td>113</td>
</tr>
<tr>
<td>2001</td>
<td>80</td>
<td>160</td>
<td>152</td>
</tr>
<tr>
<td>2006</td>
<td>100</td>
<td>240</td>
<td>216</td>
</tr>
<tr>
<td>2011</td>
<td>120</td>
<td>290</td>
<td>266</td>
</tr>
</tbody>
</table>

L’irrigation au moyen d’eaux usées récupérées est une pratique consacrée en Tunisie. Les eaux usées de la station d’épuration de la Cherguia, à Tunis, sont utilisées depuis 1965 pour irriguer les 1 200 hectares de la Soukra (à 8 km au nord-est de Tunis) et elles ont sauvé les vergers d’agrumes car les eaux souterraines étaient devenues surexploitées et souffraient d’intrusion saline. Les effluents des stations d’épuration ont été surtout utilisés pendant le printemps et l’été, soit exclusivement soit en complément de l’eau souterraine. Les eaux usées de la station à traitement secondaire de la Cherguia sont pompées et déversées dans un bassin de 5 800 m³ avant d’être stockées dans un réservoir de 3 800 m³. Les eaux sont alors délivrées par gravité aux exploitations agricoles au moyen d’un réseau de canalisations souterraines. Un Conseil régional pour le développement agricole (CRDA) supervise l’exploitation et l’entretien du réseau de distribution et contrôle l’application du Code de l’eau.

Le décret de 1989 stipule que l’utilisation des eaux usées récupérées doit être autorisée par le Ministre de l’agriculture, en accord avec le Ministre de l’environnement et de l’aménagement du territoire et avec le Ministre de la santé publique. Il énonce les précautions requises pour protéger la santé des exploitants agricoles et des consommateurs, et pour protéger l’environnement. La surveillance de la qualité physico-chimique et biologique des eaux usées récupérées et des cultures irriguées est prévue: analyse d’un ensemble de paramètres physico-chimiques une fois par mois, des éléments en traces tous les 6 mois et des œufs d’helminthe toutes les deux semaines, sur des échantillons composites de 24 h, etc. Lorsque c’est l’irrigation par aspersion qui est pratiquée, des zones-tampon doivent être créées. La pâture directe est interdite sur les champs irrigués avec des eaux usées. Le tableau 2.12 résume les normes tunisiennes.
Tableau 2.12
Normes tunisiennes applicables aux eaux récupérées utilisées dans l’agriculture
(Angelakis et al., 1999)

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur maximale autorisée</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,5 – 8,5</td>
</tr>
<tr>
<td>CE (dS/m)</td>
<td>7,0</td>
</tr>
<tr>
<td>DCO</td>
<td>90<sub>b,c</sub></td>
</tr>
<tr>
<td>DBD<sub>5</sub></td>
<td>30<sub>b,c</sub></td>
</tr>
<tr>
<td>SS</td>
<td>30<sub>c</sub></td>
</tr>
<tr>
<td>Cl</td>
<td>2,000</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>Hydrocarbures halogénés</td>
<td>0,001</td>
</tr>
<tr>
<td>As</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>Cd</td>
<td>0,01</td>
</tr>
<tr>
<td>Co</td>
<td>0,1</td>
</tr>
<tr>
<td>Cr</td>
<td>0,1</td>
</tr>
<tr>
<td>Cu</td>
<td>0,5</td>
</tr>
<tr>
<td>Fe</td>
<td>5</td>
</tr>
<tr>
<td>Mn</td>
<td>0,5</td>
</tr>
<tr>
<td>Hg</td>
<td>0,001</td>
</tr>
<tr>
<td>Ni</td>
<td>0,2</td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
</tr>
<tr>
<td>Se</td>
<td>0,05</td>
</tr>
<tr>
<td>Zn</td>
<td>5</td>
</tr>
<tr>
<td>Nématodes intestinaux (moyenne arith. Nombre d’œufs/l)</td>
<td><1</td>
</tr>
</tbody>
</table>

^a Toutes les unités en mg/l, sauf spécification contraire
^b échantillon composite de 24 h
^c sauf autorisation spéciale

Les spécifications fixant les clauses et conditions de la réutilisation des eaux usées, telles que les précautions à prendre pour prévenir toute contamination (ouvriers, zones d'habitants, consommateurs, etc.), ont été publiées. Les Ministères de l'intérieur, de l'environnement et de l'aménagement du territoire, de l'agriculture, de l'économie et de la santé publique sont chargés de l'application effective de ce décret.

Il convient de noter que, en Tunisie, les exploitants agricoles paient les eaux usées qu'ils utilisent pour irriguer leurs champs.

2.3.20 Turquie

L’irrigation dans l’agriculture est un facteur important dans l’économie de la Turquie confrontée à une croissance démographique entraînant une augmentation correspondante de la demande de produits alimentaires et de matières premières agricoles à des fins d’utilisations intérieures et d’importation.
En Turquie, environ 8,5 millions d'hectares de terres agricoles sont considérées comme se prêtant à l'irrigation au plan économique; actuellement, environ la moitié de cette surface est irriguée. Dans le sud-est du pays, près de 1,7 million d'hectares seront irrigués dans le cadre du GAP (Projet du sud-est anatolien), comportant quelque treize grands plans/projets. En dépit de ces investissements coûteux, les bénéfices attendus des projets d'irrigation pourraient ne pas être maintenus à la phase de gestion. Les techniques d'irrigation et la consommation excessive d'eau pour l'irrigation créent quelques problèmes sérieux comme l'érosion, l'engorgement, des problèmes de salinité et d'alcalinité, etc., et limitent le succès de cette pratique. Ces questions ont également des aspects sociaux, sanitaires et environnementaux pour les habitants de la région (Gorgun, 2002). Le besoin croissant en systèmes d'irrigation incitent les spécialistes à s'intéresser à cette question et il est manifeste aujourd'hui que la récupération et la réutilisation des eaux usées deviennent une option séduisante pour convertir et augmenter, dans certains cas, les ressources en eau disponibles. La réutilisation des eaux usées dans l'agriculture est un élément du développement et de la gestion des ressources en eau qui offre des options innovantes et de substitution à l'agriculture. La réutilisation des eaux récupérées à des fins d'irrigation renforce la productivité agricole. Mais elle exige une protection de la santé publique, des techniques appropriées d'épuration des eaux usées, une bonne gestion de l’eau ainsi que l'adhésion et la participation du public. Elle doit aussi être viable au plan économique et financier.

