PLAN D’ACTION POUR LA MÉDITERRANÉE

Réunion de points focaux du MED POL et des experts désignés par les gouvernements pour examiner les plans régionaux dans le cadre de la mise en œuvre de l’article 15 du Protocole « tellurique »

Larnaca (Chypre), 24-25 février 2011

Etat du mercure dans les pays Méditerranéens
Table des matières

LISTE DES TABLEAUX ... IV

LISTE DES FIGURES .. VII

RESUME ETENDU ... 1

1. INTRODUCTION ... 12

1.1 MERCURE ... 12
1.2 CONTEXTE INTERNATIONAL .. 12
1.3 CONTEXTE MEDITERRANEEN ... 14
1.4 OBJECTIFS ET CHAMP D’APPLICATION ... 15

2. INSTITUTIONS LEGALES NATIONALES ET INTERNATIONALES ... 16

2.1 INSTITUTIONS LEGALES INTERNATIONALES ... 16
2.1.1 Programme mercure (PNUE) ... 16
2.1.2 La convention de Rotterdam .. 17
2.1.3 La convention de Bâle .. 18
2.1.4 La commission OSPAR .. 19
2.1.5 La convention sur la pollution atmosphérique transfrontière à longue distance (UNECE) 21
2.1.6 L’approche stratégique de la gestion internationale des produits chimiques (SAICM) 21
2.1.7 L’organisation mondiale pour la santé (OMS) ... 23
2.1.8 Le projet mercure mondial (GEF/UNDP/UNIDO) ... 23
2.1.9 L’institut des Nations-Unies pour la formation et la recherche (UNITAR) .. 23
2.1.10 Fonds pour l’environnement mondial (GEF) .. 24
2.1.11 Projet sur la politique du mercure .. 25

2.2 INSTITUTIONS LEGALES REGIONALES .. 26
2.2.1 Convention pour la protection de l’environnement marin et des côtes du bassin méditerranéen (convention de Barcelone) .. 26
2.2.2 Stratégie mercure de l’UE .. 27
2.2.3 Législation Européenne portant sur le mercure .. 30
2.2.4 Législation nationale sur le mercure dépassant la législation de l’UE .. 37

2.3 CADRE LEGISLATIF NATIONAL .. 38

3. PRINCIPALES ACTIONS PRISES POUR LA GESTION ET L’IMPLEMENTATION DU PROGRAMME MERCURE DU PNUE .. 43

3.1 ZONES DE TRAVAIL AU SEIN DU PROGRAMME MERCURE DU PNUE ... 43
3.2 ÉTAT DE L’IMPLEMENTATION DU PROGRAMME MERCURE DU PNUE DANS LES PAYS MEDITERRANEENS ... 44

4. PRODUCTION, IMPORTATION, EXPORTATION, INDUSTRIE ET UTILISATION 47

4.1 PRODUCTION DU MERCURE DANS LES PAYS MEDITERRANEENS ... 47
4.1.1 Production primaire .. 48
4.1.2 Production secondaire .. 50
4.1.3 Mercure recyclé à partir de produits .. 52
4.2 UTILISATION DU MERCURE DANS LES PAYS MEDITERRANEENS .. 53
4.2.1 Les équipements chloro-alcali .. 54
4.2.2 Amalgames dentaires .. 57
4.2.3 Appareils de mesure et de contrôle .. 57
4.2.4 Appareils électriques et électroniques .. 59
4.2.5 Sources de lumière au mercure .. 61
4.2.6 Batteries .. 62
4.2.7 Production du monomère de chlorure de vinyle (MCV) ... 63
4.2.8 Exploitation de l’or à petite échelle .. 63
4.2.9 Mercure chimique .. 63
4.2.10 Autres applications ... 66
4.2.11 Synthèse de l'utilisation du mercure dans les pays méditerranéens 67
4.3 STOCHAGE DU MERCURE ET DECHETS CONTENANT DU MERCURE 69
4.3.1 Stocks and inventaires dans la région méditerranéenne 69
4.3.2 Stockage sain en région méditerranéenne .. 70
4.4 IMPORTATION, EXPORTATION ET COMMERCE DE MERCURE DANS LES PAYS MEDITERRANEENS 72
4.4.1 Importations, exportations et commerce du mercure, de composés au mercure et d'articles contenant du mercure dans les pays méditerranéens 73
4.4.2 Importations et exportations des déchets contenant du mercure dans les pays méditerranéens .. 89

5. EMISSIONS DE MERCURE PAR LES PRODUITS ET PROCESSES 91
5.1 UTILISATION DE MATERIEL CONTENANT DU MERCURE (IMPURETES) – SOURCE NON INTENTIONNELLE ... 91
5.1.1 Production d'énergie et de chaleur par les combustibles fossiles carbonés ... 91
5.1.2 Production de ciment .. 92
5.1.3 Industrie minière et des métaux ... 93
5.1.4 Production de pâtes et de papier ... 93
5.2 L'INDUSTRIE MANUFACTURIERE – SOURCE INTENTIONNELLE 95
5.2.1 L'extraction du mercure .. 95
5.2.2 Production secondaire de mercure ... 95
5.2.3 Petites mines d'or et d'argent ... 96
5.2.4 L'industrie chlore-alcali ... 96
5.2.5 Production du monomère vinyl-chlorure (MVC) 98
5.3 UTILISATION DE PRODUITS CONTENANT DU MERCURE – SOURCE INTENTIONNELLE 99
5.3.1 Les amalgames dentaires ... 99
5.3.2 Les équipements de mesure et de contrôle ... 99
5.3.3 Appareils électriques et électroniques .. 100
5.3.4 Sources de lumière au mercure ... 100
5.3.5 Batteries ... 101
5.3.6 Autres produits contenant du mercure ... 101
5.4 TRAITEMENT DES DECHETS PROVENANT DE SOURCES INTENTIONNELLES OU NON 103
5.4.1 Incinération des déchets (déchets municipaux, sanitaires et toxiques) 103
5.4.2 Décharges ... 103
5.4.3 Les stations d'épuration ... 104
5.4.4 Le recyclage des déchets ... 104
5.4.5 Crémaison et cimetières .. 106

6. TECHNOLOGIES ET PRATIQUES VISANT A PREVENIR ET A CONTROLLER LES EMISSIONS DE MERCURE .. 108
6.1 EMISSIONS INTENTIONNELLES ... 108
6.1.1 Production secondaire .. 108
6.1.2 Production de chlore-alcali ... 110
6.1.3 Amalgames dentaires .. 111
6.1.4 Instruments de mesure et de contrôle .. 113
6.1.5 Instruments électriques et électroniques .. 119
6.1.6 Sources de lumière au mercure .. 122
6.1.7 Piles .. 125
6.1.8 Produits chimiques au mercure .. 126
6.1.9 Autres applications ... 128
6.2 EMISSIONS NON-INTENTIONNELLES .. 131
6.2.1 Combustion de combustibles fossiles dans les centrales thermiques et les chaudières industrielles ... 131
6.2.2 Industrie du ciment ... 133
6.2.3 Industrie primaire du fer et de l’acier ... 134
6.2.4 Industrie secondaire du fer et de l’acier .. 134
6.2.5 Fonderies de fer ... 135
6.2.6 Pâte et papier .. 136
6.3 GESTION DES DECHETS .. 137
6.3.1 Traitement des déchets contenant du mercure 137
6.3.2 *Incinération des déchets* .. 138
6.4 *Niveau d’implémentation dans la région méditerranéenne* 141

7. **Valeurs limites d’émission et objectif-qualité** 144
 7.1 Cadre international ... 144
 7.1.1 Le Protocole Aarhus de 1998 sur les métaux lourds 144
 7.1.2 World Health Organisation (WHO) .. 146
 7.1.3 Convention OSPAR ... 146
 7.1.4 Union Européenne ... 148
 7.1.5 Convention pour la protection de l’environnement marin et de la région cotière de la Méditerranée (convention de Barcelone) 149
 7.2 Cadre national ... 151

8. **Réseaux et outils pour suivre et contrôler le mercure** 159
 8.1 Inventaire des émissions ... 159
 8.1.1 Programme sur le mercure UNEP & “l’étude du paragraphe 29” 159
 8.1.2 Bilan de base nationaux (BBN) des pays méditerranéens dans le cadre du PNUE/PAM ... 165
 8.1.3 Le Registre Européen des Rejets et Transferts de Polluants 171
 8.1.4 UNECE-EMEP .. 174
 8.1.5 Inventaires régionaux dans la littérature .. 181
 8.1.6 Inventaires nationaux des émissions ... 183
 8.1.7 Synthèse des informations et émissions estimées 193
 8.2 Réseaux du contrôle de la qualité .. 199
 8.2.1 Air .. 199
 8.2.2 Eau .. 206
 8.2.3 Environnement marin .. 209
 8.2.4 Denrées alimentaires et niveaux humains .. 216

9. **Principales zones d’émission (“Hot spots” et zones d’influence)** 220
 9.1 Emissions des points chauds ... 220
 9.2 Points chauds relatifs aux mines de mercure 224
 9.2.1 Almadén, Espagne .. 224
 9.2.2 Valle del Azogue, Espagne ... 224
 9.2.3 Mines de mercure des Asturias (Espagne) .. 224
 9.2.4 Mine d’Idrija (Slovénie) et du Golfe de Trieste 225
 9.2.5 Monte Amiata, Italie ... 226
 9.2.6 Mines de mercure dans l’Ouest de la Turquie et la baie d’Izmir 226
 9.2.7 Azzaba, Algérie .. 227
 9.3 Points chauds fondés sur les données de qualité environnementale 228
 9.3.1 Points chauds d’après la base de données de MEDPOL 228
 9.3.2 Hot spots d’après d’autres sources d’information 228

10. **Analyse des forces et faiblesses** .. 231
11. **Conclusions et recommandations** ... 238

REFERENCES ... 250
Liste des Tableaux

Table 1. Stocks de mercure dans les pays méditerranéens. 4
Table 2. Utilisation du mercure dans les pays méditerranéens (tonnes)............ 5
Table 3. Quantité totale de mercure métallique dans les installations européennes de chlore-alcali situées dans la région méditerranéenne (tonnes, 2008). Source: EuroChlor. 6
Table 4. Utilisation du mercure au sein des usines de chlore-alcali dans des pays non européens. .. 6
Table 5. Revue des inventaires régionaux des émissions de mercure................. 7
Table 6. Clauses légales Européennes affectant le mercure.......................... 30
Table 7. Synthèse de l'état de la réglementation du mercure dans les pays méditerranéens. .. 40
Table 8. Implémentation du programme mercure du PNUE dans les pays méditerranéens. .. 44
Table 9. État de l'application des mesures sur la gestion du mercure dans les pays méditerranéens. .. 46
Table 10. Apport global en mercure (2005). Source: UNEP, 2008............... 47
Table 14. Production du mercure en tant que produit dérivé de la métallurgie du Zinc en Espagne (en tonnes). .. 51
Table 18. Quantité totale de mercure métallique dans les équipements européens de chlore-alcali (tonnes, 2008). Source: EuroChlor, 2008................................. 55
Table 19. Utilisation du mercure dans les procédés chlore-alcali non Eurochlor. 66
Table 20. Consommation du mercure dans la chimie en 2007 en Europe........ 65
Table 21. Utilisation du mercure dans les pays méditerranéens (tonnes). 67
Table 22. Stocks de mercure dans les pays méditerranéens. 70
Table 23. Commerce du mercure dans les pays méditerranéens (2008)........ 74
Table 24. Commerce des composés organiques et inorganiques de mercure hormis les amalgames dans les pays méditerranéens (2008). 77
Table 25. Importations nettes d’articles contenant du mercure dans les pays méditerranéens européens (100kg), 2009... 79
Table 26. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Chypre. ... 81
Table 27. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), France... 82
Table 28. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Grèce .. 83
Table 29. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Italie. ... 84
Table 30. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Malte ... 85
Table 31. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Slovénie. ... 86
Table 32. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Espagne.. 87
Table 33. Importations et exportations des déchets au mercure en 2006 (reporté par Parties le 18/06/09). Source: Convention de Bâle sur le Contrôle des Mouvements Transfrontaliers de Déchets Dangereux et de leur Elimination, Sources des Données http://www.basel.int/natreporting/datasrces/index.html 89
Tableau 34. Émissions de mercure par les usines chlore-alcali du bassin méditerranéen en 2008 (Eurochlor, 2009) ... 97
Tableau 35. Mercure d’origine intentionnelle dans les déchets en Europe (Lassen et al, 2008). ... 105
Tableau 37. BAT pour les techniques d’attement pour les constituant dans le gaz de sortie. ... 110
Tableau 38. Aperçu des alternatives proposées sur le marché pour remplacer les équipements de mesure contenant du mercure. Source: Lassen et al., 2008. 116
Tableau 39. Solutions alternatives disponibles sur le marché pour les interrupteurs et autres composantes électriques contenant du mercure. Source: Lassen et al., 2008.120
Tableau 40. Solutions alternatives disponibles sur le marché pour le remplacement des lampes à mercure. Source: Lassen et al., 2008. .. 124
Tableau 41. Aperçu des solutions alternatives aux composés chimiques contenant du mercure commercialisées dans l’UE. Source: Lassen et al., 2008. 127
Tableau 42. Aperçu des solutions alternatives à des produits divers contenant du mercure commercialisées dans l’UE. .. 128
Table 43. Mesures de contrôle et efficacité de réduction pour les émissions liées à la combustion des combustibles fossiles. Source: Protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds... 132
Tableau 44. Mesure de contrôle et efficacité de réduction pour l’industrie du ciment. Source: protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds... 134
Tableau 47. Mesures de contrôle et efficacité de réduction des poussières pour les fonderies de fer. Source: protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds... 135
Tableau 48. Niveaux d’émission opérationnels associés à l’utilisation d’une BAT pour la libération de mercure dans l’air (en mg/Nm3 ou comme précisé) 139
Tableau 50. Information disponible sur la substitution des produits contenant du mercure dans les pays méditerranéens. ... 141
Tableau 51. Valeurs limites spécifiques pour des sources stationnaires majeures fixées dans l’Annexe V du Protocole d’Aarhus sur les métaux lourds.................................. 144
Tableau 52. Valeurs limites des émissions de mercure par secteurs autres que celui de l’industrie chlore-alcali.. 146
Tableau 53. Valeurs limites d’émissions de mercure et objectifs qualité à un niveau international et au niveau national méditerranéen ... 152
Tableau 54. Estimation des émissions globales anthropogéniques de mercure dans l’air en 2005 à partir de secteurs différents (adapté de UNEP/DTIE, 2010) 160
Tableau 56. Apports totaux de mercure dans l’air et l’eau (kg/an), reportés par les pays méditerranéens dans le NBB2003, par pays et secteurs d’activités 168
Tableau 57. Apports totaux de mercure (kg/an) dans l’air et l’eau reportés par les pays méditerranéens dans le NBB de 2003 ... 170
Tableau 58. Rejets d’Hg et de composés (comme Hg) reportés par les pays méditerranéens au Registre E-PRTR. Données en kg (2007). .. 172

Tableau 59. Rejets d’Hg, par secteur, dans les pays méditerranéens reportés au registre E-PRTR. Données en kg (2007). ... 173

Tableau 60. Rejets d’Hg par secteurs et sous-secteurs dans les pays méditerranéens reportés dans le registre E-PRTR. Données en kg (2007) .. 173

Tableau 63. Facteurs d’émissions utilisés par Pirrone et al. (2001) pour estimer les émissions industrielles de mercure dans la région méditerranéenne. 181

Tableau 65. Émissions du mercure dans les eaux usées et l’air en Croatie. Source : NFP. 184

Tableau 66. Émissions de mercure dans l’air à Chypre, comme reportées à l’EMEP. Source : NFP. ... 185

Tableau 67. Émissions atmosphériques de mercure dans la région méditerranéenne d’Israël, 2008. Source : NFP. .. 188

Tableau 68. Émissions de mercure dans l’air et l’eau en Italie en 2008. Source : NFP. 189

Tableau 69. Émissions de mercure au Maroc. Source : NFP. .. 190

Tableau 70. Revue des inventaires régionaux des émissions de mercure. 195

Tableau 71. Émissions de mercure (kg an⁻¹) dans l’air d’après les inventaires nationaux et régionaux disponibles dans les pays méditerranéens et meilleure valeur d’émission estimée. ... 197

Tableau 72. Niveaux de mercure dans l’air dans différents environnements en France. 204

Tableau 73. Nombre d’observations de mercure total (HgT) par matrice et pays, dans la base de données du MEDPOL (1999-2008) (UNEP/MAP, 2009). 210

Tableau 74. Concentrations moyennes en Hg total dans les sédiments (µg g⁻¹ dw), par pays. ... 210

Tableau 75. Concentrations moyennes en Hg Total dans Mytilus Galloprovincialis (MG) and Mullus Barbatu (µg g⁻¹ dw), par pays. .. 211

Tableau 76. Médiane et gamme de concentrations en Hg total dans les sédiments et dans « Mytilus Galloprovincialis » ... 213

Tableau 77. Niveau de mercure dans différents produits alimentaires en France. 217

Tableau 80. Rejets de mercure reportés dans la liste de “hot spot” de l’UNEP/MAP (UNEP/MAP, 1999) .. 223

Tableau 81. Objectifs et actions proposées par la stratégie mercure de l’UE. 231

Tableau 83. Impacts d’autres actions possibles dans le contexte méditerranéen. Source : élaboration propre après EC (DG ENV), 2010. ... 237
Liste des Figures

Figure 2. Estimation des émissions de mercure atmosphérique dans la Méditerranée (kg.an-1). .. 9

Figure 3. Niveau d’implémentation de législation nationale sur le mercure dans la région méditerranéenne... 39

Figure 4. Apport global en mercure (1981-2005). Source: UNEP, 2006. 48

Figure 6. Production en mercure des pays méditerranéens et comparaison avec la production globale en mercure. Sources: d’après Hylander & Mieli (2003); USGS-Minerals Yearbook; BRGM-Annuaire Statistique Mondial des Minerais et Metaux, 2007 (tonnes). 50

Figure 7. Usines de chlore-alcali méditerranéennes utilisant les procédés de pile à mercure (en bleu : actuellement en opération, en gris : plus en opération). Pays reportés en pourpre n’ont pas d’usines en opération. Aucune information n’est disponible pour les pays grisés. Source : élaboration propre... 56

Figure 8. Mercure collecté par MAYASA à partir de l’accord avec Eurochlor (RAC/CP, 2007). .. 69

Figure 9. Production et prix mondiaux en mercure. Source : Etablis d’après la base de données de l’Agence de Surveillance Géologique des Etats-Unis............................... 72

Figure 10. Flux de mercure lors du processus de clinkérisation (figure construite à partir d’UNEP/DTIE, 2010). ... 92

Figure 11. Emissions de mercure par le secteur chlore-alcali en Europe (Eurochlor, 2009). .. 97

Figure 12. Proportions des émissions anthropogéniques globales de mercure dans l’air en 2005 provenant de différents secteurs (adapté de UNEP/DTIE, 2010) 161

Figure 15. Proportions des émissions globales anthropogéniques de mercure dans l’air en 2005 en provenance de différents secteurs dans les pays méditerranéens. Source des données : AMAP/UNEP, 2008... 165

Figure 16. Aperçus de la base de données du Budjet de Base National.............. 166

Figure 17. Nombre de dossiers mercure (n) dans la base de données BBN, par pays et sous-région... 167

Figure 18. Nombre de dossiers mercure (n) dans la base de données BBN de 2003, par secteur... 167

Figure 19. Apports totaux (principaux secteurs, en %) de mercure dans l’air (gauche) et l’eau (droite), reportés par les pays Méditerranéens dans le BBN de 2003. Les rejets de mercure dans l’eau à partir des manufactures de fertilisants ont été enlevés. 170

Figure 20. Distribution par pays des rejets d’Hg dans l’air et l’eau (2007) Source: E-PRTR. .. 172

Figure 21. Secteurs de distribution des rejets d’Hg dans l’eau et l’air (kg; 2007). Source: E-PRTR .. 173

Figure 22. Émissions totales de mercure dans l’air dans les pays du Nord de la Méditerranée en 2007. Source des données : base de données des émissions de l’UNECE/EMEP (WebDab). ... 176

Figure 23. Tendances des émissions d’Hg dans l’air (1990-2007) au sein des pays membres de l’EEA – indexation: 1990 = 100. Source: set de données sur les émissions atmosphériques de l’EEA basé sur les émissions reportées officiellement en 2009 à la
Convention UNECE LRTAP. Données pour l’Islande, le Liechtenstein et la Turquie non disponibles. ... 177
Figure 24. Changements dans les émissions d’Hg dans l’air entre 1990 et 2007 dans les pays du Nord de la Méditerranée (EMEP) Source des données : la base de données des émissions de l’UNEP/EMEP (WebDab). .. 177
Figure 25. Émissions totales en mercure (tonnes) dans les pays nord-méditerranéens (1990-2007). Source des données : base de données des émissions de l’UNEP/EMEP (WebDab). ... 178
Figure 26. Émissions de mercure dans les pays méditerranéens de l’EMEP par secteur d’activité (2007). Source des données : base de données des émissions de l’UNEP/EMEP (WebDab). ... 180
Figure 27. Distribution spatiale des émissions anthropogéniques de mercure en 2007 (g/km²/an). Source : EMEP. ... 180
Figure 28. Distribution spatiale des émissions naturelles de mercure dans la zone EMEP en 2007 (g/km²/an). Source : EMEP. ... 181
Figure 29. Contribution des différentes catégories sources aux émissions anthropogéniques totales (t/an) d’Hg dans l’atmosphère du bassin Méditerranéen (estimations de 1995). Source des données: Pirrone et al. (2001). .. 182
Figure 30. Émissions atmosphériques de mercure en France (tonnes). Données source : CITEPA/EMEP. ... 186
Figure 31. Émissions atmosphériques de mercure en France par régions. Source: CITEPA, 2005. ... 187
Figure 32. Estimation des émissions atmosphériques dans les pays méditerranéens (kg/an⁻¹). .. 197
Figure 33. Estimation des émissions atmosphériques dans les sous régions méditerranéennes (kg/an⁻¹). ... 198
Figure 34. Réseau de mesures sur les métaux lourds (+Chypre hors de la carte), 2007 (gauche) et réseau de mesures sur le mercure, 2007 (droite). (EMEP, 2009a). 199
Figure 35. Mercure dans les précipitations (ng/l) (gauche) et dans l’air (ng/m³) (droite), en 2007 (EMEP, 2009a). ... 200
Figure 36. Concentrations de surface du mercure (calculées et mesurées) dans l’air au-dessus de l’Europe et de l’Asie Centrale en 2007, ng/m³ (EMEP, 2009b)........ 201
Figure 37. Concentrations calculées et mesurées en mercure dans les précipitations au-dessus de l’Europe et de l’Asie Centrale en 2007, ng/L (EMEP, 2009b).......... 201
Figure 38. Dépôt annuel total de mercure en Europe et Asie Centrale en 2007, g/km²/an (EMEP, 2009b). ... 202
Figure 39. Moyenne par pays des flux de dépôt de mercure en 2007 à partir des sources anthropogéniques, historiques et naturelles et non EMEP de l’Europe et l’Asie Centrale (EMEP, 2009b). ... 202
Figure 40. Contribution relative des transports transfrontaliers et des sources nationales de dépôt du mercure anthropogénique en Europe et Asie Centrale en 2007 (EMEP, 2009b). ... 202
Figure 41. Flux moyens des dépôts en plomb, en cadmium et en mercure dans les mers régionales en 2006 (EMEP, 2009b). ... 203
Figure 42. Concentrations moyennes en Hg Total dans les sédiments (µg g⁻¹ dw) (UNEP/MAP, 2009). ... 211
Figure 43. Concentrations en Hg total dans les bivalves (µg g⁻¹ dw) par pays (UNEP/MAP, 2009). ... 212
Figure 44. Carte des concentrations moyennes en Hg Total dans *Mytilus galloprovincialis* (µg g⁻¹ dw), (UNEP/MAP, 2009). ... 212
Figure 45. Carte de concentrations moyennes en Hg total dans *Mullus Barbatu*s (µg g⁻¹ dw) (UNEP/MAP, 2009). ... 213
Figure 46. Tendance temporelle des concentrations en mercure dans *Mytilus Galloprovincialis* (µg g⁻¹ dw), le long des côtes françaises méditerranéennes. Source des données: RNO. ... 214
Figure 47. Nombre de notifications de métaux lourds en 2008 sous le système d’alerte rapide pour l’alimentation humaine et animale (Rapid Alert System for Food and Feed (RAFFS)) (CE, 2009). ... 216
Figure 48. Distribution de quelques mines d’Hg abandonnées dans l’Ouest de la Turquie (Gemici & Oyman, 2003). ... 227
Résumé étendu

Dans le cadre de la Convention de Barcelone pour la protection de la Mer Méditerranée Contre la Pollution et du Protocole de la Mer Méditerranée Contre les Pollutions provenant d’activités et de sources basées sur le continent (LBS Protocole), le Plan d’Action Méditerranéen (PAM) s’est engagé, lors du meeting à Aix en Provence (France) en 2008 à prendre en charge le Plan d’Action sur le Mercure pour les deux années 2010 et 2011 en ce qui concerne les mesures à prendre et le calendrier à suivre en vue de la réduction des apports de mercure dans l’environnement marin. A cette fin, le PAM accrédite le CP/RAC en collaboration avec MEDPOL, pour préparer un diagnostic sur le mercure dans les régions méditerranéennes.

Dans ce contexte, le principal objectif de ce rapport est de décrire l’état actuel du mercure dans la région méditerranéenne en prenant compte le cadre légal et institutionnel, la production, l’industrie, l’utilisation, l’émission, les déchets, les mesures de prévention et de contrôle, et l’identification des défis futurs.

Cadre légal
Différents accords environnementaux internationaux et régionaux abordent la question du mercure selon différents points de vue, i.e. les conventions de Rotterdam, Bâle, LRTAP (Aarhus Protocole), OSPAR, et Barcelone ainsi que la stratégie de l’Union Européenne sur le mercure. Cependant, le plus important objectif sur le mercure est l’instrument global juridiquement contraignant lancé par le Conseil du Programme Environnemental des Nations Unis qui est actuellement en cours de négociations et attendu pour 2013.

Les pays méditerranéens sont intégrés à la convention de Barcelone. Dans ce cadre, le Protocole LBS préconise chaque signataire à supprimer progressivement les métaux lourds et leurs composants dérivés des activités et des sources du continent. Le programme d’action stratégique (PAS MED) fixe des mesures spécifiques de réduction de pollution afin de réduire les émissions de mercure en appliquant BAP et BEP et en adoptant des valeurs limite d’émission (VLE) et des standards de qualité environnementale.

De plus, la plupart des pays méditerranéens du Nord sont des états membres de l’Union Européenne. Le cadre légal de l’Union Européenne inclus des provisions légales de mercure dérivant de politiques thématiques (air, eau, déchets, etc.) et de la stratégie de l’Union Européenne. Jusque là, la stratégie a résulté en des restrictions sur le commerce d’appareil de mesure contenus du mercure, en une interdiction à l’export de mercure en application à partir de 2013 de nouvelles règles pour un stockage sécurisé du mercure. La stratégie est actuellement en train d’être revue et de plus amples restrictions, concernant notamment l’interdiction des importations de mercure et l’extension de l’interdiction d’exportation, sont en cours d’évaluation.

Comme pour tous les accords internationaux, la Convention de Bâle sur les déplacements transfrontaliers de déchets dangereux a été ratifiée par tous les pays méditerranéens, la Convention de Rotterdam sur le commerce international de certains produits chimiques dangereux a été signée par la moitié des pays méditerranéens et le Protocole d’Aarhus sur la grande étendue transfrontalière de la pollution de l’air (métaux lourds) a seulement été ratifié par cinq pays méditerranéens.

A un niveau national, les réglementations les plus appliquées dans les pays méditerranéens sont relatives aux déversements d’eau, aux émissions d’air et à l’incinération des déchets. Le développement de tels cadres réglementaires résulte communément de l’établissement de valeurs limites d’émissions associées pour l’incinération des déchets ou d’autres activités potentiellement polluantes telles que la production de ciments, les usines de chlore-alcali ainsi que la combustion des plantes. Cependant, elles ne sont pas toujours associées avec l’utilisation des meilleurs techniques disponibles (Best Available Techniques ou BAT).
Le tri sélectif de déchets contenant du mercure est pratiquement adopté dans les régions méditerranéennes bien que les produits contenant du mercure soient connus pour causer des émissions durant leur élimination si le mercure n’est pas récupéré séparément. Les principaux déchets contrôlés sont les batteries et les accumulateurs, les équipements électriques et électroniques et les véhicules en fin de vie.

L’industrie du mercure est seulement restreinte dans les pays membres de l’UE, où l’exportation du mercure métallique et des composés métalliques avec des concentrations d’environ 95% poids sera interdit à partir de mars 2011. Les réglementations sur le stockage du mercure n’ont pas encore été développées dans les pays méditerranéens.

Les réglementations sur la restriction de produits contenant du mercure ne sont pas encore systématiquement appliquées dans la région méditerranéenne. Cependant, elles sont progressivement mises en application sous la direction des pays méditerranéens intégrés dans l’UE. Les usages restreints du mercure communément appliqués concernent:

- Pesticides et biocides,
- Préparations prévues pour la prévention d’encrassement, la préservation du bois, l’imprégnation pour la fabrique et le traitement des eaux industrielles,
- Cosmétiques,
- Véhicules : l’utilisation du mercure, incluant les commutateurs réseaux et les relais électromagnétiques est interdite, la seule exception concernant les lampes à décharges et les panneaux d’affichage d’instruments.
- Equipement électrique et électronique : l’utilisation du mercure, incluant commutateurs réseaux et les relais électromagnétiques est interdite à l’exception de certaines sources de lumière. Les appareils médicaux ainsi que les instruments de contrôle et de surveillance sont exclus.
- Batteries et accumulateurs : ils ne peuvent contenir plus de 0.0005% en poids de mercure. Les piles bouton ne peuvent contenir au maximum que 2% en poids de mercure. Les batteries pour des équipements médicaux et des systèmes d’urgence et d’alarme contrôle sont exemptes d’interdiction,
- Appareils de mesures (thermomètres, baromètres, avec des exceptions),

En outre, de plus amples restrictions sont en cours d’évaluation pour les amalgames dentaires, les tensiomètres et les élastomères de polyuréthane dans le cadre de l’Union Européenne.

Production du mercure
Bien que le mercure ne soit plus exploité dans la région méditerranéenne, historiquement, cette région a représenté la source principale de mercure par extraction primaire dans le monde. Jusqu’en 2003, l’Espagne et l’Algérie sont restés deux des quatre plus importants producteurs mondiaux, fournissant environ la moitié de l’offre globale en mercure. Au cours des années 80 et 90, la Slovénie, l’Italie et la Turquie ont aussi été des producteurs importants. A présent, la Chine et le Kyrgyzstan sont les deux principaux producteurs primaires de mercure.

Les mines de Slovénie et d’Algérie ont cessé les opérations du fait de difficultés économiques et techniques, alors que d’autres comme la mine d’Almaden en Espagne ont subi des pressions internationales grandissantes au regard des pollutions par le mercure, entraînant finalement leur fermeture (en 2004 pour Almaden).

Le mercure est aussi obtenu en récupérant celui-ci au sein d’usines de chlore-alcali, ainsi que lors des exploitations minières des métaux non ferreux, tel que le Zinc, le Cuivre, le plomb, l’or et l’argent. Au Maroc environ 1 tonne par an de mercure est obtenue en tant que produit dérivé de l’épuration de l’argent. De plus, le mercure est récupéré de la purification du gaz naturel dans quelques pays méditerranéens comme l’Algérie, la Croatie, l’Egypte et la Lybie, dans la mesure où le gaz naturel contient du mercure en trace.

Stockage du mercure et déchets contenant le mercure

Le plus important stock mondial de mercure est placé à Almaden (Espagne), lieu où se trouve la mine espagnole de mercure fermée. La compagnie minière d’Almaden, MAYASA, a signé un accord avec EuroChlor, l’association européenne de l’industrie du chlore-alcali, qui lui permet d’acheter du mercure des usines européennes mettant en place des procédés sans mercure et de le vendre sur le marché. La quantité totale estimée de mercure collectée jusqu’à septembre 2006 était approximativement d’1,5 tonnes. D’autres stocks de mercure dans la région méditerranéenne peuvent être trouvés en Algérie, en Egypte en Israël, en Slovénie, en Tunisie et Turquie, en sus des usines de chlore-alcali situées en France, en Italie et en Espagne.
Table 1. Stocks de mercure dans les pays méditerranéens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Stocks des installations de chlore-alcali (tonnes)</th>
<th>Autres stocks (tonnes)</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>~1.5 (*)</td>
<td>1,000,000(*)</td>
<td>Cette figure se réfère au site minier d’Azzaba, contenant le plus large inventaire de déchets dangereux du pays. Environ 600.000 m³ de boues mercureliques sont stockés dans l’usine dans des conditions non respectueuses des standards environnementaux et causent des infiltration de mercure dans les sols et la contamination des nappes souterraines.</td>
</tr>
<tr>
<td>Égypte</td>
<td>0 n.d. (*)</td>
<td>n.d.</td>
<td>Données actuellement non disponibles.</td>
</tr>
<tr>
<td>France</td>
<td>882 (-)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>48 (-)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>320 (-)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Slovénie</td>
<td>0</td>
<td>4,000 (*)</td>
<td>Dépots d’anciennes déchets miniers dans la zone d’Idrija.</td>
</tr>
<tr>
<td>Syrie</td>
<td>10 n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td>888 (-)</td>
<td>5,000 (***)</td>
<td>Ce stock est dans une ancienne unite d’électrolyse d’une usine de chlore-alcali abandonnée en 1998.</td>
</tr>
<tr>
<td>Tunisie</td>
<td>Quelques tonnes (*)</td>
<td>3,920 (***)</td>
<td>Divers stocks de mercure, dont 85% situés dans la Region d’Aegean.</td>
</tr>
<tr>
<td>Turquie</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Source: questionnaires distribués pour the diagnostic.
(**) Source: Commission OSPAR, 2009.
(***) Source: Fournis par les Gouvernements pour la première session du Comité de Negotiations Intergouvernemental afin de preparer le global legally binding instrument sur le mercure (INC1) qui doit avoir lieu à Stockholm (Suède) du 7 au 11 juin 2010.
(****) Lassen et al., 2008

Du fait de l’interdiction européenne de l’exportation du mercure, qui va entrer en vigueur en 2011, la Commission Européenne développe une étude sur les contraintes d’installation et les critères d’acceptation du stockage sain du surplus de mercure ; cependant aucune installation n’a été jusqu’à ce jour autorisée dans la zone européenne ainsi que dans la région méditerranéenne.

Les mines d’Almaden restent une localisation possible pour un stockage permanent européen du surplus de mercure. Les stocks de mercure des pays méditerranéens de l’est et du sud pourraient aussi être placés à Almaden, ou similaires dans d’autres installations aux alentours de sites miniers de mercure (i.e. Turquie ou Algérie).

Industrie du mercure et déchets contenant du mercure

En se référant à la base de données COMTRADE, l’Espagne a été identifiée comme second plus important exportateur de mercure au monde (10.3% des exportations globales de mercure en terme monétaire entre 2007 et 2009), du fait de l’activité de la compagnie minière d’Almaden, MAYASA.

Au regard des déchets contenant du mercure provenant de l’industrie, et en tenant compte de la base de données de la Convention de Bâle, l’Allemagne et la France sont les pays recevant la plus grande quantité de déchets contenant du mercure en provenance de la région méditerranéenne, alors que l’Italie et la France sont les pays méditerranéens exportant le plus de déchets contenant du mercure.

Utilisations et solutions alternatives

Les principales utilisations du mercure dans la région méditerranéenne sont la production de chlore-alcali, les batteries, les amalgames dentaires, les outils et appareillages de contrôle et mesure, les sources lumineuses, les appareils électroniques et électriques.
ainsi que le mercure chimique. Son utilisation en tant que catalyseur dans la production du monomère de chlorure de vinyle et à la même échelle dans les mines d’or a été considérée comme insignifiante dans la région méditerranéenne.

Table 2. Utilisation du mercure dans les pays méditerranéens (tonnes).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Production de chlore-alcali</th>
<th>Amalgames dentaires</th>
<th>Batteries</th>
<th>Appareils de mesure et de contrôle</th>
<th>Appareils et électriques</th>
<th>Mercure chimique</th>
<th>Autres applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>~1,5 (**)</td>
<td></td>
<td></td>
<td>0.3 pour des thermomètres non médicaux, 1.5 pour des baromètres (++)</td>
<td>0.9 pour les analyses de la Demande Chimique en Oxygène (DCO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>882 (*)</td>
<td>17,5 (++)</td>
<td>1 (***)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>48 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>4.5 (**)</td>
<td>1.6 (**)</td>
<td></td>
<td>2 pur l’industrie des pesticides et biocides (**)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>320 (*)</td>
<td></td>
<td></td>
<td>3.5 pour la production de peinture (++)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maroc</td>
<td>0.75 (**)</td>
<td>0.3 (**)</td>
<td>0.1 (**)</td>
<td>0.002 d’oxydes de mercure, 0.001 de mercure et de sulfates de plomb et 0.001 de cuivre pour les laboratoires (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovénie</td>
<td>0.007 (**)</td>
<td><0.001 (***)</td>
<td>0.002 (***)</td>
<td>- < 0.001 for vaccines - 0.7 for laboratory chemicals (***)</td>
<td></td>
<td>5.05 pour la production de chlorures de mercure (**)</td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td>888 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrie</td>
<td>10 (***)</td>
<td>4.370 (**)</td>
<td>0.283 (**)</td>
<td>- 60,000 unités de thermomètres médicaux - 15,000 unités de tensiomètres (+++)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Source: EuroChlor, 2008
(**) Source: questionnaires soumis pour ce diagnostic
(***) Source: UNEP, 2008
(++) Source: Fournis par les Gouvernements pour la première session du Comité de Négociations Intergouvernemental afin de préparer un instrument juridiquement contraignant sur le mercure (INC1).
(++) Lassen et al., 2008
(+++) Ad Hoc Open-ended Working Group on Mercury. Demande d’information sur le mercure dans les produits et les procédés, quantités utilisées, demande, niveau de substitution, technologies alternative, substituts disponibles.

Actuellement, l’utilisation principale du mercure a lieu dans les usines chlore-alcali, principalement situées en France et en Espagne. Cependant, cette utilisation tend à
diminuer grâce à l’élimination progressive de cette technologie résultant d’actions volontaires du secteur chlore-alcali.

Table 3. Quantité totale de mercure métallique dans les installations européennes de chlore-alcali situées dans la région méditerranéenne (tonnes, 2008). Source: EuroChlor.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Compagnie</th>
<th>Sites</th>
<th>Capacité (t/CI/an) (+)</th>
<th>Total sur site</th>
<th>Utilisés dans les piles</th>
<th>Stocké dans les installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Arkema</td>
<td>Lavera</td>
<td>166,000</td>
<td>298</td>
<td>255</td>
<td>43</td>
</tr>
<tr>
<td>France</td>
<td>Solvay</td>
<td>Tavaux</td>
<td>240,900</td>
<td>584</td>
<td>574</td>
<td>10</td>
</tr>
<tr>
<td>France (+)</td>
<td>Arkema</td>
<td>St Auban (plus de production)</td>
<td>-</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Grèce (+)</td>
<td>Hellenic Petroleum</td>
<td>Thessaloniki</td>
<td>39,599</td>
<td>48</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Italie</td>
<td>Solvay</td>
<td>Bussi (plus de production)</td>
<td>-</td>
<td>225</td>
<td>219</td>
<td>6</td>
</tr>
<tr>
<td>Italie</td>
<td>Solvay</td>
<td>Rosignano (plus de production)</td>
<td>-</td>
<td>13</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Italie (*)</td>
<td>Syndial</td>
<td>Porto Marghera</td>
<td>200,441</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Italie (*)</td>
<td>Syndial</td>
<td>Priolo</td>
<td>28,000</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Italie</td>
<td>Tessenderlo Chemie</td>
<td>Pieve Vergonte</td>
<td>41,995 (*)</td>
<td>75</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td>Italie</td>
<td>Eredi Zarelli (non membre de l’Euro Chlor)</td>
<td>Piciovisco (plus de production)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Flix</td>
<td>150,000</td>
<td>347</td>
<td>347</td>
<td>0</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Sabinanigo</td>
<td>25,000</td>
<td>48</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Vilaseca</td>
<td>135,004</td>
<td>198</td>
<td>197</td>
<td>1</td>
</tr>
<tr>
<td>Espagne</td>
<td>Quimica del Cinca</td>
<td>Monzon</td>
<td>31,373</td>
<td>45</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>Espagne</td>
<td>Solvin</td>
<td>Martorell</td>
<td>217,871</td>
<td>252</td>
<td>243</td>
<td>9</td>
</tr>
<tr>
<td>Total dans les pays méditerranéens</td>
<td></td>
<td></td>
<td>2,138</td>
<td>2,055</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

(-) EuroChlor, 2010
(*) Questionnaire soumis pour ce rapport
(**) Informations aussi fournies avec les réponses du questionnaire
(+) Apparaît comme étant en activité dans les réponses du questionnaire, avec une production de 69 000t/an
(++) OSPAR Commission, 2009

Table 4. Utilisation du mercure au sein des usines de chlore-alcali dans des pays non européens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Mercure utilisé dans les usines de chlore-alcali</th>
<th>Utilisation du mercure (tonnes par an)</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie (*)</td>
<td>OUI</td>
<td>- Une installation à Baba Ali (Algérie): 0.69-0.85 (données entre 2001 et 2003).</td>
<td>Les deux usines ont changé leurs procédés en vue d’une production sans mercure.</td>
</tr>
<tr>
<td>Croatia (*)</td>
<td>NON</td>
<td>Il y avait une usine à Kaštela, près de Split, qui n’est plus en exploitation.</td>
<td></td>
</tr>
<tr>
<td>Chypre (*)</td>
<td>NON</td>
<td>- Une installation dans le sud: 1.5. (IS1)</td>
<td>L’usine a un stock de 3 tonnes.</td>
</tr>
<tr>
<td>Egypte (*)</td>
<td>NON</td>
<td>Cette technologie a été supprimée.</td>
<td></td>
</tr>
<tr>
<td>Israël (*)</td>
<td>OUI</td>
<td>- Une installation dans le sud: 1.5. (IS1)</td>
<td>L’usine a un stock de 3 tonnes.</td>
</tr>
<tr>
<td>Monaco (*)</td>
<td>NON</td>
<td>Il y a une usine utilisant le mercure pour l’électrolyse du chlorure de sodium et la production de PVC (avec une capacité de 180 tonnes par an).</td>
<td></td>
</tr>
<tr>
<td>Maroc (**)</td>
<td>NON</td>
<td>- Une installation: 4</td>
<td></td>
</tr>
<tr>
<td>Slovenia (*)</td>
<td>NON</td>
<td>Il y a une usine utilisant le mercure pour l’électrolyse du chlorure de sodium et la production de PVC (avec une capacité de 180 tonnes par an).</td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
Syrie (*) (***) OUI - Une installation: 10

Tunisie (*) NON Il y a seulement une usine, qui a adopté depuis 1998 des procédés sans mercure.

(*) Source: Questionnaire soumis pour ce diagnostic.
(**) D’après les informations fournies par les gouvernements pour la première session du Comité de Négociations Intergouvernemental afin de préparer un instrument juridiquement contraignant global sur le mercure (INC1), cette figure allait de 4.05 à 5.4 tonnes.
(****) Source: UNEP, 2008

Des alternatives sans mercure sont disponibles et fréquemment utilisées pour les thermomètres, les amalgames dentaires, les tensiomètres, les thermostats et les batteries non miniatures, les interrupteurs et relais, et les lampes automobiles à haute intensité de décharge. Dans la plupart des cas le prix est similaire à celui sans mercure voire même moins cher pour certains.

Le mercure est encore utilisé dans les batteries miniatures et les piles dont la production croissante dans le monde. En effet, les alternatives sans mercure ne sont pas toujours capables de répondre à la demande de beaucoup d’applications des batteries miniatures. Les lampes contenant du mercure (tubes fluorescents, lampes fluorescents compactes et lampes à décharge de haute intensité) sont encore utilisées du fait de leur haute efficacité énergétique par rapport aux alternatives sans mercure.

De plus, les technologies pour réduire les émissions non intentionnelles de mercure à partir de la combustion de combustible fossile, de ciment, de fer et d’acier, de métaux non ferreux, de pâtes et de papier, de l’industrie et de la fonte du fer sont techniquement et économiquement réalisables si l’on se réfère à la bibliographie des meilleures techniques disponibles (BAT ou Best Available Techniques).

Dans la région méditerranéenne, l’information sur la substitution du mercure est rare et les niveaux de substitution reportés par les pays est inégal. Les principaux procédés de substitution initiés concernent les usines de chlore-alcali fonctionnant au mercure, les amalgames dentaires au mercure, les batteries, les cosmétiques, les appareils de contrôle et de mesure, les pesticides et les biocides, les peintures et les produits pharmaceutiques. La substitution du mercure est bien moins développée dans la région pour ce qui concerne les sources lumineuse et les outils électriques et électroniques.

Inventaire des émissions

Différents inventaires régionaux et nationaux des émissions de mercure (principalement émissions atmosphériques) ont été identifiés, bien que les figures fournis par les divers inventaires ne puissent directement être comparées (différence de la couverture géographique, des sources inclues dans chaque secteur, de méthodologie et des facteurs d’émissions considérés). Grand nombre d’informations fournies à l’échelle nationale sont liées à des reports d’obligations régionales ou internationales, même si quelques pays ont leurs propres inventaires d’émissions, voire même dans certains cas des études spécifiques ont été menées concernant les métaux lourds dont le mercure.

Table 5. Revue des inventaires régionaux des émissions de mercure.

<table>
<thead>
<tr>
<th>Inventaire</th>
<th>Matrice</th>
<th>Couverture Géographique</th>
<th>Dernière année disponible</th>
<th>Secteurs couverts</th>
<th>Quantité reportée en Méd. (air) (t/an)</th>
<th>Pays émetteurs majeurs</th>
<th>Secteur émetteur majeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMAP/UNE P Hg Programme</td>
<td>Air</td>
<td>Monde</td>
<td>2005</td>
<td>Mercre Spécifiquement</td>
<td>6.8</td>
<td>Turquie (27%)</td>
<td>Combustion stationnaire (54%)</td>
</tr>
</tbody>
</table>
En utilisant les données disponibles, les émissions de mercure atmosphérique total dans les régions méditerranéennes ont été estimées à environ 70 tonnes.an\(^{-1}\) (~3.6% des émissions globales). Cinq pays (Turquie, Italie, Espagne, Grèce et France) devraient constituer environ 80% des émissions totales dans la région. Par région, les pays du nord de la Méditerranée représentent 56% des émissions totales, suivis par les pays de l’est avec 33% puis ceux du sud dont les émissions s’élèvent à 10% (figure ci-dessous). Il n’y a pas assez d’informations pour estimer les émissions de mercure dans l’eau. Les données disponibles permettent cependant d’avancer que ces émissions seraient plus faibles que celles atmosphériques.

Les émissions atmosphériques non intentionnelles comme celles provenant des combustibles fossiles (dans l’énergie et l’industrie du ciment) semblent être dominantes en Méditerranée. Ceci est en outre en accord avec les conclusions obtenues sur d’autres régions. Les émissions dans l’air et l’eau provenant des industries de chlore-alcali ont été fortement réduites les dernières années, cependant encore trop peu d’informations sont disponibles sur les décharges de mercure à partir de son utilisation intentionnelle (i.e. amalgame dentaire, appareil de mesures etc.).

Monitoring networks
Le réseau de suivi de la qualité de l’air le plus pertinent en Méditerranée est le réseau de mesures UNECE/EMEP qui inclut 10 pays méditerranéens. Cependant, les données concernant le mercure sont difficilement disponibles pour la plupart des stations, bien que les mesures aient été initiées dans différents pays. Une plus grande quantité de données est attendue dans les années à venir. Un manque général d’information s’observe pour les pays du sud et de l’est de la Méditerranée. Dans les pays du nord le mercure est aussi suivi dans les eaux naturelles afin d’exécuter les réglementations du cadre de la politique de l’eau de l’UE.

Dans les environnements marins le mercure a été suivi dans les sédiments, la faune et flore depuis quelques années via le programme MEDPOL, bien que les informations ne soient toujours pas disponibles pour tous les pays. L’appréciation des données à partir des bases de données du MEDPOL n’est pas concluante mais montre que le plus grand taux de mercure dans les sédiments, la faune et la flore se trouve dans des aires localisées au nord ouest du bassin de la mer Adriatique. Les critères d’appréciation environnementale (CAE) pour le mercure et autres polluants dangereux sont toujours en attente d’être développés dans la Méditerranée.

Des informations complémentaires de la littérature et des réseaux nationaux de suivi pourraient indiquer que les niveaux de mercure dans l’environnement marin de la Méditerranée ont baissés les dernières décennies, mais plus faiblement que les émissions.

Le suivi du mercure dans l’alimentation est réalisé dans la plupart des pays de l’UE ainsi que dans d’autres pays méditerranéens comme l’Algérie, la Tunisie et l’Israël. Les informations disponibles concernant les réseaux de suivi de l’alimentation montrent que la consommation de produits de la mer est la source majeure d’exposition de l’humain au
mercure. Les données de la littérature confirment le haut niveau de mercure dans les poissons (i.e. thon et espadon) et les cétacées de la Méditerranée, où la bioaccumulation a été fréquemment observée plus importante que dans d'autres régions marines.

Très peu d'informations ont été obtenues concernant le contrôle du mercure dans le sang humain ou dans le lait maternel, bien que quelques pays soient en train de lancer des stratégies pour suivre cela périodiquement (i.e. Espagne).

Hot spots

Les « hot spots » générés par d’ancien sites industriels sont principalement reliés aux usines de chlore-alcali fermées (ou des usines qui ont déjà adopté des procédés sans mercure mais où l’environnement autour des sites est encore pollué). Beaucoup de ces sites industriels ont déjà enlevé leurs stocks de mercure ou entamé des actions de rémédiation, comme en Croatie, en Egypte ou encore en Tunisie. Une usine de PVC à Vlora (Albanie) est une autre source de « hot spot » majeur en mercure identifiée dans la Méditerranée, bien que des actions de rémédiation soient en cours afin de confiner les sols pollués.

Les anciennes mines de mercure autour de la Méditerranée ont aussi induit des contaminations dans les zones environnantes, par le dépôt historique des déchets miniers contenant de hautes concentrations en mercure. Les principaux sites sont localisés en Espagne (Almaden), en Slovénie (Idrija), en Italie (Monte Amiata), dans l’ouest de la Turquie et l’Algérie (Azzaba). Le drainage de ces zones minières a aussi augmenté les niveaux de mercure dans les aires côtières aux alentours, comme le Golfe de Trieste en Italie ou le Golfe D’Izmir en Turquie.

Recommandations

- Un engagement formel à ne pas ouvrir à nouveau les anciennes mines de mercure doit être adopté par les pays méditerranéens.
- Une mise à l’arrêt des usines de chlore-alcali utilisant le mercure doit être convenu et renforcé dans toute la région méditerranéenne.
- La région méditerranéenne dans sa totalité doit évaluer la possible mise en application d’une interdiction sur l’importation et l’exportation du mercure ainsi que l’étendue (la portée) de telles réglementations. Ceci doit être établi en considérant le cadre international existant (Convention de Rotterdam) ainsi que les conclusions issues du comité de l’union européenne sur la stratégie sur le mercure concernant les restrictions sur l’importation du mercure et l’étendue de l’interdiction de l’exportation à d’autres composés contenant du mercure, aux mélanges à faible taux de mercure et aux produits contenant celui-ci, en particulier les thermomètres, baromètres et les tensiomètres.
- En prenant en compte la tendance internationale sur la fermeture des activités sur le mercure en vue de sa restriction ainsi que l’interdiction européenne des exportations, le surplus futur dans la région méditerranée et les besoins potentiels pour un stockage
Le mercure est essentiel dans de nombreux aspects de l'industrie, mais sa gestion et sa réduction sont essentielles pour prévenir les émissions et les déchets de mercure dans les pays méditerranéens.

1. **Étude du mercure dans les pays méditerranéens**

 - La collecte séparée de récupération du mercure à partir des déchets contenant des batteries, des véhicules en fin de vie et des équipements électroniques doit être réglementée afin de réduire les décharges de mercure issus de produits en contenant dans la région méditerranéenne.

 - Des données plus complètes des émissions dans l'air et l'eau, spécialement dans les pays de l'est et du sud méditerranéens sont nécessaires. De fait, le suivi des réseaux du mercure dans les différents compartiments (air, eau, sol,...) doit être renforcé afin d'identifier des actions prioritaires et de tracer les effets des plans et stratégies. Le contrôle du mercure dans l'alimentaire, en particulier dans les produits de la mer, est aussi d'une importance majeure.

 - Concernant tous les produits pour lesquels une alternative au mercure est disponible et économiquement compétitives, des procédés de substitution devraient être encouragés par des initiatives législatives et des incitations économiques (thermomètre au mercure, baromètre, tensiomètre, catalyseur pour les élastomères de polyuréthane et amalgames dentaires).

 - Une gestion des déchets contenant du mercure non nuisible à l'environnement doit être assurée.

 - Des actions de suivi doivent être entreprises afin d'assurer que les « points chauds » de mercure sont correctement remédies et que leur environnement direct évolue positivement. Plus d'attention devrait être exigée concernant les anciennes mines de mercure en Turquie et en Algérie.

 - Le développement, en tant qu'étape intermédiaire, d'une base de données exhaustive détaillant les produits issus de l'industrie contenant du mercure dans les pays méditerranéens serait fortement recommandé pour la conception et le suivi des politiques effectives visant à la réduction de la consommation de mercure.

 - Pour certains types d'industries potentiellement fortement polluantes, comme par exemple l'industrie du chlore-alcali, l'incinération des déchets, la production de ciment ainsi que les grandes combustions de plants, la législation doit exiger l'utilisation de méthodes spécifiques moins polluantes et de technologies de prévention de la pollution, ou « Meilleures techniques disponibles (Best Available Techniques ou BAT) combinées avec des valeurs limites d'émission (VLE).

 - L'existence d'une législation de l'émission n'est pas suffisante pour assurer la conformité. Un renforcement sérieux des systèmes de contrôle doit être mis en place, au sein duquel l'autorité serait assurée non seulement par un pouvoir relevant de la législation mais aussi de compétences techniques sur les méthodes de contrôle des émissions, etc..

 - Pour les pays méditerranéens qui n'ont pas encore développé un diagnostic national sur le mercure, il est sévèrement recommandé qu'une analyse complète et multidisciplinaire soit menée. Dans la mesure où peu d'informations sont disponibles sur l'utilisation du mercure dans les pays méditerranéens, un effort supplémentaire devrait être fait pour rassembler des données pertinentes afin de développer des politiques de gestion et réduction du mercure.
1. Introduction

1.1 Mercure

Le mercure est un composé chimique qui pose problème à l'échelle mondiale de par sa dispersion dans l'atmosphère, sa persistance dans l'environnement, sa bioaccumulation dans les organismes vivants et sa grande toxicité vis-à-vis des humains et de l'environnement. Il s'agit d'un élément naturel pouvant être relâché dans l'air ou l'eau lors de l'altération de roches ayant des minéraux qui contiennent du mercure ou à travers des activités humaines telles que l'industrie lourde, l'exploitation des mines, la déforestation, l'incinération des déchets et la combustion de carburants fossiles. Il peut aussi provoquer de nombreux produits manufacturés contenant du mercure : plombages, batteries, crèmes antiseptiques et antibactériennes, crème éclaircissantes, antifongiques, pièces électriques (interrupteurs, lampes fluorescentes...) et des instruments de laboratoire (baromètres, thermomètres cliniques...).

Lorsque du mercure est relâché dans l'environnement, il est emporté par les courants atmosphériques avant de retomber, son point de chute pouvant aussi bien être proche qu'extrêmement éloigné de sa source. Il peut aussi s'infiltrer dans les sols et ainsi se retrouver dans les cours d'eau souterrains, rivières, lacs et océans (les espèces migratoires peuvent aussi transporter le mercure dans les océans). Lorsque le mercure se retrouve dans les milieux aquatiques il est transformé par des micro-organismes en méthylmercure, encore plus toxique. Sous cette forme il est bioamplifié dans les organismes aquatiques comme les poissons et coquillages, ainsi que dans les oiseaux, mammifères et humains qui s'en nourrissent. On le retrouve donc à tous les niveaux de la chaîne alimentaire.

Le mercure, surtout sous la forme méthylmercure, est extrêmement toxique pour les humains. Il perturbe en effet le développement neurologique affectant donc tout particulièrement les embryons, fœtus, nouveau-nés et enfants. Les symptômes les plus courants d’une exposition au mercure sont : diminution des facultés cognitives, troubles de la mémoire et de l'attention, difficultés d’expression, problèmes moteur et de visualisation dans l’espace.

1.2 Contexte international

Lors de sa 21e session à Nairobi au Kenya, le Conseil d’Administration/Forum Ministériel Mondial sur l’Environnement du programme des Nations Unies pour l’environnement (PNUE CA/FMME) a conclu sur la nécessité d’une évaluation des effets du mercure. La décision 21/5 appelait ainsi tous les participants à démarrer une étude mondiale de l’impact du mercure et de ses dérivés, les résultats devaient être fournis pour la 22e session du conseil d’administration. Cette décision, consciente du principe de précaution, incluait une clause qui soulignait l’importance de mesures préventives afin de protéger la santé humaine et l’environnement.

Lors de la 22e session du PNUE CA/FMME en février 2003 les délégués, prenant en compte le rapport rédigé dans le cadre de la décision 21/5, ont conclu qu’il y avait assez d’informations pour engager directement un programme national, en partenariat avec le PNUE qui fournit assistance technique et matérielle, de protection de la santé et de l’environnement vis-à-vis du mercure, ceci aboutit à la décision 22/4 V. Cette dernière demandait au directeur exécutif d’inviter les gouvernements à soumettre leur vision des actions à entreprendre à moyen et long terme. Ces idées seraient ensuite compilées, synthétisées puis présentées au conseil d’administration lors de la 23e session, avec pour objectif de développer une convention soumise au droit international, une déclaration non soumise au droit international ou toute autre mesure ou action.
La 23e session du PNUE CA/FMME a eu lieu à Nairobi au Kenya du 21 au 25 février 2005. Durant cette session, les délégués ont adopté la décision 23/9 IV qui demandait au directeur exécutif de continuer à développer le programme mercure du PNUE. La décision enjoignait aussi aux gouvernements, membres du secteur privé et aux organisations internationales de prendre des mesures immédiates pour réduire le risque posé, à l’échelle mondiale, par le mercure dans les produits et procédés. Il en fut conclu que la poursuite des actions internationales était nécessaire pour réduire les risques posés par le mercure, en plus d’une évaluation des besoins nécessaires pour poursuivre le programme mercure tel que l’établissement d’une convention ou de partenariats.

La 5e session du forum intergouvernemental sur les risques chimiques (IFCS-V) a eu lieu du 25 au 29 septembre 2006 à Budapest en Hongrie. Lors de ce forum fut adopté le communiqué de Budapest sur le mercure, le plomb et le cadmium, qui, entre autres, a pressé les participants de démarrer et/ou intensifier les actions visant à s’occuper des excédents de mercure dans le monde telles, qu’interdire l’exportation du mercure, empêcher le surplus de rentrer à nouveau dans le marché mondial et réduire progressivement la production de mercure ; a invité le conseil d’administration du PNUE à renforcer les actions (partenariats ou autres) contre le mercure, plomb et cadmium à l’échelle mondiale ; a mis la priorité sur la création de nouvelles mesures contre les risques sanitaires posés par le mercure, le plomb et le cadmium, ainsi que la considération d’un choix d’option incluant la possibilité d’une convention de droit international ainsi que des partenariats ; a invité les pays à soutenir ces mesures.

Durant la 24e session du PNUE CA/FMME (5-9 février 2007 à Nairobi au Kenya) les délégués se sont accordés sur la nécessité de déterminer les axes prioritaires du programme de réduction des risques posés par les rejets de mercure. Ils ont aussi demandé au directeur exécutif du PNUE de préparer un rapport sur les émissions de mercure et de renforcer les partenariats du PNUE sur le projet mercure. A cet effet, un groupe de travail regroupant des représentants des gouvernements et parties concernées fut créé, leur objectif était de lister et évaluer les options disponibles pour améliorer les mesures volontaires et outils de droit international, existants ou nouveaux, qui s’occupaient des problèmes posés dans le monde par le mercure. Il fut demandé au groupe de travail de rendre leur rapport pour la 25e session du PNUE CA/FMME en 2009, qui prendra alors une décision sur le sujet.

Le premier meeting du groupe de travail eu lieu du 12 au 16 novembre 2007 à Bangkok en Thaïlande. Ils ont examiné les options disponibles pour améliorer les mesures volontaires et outils de droit international, existants ou nouveaux. Les délégués se sont accordés sur l’exécution de 7 tâches intersessions par le secrétariat du PNUE, l’analyse : des besoins financiers nécessaires pour une convention non-rattachée à un état et un nouveau protocole relatif aux accords de Stockholm et aux mesures volontaires ; d’un transfert de technologie et de matériel durable ; des options d’implémentation ; de l’organisation de mesures de réponse ; du coût et les bénéfices de chacun des objectifs stratégiques ; d’une session de vente du mercure si la production venait à être gelée ; des principaux produits contenant du mercure et des procédés vis-à-vis de substituts non toxiques ; du financement disponible via le Fonds pour l’Environnement Mondial (FEM) et le groupe «Strategic Approach to International Chemicals Management» (SAICM).

Le deuxième meeting du groupe de travail eu lieu du 6 au 10 octobre 2008 à Nairobi au Kenya. Après délibération le futur plan pour le projet mercure fut décidé. Ce dernier inclut les éléments devant être traités, le cadre du projet, les infrastructures disponibles, les...
besoins financiers et humains pour pouvoir traiter le problème. Le groupe de travail recommanda au conseil d'administration d'envisager d'adopter la politique établie par le plan établi auparavant pour traiter les problèmes mondiaux posés par le mercure et souleva que les éléments constituent collectivement une approche complète qui peut être nécessaire pour résoudre les défis globaux que pose le mercure. La recommandation incluait deux ajouts potentiels : une nouvelle convention indépendante de droit international pour le mercure et des mesures volontaires.

La 25e session du PNUE CA/FMME s’est déroulée du 16 au 20 février 2009 dans les bureaux des Nations-Unies à Nairobi au Kenya. Les délégués ont décidé de poursuivre l’action internationale sur le mercure, par l’élaboration d’un outil de droit international applicable au mercure. Ce dernier pourrait inclure à la fois des approches volontaires et contraignantes, ainsi que des activités intérim. Dans la décision 25/4, les délégués ont convenu d’organiser un groupe de travail durant le deuxième semestre 2009 et un Comité de Négociation Intergouvernemental (CNI) qui aura pour mission de préparer un outil de droit international pour le mercure. Cette mission devra être terminée pour la 27e session du PNUE CA/FMME qui aura lieu en 2013. Le CNI devra alors, spécifier les objectifs de l’outil ; réduire la demande en produit et procédés, les échanges internationaux et les émissions dans l’atmosphère ; traiter le problème des déchets contenant du mercure ; spécifier les actions entreprises au niveau des infrastructures ; et vérifier la conformité.