Le recours aux eaux récupérées pour l'irrigation est dû avant tout à la rareté des ressources en eau et à une gestion inefficace de ces ressources, l'une et l'autre causes étant exacerbées par la croissance démographique, par les conditions économiques et l'essor de l'urbanisation. La durabilité de l'irrigation dans les pratiques agricoles contemporaines est compromise par plusieurs facteurs négatifs qui sont : a) la limitation des ressources en sol, en eau et en énergie; b) la dégradation des conditions économiques; c) une prise de conscience croissante des problèmes d’environnement; et d) des décisions inopérantes dans la gestion des systèmes d’irrigation

Bien que les eaux usées domestiques ne doivent pas être utilisées directement sans avoir subi un traitement approprié, elles contiennent des éléments nutritifs qui sont indispensables à la croissance des plantes et elles peuvent, après épuration, servir de ressource comrade en eau. En particulier, pendant les périodes estivales et dans les zones arides où les activités d’irrigation doivent être intensifiées pour les besoins de la production agricole, il peut être indiqué de réutiliser à cette fin les eaux usées dans certains cas. Mais si les eaux usées ne sont pas correctement traitées, il peut en résulter des niveaux accrus d'azote, de phosphore, de salinité, de matières organiques biodégradables et d’éléments en traces dans les zones de production agricole. Le bore est un autre paramètre à surveiller soigneusement puisque son accumulation dans un sol lourd à la suite de l’irrigation se traduit par une baisse brutale de la productivité agricole.

Les dispositions techniques pertinentes et les restrictions apportées à l’utilisation des eaux usées à des fins agricoles sont indiqués sur les tableaux 2.13, 2.14 et 2.15, en référence à la réglementation turque sur la lutte contre la pollution de l’eau. En plus des prescriptions énumérées ci-dessous, il existe dans la réglementation turque d'autres critères concernant le classement des eaux à utiliser pour l’irrigation, des limites supérieures admissibles pour les concentrations de métaux lourds, d’éléments toxiques et la masse de ces polluants par unité de superficie agricole irriguée (Gorgun, 2002).
Tableau 2.13

Dispositions applicables à la réutilisation des eaux usées dans l’agriculture en Turquie

<table>
<thead>
<tr>
<th>Type d’agriculture</th>
<th>Restrictions techniques</th>
</tr>
</thead>
</table>
| Fruits et viticulture | - irrigation par aspersion non autorisée
- fruits impropre à la consommation si venus en contact avec le sol
- les CF doivent être inférieurs à 1000/100 ml |
| Plantes fibreuses et semis | - conviennent à l’irrigation en surface et par aspersion
- les eaux usées traitées par procédé biologique et au chlore peuvent être utilisées pour l’irrigation par aspersion
- les CF doivent être inférieurs à 1000/100 ml |
| Cultures vivrières et plantes à huile, impropre à la consommation en l’absence de cuisson, et fleurs | - Irrigation libre, eaux usées soumises à traitement mécanique |

Tableau 2.14

Eaux usées domestiques traitées (sans être désinfectées) à utiliser pour l’irrigation

<table>
<thead>
<tr>
<th></th>
<th>Champ</th>
<th>Prairie-Pâturage</th>
<th>Légumes</th>
<th>Culture de fruits</th>
<th>Cultures vivrières</th>
<th>Petite sylviculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent décanté en lagune ou soumis à traitement biologique</td>
<td>ES</td>
<td>AS</td>
<td>ES</td>
<td>AS</td>
<td>ES</td>
<td>AS</td>
</tr>
<tr>
<td>Bassins de stabilisation aérobies ou lagunage</td>
<td>ES</td>
<td>AS</td>
<td>ES</td>
<td>AS</td>
<td>ES</td>
<td>AS</td>
</tr>
</tbody>
</table>

ES: existence de plantes
AS: absence de plantes
(-) = ne convient pas, (+) = convient pour l’irrigation

Tableau 2.15

Adéquation des eaux usées industrielles pour l’irrigation

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conviennent pour l’irrigation si champ approprié à proximité</td>
<td>Conviennent sous réserve de certaines conditions spécifiques</td>
<td>Ne conviennent pas pour l’irrigation</td>
<td></td>
</tr>
<tr>
<td>Usines de bière, malt, vin, levure, pommes de terre et légumes en conserves, prune en conserves, fruits en conserves, lait, féculle de pomme de terre</td>
<td>Usines de sucre, féculle de riz et céréales, colle de peaux, gélatine d’os, abattoirs, traitement des viandes, tanneries, usines de margarine, papier et carton, textiles, lavage de la laine, conserves de poisson, activités extractives</td>
<td>Usines de vernis et peintures, savon, chimie lourde inorganique, produits pharmaceutiques, métallurgie, cellulose, soie artificielle et viscose, établissements de pyrolyse, gaz de houille, turbine à gaz, huile minérale, lavage du charbon, pyrolyse du bois.</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Les deux principales approches concernant les critères de réutilisation des eaux usées aux fins d'irrigation

L'évolution des critères de réutilisation ne peut être bien appréhendée sans que l'on procède à un examen historique de ce qu'ils ont été successivement depuis 1918, année qui marque le départ de l'instauration de législations, qui vont se multiplier dans les années plus récentes, sur la réutilisation des eaux usées. Un résumé de cette évolution est donné sur le tableau 2.16.