La réunion du groupe de travail visant à démarrer le CNI s’est déroulée du 19 au 23 octobre 2009 à Bangkok en Thaïlande. Lors de cette réunion, plusieurs sessions d’informations ont eu lieu permettant de débattre sur certaines clauses devant être considérées par le CNI lors du développement d’un outil de droit international pour le mercure. Trois sessions d’information portant tout particulièrement sur des problèmes relatifs au travail du CNI eurent lieu. La première traitait des réserves et l'entreposage du mercure, la seconde des mines d’or de petite envergure et de l'extraction artisanale, enfin, la troisième portait sur le mercure dans les produits manufacturés et les déchets.

1.3 Contexte méditerranéen

En 1975 seize pays méditerranéens ainsi que la Communauté Européenne ont adopté le Plan d’Action Méditerranéen (PAM), il s’agit du premier programme de protection des eaux régionales établi sous l’égide du PNUE. Les objectifs principaux du PAM étaient d’aider les pays méditerranéen à évaluer et contrôler la pollution marine, d’établir leurs propres politiques environnementales, d’améliorer leur capacité à identifier des solutions de développement alternatives et, finalement, d’optimiser l’allocation des ressources. En 1976 les parties concernées ont adopté la Convention pour la Protection de la mer Méditerranée Contre la Pollution (Convention de Barcelone), de plus l’outil légal du PAM se vit renforcé par 7 protocoles qui traitent d’aspects spécifiques de conservation de l'environnement méditerranéen:

- Un protocole d’immersion de polluants (par les bateaux et avions)
- Un protocole de prévention et de crise (pollution provenant de bateaux et situations de crise)
- Un protocole des activités et sources situées à terre (protocole « tellurique »)
- Un protocole pour les zones spécialement protégées et la biodiversité
- Un protocole pour l’offshore (pollution venant de l’exploration comme de l’exploitation)
- Un protocole pour les déchets dangereux
Un protocole pour la Gestion Intégrée des Zones Côtières (GIZC).

Le protocole pour la protection de la mer méditerranée contre la pollution des activités et sources situées à terre (adopté en mars 1996 et entré en vigueur en mai 2008) presse, dans l'article 5, les parties concernées d'éliminer la pollution provenant d'activités et de sources situées à terre, tout particulièrement de supprimer progressivement les émissions de substances toxiques, persistantes et passibles de se bioaccumuler (liste en annexe I). De plus, l'article 15 établit la procédure pour l'adoption de tels plans d'action, programmes et mesures.

Le Programme MED POL (la composante d'évaluation et de maîtrise de la pollution marine du PAM) est responsable du suivi des travaux liés à la mise en œuvre du Protocole "tellurique", le Protocole relatif à la protection de la mer Méditerranée contre la pollution provenant de sources et activités situées à terre (de 1980 et tel qu'amendé en 1996) ainsi que des Protocoles "immersions" et "déchets dangereux". Le MED POL aide les pays méditerranéens à formuler et mettre en œuvre des programmes de surveillance continue de la pollution, y compris des mesures de maîtrise de la pollution, et à établir des plans d'action visant à éliminer la pollution d'origine tellurique.

Le Centre d'activités régionales pour la production propre (le CAR/PP) est un des six centres d'activités régionales (CAR) du plan d'action méditerranéen (PAM) du programme des nations unies pour l'environnement (PNUE). La mission du CAR/PP est de contribuer à l'étude intégrale des modèles de consommation et de production pour s'assurer d'une bonne gestion des produits chimiques et d'une stratégie environnementale préventive. De plus, en mai 2009 le CAR/PP a reçu l'aval pour devenir un centre régional sous la tutelle de la convention de Stockholm sur les Polluants Organiques Persistants (POP).

Dans ce contexte le PAM a décidé lors de son meeting à Aix-en-Provence (France) de lancer un plan d'action contre le mercure durant les années 2010 et 2011. Ce plan visera, à fixer un agenda, et à déterminer les mesures nécessaires pour réduire les rejets de mercure dans le milieu marin par les pays membres de la convention de Barcelone. Afin de situer ce plan dans la politique environnementale actuelle le CAR/PP, en collaboration avec MED POL, est en charge du présent rapport sur le mercure dans la région méditerranéenne.

1.4 Objectifs et champ d’application

L'objectif principal de cette étude est le développement d'un rapport de diagnostic décrivant le statut du mercure dans le bassin méditerranéen vis-à-vis de la loi et du cadre institutionnel, de la production, du commerce, de l'utilisation, des émissions, des déchets, des mesures de contrôle et de prévention et de l'identification des futurs défis.

2. Institutions légales nationales et internationales

2.1 Institutions légales internationales

Il existe de nombreux accords environnementaux multilatéraux qui traitent des problèmes posés par le mercure. Parmi tous ces accords on notera tout particulièrement : le programme mercure du PNUE ; la convention de Bâle portant sur le contrôle des mouvements transfrontaliers de déchets dangereux et de leur élimination; la convention de Rotterdam traitant de la procédure de consentement préalable en connaissance de cause applicable à certains produits chimiques et pesticides dans le commerce international ; et la convention sur la pollution de l’air transfrontalière à longue distance.

Le conseil d’administration du programme des nations-unies pour l’environnement prépare un outil d’engagement juridique qui traite, entre autre, les problèmes suivant1:

- Le besoin de coopérer, de se coordonner et d’éviter la redondance des actions envisagées avec celles déjà appliquées dans le cadre de procédés ou accords internationaux déjà existants.
- Les co-bénéfices possibles de mesures conventionnelles de contrôle des polluants et d’autres avantages environnementaux.
- La mise en place d’une organisation efficace et d’un secrétariat simplifié.

Les sections suivantes décrivent les principaux accords et organisations qui sont liés au problème du mercure.

2.1.1 Programme mercure (PNUE)

Les objectifs principaux du programme mercure du PNUE2 sont d’aider à l’élaboration d’un outil de droit international pour contrôler le mercure et de développer les études relatives au mercure dans le cadre du partenariat mondial sur le mercure du PNUE.

Le partenariat mondial sur le mercure du PNUE est l’acteur principal qui permet la mise en place d’actions immédiates relatives au mercure. Le but ultime de ce programme du PNUE est de protéger la santé des populations et l’environnement mondial des rejets de mercure, et dérivés, en minimisant, en minimisant, et lorsque c’est possible, en éliminant complètement les émissions humaines de mercure dans l’air, l’eau et les sols.

Le partenariat englobe actuellement les domaines suivants:

- Gestion du mercure dans l’artisanat et l’exploitation de petites mines d’or.
- Contrôle du mercure émis lors de la combustion du charbon.
- Réduction de l’emploi du mercure dans les procédés chlore-alcali.
- Réduction du mercure dans les produits manufacturés.
- Transport et devenir du mercure dans l’air
- Gestion des déchets contenant du mercure.
- Gestion des stocks et entreposages de mercure.

Basé sur des besoins identifiés par le conseil d’administration du PNUE et des suggestions de pays membres, le business plan suivant a été envisagé:

- Production de métaux non ferreux.

Le programme mercure du PNUE s’est formé puis a été renforcé par une série de décisions du conseil d’administration. Lors de sa 25e session, le conseil d’administration a

1 25e session du PNUE CA/FMME.
2 http://www.chem.unep.ch/mercury/
décidé d’élaborer un outil d’engagement juridique relatif au mercure. Il a alors demandé au PNUE de mettre en place un Comité de Négociation International (CNI) dont le but serait de préparer l’outil d’engagement juridique, et ce dès 2010. La première session de ce comité s’est déroulée à Stockholm (Suède) du 7 au 11 juin 2010.

Afin d’amorcer le travail du CNI, le conseil d’administration a mis en place, lors de la décision 24/3, un groupe de travail spécifique qui devra lister et évaluer les mesures possibles pour traiter le problème mondial posé par le mercure ainsi que, déterminer les tâches prioritaires, définir l’agenda et l’organisation du CNI. Dans ce contexte le groupe de travail a produit plusieurs rapports pertinents relatifs au mercure.

Lors de sa première réunion le groupe de travail a décidé la mise en place d’un programme de recherche inter-session qui sera réalisé par le secrétariat afin d’approfondir les débats lors de la prochaine réunion. A cet effet, les gouvernements, les organisations intergouvernementales et les organisations non-gouvernementales ont été chargés par le secrétariat du PNUE de fournir les informations liées au mercure suivantes : emploi dans les produits finis et procédés, quantités utilisées, demande, niveau de substitution, technologie de rechange et substitut disponibles. Dans le bassin méditerranéen la France, la Slovénie et la Syrie sont les seuls pays à avoir fourni de telles informations.

En accord avec les décisions 23/9 et 24/3 du conseil d’administration du PNUE, qui demandent une meilleure clarté du travail de promotion et de développement des quantités de mercure utilisées et rejetées, un rapport sur les inventaires de mercure fut préparé par la branche « produits chimiques » du département de technologie, industrie et économies du PNUE dans le cadre de la seconde réunion du groupe de travail. Ce rapport inclus les résultats de plusieurs pays (dont la Syrie) travaillant avec le PNUE pour développer un inventaire national du mercure.

Par la suite, le conseil d’administration, durant sa 25e session, a demandé au directeur exécutif du PNUE d’élaborer « l’étude du paragraphe 29 », dont seules les grandes lignes sont pour le moment fixées. Cette étude a pour but « de promouvoir le travail du CNI et d’identifier, en concertation avec les pays concernés, les différentes sources d’émission de mercure, ainsi que l’évolution des flux d’émission de mercure actuels et futurs, dans le but d’analyser et d’évaluer le coût et l’efficacité de mesures et stratégies de contrôle alternatives.

Finalement, il est important de noter que douze pays méditerranéen ainsi que l’UE ont participé à la première session du CNI pour préparer un outil d’engagement juridique relatif au mercure (CNI1), il s’agit de : l’Algérie, la Croatie, l’Egypte, la France, l’Italie, Malte, la Lybie, le Maroc, la Slovénie, l’Espagne, la Syrie et la Tunisie. Parmi eux la Croatie, Chypre, le Maroc, l’Espagne, la Syrie et la Turquie ont fourni des informations supplémentaires en réponse aux demandes du CNI.

2.1.2 La convention de Rotterdam

Les objectifs de la convention de Rotterdam sont : 1) de promouvoir la coopération et le partage des responsabilités entre les parties concernées sur le commerce international de certains produits chimiques dangereux dans le but de protéger la santé des populations et l’environnement; 2) de contribuer à un emploi de ces produits chimiques respectueux de l’environnement, en facilitant le partage d’informations sur leurs caractéristiques. Ceci se fera en prenant des décisions au niveau national sur l’importation et l’exportation de tels produits chimiques et la dissémination de ces décisions auprès des différentes parties concernées.

La convention de Rotterdam fut adoptée le 10 septembre 1998 par une conférence de plénipotentiaires à Rotterdam, et est entrée en vigueur le 24 février 2004. Elle crée un
La convention couvre de nombreux produits chimiques industriels et pesticides dont le mercure et ses dérivés qui ont été interdits ou sévèrement restreints pour des raisons sanitaires par les parties concernées et qui ont été proposés pour être inclus dans la « procédure de consentement préalable en connaissance de cause ». Cette procédure est un organe officiel qui reçoit les décisions des pays importateurs, à savoir s'ils désirent recevoir d'autres livraisons des produits chimiques listés par la convention (liste complète en annexe III) et les renvoient aux pays exportateurs en s'assurant de leur coopération.

Il y a 39 produits chimiques listés par la convention (annexe III) sujet à la « procédure de consentement préalable en connaissance de cause » dont, 24 pesticides, 4 formulations de pesticides extrêmement dangereux et 11 produits chimiques industriels. On s'attend à voir beaucoup d'autres produits chimiques être rajoutés dans le futur. Ces ajouts se feront dans le cadre d'une conférence regroupant les parties concernées.

Lorsqu'un produit chimique est ajouté dans la liste (annexe III) un « Document d'Orientation des Décisions » (DOD), contenant les informations relatives aux décisions d'interdire ou restreindre sévèrement l'emploi de ce produit chimique pour des raisons sanitaires ou environnementales, est distribué à tous les membres.

La convention de Rotterdam contient des clauses relatives aux composés contenant du mercure: les composés de mercure inorganiques, les alkyles de mercure, les alkoxylkyles de mercure et les alyles de mercure. Ces composés sont inclus dans l'annexe III dans la catégorie des pesticides. L'emploi du mercure dans les produits finis et procédés n'est, en revanche, pas encore inclus, il le sera s'il satisfait aux critères d'inclusion. Les clauses commerciales de la convention fournissent un modèle pouvant être utilisé par l'outil d'engagement juridique pour aller vers une réduction du commerce international du mercure.

2.1.3 La convention de Bâle

Cette convention\(^4\) traitant du contrôle des mouvements transfrontaliers de déchets dangereux et de leur élimination\(^4\) est l'accord environnemental mondial le plus détaillé sur les déchets toxiques ou non. Son but est de protéger la santé des populations et l'environnement contre les effets néfastes de la génération, de la gestion, des mouvements transfrontaliers et du stockage des déchets toxiques ou non. Cette convention fut adoptée en 1989 et est entré en vigueur le 5 mai 1992.

Premièrement, la convention de Bâle régule les mouvements transfrontaliers de déchets toxiques ou non en appliquant la procédure de consentement préalable en connaissance de cause (les cargaisons non approuvées par le pays importateur sont illégales). Les cargaisons vers ou en provenance de pays non-membres sont considérées comme illégales sauf si elles obéissent à un accord exceptionnel. Chaque pays membre se doit d'introduire un appareil juridique national ou local pour empêcher et punir le trafic illégal de déchets toxiques ou non qui est donc criminel.

Deuxièmement, la convention oblige les pays membres à s'assurer que les déchets toxiques ou non sont gérés et entreposés au respect de l'environnement. Pour cela il est attendu des parties concernées qu’elles, minimisent les quantités qui transitent entre les pays, traitent et stockent les déchets aussi près que possible de leur source et empêchent ou minimisent leur création à la source. Des contrôles poussés doivent être effectués de

\(^4\) www.basel.int/
la génération des déchets toxiques à leur stockage final en passant par leur transport, traitement, réutilisation, recyclage, récupération et entreposage.

Le secrétariat de Bâle a préparé les grandes lignes d’un rapport pour une gestion du mercure respectueuse de l’environnement. Cette ébauche fournit les bases d’une gestion écologique des déchets contenant du mercure et donne des informations détaillées sur ces derniers (réactivité et toxicité du mercure, sources de mercure et déchets contenant du mercure). Cette ébauche fourni aussi la connaissance et l’expertise nécessaire à l’application d’une gestion écologique des déchets contenant du mercure vis-à-vis des lois internationales. Ils suivent la décision VIII/33 de la conférence des parties (CDP) de la convention de Bâle sur le contrôle des mouvements transfrontaliers de déchets dangereux et de leur élimination, qui supporte l’implémentation dun plan stratégique ciblé sur les déchets contenant du mercure (B9).

Tous les pays du PAM ont ratifié cette convention et la plupart d’entre eux fournissent régulièrement des rapports nationaux.

2.1.4 La commission OSPAR

OSPAR a développé, et continue de mettre en place, une série de 5 stratégies qui visent à résoudre les principales menaces identifiées par ses soins (stratégie biodiversité et écosystèmes, stratégie eutrophisation, stratégie substances dangereuses, stratégie industrie offshore et stratégie substances radioactives). De plus, OSPAR a mis en place une stratégie d’évaluation commune et un programme de surveillance, qui évaluent le statut de l’environnement marin et suit l’implémentation des stratégies en notant leurs effets sur le milieu marin. Ces six stratégies soutiennent l’« approche écosystème ».

L’implémentation de la commission OSPAR et de ses stratégies se déroule par un processus de décisions, qui engagent juridiquement les parties concernées, de recommandations et d’autres accords. Les décisions et recommandations initient les actions devant être effectuées par les membres.

Dans le contexte de la stratégie sur les substances dangereuses, la commission OSPAR à crée une liste de produits chimiques à traiter en priorité, cette liste a été adoptée en 2002. Il y actuellement 42 substances ou groupes de substances dans cette liste.

Le mercure est un des produits chimiques identifié par l’OSPAR comme prioritaire et pour lequel l’OSPAR a préparé un document qui regroupe la production, l’utilisation, les sources et les mesures relatives au mercure (ainsi que les propriétés et les données de surveillance du mercure). Ce document a été mis à jour via une série d’études révisionnelles en 2009.

L’OSPAR possède des données sur le mercure dans les zones fluviales et rejets directs, dans l’air et les précipitations, les sédiments marins et la faune et flore de l’Atlantique du nord-est. Pour les données relatives à la production, l’utilisation et les sources de mercure l’OSPAR se basent sur les valeurs fournies par d’autres institutions telles qu’EPER,

5 www.ospar.org
EMEP ou directement par les industries. Ainsi, l’OSPAR travaille avec Eurochlor6 pour avoir accès aux données relatives à l’industrie chlore-alcali (installations, production, rejets dans l’environnement). Le type d’informations disponibles via Eurochlor est visible dans leur rapport annuel pour les pays de l’OSPAR7.

En 2008, l’OSPAR a entrepris une première évaluation de l’avancement de ses objectifs, à savoir, cesser les émissions, décharges et pertes de produits chimiques toxiques prioritaires. Cette évaluation essaie de regrouper les informations les plus récentes pour chaque composé chimique (production, utilisation et sources). Une des sections traite du mercure8.

Les décisions de l’OSPAR pertinentes vis-à-vis du mercure sont listées ci-dessous :
- Décision PARCOM 90/2 sur les programmes et mesures concernant les batteries contenant du mercure et du cadmium.
- Décision PARCOM 85/1 : programmes et mesures du 31 décembre 1985 sur les valeurs limites et les objectifs qualité des rejets de mercure par les secteurs autre que l’industrie chlore-alcali.
- Recommandation PARCOM 85/1 sur les valeurs limites d’émission de mercure dans l’eau par la recirculation de saumure dans les usines chlore-alcali existantes (sortie d’usine).
- Décision PARCOM 82/1 sur les nouvelles usines chlore-alcali utilisant des cellules au mercure.
- Recommandation PARCOM 81/1 sur les autres sources de pollution basées à terre (thermomètres, batteries, amalgames dentaires).
- Décision PARCOM 80/2 sur les valeurs limites d’émission de mercure dans l’eau par la recirculation de saumure dans les nouvelles usines chlore-alcali (sortie d’usine).
- Décision PARCOM 80/1 sur les normes de qualité environnementale du mercure dans les organismes.
- Recommandation PARCOM 93/2 sur des restrictions supplémentaires envers le rejet de mercure par le secteur dentaire.
- Recommandation PARCOM 89/3 sur les programmes et mesures visant à réduire le rejet de mercure depuis diverses sources.
- Adoption d’un « principe de conservation » pour les concentrations de mercure dans l’eau.
- JAMP a fourni les techniques de prélèvement et d’analyse du mercure dans l’air et les précipitations.
- Le rapport de l’OSPAR sur les pertes de mercure dans l’industrie chlore-alcali.
- Recommandation d’OSPAR 2006/1 sur le format des rapports traitant de l’implémentation et de l’efficacité des mesures prises par l’OSPAR dans le cadre de l’industrie du chlorure de vinyle.

Seul deux pays sont concernés géographiquement par l’OSPAR et le PAM, il s’agit de la France et de l’Espagne.

6 http://www.eurochlor.org/
7 http://www.ospar.org/documents%5Cdbase%5Cpublications%5Cp00403_Mercury%20losses%20report%202007.pdf
8 http://www.ospar.org/documents%5Cdbase%5Cpublications%5Cp00354_JAMP%20HA-3%20report.pdf
2.1.5 La convention sur la pollution atmosphérique transfrontière à longue distance (UNECE)

Le but de cette convention sur la pollution atmosphérique transfrontière (TGDPA)⁹ est que les pays membres entreprennent de limiter et, autant que faire se peut, réduire graduellement la pollution de l’air et donc la pollution transfrontière à longue distance. Les membres ont développé des politiques et des stratégies pour combattre le rejet de polluants atmosphériques à travers, l’échange d’informations, des consultations, de la recherche et de la surveillance.

La convention a été prolongée par huit protocoles qui identifient des mesures spécifiques devant être prises par les pays membres afin de réduire leurs émissions de polluants atmosphériques.

Seul les pays du bassin méditerranéen suivants ont ratifié le protocole Aarhus : Croatie, Chypre, Communauté Européenne, France, Monaco et Slovénie.

Le programme concerté de surveillance continue et d’évaluation du transport à longue distance des polluants atmosphériques en Europe (EMEP) est un programme scientifique dont la politique est guidée par la convention UNECE afin d’atteindre une coopération internationale pour résoudre les problèmes de pollution atmosphérique transfrontière.

Le programme EMEP fournit tout particulièrement à la convention UNECE un appui scientifique sur:

a. La modélisation et la surveillance de l’atmosphère.

b. L’inventaire des émissions et les prévisions d’émission.

c. La modélisation d’une évaluation intégrée.

Au début, le programme EMEP n’évaluait que le transport transfrontière de l’acidification et de l’eutrophisation. Par la suite, le champ d’action du programme s’est élargi pour inclure la formation d’ozone au niveau du sol et, plus récemment, les polluants organiques persistants (POP), métaux lourds et les particules en suspension.

Le réseau de mesure des métaux lourds couvre quatre pays méditerranéens: la France, la Croatie, l’Italie et l’Espagne.

2.1.6 L’approche stratégique de la gestion internationale des produits chimiques (SAICM)

L’approche stratégique de la gestion internationale des produits chimiques (SAICM)⁹ a été adoptée par la conférence internationale sur la gestion des produits chimiques (ICCM) le 6 février 2006 à Dubaï (Emirats Arabes Unis). La SAICM est le cadre légal qui vise à promouvoir une utilisation raisonnée des produits chimiques.

⁹ www.unece.org/env/lrtap/
¹⁰ www.saicm.org
La SAICM fut développée par un comité préparatoire qui regroupe plusieurs membres et secteurs d’activités et œuvre pour l’accomplissement des objectifs fixés lors du sommet mondial sur le développement durable à Johannesburg en 2002. Pour cela, elle s’assure que d’ici 2020 les produits chimiques soient produits et utilisés de manière à minimiser les effets nocifs sur l’environnement et la santé des populations.

La SAICM est composée de trois textes de base:

- La **déclaration de Dubaï**, qui exprime l’engagement des ministres, chefs de délégation, représentants de la société civile et représentants du secteur privé à la SAICM.

- La **politique stratégique mondiale**, qui établi le champ d’action de la SAICM, les besoins et les objectifs nécessaires pour réduire les risques, la connaissance et l’information, la gouvernance, les capacités de construction, la coopération technique et la coopération sur les échanges internationaux illégaux.

- Le **plan d’action mondial**, qui suggère les zones de travail et d’activité pour implémenter l’approche stratégique décrite par les 5 enjeux suivants:

 A. Réduction des risques
 B. Connaissance et information
 C. Gouvernance
 D. Capacité de construction et coopération technique
 E. Echanges internationaux illégaux

Les paragraphes 24 et 25 de la stratégie politique globale de la SAICM demandent à la conférence internationale sur la gestion des produits chimiques (ICCM) de contrôler régulièrement le travail de la SAICM.

De plus, il fut demandé au secrétariat de préparer une assistance pour expliquer les indicateurs et préparer des appareils de mesure électronique simples pouvant être utilisés par les participants pour fournir les informations demandées. Les données fournies par les participants (gouvernementaux, non gouvernementaux, organisations inter gouvernementales et industriels) seront compilées sur une base régionale et mondiale. Le secrétariat analysera les informations reportées et fournira un résumé concis qui montrera les principales tendances.

D’autre part, l’Institut des Nations-Unies pour la Formation et la Recherche (UNITAR) a entrepris un programme d’aide de profil national pour fournir assistance, formation et appui technique aux pays afin qu’ils évaluent leurs principales infrastructures légales, institutionnelles, administratives et techniques pour une bonne utilisation des produits chimiques.

2.1.7 L’organisation mondiale pour la santé (OMS)
L’OMS11 est l’autorité coordinatrice et directrice responsable de la santé au sein des Nations-Unies. Il est de sa responsabilité de, montrer la voie sur les problèmes relatifs à la santé dans le monde, mettre en forme l’agenda des recherches sur la santé, fixer les normes et critères, articuler les politiques en fonctions des situations, fournir un appui technique et surveiller et évaluer l’évolution de la santé dans le monde.

En 2003 des experts convoqués par l’organisation des Nations-Unies pour l’alimentation et l’agriculture (FAO) et l’organisation mondiale pour la santé (OMS) ont convenu de recommandations sur les concentrations maximales de produits chimiques dans la nourriture, parmi ces produits chimiques se trouve le méthylmercure, la forme la plus toxique du mercure.

Lors du 61e meeting du comité mixte d’experts des additifs alimentaires (JECFA), les experts ont réévalué les études de risques, réalisées précédemment par le JECFA, relatives au méthylmercure au vue des nouvelles données. Ils ont aussi revu la provisoire dose hebdomadaire tolérable (PTWI), recommandant qu’elle soit descendue à 1.6µg par kilo de masse corporelle et par semaine afin de protéger le bon développement des fœtus. La valeur précédemment fixée par le JECFA était de 3.36µg par kilo de masse corporelle et par semaine.

L’OMS a aussi identifié les centres de soins comme l’une des sources majeure de rejet de mercure dans l’air à cause des émissions lors de l’incinération de matériel médical. Afin de mieux cerner le problème du mercure dans le milieu médical l’OMS a préparé, en 2005, le document « le mercure dans les centres de soin » dans lequel des étapes pour travailler à court/moyen/long terme en collaboration avec les pays sont proposées:
- Court terme: Développer des procédures de dépollution du mercure, de transport des déchets et de stockage.
- Moyen terme: Augmenter les efforts visant à réduire le nombre d’utilisations inutiles d’équipements contenant du mercure.

2.1.8 Le projet mercure mondial (GEF/UNDP/UNIDO)
Le projet mercure mondial12 a débuté en 2002 dans le but de traiter le problème environnemental posé par la contamination au mercure due à l’artisanat et l’extraction de l’or à petite échelle. Les objectifs fondamentaux du projet ont été: d’introduire des technologies plus propres, de former les mineurs, de développer des organismes de contrôle au sein des gouvernements nationaux et régionaux, de conduire une évaluation environnementale et sanitaire et de construire des installations au sein des pays participants pour continuer de surveiller le mercure une fois le projet terminé.

Six pays ont officiellement participé au projet mercure mondial: le Brésil, le Laos, l’Indonésie, le Soudan, la Tanzanie et le Zimbabwe.

Selon les données disponibles aucune activité relative à l’artisanat et l’extraction de l’or à petite échelle n’existe dans le pourtour méditerranéen.

2.1.9 L’institut des Nations-Unies pour la formation et la recherche (UNITAR)
Dans le contexte de l’Evaluation Mondiale du Mercure (EMM) initiée par le programme des nations-Unies pour l’environnement (PNUE) en coopération avec le programme inter organisation pour une meilleure gestion des produits chimiques (IOMC) en 2002, UNITAR

11 www.who.int/
12 www.globalmercuryproject.org/
aide les pays à développer des stratégies de réduction des émissions de mercure ainsi qu'à gérer les risques causés par le mercure. Un aspect important de cet institut est la collecte systématique des volumes d'émission de sources ponctuelles (par exemple les centrales électriques) et diffuses (par exemple les décharges, produits contenant du mercure). Les registres de transfert et rejet de polluants (PRTR) sont un outil important pouvant aider les pays à identifier et reporter les émissions et transferts de mercure de manière soutenue. La connaissance des schémas d'émission du mercure et leur magnitude pourra par la suite former une bonne base pour réduire les émissions de mercure de chaque pays à travers une stratégie nationale de réduction des risques.

Les activités d'UNITAR sont en général étroitement reliées aux PRTR d'UNITAR ainsi qu'aux programmes de formation spécialisés pour la prise de décision lors de la gestion de crises et ceux des capacités de construction. Les activités dans ce domaine ont lieu via une approche multi partenariale dirigée par les pays participants en collaboration avec les agences internationales adéquates telle que l'UNEP.

L'UNITAR fourni un soutien technique pour les projets nationaux, tel que les formations et l'approvisionnement de documentation d’assistance. Ce soutien est décrit plus en détail ci-dessous:

- Expertise internationale et formation dans le but de renforcer les compétences permettant d’inventorier le mercure.
- Formation pour renforcer les capacités à prendre des décisions lors de gestion de crises.
- Formation pour renforcer les capacités des PRTR et leur implémentation.
- Approvisionnement d’assistance et matériel de formation pour supporter l’implémentation d’activités nationales relatives au mercure telles que : «Intégrer les informations sur la pollution par le mercure à un système PRTR national : considérations institutionnelles et stratégiques» ; «Développer un plan de gestion des risques pour les produits chimiques prioritaires» ; «Créer des liens entre les informations sur les produits contenant du mercure et les émissions de mercure» ; et «Un document sur les capacités d’évaluation et l'analyse de la situation du mercure au niveau national».
- D’autres activités spécifiques à chaque pays ont été prévues pour traiter des sources ponctuelles particulières (par exemple un projet a été planifié pour s’occuper d’une source ponctuelle de mercure au Kirghizistan avec l’aide du gouvernement suisse).

2.1.10 Fonds pour l’environnement mondial (GEF)

Le fonds pour l’environnement mondial (GEF)\(^\text{13}\) réunit 181 gouvernements – en partenariat avec des institutions internationales, des ONG et le secteur privé – pour traiter des problèmes environnementaux mondiaux.

Etant un fond monétaire indépendant, le GEF fournit de l’argent aux pays en voie de développement et aux pays dont l’économie est en phase de transition pour des projets relatifs à la biodiversité, le réchauffement climatique, les eaux internationales, la dégradation des terres, la couche d’ozone et les polluants organiques persistants. Ces projets bénéficient à l’environnement mondial en reliant les défis environnementaux à un niveau local, national et mondial et en promouvant les sources de revenu renouvelables.

Le partenariat du GEF inclut 10 agences: le programme de l’ONU pour le développement; le PNUE; la banque mondiale; l’organisme de l’ONU pour la nourriture et l’agriculture; l’organisme de l’ONU pour le développement industriel; la banque Africaine de développement; la banque Africaine de développement ; la banque Européenne pour la

\(^\text{13}\) [http://72.26.206.151/gef/]
reconstruction et le développement; la banque interaméricaine de développement; et le fonds international pour le développement de l’agriculture. Le panel consultatif scientifique et technique fournit des conseils scientifiques et techniques pour les projets et politiques du GEF.

Récemment le GEF a reçu des dons record de la part des pays membres. Ces nouvelles ressources seront utilisées pour obtenir des résultats quantifiables dans les six zones de focus environnemental avec les clés suivantes : réchauffement climatique, biodiversité, eaux internationales, dégradation des sols, polluants organiques persistants, mercure et couche d’ozone. Pendant les quatre ans qui viennent le GEF utilisera ses fonds pour :

- Diminuer les émissions de CO₂.
- Promouvoir une gestion à long-terme des zones protégées et des paysages en danger.
- Renforcer la coopération entre les états sur la gestion des réseaux hydrographiques transfrontières.
- Réduire la concentration en polluants organiques persistants dans les sols et l’eau, réduire les émissions de mercure.
- Etendre et protéger les zones forestières.

2.1.11 Projet sur la politique du mercure

Le Projet sur la Politique du Mercure (PPM) œuvre à promouvoir les politiques qui éliminent l’emploi du mercure, réduisent les exportations et échanges de mercure et réduisent de manière significative l’exposition des populations au mercure à un niveau local, national et mondial. Il s’attache à travailler en harmonie avec les autres groupes et entités partageant des intérêts et buts communs.

Le PPM et le bureau pour l’environnement Européen (BEE) ont démarré le groupe de travail «zéro mercure» (ZMWG) en novembre 2004 pour traiter les problèmes internationaux. Le ZMWG a tout particulièrement proposé un projet de traité mondial relatif au mercure.

Le site internet du projet «zéro mercure» décrit l’objectif ultime du PPM, à savoir «zéro» émissions, demandes et approvisionnements de mercure de la part de toutes les sources contrôlables afin de réduire au minimum la présence de mercure dans l’environnement Européen et mondial.

14 www.zeromercury.org
2.2 Institutions légales régionales

2.2.1 Convention pour la protection de l'environnement marin et des côtes du bassin méditerranéen (convention de Barcelone)

En 1975 seize pays méditerranéens ainsi que la Communauté Européenne ont adopté le Plan d’Action Méditerranéen (PAM), il s’agit du premier programme de protection des eaux régionales établi sous l’égide du PNUE. Les objectifs principaux du PAM étaient d’aider les pays méditerranéens à évaluer et contrôler la pollution marine, d’établir leurs propres politiques environnementales, d’améliorer leur capacité à identifier des solutions de développement alternatives et, finalement, d’optimiser l’allocation des ressources. En 1976 les parties concernées ont adopté la Convention pour la Protection de la mer Méditerranée Contre la Pollution (Convention de Barcelone), de plus l’outil légal du PAM se vit renforcé par 7 protocoles qui traitent d’aspects spécifiques de conservation de l’environnement méditerranéen:

- Un protocole d’immersion de polluants (par les bateaux et avions)
- Un protocole de prévention et de crise (pollution provenant de bateaux et situations de crise)
- Un protocole des activités et sources situées à terre (protocole «tellurique»)
- Un protocole pour les zones spécialement protégées et la biodiversité
- Un protocole pour l’offshore (pollution venant de l’exploration comme de l’exploitation)
- Un protocole pour les déchets dangereux
- Un protocole pour la Gestion Intégrée des Zones Côtières (GIZC).

Le protocole pour la protection de la mer méditerranée contre la pollution des activités et sources situées à terre (adopté en mars 1996 et entré en vigueur en mai 2008) presse, dans l’article 5, les parties concernées d’éliminer la pollution provenant d’activités et de sources situées à terre, tout particulièrement de supprimer progressivement les émissions de substances toxiques, persistantes et passibles de s’accumuler (liste en annexe I). De plus, l’article 15 établi la procédure pour l’adoption de tels plans d’action, programmes et mesures.

Le Programme MED POL (la composante d’évaluation et de maîtrise de la pollution marine du PAM) est responsable du suivi des travaux liés à la mise en œuvre du Protocole "tellurique", le Protocole relatif à la protection de la mer Méditerranée contre la pollution provenant de sources et activités situées à terre (de 1980 et tel qu’amendé en 1996) ainsi que des Protocoles "immersions" et "déchets dangereux". Le MED POL aide les pays méditerranéens à formuler et mettre en œuvre des programmes de surveillance continue de la pollution, y compris des mesures de maîtrise de la pollution, et à élaborer des plans d'action visant à éliminer la pollution d'origine tellurique.

Les parties concernées par la convention de Barcelone ont préparé et adopté un programme d’action stratégique (SAP MED) sur les activités régionales et nationales pour traiter le problème de la pollution par des sources situées à terre. Ce plan identifie les polluants classés catégorie prioritaire et les activités devant être éliminées ou contrôlées par les pays Européens, et cela grâce à un cahier prévisionnel (allant jusqu’à 2025) de mesures ou interventions qui visent à réduire un type de pollution précis.

Ainsi, les objectifs proposés pour les métaux lourds (Hg, Cd et Pb) sont les suivants:

- En 2025 il faudra avoir diminué au maximum les rejets, émissions et pertes de métaux lourds (mercure, cadmium et plomb).
- En 2005 il faudra avoir réduit de 50% le rejet, l’émission et la perte de métaux lourds (mercure, cadmium et plomb).
- En 2000 il faudra avoir réduit de 25% le rejet, l’émission et la perte de métaux lourds (mercure, cadmium et plomb).

Les activités proposées au niveau régional sont les suivantes:
- Préparer les bases pour les applications de BAT et BEP dans les installations industrielles sources de métaux lourds (mercure, plomb et cadmium).
- En 2010 il faudra avoir formulé et adopté, de manière appropriée, des critères et normes de qualité environnementale pour les rejets et émissions de métaux lourds (mercure, plomb et cadmium) venant de sources ponctuelles.

Les activités proposées au niveau national sont les suivantes:
- Réduire autant que possible les rejets et émissions de métaux lourds, et pour cela, promouvoir la mise en place d'audits environnementaux, appliquer les BEP et, si possible, les BAT dans les installations industrielles sources de métaux lourds en agissant en priorité sur les installations classées « points chauds ».
- Préparer des programmes nationaux de réduction et de contrôle de la pollution engendrée par les métaux lourds.
- Adopter et appliquer au niveau national les mesures communes prises pour éviter la pollution au mercure par les pays membres en 1987 (concentration maximale dans l'eau rejetée en mer: 0.050mg/L).
- Adopter et faire appliquer aux industries du secteur chlore-alcali, en plus des normes précédentes, une valeur maximum de 0.5 g de mercure dans l'eau par tonnes de chlore pouvant être produites dans l'usine dans le cas d'une recirculation de saumure, 5 g de mercure dans l'eau par tonne de chlore produite pour un procédé à saumure perdue) et, si possible, au maximum 2 g de mercure émis au total (dans l'air, l'eau et les produits).
- Adopter et appliquer au niveau national les mesures communes prises pour éviter la pollution par le cadmium et les composés contenant du cadmium par les pays membres en 1989 (concentration maximale dans l'eau rejetée en mer : 0.2mg/L).
- Préparer des accords volontaires environnementaux basés sur un plan de réduction des émissions auxquels les autorités, les producteurs et les utilisateurs seront soumis.

2.2.2 Stratégie mercure de l'UE

L'Union Européenne à lancé la stratégie mercure (EC, 2005b) en 2005. Il s'agit d'un plan détaillé visant à protéger la santé des populations et l’environnement de toutes les émissions de mercure à la fois au niveau Européen et mondial.

La stratégie mercure de l'UE propose 20 actions pour réduire les émissions, les stocks et la demandes, s’occuper des surplus et des réservoirs, éviter l’exposition, améliorer les connaissances et soutenir les actions internationales.

Sa mise en place résulte de la restriction des ventes d’appareils de mesure contenant du mercure, de l’interdiction à l’export du mercure dans l’UE (entrée en vigueur en 2011) et des nouvelles règles sur le stockage sécurisé.

D’ici 2010, la commission Européenne doit examiner, conjointement avec les états membres et les parties concernées, la nécessité d’interdire les importations de mercure dans l’UE et si les restrictions d’exportation doivent être étendues aux autres composés contenant du mercure, aux mélanges à faible taux de mercure et aux produits contenant du mercure (particulièrement les thermomètres, baromètres et tensiomètres).

a) Le mercure dans les appareils de mesure.

La mise en place de cette stratégie a abouti à des restrictions sur la vente d’appareils de mesure contenant du mercure, une interdiction des exportations de mercure dans l’UE (entrée en vigueur en 2011) et de nouvelles règles pour le stockage sécurisé.

Elle contient aussi une clause obligeant à réduire la vente, à usage personnel ou médical, d’équipements de mesure et de contrôle électroniques ou non-électriques contenant du mercure. En effet ceci n’était pas pris en compte par la directive 2002/95/EC qui restreint
l'utilisation de certaines substances dangereuses dans les équipements électriques et électroniques (directive RoHS).

Pour cela la directive 2007/51/EC15 a prohibé la mise en marché public de thermomètres cliniques et autres, nouveaux, appareils de mesure contenant du mercure (baromètres). Il existait une dérogation pour les baromètres jusqu’au 3 octobre 2009, pour donner le temps à l’industrie de s’adapter, avec une dérogation catégorique pour tous les instruments contenant du mercure de plus de 50 ans pour le 3 octobre 2007. Les applications spécialisées dans les domaines de la médecine, de la science et dans l’industrie sont aussi exclues, mais cette exclusion est sujette à révision le 3 octobre 2009.

En octobre 2009 le comité scientifique sur les risques sanitaires émergents ou nouvellement identifiés (SCENIHR) a publié ses vues sur : les tensiomètres au mercure dans le milieu médical et les alternatives réalisables. Leur point de vue est que, les tensiomètres au mercure ne sont pas nécessaires lors de pratiques médicales de routine, ou lors de cas spéciaux (hypertension, pré-éclampsie…) ou bien encore pour des calibrations. Ils ne sont nécessaires que pour valider les tensiomètres dans les centres de soin spécialisés et lors d’études épidémiologiques à long terme.

Aujourd’hui, compte tenu de l’obligation de revoir les restrictions appliquées au mercure pour l’entrée 18a de l’annexe XVII de REACH, l’agence européenne des produits chimiques (ECHA) est en train d’évaluer les informations disponibles et préparera, si besoin est, un dossier annexe XV pour proposer des restrictions adaptées.

L’annexe XVII de REACH16 prend en compte les substances dangereuses telles que le mercure et les composés contenant du mercure restreint par les directives 76/769/EEC et 2007/51/EC. En accord avec la révision des alternatives – aux tensiomètres à mercure et aux équipements de mesure contenant du mercure utilisés dans les milieux médicaux, professionnels et industriels – disponibles, plus sûres et techniquement et économiquement viables du 3 octobre 2009 (directive 2007/51/EC), l’entrée 18a établit que la commission doit, si approprié, présenter des lois visant à étendre les restrictions du paragraphe 1 aux tensiomètres et autres équipements de mesure contenant du mercure utilisés dans les milieux médicaux, professionnels et industriels, de façon à éliminer progressivement, lorsque c’est techniquement et économiquement réalisable, le mercure dans les appareils de mesure.

b) L’exportation de mercure depuis l’UE

La régulation (EC) numéro 1102/200817 adoptée en septembre 2008 interdit toutes exportations de mercure depuis l’UE à partir de mars 2011.

La nouvelle loi demande aussi que le mercure qui, n’est plus utilisé dans les cellules des usines chlore-alcali ou produit par d’autres opérations industrielles majeures, soit stocké de manière sécurisée. Alors que cette loi fait du stockage sécurisé une obligation, EuroChlore (association professionnelle représentant les exploitants d’usines chlore-alcali dans l’UE et l’association pour le libre-échange en Europe) a décidé d’aller encore plus loin. Les surplus de mercure seront retirés des usines de chlore désaffectées, transportés vers leur lieu de stockage dans des conteneurs en acier scellés et approuvés et enfin entreposés de préférence dans des mines de sel. Ces mines fournissent une solution de stockage définitive et sûre pour le mercure, du fait de l’absence d’humidité et de
corrosion. Cet engagement volontaire de l'industrie a été reconnu formellement recommandation de la commission18.

c) Le stockage sécurisé

d) Révision de l’utilisation du mercure dans les produits et appareils

Dans la continuation de la mise en place de la stratégie mercure de l’UE, la commission a demandé une étude sur «les options visant à réduire l’utilisation du mercure dans les produits et appareils et le devenir du mercure déjà en circulation» (Lassen et al, 2008).

Les principales conclusions de ce rapport sont que tout semble indiquer que les plombages et les thermomètres devraient être la cible de restrictions plus dures; pour ce qui est des mesures de réduction des émissions de mercure provenant des baromètres, tensiomètres et élastomères en PU elles peuvent être démarrées dès que possible sans impact majeur sur les producteurs et les utilisateurs.

Pour ce qui est des plombages, l’installation obligatoire de filtres à haute efficacité dans les cliniques dentaires est une mesure très rentable pour réduire les rejets de mercure dans le système d’eaux usées, et devrait donc être mis en marche dès que possible.

e) Révision de la stratégie de l’UE relative au mercure

La stratégie mercure de l’UE était en cours de finalisation lorsque ce rapport diagnostic fut terminé; un premier rapport préparé par Bio intelligence services sur la révision de la stratégie communautaire relative au mercure a été distribué en juin 2010 (EC (DG ENV), 2010).

Ce rapport identifie parmi les 20 actions de la stratégie, sept actions dont l’implémentation est considérée incomplète et d’autres actions possibles. Les sept sujets clés des actions non abouties sont:

- Évaluer les effets des directives IPPC et LCP sur les émissions de mercure (mise en place des niveaux d’émission associés à l’utilisation des BAT).
- Révision du traitement des déchets des amalgames dentaires et instauration des mesures appropriées.
- Opinions d’experts sur les amalgames dentaires.

- Contribution aux activités internationales, transfert de technologies.
- Soutien au protocole pour métaux lourds UNECE CLRTAP.
- Soutien au programme mercure du PNUE.
- Soutien aux efforts mondiaux visant à réduire l’emploi du mercure dans l’extraction de l’or.

Les autres actions possibles proposées dans le rapport ont trait à : réduire les stocks; réduire la demande de mercure pour les produits et procédés; réduire le commerce international du mercure; réduire ou éliminer les émissions de mercure; atteindre une gestion des déchets contenant du mercure respectueuse de l’environnement; décontaminer les sites pollués existants; éviter l’exposition au mercure; soutenir et promouvoir les actions internationales; échanger des informations et tenir les populations au courant; ainsi que surveiller les niveaux de mercure.

2.2.3 Législation Européenne portant sur le mercure

Le mercure est régi par un certain nombre de clauses légales visant à protéger l’environnement et la santé des populations. Tableau 6 décrit brièvement les principales clauses affectant directement ou non le mercure, en mettant l’accent sur les limitations spécifiques au mercure qui en résultent.

Tableau 6. Clauses légales Européennes affectant le mercure.

<table>
<thead>
<tr>
<th>Qualité de l’air</th>
<th>Limitations sur le mercure</th>
</tr>
</thead>
<tbody>
<tr>
<td>La directive 96/62/EC sur la gestion et l’évaluation de la qualité de l’air ambiant</td>
<td>Plus communément appelée la directive-cadre de la qualité de l’air, elle décrit les principes de bases comme, comment évaluer et gérer la qualité de l’air dans les états membres. L’annexe I liste les polluants pour lesquels les normes et objectifs de qualité de l’air seront développés et la législation appropriée (elle inclut le mercure).</td>
</tr>
<tr>
<td>La directive 2004/107/EC sur la présence d’arsenic, de cadmium, de mercure, de nickel et d’hydrocarbures aromatiques polycycliques dans l’air ambiant</td>
<td>Il s’agit de la quatrième directive fille, elle complète la liste des polluants initialement décrite dans la directive mère. Pour chaque substance de la liste, sauf le mercure, une valeur cible est fixée, pour les PAHs, la valeur cible est définie par la concentration en benzo(a)pyrène, généralement utilisé comme marqueur des PAHs. Pour le mercure seules les exigences de surveillance sont spécifiées.</td>
</tr>
</tbody>
</table>
| La directive 2008/50/EC sur la qualité de l’air ambiant et un air plus pur pour l’Europe | Cette nouvelle directive ne considère pas le mercure en particulier, cependant elle comporte les points clés suivant :
- La fusion de la plupart des législations existantes en une seule directive (excepté pour la quatrième directive fille 2004/107/EC) sans aucun changement aux objectifs existants de qualité de l’air.
- Les nouveaux objectifs qualités pour les PM2.5 (fines particules) incluent une valeur limite et des objectifs liés à l’exposition – des concentrations d’exposition limites et des mesures de réduction de l’exposition
- La possibilité de retrancher le mercure d’origine naturelle lors de la vérification du respect des valeurs limites.
- La possibilité, basée sur les conditions et les évaluations de la Commission Européenne, de disposer de 3 ans (PM10) ou de 5 ans (NO2, benzène) de plus pour se mettre en accord avec les valeurs limites. |

<table>
<thead>
<tr>
<th>Emission de polluants atmosphériques</th>
<th>Limitations sur le mercure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La directive 2001/80/EC sur la limitation des émissions par les grandes installations de combustion de certains polluants dans l’air

Le but global est de réduire les émissions de polluants acidifiants, de particules et de précurseurs de l’ozone. Elle pose des valeurs d’émission limite pour SO₂, les NOx et les poussières. Le mercure n’est pas particulièrement considéré, cependant on sait qu’il est impacté par les mesures de réduction de poussières (les équipements de réduction des poussières réduisent aussi les émissions de métaux lourds liés aux poussières).

La régulation (EC) No 166/2006 sur le registre Européen d’émission et de transfert de polluants (E-PRTR).

L’E-PRTR contient des données récoltées annuellement auprès d’environ 24 000 sites industriels recouvrant 65 activités économiques à travers l’Europe. Pour chaque installation, des informations concernant la quantité de polluants émis dans l’air, l’eau et les sols, ainsi que les transferts hors-site de déchets et de polluants dans les eaux usées est fournie à travers une liste des 91 polluants clés (cela inclut depuis 2007 les métaux lourds, les pesticides, les gaz à effet de serre et les dioxines).

La directive 2008/1/EC sur la prévention et le contrôle de la pollution intégrée (IPPC).

Les activités industrielles et agricoles à fort potentiel polluant, couvertes par l’annexe I de la directive IPPC, doivent obtenir un permis environnemental délivré par les autorités compétentes du pays concerné.

De plus, les permis devront comporter les valeurs limites d’émission associées à l’emploi des BAT, les caractéristiques techniques de l’installation concernée, sa position géographique et les conditions environnementales locales, pour chaque polluant.

La directive 2000/76/EC sur l’incinération des déchets

Le but de cette directive est d’empêcher ou de réduire autant que possible les effets néfastes causés par l’incinération et la co-incinération des déchets sur l’environnement. Cela se fera à travers la mise en place de conditions d’opération, d’exigences techniques, et de valeurs limites d’émission pour les usines d’incinération et de co-incinération en UE.

La directive WI établit les valeurs limite d’émission et les exigences de contrôle pour les polluants atmosphériques tels que les poussières, les NOx, le dioxyde de soufre (SO₂), le chlorure d’hydrogène (HCl), le fluorure d’hydrogène (HF), les métaux lourds, les dioxines et les furanes.

La valeur limite d’émission pour le mercure et ses dérivés dans les eaux utilisées pour laver les gaz d’échappement est 0.03mg(Hg)/L

La valeur limite d’émission pour le mercure et ses dérivés dans l’air est 0.05mg(Hg)/L

La directive 98/83/EC sur la qualité de l’eau destinée à la consommation humaine

Pour le mercure la norme qualité est à 1µg(Hg)/L.

Elle oblige aussi les états membres à vérifier régulièrement la qualité de leur eau potable et à fournir aux consommateurs des informations adéquates et à jour sur la qualité de leur eau potable.

La directive 2006/7/EC concerne la gestion de la qualité de l’eau de baignade et abroge la directive 76/160/EEC.

Cette directive pose les bases pour une surveillance et une classification de la qualité des eaux de baignade, la gestion de la qualité des eaux de baignade et la transmission au public d’informations relatives à la qualité des eaux de baignade.

Le mercure n’est pas particulièrement concerné.
La directive 91/271/EEC sur le traitement des eaux usées en zone urbaine fut adoptée le 21 mai 1991 pour protéger l’eau des rivières des effets néfastes engendrés par le rejet des eaux usées venant des villes ou de certaines industries. Le mercure n’est pas particulièrement concerné.

Les activités industrielles et agricoles à fort potentiel polluant, couvertes par l’annexe I de la directive IPPC, doivent obtenir un permis environnemental délivré par les autorités compétentes du pays concerné. De plus, les permis devront comporter les valeurs limites d’émission associées à l’emploi des BAT, les caractéristiques techniques de l’installation concernée, sa position géographique et les conditions environnementales locales, pour chaque polluant.

Le but de cette directive, adoptée en juin 2008, est de protéger plus efficacement le milieu marin à travers toute l’Europe. Elle vise à atteindre une bonne qualité environnementale des eaux marines de l’UE d’ici 2020 et de protéger les ressources dont les activités sociales et économiques relatives à la mer dépendent.

Elle établit un découpage des eaux européennes en région marines européennes selon des critères environnementaux et géographiques. Chaque pays membre doit coopérer avec les autres pays, membres de l’UE ou non, qui partagent la même région marine afin de développer des stratégies relatives à leur région.

La Directive-cadre pour l’eau (2000/60/EC) établit un cadre légal pour protéger et restaurer la propreté des eaux européennes et s’assurer de son utilisation responsable à long terme. Elle demande à ce que l’eau douce de surface et les étendues aquatiques (lacs, cours d’eau, rivières, estuaires et côtes) soient écologiquement saines d’ici 2015.

La nouvelle directive sur les substances prioritaires déterminant les normes de qualité environnementale pour les substances prioritaires et certains autres polluants est le résultat des exigences posées par l’article 16 (8) de la directive-cadre de l’eau. De plus, l’annexe II de cette nouvelle directive remplace l’annexe X de la directive-cadre traitant aussi des substances prioritaires, dont le mercure et ses dérivés. L’annexe I définit les normes de qualité environnementales (NQE) par la concentration annuelle moyenne (AA) et la concentration maximale autorisée (CMA) en µg/l dans les eaux de surface.

Pour le mercure ces valeurs sont respectivement 0.05 et 0.07.

Gestion des déchets

Limitations sur le mercure

Cette directive établit un cadre légal pour le traitement des déchets dans l’UE. Elle vise à protéger l’environnement et la santé des populations des effets néfastes générés par la gestion et la production des déchets. Afin de mieux protéger l’environnement les états membres devraient prendre, pour traiter leurs déchets, des mesures en accord avec l’arbre hiérarchique suivant (listé par ordre de priorité) : prévention, préparation à la réutilisation, recyclage, autre récupération (notamment énergétique), et enfin élimination.

Cette directive pose les règles relatives à la gestion des déchets dangereux. La liste des déchets dangereux couverts par la directive a été
<table>
<thead>
<tr>
<th>Etat du mercure dans les pays méditerranéens</th>
</tr>
</thead>
<tbody>
<tr>
<td>faite sur la base des catégories, constituants et propriétés présentés dans les annexes de la directive. Le mercure et les composés contenant du mercure sont listés en Annexe II comme composés pouvant rendre les déchets dangereux.</td>
</tr>
</tbody>
</table>

| Cette directive interdit l’usage de **piles et accumulateurs**, intégrés ou non dans un appareil, s’ils contiennent plus de **0.0005% en masse de mercure** (excepté pour les piles boutons qui peuvent avoir jusqu’à 2% en masse de mercure), de batteries portables et accumulateurs, intégrés ou non dans un appareil, s’il contiennent plus de 0.002% de cadmium en masse (excepté dans le cas d’un système d’urgence/alarme, d’équipement médical et les outils sans fil). |
| Des arrangements doivent être effectués afin de permettre à l’utilisateur final de jeter ses piles/batteries et accumulateurs à un point de collecte situé dans le voisinage ou de se les faire reprendre sans charges par le constructeur. Des niveaux de collecte d’au moins 25 et 45% devront respectivement être atteint le 26 septembre 2012 et le 26 septembre 2016. |
| Le recyclage des batteries/piles et accumulateurs pour produire des objets similaires ou non doit avoir atteint le 26 septembre 2011 les niveaux suivants : |
| • Au moins 65% en poids moyen des batteries et accumulateurs plomb-acide. Ainsi que le recyclage, au maximum de la technologie actuelle, du plomb contenu dans la batterie. |
| • 75% en poids moyen des batteries et accumulateurs nickel-cadmium. Ainsi que le recyclage, au maximum de la technologie actuelle, du plomb contenu dans la batterie. |
| • Au moins 50% en poids moyen de toutes les autres batteries et accumulateurs. |

<table>
<thead>
<tr>
<th>La directive 2006/66/EC sur les piles et accumulateurs ainsi que sur les déchets de piles et d’accumulateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cette directive interdit l’usage de piles et accumulateurs, intégrés ou non dans un appareil, s’ils contiennent plus de 0.0005% en masse de mercure (excepté pour les piles boutons qui peuvent avoir jusqu’à 2% en masse de mercure), de batteries portables et accumulateurs, intégrés ou non dans un appareil, s’il contiennent plus de 0.002% de cadmium en masse (excepté dans le cas d’un système d’urgence/alarme, d’équipement médical et les outils sans fil).</td>
</tr>
<tr>
<td>Des arrangements doivent être effectués afin de permettre à l’utilisateur final de jeter ses piles/batteries et accumulateurs à un point de collecte situé dans le voisinage ou de se les faire reprendre sans charges par le constructeur. Des niveaux de collecte d’au moins 25 et 45% devront respectivement être atteint le 26 septembre 2012 et le 26 septembre 2016.</td>
</tr>
<tr>
<td>Le recyclage des batteries/piles et accumulateurs pour produire des objets similaires ou non doit avoir atteint le 26 septembre 2011 les niveaux suivants :</td>
</tr>
<tr>
<td>• Au moins 65% en poids moyen des batteries et accumulateurs plomb-acide. Ainsi que le recyclage, au maximum de la technologie actuelle, du plomb contenu dans la batterie.</td>
</tr>
<tr>
<td>• 75% en poids moyen des batteries et accumulateurs nickel-cadmium. Ainsi que le recyclage, au maximum de la technologie actuelle, du plomb contenu dans la batterie.</td>
</tr>
<tr>
<td>• Au moins 50% en poids moyen de toutes les autres batteries et accumulateurs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>La directive 2002/96/EC sur les déchets d’équipements électroniques et électriques (WEEE).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le but de cette directive est de minimiser l’élimination des déchets d’équipements électroniques et électriques (WEEE) dans les ordures municipales non triées et de mettre en place des systèmes de collecte séparés pour les WEEE.</td>
</tr>
<tr>
<td>Ces plans visent à augmenter le recyclage et/ou la réutilisation de tels produits. La directive introduit aussi les niveaux de recyclage à atteindre pour chaque catégorie d’équipement électronique et électrique.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>La directive 2000/53/EC sur les véhicules en fin de vie (ELV).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elle vise à minimiser l’impact des véhicules en fin de vie sur l’environnement en restreignant l’utilisation de certains métaux lourds dans les nouveaux véhicules à compter du 1er juillet 2003. L’objectif est de s’assurer que 85% du poids d’un véhicule en fin de vie sera recyclé à partir de 2006, puis d’augmenter cette valeur à 95% en 2015 avec les nouvelles étapes de dépollution introduites.</td>
</tr>
<tr>
<td>En particulier elle interdit l’usage du plomb, du mercure, du cadmium et du chrome hexavalent, elle introduit un « certificat de destruction » pour les véhicules partant à la casse, elle demande aux constructeurs de marquer certaines pièces pour faciliter le recyclage, elle demande aux constructeurs de fournir les informations de démontage de leur nouveaux véhicules, et elle demande à ce que les ELV soient détruit dans des installations conformes qui devront respecter des normes environnementales sévères.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>La directive du conseil 99/31/EC sur la mise en décharge des déchets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cette directive vise à éviter ou réduire les effets néfastes d’une décharge sur l’environnement (tout particulièrement sur les eaux de surface, les eaux souterraines, les sols, l’air et la santé des riverains).</td>
</tr>
<tr>
<td>Elle définit les différentes catégories de déchets (municipaux, dangereux, non dangereux et inertes) et s’applique à toutes les</td>
</tr>
</tbody>
</table>
décharges, définies comme une zone de stockage des déchets situées à la surface ou dans le sol. Les décharges se séparent en trois grandes catégories : décharges pour produits dangereux, décharges pour produits non-dangereux et décharges pour produits inertes.

Une procédure standard d’acceptation des déchets est établie afin d’éviter les risques d’accepter des déchets non autorisés (chaque décharge à une liste de produit autorisés).

La décision du conseil 2003/33/EC du 19 décembre 2002 qui établit des critères et procédures pour l’acceptation de déchets dans les décharges conformément à l’article 16 et de l’annexe II de la directive 1999/31/EC.

Cette décision établit des critères et procédures pour l’acceptation de déchets dans les décharges en accord avec les principes posés par la directive 1991/31/EC et en particulier l’annexe II de cette dernière.

La concentration limite de mercure dans un lixiviat de déchet pour une décharge de produits inertes est de 0.01mg par kg de matière sèche.

La concentration limite de mercure dans un lixiviat de déchet pour une décharge de produits non-dangereux est de 0.2mg par kg de matière sèche.

La concentration limite de mercure dans un lixiviat de déchet pour une décharge de produits dangereux est de 2mg par kg de matière sèche.

La directive 2000/76/EC sur l’incinération des déchets

Le but de cette directive est d’empêcher ou de réduire autant que possible les effets néfastes causés par l’incinération et la co-incinération des déchets sur l’environnement. Cela se fera à travers la mise en place de conditions d’opération, d’exigences techniques, et de valeurs limites d’émission pour les usines d’incinération et de co-incinération en UE.

La directive WI établit les valeurs limite d’émission et les exigences de contrôle pour les polluants atmosphériques tels que les poussières, les NOx, le dioxyde de soufre (SO2), le chlorure d’hydrogène (HCl), le fluorure d’hydrogène (HF), les métaux lourds, les dioxines et les furanes

La valeur limite d’émission pour le mercure et ses dérivés dans les eaux utilisées pour la lavage des gaz d’échappement est 0.03mg(Hg)/L

La valeur limite d’émission pour le mercure et ses dérivés dans l’air est 0.05mg(Hg)/L.

Recommandation de la commission sur le stockage sécurisé du mercure métallique qui n’est plus utilisé par l’industrie chlore-alcali.

EuroChlor (association professionnelle représentant les exploitants d’usines chlore-alcali dans l’UE et l’association pour le libre-échange en Europe) a décidé d’aller encore plus loin. Les surplus de mercure seront retirés des usines de chlore désaffectés, transportés vers leur lieu de stockage dans des conteneurs en acier scellés et approuvés et enfin entreposé de préférence dans des mines de sel

<table>
<thead>
<tr>
<th>Protection des sols</th>
<th>Limitations sur le mercure</th>
</tr>
</thead>
<tbody>
<tr>
<td>La directive 86/278/EEC du 12 Juin 1986 sur la protection de l’environnement et en particulier des sols lorsque les boues de stations d’épuration sont utilisées dans l’agriculture.</td>
<td>Cette directive vise à réguler l’utilisation de boues de station d’épuration dans l’agriculture, tout en encourageant sa bonne utilisation, afin de prévenir tout effet néfaste sur les sols, la végétation, les animaux et les humains. Les états membres doivent interdire l’épandage de boues pour lesquelles la concentration d’un ou de plusieurs métaux excède les valeurs limites fixées en annexe 1. Pour le mercure la limite est de 1 à 1.5mg par kilo de matière sèche pour des sols de pH 6 à 7.</td>
</tr>
</tbody>
</table>

<p>	Sécurité dans la nourriture et la Limitations sur le mercure
<table>
<thead>
<tr>
<th>santé</th>
<th>Limitations sur le mercure</th>
</tr>
</thead>
<tbody>
<tr>
<td>La régulation EC 1881/2006 pose les niveaux maximums de certains contaminants (Hg) dans les denrées alimentaires.</td>
<td>Les denrées alimentaires listées en annexe ne doivent pas être placées sur le marché s'ils contiennent un contaminant listé dans l'annexe (par exemple le mercure) à un niveau supérieur aux limites fixées.</td>
</tr>
<tr>
<td>Restrictions sur les produits contenant du mercure</td>
<td>Limitations sur le mercure</td>
</tr>
</tbody>
</table>
| La directive 89/677/EEC du 21 décembre 1989 remaniant pour la huitième fois la directive 76/769/EEC sur l’approximation des lois, régulations et clauses administratives des états membres relatives aux restrictions à la vente et à l’utilisation de certaines substances dangereuses et préparations | Les composés contenant du mercure ne peuvent pas être utilisés comme constituant des préparations aux usages suivants :
(a) Éviter la prolifération par des micro-organismes, plantes ou animaux de:
- la coque des bateaux,
- les cages, les flotteurs, les filets et n’importe quel autre appareil ou équipement utilisé pour la pêche ou la conchyliculture,
- tout équipement ou appareil totalement ou en partie immergé;
(b) dans la préservation du bois;
(c) dans l’imprégnation de textiles industriels à haute tenue et de la laine destinée à leurs manufactures;
(d) dans le traitement des eaux industrielles, quelle que soit leur utilisation. |
| La directive 2002/95/EC sur la restriction de l’utilisation de certaines substances dangereuse dans les équipements électriques et électroniques.. | A partir du 1er juillet 2006 les nouveaux équipements électriques et électroniques mis sur le marché ne pourront contenir de plomb, mercure, cadmium, chrome hexavalent, diphenyles polybromés (PBB) et d’éthers diphenyles polybromés (PBDE), excepté pour les applications listées en Annexe. |
Les états membres doivent s’assurer que la somme des concentrations en plomb, mercure, cadmium et chrome hexavalent dans un emballage ou déchet d’emballage n’excède pas 100ppm en masse après le 30 juin 2001. |
<table>
<thead>
<tr>
<th>Référence</th>
<th>Définition ou intervention légale</th>
</tr>
</thead>
<tbody>
<tr>
<td>La directive 69/493/EEC</td>
<td>Indique que la présente directive ne s’applique pas aux emballages entièrement en cristal.</td>
</tr>
<tr>
<td>La directive du conseil 76/768/EEC du 27 juillet 1976 sur l’approximation des lois des états membres relatives aux cosmétiques (directive cosmétique)</td>
<td>Cette directive liste une série de substance ne pouvant entrer dans la composition de produits cosmétiques (Annexe II) et une liste de substances que les produits cosmétiques ne peuvent contenir que sous certaines conditions/restrictions (Annexe III). Le mercure et ses dérivés sont inclus dans l’Annexe II.</td>
</tr>
<tr>
<td>La directive 2009/48/EC du 18 juin 2009 sur la sécurité des jouets</td>
<td>Cette directive est entrée en vigueur le 20 juillet 2009, et deviendra un document légal dès lors que les pays membres l’auront intégré dans leur législation nationale (d’ici le 20 janvier 2011). Les limites de migration du mercure pour les jouets ou parties de jouet sont les suivantes : 7.5mg/kg dans les matériaux pour jouets secs, friables, pulvérulents ou souple. 1.9mg/kg dans les matériaux pour jouets liquides ou collants. 94mg/kg dans la matière grattée du jouet.</td>
</tr>
<tr>
<td>La directive 2007/51/EC sur les restrictions de mise en vente de certains appareils de mesure contenant du mercure</td>
<td>Elle interdit de le mettre sur le marché. Elle interdit la mise sur le marché public de thermomètres cliniques et autres, nouveaux, appareils de mesure contenant du mercure (baromètres). Il existait une dérogation pour les baromètres jusqu’au 3 octobre 2009, pour donner le temps à l’industrie de s’adapter, avec une dérogation catégorique pour tous les instruments contenant du mercure de plus de 50 ans pour le 3 octobre 2007.</td>
</tr>
<tr>
<td>La régulation EC 1102/2008 sur l’interdiction des exportations de mercure métallique, de certains composés et mélanges contenant du mercure et du stockage sécurisé du mercure métallique.</td>
<td>L’exportation, depuis l’UE, de mercure métallique, de minerai de cinabre, de chlorure de mercure(I), d’oxyde mercurique(II) et de mélanges contenant du mercure métallique avec d’autres substances dont les alliages de mercure avec une concentration en mercure d’au moins 95% en poids sera interdite à partir du 15 mars 2011. A partir du 15 mars 2011 les produits suivants seront considérés comme des déchets et traités en accord avec la directive 2006/12/EC du parlement européen et du conseil du 5 avril 2006 sur les déchets : (a) le mercure métallique qui n’est plus utilisé par les usines chlore-alcali; (b) le mercure métallique issu de la purification du gaz naturel; (c) le mercure métallique récupéré lors de l’extraction de métaux non ferreux et des opérations de fonte; et (d) le mercure métallique extrait du minerai de cinabre dans l’UE à partir du 15 mars 2011.</td>
</tr>
<tr>
<td>La décision du conseil 2006/730/EC du 25 septembre 2006 relative à la conclusion, au nom de la Communauté européenne, de la convention de Rotterdam sur la procédure de consentement préalable en connaissance de cause applicable à certains produits chimiques et pesticides dangereux qui font l’objet d’un commerce international</td>
<td>Le but de cette régulation est d’implémenter les clauses de la convention de Rotterdam dans toute l’UE. Elle s’assurera que les mesures fixées par la convention soient adoptées, mais aussi que certaines mesures posées par la régulation aillent plus loin que leurs équivalents dans la convention. Les composés contenant du mercure (inorganiques, alkyle mercure, alklyoxalkyle et aryle mercure) sont inclus dans la liste des produits chimiques sujets à des procédures de notification lors de l’export (Annexe I), ils sont classés selon leur limite d’utilisation – restriction sévère ou interdiction. Les savons cosmétiques contenant du mercure sont interdit d’exportation (annexe V).</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
2.2.4 Législation nationale sur le mercure dépassant la législation de l'UE

Récemment la Norvège (1er janvier 2008), la Suède (1er janvier 2009) et le Danemark ont introduit une interdiction générale de l'utilisation de mercure dans les produits. En Norvège cette interdiction inclut l'utilisation de nouveaux amalgames dentaires. Il existe des dérogations pour certains groupes de patients jusqu'à fin 2010, en revanche en Suède ces dérogations sont étendues au 31 décembre 2011 pour des cas exceptionnels et seulement dans les hôpitaux et pour des adultes (commission OSPAR. 2009b).

La législation la plus avant-gardiste concernant le mercure est entrée en vigueur en Norvège le 1er janvier 2008 et impose une interdiction totale de produire, exporter, importer, vendre et utiliser du mercure ou des composés contenant du mercure. Cette régulation possède quelques dérogations actives jusqu'au 31 décembre 2010.

Parmi les autres pays de l'UE, le Danemark et les Pays-Bas ont aussi une interdiction générale d'importer, exporter et vendre du mercure ou des produits contenant du mercure, cependant un grand nombre de produits contenant du mercure sont exemptés.

La Suède a interdit la production, la vente et l'exportation de thermomètres et autres appareils de mesure, interrupteurs à niveau et à pression, thermostats, relais, coupe-circuits et contacts électrique. Mais elle autorise toujours certains produits, elle compte étendre cette interdiction à tous les produits dans les années à venir.
2.3 Cadre législatif national

Le mercure, en tant que polluant persistant et de longue durée, est souvent la cible d’actions locales et d’organismes publics compétents. Les mesures de régulation du mercure ont été analysées pour les pays méditerranéens afin d’obtenir à la fois une vue générale, de l’implémentation au niveau régional des clauses relatives au mercure pour les différentes zones concernées et une analyse détaillée par pays.

D’après les réponses au questionnaire réalisé dans le cadre de ce rapport, la plupart des pays méditerranéens ont développé un cadre légal pour traiter le problème du mercure. Une vue générale du niveau d’adoption des politiques relatives au mercure par les pays méditerranéens est montrée dans la Figure 3. Les émissions de mercure les plus ciblées sont celles issues des rejets dans l’eau, rejets dans l’air et incinération des déchets. Cependant, l’établissement d’un tel cadre régulateur n’implique pas nécessairement la mise en place de normes de qualités ou de valeurs d’émissions limites pour le mercure dans tous les pays (c.f. Section 7). Le contrôle du mercure dans les denrées alimentaires et l’eau, ainsi que la gestion des déchets contenant du mercure sont aussi des secteurs importants pour lesquels la plupart des pays méditerranéens ont implémenté des mesures de contrôle.

Les règles relatives au stockage du mercure n’ont pas encore été développées dans les pays méditerranéens. Seuls quelques pays ont reporté avoir établi une législation, en accord avec les 4e et 5e sessions des parties concernées par la convention de Barcelone, sur des concentrations maximales de mercure dans les fruits de mer et le poisson et des critères de qualité pour les eaux de baignade (PNUE/IG.56/5) et des concentrations maximales de mercure dans les eaux rejetées dans la mer méditerranée (PNUE/IG.74/5).

Le Tableau 7 résume les lois nationales traitant du mercure. Il est important de noter que seul le cadre légal associé aux émissions dans l’air (et à la qualité de l’air), et à la qualité des eaux de baignade pour les pays ayant des clauses spécifiques à ce sujet (au moins deux pays – la Tunisie et Monaco – ne possèdent pas de telles clauses), a été considéré.
Figure 3. Niveau d’implémentation de législation nationale sur le mercure dans la région méditerranéenne.
Tableau 7. Synthèse de l’état de la réglementation du mercure dans les pays méditerranéens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>AIR</th>
<th>EAU</th>
<th>Déchets</th>
<th>SOLS</th>
<th>H&S</th>
<th>MARKETING & COMMERCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualité de l’air</td>
<td>Emissions dans l’air</td>
<td>Normes qualités</td>
<td>Qualité pour les humains</td>
<td>Rejets</td>
<td>Législation sectorielle</td>
</tr>
<tr>
<td>Albanie</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Algérie</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bosnie Herzégovine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>AIR</th>
<th>EAU</th>
<th>Déchets</th>
<th>SOLS</th>
<th>H&S</th>
<th>MARKETING & COMMERCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualité de l'air</td>
<td>Emissions dans l'air</td>
<td>Législation sectorielle</td>
<td>Norms qualifiés</td>
<td>Qualités pour les humains</td>
<td>Rejets</td>
</tr>
</tbody>
</table>
| Chypre | ✓ | ✓ | ✓ | x | U | D | ✓ | ✓�
<table>
<thead>
<tr>
<th>Pays</th>
<th>AIR</th>
<th>EAU</th>
<th>Déchets</th>
<th>SOLS</th>
<th>H&S</th>
<th>MARKETING & COMMERCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualité de l'air</td>
<td>Emissions dans l'air</td>
<td>Normes qualifiées</td>
<td>Qualités pour les humains</td>
<td>Rejets</td>
<td>Législation sectorielle</td>
</tr>
</tbody>
</table>
| | Qualité pour la baignade | Qualité pour la baigne
3. Principales actions prises pour la gestion et l'implémentation du programme mercure du PNUE

3.1 Zones de travail au sein du programme mercure du PNUE

Jusqu'à maintenant, le programme mercure du PNUE, en partenariat avec les gouvernements, organisations intergouvernementales, parties concernées et le partenariat mondial sur le mercure, a développé des actions internationales dans les domaines suivants:

- Améliorer la capacité de stockage du mercure.
- Réduire les sources de mercure provenant de l'extraction minière du mercure.
- Conduire des projets d'information et de pilotage dans certains pays clés pour réduire l'utilisation du mercure dans l'extraction artisanale et à petite échelle de l'or.
- Réduire l'utilisation du mercure dans les produits et procédés et valoriser les alternatives sans mercure.
- Fournir des informations sur les BAT, les meilleures pratiques environnementales (BEP) et la conversion de procédés utilisant du mercure à des procédés exemptes de mercure.
- Promouvoir le développement d'inventaires nationaux du mercure.
- Augmenter la communication avec les populations et fournir plus d'informations sur les risques.
- Fournir des informations sur la bonne gestion du mercure.

Le partenariat mondial mercure du PNUE a, en particulier, tenté de minimiser et, lorsque c'était possible, d'éliminer complètement les rejets anthropiques de mercure dans l'air, l'eau et les sols dans les domaines suivants:

- La gestion du mercure dans l'extraction artisanale et à petite échelle de l'or.
- Le contrôle du mercure lors de la combustion du charbon.
- La réduction de l'emploi du mercure dans le secteur chlore-alcali.
- La réduction du mercure dans les produits.
- La recherche sur le transport atmosphérique du mercure et son devenir.
- La gestion des déchets contenant du mercure.
- Le stockage du mercure.
- La production de métaux non-ferreux.

De plus, l’instrument juridiquement contraignant mondial issu de la décision 25/5 du conseil d'administration devra inclure les clauses suivantes afin de développer une approche complète et appropriée aux problèmes posés par le mercure:

(a) Spécifier les objectifs de l’instrument.
(b) Réduire les stocks de mercure et améliorer la capacité de stockage (en respect de l'environnement) de ce dernier.
(c) Réduire la demande en mercure des produits et des procédés.
(d) Réduire le commerce international du mercure.
(e) Réduire les émissions atmosphériques de mercure.
(f) Traiter le problème posé par les déchets contenant du mercure et s'occuper des sites contaminés.
(g) Augmenter les connaissances relatives au mercure en échangeant des informations scientifiques et en informant le public.
(h) Spécifier les arrangements pour le renforcement des capacités et l’assistance financière et technique.
(i) Vérifier le suivi de ces lois;

Dans le cadre du rapport diagnostic présent, il a été demandé aux pays méditerranéens de préciser leur position par rapport à l’implémentation du programme mercure du PNUE, à travers l’existence d’évaluations nationales du mercure, de plans et/ou de stratégies. De surcroît, le détail des mesures prises pour la prévention et le contrôle des impacts du mercure a été demandé, en particulier pour les domaines suivants:

- Inventaire des émissions dans l’air
- Inventaire des émissions dans l’eau.
- Inventaire des déchets solides.
- Inventaire des stocks.
- Inventaire des sols contaminés.
- Inventaire des « hot spots »
- Contrôle de la qualité de l’air.
- Contrôle de la qualité de l’eau.
- Utilisation du mercure dans les produits et procédés.
- Contrôle des émissions de mercure
- Contrôle des contaminants dans les denrées alimentaires et la biosphère.
- Initiatives de substitution du mercure.
- Contrôle des niveaux de mercure dans le sang humain.
- Contrôle des niveaux de mercure dans le lait maternel.
- Inventaire des exportations et importations de mercure
- Participation à des réseaux de surveillance régionaux.

La section 3.2 décrit les résultats obtenus.

3.2 Etat de l’implémentation du programme mercure du PNUE dans les pays méditerranéens

D’après les informations collectées grâce aux questionnaires, les pays méditerranéens n’ont pas tous appliqué, avec le même zèle, les actions internationales à l’échelle nationale. Le niveau d’implémentation du programme mercure du PNUE est résumé dans le Tableau 8.

Tableau 8. Implantation du programme mercure du PNUE dans les pays méditerranéens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Evaluation nationale</th>
<th>Plan/stratégie nationale sur le mercure</th>
<th>Mesures relatives à la gestion du mercure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanie</td>
<td>OUI</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Algérie</td>
<td>OUI</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Bosnie Herzégovine</td>
<td>OUI</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Croatie</td>
<td>OUI</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Chypre</td>
<td>NON</td>
<td>NON</td>
<td>OUI</td>
</tr>
<tr>
<td>Égypte</td>
<td>NON</td>
<td>NON</td>
<td>NO</td>
</tr>
<tr>
<td>France</td>
<td>n.d.</td>
<td>n.d.</td>
<td>OUI</td>
</tr>
<tr>
<td>Grèce</td>
<td>n.d.</td>
<td>n.d.</td>
<td>OUI</td>
</tr>
<tr>
<td>Israël</td>
<td>n.d.</td>
<td>n.d.</td>
<td>OUI</td>
</tr>
<tr>
<td>Italie</td>
<td>n.d.</td>
<td>n.d.</td>
<td>OUI</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens 44
Parmi les dix pays méditerranéens à avoir fourni des informations à ce sujet, quatre affirment avoir à la fois développé une évaluation nationale du mercure et un plan/stratégie national (Algérie, Croatie, Maroc et Espagne), tandis que quatre (Chypre, Monaco, Turquie et Egypte) affirment n’avoir développé aucun des deux.

Pour ce qui est de la mise en place de mesures concrètes sur la gestion du mercure, la plupart des pays méditerranéens ont répondu qu’ils avaient mis en place plusieurs mesures. De plus, ces informations ont été complétées et comparées avec la bibliographie suivante :

- Les rapports des gouvernements relatifs à la première session du comité de négociation intergouvernemental afin de préparer un instrument juridiquement contraignant relatif au mercure (CNI1) ayant eu lieu à Stockholm (Suède) du 7 au 11 juin 2010.
- Les inventaires régionaux d’émissions et les réseaux de qualité environnementale tels que le programme mercure du PNUE, PNUE/PAM NBB, UNECE-EMEP, EU-PRTR et le programme MEDPOL. Ces principaux inventaires d’émissions régionales, leur couverture géographique et un résumé des résultats sont décrits dans le chapitre 8.1. Les « points chauds » et les zones d’influences sont habituellement identifiés à partir de ces inventaires et réseaux. Ils seront décrits plus en détail dans le chapitre 9.

Le Tableau 9 résume les mesures et les instruments, qui seront décrits dans les chapitres suivants, identifiés pour la gestion du mercure dans chaque pays.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Inventaire des émissions dans l'air</th>
<th>Inventaire des émissions dans l'eau</th>
<th>Inventaire des déchets solides</th>
<th>Stocks de mercure</th>
<th>Inventaire des sols contaminés</th>
<th>Hot Spots</th>
<th>Contrôle de la qualité de l'air</th>
<th>Contrôles de la qualité de l'air</th>
<th>Utilisation des émissions de mercure</th>
<th>Contrôle des émissions de mercure</th>
<th>Contrôle des contaminants alimentaires</th>
<th>Initiatives de substitution au mercure</th>
<th>Contrôle des niveaux de mercure dans le sang humain et le lait maternel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanie</td>
<td>✓</td>
</tr>
<tr>
<td>Algérie</td>
<td>✓</td>
</tr>
<tr>
<td>Bosnie Herzégovine</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Croatie</td>
<td>✓</td>
</tr>
<tr>
<td>Chypre</td>
<td>✓</td>
</tr>
<tr>
<td>Egypte</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>✓</td>
</tr>
<tr>
<td>Grèce</td>
<td>✓</td>
</tr>
<tr>
<td>Israël</td>
<td>✓</td>
</tr>
<tr>
<td>Italie</td>
<td>✓</td>
</tr>
<tr>
<td>Liban</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Libye</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Malte</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Monaco</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Monténégro</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Maroc</td>
<td>✓</td>
</tr>
<tr>
<td>Slovénie</td>
<td>✓</td>
</tr>
<tr>
<td>Espagne</td>
<td>✓</td>
</tr>
<tr>
<td>Syrie</td>
<td>✓</td>
</tr>
<tr>
<td>Tunisie</td>
<td>✓</td>
</tr>
<tr>
<td>Turquie</td>
<td>✓</td>
</tr>
</tbody>
</table>

4. Production, importation, exportation, industrie et utilisation

4.1 Production du mercure dans les pays méditerranéens

La plus grande source de mercure provient de l’exploitation minière, suivie ensuite par la récupération du mercure des usines chlore-alcali (après décommissionnement) et les produits dérivés de minerais et de la purification du gaz naturel. Les stocks et inventaires de mercure sont aussi pris en compte dans l’apport global de mercure (Tableau 10).

<table>
<thead>
<tr>
<th>Sources clés</th>
<th>Apport en mercure (metric tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercure issu de l’exploitation minière</td>
<td>1,150-1,500</td>
</tr>
<tr>
<td>Mercure récupéré à partir des usines de chlore-alcali (après décommissionnement)</td>
<td>700-900</td>
</tr>
<tr>
<td>Mercure comme produit dérivé d’autres minerais et de la purification du gaz naturel</td>
<td>410-580</td>
</tr>
<tr>
<td>Stocks and inventaires</td>
<td>300-400</td>
</tr>
<tr>
<td>Total</td>
<td>2,560-3,380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Année</th>
<th>Mercure des mines et produits dérivés</th>
<th>Mercure recyclé</th>
<th>Mercure récupéré des usines chlore-alcali</th>
<th>Mercure des stocks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>3,338</td>
<td>459</td>
<td>575</td>
<td>300</td>
<td>4,672</td>
</tr>
<tr>
<td>1996</td>
<td>2,782</td>
<td>501</td>
<td>475</td>
<td>0</td>
<td>3,758</td>
</tr>
<tr>
<td>1997</td>
<td>2,529</td>
<td>539</td>
<td>500</td>
<td>1,000</td>
<td>4,568</td>
</tr>
<tr>
<td>1998</td>
<td>2,496</td>
<td>510</td>
<td>460</td>
<td>0</td>
<td>3,466</td>
</tr>
<tr>
<td>1999</td>
<td>2,200</td>
<td>575</td>
<td>600</td>
<td>0</td>
<td>3,375</td>
</tr>
<tr>
<td>2000</td>
<td>1,900</td>
<td>610</td>
<td>800</td>
<td>0</td>
<td>3,310</td>
</tr>
<tr>
<td>2001</td>
<td>2,300</td>
<td>620</td>
<td>650</td>
<td>0</td>
<td>3,570</td>
</tr>
<tr>
<td>2002</td>
<td>2,650</td>
<td>630</td>
<td>230</td>
<td>0</td>
<td>3,510</td>
</tr>
<tr>
<td>2003</td>
<td>2,650</td>
<td>640</td>
<td>290</td>
<td>0</td>
<td>3,580</td>
</tr>
<tr>
<td>2004</td>
<td>1,965</td>
<td>560</td>
<td>489</td>
<td>0</td>
<td>3,014</td>
</tr>
<tr>
<td>2005</td>
<td>1,996</td>
<td>650</td>
<td>644</td>
<td>400</td>
<td>3,690</td>
</tr>
</tbody>
</table>

La Figure 4 présente les composantes de l’apport en mercure global entre 1981 et 2005. Il est possible d’observer que les quantités de mercure obtenues à partir de l’exploitation minière et des produits dérivés étaient nettement plus faibles dans les années 90 que dans les années 80. A l’inverse, les quantités de mercure récupérées à partir des industries du chlore-alcali ont augmenté, dans la mesure où la mutation vers des technologies sans mercure s’est produite. En outre, les stocks de mercure ainsi que le mercure issu de recyclages ont vu leur quantité croître.
Les sections suivantes sont consacrées à l’étude des principales sources de mercure, c’est-à-dire de la production primaire, aux stocks et inventaires en passant par le recyclage à partir d’industries ou de produits.

4.1.1 Production primaire

<table>
<thead>
<tr>
<th>Mercure extrait des exploitations minières (tonnes)</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espagne</td>
<td>236</td>
<td>523</td>
<td>727</td>
<td>745</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Algérie</td>
<td>216</td>
<td>320</td>
<td>307</td>
<td>234</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Chine</td>
<td>203</td>
<td>193</td>
<td>495</td>
<td>612</td>
<td>700-1,140</td>
<td>800-1,094</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>590</td>
<td>574</td>
<td>542</td>
<td>397</td>
<td>488</td>
<td>304</td>
</tr>
</tbody>
</table>

En plus de la production montrée dans la Tableau 12, UNEP (2008) recense 50 à 100 tonnes de mercure supplémentaires en provenance de mines d’autres pays. Dans tous les cas, à l’heure actuelle le Kirghizstan est le seul exportateur significatif de mercure puisque le mercure de Chine est principalement utilisé en interne (UNEP, 2008; Maxson, 2006). Cependant le Kirghizstan a confirmé son engagement à fermer sa première mine au cours de la première session du comité de négociation intergouvernemental pour préparer un instrument juridique contraignant global sur le mercure (INC 1) en Juin 2010.

Figure 5 présente la production de mercure dans les pays méditerranéens. Comme il a été mentionné précédemment, l’Espagne et l’Algérie étaient de loin les plus importants producteurs (et les seuls après 1991). Cependant, d’après les questionnaires établis pour ce rapport, l’Algérie aurait produit 600 tonnes de mercure en moyenne par an, avant de cessé son activité de production en 2004, ce qui est beaucoup plus élevé que les données présentées dans la Tableau 12. La Turquie était le troisième producteur de

D'après l’UNEP/UNITAR (2009), les mines de Slovénie et d’Algérie ont vu leurs opérations s’arrêter au départ pour des difficultés techniques et économiques. La mine d’Almaden en Espagne a expérimenté la pression croissante venant de l’inquiétude internationale concernant la pollution au mercure, ce qui a aussi conduit à sa fermeture en 2004. Cependant il n’existe pas d’engagement officiel à ne pas ouvrir à nouveau les mines dans ces pays.

La Figure 5 met en parallèle la production globale de mercure et celle des pays méditerranéens. Les pays méditerranéens (i.e. principalement l’Espagne et l’Algérie) fournissent depuis le début des années 1990 jusqu’à 2003 approximativement la moitié de l’apport global en mercure (53% en 2003).
4.1.2 Production secondaire

Le mercure peut aussi être obtenu à partir de l’exploitation minière d’autres minerais, tels que le zinc, le cuivre, l’argent et l’or, qui peuvent contenir du mercure en traces. Il peut aussi être récupéré à partir d’industries l’utilisant dans les procédés de production, telles que l’industrie du chlore et la production du monomère chlorure de vinyle.

Comme il a été montré dans le Tableau 10 la plus importante source de mercure après l’exploitation minière est l’industrie du chlore-alcali qui est en train de modifier ses procédés afin qu’ils soient exempts de mercure. Extrait d’une usine chlore-alcali lorsque l’installation se voit fermée ou convertie via des procédés moins dangereux, le mercure peut alors être collecté et réutilisé. Cependant le recyclage de ces déchets est encore limité du fait de son coût.

Le mercure est aussi récupéré à partir de la production du monomère de chlorure de vinyl (MCV). Comme les installations MCV sont principalement en Russie et en Chine (la production de cette dernière représente 80 à 90% de la production totale), cette catégorie n’est nécessairement pas prise en compte dans le bilan des pays méditerranéens (Maxson, 2006, AMAP/UNEP, 2008).

En outre, le mercure peut être obtenu comme produit dérivé à partir des exploitations minières des métaux non ferreux, tels que le zinc, le cuivre, le plomb, l’argent et l’or.
(Tableau 13). Il se dégage généralement dans l’atmosphère durant l’extraction, mais il peut être récupéré et vendu (UNEP, 2008). Maxson (2006) calcule qu’environ 1000 à 1500 tonnes de mercure sont relâchées globalement chaque année à partir de ces procédés d’épuration de gisements non ferreux, à partir desquels environ 345 tonnes sont récupérées (données de 2005).

<table>
<thead>
<tr>
<th></th>
<th>EU-25</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epuration du Zinc</td>
<td>48</td>
<td>90</td>
</tr>
<tr>
<td>Epuration de l’Or</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>Epuration du Cuivre, du Plomb et de l’Argent</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Autres produits dérivés:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fédération russe dont l’Ukraine</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Mine Sb-Hg Tadjikistan</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Autre</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Purification du gaz naturel</td>
<td>26</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>531</td>
</tr>
</tbody>
</table>

Si l’on considère le zinc, l’Espagne en est le premier producteur avec 525 000 tonnes (en 2004), la France le quatrième (260 000 tonnes) et l’Italie le huitième. Comme la récupération de mercure n’est pas économiquement profitable dans la plupart des cas, très peu d’opérateurs séparent le mercure du zinc afin de le vendre (Maxson, 2006). En ce sens, une décroissance de la production de mercure à partir du zinc a été mentionnée en Espagne dans les années 90 dans le rapport RAC/CP (2010a). Ceci est présenté dans le Tableau 14 ci dessous.

Tableau 14. Production du mercure en tant que produit dérivé de la métallurgie du Zinc en Espagne (en tonnes).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Métallurgie du zinc</td>
<td>66.8</td>
<td>52.1</td>
<td>36.3</td>
<td>24.8</td>
<td>6.6</td>
<td>2.6</td>
<td>0.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

D’autres pays méditerranéens reportent dans le questionnaire établi pour ce diagnostic de faibles quantités de production de mercure secondaire. Le Maroc par exemple a une installation de procédés hydrométallurgiques qui permet la récupération de mercure en tant que produit dérivé de la purification de l’argent à raison d’une tonne par an21, quant à la Slovénie la production secondaire en mercure s’élève approximativement à 0.3 tonnes par an (2008).

En outre, le mercure peut aussi être récupéré à partir de la purification du gaz naturel dans la mesure où ce dernier en contient en quantités traces. Dans certaines régions comme l’Algérie et la Croatie, les concentrations en mercure dans le gaz naturel sont relativement élevées (Maxson, 2006). La Croatie indique dans le questionnaire établi pour ce diagnostic que le mercure est produit en tant que produit dérivé du gaz naturel à Molve. Il n’y a aucune donnée quantitative disponible mais Maxson (2006) reporte que

l’équipement PURASPEC utilisé pour la purification du gas est en opération en Egypte et Libye.

D’après Lassen et al. (2008) entre 350 et 410 tonnes de mercure pourraient être récupérées potentiellement dans l’Europe des 27 à partir de gisements de minerais non ferreux ainsi que de la purification du gaz naturel, parmi lesquels 65 à 90 tonnes ont déjà été extraites.

4.1.3 Mercure recyclé à partir de produits

Le mercure peut aussi être récupéré à partir de produits tels que des instruments de contrôle et de mesure (thermomètres, baromètres et équipements hospitaliers), des amalgames dentaires, des lampes fluorescentes, des batteries et des équipements électriques et électroniques (Maxson, 2006; UNEP, 2008). Le rapport de récupération dépend de la régulation de chaque pays et est supposé croître puisque la législation environnementale devient de plus en plus stricte.

L’apport en mercure via le recyclage est très variable d’une année sur l’autre, dans la mesure où il répond rapidement à la demande d’évolution en fonction de la diversité des sources (UNEP, 2008).

Une estimation d’environ 20 à 30% est donnée pour la récupération de mercure dans les déchets de l’UE des 25. Le Tableau 15 présente la part de consommation en mercure qui est récupérée en Europe.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux de déchets de Hg dans l’UE des 25 (t)</td>
</tr>
<tr>
<td>Exploitation minière à petite échelle</td>
</tr>
<tr>
<td>Chlore-alcali</td>
</tr>
<tr>
<td>Batteries</td>
</tr>
<tr>
<td>Dentaire</td>
</tr>
<tr>
<td>Mesure & contrôle</td>
</tr>
<tr>
<td>Éclairage</td>
</tr>
<tr>
<td>Électricité et électronique</td>
</tr>
<tr>
<td>MCV</td>
</tr>
<tr>
<td>Autres, laboratoire, pharmacie, etc.</td>
</tr>
<tr>
<td>Total pour ces catégories</td>
</tr>
</tbody>
</table>
4.2 Utilisation du mercure dans les pays méditerranéens

Le Tableau 16 présente les plus importantes utilisations du mercure ainsi que deux différents scénarios réduits: (1) le cas d’une consommation future plus élevée, les tendances impliquées ainsi que la législation et les initiatives déjà en place; (2) le cas d’un scenario plus ambitieux, développé par le UNEP Global Mercury Partnership dans lequel se posent la baisse de production du mercure dans les régions du partenariat, induisant de plus faibles consommations de mercure dans les produits en contenant.

Le plus grand utilisateur de mercure au niveau planétaire est le secteur d'exploitation minière d’or à petite échelle voire artisanale. Cette application ne sera cependant pas discutée dans ce rapport puisqu’elle ne concerne en rien les pays méditerranéens. La seconde application est l'utilisation du mercure en tant que catalyseur dans la production du monomère de chlorure de vinyle (MCV). Comme ce type de production est principalement réalisé en Chine et en Russie, n’étant pas reporté dans les pays méditerranéens, il ne sera pas discuté dans ce rapport22. D’autres importants utilisateurs, par ordre d'importance, sont les usines chlore-alcali, les batteries, les amalgames dentaires, les appareils de contrôle et de mesure, les lampes et les appareils électriques et électroniques.

<table>
<thead>
<tr>
<th>Application</th>
<th>Taux de consommation en 2005 (tonnes)</th>
<th>Projections jusqu’en 2015 selon approche conservative (statu quo)</th>
<th>Objectifs pour 2015 selon approche plus progressiste (partenariat PNUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mines artisanales</td>
<td>650 - 1000</td>
<td>Pas de changement significatif</td>
<td>non applicable*</td>
</tr>
<tr>
<td>MCV/PVC</td>
<td>715 - 825</td>
<td>augmentation jusqu’à 1250, suivie d’une décroissance graduelle</td>
<td>non applicable *</td>
</tr>
<tr>
<td>Chlore-alcali</td>
<td>450 - 550</td>
<td>réduction de 30%</td>
<td>non applicable *</td>
</tr>
<tr>
<td>Batteries</td>
<td>260 - 450</td>
<td>réduction de 50%</td>
<td>réduction de 75%</td>
</tr>
<tr>
<td>Amalgames dentaires</td>
<td>300 - 400</td>
<td>réduction de 10%</td>
<td>réduction de 15%</td>
</tr>
<tr>
<td>Appareils de mesure et contrôle</td>
<td>300 - 350</td>
<td>réduction de 45%</td>
<td>réduction de 60%</td>
</tr>
<tr>
<td>Lampes</td>
<td>120 - 150</td>
<td>réduction de 10%</td>
<td>réduction de 20%</td>
</tr>
<tr>
<td>Appareils électriques et électroniques</td>
<td>170 - 210</td>
<td>réduction de 40%</td>
<td>réduction de 55%</td>
</tr>
<tr>
<td>Autres applications</td>
<td>200 - 420</td>
<td>réduction de 15%</td>
<td>réduction de 25%</td>
</tr>
<tr>
<td>Consommation totale</td>
<td>3,165 - 4,365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure recyclé & récupéré</td>
<td>(650 - 830)</td>
<td>Augmentation de la consommation de 20% à environ 28%</td>
<td>non applicable*</td>
</tr>
<tr>
<td>Consommation nette</td>
<td>2,500 - 3,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* non inclus dans les accords du partenariat

Le Tableau 17 présente l’évolution de l’utilisation du mercure en Europe entre 2001 et 2007. La principale utilisation reportée en 2007 est les usines chlore-alcali (41% de la

22 La réponse de l’Algérie au questionnaire établi pour ce rapport indiquait que l’installation de matériel plastique Skikda avait converti ses procédés vers des formes exemptes de mercure. L’Israël confirmait quant à elle dans ce questionnaire la fermeture de la manufacture PVC dans la baie d’Haifa.
consommation globale) suivie par les amalgames dentaires (24%) puis les produits chimiques (10%).

<table>
<thead>
<tr>
<th>Zone d’application</th>
<th>Consommation de mercure en tonne/an</th>
<th>% (2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2001 (1)</td>
<td>2005 (2)</td>
</tr>
<tr>
<td>Production chlore-alcali</td>
<td>n.a.</td>
<td>190</td>
</tr>
<tr>
<td>Sources de lumière</td>
<td>5.9</td>
<td>35</td>
</tr>
<tr>
<td>Batteries</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Amalgames dentaires</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Equipements de mesure</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>Interrupteurs, relais, etc.</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>Produits chimiques</td>
<td></td>
<td>28-60</td>
</tr>
<tr>
<td>Utilisations diverses</td>
<td>55 (3)</td>
<td>35 (3)</td>
</tr>
<tr>
<td>Total</td>
<td>202+n.a.</td>
<td>440</td>
</tr>
</tbody>
</table>

(1) L’UE des 15+ la République Tchèque, la Pologne et la Slovénie.
(2) L’UE des 25
(3) Les "utilisations diverses" incluent la consommation de produits chimiques

La décroissance de l’utilisation du mercure est observée entre 2005 et 2007, expliquée par la substitution graduelle du mercure dans les produits et procédés réglementés (peintures, batteries, pesticides, industrie chlore-alcali, etc.) et la croissance des réglementations environnementales. De plus, le mercure comme produit de fabrication est en train de se déplacer des pays aux plus hauts revenus vers ceux à plus bas revenus (UNEP, 2008).

4.2.1 Les équipements chlore-alcali

Au sein de l’usine chlore-alcali, le mercure élémentaire est utilisé comme fluide électrique dans les procédés électrolytiques de la production de chlore et d’hydroxyde de sodium (NaOH) ou d’hydroxyde de potassium (KOH) à partir d’eau de mer (l’électrolyse dissociant le sel, NaCl).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Compagnie</th>
<th>Sites</th>
<th>Capacité (tCl2/y) (-)</th>
<th>Total sur site</th>
<th>Utilisé dans les piles</th>
<th>Conservé dans les usines</th>
<th>Appartenant au Bassin Méditerranéen (distance approx. de la Mer Méd., en km) (--)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Arkema</td>
<td>Jarrie</td>
<td>170,070</td>
<td>241</td>
<td>237</td>
<td>4</td>
<td>NON</td>
</tr>
<tr>
<td>France</td>
<td>Arkema</td>
<td>Lavera (FR1)</td>
<td>166,000</td>
<td>298</td>
<td>255</td>
<td>43</td>
<td>OUI (2)</td>
</tr>
<tr>
<td>France</td>
<td>PP Chemicals</td>
<td>Thann</td>
<td>72,000</td>
<td>175</td>
<td>151</td>
<td>24</td>
<td>NON</td>
</tr>
<tr>
<td>France</td>
<td>Solvay</td>
<td>Tavaux (FR2)</td>
<td>240,900</td>
<td>584</td>
<td>574</td>
<td>10</td>
<td>OUI (500)</td>
</tr>
<tr>
<td>France</td>
<td>SPCH</td>
<td>Harbonnières</td>
<td>22,500</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>NON</td>
</tr>
<tr>
<td>France</td>
<td>Tessenderlo Chemie</td>
<td>Locos</td>
<td>18,040</td>
<td>44</td>
<td>42</td>
<td>2</td>
<td>NON</td>
</tr>
<tr>
<td>France (++)</td>
<td>Arkema</td>
<td>St Auban (plus en production) (FR3)</td>
<td>-</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>OUI (150)</td>
</tr>
<tr>
<td>Grèce</td>
<td>Hellenic Petroleum</td>
<td>Thessaloniki (GR1)</td>
<td>39,899</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>OUI (2)</td>
</tr>
<tr>
<td>Italie</td>
<td>Solvay</td>
<td>Bussi (plus en production) (IT1)</td>
<td>-</td>
<td>225</td>
<td>219</td>
<td>6</td>
<td>OUI (50)</td>
</tr>
<tr>
<td>Italie</td>
<td>Solvay</td>
<td>Rosignano (plus en production) (IT2)</td>
<td>-</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>OUI (2)</td>
</tr>
<tr>
<td>Italie</td>
<td>Syndial</td>
<td>Porto Marghera (IT3)</td>
<td>200,441</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>OUI (0)</td>
</tr>
<tr>
<td>Italie (*)</td>
<td>Syndial</td>
<td>Priolo (IT4)</td>
<td>28,000</td>
<td></td>
<td></td>
<td></td>
<td>OUI (1)</td>
</tr>
<tr>
<td>Italie</td>
<td>Tessenderlo Chemie</td>
<td>Pieve Vergonte (IT5)</td>
<td>41,995 (**)</td>
<td>75</td>
<td>74</td>
<td>1</td>
<td>OUI (200)</td>
</tr>
<tr>
<td>Italie</td>
<td>Eredi Zarelli (not Euro Chlor member)</td>
<td>Pichinisco (plus en production) (IT6)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OUI (70)</td>
</tr>
<tr>
<td>Italie</td>
<td>Caffaro (not Euro Chlor member) (+)</td>
<td>Toviscossa (plus en production) (IT7)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OUI (25)</td>
</tr>
<tr>
<td>Espagne</td>
<td>ELNOSA</td>
<td>Lourizan</td>
<td>33,552</td>
<td>70</td>
<td>69</td>
<td>1</td>
<td>NON</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Flix (SP1)</td>
<td>150,000</td>
<td>347</td>
<td>347</td>
<td>0</td>
<td>OUI (50)</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Sabinanigo (SP2)</td>
<td>25,000</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>OUI (270)</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Vilaseca (SP3)</td>
<td>135,004</td>
<td>198</td>
<td>197</td>
<td>1</td>
<td>OUI (5)</td>
</tr>
<tr>
<td>Espagne</td>
<td>Ercros</td>
<td>Huelva/Palos</td>
<td>100,929</td>
<td>143</td>
<td>143</td>
<td>0</td>
<td>NON</td>
</tr>
<tr>
<td>Espagne</td>
<td>Química del Cinca</td>
<td>Monzon (SP4)</td>
<td>31,373</td>
<td>45</td>
<td>44</td>
<td>1</td>
<td>OUI (160)</td>
</tr>
<tr>
<td>Espagne</td>
<td>Solvay</td>
<td>Torrelavega</td>
<td>62,747</td>
<td>124</td>
<td>122</td>
<td>2</td>
<td>NON</td>
</tr>
<tr>
<td>Espagne</td>
<td>SolVin</td>
<td>Martorell (SP5)</td>
<td>217,871</td>
<td>252</td>
<td>243</td>
<td>9</td>
<td>OUI (30)</td>
</tr>
<tr>
<td>Espagne (++)</td>
<td>Ercros</td>
<td>Hernani (partiellement convertie en technologie à membrane)</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>NON</td>
</tr>
</tbody>
</table>

Total dans les pays méditerranéens: 2,138, 2,055, 83, YES

(-) EuroChlor, 2010
(*) Information obtenue à partir du questionnaire élaboré pour ce diagnostic.
(**) Information aussi indiquée dans la réponse du questionnaire élaboré pour ce diagnostic.
(+) Apparaît en fonctionnement dans la réponse du questionnaire avec une production de 69,000 tonnes par an.
(++) Commission OSPAR, 2009a.

Estimer la quantité de mercure utilisé, ou contenu dans les déchets ou produits obsolètes conservés dans les usines chlore-alcali dans les pays en voie de développement et aux économies en transition s’avère souvent plus difficile qu’en Europe, surtout du fait d’un manque considérable de données (UNEP, 2002). Le Tableau 19 présente les informations disponibles sur les usines chlore-alcali (non Eurochlor) dans les pays méditerranéens.
Tableau 19. Utilisation du mercure dans les procédés chlore-alcali non Eurochlor.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Mercure utilisé dans les usines de chlore-alcali</th>
<th>Utilisation du mercure (tonnes par an)</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie (*)</td>
<td>OUI</td>
<td>- Une installation à Baba Ali (Alger): 0.68-0.85 (données entre 2001 et 2003). (AL1)
 - une installation à Mostaganem (Ouest de l’Algérie): 0.69 tonnes (données entre 2003 et 2004). (AL2)</td>
<td>Deux installations en cours de convertirons vers des procédés sans mercure.</td>
</tr>
<tr>
<td>Croatie (*)</td>
<td>NON</td>
<td></td>
<td>Existence d’une usine à Kaštela, près de Split, plus en opération(CR1).</td>
</tr>
<tr>
<td>Chypre (*)</td>
<td>NON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Égypte (*)</td>
<td>NON</td>
<td></td>
<td>Cette technologie a pris fin.</td>
</tr>
<tr>
<td>Israël (*)</td>
<td>OUI</td>
<td>- Une installation dans le sud: 1.5. (IS1)</td>
<td>L’usine a un stock de 3 tonnes.</td>
</tr>
<tr>
<td>Monaco (*)</td>
<td>NON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovénie (*)</td>
<td>NON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrie () (**</td>
<td>OUI</td>
<td>- Une installation: 10 (SY1)</td>
<td>Seulement une usine chlore alcali, qui a adopté en 1998 des procédés à membrane sans mercure.</td>
</tr>
</tbody>
</table>

(*) Source: Questionnaire établis pour ce diagnostic.
(**) Selon les informations fournies par les Gouvernements lors de la première session du Comité Intergouvernemental de Négociation en vue de la préparation d’un instrument juridiquement contraignant global sur le mercure (INC1), ce chiffre s’établit entre 4.05 and 5.4 tonnes
(*** Source: UNEP, 2008b

La Figure 7 permet la localisation des usines identifiées dans la région méditerranéenne.
4.2.2 Amalgames dentaires

Les amalgames dentaires correspondent au matériel de remplissage dentaire le plus usité. Ce mélange de mercure avec un alliage de métaux, correspond à une composition habituelle de 45 à 55% de mercure et approximativement 30% d’argent et d’autres métaux comme le cuivre, l’étain et le zinc.

Même si dans les pays industrialisés l’application des amalgames dentaires est en déclin, ils représentent une part significative de la consommation annuelle de mercure. Dans les régions moins riches, ce déclin pourrait être attendu dans les prochaines années du fait de changements alimentaires et d’un meilleur accès aux soins dentaires (Lassen et al., 2008).

Le marché annuel européen des amalgames au mercure est estimé de 80 à 110 tonnes environ (parmi lesquels 70% correspondent à un usage de capsules prémétréées de mercure et 30% représentés par le mercure liquide) en comptabilisant 17.5 tonnes en France (Lassen et al., 2008).

De plus, la quantité de mercure accumulée dans les amalgames dentaires de la population française est estimée à 100 tonnes et plus globalement celle de la population de l’Europe des 15 est évaluée à 1300 tonnes (Lassen et al., 2008).

D’autres données disponibles concernant les amalgames dentaires dans les pays méditerranéens ont été obtenus grâce au questionnaire établi pour ce diagnostic et sont listées ci dessous:

- Au Maroc la consommation de mercure à des fins dentaires est estimée à 750kg par an.
- La Syrie reporte 4,370 kg de mercure par an pour un usage dentaire.
- En Slovénie, la consommation s’est vue décroître de 0,772 t/a en 2004 à 0,007 t/an en 2006.

Très peu de données sont disponibles au sujet du traitement des déchets générés par les amalgames dentaires dans les pays méditerranéens. D’après Lassen et al. (2008), la Slovénie aurait en 2006 récupéré 0.84 tonnes de déchets et incinéré 0.03 tonnes. Le recyclage en France serait de l’ordre de 7.5 à 10 tonnes en 2004.

4.2.3 Appareils de mesure et de contrôle

Le mercure est encore utilisé dans les appareils de mesure et de contrôle tels que les thermomètres, les baromètres et les tensiomètres bien que des initiatives politiques aient été prises pour inciter la mise en place d’alternatives exemptes de mercure (UNEP, 2008). Dans ce cadre, la directive européenne 2007/51/EC interdit l’utilisation de mercure dans les thermomètres et baromètres vendus au public en général (se référer à la section 2.2.2).

Les principaux appareils de contrôle et de mesure concernés sont les suivants:

Les équipements les plus importants qui peuvent utiliser du mercure sont les suivants: thermomètres (thermomètres en verre à mercure; thermomètres à mercure mécaniques avec une commande à distance); manomètres; baromètres; appareils de mesure de tension artérielle (sphygmomanomètres; jauges de contrainte); hygromètres; hydromètres; tensiomètres; gyrocompas; électrodes de référence à mercure; électrodes à goutte de mercure; débimètres à gaz; coulter compteurs Coulter; perméamètres.
1. Les **thermomètres** sont des appareils pour mesurer la température. Il en existe plusieurs types pouvant contenir du mercure, c'est le cas notamment des réfrigérateurs, lave-vaisselles, fours, des thermomètres à viandes et à bonbons, des thermomètres usités pour les mesures de la fièvre, de températures intérieures et extérieures, des thermomètres de laboratoire ou encore ceux utilisés pour des applications industrielles et enfin des thermomètres basiques pour la mesure de la température de base de métabolismes.

2. Les **tensiomètres** à mercure sont des outils de mesure de la pression du sang.

3. Les **manomètres** fournissent la mesure de la pression de gaz entre un environnement choisi et une référence. Ils sont constitués de tubes en forme de U de nature plastique ou en verre contenant du mercure. La différence dans les niveaux de mercure de chaque côté du tube donne l'indication de la pression de gaz mesurée.

4. Les **baromètres** sont des instruments pour mesurer la pression atmosphérique.

5. Les **jauges de déformation** mesurent le flot du sang et la pression sanguine dans les parties du corps en utilisant la technique de pléthysmographie. Utilisés pour les diagnostics d’artériosclérose, ils sont constitués d’un fin tube en caoutchouc rempli de mercure qui est placé autour de la partie du corps dans laquelle on souhaite mesurer la pression sanguine et le flux sanguin.

6. Les **hygromètres** (ou humidimètres) sont utilisés pour mesurer l'humidité relative. Ils sont composés de deux thermomètres assemblés (souvent au mercure) dont l’un d’eux contient une mèche en tissu par-dessus le réservoir et est appelé thermomètre à réservoir humide.

7. Les **tensiomètres** sont utilisés pour déterminer le niveau de tension d'humidité des sols. Un détecteur en céramique y est associé à un manomètre de lecture dont la colonne est identique au manomètre à mercure.

8. Les **électrodes de référence** contenant du mercure sont utilisées dans une grande variété de mesures puisqu’elles procurent une valeur stable du potentiel quelles que soient les conditions de mesure.

9. Les **électrodes à goutte de mercure** sont utilisées en polarographie et voltamétrie. Le mercure goutte régulièrement à partir du tube capillaire.

10. Certains **gyrocompas** utilisés en navigation contiennent du mercure.

11. Les **compteurs à flux de gaz** sont utilisés pour la calibration d’autres compteurs par des institutions de calibration d’équipements. Ils peuvent contenir du mercure dans les scellements sans friction, mais la consommation de mercure de cette application est considérée comme insignifiante.

12. Les **hydromètres** mesurent la densité et la gravité spécifique d’un liquide en vue d’une grande gamme d’applications. Les plus anciens peuvent contenir du mercure.

13. Les **compteurs Coulter** sont utilisés en secteur hospitalier pour le comptage automatique et la mesure de la taille de particules microscopiques. Du mercure peut se trouver dans la jauge à pression, dans le bouton on-off, les jauges de vide et de compteur de temps, voire potentiellement dans d’autres jauges.

14. Les **analyseurs du plomb sanguin** sont des équipements de mesure de la quantité de plomb dans le sang qui peuvent nécessiter une électrode à mercure.

D’après Lassen et al. (2008), la consommation totale de mercure de l’Europe des 27 en 2007 pour ce qui est des appareils de mesure était de 7 à 17 tonnes. Les principales
applications étaient les sphygmomanomètres (3-6 tonnes par an), les baromètres pour les ménages (2 à 5 tonnes/an) les thermomètres médicaux (1 à 3 tonnes/an). Les deux dernières catégories sont maintenant interdites et ne seront ainsi plus produites dans le futur. Ces mêmes auteurs estiment que la quantité totale de mercure accumulée en Europe est entre 40 et 100 tonnes.

Il est difficile de trouver des données sur les pays méditerranéens non européens. Celles disponibles sont les suivantes:

- D’après les réponses données au questionnaire, l’utilisation du mercure dans les thermomètres au Maroc est de 150 kg/an. Cependant, les soumissions ICN-1 reportent 24 kg/an de mercure contenus dans les thermomètres vendus sur le marché marocain.
- La Syrie reporte 60 000 unités de thermomètres médicaux et 15 000 unités de sphygmomanomètres consommés annuellement.
- En France au cours de l’année 2007, 0,3 tonnes de mercure ont été utilisées pour des thermomètres non-médicaux et 1,5 tonnes pour des baromètres (Lassen et al., 2008).

4.2.4 Appareils électriques et électroniques

Une grande variété d’interrupteurs électriques, de relais, de thermostats et valves d’arc qui sont utilisés dans les équipements électroniques et électriques et dans les véhicules contiennent du mercure.

La première interdit l’utilisation de mercure dans les voitures, incluant les interrupteurs électriques et relais, avec comme seules exceptions des lampes à décharge et des panneaux d’affichages. La seconde interdit l’utilisation du mercure dans les équipements électriques et électroniques, incluant les interrupteurs électriques et relais avec certains types de sources lumineuses comme exception. Cependant les catégories d’équipement qui sont dans le champ de portée de la Directive 2002/96/EC sur les déchets des équipements électriques et électroniques (la Directive WEE), i.e. «Appareil médical» et «instruments de contrôle et surveillance», sont hors de l’étendue de la Directive RoHS. Elles représentent approximativement 1% de la quantité d’équipements électriques et électroniques vendu en Europe. Les outils industriels stationnaires à large échelle sont hors de portée des Directives RoHS et WEEE, mais les instruments de contrôle et surveillance utilisés dans les installations industrielles sont inclus dans la catégorie «instruments de contrôle et de surveillance».

Les principaux types d’appareils électriques et électroniques contenant du mercure sont les suivants:

1. Les interrupteurs à inclinaison au mercure sont de petits tubes avec un contact électrique à la fin du tube. Comme le tube s’incline, le mercure s’accumule à

24 Soumissions par les Gouvernements pour la première session du Comité Intergouvernemental de Négociation en vue de la préparation d’un instrument légalement contraignant global sur le mercure (INC1) tenue à Stockholm, Suède, du 7 au 11 Juin 2010
l’extrémité la plus basse, assurant un chemin conductif pour compléter le circuit. Quand l’interrupteur est incliné en retour, le circuit s’interrompt.

2. Les Thermorégulateurs sont des types de thermostats comprenant une unité de verre fermée hermétiquement associée à un mécanisme de régulation sur le haut, une section calibrée en degrés contenant une tige filetée, une aiguille montée sur un tube coulissant et un pied en verre et deux perforations capillaires connectées à un réservoir rempli de mercure. Un réservoir pour le stockage du surplus de mercure est aussi fourni en étendant une cloison de verre jusque dans la section de réglage.

3. Relais reed à contact mouillé au mercure: un relais est un appareil électriquement contrôlé qui ouvre et ferme les contacts électriques pour effectuer l’opération d’autres appareils dans un même circuit électrique ou un autre. Les « roseaux » (reeds) sont de fines lames ferromagnétiques qui servent de contact, de source et d’armature magnétique. Un relais reed à contact mouillé au mercure consiste en une lame encapsulée dans un verre et dont une extrémité est immergée dans un bain de mercure tandis que l’autre est capable de se déplacer entre deux séries de contacts. Le mercure s’écoule vers le haut le long de la lame et mouille la surface de contact de la lame et les contacts stationnaires. Les relais reed à contact mouillé au mercure sont couramment utilisés dans des tests, calibrations et applications d’équipements de mesures pour lesquels une résistance de contact stable au cours de la durée de vie du produit est requise. Les principales utilisations concernent la maintenance d’équipement plus ancien, les équipements de tests automatiques, les testeurs de câbles, les testeurs de haut voltage, les testeurs de circuit, instrumentation et équipement de contrôle industriels, centrales, systèmes de transport, circuits ferroviaires, équipement médical.

4. Relais à déplacement et contacteurs: le relais à déplacement utilise un système de plongeur métallique pour déplacer le mercure. Moins dense que le mercure, le plongeur flotte sur ce dernier. Le plongeur a la même fonctionnalité dans un relais à déplacement de mercure qu’une armature dans un relais mécanique. Quand la bobine d’inductance est éteinte, le niveau de mercure se trouve sous la pointe de l’électrode et aucun courant ne circule entre l’électrode isolée et la cuve de mercure pool. Lorsque la bobine d’inductance fonctionne, le plongeur est attiré vers le bas dans la cuve de mercure par la force du champ magnétique et le plongeur se place au centre de la ligne de courant. Les relais à déplacement ont été utilisés dans des applications de fort courant et de haut voltage telles que des contrôleurs de procédés industriels, des interrupteurs d’alimentation, des résistances chauffantes, des éclairages au tungstène, en soudure, dans des éclairages de haut courant/voltage, des projecteurs, des photocopieurs, des chargeurs de batteries, des systèmes de gestion d’énergie et des fours industriels.

5. Interrupteurs de pression: ils utilisent des pistons, des diaphragmes, ou des soufflets jouant le rôle de capteurs de pression pour activer l’interrupteur à mercure. Ils sont utilisés pour le chauffage, la ventilation et l’air conditionné, pour des usages médicaux, dans la domotique, etc..

D’après Goodman et Robertson (2006), le mercure peut être encore en circulation pour des équipements interdits par la Directive RoHS (en particulier les interrupteurs à pression de mercure et les applications pour les véhicules); l’utilisation de mercure dans les interrupteurs a été estimée à 0.2kg en 2006. De plus, Lassen et al. (2008) ont estimé une consommation totale de mercure dans les interrupteurs, relais et autres composantes électriques entre 0.3 et 0.8 tonnes. L’UNEP (2008b) a estimé le mercure en demande pour les appareils électriques et électroniques en Slovénie à 0.002 tonnes par an.
Les données sur l'utilisation du mercure dans des appareils électroniques et électriques dans des pays non méditerranéens sont éparses.

4.2.4.1 Utilisation du mercure dans les véhicules

La Directive 2000/53/EC sur les véhicules en fin de vie (VFV) ainsi que l'interdiction de l'utilisation du mercure dans les voitures (à l'exception des lampes à émission et des écrans d'affichage) stipulent que tous les composants identifiés comme contenant du mercure doivent être enlevés dans la mesure du possible dans les véhicules en fin de vie afin de récupérer le mercure et d'éviter son dégagement lors des procédés du stockage ELV, en particulier les émissions à partir des installations de retraitement de la ferraille.

Le mercure a été très utilisé dans les véhicules pour les interrupteurs de lumière inclinée et les capteurs de force G dans les systèmes ABS, les capteurs des airbag et les mécanismes des ceintures de sécurité.

Les capteurs de force G contiennent typiquement trois capsules à 1g de mercure enfoncées dans un composé en plastique solide. Les capteurs peuvent être présents dans de vieilles voitures encore en usage, mais aucune donnée n’est disponible sur la quantité accumulée en Europe. Aux États-Unis, le Programme National de Récupération des Interrupteurs de Véhicules (PNRIV)27 a débuté en 2001. Grâce à ce dernier environ 9 tonnes de mercure dans des interrupteurs furent récupérées à partir des véhicules hors d’usage en 2003. Le parc entier de véhicules a été grossièrement estimé contenir au total 123 tonnes de mercure (Campagne Voiture Propre, 2004 dans Lassen \textit{et al.}, 2008).

En Europe, dans la mesure où la principale application dans les véhicules utilisant du mercure était les capteurs de force G dans les airbags pour quelques modèles de marque jusqu'à 1996, le mercure aurait seulement été présent dans de plus anciens véhicules. De fait il a été estimé que le contenu total en mercure dans le parc de véhicules européens est probablement de moins d’une tonne (Lassen \textit{et al.}, 2008).

Le mercure est aussi utilisé dans les ampoules de décharge de haute intensité utilisées pour les feux de route sur certaines automobiles de luxe ou sportives, lesquelles fournissent une meilleure visibilité nocturne, sont de plus petite taille, ont une durée de vie plus longue et une meilleure efficacité par rapport aux ampoules halogènes. Toutefois, ces ampoules halogènes sans mercure sont utilisées dans la majorité des automobiles et des ampoules au xénon sans mercure peuvent apporter le même effet de haute intensité que les ampoules au mercure. De plus, deux technologies sans mercure ont été récemment développées : les ampoules HID utilisant de l’iodure de zinc en remplacement du mercure, et les ampoules LED utilisant un semi-conducteur.

Aucune information sur l'utilisation du mercure dans les véhicules n’a pu être identifiée pour les pays méditerranéens non européens.

4.2.5 Sources de lumière au mercure

Les sources de lumière au mercure produisent de la lumière en faisant circuler un courant électrique à travers le mercure sous forme vapeur. Ces lampes contenant du mercure sont encore utilisées du fait de leur haute efficacité énergétique par rapport aux alternatives exemptes de mercure.

Cette méthode efficace pour produire de la lumière est utilisée dans une variété de lampes, incluant:

27 http://www.ecocenter.org/cleancar/introduction.php
1. Les lampes fluorescentes incluent entre autres des tubes droits de longueur différente, des lampes fluorescentes utilisées pour remplacer les ampoules à lumière incandescente, des lampes d'intérieur en forme de halo, et des lampes fluorescentes à atténuation de cathode froide trouvées dans les LCDs éclairés par l'arrière dans les télévisions et les écrans d'ordinateur ou encore dans d'autres appareils comme les systèmes de navigation, etc.

2. Les lampes à haute intensité d'émission (HIE) à vapeur de mercure, à halogène métallique, à haute pression de sodium, à faible pression de mercure d'émission.

3. Les cathodes froides à source de lumière néon et ultraviolet. Ces lampes contenant du mercure sont utilisées dans une large variété d'applications incluant les éclairages industriels, commerciaux et résidentiels, les éclairages extérieurs et les lampes de rues, les phares automobiles et les rétroéclairement pour les écrans à cristaux liquides (ECL).

La consommation totale de mercure dans les lampes pour l'Europe des 27 en 2006 a été estimée à environ 8-11 tonnes (Lassen et al., 2008). Les lampes à mercure sont aussi incorporées dans les appareils électriques et électroniques tels que les ordinateurs portables ou les écrans de télévision. Même si ces lampes sont petites, elles contiennent souvent quasiment la même quantité de mercure que celle des lampes fluorescentes plus larges. Des appareils tels que les ordinateurs portables ou les écrans télévisés peuvent intégrer jusqu'à six lampes ou plus dans un écran. Lassen et al. (2008) estime que la consommation en Europe pour ce type d'appareils principalement importés en Europe avec l'électronique est de 3,5-4,5 tonnes par an.

Lassen et al. (2008) rend compte aussi des informations obtenues grâce à des questionnaires sur l'utilisation des lampes à mercure en Europe. Les données concernant les pays méditerranéens sont reportées ci-après :

- Chypre : 7 tonnes de déchets contenant du mercure recyclés par la Belgique en 2006.
- La France : 47 millions de lampes (correspondant à 2-3 tonnes de mercure) ont été traitées en 2004 en triant le verre, les métaux, le mercure et les poudres. D'après ' UNEP (2008b), la France utilise entre 0.4 et 0.65 tonnes de mercure par an pour les sources de lumière.
- Slovénie : 152 tonnes de mercure ont été reconverties en 2006 (bien que les auteurs supposent que se soit le poids de lampes recyclées).

4.2.6 Batteries

L'utilisation du mercure dans différents types de batteries a été considérable, principalement dans des batteries primaires (celles non rechargeables). De hautes concentrations en mercure (environ 30-32% poids/poids) se trouvent dans les batteries à oxyde de mercure (parfois appelées batterie zinc-mercure) qui ont probablement été vendues principalement en tant que piles bouton mais aussi sous des formes cylindriques ou autres (UNEP, 2010).

L'occurrence du mercure dans les batteries se voit réduite puisque beaucoup de pays ont mis en application les politiques de restriction de son usage. La Directive UE 2006/66/EC interdit les batteries et accumulateurs contenant plus de 0,0005% de mercure en terme de poids. Les batteries pour les équipements médicaux et les systèmes d'urgence et d'alarme sont exclues de cette interdiction.

D'après Lassen et al. (2008), environ 4 à 5 tonnes de mercure sont contenues dans les batteries des piles à bouton vendues tous les ans dans l'Europe des 27+2, en plus de...
600kg contenus dans d'autres batteries primaires. Si l'on considère des batteries importées de l'extérieur de l'Europe et celles ne respectant pas les limites de 0.0005%, la quantité totale de mercure pourrait être autour de 5-7 tonnes. Un autre type de batteries, dites batteries primaires à l'oxyde de mercure (ou batteries au mercure) ont un taux de mercure très élevé. Lassen et al. (2008) estime une consommation totale de mercure entre 2 et 7 tonnes par an pour l'obtention de ce type de batteries ainsi qu'une accumulation totale dans la société de 90 à 110 tonnes. UNEP, 2008b a évalué la demande de mercure pour ces batteries par an. Celle de la France tourne autour de 1 tonne par an alors que pour la Slovénie la quantité s'élève à moins de 0.001 tonne par an. La Syrie et le Maroc ont aussi rendu compte d'une consommation en mercure dans la production de batteries de 283 kg/an and 0.3 tonnes respectivement.

4.2.7 Production du monomère de chlorure de vinyle (MCV)

Le procédé acétylène utilisé dans la fabrication du monomère de chlorure de vinyle (MCV) nécessite du chlorure de mercure sur des grains de carbone en tant que catalyseur. Bien qu'en croissante augmentation en Chine (AMAP/UNEP, 2008), cette technologie n'est pas largement répandue en Europe. Il n'y aurait apparemment aucune usine en opération dans la zone Europe (EC 2002) ni d'ailleurs dans la région méditerranéenne.

4.2.8 Exploitation de l'or à petite échelle

L'exploitation artisanale et à petite échelle de l'or (ou Artisanal and Small-scale Gold Mining, ASGM) reste la plus large utilisation globale du mercure. Elle continue d'augmenter avec la tendance à la hausse des prix de l'or et est la source de la quantité la plus importante des émissions de mercure dans l'environnement à des fins intentionnelles (AMAP/UNEP, 2008). Ce type d'exploitation nécessite des technologies et méthodes rudimentaires et est typiquement effectué par des mineurs à faible revenu qui opèrent dans un secteur économique informel, avec une petite organisation et souvent illégalement. Cette activité n'a cependant pas été signalée dans la région méditerranéenne.