Le premier élément à évaluer avant de réutiliser des eaux usées est la qualité de celles-ci en examinant la présence éventuelle de substances toxiques ou la possibilité d'une accumulation de polluants dans le sol, les eaux souterraines et les cultures. Il importe de réaliser des tests toxicologiques préliminaires, de vérifier les modifications microbiologiques dans le sol irrigué et d'y rechercher la présence métaux lourds et de produits chimiques de synthèse qui sont normalement présents dans les eaux résiduaires urbaines (hydrocarbures, désinfectants, etc.).

Sur la base des études et des essais réalisés, on est fondé à penser que les métaux lourds s'accumulent principalement dans les boues et non pas dans les eaux usées proprement dites, d'où des avantages concernant l'utilisation de ces dernières pour l'irrigation.

Un autre aspect à évaluer pour s'assurer de la qualité sanitaire des eaux usées à utiliser est la présence de coliformes et, plus généralement, de bactéries et virus pathogènes. La question de savoir si les normes de qualité microbiologiques sont appliquables selon le type d'irrigation pratiqué et le type de culture irrigué suscite de vives controverses (Asano et Levine, 1996). Ces questions se limitent essentiellement à l'irrigation "sans restriction" (légumes qui peuvent être consommés crus, terrains de sport, etc.).

Tableau 2.16
Données historiques sur la qualité des eaux pour une irrigation sans restriction (Salgot et Angelakis, 2001)

<table>
<thead>
<tr>
<th>Année</th>
<th>Données et critères de qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>Le State Board of Public Health de Californie établit les «premiers règlements concernant l’utilisation des eaux usées à des fins d’irrigation en Californie»</td>
</tr>
<tr>
<td>1952</td>
<td>Première réglementation en Israël</td>
</tr>
<tr>
<td>1973</td>
<td>OMS: 100 CF/100 ml, 80% des échantillons</td>
</tr>
<tr>
<td>1978</td>
<td>Règlements de l’État de Californie sur la récupération des eaux usées: 2,2 CT/100 ml</td>
</tr>
<tr>
<td>1978</td>
<td>Règlements israéliens: 12 CF/100 ml dans 80% des échantillons: 2,2 CF/100 ml dans 50% des échantillons</td>
</tr>
<tr>
<td>1983</td>
<td>Rapport de la Banque mondiale (Shuval et al., 1986)</td>
</tr>
<tr>
<td>1983</td>
<td>État de Floride: dénombrement d’E. coli dans 100 ml</td>
</tr>
<tr>
<td>1984</td>
<td>État de l’Arizona: normes pour les virus (1 virus/40 l) et pour Giardia (1 kyste/ 40 l)</td>
</tr>
<tr>
<td>1985</td>
<td>Rapport de Feachem et al., 1983</td>
</tr>
<tr>
<td>1985</td>
<td>Rapport d’Engelberg (IRCWD, 1985)</td>
</tr>
<tr>
<td>1989</td>
<td>Recommandations OMS pour la réutilisation des eaux usées: 1000 CF/100 ml et < 1 œuf de nématode/l</td>
</tr>
<tr>
<td>1990</td>
<td>État du Texas : 75 CF/100 ml</td>
</tr>
</tbody>
</table>

La surveillance des agents pathogènes est difficile et onéreuse. Par conséquent, les lignes directrices OMS, élaborées en gardant à l’esprit les besoins des pays en développement, ne prescrivent une limite que pour les coliformes fécaux (<1000/100 ml) et les œufs de nématodes intestinaux (≤1/l). Il s’ensuit que toute la controverse sur les normes tourne autour de la validité de ces limites en tant que garantie suffisante de sécurité des eaux utilisées dans l’irrigation (Marecos do Monte et al., 1996). La réponse tient en grande partie dans les prescriptions de traitement associées aux valeurs limites. Il convient aussi de se rendre compte que, dans le cas où des eaux usées brutes sont directement réutilisées, les lignes directrices OMS, par leur seule exigence de traitement, constituent déjà un progrès majeur. Sur la base d’une étude approfondie des lignes directrices existant dans le monde, l’OMS a fait part de la nécessité d’établir des critères chimiques sanitaires pour l’application sur le sol d’eaux usées (Chang et al., 1995).

Récemment, Blumenthal et al. (2000), utilisant des constatations épidémiologiques empiriques et des mesures de l’exposition réelle se produisant avec le temps et ne dépendant pas d’estimations microbiennes quotidiennes sur la base de données expérimentales ont élaboré des recommandations pour réviser les lignes directrices OMS de
1989 (tableau 2.18). Pour cette révision des lignes directrices OMS, les recommandations traiteront, en plus de la réutilisation des eaux usées traitées, des milieux urbains, de l'aquaculture et de la recharge artificielle des eaux souterraines.

2.5 Législation et lignes directrices sur la réutilisation des eaux usées au niveau européen

Aucune réglementation concernant la réutilisation des eaux usées n'existe à ce jour au niveau européen. La seule mention qui y soit faite figure à l'article 12 de la directive européenne relative au traitement des eaux résiduaires urbaines (91/271/CEE) (CE, 1991) énonçant: “Les eaux usées traitées sont réutilisées si cela se révèle approprié”. Pour que cet énoncé se concrétise, il conviendrait d'avoir une définition commune de ce qui est "approprié".

En fait, une nouvelle directive-cadre en vigueur dans l'UE englobe toutes les réglementations européennes existantes relatives à l'eau. Ce texte vise à fournir une approche réglementaire cohérente compatible avec le concept de "prévention et lutte antipollution intégrée" et de promouvoir l'application des meilleures techniques disponibles (MET).