4.2.9 Mercure chimique

Le mercure a aussi été utilisé dans des applications particulières telles que les biocides et les pesticides (industrie du papier, peintures), les chimies de laboratoire (réactants, catalyseurs etc.), les produits pharmaceutiques (conservateurs dans les vaccins, les gouttes pour les yeux, quelques herbes médicinales et d'autres produits), dans les produits cosmétiques (crèmes lumineuses pour la peau, savons, conservateurs dans

28 Informations obtenues grâce au questionnaire établi pour ce diagnostic.
29 Il doit être noté que toutes les batteries collectées ne sont pas systématiquement recyclées : une part de la quantité totales de ces batteries collectées est enfouie ou stockée par ailleurs.
certains cosmétiques pour les yeux). Cependant, certains usages très spécifiques sont déjà restreints ou prohibés en Europe et dans quelques pays méditerranéens, i.e.:

- Le marché des savons contenant du mercure dans l’Union Européenne est réglementé par la Directive 76/768 (avec amendements) et l’exportation de savons est interdite par la Réglementation (EC) n°689/2008 concernant l’importation et l’exportation de produits dangereux.

- De plus, après le 13 mai 2010 au plus tard, aucun produit biocide contenant du mercure ne sera autorisé dans aucun pays membre de l’Europe d’après la Directive 98/8/EC.

D’après Lassen et al., (2008), malgré les réglementations, les principales applications du mercure chimique identifiées en Europe sont les suivantes :

1. **Produit chimique intermédiaire ou catalyseur**: i.e. le chlorure de mercure (II) est communément usité comme intermédiaire dans la production d’autres composés au mercure comme le thierosal et le chlorure phénylmercurique.

2. **Catalyseur dans la production de polyuréthanes** : les composés organiques au mercure restent de très importants catalyseurs dans la production des élastomères de polyuréthane qui sont versés dans un moule ou vaporisés sur les surfaces pour les isolations ou pour prévenir de la corrosion, etc.

3. **En laboratoire et dans l’industrie pharmaceutique** : le sulfate de mercure (II) est utilisé dans l’analyse de DOC et la méthode de Kjeldahl pour la détection de l’azote dans les composés organiques; le réactif de Nessler pour la détermination de Pseudomonas Aeruginosa contient du tetraiodomercurate de potassium; le chlorure de mercure (II) est utilisé dans la détermination de l’enzyme ALAD et le test PKU.

4. **Conservateur dans des vaccins et des produits pour le nez et les yeux** : thimérosal (ou thiomersal, 2-mercaptop-benzoïque acide).

5. **Conservateurs et fungicides dans les peintures à base d’eau** : les composés au mercure ont été utilisés pour étendre la demi-vie par fermentation bactérienne contrôlée dans la boîte (conservateurs en boîte) et pour retarder l’attaque de moisissure sur les surfaces peintes dans des conditions humides (fungicides).

6. **Désinfectants pour des équipements médicaux, des équipements de procédés et pour des utilisations vétérinaires** : mercurochrome, thimérosoal, iodure de mercure, oxycyanide de mercure et chlorure de mercure (II)).

7. **Pigments dans le travail d’art et restauration** (vermillon ou cinabre – sulfure de mercure, HgS).

8. **Autres applications possibles non évidentes** : savon pour éclaircir la peau, feu d’artifices, pesticides, détonateurs au fulminate de mercure, pesticides, tannage et préparation de feutrines.

Les estimations du mercure consommé pour de telles applications en Europe sont listées dans le Tableau 20.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Contenus en Hg estimé de composés consommés dans l’UE (tonnes Hg/an)</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermédiaire chimique ou catalyseur (excepté PU).</td>
<td>10-20</td>
<td>Indique la quantité de mercure dans le PU dans des produits utilisés au sein de l’UE. L’utilisation pour la production d’élastomères de PU dans l’UE est estimée plus faible.</td>
</tr>
<tr>
<td>Catalyseur PU</td>
<td>20-35</td>
<td></td>
</tr>
<tr>
<td>Laboratoires & industries pharmaceutiques</td>
<td>3-10</td>
<td>L’utilisation de composés d’Hg comme intermédiaires chimiques n’est pas incluse dans cette catégorie.</td>
</tr>
<tr>
<td>Conservateur dans les vaccins et produits pour les yeux et le nez</td>
<td>0.1-0.5</td>
<td></td>
</tr>
<tr>
<td>Conservateurs dans les peintures</td>
<td>4-10</td>
<td></td>
</tr>
<tr>
<td>Désinfectant</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>Pigments</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Autres applications</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>

Malgré les difficultés à estimer la quantité de mercure consommée dans ces catégories en région méditerranéenne, les données suivantes sont disponibles pour les pays méditerranéens :

- La Slovénie déclare en réponse au questionnaire que 5,05 tonnes de mercure ont été utilisées pour la production des préparations de chlorure de mercure dans le pays en 2006. UNEP (2008b) estime la demande slovène en mercure pour les vaccins à moins de 0,001 tonnes par an et pour son utilisation en chimie de laboratoire à 0,7 tonnes par an.
- La Syrie reporte une demande en mercure de 325kg/an à des fins pharmaceutiques (i.e. désinfectants, conservateurs de vaccins)30.
- Beaucoup de réactifs contenant du mercure utilisés dans les laboratoires marocains sont tous importés. Cela correspond en 2008, à 2kg d’oxyde de mercure, 135,5kg de sulfate de mercure et plomb et 13kg de sulfate de mercure au cuivre pour les besoins des laboratoires31.
- L’Italie utilise approximativement 3,5 tonnes de mercure pour la production de peintures (Lassen et al., 2008).

31 Soumissions des Gouvernements lors de la première session du Comité de Négociation Intergouvernemental en vue de la préparation d’un instrument juridiquement contraignant global sur le mercure (INC1) tenue à Stockholm, Suède, du 7 au 11 Juin 2010.
Les analyses DOC représentent en France l'utilisation majeure de la chimie de laboratoire et nécessitent environ 900kg de mercure (Lassen et al., 2008).

4.2.10 Autres applications
Le mercure est aussi utilisé dans une gamme d'application diverses. Il est connu pour être utilisé dans de nouveaux produits sur le marché européen (Lassen et al., 2008):

1. **Mercure métal pour la porosimétrie et la pycnométrie.** Ces deux méthodes de mesure pour la caractérisation des structures porales de matériaux, prennent en compte la propriété avantageuse pour ce faire du mercure qui à pression atmosphérique ne pénètre pas dans les pores dont le diamètre est inférieur à 15 microns.

2. **Appareils de contrôle pour calibration au mercure :** Les appareils de surveillance environnementale du mercure sont utilisés pour surveiller les très faibles concentrations de mercure dans l’air ambiant.

3. **Des piles point triple au mercure pour la calibration des thermomètres.**

4. **Mercure-cadmium-tellurure (MCT) dans des détecteurs de lumière infrarouge.**
 MCT est un mélange ternaire semiconducteur qui est utilisé dans les détecteurs à haute performance infrarouge.

5. **Conducteurs dans les machine de soudure à la molette :** le transfert d’un courant électrique entre un axe et une partie rotative se fait en utilisant du mercure.

6. **Collecteur tournant au mercure est un collecteur unipolaire rotatif avec un trou au centre.**

7. **Mercure dans les écrans plasma :** le mercure est utilisé pour retarder l’éclat de la cathode sur l’anode.

8. **Dorure au mercure :** le mercure peut être appliqué lors de réparations de travaux antiques ou l’élaboration d’une copie exacte.

9. **Balanciers au mercure :** beaucoup d’anciennes horloges sont remplies avec des pendules compensées au mercure. Ce dernier est d’ailleurs utilisé en très petites quantités pour réparer les anciennes horloges.

10. **Serre-poignet absorbeur de choc :** c’est un support qui incorpore du mercure encapsulé pour absorber les vibrations.

11. Médecine traditionnelle;

12. Utilisation ethnique/culturelle/rituelle

Le mercure est utilisé pour conserver des produits déjà en circulation dans la société et les applications pourraient par accumulation rendre la quantité de mercure significativement plus importante.

13. **Lumières de maison :** la flottaison des lentilles dans du mercure minimise la friction.

14. **Mercure présent dans des parties mécaniques rotatoires, par exemple dans les anciennes usines de traitement des eaux usées.**
Aucune évidence n’existe dans le marché européen actuel des applications listées ci-dessous, cependant il ne peut être exclu qu’elles y soient intégrées (Lassen et al., 2008) dans le futur ainsi que dans la région méditerranéenne :

15. Suppresseur de recul sur les carabines et autres armes à feu;
16. Pompes à vide avec du mercure ;
17. Equilibrage de pneus ;
18. Dilatateurs d’œsophage et tubes gastro-intestinaux en Hg

D’après Lassen et al, 2008, il y a deux applications pour lesquelles le mercure est utilisé au travers du monde et l’on s’attend à ce que le mercure continue à être utilisé pour ces mêmes applications dans le futur en Europe et dans la Région Méditerranéenne :

19. Les télescopes à miroir liquide ;
20. Cible dans les sources neutroniques par spallation;

Aucune donnée n’est disponible pour la consommation de mercure dans de telles applications si diverses pour les pays méditerranéens non européens.

4.2.11 Synthèse de l’utilisation du mercure dans les pays méditerranéens

Le Tableau 21 présente les données accessibles sur l’utilisation du mercure dans les pays méditerranéens. Ces dernières sont remarquablement limitées soulignant ainsi la nécessité d’efforts supplémentaires pour construire une base de données exhaustive et cohérente sur l’utilisation du mercure dans les pays méditerranéens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Production Chlor-alcali</th>
<th>Amalgames dentaires</th>
<th>Batteries</th>
<th>Appareils de contrôle et mesure</th>
<th>Appareils électriques et électroniques</th>
<th>Mercure chimique</th>
<th>Autres applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>~1.5 (**)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>882 (*)</td>
<td>17.5 (++)</td>
<td>1 (***)</td>
<td>0.3 pour les thermomètres non-médicaux; 1.5 pour les baromètres (++)</td>
<td>0.9 pour les analyses en demande en oxygène chimique (COD) (++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>48 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>4.5 (**)</td>
<td>1.6 (**)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 pour l’industrie des biocides et pesticides (**)</td>
</tr>
<tr>
<td>Italie</td>
<td>320 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5 pour les productions de peintures (++)</td>
</tr>
<tr>
<td>Maroc</td>
<td>0.75 (**)</td>
<td>0.3 (**)</td>
<td>0.1 (**)</td>
<td></td>
<td></td>
<td></td>
<td>0.002 pour les oxydes de</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>Production Chlor-alcali</th>
<th>Amalgames dentaires</th>
<th>Batteries</th>
<th>Appareils de contrôle et mesure</th>
<th>Appareils électriques et électroniques</th>
<th>Mercure chimique</th>
<th>Autres applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovénie</td>
<td>0.007 () <0.001 (*)</td>
<td></td>
<td></td>
<td></td>
<td>0.002 (***)</td>
<td>< 0.001 pour les vaccins - 0.7 pour les produits chimiques de laboratoire (***)</td>
<td>5.05 pour la production du chlorure de mercure (**)</td>
</tr>
<tr>
<td>Espagne</td>
<td>888 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrie</td>
<td>10 () (*) 4.370 (**)</td>
<td>0.283 (**)</td>
<td></td>
<td>60,000 unités de thermomètres médicaux</td>
<td>15,000 unités de sphygmomanomètre (***)</td>
<td></td>
<td>0.3 pour usages pharmaceutique (****)</td>
</tr>
</tbody>
</table>

(*) Source: EuroChlor, 2008
(**) Source: questionnaires établis pour ce diagnostic
(***) Source: UNEP, 2008b
(+) Source: Soumissions des Gouvernements lors de la première session du Comité de Négociation Intergouvernemental en vue de la préparation d’un instrument juridiquement contraignant global sur le mercure (INC1).
(++) Lassen et al., 2008
4.3 Stockage du mercure et déchets contenant du mercure

4.3.1 Stocks and inventaires dans la région méditerranéenne

En ce qui concerne les inventaires et les stocks, l'inventaire en mercure le plus important commercialement disponible par une seule organisation est à Almaden en Espagne (UNEP, 2008). Bien que dans cette région l'exploitation a cessé en 2003 et a été traitée en 2004, la compagnie vend toujours du mercure accumulé de précédentes exploitations, acheté au Kyrgyzstan ou obtenu auprès des usines chlore-alcali en cours de décommissionnement (UNEP, 2008). EuroChlor, l'association européenne de l'industrie chlore-alcali, a signé en effet un accord avec la compagnie minière Almaden dans lequel est établi que cette dernière achètera le mercure à partir d'usines européennes en transformation vers des procédés sans mercure et le vendra dans le marché (Convention de Bâle, 2010). Les quantités annuelles de mercure collectées par MAYASA du fait de cet accord avec Euro-Chlore sont présentées dans la Figure 8. Jusqu'à septembre 2006, la quantité totale de mercure collectée est d'approximativement 1,500 tonnes.

32 http://www.mayasa.es.
33 La future interdiction d’exportations européennes débutant en 2011 (Régulation EC 1102/2008) va cesser ce commerce.
34 Soumissions par les Gouvernements pour la première session du Comité Intergouvernemental de Négociation en vue de la préparation d’un instrument légalement contraignant global sur le mercure (INC1) tenue à Stockholm, Suède, du 7 au 11 Juin 2010.

Etat du mercure dans les pays méditerranéens
Le plus large stock de mercure quantifié, outre les sites d’exploitation minière, est situé dans les industries de chlore-alcali. Les données fournies par Euro-Chlore attestent de 2,138 tonnes de mercure métallique conservées dans les installations chlore-alcali, à partir desquelles 2,055 tonnes sont utilisées dans des piles et 83 sont stockées dans les usines (c.f. section 4.2.1).

Les informations disponibles sur les stocks de mercure dans les pays méditerranéens sont présentées dans le Tableau 22.

Tableau 22. Stocks de mercure dans les pays méditerranéens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Mercure dans les installations chlore-alcali (tonnes)</th>
<th>Autres stocks (tonnes)</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>1.37-1.54</td>
<td>1,000,000(*)</td>
<td>Cette figure se réfère au site d’exploitation d’Azzaba qui a le plus large inventaire de déchets dangereux du pays. Environ 600,000m³ sont conservés dans l’usine dans des conditions hors standards environnementaux et causent des infiltrations de mercure dans les sols et les eaux souterraines et de fait des contaminations.</td>
</tr>
<tr>
<td>Egypte</td>
<td>0</td>
<td>n.d. (*)</td>
<td>Données non disponibles.</td>
</tr>
<tr>
<td>France</td>
<td>882 (-)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>48</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>4.5 (*)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>320 (-)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Slovénie</td>
<td>0</td>
<td>4,000 (*)</td>
<td>Dépots des déchets d’anciennes mines dans la région d’Idrija.</td>
</tr>
<tr>
<td>Espagne</td>
<td>888 (-)</td>
<td>5,000 (***)</td>
<td></td>
</tr>
<tr>
<td>Syrie</td>
<td>10</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Turquie</td>
<td>n.d.</td>
<td>3,920 (** *)</td>
<td>Différents stocks de mercure, 85% du mercure sont situés dans la Région Egée.</td>
</tr>
</tbody>
</table>

(*) Source: questionnaires établis pour ce diagnostic.
(++) Source: Commission OSPAR, 2009a.
(**) Soumissions par les Gouvernements pour la première session du Comité Intergouvernemental de Négociation en vue de la préparation d’un instrument légalement contraignant global sur le mercure (INC1) tenue à Stockholm, Suède, du 7 au 11 Juin 2010.
(***) Lassen et al., 2008

4.3.2 Stockage sain en région méditérranéenne

Comme la réduction de l’utilisation globale du mercure va entrainer l’augmentation du mercure à stocker, le stockage sécurisé de mercure est considéré au niveau international comme un défi majeur à court, moyen et long terme.

Dans le cadre de la Stratégie Européenne du Mercure (c.f. section 2.2.2), le stockage sûr du surplus de mercure avec pour finalité d’éviter à ce qu’il revienne sur le marché est réglementé par la réglementation EC (N°) 1102/2008. En outre, la Commission Européenne a récemment développé un rapport sur les conditions pour les industries et les critères d’acceptation pour le stockage du mercure métallique (Dg Environnement par BiPRO GmbH, 2010).

L’étude inclue les options possibles pour un stockage sécurisé permanent ou temporaire du surplus de mercure. Cependant, en se basant sur des évaluations économiques et environnementales les options suivantes sont recommandées :

1. Pré-traitement (stabilisation du soufre) du mercure métallique et stockage permanent conséquent dans des mines de sel (plus haut niveau de protection environnementale, coûts acceptables).
2. Pré-traitement (stabilisation du soufre) du mercure métallique et stockage permanent conséquent en couche souterraine profonde (haut niveau de protection environnementale, coûts acceptables).

3. Stockage permanent du mercure métallique dans des mines de sel (haut niveau de protection environnementale, option la plus rentable).

Le rapport conclue sur le fait qu’aucune solution non permanente n’étant disponible actuellement, lorsque l’interdiction d’exportation entrera en vigueur des solutions de stockage temporaire seront nécessaires pour compenser cette lacune jusqu’à ce que des solutions finales soient disponibles.

4.4 Importation, exportation et commerce de mercure dans les pays méditerranéens

Les prix du mercure sont très changeants (Figure 9). Durant les années 90, les prix ont atteint le plus bas niveau du siècle (ajustés à l’inflation), allant entre 3550 $/tonne en 1991 et 4500 $/tonne en 2000 (base de donnée de l’agence d’expertise géologique des Etats-Unis). En prenant en compte l’inflation, le prix dans cette décennie était à moins de 5% du pic de prix des années 60 (UNEP, 2006). La réduction aigüe du prix du mercure dans cette période est due aux hautes réserves mondiales et à une réduction de la demande; cette dernière étant causée par l’augmentation croissante de la pression des réglementations (UNEP, 2006).

Figure 9. Production et prix mondiaux en mercure. Source : Etablis d’après la base de données de l’Agence de Surveillance Géologique des Etats-Unis.

Selon Maxson (2006), le marché du produit mercure est composé d’un faible nombre de producteurs de mercure primaire, d’un large nombre de producteurs de mercure secondaire et d’un faible groupe de marchands et négociateurs de mercure, principalement situés dans les principaux sites d’exploitation en Hollande, en Angleterre, en Allemagne, aux Etats-Unis, en Inde et à Hong-Kong.
4.4.1 Importations, exportations et commerce du mercure, de composés au mercure et d’articles contenant du mercure dans les pays méditerranéens

En regardant les flux commerciaux des pays, la plus importante source de données commerciales est la date base de Comtrade, qui est actualisée par la Division des Statistiques des Nations Unies35. Trois systèmes de classification y sont inclus: le Système Harmonisé (SH) la Classification Standard du Commerce International (CSCI), et le Bureau des Catégories Economiques (BCE).

Les deux seules catégories36 explicitement relatives au mercure et inclues dans la base de données de Comtrade ces dernières années sont «Mercure»37 et «Composés, organiques/inorganiques de mercure, excluant les amalgames»38.

L’Espagne était le second exportateur de mercure (10.3% des exportations globales de mercure en termes monétaires entre 2007 et 2009), après la Hollande (17.8%). Elle était aussi le second importateur (20.2% du marché mondial). L’importance de l’Espagne dans le commerce du mercure mondial, bien que l’exploitation espagnole en mercure ait complètement cessé en 2003, est associée à l’activité de la compagnie d’exploitation minière d’Almaden, MAYASA. Comme cela a été mentionné dans la Section 4.3, MAYASA vend encore du mercure accumulé par achat auprès d’anciennes mines, ou acheté à l’extérieur ou encore obtenu auprès d’installations chlore-alcali en cours de décommissionnement (grâce à un contrat avec EuroChlor, l’association européenne de l’industrie chlore-alcali).

Tableau 23 présente les données disponibles sur le commerce du mercure dans les pays méditerranéens dans la base de données Comtrade.

35 http://comtrade.un.org.

36 Une autre catégorie notable est “composés organo-mercure” qui ne sera pas inclue dans ce rapport dans la mesure où la dernière année disponible est 1997.

37 Code 285200 dans la classification HS et 52496 dans la classification SITC 3 et 4 (non inclue dans la classification BEC).
<table>
<thead>
<tr>
<th>Pays</th>
<th>Importations nettes (kg)</th>
<th>Importations totales (kg)</th>
<th>Principaux partenaires</th>
<th>Prix moyen ($/kg) (*)</th>
<th>Exportations totales (kg)</th>
<th>Principaux partenaires</th>
<th>Prix moyen ($/kg) (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espagne</td>
<td>-221,342</td>
<td>417,865</td>
<td>• Pologne (251,528);</td>
<td>14.3</td>
<td>639,207</td>
<td>• Portugal (84,710);</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Italie (82,683);</td>
<td></td>
<td></td>
<td>• Singapour (80,040);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Angleterre (24,179);</td>
<td></td>
<td></td>
<td>• Angleterre (66,103);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allemagne (21,166);</td>
<td></td>
<td></td>
<td>• France (55,005);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Finlande (13,110)</td>
<td></td>
<td></td>
<td>• Pérou (47,316);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Iran (47,316);</td>
<td></td>
<td></td>
<td>• Italie (45,808)</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>103,071</td>
<td>106,295</td>
<td>• Suisse (75,900);</td>
<td>3.7</td>
<td>3,224</td>
<td>• Emirats Arabes Unis (1,700);</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allemagne (18,400)</td>
<td></td>
<td></td>
<td>• Nouvelle Zélande (586)</td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>-62,493</td>
<td>21,754</td>
<td>• Espagne (13,898);</td>
<td>20.7</td>
<td>84,247</td>
<td>• Espagne (54,928);</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Chine (6,000);</td>
<td></td>
<td></td>
<td>• Brésil (15,000);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Etats-Unis (900)</td>
<td></td>
<td></td>
<td>• Angleterre (6,384);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Belgique (6,185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>14,113</td>
<td>7,124 (***)</td>
<td>Allemagne</td>
<td>25.7</td>
<td>n.d.</td>
<td>n.d.</td>
<td>10.1</td>
</tr>
<tr>
<td>Egypte</td>
<td>-19,816</td>
<td>7,535 (****)</td>
<td>• Hollande (4,020);</td>
<td>14.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Espagne (3,515)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turquie</td>
<td>1,370</td>
<td>3,069</td>
<td>• Hollande (2,501);</td>
<td>30.6</td>
<td>22,885</td>
<td>• Indie (22,805)</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Indie (522)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>2,628</td>
<td>2,628</td>
<td>Chypre (2,500)</td>
<td>3.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2,628</td>
</tr>
<tr>
<td>Liban</td>
<td>1,395</td>
<td>1,395</td>
<td>Espagne (1,380)</td>
<td>2.9</td>
<td>25</td>
<td>Soudan (25)</td>
<td>n.d.</td>
</tr>
<tr>
<td>Algérie</td>
<td>326</td>
<td>326</td>
<td>Allemagne (300)</td>
<td>20.0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>326</td>
</tr>
<tr>
<td>Slovénie</td>
<td>54</td>
<td>57</td>
<td>Allemagne (48)</td>
<td>81.7</td>
<td>3</td>
<td>Serbie (n.d.)</td>
<td>10.1</td>
</tr>
<tr>
<td>Malte</td>
<td>25</td>
<td>25</td>
<td>Hollande (24)</td>
<td>1,526.9</td>
<td>n.d.</td>
<td>n.d.</td>
<td>25</td>
</tr>
<tr>
<td>Tunisie</td>
<td>21 (***)</td>
<td>21 (***)</td>
<td>Italie (14)</td>
<td>128.6</td>
<td>n.d.</td>
<td>n.d.</td>
<td>21</td>
</tr>
<tr>
<td>Croatie</td>
<td>11</td>
<td>12</td>
<td>• Hollande (7);</td>
<td>155.3</td>
<td>1</td>
<td>Bosnie Herzegovine (1)</td>
<td>118.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• République Tchèque (4)</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Bosnie</td>
<td>12</td>
<td>12</td>
<td>Croatia (8)</td>
<td>54.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>12</td>
</tr>
<tr>
<td>Herzégovine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chypre</td>
<td>1</td>
<td>1</td>
<td>Allemagne (1)</td>
<td>62.0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Calculs établis à partir de données de la base de données Comtrade (Classifications SITC Rev.4 et HS2007)

(*) Les prix unitaires ont été calculés en divisant les flux d’importation et d’exportation globale en termes monétaires par les flux correspondants mesurés en kg.

(*** Source: questionnaire établi pour ce rapport.

(****) Cette figure ne correspond pas à la réponse donnée dans le questionnaire établi pour ce rapport où il était indiqué que l’importation de mercure annuelle est d’approximativement 1000kg.
Dans la mesure où les exportations de la Slovénie sont disponibles seulement en termes monétaires dans la base de données Comtradre, la quantité physique en kg a été obtenue en divisant le flux du commerce en terme monétaire par la médiane du prix des importations (25,7 $/kg) et des exportations (10,1 $/kg) des autres pays méditerranéens. Utiliser la médiane fut considéré comme plus approprié qu’utiliser la moyenne du fait de valeurs extrêmes des prix reportés par quelques pays (i.e. prix d’importations pour Malte).

La Tunisie a indiqué comme réponse au questionnaire établi pour ce rapport qu’elle avait importé en 2009 1kg de mercure en ajoutant que cette importation de mercure est strictement contrôlée dans la mesure où une complète interdiction a été imposée exceptée pour des buts de recherche.

D’après la catégorie "composés, organiques et inorganiques de mercure, hormis les amalgames" entre 2007 et 2009 la France était le plus grand importateur au monde (24% du marché global), suivie par l’Angleterre (9%), la Belgique (9%) et l’Espagne (6%). Les exportateurs les plus importants étaient quant à eux l’Angleterre (24% du marché mondial), les Etats-Unis (19%) et le Japon (14%).

Le Tableau 24 présente les données disponibles sur le commerce des composés de mercure dans les pays méditerranéens de la base de données Comtrade.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Importations totales (kg)</th>
<th>Principaux partenaires (kg)</th>
<th>Prix moyen ($/kg) (*)</th>
<th>Exportations totales (kg)</th>
<th>Principaux partenaires</th>
<th>Prix moyens ($/kg) (*)</th>
<th>Importations nettes (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espagne</td>
<td>6,257,837</td>
<td>• Angleterre (3,689,171);</td>
<td>7.8</td>
<td>76,879</td>
<td>• Angleterre (20,000);</td>
<td>14.0</td>
<td>6,180,958</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allemagne (2,474,188)</td>
<td></td>
<td></td>
<td>• France (16,753);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pakistan (10,250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>4,668,356</td>
<td>• Allemagne (2,077,800);</td>
<td>4.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>4,668,356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Belgique (1,142,300)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>706,926</td>
<td>• Espagne (450,354);</td>
<td>2.6</td>
<td>17,873</td>
<td>• Espagne (6,402);</td>
<td>10.1</td>
<td>689,053</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• France (119,148);</td>
<td></td>
<td></td>
<td>• Grèce (3,561);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allemagne (60,351);</td>
<td></td>
<td></td>
<td>• Egypte (2,255);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Belgique (38,474)</td>
<td></td>
<td></td>
<td>• Liban (1,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>139,257</td>
<td>Bulgarie (133,410)</td>
<td>1.9</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>139,257</td>
</tr>
<tr>
<td>Slovénie</td>
<td>36,794</td>
<td>• Allemagne (30,852);</td>
<td>12.4</td>
<td>263</td>
<td>• Serbie (152);</td>
<td>11.6</td>
<td>36,531</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• France (4,943)</td>
<td></td>
<td></td>
<td>• Croatie (108)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algérie</td>
<td>17,151</td>
<td>• Allemagne (10,095);</td>
<td>3.0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>17,151</td>
</tr>
<tr>
<td>Malte</td>
<td>5,173</td>
<td>Italie (5,163)</td>
<td>2.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>5,173</td>
</tr>
<tr>
<td>Israël (**)</td>
<td>2,984</td>
<td>Allemagne, États-Unis</td>
<td>12.4</td>
<td>198</td>
<td>Inde</td>
<td>10.1</td>
<td>2,786</td>
</tr>
<tr>
<td>Turquie</td>
<td>1,076</td>
<td>• Inde (550);</td>
<td>123.5</td>
<td>2,293</td>
<td>Chypre (1,790)</td>
<td>2.7</td>
<td>-1,217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allemagne (266);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Espagne (255)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnie</td>
<td>789</td>
<td>Slovénie (784)</td>
<td>2.4</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>789</td>
</tr>
<tr>
<td>Tunisie</td>
<td>218</td>
<td>France (188)</td>
<td>42.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>218</td>
</tr>
<tr>
<td>Chypre</td>
<td>51</td>
<td>• Allemagne (37);</td>
<td>31.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Angleterre (14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liban</td>
<td>16</td>
<td>Allemagne (13)</td>
<td>111.3</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>16</td>
</tr>
<tr>
<td>Egypte</td>
<td>7</td>
<td>États-Unis (7)</td>
<td>366.9</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>7</td>
</tr>
<tr>
<td>Albanie</td>
<td>6</td>
<td>Belgique (6)</td>
<td>42.7</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>6</td>
</tr>
<tr>
<td>Croatie</td>
<td>4</td>
<td>Allemagne (4)</td>
<td>219.3</td>
<td>23</td>
<td>Slovénie (23)</td>
<td>9.9</td>
<td>-19</td>
</tr>
</tbody>
</table>

Source: Calculs à partir des données de la base de données Comtrade (classifications SITC Rev.4 et HS 2007)

(*) Les prix unitaires ont été calculés en divisant les flux d’importations et exportations globales en termes monétaires par les flux mesurés en kg.

(**) Les importations et exportations d’Israël n’étant disponibles qu’en termes monétaires dans la base de données Comtrade, la quantité physique en kg a été obtenue en divisant les flux commerciaux par le prix médian d’autres importations (12,4$/kg) et exportations (10,1$/kg) des autres pays méditerranéens. Utiliser la valeur médiane a semblé plus approprié qu’un calcul avec la moyenne du fait des valeurs extrêmes de prix reportés par certains pays (i.e. prix d’importation de la Croatie).
La plupart des pays méditerranéens sont importateurs net de composés au mercure. L'importateur net principal est l'Espagne (6,181 tonnes des importations nettes en 2008), suivi de la France (4,668 tonnes) et l'Italie (689 tonnes).

Les principaux pays importateurs sont l'Espagne (6,258 tonnes), la France (4,668 tonnes) et l'Italie (707 tonnes). Seulement quelques pays (Espagne, Italie, Slovénie, Israël, Turquie et Croatie) exportent des produits au mercure. Les plus grands exportateurs sont l'Espagne (77 tonnes), l'Italie (18 tonnes) et la Turquie (2 tonnes) et les seuls exportateurs nets sont la Turquie et la Croatie.

Analyser le commerce des composés au mercure sera crucial lorsque l'interdiction européenne d'exportation de mercure aura pris place en 2011. En effet, d'après Maxson (2006), le commerce de composés au mercure sera une voie pour éviter l'interdiction. Le mercure peut être facilement converti en composés au mercure, puis exporté et enfin reconvertis en mercure élémentaire hors des frontières européennes. Ceci pourrait se développer via le marché noir ensuite pour des activités hors de contrôle telles que l'exploitation de l'or à échelle réduite et artisanale. Cependant, en 2010 la Commission étendra l'interdiction d'exportation aux autres composés au mercure, aux mélanges à faible contenu en mercure aussi bien qu'aux produits contenant du mercure (c.f. Section 2.2.2). De plus, elle devra aussi considérer en 2010 la possibilité d'interdire aussi l'importation de mercure dans les frontières de l'Europe.

Il est nécessaire d'observer que les données de Comtrade ne sont pas entièrement fiables. Dans beaucoup de cas en effet les données d'exportations d'un pays à un autre n'équivalent pas à celles des importations de ce dernier pays vers le pays initial. Par exemple, les exportations italiennes en Espagne en 2008 sont reportées être de 54,928 kg alors que les importations espagnoles venant d'Italie sont évaluées à 82,683 kg. Dans tous les cas, UNEP (2006) suggère en cas de divergence de maintenir la valeur la plus élevée (en partant du principe qu'il soit hautement improbable qu'un pays reporte une transaction qui n'a pas eu lieu).

De plus, le prix moyen du mercure et des composés au mercure pour quelques pays semble déraisonnablement haut, i.e. le prix d'importation du mercure pour Malte.

Il est aussi important d'observer en outre que les données Comtrade n'indiquent pas si la source du flux commercial de mercure est la première origine du matériau ou si le pays est la destination finale (Maxson, 2006). Il n'est pas possible d'y trouver par ailleurs d'indications sur l'utilisation finale du mercure.

Des données sur le mercure sont aussi disponibles pour les pays Européens dans la base de données Comext. Comext est préparé par Eurostat, la division statistique de l'Union Européenne et inclue plus de catégories de marchandises contenant du mercure que la base de données Comtrade ainsi que celle du système de classification de Nomenclature Combinée qui est plus détaillée.

Le Tableau 25 présente les pays européens importateurs nets de marchandises contenant du mercure dans les pays méditerranéens.

39 La quantité totale d'exportations et d'importations de chaque pays a été calculée en sommant le commerce interne et externe des 27 de l'UE.
41 La classification CN est cohérente avec le système HS avec une décomposition supplémentaire à 8 chiffres, le SITC, le BEC, la classification des Produits par Activité (CPA) and la Classification des Biens Standard pour les Statistiques Révisées du Transport (NST/R). Nous utilisons ce système de classification parce qu'il est plus complet et prend en compte les systèmes HC et SITC.
42 La quantité totale d'exportations et d'importations de chaque pays a été calculée en sommant les 27 de l'UE intra and extra commerce.
Tableau 25. Importations nettes d’articles contenant du mercure dans les pays méditerranéens européens (100kg), 2009

<table>
<thead>
<tr>
<th></th>
<th>Chypre</th>
<th>France</th>
<th>Grèce</th>
<th>Italie</th>
<th>Malte</th>
<th>Slovénie</th>
<th>Espagne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercure en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB43 par flacon <= 224€</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-273</td>
</tr>
<tr>
<td>Mercure (excl. en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>2</td>
<td>2,213</td>
<td>6</td>
<td>-596</td>
<td>-</td>
<td>-</td>
<td>1,185</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>10</td>
<td>34,973</td>
<td>989</td>
<td>14,205</td>
<td>-</td>
<td>181</td>
<td>6,616</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>-</td>
<td>2,816</td>
<td>182</td>
<td>106</td>
<td>1</td>
<td>-</td>
<td>758</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-16</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>2</td>
<td>19</td>
<td>-</td>
<td>843</td>
<td>-</td>
<td>-18</td>
<td>112</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>1</td>
<td>996</td>
<td>454</td>
<td>281</td>
<td>-</td>
<td>-34</td>
<td>1,276</td>
</tr>
</tbody>
</table>

Source: D’après la base de données Comext (classification CN8)

L’Espagne était en 2009 l’exportateur net de mercure en flacons (27 tonnes) alors que l’Italie était l’importateur net (0,1 tonnes). Aucune donnée n’est disponible pour les autres pays méditerranéens d’Europe.

L’importateur net le plus important en 2009 concernant le mercure (hormis le mercure en flacons) était la France (221 tonnes) suivi de l’Espagne (118 tonnes). Au contraire l’Italie était un exportateur net (70 tonnes).

Les pays méditerranéens étaient tous importateurs nets de piles et batteries à oxyde de mercure sous forme cylindrique. La France, l’Espagne, la Grèce et l’Italie furent les plus importants importateurs net (282, 76, 18 et 11 respectivement). Aucune donnée n’est disponible pour Chypre et la Slovénie.

Seules la France et l’Espagne déclarent un commerce pour les piles et batteries à oxyde de mercure en forme de bouton durant l’année 2009. L’Espagne était exportateur net (2 tonnes) et la France importateur net (0,1 tonnes).

43 SFB signifie Sans Frais à Bord et indique que le fournisseur règle les frais d’acheminement de la manufacture jusqu’à la destination.
Concernant les piles et batteries à oxyde de mercure (excepté celles déjà utilisées, et celles en forme cylindrique et en forme bouton), le seul exportateur net a été la Slovénie (2 tonnes). Au contraire, l'Italie, l'Espagne, la France et Chypre ont été des importateurs nets (respectivement, 84, 11, 2 et 0.2 tonnes).

Finalement le plus important exportateur net de lampes à mercure est l'Espagne (128 tonnes), suivi par la France (100), la Grèce (45) et l'Italie (28), tandis que la Slovénie est le seul exportateur net (3 tonnes).

Tableau 26. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Chypre.

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Net imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercure en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>-</td>
<td>24</td>
<td>24</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Etabli d’après la base de données Comext (Classification CN8).
Tableau 27. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), France

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exportations (Exp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importations (Imp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importations nettes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€</td>
<td>2</td>
<td>-</td>
<td>-2</td>
<td>-</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>270</td>
<td>1,382</td>
<td>1,112</td>
<td>39</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>1</td>
<td>231</td>
<td>230</td>
<td>7</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>15</td>
<td>537</td>
<td>522</td>
<td>1</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>42</td>
<td>108</td>
<td>66</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importations nettes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. Imp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importations nettes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€</td>
<td>2</td>
<td>-</td>
<td>-2</td>
<td>-</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>270</td>
<td>1,382</td>
<td>1,112</td>
<td>39</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>1</td>
<td>231</td>
<td>230</td>
<td>7</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>15</td>
<td>537</td>
<td>522</td>
<td>1</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>42</td>
<td>108</td>
<td>66</td>
<td>22</td>
</tr>
</tbody>
</table>

Source: Etabli d’après la base de données Comext (Classification CN8).
Tableau 28. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Grèce

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp.</td>
<td>Imp.</td>
<td>Exp.</td>
<td>Imp.</td>
</tr>
<tr>
<td>Mercure en flacons d'un "poids standard" net contenu de 34,5kg, d'une valeur SFB par flacon <= 224€</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d'un "poids standard" net contenu de 34,5kg, d'une valeur SFB par flacon <= 224€)</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>5,553</td>
<td>31,561</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piles et batteries à l'oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>27</td>
<td>307</td>
<td>280</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piles et batteries à l'oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piles et batteries à l'oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>-</td>
<td>157</td>
<td>157</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>-</td>
<td>321</td>
<td>321</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Etabli d'après la base de données Comext (Classification CN8).
Tableau 29. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Italie.

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Net imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercure en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€</td>
<td>132</td>
<td>159</td>
<td>27</td>
<td>56</td>
<td>67</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>14</td>
<td>340</td>
<td>326</td>
<td>1,207</td>
<td>63</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,870</td>
<td>8,597</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>121</td>
<td>1</td>
<td>-120</td>
<td>292</td>
<td>112</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées</td>
<td>7</td>
<td>3</td>
<td>-4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>3</td>
<td>1,054</td>
<td>1,051</td>
<td>13</td>
<td>804</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>84</td>
<td>85</td>
<td>1</td>
<td>52</td>
<td>161</td>
</tr>
</tbody>
</table>

Source: Etabli d’après la base de données Comext (Classification CN8).
Tableau 30. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Malte

<table>
<thead>
<tr>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp</td>
<td>Imp</td>
<td>Net</td>
<td>Exp</td>
</tr>
<tr>
<td>Mercure en flacons d’un "poids standard" net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d’un "poids standard" net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: Etabli d’après la base de données Comext (Classification CN8).
Tableau 31. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Slovénie.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercure en flacons d'un "poids standard" net contenu de 34,5kg, d'une valeur SFB par flacon <= 224€</td>
<td>-</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d'un "poids standard" net contenu de 34,5kg, d'une valeur SFB par flacon <= 224€)</td>
<td>-</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>249</td>
<td>1,571</td>
<td>1,322</td>
<td>3</td>
<td>371</td>
<td>368</td>
<td>- 181</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-18</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>18</td>
<td>71</td>
<td>53</td>
<td>28</td>
<td>70</td>
<td>42</td>
<td>19</td>
<td>59</td>
<td>40</td>
<td>58 35</td>
</tr>
</tbody>
</table>

Source: Etabli d’après la base de données Comext (Classification CN8).
Tableau 32. Commerce de marchandises contenant du mercure dans les pays européens méditerranéens (100kg), Espagne.

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Net imports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exportations (Exp.)</td>
<td>Importations (Imp.)</td>
<td>Importations nettes</td>
<td>Exp.</td>
<td>Imp.</td>
</tr>
<tr>
<td>Mercure en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€</td>
<td>934</td>
<td>1,757</td>
<td>823</td>
<td>1,320</td>
<td>3,310</td>
</tr>
<tr>
<td>Mercure (Excl. en flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€)</td>
<td>3,778</td>
<td>5,507</td>
<td>1,729</td>
<td>6,481</td>
<td>4,861</td>
</tr>
<tr>
<td>Oxyde de mercure</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composés organiques et inorganiques de mercure (excl. amalgames)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>325</td>
<td>105,721</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles cylindriques (excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>276</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure sous la forme de piles bouton excl. celles déjà utilisées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Piles et batteries à l’oxyde de mercure (excl. celles déjà utilisées et celles sous forme de piles bouton ou piles cylindriques)</td>
<td>1</td>
<td>67</td>
<td>66</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Lampes à vapeur de mercure</td>
<td>1</td>
<td>18</td>
<td>17</td>
<td>5</td>
<td>18</td>
</tr>
</tbody>
</table>

Source: Etabli d’après la base de données Comext (Classification CN8)
Il est à noter que les données disponibles sont trop peu nombreuses pour permettre d’établir une analyse comparative entre les pays suivant les différentes catégories. Cependant quelques observations peuvent être faites. Premièrement, la France et l’Espagne sont les pays déclarant les plus grands volumes d’importations de mercure (respectivement 222 et 468 en 2009). Le exportations espagnoles sont les plus élevées des pays méditerranéens (349 tonnes). Le troisième pays est l’Italie avec 18 tonnes d’importations et 89 d’exportations en 2009.

Dans la catégorie «Mercure dans des flacons d’un “poids standard” net contenu de 34,5kg, d’une valeur SFB par flacon <= 224€», l’Italie et l’Espagne sont les seuls pays à déclarer des importations et exportations pour toutes les années entre 2006 et 2009. Les exportations espagnoles sont de deux ordres de magnitude plus élevé que celles de l'Italie et d’un ordre plus élevé seulement que leurs importations (la figure sur le commerce espagnol n’est pas disponible pour 2009).

En ce qui concerne les piles à oxyde de mercure et les batteries en forme de piles cylindriques, les importations sont bien plus élevées que les exportations en France, Grèce et Espagne, alors qu’en Italie les exportations sont plus importantes. Les importations déclarées les plus élevées sont celles de la France (282 tonnes en 2009) et de l’Espagne (76 tonnes). Le pays avec la plus grande quantité d’exportations est l’Italie (15 tonnes) alors que les autres pays déclarent de faibles voire pas d’exportations.

Il n’y a que peu de données sur les piles à oxyde de mercure et sur les batteries en forme de piles-bouton. Les pays déclarant le plus haut commerce de ces marchandises sont l’Italie (avec 85 tonnes importées et 1 tonne exportée en 2009) et l’Espagne (11 tonnes d’importations et pas d’exportations).

Aucune des bases de données Comtrade ou encore Comext comprennent des données sur les utilisations finales les plus fréquentes du mercure, i.e. amalgames dentaires, produits chimiques, fertilisants, équipements. Il est d’ailleurs tout aussi important de noter que les deux bases de données ne coïncident pas entre elles (même si les ordres de magnitude sont similaires).

De plus, les données suivantes ont été obtenues grâce au questionnaire établi pour ce rapport :

- La Croatie a importé les figures suivantes : Acétate de mercure (II) 0,1 kg; Chlorure de mercure (II) 12,4 kg,
- L’industrie d’amalgames dentaires d’Israël a importé 5,056 tonnes en 2008 et 1,601 en 2009,
- Les industries de pesticides et de biocides d’Israël ont importé 2,001 tonnes en 2008 et la même quantité en 2009,
- Monaco n’importe pas de mercure pur.
En résumé, la disponibilité des données sur le mercure et les produits contenant du mercure est encore insuffisante. Un effort coordonné des institutions statistiques des pays méditerranéens est nécessaires pour remplir cette lacune. Des statistiques fiables des pays méditerranéens sont cruciales pour définir des politiques effectives de décroissance de la consommation du mercure et réduire les pollutions associées.

4.4.2 Importations et exportations des déchets contenant du mercure dans les pays méditerranéens

La Tableau 33 exporté by pays méditerranéen d’après les informations collectées pour la Convention de Bâle sur le Contrôle des Mouvements Transfrontaliers de Déchets Dangereux et leur Elimination. Ces données sont principalement associées à la catégorie Y29 (Déchets ayant pour constituants du mercure et des composés au mercure).

Listés ci-après les pays méditerranéens pour lesquels les données d’importation et d’exportation sont disponibles: Croatie, France, Grèce, Italie, Slovénie, Espagne, Turquie, Allemagne sont les pays recevant le plus de déchets contenant du mercure de la région méditerranéenne; l’Italie et la France sont les pays exportant le plus de déchets contenant du mercure.

<table>
<thead>
<tr>
<th>Pays d’Exportation</th>
<th>Flot de déchets</th>
<th>Caractéristiques</th>
<th>Quantités exportées (tonnes)</th>
<th>Pays de Transit</th>
<th>Pays de destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andorre</td>
<td>Lumières fluorescentes et batteries</td>
<td>-</td>
<td>35.510</td>
<td>Espagne</td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>Tubes fluorescents et autres déchets contenant du Hg.</td>
<td>-</td>
<td>14.000</td>
<td>Hollande</td>
<td>Belgique</td>
</tr>
<tr>
<td>Italie</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td>-</td>
<td>3.287.000</td>
<td>Autriche</td>
<td>Allemagne</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Mercure; composés au mercure</td>
<td>-</td>
<td>27.306</td>
<td>Autriche</td>
<td>Allemagne</td>
</tr>
<tr>
<td>Espagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td>Eco toxiques</td>
<td>17.000</td>
<td>Hollande, France</td>
<td>Allemagne</td>
</tr>
<tr>
<td>Turquie</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td>-</td>
<td>15.150</td>
<td>Espagne, France, Belgique</td>
<td>Allemagne</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td>-</td>
<td>112.000</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Hollande</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td>-</td>
<td>941.170</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Pays d'Exportation</td>
<td>Flot de déchets</td>
<td>Caractéristiques</td>
<td>Quantités exportées (tonnes)</td>
<td>Pays de Transit</td>
<td>Pays de destination</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Hollande</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>67.723</td>
<td>Italie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pays d'Exportation</th>
<th>Flot de déchets</th>
<th>Caractéristiques</th>
<th>Quantités exportées (tonnes)</th>
<th>Pays de Transit</th>
<th>Pays de destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autriche</td>
<td>Déchets comportant du mercure.</td>
<td>Tubes fluorescents</td>
<td>4.000</td>
<td>Slovénie</td>
<td>Croatie</td>
</tr>
<tr>
<td>Belgique</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>114.000</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Belgique</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>18.000</td>
<td>Grèce</td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>469.087</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>8.540</td>
<td>France</td>
<td>Espagne</td>
</tr>
<tr>
<td>Allemagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>521.980</td>
<td>Autriche, Suisse</td>
<td>Italie</td>
</tr>
<tr>
<td>Allemagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>27.306</td>
<td>Autriche</td>
<td>Slovénie</td>
</tr>
<tr>
<td>Allemagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>0.350</td>
<td>Espagne, France</td>
<td>Turquie</td>
</tr>
<tr>
<td>Hollande</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>0.700</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td>Déchets ayant comme constituants : Hg et/ou des composés au mercure.</td>
<td></td>
<td>31.000</td>
<td>Andorre</td>
<td></td>
</tr>
</tbody>
</table>
5. Emissions de mercure par les produits et procédés

Ce chapitre présente une description des principales sources, intentionnelles ou non, émettrices de mercure. Ces sources sont classées en quatre catégories :

(a) Utilisation de matériel contenant du mercure (impuretés) – source non intentionnelle
(b) L’industrie manufacturière – source intentionnelle
(c) Utilisation de produits contenant du mercure – source intentionnelle
(d) Traitement des déchets provenant d’utilisations intentionnelle ou non.

Les valeurs d’émission de mercure fournies par les sources décrites dans ce chapitre seront analysées pays par pays dans le sous-chapitre 8.1.

5.1 Utilisation de matériel contenant du mercure (impuretés) – source non intentionnelle

Parmi les sources anthropiques primaires de mercure, la principale est celle où le mercure est principalement relâché en tant que sous-produit non intentionnel. À l’exception de l’extraction du mercure elle-même, les émissions de mercure proviennent de mercure présent en tant qu’impureté dans le combustible ou les matières premières utilisées. Les principales émissions de type « sous-produit » proviennent de secteurs requérant, la combustion de charbon ou de pétrole, la production de fonte brute et d’acier, la production de métaux non ferreux et la production de ciment (AMAP/PNUE, 2008).

5.1.1 Production d’énergie et de chaleur par les combustibles fossiles carbonés

La concentration en mercure dans le charbon et les pétroles varie considérablement selon le type de combustible et ses origines, ainsi que l’affinité de l’élément pour le charbon pur et la matière minérale (EC, 2002a). Le mercure est naturellement présent dans le charbon à l’état de trace, il se retrouve dans l’atmosphère via les gaz effluents émis lors de la combustion du charbon.

La concentration en mercure dans le charbon varie selon la région et est généralement comprise entre 0.1 et 0.3 ppm, cependant des niveaux plus élevés, jusqu’à 1.5 ppm, ont été observés (EC, 2002a ; PNUE/DTIE, 2010). Les lignites sont moins contaminées par le mercure que les charbons bitumineux ou subbitumineux, mais il est important de noter qu’au sein d’un même gisement la concentration en mercure peut varier d’un ordre de grandeur ou plus (EC, 2002a).

Bien que ces concentrations en mercure soient faibles, la quantité de charbon brûlé et le fait que les émissions de centrales thermiques à charbon (usage industriel ou résidentiel) soient rejetées en majeure partie dans l’atmosphère sont telles que la combustion du charbon est la première source anthropique d’émission de mercure non intentionnelle dans l’atmosphère (AMAP/PNUE, 2008).

La combustion d’autre combustibles fossiles ou la production de chaleur contribuent aux émissions de mercure mais à un niveau beaucoup plus faible que la combustion du charbon. Il n’y a pas beaucoup d’informations sur la teneur en mercure des pétroles. En général, la concentration en mercure dans le pétrole brut va de 0.01 à 30 ppm (Pacyna, 1987 ; dans EC 2002a). Une révision importante des données sur la teneur en mercure du pétrole brut indique des concentrations allant de 0.001 à 0.5 ppm (AMAP/PNUE, 2008). On s’attache à trouver des concentrations en mercure plus élevées dans les pétroles résiduels que dans le distillat qui est produit lors des premières étapes de
raffinage. Les fractions de raffinage plus lourdes, dont le résidu fait parti, contiennent plus de cendres contenant du mercure (EC, 2002a).

Le gaz naturel peut contenir de faibles quantités de mercure, mais ce dernier devrait être enlevé du gaz brut lors de la récupération des composés liquides, ainsi que lors de l’étape de récupération du sulfure d’hydrogène. C’est pourquoi, les émissions de mercure lors de la combustion de gaz naturel sont considérées comme étant insignifiantes (EC, 2002a).

5.1.2 Production de ciment

La production de ciment est une autre source importante d’émission type « sous produit ». Indépendamment du type de procédé employé et du type de four (par exemple les procédés four sec ou four humide), le mercure est introduit dans le four via les matières premières (calcaire...), dont la teneur en mercure varie selon la région d’origine, et via les carburants utilisés pour générer la chaleur nécessaire au processus de clinkérisation. L’emploi dans ces fours de poussier (charbon noir et lignite), de coke de pétrole, de mazout et de gaz naturel, mais aussi de combustibles bon marché tels que des ordures broyées, des lanières de caoutchouc et des solvants déjà utilisés est très répandu et peut contribuer aux émissions de mercure liées à la production de ciment (AMAP/PNUE, 2008; PNUE/DTIE, 2010).

La majeure partie de l’émission de mercure liée au processus de clinkérisation a lieu dans le four que le mercure quitte ensuite avec les poussières et gaz d’échappement. Etant un métal lourd volatil, le mercure ne peut pas être efficacement séparé avec les poussières des gaz d’échappement. En fait, une partie des particules de métaux lourds reste toujours volatile, c’est-à-dire qu’elles ne sont pas adsorbées à la surface des particules de poussière. Le séchage est supposé conduire à des émissions de mercure dans l’air très basses étant donné que la température de séchage est souvent bien en dessous du point d’ébullition du mercure. Ceci n’est cependant pas toujours vrai, car certains séchoirs travaillent à des températures bien plus hautes ce qui volatilise une plus grande partie du mercure (PNUE/DTIE, 2010).

Le mercure qui n’est pas relâché dans l’air ou capturé par les équipements de contrôle des émissions peut rester dans le ciment. D’après le toolkit du PNUE (2010) on trouve entre 0.01 et 0.1g de mercure dans une tonne de ciment (Figure 10).

Figure 10. Flux de mercure lors du processus de clinkérisation (figure construite à partir d’UNEP/DTIE, 2010).
5.1.3 Industrie minière et des métaux

L’extraction et le traitement industriel des minerais, en particulier dans la production primaire de fer et d’acier et la production de métaux non ferreux (surtout la fonte du cuivre, plomb et zinc), émettent du mercure à la fois par la combustion de carburants et par la présence de mercure dans les minerais et en accélérant les phénomènes naturels d’altération des roches. Les sources de mercure venant de la production de métaux incluent aussi l’extraction et la production de mercure (source relativement mineure) et la production d’or, où le mercure est présent dans le minéral et est utilisé lors de certains procédés industriels pour extraire l’or des filons mères (AMAP/PNUE, 2008).

Les métaux non ferreux sont produits à partir de minerais qui subissent plusieurs étapes d’extraction avant d’aboutir au produit final. Les émissions de mercure provenant de ce type de production dépendent principalement de la teneur en mercure des minerais utilisés et du type de technologie industrielle employée, ainsi que de la technologie de contrôle présente. Le mercure apparaît comme impureté dans de nombreux minerais riches en soufre car il peut se substituer au zinc, cuivre, cadmium, bismuth, plomb et arsenic. Dans certains minerais contenant des métaux le mercure peut apparaître en phase pure ou sous la forme d’alliages avec d’autres métaux (amalgames). Dans certains de ces gisements la teneur en mercure était si haute que la production de mercure en tant que sous-produit fut lancée. Le mercure est communément trouvé dans les gisements d’or, où sa concentration peut varier de moins de 0.1mg/kg à plus de 100mg/kg (PNUE/DTIE, 2008).

La technologie industrielle utilisée va énormément déterminer le devenir du mercure présent dans les minerais. Si des processus à haute température (par exemple le frittage ou grillage) sont utilisés lors du traitement initial du minéral, le mercure sera rejeté dans l’air. En revanche, si des processus électrolytiques sont utilisés le mercure restera dans la phase liquide.

Lors des processus à haute température, pendant le frittage et le grillage, on s’attend à ce que la majeure partie du mercure dans le concentrat s’évapore par oxydation. Le mercure gazeux suit le flux de gaz qui peut être purifié par des filtres à particules (cyclone) et des précipitateurs électrostatiques secs ou humides (ESPs), ou des épurateurs. On obtient au final soit des déchets solides secs soit des boues contenant du mercure (toolkit du PNUE, 2010). Le mercure restant issu du grillage ou du frittage suit le même chemin que le résidu : recyclage ou mise en décharge.

Le processus de lixiviation qui fait partie des processus électrolytiques conduit à un lixiviat liquide et un résidu solide. Une partie du mercure restant peut, avec les précipités, subir un traitement de purification poussé. Il n’existe encore aucune donnée sur les émissions de mercure lors des étapes d’électrolyse (toolkit du PNUE, 2010).

Le processus de fonte peut inclure des matières secondaires ce qui représente en principe une source de mercure. Lorsqu’il est présent dans une alimentation de fonderie le mercure se volatilise et entre dans le circuit gazeux. Les émissions provenant de la combustion des carburants utilisés pour chauffer la fonderie sont moins importants (PNUE/DTIE, 2010).

5.1.4 Production de pâtes et de papier

Dans l’industrie des pâtes et du papier, la pâte de bois est produite à partir de bois brut traité par des produits chimiques ou des processus mécaniques ou bien une combinaison des deux. Le mercure peut alors provenir, de traces présentes dans le bois brut, des...
carburants utilisés pour produire l'énergie nécessaire et plus vraisemblablement des produits chimiques employés (soude, chlorure et probablement d'autres) (PNUE, 2010).

Les rejets atmosphériques provenant des processus de combustion, mettant en jeu des combustibles fossiles, de l'écorce et autres déchets de bois, les effluents de procédés contenant du carbone (pour le recyclage des produits chimiques et la production d'énergie) et la mise en décharge des déchets solides et effluents liquides issus des procédés comptent parmi les mécanismes d'émission de mercure par l'industrie de pâtes et du papier (PNUE, 2010).

Si le mercure n'est pas purgé du processus avec les eaux usées ou les lies, il peut s'accumuler dans la zone de récupération des produits chimiques et par la suite être émis lors de la combustion des produits chimiques récupérés. La quantité de mercure émise dépendra alors du niveau de fermeture du processus de fabrication de la pâte (tel que le niveau auquel les eaux de procédés sont réutilisées et recyclées) (PNUE, 2010).
5.2 L’industrie manufacturière – source intentionnelle

5.2.1 L’extraction du mercure

L’extraction du mercure est connue pour avoir rejeté de grandes quantités de mercure dans les milieux aquatiques, atmosphériques et terrestres, entraînant de ce fait une pollution locale et régionale. Dans le bassin méditerranéen, région importante d’extraction du mercure, il existe plusieurs exemples de sites pollués qui seront décrits dans la section «points chauds» de ce rapport.

Les minerais de mercure extraits contiennent généralement environ 1% de mercure, bien que les strates minées en Espagne contiennent typiquement jusqu’à 12-14% de mercure (PNUE, 2002 ; PNUE, 2005). Un bilan mercure a été dressé pour l’un des plus grands sites d’extraction du mercure au monde (Idrija, Slovénie), ce dernier a fermé en 1995. Sur la période 1961-1995, 9777 tonnes de mercures furent extraites à partir de 4.2 millions de tonnes de minerais. Durant la même période, on estime que 243 tonnes de mercure ont été perdus dans l’environnement, parmi lesquelles, 168 tonnes issues des étapes de fonderie furent déposées dans des décharges, 60 tonnes furent relâchées dans l’atmosphère en même temps que les gaz d’échappement et 15 tonnes furent émises dans la rivière Idrija avec l’eau de condensation (Kotnik et al. 2004). A Almaden (Espagne), la plus grande mine de mercure du monde, Ferrara et al. (1998) ont estimé un flux total de mercure rejeté dans l’atmosphère de l’ordre de 600 à 1200g/h (soit près de 10 tonnes par an).

Le mercure extrait des mines est du même ordre de grandeur que les émissions anthropiques de mercure dans l’atmosphère, le mercure miné peut ainsi représenter jusqu’à un tiers du total de ces émissions (Hylander et Meili, 2003). De plus, avant d’être utilisé le mercure est localement émis par les mines lors des processus de minage et de raffinage et par les déchets de mine. Les émissions atmosphériques directes de mercure dans le monde s’élèvent à 10-30 tonnes par an (10t rien que pour Almaden), et dépassent historiquement sûrement 10,000 t. L’arrêt des mines de mercure réduit localement les émissions associées vers l’atmosphère et la biosphère (Hylander et Meili, 2003).

5.2.2 Production secondaire de mercure

Le mercure peut aussi être récupéré lors de l’extraction et du traitement d’autres minerais métalliques tel que le zinc, le cuivre, l’argent ou l’or qui contiennent des traces de mercure. Lors de la récupération des métaux à partir du minerai les procédés employés libèrent aussi le mercure de la roche mère. Ce mercure peut lors des processus d’extraction, selon la technologie employée, s’évaporer et suivre les flux gazeux (cas le plus probable) ou aller avec les effluents liquides. A moins que le mercure ne soit capturé par des processus prévus à cet effet, la majeure partie sera vraisemblablement relâchée dans l’atmosphère, les sols ou le milieu aquatique. Le mercure gardé peut être vendu sous forme de « calomel » (Hg2Cl2), vendu normalement pour l’extraction hors-site du mercure ou le traitement du métal mercure sur-site, ou il peut être stocké ou entreposé sous forme de résidus solides ou boueux. La vente de mercure obtenu comme sous-produit d’extraction de métaux non ferreux représente une part non négligeable du marché mondial du mercure (PNUE, 2010)

Les minerais mère dont on extrait l’or (souvent des minerais soufrés) peuvent contenir du mercure à l’état de trace, cette concentration peut parfois être plus élevée que celle observée dans d’autres matières naturelles brutes. La teneur en mercure de certains minerais aurifères a parfois été assez élevée pour motiver à sa récupération dans le but
de le revendre sous forme de résidus solides. Une telle récupération et revente de mercure issu de l'extraction de l'or représente une partie du marché mondial du mercure. Cette récupération peut aussi parfois être issue du désir de réduire les émissions de mercure lors de l'extraction de l'or mais aussi car ce mercure peut servir de substituant à l'extraction primaire du mercure (COWI, 2002 dans PNUE, 2010).

De telles mines, où le mercure est récupéré comme sous-produit, peuvent se trouver en Finlande (Outokumpu Mining Oyj), qui domina la production en Europe centrale et du nord avec 40-90 tonnes de mercure par an durant la période 1994-2000 ; dans certaines mines d’or des États-Unis (15 tonnes par an) ; et au Pérou où la mine d’or de Yanacocha a produit 48 tonnes de mercure en 2000 et a annoncé plus de 20 tonnes de réserves (Hylander et Meili, 2003).

5.2.3 Petites mines d’or et d’argent

L’utilisation du mercure pour extraire l’or dans les petites exploitations et une utilisation intentionnelle qui donne lieu à d’importants rejets de mercure dans l’air et dans l’eau. A cause de techniques d’extraction mal maîtrisées, la formation d’amalgames mercureux par l’extraction de l’or à un niveau artisanal ou à petite échelle consomme et rejette chaque année 650 à 1000 tonnes de mercure (AMAP/PNUE, 2008). Dans ce cas la pollution de l’eau est bien plus grande que celle de l’air et peut entraîner d’importants problèmes environnementaux dans les environs du site (Hylander et Meili, 2003).

Cependant, aucune activité de ce type n’a été observée dans le bassin méditerranéen.

5.2.4 L’industrie chlore-alcali

Dans les usines chlore-alcali, les cellules mercure relâchent du mercure dans l’environnement via : des émissions dans l’air ; des rejets dans l’eau ; des déchets solides contaminés ; et, à une plus petite échelle, dans les produits finis (tel que la soude) (PNUE, 2005). Les principaux points de rejet de mercure dans la cellule mercure d’un procédé de production chlore-alcali incluent : le flux d’hydrogène sous produit, l’air de ventilation en fin de processus, et l’air de ventilation de la pièce où se trouve la cellule (AMAP/PNUE, 2008). La plupart des rejets de mercure prennent la forme d’émissions fugaces en provenance de la cellule ou d’un autre lieu, ces rejets peuvent être réduits par des mesures préventives et une bonne manipulation des appareils.

L’utilisation de cellules au mercure pour produire de la soude caustique dans l’industrie chlore-alcali a diminué de manière significative durant les 15 dernières années dans le monde. Beaucoup d’opérateurs ont réduit graduellement l’utilisation de cette technologie au profit des membranes (moins coûteuses en énergie et exemptes de mercure), d’autres envisagent de le faire et enfin certains n’ont annoncé aucune mesures allant dans ce sens. Dans de nombreux cas les gouvernements ont travaillé avec des représentants de l’industrie et/ou fourni des compensations financières afin de faciliter l’adoption de cette nouvelle technologie (AMAP/PNUE, 2008). Par exemple en Europe l’industrie a décidé, à un niveau national, de réduire les émissions à 1g de mercure par tonne de chlore produite d’ici 2007, avec aucune usine au dessus de 1.5g de mercure par tonne de chlore produite (Eurochlo, 2009). En 2008, l’ensemble des émissions Européenne s’élevait à 0.92g de mercure par tonne de chlore produite (voir Figure 11). Dans le secteur d’OSPAR, les pertes totales de mercure dans l’industrie chlore-alcali à travers les produits, les eaux
usées et l'air ont diminuées de 56 tonnes en 1982 à moins de 5 tonnes en 2007 (c'est-à-dire une réduction de près de 93%) (OSPAR, 2009).

Parmi les pays participant à Eurochlor on trouve 10 usines ayant un rôle majeur dans les émissions de mercure dans le bassin méditerranéen (Espagne, France, Italie et Grèce). La quantité de mercure émise est reportée dans le Tableau 34. Durant l’année 2009 trois usines travaillant avec du mercure ont fermé ou ont été converties dans les pays cités ci-dessus, et durant les dernières années près de 2 usines utilisant du mercure ont fermé ou ont été converties dans le bassin méditerranéen.

Tableau 34. Emissions de mercure par les usines chlore-alcali du bassin méditerranéen en 2008 (Eurochlor, 2009)

<table>
<thead>
<tr>
<th>pays</th>
<th>Société</th>
<th>Site</th>
<th>Capacité (t Cl2/y)</th>
<th>Dans les produits (g/t)</th>
<th>Dans les eaux usées (g/t)</th>
<th>Dans l’atmosphère</th>
<th>pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>Arkema</td>
<td>Lavera</td>
<td>166 000</td>
<td>0.05</td>
<td>0.12</td>
<td>0.70</td>
<td>0.00</td>
</tr>
<tr>
<td>FRANCE</td>
<td>Solvay</td>
<td>Tavaux</td>
<td>240 900</td>
<td>0.05</td>
<td>0.00</td>
<td>1.08</td>
<td>5.26</td>
</tr>
<tr>
<td>GRECE</td>
<td>Hellenic Petroleum</td>
<td>Thessaloniki</td>
<td>39 899</td>
<td>0.03</td>
<td>0.04</td>
<td>0.09</td>
<td>4.94</td>
</tr>
<tr>
<td>ITALIE</td>
<td>Syndial</td>
<td>Porto Marghera</td>
<td>200 441</td>
<td>0.03</td>
<td>0.01</td>
<td>0.40</td>
<td>6.00</td>
</tr>
<tr>
<td>ESPAGNE</td>
<td>Tessenderlo</td>
<td>Pieve Vergonte</td>
<td>41 995</td>
<td>0.07</td>
<td>0.00</td>
<td>0.68</td>
<td>11.28</td>
</tr>
<tr>
<td>ESPAGNE</td>
<td>Ercros</td>
<td>Flix</td>
<td>150 000</td>
<td>0.07</td>
<td>0.03</td>
<td>0.59</td>
<td>20.98</td>
</tr>
<tr>
<td>ESPAGNE</td>
<td>Ercros</td>
<td>Sabinanigo</td>
<td>25 000</td>
<td>0.09</td>
<td>0.01</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>ESPAGNE</td>
<td>Ercros</td>
<td>Vilaseca</td>
<td>135 004</td>
<td>0.07</td>
<td>0.05</td>
<td>0.60</td>
<td>4.83</td>
</tr>
<tr>
<td>ESPAGNE</td>
<td>Quimica del Cinca</td>
<td>Monzon</td>
<td>31 373</td>
<td>0.14</td>
<td>0.02</td>
<td>0.62</td>
<td>19.99</td>
</tr>
<tr>
<td>ESPAGNE</td>
<td>Solvin</td>
<td>Martorell</td>
<td>217 871</td>
<td>0.02</td>
<td>0.01</td>
<td>0.38</td>
<td>4.16</td>
</tr>
</tbody>
</table>
5.2.5 Production du monomère vinyle-chlorure (MVC)

La quantité de mercure rejetée par la production du MVC dépend de la consommation annuelle en catalyseur de mercure, et de la concentration en mercure dans ce dernier. Les principaux rejets sont dus au traitement des catalyseurs ou à leur élimination (PNUE, 2010). Cependant, il s'agit d'une technologie encore peu répandue en Europe, et il n'y a apparemment pas d'usine de ce type en fonctionnement dans la Communauté Européenne (EC, 2002) ni dans le bassin méditerranéen.
5.3 Utilisation de produits contenant du mercure – source intentionnelle

5.3.1 Les amalgames dentaires

Les amalgames dentaires sont un mélange de mercure et d’un alliage métallique. En 1991, l’Organisation Mondiale pour la Santé a confirmé que le mercure contenu dans les plombages est la plus grande source de vapeur de mercure d’origine non-industrielle, exposant de facto la population concernée à des taux de mercure légèrement supérieurs à ceux fixés pour la nourriture et l’air (OMS, 2005). Les émissions résultant de l’utilisation de plombages peuvent survenir lors de la production, la manipulation et l’élimination, mais aussi lors de la crémation de restes humains (voir 5.4.5). Les inventaires du PNUE ne prennent en compte que les émissions dues à la crémation, alors que les émissions dues à la production, la manipulation et l’élimination routinière peuvent être plus importantes dans certains pays (AMAP/PNUE, 2008). Le mercure d’origine dentaire vient de nombreuses sources telles que: des déchets de plombage (généré lorsque l’on fore dans un plombage déjà existant) qui passent dans les eaux usées; l’excès de plombage retiré après la pose; l’arrachage d’une dent contenant un plombage; les plombages inutilisés qui se retrouvent à la poubelle; les émissions de mercure directement dans l’air; les pièces, filtres et autre appareils présents dans les cliniques dentaires pour retirer le mercure des eaux usées; et diverses alternatives d’élimination des déchets (Lassen et al. 2008).

5.3.2 Les équipements de mesure et de contrôle

Il existe une vaste sélection de systèmes de mesure et de contrôle contenant du mercure, parmi eux on peut trouver : les thermomètres, les baromètres et les manomètres. Ces derniers sont encore fabriqués dans certaines parties du monde, bien que désormais la plupart des fournisseurs mondiaux proposent des alternatives sans mercure (AMAP/PNUE, 2008).

Les thermomètres au mercure ont traditionnellement été l’appareil le plus commun et le plus répandu. Ils peuvent contenir entre 0.6 et 100g par unité selon l’utilisation (médicale, industrielle…). Le rejet de mercure peut avoir lieu à différents moments (PNUE, 2010):

1. Lors de la production des thermomètres au mercure (vers l’air, l’eau et les sols), il dépend alors du niveau de fermeture du cycle de production ainsi que des procédures de manipulation et de travail imposés dans les unités de production individuelle (les sources d’émission de mercure les plus probables sont la purification et le transfert du mercure, le remplissage, et le processus de chauffage (calcination));

2. Lorsque le thermomètre est brisé ou perdu (vers l’air, l’eau et les sols) au cours de son utilisation;

Le reste des appareils de mesure est supposé avoir les mêmes sources d’émission de mercure que les thermomètres.
5.3.3 Appareils électriques et électroniques

Le mercure a été traditionnellement utilisé dans un grand nombre d'interrupteurs, relais, diode à vapeur de mercure et thermostats. Ces composants ont été utilisés dans une grande variété d’équipements électroniques et de véhicules.

De manière similaire aux autres produits contenant du mercure, l’émission peut se produire (PNUE, 2010) :

1. Lors de la production d'interrupteurs ou de relais (vers l'air, l'eau ou les sols) ;

2. Lorsque les interrupteurs sont cassés ou perdus (vers l'air, l'eau et les sols) durant leur utilisation

Et durant l’élimination de produits contenant des interrupteurs (ou les interrupteurs eux-mêmes) après leur utilisation (directement dans les sols et décharges puis par la suite vers l’air et l’eau)

5.3.4 Sources de lumière au mercure

Les ampoules contenant du mercure restent la norme pour les ampoules à économie d’énergie, et bien que l’industrie fasse des efforts pour réduire la quantité de mercure dans chaque lampe, le nombre sans cesse croissant d’ampoules à économie d’énergie vendues et installées dans le monde fait que la pollution au mercure par les ampoules ne diminue pas (AMAP/PNUE, 2008).

L’émission de mercure lors de l’élimination des ampoules dépend de la méthode employée. Dans de nombreux pays il existe un système de collecte des ampoules au mercure. Les ampoules collectées peuvent être alors recyclées afin de récupérer la poudre phosphoreuse contenant du mercure afin de produire d’autres ampoules ou pour directement récupérer le mercure sous forme de poudre. Dans certains pays la poudre issue de l’étape de traitement peut être mise en décharge sans récupération préalable du mercure contenu dedans. Pendant le recyclage du mercure peut être émis lors du broyage/coupure des ampoules ou lors de la récupération du mercure présent dans la poudre. Les ampoules envoyées en décharge vont très largement se briser, les vapeurs de mercure vont alors immédiatement se libérer dans l’atmosphère. La majeure partie du mercure présent est liée à la poudre phosphoreuse et ne sera relarguée que très lentement. Lors de l’incinération des ampoules la majorité du mercure va s’évaporer et sera capturée par les systèmes de contrôle de la pollution ou rejetée dans l’atmosphère (PNUE, 2010).
5.3.5 Batteries

L'utilisation de mercure dans les batteries, bien qu'encore considérable, continue de décliner alors que de nombreux pays ont mis en place des lois traitant des problèmes de diffusion du mercure provenant des batteries (AMAP/PNUE, 2010).

Les batteries contribuent encore grandement à la contamination au mercure pour trois raisons: 1) Le grand nombre d'unités vendues; 2) Les vieilles batteries présentes dans le circuit des déchets contiennent bien plus de mercure que les actuelles; 3) Les batteries à l'oxyde mercureux, bannies en Europe, peuvent encore être vendues à travers l'UE (Lassen et al. 2008).

Le mercure est relâché durant la production ou l'élimination. Dans les fabriques de batteries, les procédures de travail, tout particulièrement pour les batteries à oxyde mercureux, et les taux de produits défectueux peuvent être un facteur important pour le calcul des quantités de mercure émises. La concentration actuelle de mercure dans les batteries et les pratiques de collecte et d'élimination de chaque pays détermineront le relarguage durant la mise en décharge. Même dans les pays dotés d'un système de collecte séparé pour les batteries, la majeure partie des batteries terminent dans les ordures ménagères. Lorsque les batteries sont entreposées dans des décharges protégées, le mercure ne sera émis que lentement, lors de la dégradation de l'encapsulation, par évaporation graduelle dans l'atmosphère, lors de la lente lixiviation par les eaux de pluie (ou les eaux souterraines s'il n'y a pas de membrane pour protéger le fond de la décharge). Pour les batteries qui finissent dans les incinérateurs, une partie du mercure sera libérée dans l'atmosphère lors de l'incinération, et s'ils sont présents, dans les résidus des filtres à gaz d'échappement, le mercure sera donc ensuite déposé dans les décharges ou autre dépôts (PNUE, 2010).

5.3.6 Autres produits contenant du mercure

Le mercure peut aussi se trouver dans plusieurs produits tels que les biocides et pesticides (industrie du papier, peintures), les produits chimiques de laboratoire (réactifs, catalyseurs…), les produits pharmaceutiques (vaccins, gouttes pour les yeux, quelques herbes médicinales et d'autres produits), les cosmétiques et produits affiliés (crèmes éclaircissantes, savons, agent conservateur dans certains cosmétiques pour les yeux).

1. **Pesticides et biocides** : les composés contenant du mercure ont été utilisés sous forme de biocides par l'industrie du papier, dans les peintures, sur les semences et dans bien d'autres domaines de l'agriculture. Ces emplois ont été stoppés ou bannis dans de nombreux pays. Les facteurs les plus importants vis-à-vis de l'émission de mercure sont : la concentration de mercure dans le produit et la façon dont ces produits sont appliqués. Bien que la majorité des produits finissent sur les sols, une partie aboutira vraisemblablement dans l'eau à cause de l'élimination des surplus, du nettoyage des équipements utilisés, entrainant la percolation dans les sols jusqu'aux nappes souterraines et les écoulements avec les eaux de surface. Les produits non utilisés, dont les stocks de pesticides obsolètes, peuvent être perdus de manière diffuse ou éliminer avec les déchets normaux ou dans des programmes d'élimination spéciaux (PNUE, 2010).

2. **Les peintures (conservateurs/fongicides)** : l'acétate phényle-mercureux (APM) et d'autres composés similaires contenant du mercure étaient auparavant largement ajoutés comme biocides à les eaux utilisées pour faire les peintures, comme cela
peut être encore le cas dans certains pays. Lorsque des peintures au mercure étaient appliquées, les surfaces peintes relarguaient du mercure élémentaire dans l'air, alors que seule une petite partie de la peinture partait avec les eaux usées lors du nettoyage des équipements et la peinture présente au fond des pots était jetée avec les déchets solides (PNUE, 2010).

3. Médicaments à usage clinique et vétérinaire (conservateur): le mercure a été utilisé dans de nombreux médicaments tels que les vaccins, les gouttes pour les yeux, quelques herbes médicinales et d'autres produits, agissant principalement comme conservateur. Mais, ces dernières années, son utilisation a fortement diminuée. Le mercure présent dans les médicaments passe du corps aux eaux usées ou aux sols. Les produits non utilisés peuvent être éliminés avec les ordures normales ou les déchets toxiques selon les pratiques dominantes de gestion des déchets (PNUE, 2010).

4. Les cosmétiques et produits associés (conservateur): le mercure a été utilisé dans des crèmes éclaircissantes, dans des savons, et comme agent conservateur dans certains cosmétiques pour les yeux. Ces produits sont rares voire inexistants dans certains pays. Leur production et utilisation a fortement diminué dans les pays développés durant les dernières décennies, alors que dans certains pays leur production comme leur utilisation continue. Le vecteur principal d'émission est l'eau (lorsque les cosmétiques sont enlevés à l'eau). Une petite partie restée au fond des tubes et pots sera jetée avec les ordures ménagères (PNUE, 2010).

5. Produits chimiques de laboratoire: le mercure est utilisé dans les laboratoires comme réactif, catalyseur et conservateur. Une partie de ce mercure est rejetée dans l'air, principalement via les systèmes de ventilation. Cependant, la majeure partie du mercure sera jetée avec les eaux usées ou mise aux déchets toxiques ou ordure ménagères (PNUE, 2005).

6. Equipement de laboratoire: le mercure est utilisé par des techniques de mesure telles que la porosimétrie et la pycnometrie. On s'attend à ce que les pertes de mercure se retrouvent, après analyse, dans les déchets d'échantillons saturés en mercure. Ces déchets sont généralement recyclés ou entreposés dans des décharges de déchets toxiques (Lassen et al. 2008).

7. Le polyuréthane avec les catalyseurs au mercure: comme n'importe quel catalyseur utilisé dans les systèmes d'élastomères au polyuréthane (PU), le catalyseur au mercure est incorporé dans la structure du polymère et se retrouve dans le produit final. Avec le temps – et accéléré par l'exposition à un environnement rigoureux, UV, abrasion… – la structure du polymère se brise relarguant ainsi le mercure. Les émissions provenant de la synthèse du PU et des produits finis en PU peuvent être importantes, cependant aucune donnée n'est disponible (Lassen et al. 2008). Selon le PNUE (2010) on peut grossièrement estimer qu'environ 5% du mercure présent dans le PU se retrouve dans les eaux usées et 10% dans l'air au cours de la durée de vie des produits.
5.4 Traitement des déchets provenant de sources intentionnelles ou non

5.4.1 Incinération des déchets (déchets municipaux, sanitaires et toxiques)

Le facteur influant principalement sur les émissions de mercure dans l’atmosphère lors de l’incinération de déchets est la concentration en mercure de ces déchets, la capacité de l’incinérateur, le type d’incinérateur (soit l’air y est en quantité substoichiométriques soit il l’est en quantités surstoichiométriques), la manière dont l’incinérateur est piloté (par exemple la présence ou non d’un système de valorisation de la chaleur émise) et le niveau de réduction approprié à l’usine. Le traitement préalable des déchets tel que la séparation et la récupération du mercure avant introduction dans l’incinérateur est la mesure la plus importante pour réduire les émissions dans l’air (PNUE/DTIE, 2010).

On peut trouver le mercure dans les ordures ménagères à des concentrations très variables selon le pays, cela dépend principalement de la fréquence d’apparition du mercure dans les produits ménagers et s’il existe des systèmes de collectes séparées ou si les déchets vont avec les ordures ménagères. Les types de produits contenant souvent du mercure sont les batteries, les thermomètres et les sources lumineuses fluorescentes (PNUE/DTIE, 2010).

Il existe trois grandes technologies d’incinération MSW qui dépendent de la quantité et du type de déchet brulé. On a ainsi des fours de combustion en masse, des fours de combustion modulaire et des fours à lit fluidisé (EMEP/EEA, 2009 ; dans PNUE/DTIE, 2010). Les déchets toxiques, qui peuvent présenter de fortes concentrations de mercure, sont généralement brulés dans des incinérateurs spécifiques ou des fours rotatifs. Les incinérateurs spécifiques utilisent différents types de four : le très basique four à baril, le four à grille et le four à moufle. De plus, d’autres technologies (telles que l’oxydation à l’eau supercritique ou la vitrification par arc électrique) permettent le traitement des déchets toxiques et peuvent être incluses dans la liste précédente (bien qu’il ne s’agisse pas d’incinération à proprement parler). Dans certains pays les déchets toxiques sont incinérés dans les cimenteries et les fours pour à granulats de faible poids. Dans certains pays les déchets médicaux sont incinérés dans les incinérateurs à déchets toxiques ou dans ceux à déchets municipaux prévus à cet effet (PNUE, 2010).

5.4.2 Décharges

La présence de mercure dans le flux d’ordures ménagères vient de trois grandes sources: 1) l’utilisation intentionnelle de mercure dans les produits usés et les déchets de procédés; 2) le mercure présent en tant qu’impureté naturelle dans la matière (plastiques, boites de conserve…) et les minerais; 3) le mercure d’origine anthropique présent à l’état de traces dans la matière (PNUE, 2010).

A travers la vie de n’importe quel dépôt/décharge des quantités de mercure relativement petites seront émises et passeront dans l’eau (via l’eau des sols ou l’eau de pluie) et dans l’air (car une partie du mercure s’évapore lentement des déchets). Le devenir du mercure passé dans l’eau dépend grandement de la présence et de l’efficacité des couches imperméables placées sous la décharge et de la gestion des eaux usées. Si l’eau n’est pas collectée et envoyée à une station d’épuration, le mercure (et d’autres substances) vont contaminer les sols et les cours d’eau souterrain situés sous ou dans les environs de la décharge. Si l’eau est envoyée en station d’épuration, le mercure va principalement se retrouver dans les boues et finira dans une décharge spécifique, le reste partira avec l’eau sortant de la station (PNUE, 2010).
La plus « grande » émission de mercure associée au stockage des déchets, en terme de quantité de mercure, est bien évidemment l’accumulation des déchets – et par conséquent de mercure – sur le site de stockage, ce qui peut donner lieu à des problèmes environnementaux à long terme lors d’excavations, d’urbanisation… (PNUE, 2010).

5.4.3 Les stations d’épuration

Le mercure présent dans les eaux usées a deux sources principales: 1) le mercure utilisé intentionnellement dans les produits et procédés (tels que les plombages, les thermomètres brisés, les déchets industriels…); 2) le mercure atmosphérique (d’origine anthropique ou naturelle) capté par les précipitations qui termine dans le système de collecte des eaux usées. Ainsi le traitement des eaux usées est une source intermédiaire d’émission de mercure où tout le mercure collecté est distribué dans les secteurs suivants: dans l’eau (via le rejet des eaux traitées), dans les sols (via l’utilisation des boues comme engrais) et dans l’air (via l’incinération des boues et l’utilisation des boues comme engrais). De plus, une partie des boues peut être mis en décharge (PNUE, 2010).

Dans les systèmes de traitement qui utilisent des boues activées, ou tout autre traitement qui présente une forte rétention des particules, une grande partie du mercure (jusqu’à 50%) présent dans l’eau va aller dans les boues. Dans certains pays où l’épandage des boues comme engrais est fréquent des teneurs maximum en mercure dans les boues sont imposées. Les autres fractions de boues (en particulier celles avec des concentrations en polluant supérieures aux limites) sont mises en décharge ou incinérées (PNUE, 2010).

5.4.4 Le recyclage des déchets

En Europe, la plupart des ballots de déchets comportant des produits contenant du mercure sont considérés comme étant des déchets toxiques quelle que soit la teneur en mercure, tandis que ceux de déchets mercureux ne sont considérés comme étant toxiques que si la concentration en mercure dépasse une valeur limite. Des règles spécifiques relatives à la collecte de produits contenant du mercure concerne les ampoules contenant du mercure (directive WEEE), les batteries (directive sur les batteries), les interrupteurs et ampoules dans les véhicules (directive ELV), et les interrupteurs, relais et/ou tout autre pièce d’équipement électrique ou électronique contenant du mercure (directive WEEE). Pour chaque fraction de déchet il existe une entrée spécifique dans le catalogue européen des déchets, ce qui rend en principe possible l’obtention d’une vue générale de la gestion de ces déchets à travers l’UE (Lassen et al, 2008)

Les principales sources de mercure recyclé sont : (i) les cellules au mercure des usines chlore-alcali, (ii) les plombages, les surplus de mercure venant d’instrument et de manufactures d’équipement électrique (interrupteurs et ampoules), (iii) les déchets et boues des laboratoires de recherche et des usines de raffinage électrolytique, et des batteries/piles au mercure (PNUE, 2010). En Europe la plupart du mercure recyclé provient de l’industrie chlore-alcali et des plombages comme indiqué dans le Tableau 35.

<table>
<thead>
<tr>
<th>Catégorie des produits</th>
<th>Quantité (tonne Hg/an) terminant dans les déchets</th>
<th>Quantités recyclées, en tonne Hg/an</th>
<th>Ratio par rapport à la quantité totale recyclée, en %</th>
<th>Efficacité du recyclage dans la catégorie, en %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production chlore-alcali</td>
<td>119</td>
<td>35</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>Sources lumineuses</td>
<td>14</td>
<td>1.6</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Batteries/piles</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Plombages</td>
<td>95</td>
<td>30</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>Equipements de mesure</td>
<td>21</td>
<td>4.5</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Interrupteurs, relais…</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Produits chimiques</td>
<td>41</td>
<td>6.5</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Utilisations diverses…</td>
<td>70</td>
<td>13</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Total (arrondi)</td>
<td>404</td>
<td>102</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

Les produits pour lesquels le recyclage est le moins efficace sont : les sources lumineuses, les batteries/piles et les produits chimiques. Ils se caractérisent tous par de faibles concentrations de mercure dans les flux de déchet (Lassen et al, 2008)

Si l’on s’intéresse aux batteries/piles, la directive 2006/66/EC fixe les taux de collectes à au moins 25% pour le 26 septembre 2012, 45% pour le 26 septembre 2016 et au moins 50% en poids moyen pour le recyclage des batteries contenant du mercure d’ici le 26 septembre 2021. (Les membres de l’association européenne pour le recyclage des batteries (EBRA), qui représente la plupart des compagnies européennes de recyclage, ont collecté environ 31 tonnes de batteries/piles pour le recyclage dont 9000 tonnes en France, 688 en Espagne et 193 en Grèce. De plus, l’Espagne a collecté 6 tonnes de piles bouton en 2006 (Lassen et al, 2008).

Lors des étapes de tri et de séparation, la collecte du mercure métallique va typiquement de pair avec la destruction d’interrupteurs, thermomètres et tout autre type de petit récipient en verre utilisé dans les équipements électriques de contrôle et de mesure. Cette opération va donc naturellement relâcher du mercure dans l’air. Le mercure contenu dans les tubes fluorescents et les lampes au mercure est capté en brisant le conteneur en verre sous vide (EC, 2002b).

Des usines disposant de broyeuses sont utilisées pour fragmenter les déchets métalliques non homogènes (typiquement les voitures, réfrigérateurs et divers autres objets présent dans les maisons ou les entreprises) en de petites parties normalement homogènes pouvant être séparées par des méthodes mécaniques telles que la separation balistique, la séparation magnétique et parfois la separation par fluides. Le broyage peut causer des emissions dans l’air selon la qualité des epurateurs ou tout autre equipement de purification de l’air. Les fluides encore présents dans les déchets (comme le mercure) seront relâchés dans l’usine et seront soit évanorés, soit perdus dans les sols, soit collectés sous forme de boues (EC, 2002b).

Si l’on s’intéresse aux opérations de recyclage et de récupération, on peut distinguer trois méthodes de traitement associées au mercure. Certains déchets contenant du mercure, tels le mercure des cellules chlore-alcali où les déchets produits par les complexes minier,
ont seulement besoin d’être filtrés et nettoyés sans subir de traitement thermique. D’autres types de déchets peuvent, soit subir un traitement thermique afin d’évaporer le mercure qui sera recondensé par la suite, soit être traités par des procédés d’extraction hydro-métallurgique (humides); certaines de ces techniques mettent en œuvre des extractions électrolytiques (Lassen et al, 2008).

En général la récupération du mercure s’effectue normalement par distillation en système clos. Ce procédé est appliqué à la plupart des déchets contenant du mercure dont le mercure métallique, les batteries mais aussi les déchets de laboratoire. Du fait de la nature volatile du mercure, le risque le plus important, lors du processus de distillation ou d’autres procédés de récupération, est le rejet de mercure gazeux dans l’air (EC, 2002b).

Pour les ampoules fluorescentes il existe deux grandes méthodes de récupération du mercure (Lassen et al, 2008). La première consiste à couper les extrémités du tube en verre afin de récupérer la poudre de mercure et de phosphore. La deuxième consiste à broyer l’ampoule puis séparer la poudre des débris par voie mécanique. Les émissions de mercure doivent aussi être contrôlées lors du recyclage des écrans à cristaux liquides (LCD), où des vapeurs de mercure s’échappent pendant le broyage des lampes utilisées dans ce type d’écran.

Les batteries contenant une quantité importante de mercure et/ou argent (oxyde d’argent ou oxyde mercurique) sont habituellement traitées par des procédés thermiques. En revanche, les batteries ne contenant peu ou pas de mercure (piles zinc-air, zinc-carbone ou manganèse alcalin) peuvent être traitées par des processus hydro-métallurgiques (humides) (Lassen et al, 2008).

Lors du recyclage des métaux ferreux (fer et acier), il peut y avoir du mercure présent dans les scories de fer et d’acier, ce dernier résulte du mercure naturellement présent dans les minerais de fer mais aussi de l’utilisation anthropique du mercure (par exemple les interrupteurs au mercure des voitures qui se retrouvent dans le système de recyclage du fer et de l’acier) (EC, 2002b; PNUE, 2010). Ce recyclage peut conduire à des émissions de mercure dans l’air.

5.4.5 Crématum et cimetières

Pour beaucoup de sociétés la plupart des restes humains sont incinérés dans des fours crémataires. Du mercure est émis durant l’incinération, ce dernier vient majoritairement des amalgames dentaires. Cependant, il peut aussi y avoir de faibles quantités de mercure dans les tissus, le sang et les cheveux qui seront donc aussi émises lors de la crémation. La quantité de mercure contenue dans chaque corps peut grandement varier et dépend principalement du nombre d’amalgames dentaires (PNUE, 2010).

Etant donné que la crémation met en jeu de très hautes températures et que les fours crémataires ont peu de systèmes de contrôle des émissions de mercure, la majeure partie du mercure contenu dans les corps incinérés se retrouvera dans l’air via les cheminées. Cependant, dans certains fours crémataires qui ont mis en place des mesures de contrôle efficace des émissions, une grande partie du mercure sera capturée et se retrouvera dans les cendres volantes et autres résidus (PNUE, 2010).

Si l’on cherche à estimer les émissions de mercure issues de la crémation il faut garder à l’esprit que de telles pratiques ne sont pas courantes dans les pays à dominante musulmane ou dans certains pays orthodoxe (comme la Grèce) (AMAP/PNUE, 2008). Dans la région OSPAR, où le mercure des fours crémataires est une source d’émission importante, plusieurs pays ont signalé que ce type d’émission allait en augmentant à
cause de l'augmentation du nombre d'amalgames dentaires par corps et l'augmentation du nombre de crémations. Ainsi, le mercure issu des incinérations est désormais la première source d'émission en Suède (OSPAR, 2003)

Dans les cimetières, on considère que le mercure contenu dans les cadavres (principalement dans les amalgames dentaires) sera relâché dans les sols.
6. Technologies et pratiques visant à prévenir et à contrôler les émissions de mercure

6.1 Emissions intentionnelles

Cette partie du rapport explore les principales alternatives disponibles sur le marché pour les usages de mercure les plus courants dans la région méditerranéenne. L’information provient essentiellement de rapports du PNUE (2006, 2008), de Lassen et al. (2008), ainsi que de documents BREF44.

6.1.1 Production secondaire

Le rejet de mercure associé à la production d’autres métaux non-ferreux tels que le cuivre, le plomb et le zinc est classé dans les émissions intentionnelles dans la mesure où cette production représente toujours une source de mercure. La production de mercure secondaire à partir du traitement des amalgames dentaires, des piles et des lampes se fait généralement dans des unités de démercurisation visant à la récupération de métaux dépourvus de mercure. Cette production de mercure secondaire est par conséquent abordée dans la section 6.3.1. en tant que procédé de gestion de déchets.

Les minerais et concentrés de mercure sont initialement traités par broyage, et parfois par filtration. Le minerai broyé est ensuite chauffé soit dans des distillateurs (dans le cas de petites industries), soit dans des fourneaux (dans le cas de la production de métaux à grande échelle), à des températures correspondant à la sublimation du sulfure de mercure. La vapeur de mercure ainsi obtenue est ensuite condensée dans un système de refroidissement et récupérée sous la forme de mercure métallique. Les suies qui se déposent au niveau des condensateurs et dans les bassins de décantation doivent être enlevées, traitées avec de la chaux, et renvoyées vers le distillateur ou le fourneau.

Pour une récupération efficace du mercure, les techniques suivantes peuvent être utilisées:

- Mesures visant à réduire le production de poussière lors de l’extraction du minerai et du stockage, y compris en minimisant la taille des piles de stockage;
- Chauffage indirect du fourneau;
- Conserver le minerai aussi sec que possible;
- Amener la température du gaz entrant dans le condensateur à seulement 10 ou 20°C au-dessus du point de rosée;
- Garder la température du gaz à la sortie du condensateur aussi basse que possible;
- Faire passer les gaz de réaction à travers un épurateur thermique et/ou un filtre au sélénium.

La formation de poussières peut être limitée par chauffage indirect, par traitement séparé des minerais à grains fins et par contrôle de la teneur en eau du minerai. La poussière doit être enlevée du gaz de réaction chauffé avant que celui-ci entre dans l’unité de condensation de mercure à l’aide de cyclones et/ou de précipitateurs électrostatiques.

44 Reference documents on Best Available Techniques of the European IPPC Bureau. http://eippcb.jrc.es/reference/
Le Tableau 36 présente les mesures de contrôle les plus importantes pour l’industrie des métaux non-ferreux.

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité dans la réduction des poussières (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie primaire des métaux non-ferreux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions fugitives, hottes d’aspiration, emballages, etc.</td>
<td>hottes d’aspiration, emballages, etc. dépoussiérage des effluents gazeux</td>
<td>>99</td>
</tr>
<tr>
<td>Grillage/frittage</td>
<td>Frittage à sec: ESP + épurateurs (avant usine à acide sulfurique utilisant une méthode de double contact) + FF pour les gaz de queues</td>
<td></td>
</tr>
<tr>
<td>Fusion conventionnelle (réduction dans un haut-fourneau)</td>
<td>Four à cuve: fermé au-dessus/évacuation efficace</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Par les trous du couvercle + FF, four à double cloche</td>
<td></td>
</tr>
<tr>
<td>Procédé Imperial Smelting</td>
<td>Dépoussiérage de haute efficacité</td>
<td>>95</td>
</tr>
<tr>
<td></td>
<td>Dépoussiéreurs Ventury</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fours à double cloche</td>
<td></td>
</tr>
<tr>
<td>Lessivage sous pression</td>
<td>Son application dépend des caractéristiques de lessivage des concentrés</td>
<td>>99</td>
</tr>
<tr>
<td>Procédés de réduction à fusion directe</td>
<td>fusion Flash, par ex. Kivcet, procédés Outokumpu et Mitsubishi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bain de fusion, par ex. Convertisseur rotatoire soufflé par le haut, procédés Ausmelt, Isasmelt, QSL and Noranda</td>
<td></td>
</tr>
<tr>
<td>Industrie secondaire des métaux non-ferreux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production du plomb</td>
<td>Four rotatoire court: hottes d’aspiration pour les trous de couvercles + FF; tube à condensation, brûleur à oxy-combustibles</td>
<td>99.9</td>
</tr>
<tr>
<td>Production du zinc</td>
<td>Imperial smelting</td>
<td>>95</td>
</tr>
</tbody>
</table>

De plus, le rapport BREF sur l’Industrie des Métaux Non-Ferreux (EC, 2009) considère comme BAT (meilleures techniques disponibles) les techniques et mesures suivantes, à la fois pour les émissions dans l’air et dans l’eau.

1. La BAT pour prévenir les émissions de mercure dans l’air consiste à utiliser une combinaison des techniques mentionnées dans le Tableau 37.
Tableau 37. BAT pour les techniques d’abattement pour les constituants dans le gaz de sortie.

<table>
<thead>
<tr>
<th>Stade du procédé</th>
<th>Abattement Option</th>
<th>Constituants du gaz de sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manutention de matériel secondaire</td>
<td>Manutention en espace fermé, dépoussiérage des gaz de ventilation.</td>
<td>Poussière, vapeurs de Hg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manipulation de mercure libre et de matériel sec</td>
</tr>
<tr>
<td>Manutention du produit</td>
<td>Station de remplissage fermée, dépoussiérage des gaz de ventilation.</td>
<td>Vapeur de Hg. Dépend de la récupération du gaz à partir des fourneaux</td>
</tr>
</tbody>
</table>

Le niveau d’émission associé aux meilleures techniques disponibles (BAT-AEL) obtenu en utilisant des techniques telles que le procédé Boliden-Norzink, le procédé Bolchem, le procédé Outotec, le procédé au thiocyanate de sodium, les filtres au charbon actif ou d’autres BAT est de 0,02 mg/Nm³.45

2. Les émissions de mercure dans l’eau sont liées à un relargage au niveau de l’épurateur et des systèmes de refroidissement. Les BAT consistent ici à précipiter le mercure sous forme de sulfure de mercure en neutralisant l’eau usée, en la traitant avec du sulfure de sodium et en faisant passer l’eau à travers un filtre de carbone. Le niveau d’émission dans l’eau est de 50 Pg/l de mercure est le BAT-AEL. Pour les rejets d’eaux usées, les BAT-AEL sont basés sur un échantillonnage aléatoire qualifié ou sur un échantillonnage composite sur 24 heures proportionnel au débit.

6.1.2 Production de chlore-alcali

Le processus utilisant une cellule à membrane est considéré comme la meilleure technique disponible (BAT). La membrane est habituellement un polymère fluoré et sépare l’anode de la cathode. La saumure circule dans le compartiment anodique et produit du chlore gazeux. Les ions sodium passent à travers la membrane vers le compartiment anodique et forment une solution de soude caustique. Les avantages du processus utilisant une cellule à membrane sont la production d’une solution de soude caustique très pure et une demande en énergie qui est moindre que dans le cas des autres processus. Un désavantage est que la saumure d’alimentation doit être de grande pureté, ce qui requiert souvent des étapes de purification avant l’électrolyse.

Le coût moyen de conversion d’un système utilisant une cellule à mercure à un système utilisant une cellule à membrane est évaluée de 400 à 600 dollars US par tonne métrique de chlore de capacité de production. Les processus utilisant des cellules à membranes permettent des économies importantes en termes de coûts d’opération, y compris une réduction de 20 à 30 % des besoins en électricité.

45 Émissions collectées seulement. Les BAT-AEL sont exprimées sous la forme de moyennes journalières basées sur des mesures à l’état stationnaire et un suivi continu durant la période d’opération.
De plus, il est important de minimiser les émissions de mercure dans les usines utilisant des cellules à mercure en fin de vie, avant que celles-ci soient substituées par des technologies sans mercure. Les mesures disponibles qui permettent de minimiser les pertes en mercure vers l’air, l’eau ou avec les produits sont les suivantes (EC, 2001):

- L’utilisation d’équipements et de matériaux et, lorsque cela est possible, un agencement des installations (par exemple des zones dédiées à certaines activités) qui permettent de limiter les pertes en mercure par évaporation ou par déversement accidentel.

- La collecte et le traitement d’effluents gazeux contenant du mercure à partir de toutes les sources possibles, y compris l’hydrogène gazeux.

- Une limitation de la quantité d’eau usagée et le traitement de toutes les eaux usagées contenant du mercure.

- La réduction des niveaux de mercure dans la soude caustique.

- De bonnes pratiques au sein de l’entreprise et une motivation du personnel pour travailler de cette manière.

- De bonnes habitudes de maintenance, y compris prévoir une maintenance périodique et des travaux de réparation.

Les usines à cellules à mercure les plus performantes atteignent des pertes totales en mercure dans l’air, dans l’eau ou avec les produits de l’ordre de 0.2-0.5 g de mercure par tonne de chlore produite en moyenne annuelle.

Il est important de noter que la majorité des pertes en mercure se trouvent dans les différents déchets générés lors du procédé chlore-alcali. Ces pertes en mercure peuvent être réduites en minimisant les émissions de mercure actuelles et futures au cours de la manutention, du traitement et du stockage des déchets contaminés au mercure par les mesures suivantes (EC, 2001):

- Mise en place d’un plan de gestion des déchets établi après consultation avec les autorités compétentes.

- Minimisation de la quantité de déchets contenant du mercure.

- Recyclage du mercure contenu dans les déchets lorsque cela est possible.

- Traitement des déchets contaminés au mercure pour réduire la teneur en mercure de ces déchets.

- Stabilisation des déchets contaminés au mercure résiduels avant leur stockage.

De plus, il est important que tout décommissionnement soit réalisé de sorte à empêcher tout impact environnemental au cours de la phase de mise à l’arrêt des installations et après celle-ci, ainsi qu’il est important que soit préservée la santé de la population.

6.1.3 Amalgames dentaires

L’utilisation de mercure dans les amalgames dentaires est en déclin dans la plupart des pays industrialisés, ce qui est dû en partie à des mesures prises par les gouvernements de ces pays. Les amalgames dentaires au mercure peuvent être substitués par des alternatives sans mercure:

- **Composites.** Ils sont constitués d’un mélange de résine acrylique et de poudre de verre ou de remplisseur de silice. Ils demandent plus de temps à être mis en place
et coûtent plus cher. Un de leurs avantages est la couleur, qui est très semblable à la couleur des dents. Un autre avantage vient du fait qu’ils peuvent être liés chimiquement à la cavité dentaire, et demandent pour cette raison de retirer moins de matériel dentaire sain lors de la préparation de la cavité. Les composites sont les alternatives les plus utilisées en substitution des amalgames au mercure.

- **Verres ionomères.** Ils sont constitués d’un mélange d’acides acryliques et de poudres de verre, mélange utilisé pour remplir les cavités. Ils présentent une moins bonne résistance à la fracture que les composites. Pour cette raison, ils sont surtout utilisés pour de petits remplissages tels que ceux effectués sur la surface des racines dentaires. Aussi, ils sont davantage susceptibles à l’usure que les amalgames ou les composites. Leurs avantages par rapport aux amalgames sont les mêmes que pour les composites (couleur semblable aux dents et structure dentaire renforcée). De plus, les remplissages avec du verre ionomère contiennent du fluor, lequel est lentement libéré au cours du temps ce qui empêche une dégradation supplémentaire de la dent. De même que dans le cas des composites, les désavantages sont un coût plus élevé et un temps plus long pour l’implantation.

- **Résines ionomères et verres ionomères modifiés à la résine (VIMR).** Ils sont un mélange d’acides acryliques et de résine acrylique avec un remplisseur en verre. Ils sont de la même couleur que les dents et peuvent libérer du fluor au cours du temps pour empêcher davantage de dégradation de la dent. Comme les verres ionomères, les résines ionomères se lient à la cavité dentaire et nécessitent que moins de matériel dentaire sain soit retiré lors de la préparation de la cavité. Les résines ionomères surpassent les verres ionomères en termes de propriétés mécaniques telles que la résistance à la compression et le coefficient d’expansion thermique. Les résines ionomères sont moins résistantes à la fracture que les composites et ont une tendance à l’usure lorsqu’elles sont utilisées sur les surfaces de mastication. Pour ces raisons, l’utilisation des résines ionomères est limitée à des remplissages de petite taille ou à des remplissages à court terme pour des dents primaires. Le coût des remplissages aux résines ionomères est semblable aux remplissages avec des composites, mais supérieur à celui des remplissages aux amalgames.

- **Or, céramique et porcelaine.** Ces matériaux sont généralement utilisés pour des restaurations indirectes et ne sont par conséquent pas considérés comme des alternatives aux amalgames, lesquels sont principalement utilisés pour des restaurations directes. Ils nécessitent deux visites chez le dentiste (voire plus) et impliquent généralement la mise en place d’un remplissage temporaire.

- **Ciments polycarboxylates.** Ils sont utilisés pour des remplissages temporaires ou en tant qu’agent de cimentation pour les couronnes en alliage ou la restauration dentaire en porcelaine. Ils ne représentent qu’une alternative partielle aux amalgames de mercure du fait de leur usage temporaire.

- **Oxydes de zinc.** Ils sont utilisés dans le cadre de différents traitements dentaires dont les remplissages temporaires. Ils sont souvent utilisés en association avec l’eugénol, un liquide extraï à partir de l’huile essentielle de clou de girofle et qui agit comme un analgésique et est légèrement antiseptique. Ils ne représentent qu’une alternative partielle aux amalgames de mercure du fait de leur caractère temporaire.

Il est important d’observer que la différence de prix entre les alternatives sans mercure et les amalgames dentaires au mercure n’est pas particulièrement importante, dans la mesure où le coût des matériaux utilisés pour les remplissages de cavités ne dépassent pas 5 % du coût total du remplissage.
Les amalgames dentaires constituent généralement la principale source de mercure dans les eaux usées municipales. S’il n’est pas récupéré par passage au travers d’un séparateur d’amalgames, la majeure partie de la teneur en mercure de l’amalgame part à l’égoût. La plupart des cliniques dentaires disposent d’un filtre au niveau du crachoir du fauteuil dentaire pour capturer les particules d’amalgame les plus importantes, et certaines d’entre elles possèdent un filtre secondaire raccordé à une pompe à vide. De plus, il est maintenant possible d’installer des filtres pour les eaux usées produites par les cliniques dentaires, lesquels peuvent collecter plus de 90 % des amalgames rejetés dans ces eaux usées. Le mercure ainsi récupéré devrait être considéré comme un déchet toxique et de ce fait consigné dans une installation de gestion de déchets disposant d’une autorisation pour manipuler des déchets toxiques. Les équipements pour que les dentistes réduisent les émissions de mercure sont relativement simples d’installation et d’utilisation, et ils sont peu onéreux. Par exemple, le coût pour empêcher les rejets de mercure à l’égout varie entre 37 et 100 dollars US.

6.1.4 Instruments de mesure et de contrôle

Un certain nombre d’instruments de mesure et de contrôle contiennent du mercure. Il s’agit entre autres des thermomètres, des tensiomètres, des manomètres, des baromètres, et des jauges de déformation.

1. **Thermomètres**

 Les thermomètres à mercure d’usage non-médical peuvent également être substitués par des thermomètres utilisant d’autres liquides, des thermomètres à gaz ou des thermomètres électriques ou électroniques. L’alternative choisie dépend de la gamme de température, des objectifs de l’application et de la précision requise. Toutefois, les thermomètres au mercure restent préférables pour un nombre limité d’applications de précision, et ce pour des raisons techniques (calibration des autres types de thermomètres, standards internationaux). Les thermomètres sans mercure ne sont pas nécessairement plus chers que les thermomètres au mercure; au contraire, leur prix sont comparables dans la plupart des cas. Pour cette raison, les thermomètres au mercure sont pratiquement abandonnés, du moins dans les pays industrialisés. Lorsque les solutions alternatives ne sont pas meilleur marché, elles sont meilleures que les thermomètres au mercure en termes de longévité et de performances au niveau de la rapidité.

Les catégories les plus courantes d’alternatives aux thermomètres contenant du mercure sont:

- **Thermomètre en verre à dilatation liquide sans mercure.** C’est le substitut le plus courant des thermomètres à mercure pour des températures allant jusqu’à 250°C. Il utilise comme liquide l’alcool, le kérosène ou une huile obtenue par extraction d’écorces de citron. Son prix est comparable à celui d’un thermomètre à mercure.

- **Thermomètres à cadran pour lecture manuelle.** Ils consistent soit en cylindres métalliques remplis par un liquide ou par de l’air avec un cadran permettant une lecture manuelle, soit en thermomètres à cadran comportant une bobine bimétallique. Cette bobine consiste en deux métaux ayant des coefficients
d’expansion thermique différents et qui sont liés l’un à l’autre, ce qui provoque une rotation de la bobine lorsque la température change. Les thermomètres à cadran peuvent mesurer des températures entre -70°C et 600°C et coûtent environ 50 €, c’est-à-dire environ 2 à 4 fois le prix d’un thermomètre à mercure équivalent.

- Thermomètres électroniques avec un affichage digital et/ou une acquisition automatique de données. Les modèles les plus utilisés sont les thermomètres à thermocouples ou les thermomètres à résistance. Ils remplacent les thermomètres à mercure dans la plupart des applications industrielles et représentent une part croissante du marché des thermomètres du fait des avantages liés à la lecture automatique.
- Thermomètres infrarouges qui sont un appareil de mesure de température sans contact. Ils permettent de mesurer des températures dans des applications où des capteurs conventionnels ne peuvent pas être utilisés.
- Une utilisation des thermomètres à mercure pour laquelle il n’y a pas d’alternatives est la mesure du point éclair réalisée dans l’industrie pétrolière ou par les compagnies offrant des services analytiques.

2. **Sphygmomanomètres**
Les sphygmomanomètres à mercure peuvent être remplacés par:

- Des équipements pour la mesure de la pression artérielle basés sur la méthode auscultatoire, tel que le manomètre anéroïde et le transducteur électronique de pression, lesquels ont les mêmes limitations que les sphygmomanomètres à mercure.
- Des équipements pour la mesure de la pression artérielle basés sur la méthode oscillométrique, qui opèrent selon un principe complètement différent et ne sont donc pas considérés comme de vraies alternatives aux sphygmomanomètres à mercure.

Bien que plusieurs appareils alternatifs de mesure de tension artérielle anéroïdes ou automatisés aient été validés par comparaison avec les sphygmomanomètres à mercure et qu’ils pourraient de ce fait être utilisés comme référence pour la validation clinique de nouveaux appareils de mesure développés dans le futur, les tensiomètres à mercure sont toujours utilisés en tant que référence pour les études de validation clinique des appareils de mesure de tension artérielle anéroïdes ou automatisés (SCENIHR, 2009).

3. **Manomètres**
Afin de remplacer les manomètres à mercure, différents types d’instruments de mesure de la pression peuvent être utilisés. Les plus courants sont les suivants:

- Les manomètres à tube de Bourdon, qui sont des tubes de forme circulaire à section ovale. Ils sont actuellement vendus pour des applications pour lesquelles des manomètres à tube en U au mercure étaient précédemment utilisés.
- Les manomètres électroniques (ou manomètres digitaux), qui mesurent la pression en utilisant un transducteur de pression (par exemple un transducteur de pression piezoélectrique ou un transducteur de pression de capacitance). Ils coûtent environ 3-4 fois plus cher

4. **Baromètres**
Les baromètres contenant du mercure sont progressivement remplacés par des alternatives sans mercure comprenant:

- **Des baromètres électroniques** (par exemple des transducteurs anéroïdes à déplacement, des baromètres digitaux piézorésistifs ou des baromètres à résonateur cylindrique) et baromètre électronique à résistance ou capacité. Les plus courants pour usage professionnel sont les baromètres électroniques avec acquisition automatique des données, tandis que les baromètres anéroïdes (sans liquide) sont le plus souvent utilisés par des particuliers.
- **Des baromètres mécaniques anéroïdes**, qui consistent en un diaphragme métallique mécaniquement lié à une aiguille indicatrice. Ils sont plus compacts que les baromètres à mercure et tout aussi précis.
- **Des baromètres liquides sans mercure**, tels que le tube en verre en forme du U rempli avec un liquide rouge au silicone et du gaz, produit par le fabricant belge de baromètres Dingens. Ils coûtent de un tiers à la moitié du prix d’un baromètre à mercure équivalent.

5. **Jauges de déformation**

6. **Autres instruments de mesure et de contrôle**
- **Hygromètres (ou psychromètres)**: les alternatives aux hygromètres à mercure sont des hygromètres à l’alcool et des hygromètres électroniques, qui sont à peu près du même prix. On peut facilement se procurer des hygromètres électroniques.
- **Tensiomètres**: le manomètre du tensiomètre à mercure peut être remplacé dans toutes les applications par des tensiomètres électroniques sans mercure et des tensiomètres avec un manomètre mécanique de Bourdon.
- **Electrodes de référence au mercure**: pour les mesures de pH et comme électrodes de référence, les électrodes au mercure ont pour la plupart été remplacées par des électrodes à argent/chlorure d’argent. Cependant, celles-ci peuvent être détériorées par les sulfures et peuvent ne pas être adaptées en tant qu’électrodes de référence pour la détermination des concentrations de chlorure et d’argent. Le problème lié aux sulfures peut être résolu par l’utilisation d’une barrière adaptée, et l’on dispose d’électrodes à argent/chlorure d’argent commerciales pouvant être utilisées dans des environnements sulfurés.
- **Electrodes à goutte de mercure**: la méthode polarographique est une alternative utilisée pour analyser les éléments traces dans l’eau, les échantillons environnementaux ou les produits chimiques ultrapurs. L’avantage de l’équipement au mercure est surtout qu’il est bon marché comparé à un équipement faisant appel à des techniques de mesure plus avancées.
- **Gyrocompas**: on dispose maintenant de gyrocompas sans mercure qui sont actuellement utilisés à bord de n’importe quel bateau. Ils utilisent un liquide sans
mercure correspondant à des tensioactifs ou d’autres composés organiques inoffensifs. Toutefois, le mercure ne peut pas être remplacé dans les gyrocompas à mercure; c’est tout le gyroscope qui doit être remplacé.

Le Tableau 38 synthétise les principales applications au mercure pour les instruments de mesure et de contrôle, les alternatives disponibles sur le marché, les différences de prix et le niveau de remplacement en Europe.

Tableau 38. Aperçu des alternatives proposées sur le marché pour remplacer les équipements de mesure contenant du mercure. Source: Lassen et al., 2008.

<table>
<thead>
<tr>
<th>Domaine d’application / type de produit</th>
<th>Alternatives disponibles sur le marché</th>
<th>Prix des alternatives comparé aux appareils de mesure au mercure</th>
<th>Niveau de substitution</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermomètres médicaux</td>
<td>Thermomètres en verre à liquide</td>
<td>=</td>
<td>2-4</td>
<td>Interdit par La Directive 2007/51/EC</td>
</tr>
<tr>
<td></td>
<td>Thermomètres électroniques</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomètres à mercure en verre pour les machines, les moteurs, les boilers, etc.</td>
<td>Thermomètres en verre à liquide (jusqu’à 250°C) (à 1 degré)</td>
<td>=</td>
<td>3-4</td>
<td>Quelques applications industrielles pour lesquelles il est difficile de remplacer le mercure</td>
</tr>
<tr>
<td></td>
<td>Thermomètres à cadran (jusqu’à 650°C)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermomètres électroniques (à 0.1 degrés)</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomètres à mercure en verre pour les mesures de température à l’air ambiant, y compris les mesures de min/max</td>
<td>Thermomètres en verre à liquide</td>
<td>=</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermomètres électroniques</td>
<td>+/++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomètres à cadran au mercure pour utilisation dans l’industrie et à bord des bateaux.</td>
<td>Thermomètres à cadran avec baguettes/capillaires et d’autres liquides ou gaz</td>
<td>+</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermomètres électroniques</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomètres à mercure en verre pour usage en laboratoire</td>
<td>Thermomètres en verre à liquide (à 1 degré)</td>
<td>=</td>
<td>3</td>
<td>Thermomètres électroniques ~</td>
</tr>
<tr>
<td>Domaine d’application / type de produit</td>
<td>Alternatives disponibles sur le marché</td>
<td>Prix des alternatives comparé aux appareils de mesure au mercure</td>
<td>Niveau de substitution</td>
<td>Remarques</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Thermomètres en verre à liquide (à 0.1 degré) –limité au niveau de la gamme de température</td>
<td>+/++</td>
<td></td>
<td>même prix que les thermomètres certifiés au Hg Quelques applications en laboratoire pour lesquelles le mercure peut difficilement être substitué.</td>
</tr>
<tr>
<td></td>
<td>Thermomètres électroniques (à 0.1 degré de résolution sur une large gamme de température)</td>
<td>+/++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyromètres au mercure pour les mesures à haute température</td>
<td>Capteurs de température infrarouge</td>
<td>N</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyromètres à l’azote</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manomètres pour la mesure de pression dans le domaine du chauffage et de la ventilation</td>
<td>Manomètres à tube de Bourdon</td>
<td>-/=</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manomètres électroniques</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baromètres à usage particulier</td>
<td>Baromètres anérides</td>
<td>=</td>
<td>2-4</td>
<td>Interdit par la Directive 2007/51/EC</td>
</tr>
<tr>
<td></td>
<td>Baromètres à liquide sans mercure</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baromètres pour les stations météo, les bateaux, les installations offshore, etc.</td>
<td>Baromètres à résistance électronique ou baromètres de capacité</td>
<td>N</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Baromètres de haute précision, par ex. pour les calibrations</td>
<td>Baromètre électronique avec cylindre vibrant et transducteurs de pression d’air</td>
<td>N</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Mesure manuelle de tension artérielle</td>
<td>Sphygmomanomètre anéroïde</td>
<td>+/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphygmomanomètre anéroïde résistant aux chocs</td>
<td>=</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphygmomanomètre manuel électronique</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manomètre de référence pour les mesures de tension artérielle par les médecins généralistes</td>
<td>Sphygmomanomètre manuel électronique</td>
<td>+</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Mesures de tension artérielle à la maison</td>
<td>Appareils semi-automatiques électroniques</td>
<td>=</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Domaine d’application / type de produit</td>
<td>Alternatives disponibles sur le marché</td>
<td>Prix des alternatives comparé aux appareils de mesure au mercure</td>
<td>Niveau de substitution</td>
<td>Remarques</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mesures automatiques de tension artérielle dans les hôpitaux</td>
<td>Appareils automatiques de mesure pour le suivi de la pression artérielle et d’autres indicateurs vitaux</td>
<td>++</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Jauges de déformation</td>
<td>Jauges de déformation à indium-gallium</td>
<td>N</td>
<td></td>
<td>Pour les besoins de la recherche, d’avantages de validations indépendantes sont toujours demandées pour les solutions alternatives en remplacement des jauges à mercure</td>
</tr>
<tr>
<td></td>
<td>Techniques de cellules photovoltaïques ou de laser à effet Doppler</td>
<td>N</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Hygromètres</td>
<td>Hygromètres avec thermomètres sans mercure Hygromètres électroniques</td>
<td>=</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Hydromètres</td>
<td>Hydromètres avec thermomètres sans mercure</td>
<td>N</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Tensiomètres</td>
<td>Tensiomètres électroniques</td>
<td>-=</td>
<td>4</td>
<td>Les solutions alternatives utilisent des méthodes totalement différentes et ne sont pas facilement comparables</td>
</tr>
<tr>
<td></td>
<td>Tensiomètres avec manomètre de Bourdon mécanique</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrodes à goutte de mercure</td>
<td>Un certain nombre d’autres méthodes analytiques</td>
<td>++</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Electrodes de référence au mercure</td>
<td>Pas d’alternatives disponibles pour quelques applications spécifiques</td>
<td>N</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Gyrocompas</td>
<td>Gyrocompas utilisant un liquide organique pour le contact électrique</td>
<td>=</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Compteurs de Coulter</td>
<td></td>
<td>N</td>
<td>n.a.</td>
<td></td>
</tr>
</tbody>
</table>
Clé assignée pour les niveaux de prix actuel pour les utilisateurs/consommateurs d’alternatives sans mercure en comparaison des technologies équivalentes au mercure:
– niveau de prix moindre (la solution alternative est meilleur marché)
= à peu près le même niveau de prix
+ niveau de prix plus élevé
++ niveau de prix nettement plus élevé (plus de 5 fois plus élevé)
N données insuffisantes pour assigner un indicateur

Clé pour les indices de niveau de substitution assignés:
0 Aucune substitution suggérée dans les sources de données consultées; souvent en cours de développement
1 Les alternatives sont en maturation commerciale, ou sont présentes sur le marché mais avec des parts de marché marginales
2 Les alternatives sont commercialement matures et ont des parts de marché significatives, mais elles ne dominent pas le marché
3 Les alternatives dominent le marché, mais une nouvelle production avec du mercure a aussi des parts importantes de marché
4 L’usage du mercure est complètement, ou presque complètement, remplacé par des solutions alternatives
N données insuffisantes pour assigner un indicateur
? Indicateurs très incertain suite au nombre limité de données

Dans la plupart des pays de la partie européenne du Bassin Méditerranéen, les appareils de mesure contenant du mercure sont collectés simultanément à d’autres déchets toxiques, puis séparés pour le recyclage. Il n’existe pas de système de collecte séparé pour les appareils de mesure contenant du mercure.

6.1.5 Instruments électriques et électroniques

Il n’y a aucun obstacle technique au remplacement des composantes électriques, relais et autres contacts, par des équivalents sans mercure. Dans la plupart des cas, le prix des solutions alternatives est similaire (et dans certains cas inférieurs) à celui de leurs équivalents mercuriques. Toutefois, le mercure est toujours utilisé dans certaines applications, comme cela est expliqué ci-dessous.

1. Interrupteurs à bascule

Bien que les usages les plus importants des interrupteurs à bascule au mercure aient été supprimés par les Directives RoHS et ELV, ce type d’interrupteurs est toujours utilisé dans des applications médicales et des équipements de laboratoire, des capteurs de mouvements/vibrations, des interrupteurs flottants et des interrupteurs immergés, certains types d’horloges, des canots de sauvetage, ainsi que des thermostats. De nombreuses alternatives au mercure sont disponibles sur le marché, et sont généralement compétitives en termes de coût:

- **Billes métalliques roulantes**, utilisées pour créer la connection électrique en se déplaçant avec le mouvement de l’interrupteur à bascule abritant ou étant activé par des aimants d’activation.

- **Capteurs électrolytiques**, contenant des électrodes multiples et remplis avec un fluide conducteur d’électricité. Comme le capteur s’incline, le fluide reste horizontal sous l’effet de la gravité. La conductivité entre les électrodes est proportionnelle à la longueur de l’électrode immergée dans le fluide.

- **Potentiomètres**, consistant en un canal conductif courbe avec un terminal de connection à chaque extrémité et un balai mobile connecté à un troisième terminal. Comme le levier du potentiomètre subit une rotation, la
longueur du chemin électrique et la résistance sont modifiés de façon proportionnelle.
- **Interrupteurs à bascule mécaniques**, pouvant être soit des interrupteurs à rupture brusque soit des micro-interrupteurs qui peuvent être activés par diverses méthodes telles qu’une bille métallique roulante.
- **Interrupteurs à bascule à état solide**, qui sont souvent appelés inclinomètres ou accéléromètres selon le type d’application.
- **Interrupteurs à bascule de capacité**, qui utilisent un capteur de capacité produisant un signal de sortie directement proportionnel au basculement relatif.

2. **Thermorégulateurs**

Les thermorégulateurs contenant du mercure peuvent être remplacés par des thermostats et thermorégulateurs électroniques digitaux disponibles pour des usages domestiques et industriels nécessitant un contrôle de la température.

3. **Relais reed à contact mouillé au mercure**

Il existe plusieurs alternatives aux relais reed à contact mouillé au mercure, dont des transistors à effet de champ (FET), des interrupteurs électromécaniques, des interrupteurs coaxiaux et des systèmes micro-électromécaniques à fréquence radio (SMEM FR).

4. **Relais à déplacement et contacteurs**

Les relais à déplacement et contacteurs au mercure peuvent être remplacés par un grand nombre d’alternatives, comme par exemple le système de relais sans mercure E-SAFE de Watlow.

5. **Interrupteurs de pression**

Ils peuvent être remplacés par deux alternatives qui sont compétitives en termes de coût. Toutefois, ces alternatives ne sont pas adaptées à toutes les mises en conformité.
- **Interrupteurs de pression mécanique**. Ils utilisent un piston, un diaphragme ou un soufflet comme capteur de pression. Le capteur peut soit 1) activer directement un interrupteur, soit 2) utiliser un bouton poussoir, un levier ou un autre moyen de compression pour activer un micro-interrupteur à rupture brusque.
- **Interrupteurs de pression à état solide**. Ils contiennent une ou plusieurs capteurs de pression qui sont des jauges de contrainte, un transmetteur, ainsi qu’un ou plusieurs interrupteurs – le tout dans un emballage compact.

Le Tableau 39 présente les alternatives actuellement disponibles pour les interrupteurs et autres composantes électriques contenant du mercure, avec les différences de prix et le niveau de remplacement en Europe.