La communication de la CE sur la politique communautaire de l'eau (UE, 1996) ne mentionne pas expressément l'opportunité d'une réutilisation des eaux usées mais elle confère une dimension quantitative à la gestion de l'eau, en plus de la dimension qualitative habituelle, qui pourrait inciter à envisager la réutilisation des eaux usées. Elle stipule également que les "les ressources en eau devraient être d'une qualité et d'une quantité suffisantes pour répondre à d'autres conditions économiques requises". La réutilisation des eaux usées étant une ressource en eau souvent mobilisée pour des raisons économiques, une telle recommandation a des implications économiques (Angelakis et al., 1999). Parallèlement, l'UE a mis en place un "groupe de réflexion eau-environnement" qui a avant tout un rôle consultatif en vue de fixer des priorités de recherche-développement et d'améliorer la coordination des diverses actions des institutions européennes dans le domaine de l'eau. L'une des questions problématiques est la promotion de la réutilisation et du recyclage de l'eau dans les diverses branches de l'agriculture et de l'industrie (irrigation et refroidissement en particulier), grâce à l'élaboration de normes pour la réutilisation, à la mise au point de techniques de traitement et de stockage sur place des eaux usées, et à des campagnes de sensibilisation.

Les lignes directrices OMS (1989) sont en cours de révision. L'OMS a réexaminé les données épidémiologiques sur les agents pathogènes acquises depuis 1984, en actualisant et confirmant son approche de l'évaluation des risques microbiologiques et en collaborant étroitement avec d'autres chercheurs. Selon l'état de cette révision alors établi par Carr (2000), certaines des normes recommandées des lignes directrices de 1989 devaient être renforcées, par exemple pour les nématodes, compte tenu du taux élevé d'infection (40 millions de cas chaque année d'infections à nématodes dans le monde). La question de l'arsenic était revue en raison de problèmes au Bangladesh, etc., et le manque de données à ce sujet. Des lignes directrices spécialisées étaient nécessaires pour les germes et cultures similaires où une nouvelle prolifération bactérienne (notamment E. coli 0157) posait problème. Facioliasis spp., les toxines cyanobactériennes, les agents de perturbation endocrinienne et Cyclospora spp. faisaient l'objet d'investigations. En matière de récupération et réutilisation des eaux usées, l'OMS cherchait à inclure quatre catégories: a) agriculture; b) aquaculture (exploitations conchylicoles, etc.); c) recharge artificielle exclusivement pour l'alimentation en eau potable; et d) milieux urbains. Il était prévu de finaliser les lignes directrices pour la fin 2002. Les nouvelles lignes directrices devaient couvrir les diverses options de protection de la santé comme le traitement des eaux usées, les restrictions d'utilisation pour les cultures, les contrôles d'application et la maîtrise des expositions humaines. Une approche multi-barrières tout au long du cycle de l'eau était importante.
Tableau 2.17

<table>
<thead>
<tr>
<th>Agence</th>
<th>Conditions de réutilisation</th>
<th>Nématodes intestinaux<sup>a</sup></th>
<th>Coliformes fécaux ou totaux<sup>b</sup></th>
<th>Traitement des eaux usées prescrit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMS</td>
<td>Irrigation de cultures céréalières, industrielles, fourragères, de pâturages et d'arbres</td>
<td><1/l</td>
<td>Pas de norme recommandée</td>
<td>Bassins de stabilisation avec temps de séjour de 8-10 jours ou élimination équivalente</td>
</tr>
<tr>
<td>OMS</td>
<td>Irrigation de cultures susceptibles d'être consommées sans cuisson, de terrains de sport, de parcs publics</td>
<td><1/l</td>
<td><1 000/100 ml</td>
<td>Bassins de stabilisation en série ou traitement équivalent</td>
</tr>
<tr>
<td>US EPA</td>
<td>Irrigation de pâturages pour la production laitière, de cultures fourragères, à fibres et semis, irrigation paysagère</td>
<td>Pas de norme recommandée</td>
<td>200/100 ml<sup>d</sup></td>
<td>Traitement secondaire suivi de désinfection</td>
</tr>
<tr>
<td>CALIFORNIE</td>
<td>Irrigation de pâturages pour la production laitière, confinement paysager</td>
<td>Pas de norme recommandée</td>
<td><23/100 ml<sup>b</sup></td>
<td>Traitement secondaire suivi de désinfection</td>
</tr>
<tr>
<td>OMS</td>
<td>Irrigation paysagère si accès du public (comme les hôtels)</td>
<td><1/l</td>
<td><200/100 ml</td>
<td>Traitement secondaire suivi de désinfection</td>
</tr>
<tr>
<td>US EPA</td>
<td>Irrigation en surface ou par pulvérisation de toute culture vivrière (y compris les aliments consommés crus)</td>
<td>Pas de norme recommandée</td>
<td>Non décelable<sup>c</sup></td>
<td>Traitement secondaire suivi de filtration (avec coagulant préalable et/ou addition de polymère et désinfection)</td>
</tr>
<tr>
<td>CALIFORNIE</td>
<td>Irrigation en surface et par pulvérisation de cultures vivrières, irrigation de paysages très exposés comme les parcs</td>
<td>Pas de norme recommandée</td>
<td><2,2/100 ml<sup>b</sup></td>
<td>Traitement secondaire suivi de filtration et désinfection</td>
</tr>
</tbody>
</table>

^a Espèces *Ascaris* et *Trichuris* et ankylostomes; exprimés en moyenne arithmétique d'œufs/l au cours de la période d'irrigation

^b Les critères californiens de récupération des eaux usées sont exprimés en nombre médian de coliformes totaux par 100 cm³, déterminé d'après les résultats bactériologiques des 7 derniers jours pour lesquelles des analyses ont été effectuées

^c Le nombre de coliformes fécaux ne devrait dépasser 14/100 ml dans aucun des échantillons

^d Le nombre des coliformes fécaux ne devrait dépasser 800/100 ml dans aucun des échantillons
Tableau 2.18

Lignes directrices microbiologiques révisées de l'OMS pour l'utilisation des eaux usées traitées dans l'agriculture

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Conditions de réutilisation</th>
<th>Groupe exposé</th>
<th>Technique d'irrigation</th>
<th>Nématodes intestinauxb (moyenne arithmétique nombre d'œufs /i)</th>
<th>Coliformes fécaux (moyenne géométrique nombre./100 ml)c</th>
<th>Traitement des eaux usées prévu pour obtenir la qualité microbiologique</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Irrigation sans restriction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bassins de stabilisation bien conçus en série, réservoirs de traitement et stockage séquentiels des eaux usées par ots ou traitement équivalent (par exemple, traitement secondaire classique complété par des bassins de finition ou par filtration et désinfection)</td>
</tr>
<tr>
<td>A1</td>
<td>Pour cultures de légumes et salades consommés sans cuisson, terrains de sport, parcs publics e</td>
<td>Travailleurs, consommateurs, public</td>
<td>N'importe laquelle</td>
<td>≤ 0,1f</td>
<td>≤ 10³</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Irrigation sans restriction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Séjour dans une série de bassins de stabilisation y compris un bassin de maturation ou en réservoirs de traitement et stockage séquentiels ou traitement équivalent (par ex., secondaire classique complété par des bassins de finition ou par filtration)</td>
</tr>
<tr>
<td>B1</td>
<td>Cultures céréalières, industrielles, fourragères, pâturages et arbres g</td>
<td>Travailleurs (non compris les enfants < 15 ans), collectivités proches</td>
<td>Pulvérisation ou aspersion</td>
<td>≤ 1</td>
<td>≤ 10⁶</td>
<td></td>
</tr>
<tr>
<td>B2 comme B1</td>
<td></td>
<td>Inondation/à raies</td>
<td></td>
<td>1</td>
<td>10³</td>
<td>Comme catégorie A</td>
</tr>
<tr>
<td>B3</td>
<td>Travailleurs y compris les enfants < 15 ans, collectivités proches</td>
<td>N'importe laquelle</td>
<td></td>
<td>≤ 0,1</td>
<td>≤ 10³</td>
<td>Comme pour la catégorie A</td>
</tr>
</tbody>
</table>

a Lignes directrices microbiologiques révisées de l'OMS pour l'utilisation des eaux usées traitées dans l'agriculture.
b Nématodes intestinaux.
c Coliformes fécaux.
<table>
<thead>
<tr>
<th>C</th>
<th>Irrigation localisée de cultures de la catégorie B si pas d'exposition des travailleurs et du public</th>
<th>Aucun</th>
<th>Aspersion, goutte-à-goutte ou barbotage</th>
<th>Sans objet</th>
<th>Sans objet</th>
<th>Prétraitement requis par la technique d'irrigation, mais au minimum décantation primaire</th>
</tr>
</thead>
</table>

a Dans certains cas, des facteurs épidémio logiques, socio-culturels et environnementaux locaux devraient être pris en compte et les lignes directrices modifiées en conséquence.

b Espèces *Ascaris* et *Trichuris* et ankylostomes; la limite guide est aussi destinée à protéger contre les risques de protozoaires parasites.

c Au cours de la période d'irrigation (si les eaux usées sont traitées dans les bassins de stabilisation ou en réservoirs conçus pour obtenir ces nombres, la surveillance de routine de la qualité de l'effluent n'est pas nécessaire).

d Au cours de la période d'irrigation (le comptage des coliformes fécaux devrait de préférence avoir lieu chaque semaine, et au minimum une fois par mois).

e Une limite plus rigoureuse (≤ 200 coliformes fécaux/100 ml) est indiquée pour les pelouses avec lesquelles le public vient en contact direct (comme celles d'hôtels).

f Cette limite est relevée à ≤ 1 œuf/l: i) si le temps est chaud et sec et si l'irrigation en surface n'est pas utilisée ou ii) si le traitement des eaux usées est complété par des campagnes de chimiothérapie antihelminthique dans les zones de réutilisation des eaux usées.

g Dans le cas des arbres fruitiers, l'irrigation devrait cesser deux semaines avant la cueillette et aucun fruit tombé par terre ne devrait être ramassé. L'irrigation par pulvérisation/aspersion ne devrait pas être utilisée.
2.6 Lignes directrices et/ou réglementations relatives au recyclage et à la réutilisation des eaux usées aux États-Unis

Les organismes coliformes totaux et coliformes fécaux sont souvent utilisés conjointement à des prescriptions spécifiques concernant le traitement des eaux usées et, en pareil cas, l'on admet qu'aussi il n'y a pas lieu d'effectuer une surveillance des eaux traitées - qui réclame beaucoup de temps et d'argent - pour le dépistage d'agents pathogènes. Mais en pratique, cette démarche a conduit à adopter des lignes directrices exigeant une norme de 0 coliforme fécal/100 ml d'eaux usées servant à irriguer des cultures destinées à être consommées crues, en plus de la prescription d'un traitement secondaire suivi de filtration et désinfection. L'US EPA et l'US Agency for International Development ont adopté cette démarche et elles ont ainsi recommandé des lignes directrices strictes pour l'utilisation des eaux usées (US EPA, 1992). Pour une irrigation sans restriction (autrement dit portant sur des cultures susceptibles d'être consommées sans cuisson), aucun coliforme fécal détectable n'est autorisé dans 100 ml (à comparer avec ≤1000 coliformes fécaux/100 ml préconisé par les lignes directrices OMS de 1989) et, pour une irrigation de cultures fourragères ou de cultures devant subir une transformation industrielle la limite guide est ≤200 coliformes fécaux/100 ml (alors que pour ce cas l'OMS ne fixe qu'une limite guide à la présence d'œufs de nématodes). Aux États-Unis, l'instauration de normes effectives relève de la compétence de chacun des États, et différents États adoptent des approches différentes (certains spécifient les procédés de traitement, d'autres les normes de qualité de l'eau) et toute une gamme de normes est en vigueur (Blumenthal et al., 2000).