Tableau 39. Solutions alternatives disponibles sur le marché pour les interrupteurs et autres composantes électriques contenant du mercure. Source: Lassen et al., 2008.
<table>
<thead>
<tr>
<th>Domaine d’application / Type de produit</th>
<th>Solutions alternatives sur le marché</th>
<th>Prix des solutions alternatives comparées aux composantes électriques au mercure</th>
<th>Niveau de substitution</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupteurs à bascule pour applications générales</td>
<td>De nombreuses technologies alternatives sans mercure sont couramment utilisées pour les interrupteurs à bascule et leur application</td>
<td>=</td>
<td>3-4</td>
<td>Pour certaines applications, le remplacement peut déjà avoir eu lieu, mais pour certaines applications spécifiques, il est possible qu’il n’y ait pas de solutions alternatives</td>
</tr>
<tr>
<td>Détecteurs de mouvement pour les almes personnelles et l’observation de la vie sauvage</td>
<td>Appareils électroniques. Des solutions alternatives peuvent ne pas être disponibles pour certaines applications</td>
<td>N</td>
<td>0-4</td>
<td></td>
</tr>
<tr>
<td>Interrupteurs flottants</td>
<td>Les solutions alternatives sont des interrupteurs magnétiques, des interrupteurs flottants optiques, des interrupteurs flottants à conductivité, des interrupteurs à thermistance, et des interrupteurs immergés à capacité</td>
<td>=</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Interrupteurs de pression</td>
<td>Quelques technologies alternatives sans mercure</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermostats et thermorégulateurs</td>
<td>Quelques technologies alternatives sans mercure Thermostats digitaux et électromécaniques</td>
<td>=</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Relais à déplacement au mercure</td>
<td>Les solutions alternatives aux relais à déplacement au mercure sont des relais reed à contact sec magnétique et d’autres relais électromécaniques, tels que des relais montés sur des circuits imprimés pour des applications générales, spécifiques ou lourdes.</td>
<td>=</td>
<td>3-4</td>
<td>Des solutions alternatives ont été conçues de façon spécifique pour être utilisées dans la plupart des applications, y compris des applications de contrôle de procédé exigeantes. Toutefois, les adaptations peuvent poser pour certains types d’équipements (ce qui est surtout dû à la conception de ces équipements).</td>
</tr>
<tr>
<td>Domaine d’application / Type de produit</td>
<td>Solutions alternatives sur le marché</td>
<td>Prix des solutions alternatives comparées aux composantes électriques au mercure</td>
<td>Niveau de substitution</td>
<td>Remarques</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Relais reed à contact mouillé au mercure</td>
<td>Les solutions alternatives sont des transistors à effet de champ (TEC), des interrupteurs électromécaniques, des interrupteurs coaxiaux, et des systèmes micro-électromécaniques à radio fréquence</td>
<td>+/-</td>
<td>3-4</td>
<td>Ils ont été remplacés dans toutes les applications autres que celles des groupes 8 et 9 de la directive DEEE. Il reste un petit nombre d’applications pour lesquelles seuls les interrupteurs au mercure satisfont à des exigences techniques essentielles</td>
</tr>
<tr>
<td>Détecteur de flamme</td>
<td>Le fait d’utiliser un système d’allumage électronique dans les équipements au gaz élimine le besoin d’un voyant lumineux et est généralement une alternative viable. La plupart des fabricants proposent également des unités de détection de flamme pour les allumages électroniques sans mercure.</td>
<td>=</td>
<td>4</td>
<td>Des solutions alternatives peuvent facilement être trouvées et ont déjà largement remplacé les capteurs de flamme à mercure.</td>
</tr>
</tbody>
</table>

Clé assignée pour les niveaux de prix actuel pour les utilisateurs/consommateurs d’alternatives sans mercure en comparaison des technologies équivalentes au mercure:
- niveau de prix moindre (la solution alternative est meilleur marché)
= à peu près le même niveau de prix
+ niveau de prix plus élevé
++ niveau de prix nettement plus élevé (plus de 5 fois plus élevé)
N données insuffisantes pour assigner un indicateur

Clé pour les indices de niveau de substitution assignés:
0 Aucune substitution suggérée dans les sources de données consultées; souvent en cours de développement
1 Les alternatives sont en maturation commerciale, ou sont présentes sur le marché mais avec des parts de marché marginales
2 Les alternatives sont commercialement matures et ont des parts de marché significatives, mais elles ne dominent pas le marché
3 Les alternatives dominent le marché, mais une nouvelle production avec du mercure a aussi des parts importantes de marché
4 L’usage du mercure est complètement, ou presque complètement, remplacé par des solutions alternatives
N données insuffisantes pour assigner un indicateur
? Indicateurs très incertains suite au nombre limité de données

6.1.6 Sources de lumière au mercure

Les lampes contenant du mercure (tubes fluorescents, lampes à décharge à haute intensité, lampes fluorescentes compactes) sont toujours utilisées en raison de leur plus grande efficacité énergétique par rapport aux alternatives sans mercure. En fait, elles consomment généralement de 3 à 5 fois moins d’énergie que les lampes à
incandescence. De plus, leur durée de vie est généralement de 5 à 10 fois plus longue. Par conséquent, il y a peu d’alternatives aux lampes à mercure qui soient bon marché et efficaces sur le plan énergétique.

Cependant, des progrès technologiques ont permis de réduire la teneur en mercure des lampes jusqu’à un dixième des quantités précédemment utilisées dans les lampes fluorescentes standard. Les lampes contenant une faible quantité de mercure sont plus chères que les lampes traditionnelles. Les lampes à incandescence et autres lampes alternatives sont généralement meilleur marché que les lampes efficaces sur le plan énergétique, mais leur coût énergétique et opérationnel est plus élevé. Les alternatives aux lampes à mercure qui sont les plus utilisées sont les suivantes.

1. **Lampes à incandescence.** La lumière est produite par un bulbe incandescent lorsque qu’un courant électrique passe à travers un fin filament de tungstène en le chauffant jusqu’à ce qu’il soit incandescent. Les lampes à incandescence sont considérées comme une technologie déjà ancienne et sont nettement moins efficaces que les lampes fluorescentes et les lampes LED. Environ 90 % de l’énergie utilisée est libérée sous forme de chaleur. De plus, il faut noter que même si les lampes à incandescence ne contiennent pas de mercure, leurs émissions de mercure sur leur cycle de vie excèdent souvent celles de lampes fluorescentes compactes (LFC) à mercure équivalentes. Cette observations vient du fait que les centrales énergétiques alimentées au charbon ou au pétrole génèrent des émissions de mercure en produisant de l’électricité, et les lampes à incandescence consomment plus d’électricité que les LFC. En 2007, General Electric a annoncé qu’il était en train de développer des lampes à incandescence de haute efficacité, qui seraient de 2 à 4 fois plus efficaces que les ampoules à incandescence actuelles et offriraient la même qualité de lumière et le même caractère instantané que les lampes à incandescence actuelles.

2. **Des diodes électroluminescentes (DEL) sans mercure** sont disponibles dans le commerce pour remplacer les lampes traditionnelles contenant du mercure. Elles peuvent être utilisées entre autres dans les horloges digitales, les téléphones mobiles, les feux de signalisation, les ampoules de feux de recul et de stop, les signaux de sortie de secours, les scanners, les imprimantes et les panneaux d’affichage à cristaux liquides (ACL). Toutefois, les spectres de lumière émises ne sont pas suffisamment proches du spectre chaud et large fortement apprécié qui est émis par les lampes à incandescence traditionnelles. Les options disponibles pour franchir cet obstacle sont sur le point d’être commercialisées, par exemple en associant des matériaux diffusant qui mélangent et répandent la lumière et des mélanges optimisés de DEL colorées. De plus, des DEL utilisant directement 230 et 110 volts sans qu’il y ait besoin de transformateurs AC DC viennent d’être récemment mises au point.

3. **Les ampoules de plafond à DEL** sont une solution de remplacement pour les lampes à réflecteur LFC utilisées dans les éclairages encastrés. Ces produits sont conçus pour les habitations nouvelles ou restaurées où doivent être installés de nouveaux éclairages encastrés. Ils sont compatibles avec les équipements encastrés standard. Les avantages des ampoules de plafond à DEL sont une longue durée de vie (50.000 heures), une couleur claire et chaude semblable aux lampes incandescentes, une faible production de chaleur et leur intensité peut être diminuée. Les ampoules de plafond à DEL sont efficaces sur le plan énergétique et, dans certains cas, elles consomment moins d’énergie que les lampes équivalentes à LFC. Elles sont chères du fait qu’il s’agit d’une technologie relativement nouvelle et par conséquent les prix sont élevés et la disponibilité est limitée. De plus, une coupure de courant peut...
demander le remplacement de toute l’unité, ce qui revient beaucoup plus cher que de remplacer une lampe à LFC.

4. **Phares HID sans mercure.** Ils peuvent remplacer les lampes à décharge de haute intensité qui sont utilisées sur certaines automobiles de luxe ou sportives à cause de leur lumière bleu-blanc distinctive (qui assure une meilleure visibilité la nuit en comparaison des phares halogènes).

5. **Phares halogènes.** Ils sont significativement moins chers que les phares HID, mais ils sont moins efficaces sur le plan énergétique et ont une durée de vie plus courte. Les phares halogènes ne produisent pas l’éblouissement qui est courant avec les phares HID mais offrent une moins bonne visibilité la nuit.

6. **Phares DEL.** Ils représentent une technologie émergente, qui se traduit par une efficacité importante et une durée de vie plus longue que les phares HID ou halogènes.

7. **Unités de rétro-éclairage DEL.** Elles peuvent remplacer les lampes fluorescentes à cathode froide (LFCF) qui sont couramment utilisées dans les télévisions et les ordinateurs. Elles sont couramment utilisées dans les écrans LCD petits et bon marché, et sont maintenant de plus en plus incorporées dans les écrans LCD plus grands utilisés pour les ordinateurs et les télévisions. Elles ont une durée de vie longue (environ 50,000 heures). De plus, elles permettent un réglage de l’intensité lumineuse et un rapport de contraste plus élevé. La différence de prix entre les télévisions et les ordinateurs portables équipés avec des unités de rétro-éclairage DEL ou LFCF a récemment diminué. La différence entre les technologies DEL et LFCF est d’environ 100 à 200 dollars US pour plusieurs modèles de télévisions et d’ordinateurs portables.

Le Tableau 40 synthétise les solutions alternatives aux lampes à mercure les plus importantes qui sont disponibles sur le marché.

Tableau 40. Solutions alternatives disponibles sur le marché pour le remplacement des lampes à mercure.

Source: Lassen et al., 2008.

<table>
<thead>
<tr>
<th>Domaine d’application / Type de produit</th>
<th>Solutions alternatives sur le marché</th>
<th>Prix des solutions alternatives comparées aux lampes à mercure</th>
<th>Niveau de substitution</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lampes compactes à douilles standard</td>
<td>Lampes DEL à douilles standard</td>
<td>=</td>
<td>1</td>
<td>Disponible en magasin et sur internet en 2007 et 2008; références de prix, voir par ex. (Trenden 2008); (Dioder.dk 2008).</td>
</tr>
<tr>
<td>Rétro-éclairage pour les écrans d’ordinateurs portables</td>
<td>Rétro-éclairage DEL</td>
<td>+</td>
<td>1</td>
<td>(Sony 2008)</td>
</tr>
<tr>
<td>Rétro-éclairage pour les écrans de télévision LCD</td>
<td>Rétro-éclairage DEL</td>
<td>+</td>
<td>1</td>
<td>(Sony 2008)</td>
</tr>
<tr>
<td>Rétro-éclairage pour les écrans de console de jeux vidéos</td>
<td>Rétro-éclairage DEL</td>
<td>=</td>
<td>2</td>
<td>Sony Playstation Portable (Infoworld 2006). Le prix du rétro-éclairage n’est pas un facteur dans le choix du produit.</td>
</tr>
<tr>
<td>Domaine d’application / Type de produit</td>
<td>Solutions alternatives sur le marché</td>
<td>Prix des solutions alternatives comparées aux lampes à mercure</td>
<td>Niveau de substitution</td>
<td>Remarques</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Phares automobiles</td>
<td>Lampes DEL</td>
<td>=/+?</td>
<td>1</td>
<td>Le prix des phares n’est pas un facteur dans le choix du produit.</td>
</tr>
</tbody>
</table>

Clé assignée pour les niveaux de prix actuel pour les utilisateurs/consommateurs d’alternatives sans mercure en comparaison des technologies équivalentes au mercure:
- niveau de prix moindre (la solution alternative est meilleur marché)
= à peu près le même niveau de prix
+ niveau de prix plus élevé
++ niveau de prix nettement plus élevé (plus de 5 fois plus élevé)
N données insuffisantes pour assigner un indicateur

Clé pour les indices de niveau de substitution assignés:
0 Aucune substitution suggérée dans les sources de données consultées; souvent en cours de développement
1 Les alternatives sont en maturation commerciale, ou sont présentes sur le marché mais avec des parts de marché marginales
2 Les alternatives sont commercialement matures et ont des parts de marché significatives, mais elles ne dominent pas le marché
3 Les alternatives dominent le marché, mais une nouvelle production avec du mercure a aussi des parts importantes de marché
4 L’usage du mercure est complètement, ou presque complètement, remplacé par des solutions alternatives
N données insuffisantes pour assigner un indicateur
? Indicateurs très incertain suite au nombre limité de données

6.1.7 Piles

Les piles couramment vendues sur le marché peuvent être divisées en deux catégories: 1) piles miniatures et 2) piles non-miniatures. Les premières contiennent une petite quantité de mercure (sauf pour les batteries miniatures à oxyde mercurique) et n’ont qu’un nombre limité d’alternatives sans mercure disponibles pour leur remplacement. Au contraire, les secondes contiennent des quantités importantes de mercure et peuvent être facilement remplacées par diverses solutions alternatives sans mercure.

6.1.7.1 Piles miniatures

Les piles miniatures sont typiquement des piles en forme de pièce ou de bouton qui sont utilisées pour alimenter en électricité les jouets, les appareils auditifs, les montres, les calculatrices et d’autres appareils portatifs. Les technologies les plus importantes utilisées pour les piles miniatures sont: 1) à l’oxyde d’argent; 2) zinc air; 3) alcaline; 4) lithium. La teneur en mercure dans la plupart des piles miniatures à oxyde d’argent, zinc air et alcaline est d’environ 0.1-2% du poids de la pile. Au contraire, les piles miniatures au lithium ne contiennent pas de mercure et peuvent être considérées comme une alternative possible pour les piles miniatures contenant du mercure. Les piles miniatures au lithium ont un voltage nominal beaucoup plus élevé et une forme physique différente (généralement plus plate et plus large – en forme de pièce de monnaie) que les trois autres types de piles miniatures, et ne peuvent par conséquent pas être facilement substituées aux produits existants. Elles sont couramment utilisées dans des produits tels que des jeux électroniques, des montres, des calculatrices, des systèmes de verrouillages...
de portes de voitures, des planificateurs électroniques et des commandes de portes de garages.

Des solutions alternatives sans mercure pour de nombreuses piles miniatures sont disponibles depuis plusieurs années. Cependant, les piles miniatures sans mercure sont environ 24 à 30% plus chères que les piles contenant du mercure.

Des exemples de telles solutions alternatives sont les piles zinc-air sans mercure et d’autres piles bouton alternatives (qui contiennent toujours toutefois moins de 10 mg de mercure), qui remplacent les piles bouton à l’oxyde de mercure et au mercure-zinc (usage médical). Des versions sans mercure des piles miniatures à oxyde d’argent, dioxyde de manganèse (alcaines) et zinc-air commencent également à être commercialisées. Les compagnies Sony et New Leader commercialisent des piles à oxyde d’argent qui sont principalement utilisées dans les montres, les thermomètres digitaux à usage médical et les jeux. Sony produit plus de 40 modèles de piles à oxyde d’argent et avait prévu dès 2005 de cesser de produire des piles contenant du mercure.

6.1.7.2 Piles non-miniatures

En ce qui concerne les piles non-miniatures contenant du mercure, il y en a 4 catégories: 1) pile cylindrique à zinc-manganèse de type pâte; 2) pile cylindrique à zinc-manganèse de type carton; 3) piles cylindriques alcaines à zinc-manganèse et 4) piles à oxyde mercurique. La solution alternative la plus importante est la pile cylindrique alcaine à manganèse qui est facilement disponible dans de nombreuses tailles et puissances requises pour les diverses applications des piles cylindriques.

6.1.8 Produits chimiques au mercure

Le mercure est utilisé en laboratoire comme réactif, agent conservateur et catalyseur dans de nombreuses applications. La plupart de ces utilisations peuvent être substituées par des solutions alternatives sans mercure.

Bien que certaines utilisations standard du mercure puissent être difficiles à remplacer, l’utilisation du mercure dans les écoles et les universités peut être limitée à quelques usages, par ex. électrodes de référence et réactifs standard. De plus, divers fabricants fournissent aux laboratoires des équipements pour récupérer le mercure. Les substituts sans mercure dans les laboratoires sont presque toujours compétitifs et permettent en plus des économies supplémentaires en termes de formation de sécurité et de précaution pour les employés, des coûts de nettoyage réduits et des coûts d’équipement et de stockage également réduits. Toutefois, le remplacement du mercure dans les laboratoires peut être difficile parce que certains standards actuels ont été développés autour de l’usage de certains composés du mercure, et ils sont parfois considérés nécessaires pour reproduire certaines analyses fiables. De plus, les techniciens tendent à préférer des procédures qu’ils connaissent bien et utilisent depuis longtemps.

L’utilisation du mercure dans les pesticides et les biocides a cessé ou a été bannie dans de nombreux pays, et a été remplacée par des alternatives sans mercure qui sont généralement comparables en termes de coût. La même observation s’applique aux peintures.

Le mercure est aussi utilisé dans différentes catégories de produits pharmaceutiques (par ex. vaccins, gouttes pour les yeux, herbes médicinales, désinfectants) surtout comme agent conservateur, mais aussi dans certains cas comme ingrédient actif. L’une des applications les plus importantes est le thimerosal ou thiomersal (éthyl thiosalicylate) qui
est utilisé dans des vaccins commercialisés en doses multiples. Les quantités de mercure pour cette application sont très petites en comparaison d’autres utilisations (par ex. remplissages dentaires, thermomètres, piles), mais elles posent question car le mercure est directement injecté dans le sang. Toutefois, l’OMS recommande l’utilisation des vaccins au thimerosal parce qu’elle considère que les effets bénéfiques du thimerosal dépassent de loin les risques associés à son utilisation. Néanmoins, l’utilisation du mercure pour les besoins pharmaceutiques diminue. En ce qui concerne les coûts, les vaccins à dose unique sans conservateurs sont typiquement 50% plus chers que les vaccins multi-doses.

De plus, le mercure est utilisé dans les crèmes éclaircissantes la peau, les savons et en tant que conservateur dans les cosmétiques pour les yeux. L’utilisation de cosmétiques contenant du mercure a fortement diminué dans les pays occidentaux suite à des restrictions légales, mais elle est très répandue dans de nombreux pays africains et asiatiques. Les solutions alternatives au mercure les plus utilisées pour les cosmétiques d’éclaircissement de la peau sont l’hydroquinone et les corticostéroïdes.

Le Tableau 41 indique les composés chimiques à base de mercure les plus importants et leurs solutions alternatives commercialisées.

Tableau 41. Aperçu des solutions alternatives aux composés chimiques contenant du mercure commercialisées dans l’UE. Source: Lassen et al., 2008.

<table>
<thead>
<tr>
<th>Domaine d’application / Type de produit</th>
<th>Solutions alternatives sur le marché</th>
<th>Prix des solutions alternatives comparées aux composés chimiques à base de mercure</th>
<th>Niveau de substitution</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyseurs au mercure pour la production d’élastomères au polyuréthane (PU)</td>
<td>Des catalyseurs à l’étain ou utilisant des amines sont des solutions alternatives au catalyseurs Hg pour certaines applications concernant les élastomères PU, tandis que des catalyseurs au titane et au zirconium compounds ont été utilisés pour d’autres, et des catalyseurs au bismuth, au zinc, au platine, au palladium, au hafnium, etc., ont été commercialisés pour d’autres encore</td>
<td>=</td>
<td>3</td>
<td>Le niveau de substitution peut être différent pour différentes applications des élastomères PU</td>
</tr>
<tr>
<td>Sulfate de Hg(II) pour l’analyse du COD</td>
<td>Détermination du COD sans ajout de sulfate mercureique; analyse TOC; analyse de la demande en oxygène biochimique (DOB)</td>
<td>N</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Mercure intervenant dans des réactifs tels que par ex. le réactif de Nessler, le réactif de Hayem, etc.</td>
<td>Non étudié</td>
<td>N</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Vaccins au thimerosal</td>
<td>Non étudié</td>
<td>N</td>
<td>2-4</td>
<td>Remplacé par d’autres conservateurs dans de nombreux vaccins</td>
</tr>
</tbody>
</table>
Tableau 42. Aperçu des solutions alternatives à des produits divers contenant du mercure commercialisées dans l’UE. Source: Lassen et al., 2008.

<table>
<thead>
<tr>
<th>Domaine d’application / Type de produit</th>
<th>Solutions alternatives sur le marché</th>
<th>Prix des solutions alternatives comparées aux composés chimiques à base de mercure</th>
<th>Niveau de substitution</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thimerosal pour la conservation des cosmétiques pour les yeux</td>
<td>Non étudié</td>
<td>N</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Composés du mercure utilisés comme désinfectants</td>
<td>Quelques composés organiques</td>
<td>N</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Biocides pour la peinture</td>
<td>Quelques composés organiques</td>
<td>=</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Pigments (vermillon, HgS)</td>
<td>Pigments organiques et inorganiques</td>
<td>=</td>
<td>4</td>
<td>Utilisé pour les travaux de restauration nécessitant une couleur spécifique</td>
</tr>
</tbody>
</table>

Clé assignée pour les niveaux de prix actuel pour les utilisateurs/consommateurs d’alternatives sans mercure en comparaison des technologies équivalentes au mercure:
- niveau de prix moindre (la solution alternative est meilleur marché)
 = à peu près le même niveau de prix
+ niveau de prix plus élevé
++ niveau de prix nettement plus élevé (plus de 5 fois plus élevé)
N données insuffisantes pour assigner un indicateur

Clé pour les indices de niveau de substitution assignés:
0 Aucune substitution suggérée dans les sources de données consultées; souvent en cours de développement
1 Les alternatives sont en maturation commerciale, ou sont présentes sur le marché mais avec des parts de marché marginales
2 Les alternatives sont commercialement matures et ont des parts de marché significatives, mais elles ne dominent pas le marché
3 Les alternatives dominent le marché, mais une nouvelle production avec du mercure a aussi des parts importantes de marché
4 L’usage du mercure est complètement, ou presque complètement, remplacé par des solutions alternatives
N données insuffisantes pour assigner un indicateur
? Indicateurs très incertain suite au nombre limité de données

6.1.9 Autres applications

Le Tableau 42 suggère des solutions alternatives pour d’autres produits d’usage courant contenant du mercure et identifiées au sein de l’UE par Lassen et al., 2008.
<table>
<thead>
<tr>
<th>Domaine d’application / Type de produit</th>
<th>Solutions alternatives sur le marché</th>
<th>Prix des solutions alternatives comparées à l’usage du mercure</th>
<th>Niveau de substitution</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosimétrie au mercure</td>
<td>Pour certaines tailles de pores, il ne semble pas y avoir de solutions alternatives</td>
<td>- / Pas d’ alternatives</td>
<td>2</td>
<td>Pour les matériaux qui peuvent être étudiés par d’autres méthodes, les solutions alternatives coûtent moins cher</td>
</tr>
<tr>
<td>Pycnomètres au mercure</td>
<td>Techniques de déplacement de gaz</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Alliages mercure-cadmium-tellurure (MCT) dans les détecteurs infra-rouge</td>
<td>Pour certaines longueurs d’onde, il n’y a pas de solutions alternatives</td>
<td>Pas d’ alternatives</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Calibration des moniteurs au mercure</td>
<td>Pas d’ alternatives</td>
<td>Pas d’ alternatives</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ecrans plasma</td>
<td>La plupart des écrans plasma utilisent des technologies sans mercure</td>
<td>=</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Dorure au feu</td>
<td>Galvanoplastie</td>
<td></td>
<td>4 général</td>
<td>La galvanoplastie peut ne pas donner la même apparence, ce qui peut poser problème dans le cas de travaux de restauration</td>
</tr>
<tr>
<td>Conducteurs dans les machines à soudure à la molette</td>
<td>Conducteurs sans mercure</td>
<td>N</td>
<td>3-4 (nouvel équipement)</td>
<td>Des conducteurs sans mercure peuvent ne pas être disponibles pour le remplacement dans des machines existantes Différences entre les machines pour soudure droite et courbe</td>
</tr>
<tr>
<td>Bagues collectrices au mercure</td>
<td>Bagues collectrices en bronze plaqué or et brosses en alliage d’or</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Pigments pour l’art et les travaux de restauration</td>
<td>Quelques pigments organiques et inorganiques</td>
<td>N</td>
<td>4 général</td>
<td>Les composés au mercure ont en général été éliminés dans les travaux artistiques. Pour les travaux de restauration, il se peut qu’il n’y ait pas de substituts pour certaines couleurs spécifiques</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
Clé assignée pour les niveaux de prix actuel pour les utilisateurs/consommateurs d’alternatives sans mercure en comparaison des technologies équivalentes au mercure:
– niveau de prix moindre (la solution alternative est meilleur marché)
= à peu près le même niveau de prix
+ niveau de prix plus élevé
++ niveau de prix nettement plus élevé (plus de 5 fois plus élevé)
N données insuffisantes pour assigner un indicateur

Clé pour les indices de niveau de substitution assignés:
0 Aucune substitution suggérée dans les sources de données consultées; souvent en cours de développement
1 Les alternatives sont en maturation commerciale, ou sont présentes sur le marché mais avec des parts de marché marginales
2 Les alternatives sont commercialement matures et ont des parts de marché significatives, mais elles ne dominent pas le marché
3 Les alternatives dominent le marché, mais une nouvelle production avec du mercure a aussi des parts importantes de marché
4 L’usage du mercure est complètement, ou presque complètement, emplacé par des solutions alternatives
N données insuffisantes pour assigner un indicateur
? Indicateurs très incertain suite au nombre limité de données
6.2 Emissions non-intentionnelles

Selon le protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds, les catégories suivantes de mesures de mitigation peuvent être prises pour réduire les émissions non-intentionnelles de mercure:

- Application de technologies à faible émission, en particulier dans les nouvelles installations;
- Nettoyage des gaz d’échappement (mesures de réduction secondaires) avec des filtres, des dépoussiéreurs, des absorbateurs, etc.;
- Changement ou préparation de matériaux bruts, de combustibles et/ou d’autres matériaux d’alimentation (par ex. utilisation de matériaux bruts avec de faibles teneurs en métaux lourds);
- Pratiques pour une meilleure gestion, tel qu’un bon entretien des maisons, des programmes préventifs de maintenance, ou des mesures primaires telles que fermer les unités créant de la poussière;
- Techniques de gestion appropriées pour l’environnement pour l’utilisation et le dépôt de certains produits contenant du mercure.

Les secteurs les plus concernés par les émissions de métaux lourds sont, selon protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds, la combustion des combustibles fossiles dans les centrales thermiques et les chaudières industrielles, les industries du fer et de l’acier primaires et secondaires, les fonderies de fer, les industries des métaux non-ferreux primaires et secondaires, les cimenteries et l’incinération des déchets.

6.2.1 Combustion de combustibles fossiles dans les centrales thermiques et les chaudières industrielles

La combustion de charbon dans les chaudières est une des sources les plus importantes d’émission de mercure (la teneur en mercure des charbons est de plusieurs ordres de grandeur supérieure à celle du pétrole et du gaz naturel). En général, les émissions de mercure à partir de la combustion de combustibles fossiles constituaient environ 45% des émissions anthropiques globales de mercure en 2005 (UNEP, 2009).

Afin de réduire les émissions de mercure lors de la combustion du charbon, quatre catégories de mesures peuvent être utilisées (UNEP, 2009): 1) amélioration de l’efficacité énergétique (et conversion du procédé de combustion du charbon à la combustion de pétrole ou de gaz naturel); 2) traitement du charbon; 3) séparation apportant des bénéfices; 4) technologies de séparation dédiées au mercure.

Une amélioration dans l’efficacité des usines peut être obtenue par un certain nombre de mesures, telles que l’amélioration du fonctionnement de la chaudière, des pratiques d’utilisation et de maintenance comme par exemple la maintenance de la turbine à vapeur.
ou le traitement des eaux usées. Ces mesures peuvent améliorer l’efficacité des installations et réduire leur détérioration.

Le traitement du charbon inclut les techniques suivantes :

- Le lavage conventionnel du charbon vise à minimiser les teneurs en cendres et en soufre du charbon. Cependant, il diminue aussi sa teneur en mercure.
- L’enrichissement du charbon consiste en un lavage du charbon et un traitement supplémentaire conçu pour diminuer la teneur en mercure du charbon.
- Le mélange du charbon avec des additifs vise de façon spécifique à minimiser les émissions de mercure en promouvant des transformations chimiques du mercure dans les équipements de combustion et de post-combustion des centrales thermiques, ce qui facilite la séparation du mercure. Ils peuvent être utilisés en complément du lavage du charbon (par ex., mélange de deux charbons lavés) ou dans une approche autonome (par ex., ajout d’halogénure dans la chaudière).

En ce qui concerne la troisième catégorie, les technologies permettant de réduire les émissions de particules, de SO₂ et de NOₓ peuvent souvent aussi réduire les émissions de mercure. Il y a deux types principaux de système de contrôle des particules pour les centrales à charbon: les précipitateurs électrostatiques (PES) et les filtres en tissu. Selon Sloss (2008), en moyenne, les systèmes PES capturent environ 30% du mercure présent dans le charbon. Les filtres en tissu peuvent être plus efficaces pour le contrôle du mercure que les systèmes PES, particulièrement dans le cas des charbons bitumineux, comme le dépôt du filtre joue le rôle d’un réacteur pour le charbon non brûlé, ce qui améliore la capture du mercure. De plus, la désulfurisation du charbon sous flux de gaz (DFG) est également utile pour réduire les émissions de mercure.

La technologie la plus importante pour la séparation du mercure est l’utilisation d’une injection de sorbant. Le sorbant le plus souvent utilisé et le plus intensivement testé est le charbon actif en poudre (CAP).

Le Table 43 reprend les mesures de contrôle disponibles pour réduire les émissions de mercure associée à la combustion des combustibles fossiles dans les centrales thermiques et les chaudières industrielles.

Table 43. Mesures de contrôle et efficacité de réduction pour les émissions liées à la combustion des combustibles fossiles. Source: Protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds.

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité de réduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion de pétrole</td>
<td>Remplacer le pétrole par le gaz</td>
<td>70-80</td>
</tr>
<tr>
<td>Combustion de charbon</td>
<td>Précipitateurs électrostatiques (PES)</td>
<td>10-40</td>
</tr>
<tr>
<td></td>
<td>Désulfurisation sous flux de gaz (DFG) (*)</td>
<td>10-90</td>
</tr>
<tr>
<td></td>
<td>Filtres en tissu</td>
<td>10-60</td>
</tr>
</tbody>
</table>

(*) Cette technologie est surtout utilisée pour la réduction des émissions de SO₂. La réduction des émissions de métaux lourds est un bénéfice accessoire.

Le document BREF de la CE donne les mêmes indications mais identifie également comme BAT pour la réduction des émissions de mercure dans la combustion du charbon l’utilisation de PES de haute performance (taux de réduction >99.5 %) ou des filtres en tissu (taux de réduction >99.95 %). Les PES à forte efficacité montrent une bonne
séparation du mercure (dans le cas de charbons bitumineux) à des températures inférieures à 130 °C. De plus, certaines combinaisons de systèmes de nettoyage sous flux de gaz peuvent séparer du mercure oxydé et du mercure associé à des particules dans une certaine mesure. Pour les filtres en tissu ou les PES utilisés en combinaison avec des techniques FGD comme les épurateurs à calcaire humide, les épurateurs à séchoir par atomisation, ou l’injection de sorbant sec, un taux moyen de séparation moyen de 75 % (50 % avec PES et 50 % avec FGD) ou de 90 % si l’on y ajoute une technique SCR. Le taux de réduction dans le cas de la combustion de charbon sub-bitumineux ou de lignite est nettement plus faible et oscille entre 30 et 70 %. Les taux plus faibles de capture de mercure observé dans les centrales utilisant du charbon sub-bitumineux ou du lignite peuvent être attribués à la faible teneur en cendres de carbone et aux teneurs relativement plus élevées en mercure de l’effluent gazeux produite à partir de la combustion de ces charbons.

Finalement, le BREF considère le suivi périodique du mercure comme un BAT, et recommande une fréquence annuelle jusqu’à trois ans, selon le charbon utilisé. Il faut noter que les émissions totales de mercure devraient être suivies, et pas seulement le mercure dans les particules (EC, 2006).

6.2.2 Industrie du ciment

Des particules sont émises à tous les stades du procédé de production du ciment, depuis la manutention du matériau, la préparation du matériau brut (broyeurs, sécheurs), production du clinker et préparation du ciment. Les métaux lourds, dont le mercure, sont introduits dans le four à ciment avec les matériaux bruts, les combustibles fossiles et les combustibles usés.

Contrairement aux métaux lourds peu ou pas volatils (i.e. As, Be, Co, Cr, Cu, Mn, Sb, Se, Te, V, Zn) et aux métaux lourds semi-volatils (i.e. Ti, Pb and Cd), les émissions de mercure, qui est un métal lourd volatile, ne peuvent pas être contrôlées de façon efficace en séparant les poussières des gaz d’échappement du four. En fait, une partie des métaux lourds volatils reste sous forme de volatile, c’est-à-dire qu’ils ne sont pas adsorbés sur les surfaces des particules de poussières. Dans l’industrie du ciment, le mercure est principalement émis sous forme de vapeur, ce qui implique que plus la température du gaz d’échappement est faible dans le filtre, le plus de mercure adsorbé sur les particules de poussière peut être éliminé par les gaz d’échappement. Il y a en gros trois façons de réduire les émissions de métaux lourds dans l’industrie du ciment (CP/RAC, 2008) :

- **Reduction de la quantité des métaux mercuriques introduits dans le système.**
- **Modification du procédé existant** (mesures de prévention primaire à la source ou mesures de réduction).
- **Ajout d’une unité de nettoyage de gaz pour les gaz d’échappement** (mesures de réduction secondaires, traitement de fin de chaîne).

La réduction de la quantité de mercure et l’installation de systèmes de séparation de poussières efficaces sont les techniques les plus courantes. Il y a aussi un certain nombre de mesures secondaires, telles que l’adsorption sur du charbon actif, ce qui est une mesure très onéreuse ne pouvant être prise qu’avec des financements venant d’organismes publics.

La mesure de contrôle la plus importante pour le secteur du ciment selon le protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds, est rappelée dans le Tableau 44.
Tableau 44. Mesure de contrôle et efficacité de réduction pour l’industrie du ciment. Source: protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité de réduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions directes à partir des fours rotatoires</td>
<td>Adsorption sur du carbone</td>
<td>Hg>95</td>
</tr>
</tbody>
</table>

6.2.3 Industrie primaire du fer et de l’acier

Les émissions de mercure dans l’industrie primaire du fer et de l’acier se produisent en association avec des particules. La teneur en métaux lourds problématiques dans les poussières émises dépend de la composition des matériaux bruts et des types de métaux d’alliage ajoutés lors de la fabrication de l’acier. Afin d’éviter les émissions de mercure, des filtres en tissu devraient être utilisés qui permettent de réduire les teneurs en poussière à moins de 20 mg/m³. Si cela n’est pas possible du fait de caractéristiques particulières aux procédés de production, des précipitateurs électrostatiques ou des épurateurs de haute intensité peuvent être utilisés.

Le Tableau 45 reprend les mesures de contrôle les plus importantes pour l’industrie primaire du fer et de l’acier.

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité dans la réduction des poussières (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usines de frittage</td>
<td>Frittage optimisé en termes d’émission</td>
<td>ca. 50</td>
</tr>
<tr>
<td></td>
<td>Epurateurs et précipitateurs électrostatiques (PES)</td>
<td>> 90</td>
</tr>
<tr>
<td></td>
<td>Filtres en tissu</td>
<td>> 99</td>
</tr>
<tr>
<td>Usine de pellets</td>
<td>PES + réacteur à la chaux + filtres en tissu</td>
<td>> 99</td>
</tr>
<tr>
<td></td>
<td>Epurateurs</td>
<td>> 95</td>
</tr>
<tr>
<td>Haut-fourneaux, nettoyage des gaz de haut-fourneaux</td>
<td>Filtres en tissu / PES</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td>Epurateurs humides</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td>PES humides</td>
<td>>99</td>
</tr>
<tr>
<td>Processus sidérurgique à l’oxygène</td>
<td>Dépoussièrement primaire: séparateur humide / PES / filtres en tissu</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td>Dépoussièrement secondaire: PES secs / filtres en tissu</td>
<td>>97</td>
</tr>
<tr>
<td>Emissions fugitives</td>
<td>Bandes transportées fermées, enfermement et humidification du coke</td>
<td>80-99</td>
</tr>
</tbody>
</table>

6.2.4 Industrie secondaire du fer et de l’acier

Dans l’industrie secondaire du fer et de l’acier, il est très important de capturer toutes les émissions de façon efficace en installant des niches ou des hottes mobiles ou par évacuation totale des bâtiments. Ensuite, l’émission capturée doit être nettoyée. Le dépoussiérage dans des filtres en tissu, qui réduit la teneur en poussière à moins de 20 mg/m³, est considéré comme un BAT pour les processus émettant des poussières dans l’industrie secondaire du fer et de l’acier. Lorsqu’un BAT est aussi utilisé pour minimiser
des émissions fugitives, les émissions de poussières n’excèdent pas 0.1-1.35 kg/tonne d’acier, y compris les émissions fugitives directement liées au procédé.

Deux différents types de fourneaux sont utilisés pour la fusion de la ferraille: les fours Martin et les fours à arc électrique (FAE). Les derniers sont sur le point d’être abandonnés, et leurs émissions de mercure peuvent être significativement réduites avec des précipitateurs électrostatiques (PES) ou des filtres en tissu (voir Tableau 46).

Tableau 46. Mesures de contrôle et efficacité de réduction des poussières pour l’industrie secondaire du fer et de l’acier. Source: protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité dans la réduction des poussières (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fours Martin et fours à arc électrique (FAE)</td>
<td>PES</td>
<td>>99-99.5</td>
</tr>
<tr>
<td></td>
<td>Filtres en tissu</td>
<td></td>
</tr>
</tbody>
</table>

Tout comme les techniques de réduction de poussières, il est aussi considéré comme BAT par le rapport BREF (EC, 2009) de sélectionner des qualités de ferrailles appropriées et d’autres matériaux de base tels que les déchets et les produits auxiliaires et de mener une inspection poussée lors de la réception des déchets pour éviter des substances telles que les PCDD/F, les PCB et les métaux lourds, et en particulier le mercure, afin d’atteindre des niveaux d’émission faibles pour les polluants problématiques.

6.2.5 Fonderies de fer

Tout comme pour l’industrie secondaire du fer et de l’acier, la capture efficace de toutes les émissions est très importante pour les fonderies de fer, en installant des niches ou des hottes mobiles ou par évaluation totale des bâtiments. Après leur capture, les émissions doivent être nettoyées.

Dans les fonderies de fer, les émissions directes de métaux lourds particulaires ou gazeux sont principalement associées à la fusion et, dans une certaine mesure, à la coulée.

Le Tableau 47 présente les mesures de contrôle les plus importantes pouvant réduire les concentrations de poussières à 20 mg/m³ ou moins.

Tableau 47. Mesures de contrôle et efficacité de réduction des poussières pour les fonderies de fer. Source: protocole à la Convention sur la pollution atmosphérique transfrontalière à longue distance de 1998, protocole relatif aux métaux lourds

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité dans la réduction des poussières (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourneau à arc électrique</td>
<td>PES</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td>Filtres en tissu</td>
<td>>99.5</td>
</tr>
<tr>
<td>Fourneau à induction</td>
<td>Filtre à tissu/absorption à sec</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td>Filtre à tissu</td>
<td></td>
</tr>
<tr>
<td>Four à coupole froid</td>
<td>Filtre à tissu</td>
<td>>98</td>
</tr>
<tr>
<td></td>
<td>Filtre à tissu + pré-dépoussiérage</td>
<td>>97</td>
</tr>
<tr>
<td></td>
<td>Filtre à tissu + chimisorption</td>
<td>>99</td>
</tr>
<tr>
<td>Four à coupole chaud</td>
<td>Filtre à tissu + pré-dépoussiérage</td>
<td>>99</td>
</tr>
</tbody>
</table>
En général, la minimisation des émissions de poussières telle qu’elle a été présentée ci-dessus et dans le BREF (EC, 2005) minimise aussi de possibles émissions de métaux. Toutefois, cela n’est pas vrai pour des métaux de volatilité élevée tels que le mercure, qui peuvent générer des émissions gazeuses qui ne sont pas liées aux poussières. Au vu de l’implémentation d’une réglementation européenne sur les émissions de mercure, il y a un besoin de recherches sur les émissions de mercure à partir des processus de fusion en général, et en particulier par les fonderies pour les métaux non-ferreux (EC, 2005).

6.2.6 Pâte et papier

Les mesures visant à réduire les émissions de SO₂ et d’autres gaz polluants contribuent aussi à la réduction des émissions d’Hg bien que les émissions de métaux lourds ne soient normalement pas très importantes dans le secteur de la pâte et du papier (EC, 2010).

Des procédés secs et semi-secs sont principalement utilisés pour séparer des charges de polluants peu importantes. Ils servent surtout dans des installations de nettoyage de gaz pour divers polluants tels que SO₂, HCl, HF, TOC, métaux lourds, PCDD/PCDF. Les installations consistent essentiellement en un réacteur sec ou un absorbeur de type spray suivi d’un appareil de contrôle de particules efficace tel qu’un PES ou un filtre en tissu et quelques équipements accessoires pour manipuler les adsorbants et séparer la poussière.

Du charbon actif peut être ajouté au système et séparera du mercure et des composés organiques tels que les dioxines et les furanes. L’emploi de charbon actif peut être requis pour les chaudières à co-incinération.
6.3 Gestion des déchets

6.3.1 Traitement des déchets contenant du mercure
Selon le document BREF relatif aux industries de traitement de déchets (EC, 2006b), les mesures suivantes liées à la réduction des émissions de mercure sont considérés comme BAT :

- Identifier les eaux usées qui peuvent contenir des composés toxiques (par ex. des métaux tels que le mercure, le cadmium, le plomb, le cuivre, le nickel, le chrome, l’arsenic et le zinc).
- Séparer sur site les flux d’eaux usées précédemment identifiées.
- Traiter de façon spécifique les eaux usées sur site ou hors site.

De plus, certaines techniques spécifiques concernant le traitement de déchets contenant du mercure sont les suivantes :

a) Prétraiter les déchets contenant du mercure de la manière suivante:

- Déchiquetage/écrasement des piles et des piles bouton.
- Triage/cassage/séparation des thermomètres et contacteurs.
- Centrifugation des boues contenant du mercure afin d’en extraire la majeure partie du mercure métallique. La boue résiduelle a une faible teneur en mercure et est traitée par un procédé de distillation sous vide.
- Déchiquetage/tamisage des lampes à décharge de gaz, en retirer le fer et le séparer en fractions. La poudre fluorescente contenant le mercure est traitée par distillation sous vide.
- Traitement des lampes à décharge de gaz. Par chauffage et refroidissement, l’extrémité casse. Ensuite, la poudre fluorescente contenant le mercure est soufflée vers l’extérieur.

Une unité de sélection peut être ajoutée à ce prétraitement technique. Celle-ci détecte les poudres de les souffler sélectivement vers l’extérieur. La réutilisation de ces poudres est possible.

b) Réaliser la séquence suivante de traitements:

- Séparer et concentrer le mercure par évaporation et condensation.
- Traiter les gaz d’échappement avec des filtres à poussières et des filtres au charbon actif.
- Réintroduire dans le procédé la poussière et le charbon contaminé par le traitement du gaz.

c) Traiter le distillat (eau et fractions organiques) par :

- Incinération dans un incinérateur de déchets.
- Conduire les gaz issus de la distillation à travers un post-brûleur (à environ 850 °C) et un condenseur. Les effluents gazeux sont ensuite nettoyés (par ex. épurateur, filtre à poussières et filtre au charbon actif). La poussière séparée et le charbon contaminé sont renvoyés vers l’appareillage de distillation. Cette alternative élève le coût de la récupération.
Purifier la fraction aqueuse (après séparation) et renvoyer le dépôt vers l’appareillage de distillation. Cette alternative élève le coût de la récupération.

Dans une installation thermique de remédiation de sols, avec un passage de 2 t/h de sol contenant du mercure et avec des concentrations en Hg du gaz brut allant jusqu’à 20 mg/Nm³, un taux de récupération maximum de 99.9 % a été rapporté. Il a aussi été rapporté que la teneur en mercure du sol (1 - 300 mg/kg) diminuait à moins de 5 mg/kg suite à un traitement thermique. Un autre traitement a rapporté un pourcentage résultant de mercure émis dans l’air de 0.0015 %. Les émissions varient de 0.04 to 0.2 mg/Nm³.

Dans la distillation sous vide des boues contenant du mercure (1 – 4 % Hg), 99.6 % du mercure sont récupérés. Environ 0.1 % du mercure reste dans le résidu et environ 0.15 % sont emportés avec le distillat, lequel doit être incinéré. Ce dernier pourcentage finit dans les effluents gazeux. Au moyen d’un filtre à charbon actif, 99.9 % de ce mercure est séparé. La concentration maximum de mercure dans le résidu est de 50 mg/kg matériel sec.

La distillation sous vide est applicable au cas de boues contenant du mercure issu de la production de pétrole et de gaz naturel, de piles, de catalyseurs, de filtres au charbon actif, de thermomètres, de déchets du secteur dentaire, de tubes fluorescents, de grenailles et de sol. Différents flux de déchets sont traités séparément dans la distillation sous vide. Les capacités des installations varient entre 300 et 600 t/yr de déchets contenant du mercure.

6.3.2 Incinération des déchets

Des émissions de mercure sont générée lors de l’incinération de déchets municipaux, médicaux et toxiques. Les seules techniques primaires adaptées pour empêcher les émissions de mercure vers l’air sont celles qui empêchent ou contrôlent, si possible, l’inclusion du mercure dans les déchets (EC, 2006a):

- Une collecte selective et efficace des déchets qui peuvent contenir des métaux lourds (par ex. piles, batteries, amalgames dentaires, etc.)
- Une notification aux producteurs de déchets de la nécessité de séparer le mercure.
- L’identification et/ou une restriction dans l’acceptation de déchets potentiellement contaminés au mercure :
 - Par échantillonnage et analyse des déchets lorsque cela est possible.
 - Par des campagnes ciblées d’échantillonnage et de tests.
- Là où on sait que de tels déchets sont acceptés – davantage de contrôle pour éviter une surcharge de la capacité d’abattement du système.

En ce qui concerne les techniques secondaires, la sélection d’un procédé pour l’abattement du mercure dépend de la charge et de la teneur en chlore du matériel brûlé. A des teneurs en chlore plus élevées, le mercure dans le gaz de flux sera davantage sous une forme ionique qui peut être déposée dans des dépoussiéreurs humides. Ceci est une conséquence importante dans les usines d’incinération de boues d’épuration où les niveaux de chlore gazeux peuvent être assez faibles. Si, par contre, la teneur en chlore de la boue d’épuration sèche est de 0.3 % en poids ou plus, seul 10 % du mercure dans le gaz propre est à l’état élémentaire; et l’élimination du seul mercure ionique peut atteindre un niveau d’émission de mercure total de 0.03 mg/Nm³.
Le mercure métallique peut être retiré à partir du flux de gaz par :

- Une transformation en mercure ionique par ajout d’oxydants et ensuite déposé dans le dépoussiéreur – l’effluent peut ensuite être alimenté vers des usines de traitement d’eaux usées avec dépôt de métaux lourds, où le mercure peut être converti en une forme stable (par ex. HgS), et donc plus adaptée pour un stockage final, ou
- Un dépôt direct sur du charbon actif dopé au soufre, sur du coke de fourneau, ou sur des zéolites.

L’utilisation d’un système de traitement du flux de gaz, lorsqu’il est combiné à l’installation pour former un tout, rend généralement compte des niveaux d’émission opérationnels de poussières et de mercure définis dans le Tableau 48 pour les libérations dans l’air associée à l’utilisation d’une BAT.

Tableau 48. Niveaux d’émission opérationnels associés à l’utilisation d’une BAT pour la libération de mercure dans l’air (en mg/Nm³ ou comme précisé).

<table>
<thead>
<tr>
<th>Substance(s)</th>
<th>Echantillons non-continus</th>
<th>moyenne ½ heure</th>
<th>Moyenne 24 heures</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poussières totales</td>
<td>1 – 20</td>
<td>1 – 5</td>
<td></td>
<td>En général, l’utilisation de filtres en tissus donne les niveaux les plus faibles dans ces gammes d’émissions. Une maintenance efficace des systèmes de contrôle des poussières est très importante. L’utilisation d’énergie peut augmenter en recherchant des moyennes d’émissions plus faibles. Le contrôle des niveaux de poussières réduit généralement aussi les émissions de métaux.</td>
</tr>
<tr>
<td>Mercure et ses composés (as Hg)</td>
<td><0.05</td>
<td>0.001 – 0.03</td>
<td>0.001 – 0.02</td>
<td>Une adsorption utilisant des substances basée sur le carbone est généralement requise pour atteindre ces niveaux d’émission avec beaucoup de déchets du fait que l’Hg métallique est plus difficile à contrôler que l’Hg ionique. La performance précise d’abattement et la technique requise dépendront des quantités et de la distribution d’Hg dans les déchets. Certains types de déchets ont des concentrations très variables en Hg, et un prétraitement des déchets peut être requis dans de tels cas pour éviter une surcharge de la capacité du système CFG. Un suivi en continu du mercure n’est pas requis par la Directive 2000/76/EC mais a été réalisé dans certains cas.</td>
</tr>
</tbody>
</table>

De plus, le Protocole sur les Métaux Lourds de 1998 établi lors de la Convention la Pollution de l’Air Transfrontalière à Longue Distance, énonce que la meilleure technologie disponible pour le dépoussiérage lors de l’incinération de déchets municipaux, médicaux et toxiques est d’utiliser des filtres en tissu associés avec des méthodes sèches ou humides pour contrôler les volatiles. Des précipitateurs électrostatiques en combinaison avec des systèmes humides peuvent également être conçus pour atteindre de faibles émissions de poussières, mais ils offrent moins de possibilités que les filtres en tissu, particulièrement ceux pré-enduits pour l’adsorption des polluants volatils.
Le Tableau 49 présente les mesures de contrôle les plus importantes dont on dispose pour les émissions de mercure liée à l’incinération des déchets municipaux, médicaux et toxiques.

<table>
<thead>
<tr>
<th>Source d’émission</th>
<th>Mesure de contrôle</th>
<th>Efficacité (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaz de cheminée</td>
<td>Epurateurs de haute efficacité</td>
<td>Hg: ca.50</td>
</tr>
<tr>
<td></td>
<td>Injection de carbone + filtre en tissu</td>
<td>Hg>85</td>
</tr>
<tr>
<td></td>
<td>Filtration sur un lit de carbone</td>
<td>Hg>99</td>
</tr>
</tbody>
</table>
6.4 Niveau d’implémentation dans la région méditerranéenne

Le Tableau 50 montre l’information disponible sur le niveau d’implémentation des technologies visant à prévenir les émissions de mercure and le niveau de substitution des produits contenant du mercure dans les pays méditerranéens, information obtenue auprès de l’UNEP (2008b) et par les réponses aux questionnaires distribués pour l’établissement de ce rapport.

Tableau 50. Information disponible sur la substitution des produits contenant du mercure dans les pays méditerranéens.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Produit</th>
<th>Niveau de substitution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>Production de chlore-alcali</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Algérie</td>
<td>Production de monomère de chlorure de vinyle (MCV)</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Algérie</td>
<td>Pesticides et biocides</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Piles</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Production de chlore-alcali</td>
<td>Refroidissement par flux de gaz, eliminateurs de brouillard, dépoussiéreurs, adsorption sur du charbon actif et procédés de membrane sont disponibles sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Combustion du charbon</td>
<td>Mesures visant à réduire le mercure i.e. opter pour des charbons à faible teneur en mercure; lavage pré-combustion du charbon; équipement post-combustion pour la réduction des émissions de flux de gaz) disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Cosmétiques</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Amalgames dentaires</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Composantes électriques et électroniques (sauf piles et sources lumineuses).</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Sources lumineuses.</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Appareils de mesure et de contrôle (sauf thermomètres).</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Peintures</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Pesticides et biocides</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Produits pharmaceutiques</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Extraction primaire et traitement du mercure</td>
<td>Condensateurs pour retirer le mercure sont disponibles sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Production d’autres minéraux et matériaux avec des impuretés de mercure (production de ciment, de pulpe et de papier)</td>
<td>Systèmes d’extraction de poussières et utilisation de combustibles alternatifs sont disponibles sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Pays</td>
<td>Produit</td>
<td>Niveau de substitution</td>
<td>Source</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Égypte</td>
<td>Production de mercure recyclé</td>
<td>Systèmes d’échappement avec filtre à charbon activé et dépoussiéreurs disponibles sur le marché mais d’usage minimal.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Thermomètres</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Production de monomère de chlorure de vinyle (MCV)</td>
<td>Adsorption sur du charbon actif, disponible sur le marché mais d’usage minimal.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Incinération de déchets</td>
<td>Dépoussiéreurs humides (incinérateurs) et nettoyage par flux de gaz disponibles sur le marché mais d’usage minimal.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Égypte</td>
<td>Traitement des déchets, entreposage, enfouissement</td>
<td>Séparation de déchets contenant du mercure du flux de déchets, enfouissements spécialement conçus pour les déchets toxiques et centres de collecte pour les petites quantités de déchets toxiques disponibles sur le marché mais d’usage minimal.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>France</td>
<td>Piles</td>
<td>Interdiction de l’UE pour les batteries contenant du mercure, avec toutefois des exceptions.</td>
<td>UNEP, 2008b</td>
</tr>
<tr>
<td>France</td>
<td>Production de chlore-alcali</td>
<td>50% du chlore est produit avec des techniques sans mercure.</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Amalgames dentaires</td>
<td>Produits de substitution disponible sur le marché mais d’usage minimal</td>
<td>UNEP, 2008b</td>
</tr>
<tr>
<td>France</td>
<td>Sources lumineuses</td>
<td>Pas d’alternatives disponibles pour les lampes à mercure (cette indication ne prend sans doute pas en compte les lampes à incandescence et les lampes à halogène comme alternatives).</td>
<td>UNEP, 2008b</td>
</tr>
<tr>
<td>France</td>
<td>Thermomètres</td>
<td>Des thermomètres sans mercure sont couramment utilisés</td>
<td>UNEP, 2008b</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Combustion du charbon</td>
<td>Des mesures existent mais elles sont d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Extraction primaire et traitement du mercure</td>
<td>Des mesures existent mais elles sont d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Production d’autres minéraux et matériaux avec des impuretés de mercure (production de ciment, de pulpe et de papier)</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Production de chlore-alcali</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Amalgames dentaires</td>
<td>Substituts pour les amalgames de mercure sont couramment disponibles sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Thermomètres</td>
<td>Des thermomètres sans mercure sont couramment disponibles sur le marché et d’usage courant.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Appareils de mesure et de contrôle (sauf thermomètres).</td>
<td>Produits de substitution disponibles sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Composantes électriques et électroniques (sauf piles et sources lumineuses).</td>
<td>Produits de substitution disponibles sur le marché mais d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Sources lumineuses</td>
<td>Produits de substitution disponibles sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Piles</td>
<td>Substituts disponibles et d’usage courant pour</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Pays</td>
<td>Produit</td>
<td>Niveau de substitution</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Pesticides et biocides</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Peintures</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Produits pharmaceutiques</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Cosmétiques</td>
<td>Produits de substitution disponible sur le marché et d’usage courant</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Incinération de déchets</td>
<td>Des mesures existent mais elles sont d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Traitement des déchets, entreposage, enfouissement</td>
<td>Des mesures existent mais elles sont d’usage minimal</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Syrie</td>
<td>Thermomètres</td>
<td>Les thermomètres à mercure sont remplacés par des thermomètres à alcool et des thermomètres digitaux électroniques.</td>
<td>UNEP, 2008b</td>
</tr>
<tr>
<td>Tunisie</td>
<td>Production de chlore-alcali</td>
<td>La seule usine chlore-alcali en Tunisie a adopté en 1998 un procédé à membrane sans mercure.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Turquie</td>
<td>Pesticides et biocides</td>
<td>Le mercure n’est pas utilisé dans les pesticides et les biocides.</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Turquie</td>
<td>Thermomètres</td>
<td>L’usage des thermomètres à mercure est interdit depuis 2007.</td>
<td>Questionnaire</td>
</tr>
</tbody>
</table>
7. Valeurs limites d’émission et objectif-qualité

7.1 Cadre international

7.1.1 Le Protocole Aarhus de 1998 sur les métaux lourds

Comme cela a déjà été mentionné dans la section 2.1.5, le Protocole Aarhus a pour but d’amoindrir les émissions de trois métaux particulièrement nocifs : le cadmium, plomb et mercure à partir de sources industrielles (industries du fer et de l’acier, industries des métaux non ferreux), de procédés de combustion (transport routier, production d’électricité) et de cibles d’incinération de déchets. À cette fin, il pose des valeurs limites rigoureuses pour les émissions à partir de sources stationnaires et suggère les meilleures techniques disponibles (BAT: best available techniques) pour ces sources.

En particulier, chaque groupe doit appliquer les valeurs limites spécifiées dans l’Annexe V du Protocole pour chaque source stationnaire existante dans la catégorie des sources majeures stationnaires spécifiée dans l’Annexe II, en exécutant les meilleures techniques disponibles décrites dans l’Annexe III dans la mesure où elles sont économiquement et techniquement réalisables.

Le Tableau 51 présente les valeurs limites pour chaque source stationnaire. Deux types de valeurs limites ont été établis pour le contrôle des émissions de métaux lourds :

- Valeurs pour des métaux lourds spécifiques ou groupes de métaux lourds.
- Valeurs pour des émissions de matière particulaire en général.

Les valeurs des émissions spécifiques pour le mercure sont seulement définies pour les installations chlore-alcali au regard de leur capacité de production ainsi que pour les émissions d’air à partir d’incinérateurs de déchets municipaux et dangereux.

La plupart des valeurs limites sont définies pour la matière particulaire qui ne peut remplacer les valeurs limites spécifiques pour le cadmium, le plomb et le mercure car la quantité des métaux associés avec les émissions particulières diffèrent d’un procédé à un autre. Cependant, le respect conforme de ces limites contribue significativement à réduire les émissions de métaux lourds en général.

<table>
<thead>
<tr>
<th>Combustion des combustibles fossiles (Annexe II, catégorie 1):</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Valeur limite se référant à 6% O₂ dans le gaz effluent pour les combustibles solides et à 3% O₂ pour les combustibles liquides.</td>
</tr>
<tr>
<td>▪ Valeur limite pour les émissions particulaires pour les combustibles solides et liquides : 50 mg/m³.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usines de frittage (Annexe II, catégorie 2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Valeur limite pour des émissions particulaires : 50 mg/m³.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usines de granulés (Annexe II, catégorie 2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Valeur limite pour des émissions particulaires :</td>
</tr>
<tr>
<td>(a) broyage séchage: 25 mg/m³; et</td>
</tr>
<tr>
<td>(b) granulé : 25 mg/m³, ou</td>
</tr>
<tr>
<td>▪ Valeur limite pour des émissions particulaires totales : 40 g/mg of granulés produit</td>
</tr>
</tbody>
</table>
Hauts fourneaux (Annexe II, catégorie 3):
- Valeur limite pour des émissions particulaires : 50 mg/m³.

Fours à arc électrique (Annexe II, catégorie 3):
- Valeur limite pour des émissions particulaires : 20 mg/m³.

Production de cuivre et zinc, incluant les fours d’extraction conforme aux normes britanniques (Annexe II, catégories 5 and 6):
- Valeur limite pour des émissions particulaires : 20 mg/m³.

Production de plomb (Annexe II, catégories 5 et 6):
- Valeur limite pour des émissions particulaires : 10 mg/m³.

Industrie des ciments (Annexe II, catégorie 7):
- Valeur limite pour des émissions particulaires : 50 mg/m³.

Glass industrie (Annexe II, catégorie 8):
- Valeurs limites se réfèrent à différentes concentrations en O₂ dans les gaz éffluents en fonction du type de four : fours à bassin: 8%; fours à pot et bassins journaliers: 13%
- Valeur limite des émissions de plomb : 5 mg/m³.

Industrie chlore-alcali (Annexe II, catégorie 9):
- Valeurs limites concernent la quantité totale de mercure émise dans l’air par une usine, sans tenir compte la source d’émission, s’expriment en valeur moyenne annuelle.
- Valeurs limites pour les usines chlore-alcali existantes devraient être évaluées par les sessions des groupes dans le corps exécutif pas plus tard que deux ans après la mise en application du présent protocole.
- Valeur limite pour les nouvelles usines chlore-alcali : capacité de production de 0.01 g Hg/Mg Cl₂.

Incinérations de déchets municipaux, médicaux et dangereux (Annexe II, catégories 10 et 11):
- Valeurs limites pour des concentrations de 11% d’O₂ dans les gaz éfluentes.
- Valeurs limites des émissions particulaires:
 (a) 10 mg/m³ pour l’in cinérati on des déchets médicaux et dangereux;
 (b) 25 mg/m³ pour l’in cinération des déchets municipaux.
- Valeur limite pour les émissions de mercure :
 (a) 0.05 mg/m³ pour l’in cinération de déchets dangereux;
 (b) 0.08 mg/m³ pour l’in cinération de déchets municipaux;
 (c) Les valeurs limites des émissions contenant du mercure à partir de l’in cinération de déchets médicaux devrait être évaluées par chaque “session en groupe dans le corps exécutif pas plus tard que deux ans après la date d’application du protocole présent.
7.1.2 World Health Organisation (WHO)

L'OMS a recommandé (c.f. section 2.1.7) une inhalation provisoire tolérable provisoire par semaine pour le méthylmercure d'1.6 µg par kg de poids du corps par semaine dans le but de protéger suffisamment les fœtus en développement. Cette recommandation a changé la précédente recommandation pour une limite alimentaire de 3.3 µg par kg de poids du corps par semaine.

De plus, la valeur guide d'eau potable pour les composés organiques liés à la santé (appliquée à toutes les formes de mercure) a été établie à in 1.0 µg/L.

7.1.3 Convention OSPAR

Il existe différentes recommandations sur les valeurs limites et les objectifs de qualité sous OSPAR afin de réduire les émissions de mercure, les dégagements et pertes de secteurs spécifiques (pas seulement relatifs aux industries chlore-alcali qui sont les plus pertinents).

7.1.3.1 Valeurs limites

La recommandation sur les valeurs limites d'émissions de mercure dans l'eau dans le cas d'une recirculation de saumure dans les usines chlore-alcali (sortie des sites d'usine) met, à partir du 1er juillet 1986, une valeur limite de 0.5 g de mercure par tonne de capacité de production de chlore comme moyenne mensuelle, et de 2 g de mercure par tonne comme moyenne quotidienne.

Comme pour les autres secteurs, la Décision 85/1 PARCOM sur les programmes et mesures du 31 décembre 1985 concernant les valeurs limites et les objectifs de qualité sur les émissions de mercure par secteurs autres que l'industrie d'électrolyse de chlore-alcali établie des valeurs limites indiquées dans le Tableau 52 devant être respectées à partir de juillet 1989.

Tableau 52. Valeurs limites des émissions de mercure par secteurs autres que celui de l'industrie chlore-alcali.

<table>
<thead>
<tr>
<th>Secteur industriel</th>
<th>Valeurs limites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Industries chimiques utilisant le mercure comme catalyseur :</td>
<td>0.05 mg/L d’effluent</td>
</tr>
<tr>
<td></td>
<td>0.1 g/t capacité de production de chlorure de vinyle</td>
</tr>
<tr>
<td>a. dans la production de chlorure de vinyle</td>
<td></td>
</tr>
<tr>
<td>b. dans d'autres procédés</td>
<td>0.05 mg/L d’effluent</td>
</tr>
<tr>
<td></td>
<td>5 g/kg de mercure traité</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens 146
<table>
<thead>
<tr>
<th>Secteur industriel</th>
<th>Valeurs limites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Manufacture de catalyseurs au mercure dans la production du chlorure de vinyle</td>
<td>0.05 mg/ L d’effluent 0.7 g/kg de mercure traité</td>
</tr>
<tr>
<td>3. Manufacture de produit organiques ou non contenant du mercure (à l’exception des produits référencés dans le paragraphe 2)</td>
<td>0.05 mg/ L d’effluent 0.05 g/kg de mercure traité</td>
</tr>
<tr>
<td>4. Manufacture de batteries primaires contenant du mercure.</td>
<td>0.05 mg/ L d’effluent 0.03 g/kg de mercure traité</td>
</tr>
<tr>
<td>5. Industrie des métaux non ferreux</td>
<td>0.05 mg/ L d’effluent</td>
</tr>
<tr>
<td>a. Usine de récupération du mercure</td>
<td></td>
</tr>
<tr>
<td>b. Extraction et raffinage des métaux non-ferreux.</td>
<td>0.05 mg/ L d’effluent</td>
</tr>
<tr>
<td>6. Usines pour le traitement de déchets toxiques contenant du mercure.</td>
<td>0.05 mg/L d’effluent</td>
</tr>
</tbody>
</table>

7.1.3.2 Objectifs qualité

Les objectifs de qualité écologique (Ecological Quality Objectives, EcoQOs) ont été développés comme outils pour aider OSPAR et les procédés de la Conférence de la mer du Nord pour appliquer une approche tenant compte de l’écosystème dans la gestion des activités humaines qui peuvent affecter l’environnement marin. Quand ces objectifs sont atteints l’écosystème marin est considéré être en conditions saines. À l’inverse, quand les objectifs ne le sont pas, les autorités responsables doivent avancer pour protéger l’environnement marin de tout effet adverse causé par les activités humaines.