Comme il est indiqué ci-dessus, les critères californiens, mieux connus sous le nom de Réglementation-Code de Californie, titre 22, Division 4 (Départ. of Health Services, 1978), stipulent l'application d'une épuration biologique des eaux usées par traitement tertiaire, filtration et désinfection au chlore afin d'obtenir un effluent propre à l'irrigation. À l'appui de cette approche, Asano et Levine (1996) ont communiqué les résultats de deux grandes études épidémiologiques réalisées en Californie dans les années 1970 et 1980. Ces études ont permis d'établir que les cultures vivrières irriguées avec des eaux usées municipales récupérées en observant les critères californiens pouvaient être consommées crues sans effets nocifs sur la santé. Mais les éléments nutritifs éliminés par le traitement tertiaire ne sont plus disponibles pour la fertilisation.

2.7 Nécessité d'instaurer des lignes directrices régionales pour les pays méditerranéens

La plupart des pays méditerranéens connaissent des conditions arides ou semi-arides avec des précipitations le plus souvent saisonnières et inégalement réparties. Du fait du développement rapide de l'irrigation et de l'approvisionnement en eau domestique, les ressources en eau conventionnelles se sont gravement appauvries. C'est pourquoi la récupération et la réutilisation des eaux usées sont de plus en plus intégrées dans la planification et le développement des ressources en eau de la région méditerranéenne, en particulier pour l'irrigation.
Chypre, la France, Israël, l'Italie et la Tunisie sont les seuls pays méditerranéens à avoir émis des lignes directrices pour l'utilisation des eaux usées récupérées. Une comparaison préliminaire de ces critères avec ceux de la Californie, de l'US EPA et de l'OMS est présentée sur le tableau 2.19. Des lignes directrices existent en Espagne selon les régions. L'existence de lignes directrices est nécessaire pour la planification et une pratique sans danger de la réutilisation des eaux usées aux fins d'irrigation. Elle contribue aussi au développement durable de l'irrigation paysagère et agricole. Les lignes directrices doivent aussi, à l'évidence, promouvoir le développement des meilleures pratiques, ce qui n'appelle pas de définitions détaillées mais implique la prise en compte de conditions locales importantes et spécifiques comme la qualité des eaux usées récupérées, le type de sol, le climat, les cultures et les pratiques agricoles appropriées. Il est toutefois manifeste que, des deux côtés de la Méditerranée, il convient de partager des principes fondamentaux communs pour élaborer des normes de récupération et réutilisation des eaux usées.
Tableau 2.19

Comparaison des critères (limites maximales) de l'OMS, de l'US EPA, de l'État de Californie et de quelques États méditerranéens (lignes directrices nationales), pour l'irrigation, au moyen d'eaux usées réutilisées, de cultures destinées à la consommation humaine

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Californie</th>
<th>US EPA</th>
<th>OMS</th>
<th>Israël</th>
<th>Tunisie</th>
<th>Chypre</th>
<th>France</th>
<th>Italie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de réglementation</td>
<td>Législation</td>
<td>Lignes directrices</td>
<td>Lignes directrices</td>
<td>Législation</td>
<td>Législation</td>
<td>Normes provisoires</td>
<td>Lignes directrices</td>
<td>Législation</td>
</tr>
<tr>
<td>Traitement minimal requis</td>
<td>Traitement de pointe</td>
<td>Traitement de pointe</td>
<td>Bassins de stabilisation</td>
<td>Traitement secondaire</td>
<td>Bassins de stabilisation</td>
<td>Traitement tertiaire</td>
<td>Traitement secondaire</td>
<td></td>
</tr>
<tr>
<td>DBO₅ (mg/l)</td>
<td>10</td>
<td>15</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD₅ dissous (mg/l)</td>
<td></td>
<td></td>
<td>5³</td>
<td>15</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS (mg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidité (UTN)</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td>6,5-8,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivité (dS/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD (mg/l)</td>
<td>Présent</td>
<td></td>
<td>7,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT (NPP/100 ml)</td>
<td>2,2 (50%); 12 (80%)</td>
<td>0⁶</td>
<td>2,2(50%); 12(80%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF (NPP/100 ml)</td>
<td>1000</td>
<td>?</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helminthes (œufs/100 ml)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td><1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl résid. dispon.(mg/l)</td>
<td>Présent</td>
<td>1,0</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Irrigation par pulvérisation;
² Bassins de stabilisation en série avec temps de séjour approprié;
³ Le stockage saisonnier peut constituer un équivalent du trait. tertiaire
⁴ Si les SS sont retenus comme paramètre au lieu de la turbidité.
⁵ Ne doit pas dépasser 23/100 ml lors d'un seul test mensuel;
⁶ Ne doit pas dépasser 14/100 mL à chaque fois;
⁷ Nématodes tels que Ascaris, Trichuris et ankylostomes.
Références

Bahri A. (2002) Personal communication, Email: bahn.akissa@iresa.agrinet.tn

Bajraktarevic-Dobran, H. (2002), Personal communication. E-mail: hdobran@utic.net.ba

Gorgun, E. (2002) Personal communication, E-mail: Erdem.Gorgun@posta.mam.gov.tr

Hema, T. (2002), Personal communication, E-mail: albnea@albnet.net

Karam, F. (2002) Personal communication. E-mail: fkaram@larileb.com

Margeta, J. (2002), Personal communication. E-mail: Jure.Margeta@gradst.hr

Ministry of Public Health (1965) Health Arrangement Action, No E1b/221/65, Athens, Greece.

Salgot, M. (2002). Personal communication, E-mail: salgot@farmacia.far.ub.es

Tamrabet, L. (2002). Personal communication. [iamrabet@yahoo.ca]

Vrhovšek, D. (2002), Personal Communication. E-mail: dani@limnos.si

Remerciements

Nous tenons à exprimer notre gratitude à tous ceux qui ont collaboré à l'élaboration du présent document: M. le professeur El-Gohary (Égypte), M. le professeur M. Salgot (Espagne), M. V Lazarova (France), M. le professeur C. Nurizzo (Italie), M. K. Tsagarakis (Grèce), Mme J. Bahij (Maroc), M. A. Bahri (Tunisie), M. J. Papadopoulos (Chypre), M. le professeur G. Oron (Israël), M. le professeur E. Torgun (Turquie), M. D. de Ketelaere (Malte) et M. L. Tamrabet (Algérie).
ANNEXES
A1
Définition de termes

A1.1. Introduction

Les termes ci-après, fréquemment utilisés dans le domaine de la récupération et de la réutilisation des eaux usées, sont importants pour saisir les concepts examinés dans le rapport. L'UE recommande que ces termes soient utilisés dans un sens positif, tel que la réutilisation de l'eau ou le recyclage de l'eau.

A1.2. Types d'eau et leurs utilisations

Eau de pluie: eau des précipitations atmosphériques collectée et stockée à partir des surfaces dures composant ou entourant des bâtiments ou dans des citernes.

Eau de surface: eau restant à la surface du sol.

"Eaux grises": eaux usées domestiques provenant des baignoires, douches et lavabos. Elles peuvent comporter les eaux usées des lave-vaisselle et machines à laver, mais non les vidanges des W.-C.

"Eaux noires": toutes eaux se mélangant dans le conduit d'évacuation des lieux d'aisance d'une propriété ou immeuble et se déversant dans le réseau d'égouts – elles comprennent principalement les eaux de vidange des W.-C. et bidets.

Eau potable: eau destinée et propre à la consommation humaine.

Eaux (résiduaires) récupérées: eaux usées qui, après récupération, se prêtent à une utilisation bénéfique directe ou à une utilisation réglementée.

Eau souterraine: eau contenue dans le sol ou la roche sous la surface de la nappe phréatique

Eaux usées: eaux ayant déjà été utilisées.

Effluent: courant de sortie d'eaux usées industrielles/commerciales qui sont rejetées, habituellement après traitement partiel ou complet.

Récupération des eaux usées ou résiduaires (régénération, récupération, réutilisation, renouvellement et recyclage): traitement ou transformation des eaux usées afin de les rendre utilisables. Ces termes sont aussi souvent employés dans le sens de distribution d'eaux usées à leur lieu d'utilisation et dans le sens de leur utilisation effective. Jadis, on entendait plutôt par recyclage l'utilisation d'eau captée et redirigée dans le même circuit d'utilisation, comme dans un procédé industriel. "Recyclage" parait aujourd'hui s'imposer dans le sens de récupération.

Réutilisation d'eau potable: augmentation directe ou indirecte du volume d'eau de boisson avec de l'eau récupérée faisant l'objet d'un traitement poussé pour protéger la santé publique ou utilisation d'eau récupérée pour l'alimentation en eau potable.
Réutilisation des eaux (usées): utilisation des eaux usées traitées à des fins bénéfiques comme l'irrigation agricole ou le refroidissement industriel.

Réutilisation directe pour eau potable: type de réutilisation comportant l'apport direct d'eau récupérée dans un réseau de distribution d'eau potable, impliquant souvent le brassage de l'eau récupérée. Sinon, elle comporte un simple raccordement.

Réutilisation indirecte: utilisation indirecte d'eau récupérée par passage à travers une masse d'eau naturelle ou utilisation d'eau souterraine qui a été rechargée avec de l'eau récupérée.

Réutilisation non planifiée: utilisation non délibérée d'eaux usées, sans système conçu ou aménagé aux fins de réutilisation.

Réutilisation planifiée: utilisation directe ou indirecte délibérée d'eau récupérée

Réutilisation pour eau non potable: type de réutilisation à des fins d'eau non potable telles qu'irrigation, nettoyage des rues, arrosage des terrains de golf, etc.

Utilisations bénéfiques: nombreuses modalités d'utilisation de l'eau, soit directement par les habitants soit pour leur profit général. Elles comprennent notamment la distribution d'eau municipale, les applications agricoles et industrielles, la navigation et les loisirs aquatiques.

Utilisation directe: utilisation d'eau récupérée transférée d'une installation de récupération au site de réutilisation sans qu'intervienne un rejet dans une masse d'eau naturelle. Elle comprend des utilisations comme l'irrigation agricole et paysagère.

Utilisation indirecte pour eau potable: réutilisation pour eau potable comportant l'apport d'eau récupérée après traitement approprié dans un réseau de distribution d'eau brute. Elle permet le mélange et l'assimilation par déversement dans une retenue ou masse d'eau naturelle, telle qu'un réservoir d'approvisionnement en eau domestique ou une eau souterraine.

A1.3. Qualité

Absorption: processus par lequel une substance pénètre et s'incorpore dans une autre, comme par exemple la fixation d'eau par le sol.

Adsorption: rétention de molécules ou d'ions à une interface.

E. coli (Escherichia coli): microorganisme du groupe des coliformes, répandu chez l'homme et des animaux. Faisant partie de la flore intestinale, E. coli est un indicateur de contamination fécale.