Le “EcoQOs” couvre différents aspects de l’écosystème, incluant le plancton, les organismes benthiques, les poissons, les oiseaux de mer et les mammifères marins ainsi que les habitats. La plupart des objectifs peuvent être liés à une activité humaine spécifique.

«L’EcoQOs» peut prendre la forme de cibles (valeurs à atteindre pour lesquelles il existe un engagement), de limites (valeurs à ne pas dépasser pour lesquelles il existe un engagement) ou d’indicateurs (valeurs qui souligne un changement dans l’écosystème et peuvent déclencher des recherches pour expliquer ce qu’il s’est produit).

En particulier, le système «EcoQOs» propose les objectifs-qualité suivants sur le mercure dans les œufs d’oiseaux de mer pour la sterne commune et l’huîtrier (OSPAR Commission, 2007) basés sur les concentrations dans les plumes dans des sites non-industriels:
- 0.1 mg/kg (huîtrier)
- 0.2 mg/kg (sterne commune)

En outre, la Décision 85/1 PARCOM a établi les objectifs-qualité suivants concernant les émissions de mercure par secteurs autre que l’industrie chlore-alcali :

- La concentration en mercure dans un exemple représentatif de chair de poissons choisi comme indicateur ne doit pas excéder 0,3 mg/kg de poisson humide.
- La concentration du mercure en solution dans les eaux des estuaires jusqu’à la limite des eaux douces ne doit pas dépasser de 0,5 µg/L, la moyenne arithmétique des résultats obtenus le long d’une année.
- La concentration de mercure en solution dans les eaux suivantes ne doit pas dépasser de 0,3 µg/l, la moyenne arithmétique des résultats obtenus le long d’une année.
 a. Eaux territoriales
 b. Eaux, autres que les eaux des estuaires, sur le coté du territoire de la ligne de base à partir de laquelle la largeur de la mer territorial est mesurée, en étendant dans le cas de canaux jusqu’à la limite des eaux douces.

7.1.4 Union Européenne

7.1.4.1 Valeurs limites d’émissions

Comme décrit dans la section 2.2.3, la directive 2008/1/EC sur la prévention intégrée et le contrôle de pollutions (PICP) établi que les activités industrielles et agricoles à haut potentiel polluant doivent nécessairement obtenir un permis issu de l’autorité compétente. La décision pour accorder le permis doit contenir un nombre de requis spécifiques, incluant, entre autres, les valeurs limites d’émission pour les substances polluantes, telles que le mercure et les composés au mercure.

Ces valeurs limites d’émission (ou paramètres équivalent ou mesures techniques doivent prendre en compte les meilleures techniques disponibles (ou “Best Available Techniques”, BAT) du secteur, les caractéristiques techniques de l’installation concernée, sa localisation géographique et les conditions de l’environnement local. Pour ces raisons, les valeurs limites d’émission pour des activités industrielles et agricoles ne sont pas établies par le cadre légal européen.

Cependant, il existe des exceptions telles que l’incinération des déchets, réglementée par la Directive 2000/76/EC qui établit les valeurs limites d’émission générale en Europe pour des polluants dans l’air. En particulier, la valeur limite d’émission dans l’air du mercure et de ses composés est de 0.05 mg/m² et la valeur limite d’émission pour le rejet de mercure et de ses composés dans les eaux usées générées lors de la purification des gaz d’échappement est de 0.03 mg/L.

Dans le domaine de la gestion des déchets, la Directive 86/278/EEC régule l’utilisation des boues d’épurations en agriculture et instaure une valeur limite de mercure dans les sols de 1 to 1.5 mg/kg de matière sèche pour des sols dont le pH est compris entre 6 et 7.

46 Un objectif de qualité pour les hautes mers n’est pas fixé en se basant sur la compréhension que l’objectif de qualité pour des eaux territoriales et les autres eaux protègeront la haute mer de pollutions.
Comme pour l’enfouissement de déchets, la Décision du Conseil 2003/33/EC établit la concentration limite de Hg dans les lixiviats de déchets pour un enfouissement de déchets inertes (0.01 mg/kg de matière sèche); pour un enfouissement de déchets dangereux (0.2 mg/kg de matière sèche) et pour les enfouissements de déchets dangereux (2 mg/kg de matière sèche).

7.1.4.2 Objectifs-qualité

L’Union Européenne a approuvé des standards de qualité environnementale dans le domaine de la politique de l’eau (Directive 2008/105/EC). Ces standards de qualité environnementale (ou en anglais Environmental Quality Standards (EQS)47) correspondent à une moyenne annuelle (M.A.) de mercure dans les eaux de surface de 0.05 µg/L et une concentration maximum admissible (CMA) de 0.07 µg/L. En ce qui concerne l’eau potable (Directive 98/83/EC) le standard de qualité pour le mercure est de 1.0 µg/L.

7.1.5 Convention pour la protection de l’environnement marin et de la région cotière de la Méditerranée (convention de Barcelone)

Dans le cadre des obligations dérivées de la Convention pour la Protection de la Mer Méditerranée contre les pollutions dont les sources sont basées sur le territoire et des activités en provenance des terres (mise en application en 2008), le Protocole LBS a établi (Article 5) que les Parties Contractantes doivent éliminer toute pollution dans les régions définies dans le Protocole dont les sources sont basées sur le territoire. Les substances qui doivent être évitées sont celles listées dans l’Annexe I (« liste noire des substances ») du Protocole. A cette fin, des programmes et mesures nécessaires, devant inclure en particulier les standards communs d’émission et l’utilisation des standards, doivent être élaborés et implémentés.

Jusqu’à octobre 1995, Les Parties Contractantes de la Convention de Barcelone et des Protocoles ont adopté deux mesures communes pour le contrôle de la pollution au mercure (UNEP/MAP, 1995). Premièrement des mesures pour prévenir la pollution au mercure dans la Mer Méditerranée ont été convenues au cours de la 5ème session de la Convention de Barcelone (UNEP/IG.74/5) : Une concentration maximale (calculée comme une moyenne mensuelle) de 50 µg de mercure par litre (exprimé en mercure total) pour tous les effluents libérés avant la dilution dans la Mer Méditerranée a été fixée. Deuxièmement, au cours de la 4ème session de la Convention de Barcelone (UNEP/IG.56/5) et sur la base de l’accord sur la qualité des produits de la Mer Méditerranée en ce qui concerne les contenus en mercure préparés par FAO/UNEP, Les Parties Contractantes ont pris note d’un critère d’intermédiaire proposé par le Comité d’Experts FAO/OMS sur les additifs alimentaires. Selon ce critère, une absorption provisoire tolérable par semaine de 0,3mg de mercure ne doit pas être dépassée pour une personne dont le poids corporel est de 70kg. Parmi ces 0,3 mg pas plus de 0,2 mg ne peuvent être du méthylmercure.

De plus, le Programme d’Action Stratégique (Strategic Action Programme (SAP MED)), comme cela a été soulevé dans la section 2.2.1, propose des cibles et activités pour les métaux lourds (Hg, Cd et Pb) jusqu’à l’année 2025. Outre les activités à un niveau national, il est proposé concernant les valeurs limites :

47 Standard de qualité environnementale fixe la concentration d’un polluant particulier dans l’eau, les sediments ou la biosphère qui ne doit pas être dépassée afin de protéger la santé humaine et l’environnement (Article 2, Directive 2000/60/EC).
• D’adopter et d’appliquer à un niveau national les mesures communes pour la prévention des pollutions au mercure adoptées par les Parties en 1987 (rejets dans la mer, concentration max. 0.050 mg/l).
• D’adopter et d’appliquer pour les industries du secteur chlore-alcali, la valeur maximale de 0.5 grammes de mercure dans l’eau par tonne de capacité de production de chlore (recirculation de saumure) 5 grammes de mercure dans l’eau par tonne (procédé à saumure perdue), et, si possible, 2g de mercure total rejetés dans l’eau, l’air.
7.2 Cadre National

Les valeurs limite d’émissions du mercure et les objectifs de qualité ont été analysés pour ce rapport dans les pays méditerranéens, avec pour finalités : (1) examiner leur cohérence avec les standards internationaux sur le mercure ; (2) obtenir un aperçu régional de l’implémentation de standards du mercure. D’après les réponses au questionnaire établi pour ce diagnostic, la plupart des pays méditerranéens ont une législation prescrivant des objectifs de qualité et des émissions maximales autorisées en mercure à partir d’industries ou d’autres installations, dans l’air, le sol et l’eau. Par ailleurs, la législation a été implémentée afin de prévenir ou limiter les décharges de mercure à partir de procédés dans les systèmes des eaux usées. Les départs dans l’eau et l’utilisation des boues comme fertilisant sur les terrains agricoles ont été en particulier réglementés.

La plupart des valeurs limites d’émission pour les activités industrielles et agricoles a été réglementée par les autorités locales compétentes dans les états membres de l’Union Européenne et les autres pays méditerranéens (c.f. section 7.1.4.1). Les limites sont établies en prenant en compte les caractéristiques techniques de l’installation concernée, sa localisation géographique et les conditions environnementales locales, ainsi que les meilleures techniques disponibles du secteur (“Best Available Techniques”, BAT).

Un résumé des principaux standards internationaux et nationaux dans la région méditerranéenne est présenté dans la Tableau 53.

Les standards de mercure y apparaissent hétérogènes dans les pays méditerranéens. Les principaux points communément réglementés sont l’incinération des déchets, les sols, les émissions dans l’eau, dans l’air et les objectifs de la qualité de l’eau. De plus, les standards nationaux correspondent globalement aux standards internationaux, i.e. :

- Standards de l’UE sur le mercure pour l’incinération des déchets ont été adoptés par la Croatie, l’Israël, La Turquie ainsi que par les pays méditerranéens de l’UE.

- Critères de la qualité de l’eau pour la consommation humaine recommandés par l’OMS ont été adoptés par la Croatie, la Grèce, l’Israël, l’Italie, l’Espagne et la Tunisie.

Les limites d’émissions dans d’autres secteurs varient selon les pays méditerranéens et dépendent des facteurs suivants :

- Valeurs limites d’émissions dans l’air dépendent selon les secteurs industriels et les technologies, i.e. usines de chlore-alcali.

- Valeurs limite d’émission pour les eaux usées dépendent de l’environnement d’accueil et du traitement à adopter en conséquence.

- Standards de la qualité de l’air, de l’eau et des sols dépendent de la localisation géographique, des conditions locales et de l’utilisation potentielle.

Comme cela a été note dans la section 2.3, quelques pays seulement ont reporté avoir réglementé les standards du mercure entre les sessions ordinaires 4 et 5 des parties contractantes de la Convention de Barcelone. Cela concerne respectivement la concentration maximale en mercure dans les produits de la mer et les critères de qualité de l’eau pour la baignade (UNEP/IG.56/5) ainsi que la concentration maximale en mercure pour les émissions dans la mer Méditerranée (UNEP/IG.74/5).
Tableau 53. Valeurs limites d’émissions de mercure et objectifs qualité à un niveau international et au niveau national méditerranéen.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d’émissions</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d’émissions</th>
<th>Qualité pour la consommation humaine</th>
<th>Qualité pour la baignage</th>
<th>Émissions</th>
<th>Prévention de pollution en Hg en eaux III (UNECE/2746)</th>
<th>Enfouissement</th>
<th>Incinération</th>
<th>Sol</th>
<th>Lieu de travail</th>
<th>Produits alimentaires</th>
<th>Hg dans les produits de mer et la qualité de la baignade (UNECE/30.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convention URTAP - Aarhus Protocol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlore-alcali (nouvelles usines): 1.0 g Hg/t Cl₂ (moyenne annuelle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05 mg/m³ (HA), 0.08 mg/m³ (MM)</td>
</tr>
<tr>
<td>OMS</td>
<td>1 µg/m³ (moyenne annuelle pour les organismes à vapeur de mercure)</td>
<td>1 µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlore-alcali: 0.5 g Hg/t Cl₂ (moyenne mensuelle) production de chlorure de vinyl: 0.1 g/l autres procédés au mercure: 0.03-5.0 mg/kg mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6 µg par kg de poids de corps par semaine</td>
</tr>
<tr>
<td>Convention OSPAR</td>
<td>0.5 µg/L eau des estuaires, 0.3 µg/L autres eaux</td>
<td>1 µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlore-alcali: 0.5 g Hg/t Cl₂ (moyenne annuelle) production de chlorure de vinyl: 0.1 g/l autres procédés au mercure: 0.03-5.0 mg/kg mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3 mg/kg de poisson humide</td>
</tr>
<tr>
<td>Union Européenne</td>
<td>Moyenne annuelle (MA) dans les eaux de surface</td>
<td>1 µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inerte: 0.01 mg/kg Non dangereux: 0.2 mg/kg Dangereux: 2 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dégâts gazeux: 0.05 mg/m³ Eaux usées provenant de la purification 1 mg/kg de sol sec pH <7 - 1.5 mg/kg de sol sec pH >7.</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d'émissions</th>
<th>Qualité/Standards : Qualité pour la consommation humaine</th>
<th>Qualité pour la baignade</th>
<th>Émissions</th>
<th>Autre</th>
<th>Prévention de pollution en Hg en Méditerranée (UNEP/IG.56/5)</th>
<th>Enfouissement</th>
<th>Incinération</th>
<th>Sol</th>
<th>Lieu de travail</th>
<th>Produits alimentaires</th>
<th>Hg dans les produits de mer et la qualité de la baignade (UNEP/IG.96/5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>e: 0.05 µg/L – concentration maximale autorisée (CMA) : 0.07 µg/l.</td>
<td>Chlore-alcali: Rejets totaux (eau, air, produits): 2 g/t</td>
<td>Chlore-alcali: recirculation d'eau de mer: 0.5 g/t Cl₂</td>
<td>Saumure perdue: 5 g/t</td>
<td>rejets totaux (Eau, air, produits): 2 g/t Cl₂</td>
<td>50 µg/l de rejets dans la mer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dose hebdomadaire tolérable de 0.3 mg de mercure pendant 70 kg de poids corporel</td>
</tr>
<tr>
<td>Convention de Barcelone</td>
<td></td>
</tr>
<tr>
<td>Albanie</td>
<td></td>
</tr>
<tr>
<td>Algérie</td>
<td>NON 0.25 mg/Nm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01 mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnie Herzégovine</td>
<td></td>
</tr>
<tr>
<td>Pays</td>
<td>Qualité/Standards</td>
<td>Valeurs limites d’émissions</td>
<td>Qualité/Standards</td>
<td>Qualité pour la baignade</td>
<td>Emissions</td>
<td>Autre</td>
<td>Prévention de pollution en Hg et autres (UNEP/IG.74/5)</td>
<td>Enfouissement</td>
<td>Incinération</td>
<td>Sol</td>
<td>Lieu de travail</td>
<td>Produits alimentaires</td>
<td>Hg dans les produits de mer et la qualité de la baignade (UNEP/IG.96/5)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>--</td>
<td>---------------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Croatia</td>
<td>1 µg.m³</td>
<td>0.05-1.0 mg/m³, Chlore-alkali: 0.01 (nouvelles) -1.5 g Hg/t chlore, Ciment: 0.05 mg/m³</td>
<td>0.05 µg/L (moyenne annuelle) 0.07 µg/L (maximum)</td>
<td>1 µg/L</td>
<td>NON</td>
<td>0.001 mg/l</td>
<td>NON</td>
<td>Inerte: 0.01 mg/kg Non-dangereux: 0.2 mg/kg Dangereux: 2 mg/kg</td>
<td>Déchets gaz : 0.05 mg/m³ Déchets d’eau sans gaz : 0.03 mg/l</td>
<td>Sol : 0.2 mg/kg de sol sec (5.0<pH<5.5) - 0.5 mg/kg de sol sec (5,5<pH<6,5) - 1 mg/kg de sol sec (pH>6,5). Boue d’épandage dans l’agriculture: 5 mg/kg</td>
<td>0.3 - 1 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chypre</td>
<td>NON</td>
<td>10-50 mg/m³ (particulaire)</td>
<td>0.05 µg/l (moyenne annuelle) 0.07 µg/l (maximum)</td>
<td>NON</td>
<td>UD</td>
<td>NON</td>
<td>NON</td>
<td>Déchets gaz : 0.05 mg/m³ Déchets d’eau sans gaz : 0.03 mg/l</td>
<td>Déchets gaz : 0.05 mg/m³ Déchets d’eau sans gaz : 0.03 mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypte</td>
<td>3 mg/m³ à partir d’échappement – Incinérateurs d’hôpitaux: 0.1 mg/m³</td>
<td>0.005 mg/l</td>
<td>Incinérateurs d’hôpitaux 0.1 mg/m³</td>
<td></td>
<td></td>
<td></td>
<td>Moyen ne pour 8 heures: Composés alkylés 0.01mg/m³ Composés arylés 0.1mg/m³ Formes élémentaires et</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d'émissions</th>
<th>Qualité pour la consommation humaine</th>
<th>Qualité pour la baignade</th>
<th>Émissions</th>
<th>Autre</th>
<th>Prévention de pollution en Hg en Méditerranée (UNEPI/IG.74/5)</th>
<th>Enfouissement</th>
<th>Incinération</th>
<th>Sol</th>
<th>Lieu de travail</th>
<th>Produits alimentaires</th>
<th>Hydres de mer et la qualité de la baignade (UNEPI/IG.56/5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>In SPM: 1.8 µg/m³ par heures - 0.3 µg/m³ annuellement</td>
<td>Après 2008: 0.05 mg/m³, 0.25 g/h Avant 2008: 0.1 mg/m³, 0.5 g/h</td>
<td>0.002 mg/l</td>
<td>0.001 mg/l</td>
<td>NON</td>
<td>0.05 mg/l rejets - 0.005 mg/l rejet dans les réseaux publics</td>
<td>Rejet marin: 0.005 mg/l</td>
<td>Déchets gazeux: 0.05 mg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeurs limites d’émissions:
- **Inertes : 0.01 mg/kg**
- **Non dangereux : 0.2 mg/kg**
- **Dangereux : 2 mg/kg**

Émissions:
- **Déchets gazeux : 0.05 mg/m³**
- **Eaux usées provenant de la purification des gaz d’échappement : 0.03 mg/l**

Produits alimentaires:
- **Lait (mg/kg):**
 - 0.01 - Produits basiques
 - 0.1 - Olie
 - 0.02 - Fruits et légumes
 - 0.03-0.15 - Algues marines fraîches/séchées
 - 0.5-2.5 - Cacao
 - 0.2 - Céréales
 - 0.03 - Viande
 - 0.01 - Œufs
 - 0.01 - Nourriture pour enfant
 - 0.004-0.015 - Additifs alimentaires
 - 0.1 - Boissons (incl. alcool)
 - 0.01 - Eau en bouteille
 - 0.001 - Thé brut/tout prêl

Lieu de travail:
- **Rejets de mer : 0.005 mg/l**

Produits alimentaires:
- 0.5 - 1.0 mg/kg poisson

Etat du mercure dans les pays méditerranéens 155
<table>
<thead>
<tr>
<th>Pays</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d'émissions</th>
<th>Qualité pour la consommation humaine</th>
<th>Qualité pour la baignage</th>
<th>Enfouissement</th>
<th>Incinération</th>
<th>Sol</th>
<th>Lieu de travail</th>
<th>Produits alimentaires</th>
<th>Hg dans les produits de mer et la qualité de la baignade (UNEP/IG.56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italie</td>
<td></td>
<td>Chlore-alcali: 0.05 - 5.0 g Hg/t de chlore</td>
<td>Autres secteurs: 0.03-5.0 g Hg/t</td>
<td>Eaux terrestres: 0.03 µg/l - Autres eaux de surface : 0.01 µg/l - CMA 0.6 µg/l</td>
<td>0.005 mg/l - 0.5-5 g/t Chlore-alcali - 0.03-5 g/t Autres</td>
<td>Sédiments 0.3 µg/l - Biota 20 µg/l</td>
<td>Déchets gazeux: 0.05 mg/m³ Eaux usées provenant de la purification des gaz d’échappement: 0.03 mg/l</td>
<td>Résidentiel: 1mg/kg - Commercial et Industriel: 5 mg/kg</td>
<td>Produits de la pêche: 0.5 - 1 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Liban</td>
<td></td>
</tr>
<tr>
<td>Libye</td>
<td></td>
</tr>
<tr>
<td>Malte</td>
<td></td>
</tr>
<tr>
<td>Monaco</td>
<td>NON</td>
<td>NON</td>
<td>NON</td>
<td>NON</td>
<td>NON</td>
<td>NON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td></td>
</tr>
<tr>
<td>Maroc</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
<td>0,05-0,1 mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovénie</td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d'émissions</th>
<th>Qualité/ Standards</th>
<th>Qualité pour la consommation humaine</th>
<th>Qualité pour la baignade</th>
<th>Émissions</th>
<th>Autre</th>
<th>Prévention de la pollution en Hg et la qualité de la baignade (UNEP/IG.74/5)</th>
<th>Enfouissement</th>
<th>Incinération</th>
<th>Sol</th>
<th>Lieu de travail</th>
<th>Produits alimentaires</th>
<th>Hydres les produits de mer et la qualité de la baignade (UNEP/IG.56/5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espagne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>déchets inertes : 10 mg/kg d.m.</td>
<td>Sol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2luats des enfouissements: Sol : valeur limite (mg/kg d. s.l): 0.8 valeur d’attention (mg/kg d. s.l): 2 valeur critique (mg/kg d. s.l): 10</td>
<td>provenant de la purification des gaz d’échappement: 0.03 mg/l</td>
<td></td>
<td></td>
<td>d’attention (mg/kg de sol sec): 2 Valeur critique (mg/kg de sol sec): 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Déchets gazeux : 0.05 mg/m³ Eaux usées provenant de la purification des gaz d’échappement: 0.03 mg/l</td>
<td>Sol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sol: 1 mg/kg de matière sèche des sols pH < 7 - 1.5 mg/kg de matière sèche des sols pH > 7. Boues d’épandage: 16 mg/kg de matière sèche des sols pH < 7 - 25 mg/kg de matière sèche des sols pH > 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>De la terre à la mer: 0.05 mg/l.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inertes : 0.01 mg/kg Non-dangereux : 0.2 mg/kg Dangereux : 2 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Déserts gazeux : 0.05 mg/m³ Eaux usées provenant de la purification des gaz d’échappement: 0.03 mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie</td>
<td>UD</td>
<td>valeur impérative: 0.001 mg/l - valeur guide : 0.0005 mg/l</td>
<td>0.001 mg/l.</td>
<td>NON</td>
<td>pour le domaine maritime et hydraulique public : 0.01 mg/l pour drainage public.</td>
<td>Solar</td>
<td></td>
<td>Sol: Mercure inorganique : 36 mg/kg de matière sèche – Mercure organique : 4 mg/kg de matière sèche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sol</td>
<td>0.5. 10^−6 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>Qualité/Standards</th>
<th>Valeurs limites d’émissions</th>
<th>Émissions</th>
<th>Autre</th>
<th>Prévention de pollution en Hg et autres métaux volatils (UNEPEG-76/93)</th>
<th>Enfouissement</th>
<th>Incinération</th>
<th>Sol</th>
<th>Lieu de travail</th>
<th>Produits alimentaires</th>
<th>Hg dans les produits de mer et la qualité de la baignade (UNEPEG-76/93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turquie</td>
<td>UD</td>
<td>20 mg/Nm3 (présent) 0.2 mg/Nm3 (à partir du 01.01.2012) 0.05 mg/Nm3 (Pour des combustibles solides autres que le charbon et le bois)</td>
<td>0.05 µg/l (moyenne annuelle) 0.07 µg/l (maximum)</td>
<td>0.004 mg/L</td>
<td>Pour des déchets inertes: < 0.001; Pour des déchets non dangereux: 0.001 – 0.02; Pour des déchets dangereux: < 0.02 – 0.2</td>
<td>Déchets gazeux: 0.05 mg/m³ Eaux usées provenant de la purification des gaz d’échappement: 0.03 mg/l</td>
<td></td>
<td></td>
<td></td>
<td>Boues d’épandage en agriculture: 5 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
8. Réseaux et outils pour suivre et contrôler le mercure

8.1 Inventaire des émissions

8.1.1 Programme sur le mercure UNEP & “l’étude du paragraphe 29”

Afin d’informer le CIN, le Conseil d’Administration a demandé, lors de sa 25ème session, à la Direction Exécutrice de l’UNEP de développer une étude sur les différentes sources d’émission de mercure («l’étude du paragraphe 29»), incluant les tendances futures et une analyse du coût des mesures et alternatives de contrôle.

Afin de conduire à bien cette étude, l’information est actuellement collectée pour un certain nombre de pays, par le biais des questionnaires ciblés. L’avant projet des grandes lignes de l’étude fut présenté au groupe de travail Ad hoc open-ended à Bangkok (19-23 octobre 2009) et un «rapport d’avant projet-zéro» a récemment été publié (UNEP/DTIE, 2010).

Ce rapport apporte (i) une synthèse de la connaissance disponible sur les émissions de mercure dans l’air, (ii) une description courte des secteurs sélectionnés pour cette étude, où le mercure entre dans les procédés et où/COMMENT il est relâché dans l’air, (iii) des options de contrôle et les coûts associés. Il se base sur des rapports des émissions globales de mercure en 2005 et l’évaluation qualitative des coûts et de l’efficacité des options de contrôle, préparés pour l’UNEP (AMAP/UNEP, 2008)48, ainsi que sur des informations récentes disponibles à partir de la littérature sur les émissions, les options de contrôle et les coûts. Ce rapport d’avant projet de l’étape zéro contient aussi une vue d’ensemble de scénarios futurs pour les émissions de mercure et les hypothèses initiales à utiliser dans la préparation des calculs de scénarios durant la Phase 2 de cette étude. Les principaux résultats de ce rapport sont présentés ci-dessous, afin d’apporter une vue d’ensemble des parts estimées des sources de mercure à un niveau global, qui pourront être utilisées plus tard pour identifier les spécificités méditerranéennes en comparant les inventaires nationaux et régionaux.

8.1.1.1 Sources des émissions globales atmosphériques

Les émissions globales anthropogéniques estimées de mercure dans l’air en 2005 provenant de différents secteurs sont présentées dans le Tableau 54 et la Figure 12. Elles s’élèvent à 1921 tonnes au total. La combustion du charbon stationnaire est la catégorie la plus importante d’une source unique anthropogénique d’émission de mercure dans l’air. Elle est représentée dans la Figure 12 par les centrales à combustion de charbon (26%) et par des combustions résidentielles ou autres (20%).

La production d’or à petite échelle et artisanale compte pour 17% des émissions globales (323 tonnes), suivie par la production de ciment (10%) et la production de métal non-ferreux (7% principalement en Chine) et la production d’or à grande échelle (6%). L’incinération des déchets à grande échelle représente 2% des émissions, alors que les émissions totales en mercure du secteur déchet (i.e. incluant les incendies à petite échelle et les émissions des déchets enfouis) représentent 4% additionnels au total global.

Tableau 54. Estimation des émissions globales anthropogéniques de mercure dans l’air en 2005 à partir de secteurs différents (adapté de UNEP/DTIE, 2010).

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Émissions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion de charbon dans des centrales et chaudières industriels</td>
<td>498</td>
<td>26%</td>
</tr>
<tr>
<td>Chauffage résidentiel/autres combustions</td>
<td>382</td>
<td>20%</td>
</tr>
<tr>
<td>Production d’or artisanale et à petite échelle</td>
<td>323</td>
<td>17%</td>
</tr>
<tr>
<td>Production de ciment</td>
<td>189</td>
<td>10%</td>
</tr>
<tr>
<td>Métaux non-ferreux</td>
<td>132</td>
<td>7%</td>
</tr>
<tr>
<td>Production d’or à large échelle</td>
<td>111</td>
<td>6%</td>
</tr>
<tr>
<td>Autres déchets</td>
<td>74</td>
<td>4%</td>
</tr>
<tr>
<td>Fonte brute de fer et d’acier, acier secondaire</td>
<td>61</td>
<td>3.2%</td>
</tr>
<tr>
<td>Industrie Chlore- alcali</td>
<td>47</td>
<td>2.4%</td>
</tr>
<tr>
<td>Incinération des déchets</td>
<td>42</td>
<td>2.2%</td>
</tr>
<tr>
<td>Amalgames dentaires (crémation)*</td>
<td>27</td>
<td>1.4%</td>
</tr>
<tr>
<td>Autres</td>
<td>26</td>
<td>1.4%</td>
</tr>
<tr>
<td>Production de mercure</td>
<td>9</td>
<td>0.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,921</td>
<td>100%</td>
</tr>
</tbody>
</table>

* N’inclue pas les autres rejets provenant de la production, le traitement et le stockage des amalgames dentaires.
L’UNEP a hiérarchisé 5 secteurs du fait de leur contribution relative aux émissions globales de mercure dans l’air (51% au total) et comme étant des secteurs constituant largement des points sources, avec des températures élevées de combustion et des procédés où l’installation et l’utilisation d’équipements techniques du contrôle des émissions est possible. Ces secteurs sont : (i) combustion du charbon dans les centrales et les chaudières industrielles, (ii) métaux non ferreux, (iii) production d’or à grande échelle, (iv) production de ciment, (v) incinération des déchets.

8.1.1.2 Tendances des émissions globales atmosphériques

D’après les estimations révisées, les émissions de produits dérivés ont augmenté entre 1990 et 2005 alors que les émissions à partir d’utilisations intentionnelles ont diminué durant la même période (Figure 13). Dans l’ensemble, lorsque l’on additionne les deux sources de mercure citées ci-dessus, le niveau des émissions de mercure dans l’air est relativement stable à une échelle globale entre 1990 et 2005, avec cependant de petites variations.
8.1.1.3 Émissions par régions géographiques

En 2005, les pays asiatiques ont contribué à 67% des émissions globales de mercure dans l’air à partir de sources anthropogéniques, suivis de l’Amérique du Nord et de l’Europe. À partir de l’inventaire des données compilées, il est possible de classer chaque pays en fonction de ses émissions. La Chine, avec plus de 2000 centrales à charbon est de très loin le plus grand émetteur au monde de mercure dans l’air. Ensemble, trois pays (Chine, Inde, Etats-Unis) sont responsables de 57% des émissions totales estimées de mercure dans l’air en 2005 (1097 tonnes des 1921 tonnes du total global).

8.1.1.4 Émissions spécifiques dans les pays méditerranéens

L’inventaire, basé sur les données précédentes (i.e. l’inventaire global de 2005 des émissions de mercure atmosphériques (AMAP/UNEP, 2008)), comprenait une décomposition par pays des émissions estimées. Des données spécifiques pour les pays méditerranéens ont été obtenues à partir de cet inventaire. Ceci est présenté dans le Tableau 55. Comme cela peut y être observe, la Turquie est considérée comme le pays émetteur le plus important en Méditerranée avec environ 18 tonnes (27%), suivi par l’Italie (13 tonnes, 19%), l’Espagne (10 tonnes, 15%) et la France (9 tonnes, 13%). Ces quatre pays représentent quasiment 75% des émissions totales dans la région Méditerranée. L’Egypte serait le pays émetteur le plus important dans les régions du Sud. Les émissions totales dans la région méditerranéenne ont été estimées à environ 68 tonnes, i.e., 3.5% des émissions globales de mercure dans l’air en 2005 (1921 tonnes).

La part par secteur des émissions d’après les estimations de l’UNEP est montrée dans la Figure 15. Comme attendu, la combustion stationnaire est la source majeure des émissions de mercure (54%), ce qui est en accord avec les estimations globales (46%, c.f.Figure 12). La production de ciment semble être la source majeure des émissions de mercure dans la région méditerranéenne en comparaison avec les estimations globales (27% vs. 10%). Une autre source est la production de métaux (ferreux et non ferreux) et l’industrie de chlore-alcali. Contrairement à d’autres régions, la production d’or n’a que peu d’importance dans les émissions en région méditerranéenne.
8.1.2 Bilan de base nationaux (BBN) des pays méditerranéens dans le cadre du PNUE/PAM

8.1.2.1 Introduction

Le Budget de Base National (BBN - UNEP/MAP, 2002) inclue les données des émissions dans l’air et l’eau pour les polluants prioritaires SAP dans tous les pays MAP. La première année de la base fut 2003 et la base de données compilée par MEDPOL peut être organisée par substance, secteur, sous-secteur, pays et région administrative (c.f. Figure 16). De plus, cette base de données a la potentialité majeure (i) d’être utilisée comme base pour les charges actuelles nationales et régionales de polluants et (ii) d’analyser les sources spécifiques des polluants par secteurs et régions administratives.

Actuellement une nouvelle base pour 2008 est en train d’être mise à jour et affinée ; il sera donc possible d’établir la comparaison avec les données de 2003. A des fins comparatives avec d’autres inventaires, il doit être noté que le BBN comprend principalement les points sources des émissions à partir d’installations industrielles, dans les régions administratives méditerranéennes de chaque pays. Ceci est spécialement utile pour les pays qui ont des régions ou secteurs côtiers significatifs hors mer Méditerranée tels que la France, l’Espagne et la Turquie.
8.1.2.2 Données disponibles

La base de données BBN établie par MEDPOL en 2003 contient environ 7600 enregistrements, chaque enregistrement indique l’émission d’une substance pour un secteur ou sous-secteur d’activité donné dans une région administrative ou un pays. L’analyse du nombre d’enregistrements par région, secteur et substance donne une idée de la disponibilité des données dans la base de données BBN.

La base de données de 2003 contient 165 enregistrements pour les émissions de mercure, 96 enregistrements pour les émissions dans l’air et 69 enregistrements pour les émissions dans l’eau. La majorité des données ont été reportées par les pays du Nord de la Méditerranée (73% des enregistrements, particulièrement l’Italie et l’Espagne), alors que les pays de l’Est et du Sud représentent respectivement 19% et 8% des enregistrements (c.f Figure 17). Des différences dans le nombre d’enregistrements peuvent être reliées (i) à la taille et au niveau du développement industriel de chaque pays, (ii) aux possibilités régionales et sectorielles de l’inventaire, (iii) à la disponibilité des données, et (iv) au niveau de détail que chaque pays met en vigueur pour ses inventaires.

Concernant les secteurs d’activité, la base de données BBN contient plus d’informations sur les émissions de mercure pour le secteur de la production d’énergie (29%) et la production de ciment (16%). En outre, environ 20% des enregistrements n’ont pas été alloués à un secteur d’activité. Le nombre total d’enregistrements est présenté dans la Figure 18. Les secteurs ayant le plus grand nombre d’enregistrements sont (a) ceux habituellement présents dans toutes les économies (i.e. production d’énergie), ou (b) ceux dont la production de données et les facteurs d’émissions sont bien établis et disponibles (i.e. production d’énergie et de ciment).
États du mercure dans les pays méditerranéens

8.1.2.3 Émissions par pays et secteur d'activité

Dans cette section sont présentées quelques informations sur les émissions totales de mercure dans l'air et l'eau ainsi que leurs sources d'après la base de données BBN de 2003. Comme il peut être observé dans le Tableau 56 et la Figure 19, les émissions de mercure dans l'air s'élèvent à 6 tonnes et ont pour origine principale l'industrie du ciment, de l'énergie et des métaux. Ceci est en accord avec d'autres inventaires qui soulignent aussi l'importance relative de l'industrie cimentaire en Méditerranée en comparaison d'autres régions. Pour ce qui est des émissions de mercure dans l'eau, des figures anormales ont été reportées par l'Algérie et la Tunisie concernant leur industrie de
fertilisants (249 tonnes et 772 tonnes respectivement). Si ces sources spécifiques (qui compteraient pour 99% des rejets dans l'eau) ne sont pas prises en compte, les secteurs d'activité principaux émettant du mercure dans l'eau seraient l'industrie chimique, le traitement des eaux usées et l'industrie métallique (c.f. Figure 19).

Les rejets extrêmement élevés en mercure indiqués comme provenant de l'industrie de fertilisants pourraient être une erreur mais méritent en tous les cas une attention particulière. En effet, la production de fertilisants phosphorés peut être une source de pollution au mercure car les minerais de phosphate contiennent de petites mais très variables quantités de mercure dans des quantités excédant son contenu moyen sur la croûte terrestre ((Jackson et al., 1986; UNEP/UNIDO, 1998; Mirlean et al., 2008). Les pollutions au mercure dans les sols et les environnements marins comme conséquences de l'industrie des engrais au phosphate ont été reportées dans différents endroits autour de sites fabrication comme au Brésil ou en Australie (Jackson et al., 1986; Mirlean et al., 2008). Aucune information n'a pu être identifiée dans la littérature sur les problèmes relatifs au mercure et dérivés de l'industrie des engrais en Tunisie ou en Algérie. Ce problème n'a été ni soulevé par le « National Focal Points » ni détecté par la bae de données de qualité environnementale du MEDPOL. Par conséquent, il ne peut être garanti que les rejets de mercure reportés dans la base de données BBN soient pris en compte dans les valeurs discutées ci-dessus.

Tableau 56. Apports totaux de mercure dans l'air et l'eau (kg/an), reportés par les pays méditerranéens dans le NBB2003, par pays et secteurs d'activités.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Secteur</th>
<th>Hg (gaz)</th>
<th>Hg (liq)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>Emballage alimentaire</td>
<td>364.11</td>
<td></td>
<td>364.11</td>
</tr>
<tr>
<td></td>
<td>Manufacture de ciment</td>
<td>54.12</td>
<td></td>
<td>54.12</td>
</tr>
<tr>
<td></td>
<td>Manufacture de fertilisants</td>
<td></td>
<td>248,600.00</td>
<td>248,600.00</td>
</tr>
<tr>
<td>Total Algérie</td>
<td></td>
<td>418.23</td>
<td>248,600.00</td>
<td>249,018.23</td>
</tr>
<tr>
<td>Bosnie Herzégovine</td>
<td>Manufacture de ciment</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Total Bosnie Herzégovine</td>
<td></td>
<td>0.00</td>
<td>249,018.23</td>
<td>249,018.23</td>
</tr>
<tr>
<td>Croatie</td>
<td>Manufacture de ciment</td>
<td>26.74</td>
<td></td>
<td>26.74</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>120.53</td>
<td></td>
<td>120.53</td>
</tr>
<tr>
<td></td>
<td>Traitement des eaux usées urbaines</td>
<td>118.18</td>
<td></td>
<td>118.18</td>
</tr>
<tr>
<td>Total Croatie</td>
<td></td>
<td>147.27</td>
<td>118.18</td>
<td>265.45</td>
</tr>
<tr>
<td>Chypre</td>
<td>Manufacture de ciment</td>
<td>18.00</td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>12.20</td>
<td></td>
<td>12.20</td>
</tr>
<tr>
<td>Total Chypre</td>
<td></td>
<td>30.20</td>
<td></td>
<td>30.20</td>
</tr>
<tr>
<td>Egypte</td>
<td>Manufacture de ciment</td>
<td>407.51</td>
<td></td>
<td>407.51</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>17.09</td>
<td></td>
<td>17.09</td>
</tr>
<tr>
<td>Total Egypte</td>
<td></td>
<td>424.60</td>
<td></td>
<td>424.60</td>
</tr>
<tr>
<td>France</td>
<td>Manufacture de composés organiques</td>
<td>21.00</td>
<td>5.50</td>
<td>26.50</td>
</tr>
<tr>
<td></td>
<td>Incinération des déchets et gestion des résidus</td>
<td>2.80</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activités de gestion des déchets</td>
<td>2.80</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>Total France</td>
<td></td>
<td>21.00</td>
<td>11.10</td>
<td>32.10</td>
</tr>
<tr>
<td>Israël</td>
<td>Manufacture de ciment</td>
<td>253.00</td>
<td></td>
<td>253.00</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>291.40</td>
<td></td>
<td>291.40</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Pays</th>
<th>Secteur</th>
<th>Hg (gaz)</th>
<th>Hg (liq)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Israël</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>Manufacture de ciment</td>
<td>103.00</td>
<td></td>
<td>103.00</td>
</tr>
<tr>
<td></td>
<td>Manufacture de métaux</td>
<td>1,060.00</td>
<td>240.90</td>
<td>1,300.90</td>
</tr>
<tr>
<td></td>
<td>Manufacture de composés inorganiques</td>
<td>446.60</td>
<td>109.40</td>
<td>556.00</td>
</tr>
<tr>
<td></td>
<td>Manufacture de produits organiques chimiques</td>
<td>122.00</td>
<td>12.40</td>
<td>134.40</td>
</tr>
<tr>
<td></td>
<td>Manufacture de papier</td>
<td></td>
<td>30.05</td>
<td>30.05</td>
</tr>
<tr>
<td></td>
<td>Manufacture pharmaceutique</td>
<td></td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>Manufacture de produits pétroliers raffinés</td>
<td>137.10</td>
<td>9.60</td>
<td>146.70</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>577.10</td>
<td>102.00</td>
<td>679.10</td>
</tr>
<tr>
<td></td>
<td>Traitement des boues d'épandage</td>
<td></td>
<td>96.40</td>
<td>96.40</td>
</tr>
<tr>
<td></td>
<td>Activités de gestion des déchets</td>
<td>75.10</td>
<td>51.80</td>
<td>126.90</td>
</tr>
<tr>
<td>Total Italie</td>
<td></td>
<td>2,520.90</td>
<td>656.05</td>
<td>3,176.95</td>
</tr>
<tr>
<td>Liban</td>
<td>Manufacture de ciment</td>
<td>268.00</td>
<td></td>
<td>268.00</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>22.80</td>
<td></td>
<td>22.80</td>
</tr>
<tr>
<td>Total Liban</td>
<td></td>
<td>290.80</td>
<td></td>
<td>290.80</td>
</tr>
<tr>
<td>Libye</td>
<td>Manufacture de ciment</td>
<td>36.00</td>
<td></td>
<td>36.00</td>
</tr>
<tr>
<td></td>
<td>Manufacture de produits organiques chimiques</td>
<td></td>
<td>1,000.00</td>
<td>1,000.00</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>68.32</td>
<td></td>
<td>68.32</td>
</tr>
<tr>
<td>Total Libye</td>
<td></td>
<td>104.32</td>
<td>1,000.00</td>
<td>1,104.32</td>
</tr>
<tr>
<td>Malte</td>
<td>Traitement des eaux usées urbaines</td>
<td>199.80</td>
<td></td>
<td>199.80</td>
</tr>
<tr>
<td>Total Malte</td>
<td></td>
<td>199.80</td>
<td></td>
<td>199.80</td>
</tr>
<tr>
<td>Monténégro</td>
<td>Construction et réparation de bateaux et voiliers</td>
<td>0.77</td>
<td></td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Manufacture de produits pétroliers raffinés</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Total Monténégro</td>
<td></td>
<td>0.77</td>
<td></td>
<td>0.77</td>
</tr>
<tr>
<td>Palestine</td>
<td>Traitement des eaux usées urbaines</td>
<td>0.38</td>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>(non défini)</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Total Palestine</td>
<td></td>
<td>0.39</td>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td>Slovénie</td>
<td>Gestion des déchets solides urbains</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Manufacture de ciment</td>
<td>82.70</td>
<td></td>
<td>82.70</td>
</tr>
<tr>
<td>Total Slovénie</td>
<td></td>
<td>82.70</td>
<td></td>
<td>82.70</td>
</tr>
<tr>
<td>Espagne</td>
<td>(non défini)</td>
<td>789.24</td>
<td>90.46</td>
<td>879.70</td>
</tr>
<tr>
<td>Total Espagne</td>
<td></td>
<td>789.24</td>
<td>90.46</td>
<td>879.70</td>
</tr>
<tr>
<td>Syrie</td>
<td>Manufacture de ciment</td>
<td>187.00</td>
<td></td>
<td>187.00</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>17.60</td>
<td></td>
<td>17.60</td>
</tr>
<tr>
<td>Total Syrie</td>
<td></td>
<td>204.60</td>
<td></td>
<td>204.60</td>
</tr>
<tr>
<td>Tunisie</td>
<td>Manufacture de ciment</td>
<td>484.00</td>
<td></td>
<td>484.00</td>
</tr>
<tr>
<td></td>
<td>Manufacture de fertilisants</td>
<td></td>
<td>772,200.00</td>
<td>772,200.00</td>
</tr>
<tr>
<td></td>
<td>Production d'énergie</td>
<td>25.48</td>
<td></td>
<td>25.48</td>
</tr>
<tr>
<td>Total Tunisie</td>
<td></td>
<td>509.48</td>
<td>772,200.00</td>
<td>772,709.48</td>
</tr>
<tr>
<td>Turquie</td>
<td>Manufacture de ciment</td>
<td>166.07</td>
<td></td>
<td>166.07</td>
</tr>
<tr>
<td>Total Turquie</td>
<td></td>
<td>166.07</td>
<td></td>
<td>166.07</td>
</tr>
</tbody>
</table>
Figure 19. Apports totaux (principaux secteurs, en %) de mercure dans l’air (gauche) et l’eau (droite), reportés par les pays Méditerranéens dans le BBN de 2003. Les rejets de mercure dans l’eau à partir des manufactures de fertilisants ont été enlevés.

Par pays, les émissions de mercure dans l’air prédominent en Italie, avec 2,5 tonnes (40%), en l’Espagne (8 tonnes, 13%), en Israël (0.54 tonnes, 9%) et en Tunisie (0.5 tonnes, 8%).

Tableau 57. Apports totaux de mercure (kg/an) dans l’air et l’eau reportés par les pays méditerranéens dans le NBB de 2003.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Hg (gaz)</th>
<th>Hg (liq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algérie</td>
<td>418.23</td>
<td>248,600.00</td>
</tr>
<tr>
<td>Bosnie H.</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Croatie</td>
<td>147.27</td>
<td>118,18</td>
</tr>
<tr>
<td>Chypre</td>
<td>30.20</td>
<td></td>
</tr>
<tr>
<td>Egypte</td>
<td>424.60</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>21.00</td>
<td>11,10</td>
</tr>
<tr>
<td>Grèce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>544.40</td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>2,520.90</td>
<td>656.05</td>
</tr>
<tr>
<td>Liban</td>
<td>290.80</td>
<td></td>
</tr>
<tr>
<td>Libye</td>
<td>104.32</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Malte</td>
<td></td>
<td>199.80</td>
</tr>
<tr>
<td>Monténégro</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Maroc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.1.3 Le Registre Européen des Rejets et Transferts de Polluants

Les obligations sous la Réglementation E-PRTR s’étendent au-delà de la portée de l’EPER, principalement du fait de (i) l’intégration de plus d’installations, (ii) l’addition de substances à suivre, (iii) la couverture supplémentaire de rejets sur les terres, (iv) le transfert hors-site de déchets et les rejets de sources diffuses, et (v) la participation publique et la réalisation de rapports annuels et non plus triennaux.

Le nouveau registre contient des données reportées annuellement par quelques 24000 installations industrielles couvrant 65 activités économiques à travers l’Europe. Pour chaque installation, l’information apportée concerne la quantité de polluants rejetés dans l’air, l’eau et les terres, aussi bien que les transferts hors-site de déchets et de polluants dans les eaux usées à partir d’une liste de 91 polluants clés incluant le mercure pour les années jusqu’à 2007. Dans ce contexte, les déchets (i.e. déchets contenant du mercure) qui sont destinés à un stockage final (i.e. enfouissement) ne sont pas inclus dans l’E-PRTR. De plus, seulement les quantités de rejets de mercure dans l’air et l’eau supérieures la valeur seuil de 10kg/an dans l’air et 1kg/an dans l’eau sont couvertes ; ce qui signifie que les rejets de mercure hors étendue de l’E-PRTR peuvent peut être dépasser 20% des rejets totaux.

Les émissions de mercure reportées par les pays méditerranéens de l’UE à l’E-PRTR sont présentées dans le Tableau 58. Comme cela peut être observé, les installations

<table>
<thead>
<tr>
<th>pays</th>
<th>emission</th>
<th>stockage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palestine</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Slovénie</td>
<td>82.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Espagne</td>
<td>789.24</td>
<td>90.46</td>
</tr>
<tr>
<td>Syrie</td>
<td>204.60</td>
<td></td>
</tr>
<tr>
<td>Tunisie</td>
<td>509.48</td>
<td>772,200.00</td>
</tr>
<tr>
<td>Turquie</td>
<td>166.07</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6,253.81</td>
<td>1,022,876.75</td>
</tr>
</tbody>
</table>
industrielles de ces pays ont émis en 2007 un total de 9,9 tonnes et 5,8 tonnes de mercure dans l’air et l’eau respectivement. Les émissions dans l’air sont importantes en Espagne (43%) et en Grèce (16%), alors que les rejets dans l’eau sont plus concentrés en Italie (72%), Espagne (17%), et en France (10%) (c.f. Figure 20).

Tableau 58. Rejets d’Hg et de composés (comme Hg) reportés par les pays méditerranéens au Registre E-PRTR. Données en kg (2007).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Air</th>
<th>Eau</th>
<th>Sol</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chypre</td>
<td>166.50</td>
<td>166.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>2,861.30</td>
<td>561.34</td>
<td>104.63</td>
<td>3,527.27</td>
</tr>
<tr>
<td>Grèce</td>
<td>1,549.90</td>
<td>68.80</td>
<td></td>
<td>1,618.70</td>
</tr>
<tr>
<td>Italie</td>
<td>1,022.00</td>
<td>4,179.42</td>
<td>1.10</td>
<td>5,202.52</td>
</tr>
<tr>
<td>Slovénie</td>
<td>38.10</td>
<td>5.31</td>
<td></td>
<td>43.41</td>
</tr>
<tr>
<td>Espagne</td>
<td>4,251.40</td>
<td>1,009.66</td>
<td></td>
<td>5,261.06</td>
</tr>
<tr>
<td>Total général</td>
<td>9,889.20</td>
<td>5,824.53</td>
<td>105.73</td>
<td>15,819.46</td>
</tr>
</tbody>
</table>

Figure 20. Distribution par pays des rejets d’Hg dans l’air et l’eau (2007) Source: E-PRTR.

Par secteurs (c.f. Tableau 59 et Figure 21), les émissions de mercure dans l’air ont pour origine principale le secteur énergétique (34%), l’industrie chimique (24%), l’industrie minérale (18%) et l’industrie métallique (12%). Ces résultats diffèrent légèrement dans les pays méditerranéens des autres pays européens où les installations de production énergétique sont responsables de 50% des rejets de mercure. Au contraire, les rejets provenant de l’industrie cimentaire sont plus importants dans les pays méditerranéens.

En outre la production d’énergie est le secteur d’activité principal émetteur de mercure dans l’eau (69%), suivi par la gestion des déchets (25%) et l’industrie chimique (4%). Les rejets dans les sols ont seulement été indiqués par la France, principalement à partir d’usine urbaines des eaux usées (probablement les boues WWTP). Une présentation plus détaillée des rejets de mercure par secteurs et sous-secteurs est disponible dans le Tableau 60.
Tableau 59. Rejets d’Hg, par secteur, dans les pays méditerranéens reportés au registre E-PRTR. Données en kg (2007).

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Air</th>
<th>Eau</th>
<th>Sol</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie chimique</td>
<td>2354.9</td>
<td>228.31</td>
<td>8284.86</td>
<td>2583.21</td>
</tr>
<tr>
<td>Production d’énergie</td>
<td>3318.3</td>
<td>4044.89</td>
<td>3.8</td>
<td>7366.99</td>
</tr>
<tr>
<td>Industrie métallurgique</td>
<td>1161.9</td>
<td>46.78</td>
<td>1208.68</td>
<td></td>
</tr>
<tr>
<td>Industrie minérale</td>
<td>1755.7</td>
<td>3.16</td>
<td>1758.86</td>
<td></td>
</tr>
<tr>
<td>Huile & gaz</td>
<td>781</td>
<td>17.6</td>
<td>798.6</td>
<td></td>
</tr>
<tr>
<td>Autres activités</td>
<td>3.04</td>
<td>23.3</td>
<td>26.34</td>
<td></td>
</tr>
<tr>
<td>Pâte & papier</td>
<td>38</td>
<td>48.37</td>
<td>7.37</td>
<td>93.74</td>
</tr>
<tr>
<td>Gestion des déchets et des eaux uses</td>
<td>479.4</td>
<td>1432.38</td>
<td>71.26</td>
<td>1983.04</td>
</tr>
<tr>
<td>Total</td>
<td>9889.2</td>
<td>5824.53</td>
<td>105.73</td>
<td>15819.46</td>
</tr>
</tbody>
</table>

Figure 21. Secteurs de distribution des rejets d’Hg dans l’eau et l’air (kg; 2007). Source: E-PRTR.

Tableau 60. Rejets d’Hg par secteurs et sous-secteurs dans les pays méditerranéens reportés dans le registre E-PRTR. Données en kg (2007).

<table>
<thead>
<tr>
<th>Secteur / Sous-secteur</th>
<th>Air</th>
<th>Eau</th>
<th>Sol</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie chimique</td>
<td>2354.9</td>
<td>228.31</td>
<td>8284.86</td>
<td>2583.21</td>
</tr>
<tr>
<td>Production de produits chimiques inorganiques basiques</td>
<td>1673.8</td>
<td>194.81</td>
<td>1868.61</td>
<td></td>
</tr>
<tr>
<td>Production de produits chimiques organiques basiques</td>
<td>681.1</td>
<td>28.8</td>
<td>709.9</td>
<td></td>
</tr>
<tr>
<td>Production de produits pharmaceutiques basiques</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production de produits de la santé à base de plat et de biocides</td>
<td>3.6</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production d’énergie</td>
<td>3318.3</td>
<td>4044.89</td>
<td>3.8</td>
<td>7366.99</td>
</tr>
<tr>
<td>Stations thermiques et autres installations de combustion</td>
<td>3318.3</td>
<td>4044.89</td>
<td>3.8</td>
<td>7366.99</td>
</tr>
<tr>
<td>Industrie Métallique</td>
<td>1161.9</td>
<td>46.78</td>
<td>1208.68</td>
<td></td>
</tr>
<tr>
<td>Fonderies de métal ferreux</td>
<td>91.8</td>
<td>91.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuisson et frittage de minerai métallique (dont le minerai de soufre)</td>
<td>82.6</td>
<td>82.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procédés de métaux ferreux</td>
<td>65</td>
<td>7.3</td>
<td>72.3</td>
<td></td>
</tr>
<tr>
<td>Production de métaux bruts non ferreux</td>
<td>124.2</td>
<td>26.14</td>
<td>150.34</td>
<td></td>
</tr>
<tr>
<td>Production par fonte brut de fer ou d’acier dont les mouillages continus</td>
<td>798.3</td>
<td>11.54</td>
<td>809.84</td>
<td></td>
</tr>
<tr>
<td>Traitements de surface des métaux et des plastiques</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie Minérale</td>
<td>1755.7</td>
<td>3.16</td>
<td>1758.86</td>
<td></td>
</tr>
<tr>
<td>Manufacture de produits en céramique</td>
<td>67.6</td>
<td>67.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Activité</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture du verre, incluant la fibre de verre</td>
<td>78</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Production de ciment mâchefer et chaux</td>
<td>1610.1</td>
<td>1610.1</td>
<td></td>
</tr>
<tr>
<td>Exploitations minières et opérations relatives</td>
<td>3.16</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>Huile et gaz</td>
<td>781</td>
<td>17.6</td>
<td>798.6</td>
</tr>
<tr>
<td>Gazéification et liquéfaction</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Raffineries d’huile et de gaz</td>
<td>781</td>
<td>16</td>
<td>797</td>
</tr>
<tr>
<td>Autres activités</td>
<td>3.04</td>
<td>23.3</td>
<td>26.34</td>
</tr>
<tr>
<td>Construction, peinture et suppression de peinture des bateaux</td>
<td>1.85</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>Production de nourriture et boisson</td>
<td>14.6</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>Prétraitement de coloration des fibres et textiles</td>
<td>1.19</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Abattoirs</td>
<td>8.7</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Pâtes et papiers</td>
<td>38</td>
<td>48.37</td>
<td>7.37</td>
</tr>
<tr>
<td>Production de papier et planches et de tout autre produit</td>
<td>38</td>
<td>40.67</td>
<td>78.67</td>
</tr>
<tr>
<td>primaire à partir du bois</td>
<td>38</td>
<td>40.67</td>
<td>78.67</td>
</tr>
<tr>
<td>Production de pâte à partir de bois ou de matériaux fibreux similaires</td>
<td>7.7</td>
<td>7.37</td>
<td>15.07</td>
</tr>
<tr>
<td>Gestion des déchets et des eaux usées</td>
<td>479.4</td>
<td>1432.38</td>
<td>71.26</td>
</tr>
<tr>
<td>Traitement des déchets non dangereux</td>
<td>814.55</td>
<td>814.55</td>
<td></td>
</tr>
<tr>
<td>Traitement et récupération de déchets dangereux</td>
<td>178.7</td>
<td>24.44</td>
<td>1.48</td>
</tr>
<tr>
<td>Incinération des déchets non dangereux</td>
<td>300.7</td>
<td>27.82</td>
<td>328.52</td>
</tr>
<tr>
<td>Usines du traitement des eaux usées industrielles</td>
<td>11.6</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Usines de traitement des eaux usées urbaines</td>
<td>553.97</td>
<td>69.78</td>
<td>623.75</td>
</tr>
<tr>
<td>Total général</td>
<td>9889.2</td>
<td>5824.53</td>
<td>105.73</td>
</tr>
</tbody>
</table>

8.1.4 UNECE-EMEP

Au sein de la convention LRTAP, les données sont basiquement rassemblées et estimées sous le programme EMEP, un programme de coopération pour suivre et évaluer la pollution de l’air par des polluants en Europe (Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe). Ce programme repose sur trois éléments : (1) la collecte des données des émissions, (2) les mesures de la qualité de l’air et des précipitations, (3) la modélisation du transport atmosphérique et des dépôts des polluants de l’air. Grâce à la combinaison de ces trois éléments, l’EMEP satisfait l’évaluation requise et les rapports réguliers sur les émissions, les concentrations et les dépôts des polluants atmosphériques, la quantité et signification des flux transfrontaliers et les dépassements relatifs aux niveaux seuils et charges critiques.

Actuellement le Centre de l’inventaire des émissions et des prévisions de l’EMEP (Centre on Emission Inventories and Projections (CEIP) a pour tâche de recueillir les émissions et prévisions des polluants acides de l’air, des métaux lourds, de la matière particulaire et des oxydants photochimiques. Le CEIP reçoit officiellement des données soumises par les Parties de la Convention du LRTAP du programme EMEP par l’intermédiaire du
secrétariat de l'UNECE. Cependant dans la mesure où ces données peuvent être
inégales et/ou incomplètes, le CEIP fournit des données expertisées et corrigées qui
peuvent être utilisées à des fins de modélisation et d’intercomparaison. Les données
officielles ainsi que les données corrigées sur les émissions de mercure indiquées par les
Parties Méditerranéennes à la Convention du LRTAP sont fournies dans cette section.

8.1.4.1 Émissions par pays

D'après les données corrigées de l’EMEP, les pays du nord de la Méditerranée (avec la
Turquie) ont émis en 2007 environ 67 tonnes de mercure dans l'air (c.f. Tableau 61 et
Figure 22). Les émetteurs majeurs furent la Turquie (32%), la Grèce (19,6%), l'Italie
(16%), l'Espagne (13,6%) et la France (10,1%).

Source des données : base de données des émissions : UNECE/EMEP (WebDab).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Émissions Hg (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turquie</td>
<td>21.11</td>
</tr>
<tr>
<td>Grèce</td>
<td>13.00</td>
</tr>
<tr>
<td>Italie</td>
<td>10.71</td>
</tr>
<tr>
<td>Espagne</td>
<td>9.04</td>
</tr>
<tr>
<td>France</td>
<td>6.68</td>
</tr>
<tr>
<td>Bosnie H.</td>
<td>1.88</td>
</tr>
<tr>
<td>Chypre</td>
<td>1.36</td>
</tr>
<tr>
<td>Slovénie</td>
<td>1.17</td>
</tr>
<tr>
<td>Malte</td>
<td>0.63</td>
</tr>
<tr>
<td>Croatie</td>
<td>0.62</td>
</tr>
<tr>
<td>Albanie</td>
<td>0.20</td>
</tr>
<tr>
<td>Monténégro</td>
<td>0.15</td>
</tr>
<tr>
<td>Monaco</td>
<td>0.06</td>
</tr>
<tr>
<td>Total</td>
<td>66.61</td>
</tr>
</tbody>
</table>
8.1.4.2 Tendances temporelles

En Europe, d’après les données officiellement signalées à la Convention UNENE LRTAP, les émissions de mercure ont progressivement décru depuis 1990 avec une réduction totale d’environ 50% jusqu’à 2007 (cf. Figure 23). Cependant, cette tendance temporelle peut varier selon les pays. En exemple, il est possible d’observer dans la Figure 24 les décroissances des émissions de mercure atmosphériques de certains pays méditerranéens comme l’Italie, l’Espagne et la France tout particulièrement, alors que d’autres (i.e Turquie, Slovénie et Chypre) ont augmenté leurs rejets. La Figure 25 présente les estimations annuelles de l’EMEP pour chaque pays : (i) la Turquie a remarquablement augmenté ses rejets au cours des dernières années, (ii) Une forte décroissance est constatée dans les émissions de mercure en France, ce qui place ce pays après l’Espagne et la Grèce, (iii) L’Italie a aussi limité ses émissions totales entre 1990 et 2007, mais quelques tendances à la hausse sont observées durant les dernières années.

Figure 24. Changements dans les émissions d'Hg dans l'air entre 1990 et 2007 dans les pays du Nord de la Méditerranée (EMEP) Source des données : la base de données des émissions de l'UNECE/EMEP (WebDab).
8.1.4.3 Émissions par secteur d'activité

Les données des émissions de l’EMEP peuvent être consultées par secteur d’activité en utilisant deux nomenclatures différentes :

- La nomenclature choisie pour les sources de pollution de l’air : SNAP - Selected Nomenclature for sources of Air Pollution. Cette nomenclature est développée par le projet CORINAIR pour distinguer les secteurs sources d’émissions, sous-secteurs et activités.
- La nomenclature de communication de l’information : NFR – Nomenclature For Reporting. Il s’agit d’un système de classification développé par l’UN/ECE TFEIP concernant les directives de communication de l’information.