Évaluation environnementale: appréciation très soigneuse des incidences possibles d'un projet de développement en préparation.

Identification des risques: évaluation des propriétés inhérentes à une substance ou à une situation susceptible d'avoir des effets préjudiciables.

Infiltration: pénétration en profondeur d'eau dans le sol.

Pouvoir d'échange ionique: quantité totale d'ions qu'un sol peut absorber par échange (avec l'eau), habituellement exprimé en milliéquivalents par 100 g.

Agents pathogènes: microorganismes tels que bactéries, protozoaires, parasites, prions et
virus, qui peuvent causer des maladies.

Polluant: toute substance solide, liquide ou gazeuse indésirable dans un milieu solide, liquide ou gazeux.

Évaluation des risques: analyse de la probabilité qu'a un événement de se produire. C'est une combinaison de risque, exposition et action de limitation.

Coefficient d'adsorption du potassium: rapport, établi à partir d'extraits de sol et d'eau d'irrigation, utilisé pour exprimer l'activité relative des ions potassium dans les réactions d'échange avec le sol, obtenu au moyen de l'équation A2.1 ci-dessous:

\[
PAR = \frac{K^+}{\sqrt{(Ca^{++} + Mg^{++}) / 2}} \quad (A2.1)
\]

Les concentrations ioniques étant exprimées en milliéquivalents par litre (meq/L).

Sol salin: sol contenant des sels solubles (sodium) à des quantités telles qu’elles entravent la croissance de la plupart des végétaux.

Coefficient d'adsorption du sodium: indice du risque présenté par le sodium dans l’eau d’irrigation, défini par l'équation A2.2 ci-dessous:

\[
SAR = \frac{Na}{\sqrt{(Ca^{++} + Mg^{++}) / 2}} \quad (A2.2)
\]

Les concentrations ioniques étant exprimées en meq/l.

Charge quotidienne maximale totale: bilan d’un apport de polluant à un cours d’eau pour un bassin hydrographique donné.

Surface de la nappe phréatique: niveau en dessous duquel le sol ou la roche sont saturés d’eau.
A2
ABRÉVIATIONS

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET</td>
<td>Meilleures techniques disponibles</td>
</tr>
<tr>
<td>DBO</td>
<td>Demande biochimique en oxygène</td>
</tr>
<tr>
<td>DCO</td>
<td>Demande chimique en oxygène</td>
</tr>
<tr>
<td>CRDA</td>
<td>Regional Department for Agricultural Development</td>
</tr>
<tr>
<td>CSHPF</td>
<td>Conseil Supérieur d'Hygiène Publique de France</td>
</tr>
<tr>
<td>CSEI</td>
<td>Centro studi di economia applicata all’Ingegneria</td>
</tr>
<tr>
<td>CE</td>
<td>Conductivité électrique</td>
</tr>
<tr>
<td>CEE</td>
<td>Communauté économique européenne</td>
</tr>
<tr>
<td>e-h</td>
<td>équivalent -habitant</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Agency</td>
</tr>
<tr>
<td>EUREAU</td>
<td>Union des associations nationales de services d'eau</td>
</tr>
<tr>
<td>AELE</td>
<td>Association européenne de libre-échange</td>
</tr>
<tr>
<td>UE</td>
<td>Union européenne</td>
</tr>
<tr>
<td>CF</td>
<td>Coliformes fécaux</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
</tr>
<tr>
<td>PAM</td>
<td>Plan d'action pour la Méditerranée</td>
</tr>
<tr>
<td>MF</td>
<td>Microfiltration</td>
</tr>
<tr>
<td>NPP</td>
<td>Nombre le plus probable</td>
</tr>
<tr>
<td>SEEUM</td>
<td>Stations d'épuration des eaux usées municipales</td>
</tr>
<tr>
<td>ND</td>
<td>Non disponible</td>
</tr>
<tr>
<td>NAGREF</td>
<td>Fondation hellénique pour la recherche agricole</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration, USA</td>
</tr>
<tr>
<td>NC</td>
<td>non classé</td>
</tr>
<tr>
<td>NF</td>
<td>nanofiltration</td>
</tr>
<tr>
<td>UTN</td>
<td>Unités de turbidité néphélométriques</td>
</tr>
<tr>
<td>PA</td>
<td>Polyamide</td>
</tr>
<tr>
<td>TP</td>
<td>traitement primaire</td>
</tr>
<tr>
<td>R&D</td>
<td>recherche-développement</td>
</tr>
<tr>
<td>OI</td>
<td>osmose inverse</td>
</tr>
<tr>
<td>TSA</td>
<td>traitement sol-aquifère</td>
</tr>
<tr>
<td>SS</td>
<td>solides en suspension</td>
</tr>
<tr>
<td>TS</td>
<td>traitement secondaire</td>
</tr>
<tr>
<td>CT</td>
<td>coliformes totaux</td>
</tr>
<tr>
<td>TMD</td>
<td>Total des matières dissoutes</td>
</tr>
<tr>
<td>FP</td>
<td>filtre percolateur</td>
</tr>
<tr>
<td>COT</td>
<td>carbone organique total</td>
</tr>
<tr>
<td>PT</td>
<td>phosphore total</td>
</tr>
<tr>
<td>TSS</td>
<td>total des solides en suspension</td>
</tr>
<tr>
<td>TT</td>
<td>traitement tertiaire</td>
</tr>
<tr>
<td>UF</td>
<td>ultrafiltration</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation mondiale de la santé</td>
</tr>
<tr>
<td>WPCF</td>
<td>Water pollution Control Federation</td>
</tr>
<tr>
<td>SEEU</td>
<td>Station d'épuration des eaux usées</td>
</tr>
</tbody>
</table>