Les données d’émission de mercure qui ont été recueillies à partir de la base de données de l’EMEP seront présentées ci-après en utilisant la nomenclature SNAP dans la mesure où cette classification utilise des données corrigées. Les principales catégories sont classées par groupe comme suit :

Groupe 1: Combustion dans l’industrie énergétique et de transformation.
Groupe 2: Usines de combustion non industrielle
Group 3: Combustion dans l’industrie de production
Group 4: Procédés de production
Group 5: Extraction et distribution de l’énergie géothermique et des combustibles fossiles
Group 6: Utilisation de solvants et autres produits
Les données d’émission de mercure par secteur d’activité sont seulement disponibles pour quelques pays. Comme on le voit dans le Tableau 62 et la Figure 26, le mercure est principalement rejeté par les industries énergétiques (38%), suivi par une contribution similaire des sources de combustion dans l’industrie (24%) et des procédés de production industrielle (24%). Les usines de combustion non industrielles (i.e. commerciales et résidentielles) contribue à raison de 11% aux émissions de mercure. Finalement la gestion des déchets représente environ 3% des émissions totales dans ce groupe de pays. D’autres sources sont à peine signalées, comme le transport routier; elles sont supposées être d’une importance mineure dans les émissions de mercure en comparaison de celles citées ci-dessus.

<table>
<thead>
<tr>
<th>SNAP Secteur</th>
<th>Chypre</th>
<th>Espagne</th>
<th>France</th>
<th>Croatie</th>
<th>Italie</th>
<th>Malte</th>
<th>Slovénie</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Industries de l'énergie</td>
<td>1173.1</td>
<td>4579.9</td>
<td>3522.1</td>
<td>184.1</td>
<td>1062.3</td>
<td>610.7</td>
<td>469.9</td>
<td>11602.2</td>
</tr>
<tr>
<td>S2 Autres (énergie)</td>
<td>80.5</td>
<td>204.8</td>
<td>130.5</td>
<td>2653.5</td>
<td>131.2</td>
<td>3200.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3 Industrie (énergie)</td>
<td>190.1</td>
<td>1660.5</td>
<td>1812.9</td>
<td>283.2</td>
<td>3300.7</td>
<td>49.7</td>
<td>7297.0</td>
<td></td>
</tr>
<tr>
<td>S4 Industrie (procédés)</td>
<td>2559.9</td>
<td>609.0</td>
<td>23.6</td>
<td>3523.4</td>
<td>399.6</td>
<td>7115.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5 Extraction de combustibles fossiles</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6 Utilisation de solvants</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7 Transport routier</td>
<td>118.2</td>
<td>118.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8 Autres sources mobiles</td>
<td>44.7</td>
<td>0.7</td>
<td>0.7</td>
<td>46.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9 Gestion des déchets</td>
<td>113.7</td>
<td>531.7</td>
<td>2.0</td>
<td>171.5</td>
<td>15.4</td>
<td>834.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10 Agriculture</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1363.2</td>
<td>9039.3</td>
<td>6681.1</td>
<td>624.1</td>
<td>10711.4</td>
<td>626.1</td>
<td>1169.4</td>
<td>30214.6</td>
</tr>
</tbody>
</table>

8.1.4.4 Distribution géographique des émissions naturelles et anthropogéniques

D’après les modèles de l’EMEP, les émissions anthropogéniques de mercure se concentrent au centre et à l’est de l’Europe (Figure 27), alors que les émissions naturelles prédominent dans le sud de l’Europe et la région méditerranéenne (Figure 28).

Figure 27. Distribution spatiale des émissions anthropogéniques de mercure en 2007 (g/km²/an). Source : EMEP.
8.1.5 Inventaires régionaux dans la littérature

Tableau 63. Facteurs d’émissions utilisés par Pirrone et al. (2001) pour estimer les émissions industrielles de mercure dans la région méditerranéenne.

<table>
<thead>
<tr>
<th>Catégorie source</th>
<th>Pays développés</th>
<th>Pays en développement*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales à charbon</td>
<td>0.05 g-Hg t⁻¹</td>
<td>0.12 g-Hg t⁻¹</td>
</tr>
<tr>
<td>Centrales à mazout Oil-burning</td>
<td>0.05 g-Hg t⁻¹</td>
<td>0.065 g-Hg t⁻¹</td>
</tr>
<tr>
<td>Incinération de MSW</td>
<td>0.8 g-Hg t⁻¹</td>
<td>1 g-Hg t⁻¹</td>
</tr>
<tr>
<td>Production de ciment</td>
<td>0.09 g-Hg t⁻¹</td>
<td>0.5 g-Hg t⁻¹</td>
</tr>
</tbody>
</table>

* Comprend l’Afrique du Nord et le Moyen-Orient (sauf Israël)

Les émissions anthropogéniques totales furent estimées à environ **106 t an⁻¹** (estimations de 1995). Les contributions de la combustion des combustibles fossiles (29.9 t an⁻¹), de la production de ciment (28.8 t an⁻¹), et de l’incinération des déchets solides (27.6 t an⁻¹) comptent pour environ 82% des émissions régionales totales (c.f. Tableau 64 et Figure 29). Par pays, la France était le pays émetteur majeur (22.8 t an⁻¹), suivi de la Turquie (16.2 t an⁻¹), l’Italie (11.4 t an⁻¹), et l’Espagne (9.8 t an⁻¹).
Concernant les tendances, d’après cette étude, les émissions totales ont augmenté de 80 t an\(^{-1}\) en 1983 à 106 t an\(^{-1}\) en 1995, et sont supposées croître encore jusqu’à 191 t an\(^{-1}\) en 2025. Cette croissance en France, en Italie et Espagne est due en premier lieu à la prévision de croissance des émissions provenant de l’incinération des MSW. Cependant, des rapports récents de l’EMEP et des inventaires nationaux français (c.f. section 8.1.4 et 0) indiquent clairement que les émissions de mercure de ces pays ont diminué grâce aux techniques de réduction de pollution dans les incinérateurs des MSW.

<table>
<thead>
<tr>
<th>Country</th>
<th>Coal</th>
<th>Oil</th>
<th>MSW</th>
<th>Cement</th>
<th>Smelters</th>
<th>Iron-Steel</th>
<th>Misc.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.26</td>
</tr>
<tr>
<td>Algeria</td>
<td>0.3</td>
<td>1.5</td>
<td>2.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1.7</td>
<td>0.2</td>
<td>0.5</td>
<td>2.6</td>
<td>0.5</td>
<td>0.7</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.1</td>
<td><0.1</td>
<td>0.7</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1.9</td>
<td>2.3</td>
<td>11.6</td>
<td>2.2</td>
<td>1.4</td>
<td>1.3</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>0.8</td>
<td>0.1</td>
<td>1.3</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>1.3</td>
<td>1.1</td>
<td>1.7</td>
<td>4.2</td>
<td>0.1</td>
<td>1.3</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td>0.1</td>
<td>0.2</td>
<td>1.0</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Lebanon</td>
<td>0.7</td>
<td>0.2</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Libya</td>
<td>0.3</td>
<td>0.3</td>
<td>1.3</td>
<td>0.8</td>
<td><0.1</td>
<td><0.1</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td>0.3</td>
<td>1.5</td>
<td>3.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>3.0</td>
<td>1.0</td>
<td>0.9</td>
<td>2.6</td>
<td>0.1</td>
<td>0.6</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Syrie</td>
<td>0.4</td>
<td>0.7</td>
<td>2.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>0.2</td>
<td>0.5</td>
<td>1.9</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>7.2</td>
<td>1.0</td>
<td>3.3</td>
<td>3.0</td>
<td>0.2</td>
<td>1.5</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>0.9</td>
<td>3.1</td>
<td>0.9</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>3.6</td>
<td>0.3</td>
<td>1.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.9</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19.8</td>
<td>10.1</td>
<td>27.8</td>
<td>28.8</td>
<td>4.8</td>
<td>4.8</td>
<td>105.7</td>
<td></td>
</tr>
<tr>
<td>% of the total</td>
<td>18.8</td>
<td>9.5</td>
<td>26.3</td>
<td>27.3</td>
<td>4.6</td>
<td>4.6</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>

*Blank spaces in this table indicates that the emission rate is unknown.

L’émission annuelle à partir de sources naturelles est évaluée à 110 t an\(^{-1}\)ce qui équivaut à 51% des émissions totales, bien que cette figure n’inclue seulement que la
volatilisation du mercure élémentaire à partir des eaux de surfaces (source majeure) et les émissions d’origine volcanique. Récemment, les rejets de mercure conséquences des feux de forêts dans les pays méditerranéens ont été estimés à 4.3 t an\(^{-1}\) (Cinnirela et al., 2008).

De plus, les sources naturelles et anthropogéniques dans la région méditerranéenne rejetten annuellement environ 215 tonnes de mercure; ce qui représente une contribution significative au budget total de mercure émis en Europe et dans l’atmosphère globale.

8.1.6 Inventaires nationaux des émissions

8.1.6.1 Albanie

Aucune information n’a été obtenue à partir du NFP et aucun inventaire national des émissions n’a été identifié. Cependant, quelques données sur l’Albanie sont accessibles dans l’inventaire de l’AMAP/UNEP (2008) et l’EMEP.

8.1.6.2 Algérie

En Algérie, aucun inventaire des émissions de mercure n’a été identifié. Cependant, le NFP a reporté quelques données sur les rejets des eaux usées provenant de l’industrie de chlore-alcali. Selon cette information, le site de production en chlore à Baba Ali (Alger) génère 180 tonnes par an d’eaux usées contenant du mercure (avec une concentration moyenne de 0.349 mg Hg/L). Les eaux usées d’une autre installation de production de chlore à Mostagane (Ouest de l’Algérie) contiennent 0.4 mg Hg/L. Cependant, ces deux complexes industriels ont lancé des procédés de reconversion afin de substituer aux piles à mercure la technologie à membrane.

D’un autre côté, l’inventaire national des déchets dangereux (National Inventory of Hazardous Wastes, CNDS) identifie aussi des déchets de mercure générés par un site de production de mercure déjà clos à Azzaba, ainsi que les déchets générés par le site de production de chlore-alcali à Baba Ali.

8.1.6.3 Croatie

Selon le NFP, les inventaires suivants sont disponibles en Croatie :

en route. Avec cette mesure de réduction d’émission de mercure, la concentration moyenne de mercure diminue de 516 µg/m³ à l’arrivée à 0.12 µg/m³ en sortie de procédé.

Au niveau d’une installation, les composés de mercure doivent être mesurés dans les gaz d’échappements des procédés technologiques de la production de chlore et de la production de chlore-alcali utilisant des électrolyses employant des procédés d’amalgamation, ainsi que dans les déchets gazeux provenant des usines d’incinération (incluant les formes vapeur et gazeuse des émissions pertinentes de métaux lourds et de leurs composés).

L’inventaire des émissions dans l’eau : L’ordonnance du registre des pollutions environnementales (Gazette officielle no 35/08) prescrit le contenu requis et la manière de conduire et de tenir le registre des pollutions environnementales. Les contributeurs fournissent l’information au registre, la manière, la méthodologie et le temps de collecte et de remise des données sur les rejets, le transfert et le stockage des polluants dans l’environnement et les déchets, les données sur les polluants, la compagnie, l’installation, l’unité d’organisation au sein des pollueurs, la date limite et la méthode pour informer le public, ainsi que la manière de vérifier les informations. Ils exécutent par ailleurs des tâches professionnelles de garde du registre.

Le registre des pollutions environnementales est maintenu par l’Agence pour la protection de l’environnement (Agency for environmental protection, AZO).

Les inventaires de déchets solides : L’ordonnance sur le registre des pollutions environnementales (OG No 35/08) prescrit que l’AZO maintient le registre de données sur les déchets, les producteurs de déchets et la gestion des déchets. Le Registre contient des données sur les déchets selon la liste européenne des déchets.

Les données disponibles sur les rejets dans l’air et l’eau fournies par le NFP croate sont présentées dans le Tableau 65.

Tableau 65. Émissions du mercure dans les eaux usées et l’air en Croatie. Source: NFP.

<table>
<thead>
<tr>
<th>Activité source</th>
<th>Mercure dans l’air (t/an)</th>
<th>Mercure dans les eaux usées (t/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion de charbon dans les centrales (>50 MWth)</td>
<td>NON</td>
<td>0,00002</td>
</tr>
<tr>
<td>Combustion du charbon pour utilisation résidentielle (<50 MWth)</td>
<td>NON</td>
<td></td>
</tr>
<tr>
<td>Industrie métallique</td>
<td>0,0114</td>
<td></td>
</tr>
<tr>
<td>Industrie chlore-alcali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production de ciment</td>
<td>Non disponible</td>
<td></td>
</tr>
<tr>
<td>Industrie du papier</td>
<td>IE</td>
<td></td>
</tr>
<tr>
<td>Production de composés chimiques organiques basiques</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Incinération de déchets</td>
<td>0,00198</td>
<td></td>
</tr>
<tr>
<td>Enfouragement de déchets</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Raffineries minéraux, huiles, gaz</td>
<td>0,00014</td>
<td>0,0000001</td>
</tr>
<tr>
<td>Fertilisants au phosphore</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Epandage des boues d’épuration sur les terrains agricoles</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Création</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
8.1.6.4 Chypre

Chypre reporte des données des émissions de mercure dans l’air au Corps Exécutif de la Convention LRTAP. Les données présentées pour la période allant de 2006 à 2008 sont listées dans le Tableau 66. Les émissions dans l’air de mercure à Chypre sont évaluées à 0,18 tonnes.an⁻¹ sans changement significatif durant les dernières années. Elles sont origine dominante la combustion dans l’industrie de production (i.e. ciment) à raison de 92% des émissions totales.

De même, dans le cadre de la Directive 2006/12/EK, les déchets de mercure sont signalés dans les déchets dangereux.

Tableau 66. Émissions de mercure dans l’air à Chypre, comme reportées à l’EMEP. Source: NFP.

<table>
<thead>
<tr>
<th>Code NFR</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A 1 a</td>
<td>0,01299</td>
<td>0,01330</td>
<td>0,01391</td>
</tr>
<tr>
<td>1 A 2 b</td>
<td>0,00003</td>
<td>0,00002</td>
<td>0,00002</td>
</tr>
<tr>
<td>1 A 2 c</td>
<td>0,00001</td>
<td>0,00001</td>
<td>0,00001</td>
</tr>
<tr>
<td>1 A 2 d</td>
<td>0,00001</td>
<td>0,00000</td>
<td>0,00000</td>
</tr>
<tr>
<td>1 A 2 e</td>
<td>0,00011</td>
<td>0,00008</td>
<td>0,00008</td>
</tr>
<tr>
<td>1 A 2 f</td>
<td>0,16971</td>
<td>0,16676</td>
<td>0,16798</td>
</tr>
<tr>
<td>1 A 4 b</td>
<td>0,00013</td>
<td>0,00013</td>
<td>0,00011</td>
</tr>
<tr>
<td>1 A 4 c</td>
<td>0,00008</td>
<td>0,00008</td>
<td>0,00007</td>
</tr>
<tr>
<td>4 F</td>
<td>0,00006</td>
<td>0,00004</td>
<td>0,00002</td>
</tr>
<tr>
<td>Total National</td>
<td>0,183</td>
<td>0,180</td>
<td>0,182</td>
</tr>
</tbody>
</table>

8.1.6.5 France

Les données nationales sur les émissions atmosphériques en mercure peuvent être obtenues par le Centre Interprofessionnel Technique de l’Etude de la Pollution Atmosphérique (CITEPA)⁴⁹, qui fourni un inventaire annuel des émissions dans toute la France en utilisant les catégories source nationales et internationales (codes SNAP). Les figures reportées par le CITEPA sont les mêmes que celles de l’EMEP et sont déjà montrées dans la section 9.1.4. Cependant, une information plus détaillée est donnée pour expliquer les résultats dans le rapport national (CITEPA, 2009).

⁴⁹ CITEPA: www.citepa.org
En 2007, les émissions totales atmosphériques de mercure en France s’élevaient à 6,7 tonnes ; ce qui correspond à une décroissance de 75% depuis l’année 1990 (c.f. Figure 30). Cette réduction peut s’expliquer par l’amélioration de la performance de l’incinération des déchets, la limitation ou la prohibition de l’utilisation du mercure dans les batteries et les thermomètres, l’amélioration des systèmes de collecte des déchets et l’optimisation des procédés dans l’industrie de chlore-alcali (CITEPA, 2009).

Le mercure est principalement rejeté du secteur de transformation d’énergie et de l’industrie de production. Au sein des transformations d’énergie (52% des émissions en 2007), les émissions de mercure sont principalement produites par la production d’énergie (77%), particulièrement par la consommation de combustibles fossiles solides. Entre 1990 et 2007 cette consommation a diminué de 22%. Au sein de l’industrie manufacturière, les sous secteurs suivants sont les sources majeures :

- L’industrie chimique (33%), particulièrement de chlore-alcali (20% de l’industrie de production);
- Les industries des minerais (25%), avec la production de ciment comptant pour 6% de l’industrie de production ;
- Le traitement des déchets (17%), basiquement l’incinération.

Les rejets par habitants ont diminué de 77% (0.48 g/hab. en 1990 à 0.11 g/hab. en 200), et ceux par unité de PIB ont réduit de 87% (de 26.1 µg/€ à 3.5 µg/€ pour la même période). Les données d’émission peuvent aussi être détaillées par régions et départements pour l’année 2000 (CITEPA, 2005). Les régions méditerranéennes avec les émissions les plus élevées en mercure sont la région Provence Alpes Côte d’Azur et la région Rhône-Alpes (Figure 31). Les émissions majeures en France ont lieu dans la région Nord-Pas-de-Calais, mais elles ont drastiquement diminué depuis la fermeture du site METALEUROP à Noyelles Godault. METALEUROP était un important producteur de zinc et plomb (CITEPA, 2009).

8.1.6.6 Grèce

Les inventaires des émissions de mercure dans l’air et l’eau n’ont pas été identifiés ni reportés par le NFP, bien que la Grèce ait transmis des émissions de mercure au registre E-PRTR venant principalement des centrales thermiques et des industries cimentaires. Un inventaire des déchets solides est disponible, au sein duquel les compagnies

50 http://www.pollutionsindustrielles.ecologie.gouv.fr/IREP/
51 http://www.stats.environnement.developpement-durable.gouv.fr/
53 http://basol.ecologie.gouv.fr/
autorisées à gérer des déchets dangereux sont enregistrées et les données touchant aux déchets dangereux de chaque compagnie sont conservées. Jusqu’à maintenant les données concernant l’export des déchets de mercure (et plus spécialement les déchets des lampes à vapeur de mercure et des lampes au mercure exportées aux états membres de l’UE pour le recyclage) ont été soumises et incluses.

8.1.6.7 Israel

Les informations suivantes ont été fournies par le NFP:

Les inventaires des émissions dans l’air: les données des séries d’émissions sont conservées, contrôlées par les industriels et le ministère (valeurs d’émissions kg/h et concentrations en mg/m³). Il existe ces informations pour 72 usines parmis 500 existantes.

Les inventaires des émissions dans l’eau: Le WWTP en Israël suit le mercure dans les effluents et les émissions des boues. Le Ministère de la Protection de l’Environnement (Ministry of Environmental Protection, MoEP) contrôle les émissions dans les WWTP majeurs.

Les inventaires des sols contaminés: Le MoEP gère un système national d’information sur les sols contaminés.

Le rapport soumis par l’Israël au MEDPOL pour le BBN 2008 comprend les émissions liquides et atmosphériques de mercure au sein de la ligne de partage des eaux méditerranéennes. Cet inventaire ne couvre pas tout le territoire national. De plus, dans ces régions, la part spécifique des émissions atmosphériques qui peuvent affecter la Mer Méditerranée est calculée en prenant en compte la distribution annuelle de la direction des vents mer/terre.

Les émissions totales atmosphériques de mercure en 2008 sont de 1,246kg, dont 601,5kg estimés se diriger dans la Mer Méditerranée (Tableau 67). Environ 50% de ces émissions furent rejetées par des usines cimentaires, suivies par la production d’énergie par combustion du charbon (42%). Les rejets de mercure dans la ligne de partage des eaux méditerranéenne furent estimés à 75kg.

Tableau 67. Émissions atmosphériques de mercure dans la région méditerranéenne d’Israël, 2008. Source: NFP.

<table>
<thead>
<tr>
<th>Source</th>
<th>Émissions totales (kg/an)</th>
<th>Émissions à travers la mer thè Med. (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion de charbon pour la production d’énergie</td>
<td>525</td>
<td>270.38</td>
</tr>
<tr>
<td>Combustion d’huile pour la production d’énergie</td>
<td>59.37</td>
<td>27.4</td>
</tr>
<tr>
<td>Usines de ciment</td>
<td>660</td>
<td>303</td>
</tr>
<tr>
<td>Combustion de fuel résidentiel pour les centres urbains</td>
<td>2</td>
<td>0.76</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1246.37</td>
<td>601.54</td>
</tr>
</tbody>
</table>
8.1.6.8 Italie

L’inventaire italien des émissions atmosphérique suit la méthodologie de CORINAIR et fournit des données à la Convention LRTAP. Les données détaillées sont apportées à un niveau national par l’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) à travers le réseau national d’informations environnementales (National Network of Environmental Information (SINAnet54). Ces données peuvent aussi être obtenues par région ou province.

Les rejets de mercure dans l’air et l’eau en 2008 sont présentés dans le Tableau 68.

Tableau 68. Émissions de mercure dans l’air et l’eau en Italie en 2008. Source: NFP.

<table>
<thead>
<tr>
<th>Activité source</th>
<th>Mercure dans l’air (t/an)</th>
<th>Mercure dans les émissions dans l’eau (t/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion de charbon dans des centrales (>50 MWth)</td>
<td>0.828</td>
<td>0.000</td>
</tr>
<tr>
<td>Combustion du charbon à but résidentiel (<50 MWth)</td>
<td>0.872</td>
<td>0.000</td>
</tr>
<tr>
<td>Industrie des métaux</td>
<td>3.148</td>
<td>0.015</td>
</tr>
<tr>
<td>Industrie chlore-alcali</td>
<td>0.222</td>
<td>0.184</td>
</tr>
<tr>
<td>Production de ciment</td>
<td>1.276</td>
<td>0.000</td>
</tr>
<tr>
<td>Industrie du papier</td>
<td>-</td>
<td>0.022</td>
</tr>
<tr>
<td>Production de composés organiques basiques</td>
<td>-</td>
<td>0.018</td>
</tr>
<tr>
<td>Incinération de déchets</td>
<td>0.154</td>
<td>0.007</td>
</tr>
<tr>
<td>Enfouissement de déchets</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>Raffineries gaz, huile, minéraux</td>
<td>0.160</td>
<td>0.014</td>
</tr>
<tr>
<td>Fertilisants au phosphore</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>Épandage de boues d’épuration sur les terres agricoles</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>Crématon</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>Autres activités avec émissions de mercure</td>
<td>5.285</td>
<td>0.375</td>
</tr>
<tr>
<td>TOTAL des émissions de mercure</td>
<td>10.482</td>
<td>0.635</td>
</tr>
</tbody>
</table>

8.1.6.9 Liban

54 http://www.sinanet.apat.it/it/sinanet/ssstoriche
8.1.6.10 Malte

Aucune information n’a été obtenue du NFP et aucun inventaire national des émissions n’a pu être identifié. Cependant, quelques données sur Malte peuvent être obtenues à partir de l’inventaire AMAP/UNEP (2008) et l’EMEP.

8.1.6.11 Monaco

Selon le NFP, il n’existe aucun stock de mercure dans la Principauté de Monaco. De plus, aucune industrie ne produit ou n’utilise le mercure dans ses procédés.

8.1.6.12 Monténégro

Aucune information n’a été obtenue grâce au NFP et aucun inventaire national des émissions n’a été identifié. Cependant, quelques données sur le Monténégro peuvent être obtenues dans les bases de données UNECE/EMEP et BBN.

8.1.6.13 Maroc

Selon le NFP, le département environnemental du Maroc est en train de développer une évaluation nationale à l’exposition des pollutions au mercure, plomb et cadmium. Cette étude inclut un inventaire de leur utilisation à l’échelle nationale ainsi que l’identification des sources actuelles majeures potentielles des rejets intentionnels ou non de ces métaux dans l’eau, l’air et le sol (Tableau 69). D’après cette évaluation, les émissions atmosphériques du mercure au Maroc s’élèvent à environ 2,8 tonnes par an, principalement dus à l’industrie cimentaire et les centrales thermiques. Les rejets dans l’eau furent estimés à 0,28 tonnes par an, du fait des amalgames dentaires et des usines de chlore-alcali. Les rejets de mercure dans les sols et déchets furent évalués à 0,65 tonnes par an, avec comme source principale le stockage des batteries et thermomètres contenant du mercure.

Tableau 69. Émissions de mercure au Maroc. Source: NFP.

<table>
<thead>
<tr>
<th>Activité source</th>
<th>Rejet estimés d’Hg (kg/an)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eau</td>
</tr>
<tr>
<td>Usines</td>
<td>Fonte de plomb primaire</td>
<td>Usines</td>
</tr>
<tr>
<td></td>
<td>Fone d’acier secondaire</td>
<td>Fone d’acier secondaire</td>
</tr>
<tr>
<td></td>
<td>Chlore-alcali</td>
<td>Chlore-alcali</td>
</tr>
<tr>
<td></td>
<td>Production de ciment</td>
<td>Production de ciment</td>
</tr>
<tr>
<td></td>
<td>Sous-total</td>
<td>Sous-total</td>
</tr>
<tr>
<td>Secteur énergétique</td>
<td>Centrale thermique Mohammedia (carbone)</td>
<td>Centrale thermique Mohammedia (carbone)</td>
</tr>
<tr>
<td></td>
<td>Sous-total</td>
<td>Sous-total</td>
</tr>
<tr>
<td></td>
<td>Centrale thermique Mohammedia (fuel)</td>
<td>Centrale</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens 190
8.1.6.14 Slovénie

8.1.6.15 Espagne

Les données sur la genèse des déchets dangereux sont réunies par le Ministères de l'Environnement des affaires rurales et marines (Ministry of the Environment, Rural and Marine affairs, MARM) et par les différentes communautés autonomes. Les déchets de mercure provenant de l'industrie du chlore-alcali sont disponibles à partir des rendus à l'OSPAR (OSPAR, 2009).

D’après le second plan national pour la rémédiation des sols pollués un inventaire national sur les sols pollués sera préparé. Cet inventaire intégrera les informations des communautés autonomes dont certaines ont déjà réalisé leurs propres inventaires.

8.1.6.16 Syrie

D’après le NFP, la Syrie a signé un mémorandum de compréhension avec l’UNEP le 4 octobre 2007, par lequel la Syrie exécutera un inventaire national sur les utilisations et rejets de mercure. Le projet de l’inventaire national s’est concentré sur les sources potentielles d’utilisation de mercure et ses rejets hors de différents services et activités industrielles, dans des secteurs publics, privés et commun, en incluant les utilisations intentionnelles ou non du mercure et de ses composés. Les calculs des émissions furent basés sur les valeurs par défaut maximale et minimale de l’inventaire de l’UNEP (toolkit), bien que les valeurs minimales aient semblé plus appropriées pour la situation syrienne. Dans ce sens, les émissions atmosphériques de mercure sont comprises entre 271 et 2271 kg par an et sont produites par le raffinement des huiles, l’incinération des déchets, l’industrie de chlore-alcali. Les rejets dans l’eau ont été estimés à 65 kg par an à partir des aires d’enfouissement comme cela est indiqué ci-dessous.

<table>
<thead>
<tr>
<th>Foyers de mercure</th>
<th>Mercure dans l’air (kg/an)</th>
<th>Mercure dans les eaux usées (kg/an)</th>
<th>Mercure dans les déchets solides (kg/an)</th>
<th>Mercure dans les sols (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion de charbon dans les centrales (>50 MWth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion de charbon à usage résidentiel (<50 MWth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie métallifère</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie Chlore-alcali</td>
<td>1.3 – 21</td>
<td>98 - 1568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production de ciment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie du papier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production de produits chimiques organiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incinération des déchets</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfouissement de déchets</td>
<td>65</td>
<td>20</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Raffineries huile, gaz, minéraux</td>
<td>20 – 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilisants au phosphore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epandage des boues d’égoutage sur les terres agricoles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Création</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres activités entraînant des émissions de mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Émissions de mercure :</td>
<td>271.3-2271</td>
<td>65</td>
<td>118-1588</td>
<td>26</td>
</tr>
</tbody>
</table>

TOTAL: 271.3-2271 65 118-1588 26
8.1.6.17 Tunisie

Les informations suivantes ont été fournies par le NFP:

Inventaires d’émissions d’air: La Tunisie a rapporté des émissions à partir de sites industriels majeurs au BBN/MEDPOL. Celles-ci incluent des émissions de mercure dans l’air et l’eau.

Inventaires des émissions dans l’eau: Une étude a été réalisée pour mettre à jour les sources potentielles de pollution des ressources en eau (points chauds). Le développement d’un réseau national pour le suivi de la pollution de l’eau a été mis en place.

Inventaires des déchets solides: Il existe un plan national de gestion des déchets qui inclut les déchets potentiellement dangereux (métaux lourds, POPs, …)

8.1.6.18 Turquie

D’après le NFP, il n’existe pas d’inventaire des émissions de mercure en Turquie. Cependant, la Turquie soumet des informations à l’inventaire BBN et l’EMEP l’inclure dans leurs estimations des rejets atmosphériques de mercure.

8.1.7 Synthèse des informations et émissions estimées

8.1.7.1 Inventaires régionaux

Une synthèse des principales caractéristiques des différents inventaires régionaux décrit ci-dessus est présentée dans le Table 70. Tous les inventaires comprennent des données sur les émissions dans l’air alors que seulement deux d’entre eux incluent les rejets dans l’eau (E-PRTR et BBN), et un seul de ces inventaires considère les rejets dans les sols (E-PRTR). Il existe quelques inventaires qui couvrent tous les pays méditerranéens et équivalent à des évaluations ponctuelles. À l’inverse, les inventaires établis sur une base annuelle couvrent seulement les pays membres de l’UE (E-PRTR) ou les pays du nord méditerranéen (UNECE/EMEP).

La comparaison des résultats n’est pas seulement affectée par la couverture géographique mais aussi par les secteurs d’activité inclus dans l’inventaire. Alors que l’inventaire de l’UNECE/EMEP comprend toutes les sources potentielles d’émissions atmosphériques, d’autres inventaires se concentrent sur les rejets de points sources industriels (i.e. E-PRTR ou NBB), ou sur les secteurs sources spécifiquement ciblés pour estimer les émissions de mercure (i.e. le Programme Hg de l’UNEP).

Dans tous les cas, les émissions non intentionnelles provenant de l’utilisation de combustibles fossiles (dans l’industrie de l’énergie ou des ciments) apparaissent comme la source dominante de rejets de mercure dans l’atmosphère méditerranéenne ; ceci est en accord avec les inventaires sur le mercure dans d’autres régions.

A l’inverse, lorsque la Turquie est considérée dans les inventaires, elle semble être le pays émetteur majeur dans la région, suivie par quelques pays membres de l’UE comme l’Italie, l’Espagne ou la France. Selon le BBN, l’Italie est le pays émetteur majeur. Ce résultat pourrait être influencé par le fait que les données n’ont pas été reportées d’une façon homogène par tous les pays et que dans cet inventaire, en principe, seules les
régions administratives côtières ou les secteurs méditerranéens ont été pris en compte
(ce qui pourrait affecté des pays comme la Turquie qui a une part très significative de son
territoire hors du bassin méditerranéen).

Les rejets totaux de mercure estimés dans l'air sont de l'ordre de 6,3 à 106 tonnes par an.
Cependant, comme cela a été indiqué précédemment, les figures fournies par les
différents inventaires ne peuvent être directement comparées, du fait des différences
dans la dernière année reportée, de la couverture géographique, des secteurs sources
inclus ou de la méthodologie et des facteurs d'émission utilisés.
Table 70. Revue des inventaires régionaux des émissions de mercure.

<table>
<thead>
<tr>
<th>Inventaire</th>
<th>Matrice</th>
<th>Couverture géographique</th>
<th>Pays méditerranéens inclus</th>
<th>Périodicité</th>
<th>Dernière année reportée</th>
<th>Secteurs couverts</th>
<th>Quantité reportée en Med. (air) (t/a)</th>
<th>Pays émetteur majeur</th>
<th>Secteur émetteur majeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEP Hg Programme</td>
<td>Air</td>
<td>Monde</td>
<td>Tous</td>
<td>Ponctuelle</td>
<td>2005</td>
<td>Mercure spécifiquement</td>
<td>6.8</td>
<td>Turquie (27%)</td>
<td>Combustion stationnaire (54%)</td>
</tr>
<tr>
<td>UNEP/MAP NBB</td>
<td>Air, Eau</td>
<td>Basins méditerranéen</td>
<td>Tous</td>
<td>Variable</td>
<td>2003</td>
<td>Principalement industriels</td>
<td>6.3</td>
<td>Italie (40%)</td>
<td>Ciment (33%)</td>
</tr>
<tr>
<td>EU E-PRTR</td>
<td>Air, Eau, Sol</td>
<td>Etats membres de l'UE</td>
<td>ChY, FR, GR, IT, SI, ES</td>
<td>Annuelle</td>
<td>2007</td>
<td>Industriels</td>
<td>9.9</td>
<td>Espagne (43%)</td>
<td>Energie (33%)</td>
</tr>
<tr>
<td>UNECE-EMEP</td>
<td>Air</td>
<td>Europe-Caucaze-Afrique-Asie Centrale</td>
<td>ES, FR, MC, IT, MT, SI, HR, BA, ME, AL, GR, CY, TR</td>
<td>Annuelle</td>
<td>2007</td>
<td>Tous</td>
<td>66.6</td>
<td>Turquie (32%)</td>
<td>Industries énergétiques (38%)</td>
</tr>
<tr>
<td>Pirrone et al. (2001)</td>
<td>Air</td>
<td>Pays méditerranéens</td>
<td>Tous</td>
<td>Ponctuelle</td>
<td>1995</td>
<td>Mercure spécifiquement</td>
<td>106</td>
<td>France (22%)</td>
<td>Energie (29%)</td>
</tr>
</tbody>
</table>
8.1.7.2 Informations nationales

Grand nombre d’informations fournies à un niveau national par le NFP sont liées aux obligations de communiquer les informations nationales et internationales que les pays ont envers l’UNECE, l’E-PRTR et le BBN. Quelques pays apportent des données de ces cadres régionaux dans leurs propres inventaires nationaux (i.e. France et Italie). D’autres pays, tels que le Maroc ou la Syrie, ont mis en place des évaluations spécifiques de la situation des métaux lourds (dont le mercure). Aucune information des sources nationales n’a été obtenue ou identifiée pour les petits pays, mais des données sont disponibles pour les pays les plus peuplés et industrialisés. En combinant les informations régionales avec celles obtenues à un niveau national, quelques figures peuvent être établies pour tous les pays méditerranéens (c.f. plus bas). En général, il existe plus d’informations concernant les émissions atmosphériques en comparaison des inventaires sur les rejets dans l’eau et les déchets de mercure.

8.1.7.3 Émissions estimées

Les données des émissions atmosphériques de mercure à partir des inventaires régionaux et nationaux décrits ci-dessus sont synthétisées dans le Tableau 71. Ces données ont été utilisées pour estimer la « meilleure valeur » pour chaque pays, en prenant en compte (i) les données les plus récentes, (ii) les inventaires couvrant la plus large gamme de catégories sources (i.e. EMEP), et (iii) les données fournies et identifiées à un niveau national. Dans ce sens, la plupart des valeurs estimées proviennent de la valeur moyenne des figures de l’AMAP et de l’EMEP.

Les valeurs obtenues (c.f Tableau 71 et Figure 32) indiquent les émissions atmosphériques totales estimées de mercure dans la région méditerranéenne à 69.6 tonnes an\(^{-1}\) (environ 3.6% des émissions globales, 1921 tonnes an\(^{-1}\)). La Turquie comptabiliserait 28% des émissions régionales, suivie par l'Italie (16%) et l'Espagne (14%). En additionnant avec celles de la France et la Grèce, les émissions atmosphériques de ces cinq pays s’élèveraient à 80% des émissions atmosphériques totales en Méditerranée. Par régions, les contributions aux émissions totales sont les suivantes : 56% pour les pays du nord de la Méditerranée (NMC), 33% pour ceux de l’est, et 10% pour les pays du sud (c.f. Figure 33).

Il n’existe pas assez d’information pour estimer les émissions de mercure dans l’eau, mais d’après les données disponibles il peut être supposé que les rejets totaux seront plus faibles que ceux dans l’atmosphère.
Tableau 71. Émissions de mercure (kg/an⁻¹) dans l’air d’après les inventaires nationaux et régionaux disponibles dans les pays méditerranéens et meilleure valeur d’émission estimée.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanie</td>
<td>80.10</td>
<td>197.70</td>
<td>260.00</td>
<td>138.90</td>
<td>1,570.28</td>
<td>1,057.11</td>
<td>760.60</td>
</tr>
<tr>
<td>Algérie</td>
<td>1,570.28</td>
<td>418.23</td>
<td>2,000.00</td>
<td>1,570.28</td>
<td>6,681.14</td>
<td>6,681.14</td>
<td>6,681.14</td>
</tr>
<tr>
<td>Bosnie H.</td>
<td>230.70</td>
<td>0.00</td>
<td>1,883.51</td>
<td>1,057.11</td>
<td>1,057.11</td>
<td>1,057.11</td>
<td>522.57</td>
</tr>
<tr>
<td>Croatie</td>
<td>421.00</td>
<td>147.27</td>
<td>624.13</td>
<td>522.57</td>
<td>6,681.14</td>
<td>6,681.14</td>
<td>6,681.14</td>
</tr>
<tr>
<td>Chypre</td>
<td>158.00</td>
<td>30.20</td>
<td>166.50</td>
<td>900.00</td>
<td>180.00</td>
<td>760.60</td>
<td>760.60</td>
</tr>
<tr>
<td>Égypte</td>
<td>3,885.50</td>
<td>424.60</td>
<td>6,100.00</td>
<td>2,160.05</td>
<td>6,681.14</td>
<td>6,681.14</td>
<td>6,681.14</td>
</tr>
<tr>
<td>France</td>
<td>8,765.10</td>
<td>21.00</td>
<td>2,861.30</td>
<td>22,800.05</td>
<td>6,700.00</td>
<td>6,700.00</td>
<td>6,681.14</td>
</tr>
<tr>
<td>Grèce</td>
<td>3,192.20</td>
<td>1,549.90</td>
<td>12,999.93</td>
<td>2,500.00</td>
<td>8,096.07</td>
<td>8,096.07</td>
<td>8,096.07</td>
</tr>
<tr>
<td>Israël</td>
<td>3,197.10</td>
<td>544.40</td>
<td>800.00</td>
<td>1,246.37</td>
<td>2,218.99</td>
<td>2,218.99</td>
<td>2,218.99</td>
</tr>
<tr>
<td>Italie</td>
<td>12,879.70</td>
<td>2,520.90</td>
<td>10,711.41</td>
<td>11,400.00</td>
<td>11,357.70</td>
<td>11,357.70</td>
<td>11,357.70</td>
</tr>
<tr>
<td>Liban</td>
<td>304.00</td>
<td>290.80</td>
<td>1,500.00</td>
<td>297.40</td>
<td>297.40</td>
<td>297.40</td>
<td>297.40</td>
</tr>
<tr>
<td>Libye</td>
<td>507.60</td>
<td>104.32</td>
<td>2,300.00</td>
<td>507.60</td>
<td>507.60</td>
<td>507.60</td>
<td>507.60</td>
</tr>
<tr>
<td>Malte</td>
<td>618.00</td>
<td>626.10</td>
<td>622.05</td>
<td>622.05</td>
<td>622.05</td>
<td>622.05</td>
<td>622.05</td>
</tr>
<tr>
<td>Monaco</td>
<td>80.00</td>
<td>56.00</td>
<td>68.00</td>
<td>68.00</td>
<td>68.00</td>
<td>68.00</td>
<td>68.00</td>
</tr>
<tr>
<td>Monténégro</td>
<td>149.00</td>
<td>149.00</td>
<td></td>
<td>149.00</td>
<td>149.00</td>
<td>149.00</td>
<td>149.00</td>
</tr>
<tr>
<td>Maroc</td>
<td>2,099.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,768.00</td>
<td>2,433.60</td>
</tr>
<tr>
<td>Slovénie</td>
<td>413.80</td>
<td>82.70</td>
<td>1,169.36</td>
<td>791.58</td>
<td></td>
<td>791.58</td>
<td>791.58</td>
</tr>
<tr>
<td>Espagne</td>
<td>10,181.90</td>
<td>789.24</td>
<td>9,039.26</td>
<td>9,610.58</td>
<td></td>
<td>9,610.58</td>
<td>9,610.58</td>
</tr>
<tr>
<td>Syrie</td>
<td>503.30</td>
<td>204.60</td>
<td>3,500.00</td>
<td>387.15</td>
<td></td>
<td>387.15</td>
<td>387.15</td>
</tr>
<tr>
<td>Tunisie</td>
<td>554.00</td>
<td>509.48</td>
<td>2,900.00</td>
<td>554.00</td>
<td></td>
<td>554.00</td>
<td>554.00</td>
</tr>
<tr>
<td>Turquie</td>
<td>18,111.60</td>
<td>166.07</td>
<td>21,109.10</td>
<td>19,610.35</td>
<td></td>
<td>19,610.35</td>
<td>19,610.35</td>
</tr>
<tr>
<td>Total</td>
<td>67,757.58</td>
<td>6,253.81</td>
<td>9,889.20</td>
<td>88,860.00</td>
<td></td>
<td>69,594.70</td>
<td></td>
</tr>
</tbody>
</table>

Figure 32. Estimation des émissions atmosphériques dans les pays méditerranéens (kg/an⁻¹).

Etat du mercure dans les pays méditerranéens
Figure 33. Estimation des émissions atmosphériques dans les sous-régions méditerranéennes (kg/an⁻¹).
8.2 Réseaux du contrôle de la qualité

8.2.1 Air

8.2.1.1 Réseau de mesure de l’UNECE/EMEP

Comme il a été décrit plus haut (cf. section 8.1.4), en plus de la collecte des données d’émission, le programme EMEP inclut des mesures de l’air et de la qualité des précipitations aussi bien que des modélisations des déplacements atmosphériques et des dépôts des pollutions aériennes. Les mesures EMEP sont coordonnées par le Centre de coordination des produits chimiques (Chemical Coordinating Centre - EMEP-CCC), accueilli par l’Institut norvégien de recherche sur l’air (NILU) depuis l’origine du programme en 1979.

Selon le site internet du EMEP-CCC55, il y a 35 stations de contrôle réparties dans 10 pays méditerranéens (Espagne : 9; France : 12; Italie : 2; Malte : 1; Slovénie : 4; Croatie : 2; Bosnie-H. : 1; Monténégro : 1; Grèce : 2 et Turquie : 1). Toutes ces stations ne surveillent pas nécessairement la donnée « mercure », mais elles sont en mesure d’inclure ce paramètre dans leurs contrôles. Les stations qui mesurent les métaux lourds et le mercure en 2007 sont reportées dans la Figure 34. Les sites sont séparés entre ceux qui surveillent les concentrations à la fois dans l’air et les précipitations et ceux qui ne mesurent que l’un ou l’autre. Il y avait 22 sites mesurant au moins une forme de mercure, soit une croissance de 6 sites par rapport à l’année précédente. Cependant, il est observable que la couverture spatiale dans l’est et le sud de l’Europe est toujours insatisfaisante, particulièrement pour le mercure, bien que la situation puisse s’améliorer grâce à la nouvelle Stratégie de surveillance EMEP (UNECE/EMEP, 2009) et à la Directive-fille de l’UE sur les métaux lourds et PAH (EMEP, 2009a). Les mesures sur le mercure disponibles pour 2007 sont indiquées dans la Figure 35.

Figure 34. Réseau de mesures sur les métaux lourds (+Chypre hors de la carte), 2007 (gauche) et réseau de mesures sur le mercure, 2007 (droite). (EMEP, 2009a).

L’EMEP délivre également des rapports annuels sur la pollution transfrontalière des métaux lourds, dans lesquels les données recueillies et modélisées sont présentées. Selon son dernier rapport (EMEP, 2009b), la concentration de mercure dans l’air, en Europe et Asie Centrale, variait de 1,4 à 1,7 ng/m3 sur la plupart du territoire (Figure 36). Dans l’Europe centrale, notamment les régions connues pour des émissions importantes, les concentrations excédaient 1,7 ng/m3. Les concentrations dans les précipitations en Europe s’échelonnaient de 5 à 12 ng/L (en Asie Centrale, de 12 à 18 ng/L) (Figure 37). Des concentrations plus importantes dans les précipitations en Asie Centrale - par rapport à l’Europe - peuvent s’expliquer par des taux de précipitations plus faibles dans cette région. C’est cette même raison qui explique des concentrations élevées en Afrique du nord (EMEP, 2009b).
Figure 36. Concentrations de surface du mercure (calculées et mesurées) dans l’air au-dessus de l’Europe et de l’Asie Centrale en 2007, ng/m³ (EMEP, 2009b).

Figure 37. Concentrations calculées et mesurées en mercure dans les précipitations au-dessus de l’Europe et de l’Asie Centrale en 2007, ng/L (EMEP, 2009b).

Les dépôts totaux de mercure variaient de 7 à 20 g/km²/an au-dessus de la plus grande partie de l’Europe et de l’Asie Centrale (Figure 38). Les pays avec les plus importants dépôts sont corrélés avec les régions aux fortes émissions de mercure (i.e. Pologne, Belgique, Italie du Nord et les Balkans). Les flux totaux de dépôt dans ces régions excédaient 50 g/km²/an. Les niveaux les plus faibles de dépôts (moins de 5 g/km²/an) ont été repérés en région Arctique et au-dessus des zones désertiques d’Afrique et d’Asie centrale.
Le taux de dépôt de mercure par pays variait, dans les pays d’Europe et d’Asie Centrale, en 2007, de 4 g/km²/an au Turkménistan à 27 g/km²/an en Belgique (Figure 39). Certains pays des Balkans et est-méditerranéens comptent des taux de dépôts proches des taux moyens européens, particulièrement la Bosnie-H., la Grèce, le Monténégro et la Slovénie. Dans 35 pays (sur 50) les dépôts de sources non-EMEP excédaient 50%, ce qui indique que les sources situées en dehors de la zone EMEP affectent de manière significative les niveaux de pollutions au mercure en Europe (EMEP, 2009b).

En Europe, la part du transport transfrontalier dans les dépôts anthropogéniques de mercure diffère nettement de pays à pays (Figure 40). A l’exception de quelques pays des Balkans, les pays méditerranéens sont moins touchés par ces mouvements transfrontaliers (i.e. Malte, Turquie, Grèce, Espagne, Chypre). D’un autre côté, comparé à d’autres zones maritimes, la Méditerranée a des taux de dépôt de mercure moindre (Figure 41).
Les données EMEP et les estimations présentées ci-dessous suggèrent que les apports actuels de mercure dans les territoires méditerranéens et l’environnement marin ont une composante fortement transfrontalière, en conséquence de quoi les actions de réduction de la pollution au mercure coordonnées à un niveau supra-national voire supra-régional seront efficaces.

8.2.1.2 Base sur l’air de l’agence européenne de l’environnement (EEA – AirBase)

AirBase est le système d’information sur la qualité de l’air organisé par l’Agence européenne environnement (European Environment Agency - EEA), à travers le Centre environnemental sur les thématiques de l’air et du changement climatique. Il contient des données sur la qualité de l’air délivrées annuellement dans le cadre de la Décision du Conseil 97/101/EC établissant un échange réciproque d’informations et de données provenant des réseaux et des stations individuelles mesurant la pollution de l’air ambiant parmi les Etats membres (Décision EOL).

La décision EOL distingue entre les informations qui doivent être transmises en particulier et qui ont trait à la Directive sur la qualité de l’air (96/62/EC) et les informations qui doivent être soumises là où c’est disponible. Les 4 annexes de la Décision EOL (liste des polluants, paramètres statistiques et unités de mesure ; informations concernant les réseaux, les stations et les techniques de mesures ; procédures de validation des données et assurance qualité ; critères pour la compilation des données et le calcul des paramètres statistiques) ont été amendées par la Décision de la Commission 2001/752/EC et ses modifications ultérieures.

L’EEA demande à tous ses membres et pays collaborants de fournir l’information prescrite par la Décision EOL car la pollution de l’air est un problème paneuropéen et l’EEA produit des recommandations sur la qualité de l’air qui couvrent la totalité de l’aire géographique européenne.

8.2.1.3 Informations nationales

a) Algérie
Selon le NFP, l’Université d’Annaba a conduit une étude portant sur la pollution atmosphérique par le mercure et ses effets potentiels sur la santé humaine dans la région d’Annaba et Azzaba.

b) Croatie
Selon le NFP, il existe en Croatie un programme sur la mesure de la qualité de l’air, faisant partie du réseau national de contrôle de la qualité de l’air (OG 43/02). Le mercure est surveillé dans des stations de mesure de la pollution de l’air, dans les implantations et zones industrielles. Une fois établi le réseau de qualité de l’air, Hg sera également surveillé dans les stations de mesures de la pollution des sols, des mouvements transfrontaliers régionaux et de longue portée, et pour le suivi réalisé dans le cadre d’engagements internationaux de l’État, ainsi que dans des stations de mesure dans des zones d’intérêt naturel ou culturel, dans les fractions PM10 and PM2,5.

c) Chypre
Les concentrations atmosphériques d’Hg sont mesurées/calculées dans des échantillons filtrés (PM10) récoltés au quotidien à partir de la station de suivi de la qualité de l’air de Nicosi (hôpital) en ng/m³. La moyenne annuelle était de 0.32 ng/m³ en 2007 et de 0.30 ng/m³ en 2008. Le bruit de fond des concentrations atmosphériques en Hg a été aussi mesuré/calculé quotidiennement. La moyenne annuelle était pour 2007 de 0.29 ng/m³ et pour 2008 de 0.34 ng/m³. Les données brutes de ces mesures se trouvent dans la base de données AirBase56.

d) Egypte
Selon le NFP, il n’y a pas de réseau national de surveillance du mercure.

e) France
A l’échelle nationale, l’ADEME (Agence de l’environnement et de la maîtrise de l’énergie) coordonne le réseau national pour le suivi de la qualité de l’air (AASQA)57, qui inclut le suivi des niveaux de mercure.

Une revue des réseaux de suivi disponibles, des bases de données et des sources d’information sur les données de la qualité de l’air en France est apportée par Déléry & Mandin (2009). Ce rapport fournit aussi une synthèse des données collectées sur les niveaux de mercure dans différents environnements (Tableau 72).

<table>
<thead>
<tr>
<th>Tableau 72. Niveaux de mercure dans l’air dans différents environnements en France.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environnement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Urbain</th>
<th>Rural</th>
<th>Industriel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoe de mercure</td>
<td><0.1 – 4.1</td>
<td>0.8 – 6</td>
<td><0.04 -14.7</td>
</tr>
</tbody>
</table>

f) Israël
Selon le NFP, le contrôle de la qualité de l’air en Israël est conduit par les industriels et les autorités environnementales (valeurs d’émission -kg/h- et concentrations -mg/m³-), et les informations sur le mercure sont disponibles pour 72 usines sur 500.

g) Malte

h) Slovénie
Depuis 2009, l’Agence environnementale de la République de Slovénie (Environmental Agency of the Republic of Slovenia, EARS) fournit les données des concentrations moyennes en mercure dans l’air ambiant (http://www.arso.gov.si/en/air/data/), dans la station de suivi du site de suivi Iskrba pri Kocevski Reki. En 2009, la concentration moyenne annuelle était de 1.5 ng/m³, alors que des valeurs maximales de 7.5 ng/m³ ont été atteintes au mois de septembre.

Le suivi des niveaux de mercure a aussi été réalisé autour de la mine d’Idrija.

i) Espagne
Le réseau de suivi EMEP/VAG/CAMP, créé en 1983 et réuni en 2006 s’occupe des engagements pris par l’Espagne sur le suivi de la pollution de l’air par rapport à différents programmes (RAC/CP, 2010b) :

- **EMEP** – European Monitoring and Evaluation Programme (Convention UNECE/CLRTAP) ou programme européen de suivi et d’évaluation.
- **CAMP** – Comprehensive Atmospheric Monitoring Programme (Convention OSPAR), ou programme du suivi atmosphérique complet.

Ce réseau comprend 13 stations et l’échantillonnage de mercure gazeux et de mercure dans le PM₁₀ fut initié en 2007.

Quelques campagnes ponctuelles ont aussi été réalisées par le Ministère de l’Environnement. En 2005 et 2007, les niveaux de mercure ont été mesurés dans la station Niembro ; les valeurs moyennes obtenues étaient de 1.8 ng m⁻³ et 0.005 ng m⁻³ pour les gaz et la phase particulaire respectivement.
j) **Tunisie**

D’après le NFP, un décret relatif aux émissions atmosphériques prévoit le contrôle de ces émissions en Tunisie. La modélisation de la qualité de l’air servira pour évaluer la quantité de mercure dans l’air.

k) **Turquie**

Selon le NFP, il n’existe pas en Turquie d’inventaire des émissions de mercure dans l’air mais il y a des valeurs limites de la qualité de l’air et des émissions nationales pour le respect desquelles les installations industrielles dessinent des programmes et prennent des mesures. De plus, les outils de politique sont en train d’être appliqués, tels que la législation nationale sur le contrôle de la pollution de l’air d’origine industrielle, et sont en train d’être amendés afin d’ajouter des limitations supplémentaires sur le mercure.

8.2.2 Eau

8.2.2.1 Le Système d'Information Européen sur l'Eau

8.2.2.2 Informations nationales

Les informations suivantes ont été obtenues à partir de sources nationales :

a) **Algérie**

D’après le NFP, il existe un réseau de contrôle de la qualité des eaux côtières en Algérie. L’observatoire national pour l’environnement et le développement durable (The National Observatory for Environment and Sustainable Development, ONEDD) a réalisé des analyses des concentrations de méthylmercure dans une rivière polluée ((Oued El-Harrach) proche de la Baie d’Alger.

b) **Croatie**

c) France
- Rhône Méditerranée: www.rhone-mediterannee.eaufrance.fr
- Corse: www.corse.eaufrance.fr

d) Grèce
D’après le NFP, le laboratoire chimique général (General Chemical Laboratory) de Grèce a suivi la qualité des eaux de surface pour une période couvrant les années 2006 à 2008. Les niveaux d’Hg furent suivis, ainsi que d’autres paramètres, sur 200 points de suivi environ et ce 4 fois par an. Ces points de suivi correspondent à des lacs et des rivières situés dans différentes régions de Grèce. Très peu de dépassements ont été observés durant cette période : ils correspondent plus spécifiquement à 6 points de suivi en 2007 et un point en 2008.

e) Israël
Le Ministère de la Santé a réalisé le suivi et le contrôle des puits d’eau potable.

f) Italie

g) Malte
Malte doit exécuter les de cadre réglementaire des politiques européennes sur l’eau (EU Water Policy Framework Regulations) pour le suivi de la qualité de l’eau. Pour le cas du mercure dans les sédiments marins de Malte, Lampedusa et Linosa, des niveaux relativement faibles ont été notés, à l’exception de quelques maxima aberrants.
reportés dans le voisinage immédiat de la principale embouchure dans Malte (UNEP/MAP, 2010).

h) **Monaco**

Un contrôle de la qualité de la production de l’eau potable est en place et se base sur le cadre français pour la fréquence et les paramètres incluant le mercure.

i) **Maroc**

D’après le NFP, les activités suivantes sur le suivi de la qualité de l’eau ont été réalisées au Maroc :

- Suivi des pollutions de l’eau dans la Baie de Nador,
- Suivi du bassin et du fleuve Oum Er Rbia,
- Evaluation de l’état de pollution de l’eau du fleuve R’Dom avant la construction d’une usine de retraitement des eaux usées pour les eaux usées de Sidi Kacem.

j) **Slovénie**

L’agence environnementale de la République de Slovénie est responsable des programmes du suivi de la qualité des eaux (fleuves, rivières, lacs, eaux souterraines et mers) et conserve les bases de données avec les informations relatives.

Pour respecter la directive de qualité requise pour les eaux à crustacés, trois sites de suivi ont été choisis comme zone de croissance des fruits de mer (la Baie de Piran, la Baie de Strunjan et Debeli rtič). En plus d’autres paramètres, le mercure est suivi à raison de deux à douze fois par an.

k) **Espagne**

• Eaux souterraines: Les autorités compétentes de quelques communautés autonomes gèrent les réseaux de suivi pour les eaux souterraines, incluant les métaux lourds (RAC/CP, 2010b). Quelques autorités de secteurs sont aussi en train de suivre les métaux lourds dans les eaux souterraines.

I) Tunisie
D’après le NFP, un réseau de contrôle national pour le contrôle des eaux de terres et côtières est en cours en Tunisie. Un nouveau décret traitant spécifiquement de la qualité des ressources en eau (dont les eaux de surface et les eaux souterraines) est en cours de préparation.

8.2.3 Environnement marin
La présence des polluants dans l’environnement marin de la Méditerranée a été suivie depuis quelques décennies par des programmes régionaux (MEDPOL) ou nationaux (i.e. RNO en France ou SIDIMAR en Italie), ou encore par des travaux de recherche scientifique. Les séries de rapports techniques du MAP sont aussi des sources d’information tout comme les évaluations régionales de substances spécifiques (comme les substances toxiques et persistantes (UNEP/GEF, 2002)). Des informations intéressantes et pertinentes peuvent aussi être obtenues à partir de la littérature scientifique et des résultats de projets spécifiques (par ex. MITYLOS 58).

8.2.3.1 Le programme MEDPOL
Lorsque le Programme de Recherche et de Suivi des Pollutions en Méditerranées (Mediterranean Pollution Monitoring and Research Programme, MEDPOL) a débuté en 1975, son but principal était d’établir un réseau d’institutions entreprenant des travaux sur la pollution marine et la collecte d’informations concernant le niveau de pollution de la Mer Méditerranée. Les activités de suivi couvraient les métaux lourds dans la biosphère marine (principalement le mercure et le cadmium), les hydrocarbures halogénés dans la biosphère marine (principalement PCB et DDT) et les hydrocarbures pétroliers dans l’eau de mer. Le développement et la maintenance de ces programmes nationaux de suivi ont été les objectifs de la seconde phase, adoptée en 1981, tandis que plus tardivement (1996) l’accent s’est déplacé de l’évaluation de la pollution au contrôle de la pollution.

Le programme MEDPOL de suivi et d’évaluation a clôturé sa Phase III en 2005. La Phase IV du programme est actuellement opérationnelle jusque 2013. Les programmes de suivi des phases III et IV du MEDPOL ont été désignés pour couvrir basiquement deux différents types de site marins, les points chauds et les aires côtières de référence. Les échantillons sont collectés à partir de différents média environnementaux. Les matrices mandatées pour le suivi des substances dangereuses en leur sein, dans le cadre du programme MEDPOL, sont la biosphère et les sédiments. Le mercure et le cadmium sont les deux polluants mandatés, cependant la plupart des programmes nationaux contiennent plus que ceux recommandés.

Le résultat majeur de la Phase III du programme fut la réalisation de la base de données MEDPOL. Le contenu et les données de cette base de données ont récemment été évalués et sont décrits ci-dessous avec un accent sur les informations disponibles pour le mercure (UNEP/MAP, 2009).

58 MITYLOS Project: http://mytilos.tvt.fr/Projet/(language)/eng-GB
a) Données disponibles sur le mercure

La base de données MEDPOL inclut des données et observations de 685 stations situées en zones côtières de 13 pays durant la période 1999 à 2008. Des informations spécifiques pour le mercure sont principalement disponibles pour la biosphère et les sédiments avec 3188 et 809 observations respectivement. Quelques données sont disponibles pour les rivières et l’eau de mer, mais ces dernières n’ont été reportées que par un ou deux pays. Les données de concentrations en mercure dans les sédiments sont disponibles pour 158 stations alors que 250 sont enregistrées pour la biosphère et les sédiments. La distribution des mesures par matrice et pays est présentée dans le Tableau 73. Les échantillons pour la biosphère sont divisés en deux classes : les bivalves (217 stations, 2263 observations) et les poissons (33 stations, 904 observations). Les espèces les plus représentatives qui sont utilisées sont la moule Mytilus galloprovincialis et le poisson benthique Mullus barbatus, avec quelques exceptions pour les pays de l’est méditerranéen (par ex. Israël).

Tableau 73. Nombre d’observations de mercure total (HgT) par matrice et pays, dans la base de données du MEDPOL (1999-2008) (UNEP/MAP, 2009).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Biosphère</th>
<th>Sédiments</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanie</td>
<td>41</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Croatie</td>
<td>140</td>
<td>14</td>
<td>154</td>
</tr>
<tr>
<td>Chypre</td>
<td>52</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Egypte</td>
<td>9</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>France</td>
<td>465</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td>Grèce</td>
<td>81</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Israël</td>
<td>1089</td>
<td>112</td>
<td>1201</td>
</tr>
<tr>
<td>Italie</td>
<td>472</td>
<td>496</td>
<td>968</td>
</tr>
<tr>
<td>Marroc</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Slovénie</td>
<td>44</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Espagne</td>
<td>211</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>Tunisie</td>
<td>103</td>
<td>4</td>
<td>107</td>
</tr>
<tr>
<td>Turquie</td>
<td>410</td>
<td>114</td>
<td>524</td>
</tr>
<tr>
<td>Total</td>
<td>3167</td>
<td>750</td>
<td>3917</td>
</tr>
</tbody>
</table>

b) Concentrations en mercure dans les sédiments

Les concentrations moyennes et médianes sont présentées dans le Tableau 74, par pays. Des stations en Croatie se révèlent les plus hautes valeurs moyennes, suivies par celles de l’Italie. Une synthèse des niveaux moyens de mercure total dans toutes les stations est présentée dans la Figure 42. Comme cela peut être remarqué, les côtes ouest et sud sont sous-représentées.

Tableau 74. Concentrations moyennes et médianes en Hg total dans les sédiments (µg g⁻¹ dw), par pays.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Moyenne</th>
<th>Médiane</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRO</td>
<td>23.36</td>
<td>0.67</td>
</tr>
<tr>
<td>EGY</td>
<td>0.24</td>
<td>0.25</td>
</tr>
</tbody>
</table>
c) Concentrations en mercure dans la biosphère

Les concentrations moyennes en mercure dans les moules et les poissons sont présentées dans le Tableau 75. En général, les concentrations sont étaillées pour tous les pays (Figure 43) mais les valeurs moyennes sont du même ordre de magnitude, excepté pour les concentrations dans les bivalves en Espagne (très élevées).

La distribution géographique des stations et des valeurs pour les *Mytilus Galloprovincialis* (MG) et les *Mullus Barbatus* (MB) est présentée respectivement dans la Figure 44 et la Figure 45. Les MG couvrent une large zone du bassin, alors que les échantillons de poissons sont surtout présents dans le bassin Egée-Levantin.

Tableau 75. Concentrations moyennes en Hg Total dans *Mytilus Galloprovincialis* (MG) and *Mullus Barbatus* (µg g⁻¹ dw), par pays.

<table>
<thead>
<tr>
<th>Pays</th>
<th>MG</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALB</td>
<td>0.35</td>
<td>.</td>
</tr>
<tr>
<td>CRO</td>
<td>0.57</td>
<td>.</td>
</tr>
<tr>
<td>CHY</td>
<td>.</td>
<td>0.34</td>
</tr>
<tr>
<td>FRA</td>
<td>0.14</td>
<td>.</td>
</tr>
<tr>
<td>GRE</td>
<td>1.13</td>
<td>0.66</td>
</tr>
<tr>
<td>ISR</td>
<td>0.28*</td>
<td>0.33</td>
</tr>
<tr>
<td>ITA</td>
<td>0.30</td>
<td>.</td>
</tr>
<tr>
<td>MOR</td>
<td>0.18</td>
<td>.</td>
</tr>
<tr>
<td>SLO</td>
<td>0.12</td>
<td>.</td>
</tr>
<tr>
<td>ESP</td>
<td>7.59</td>
<td>.</td>
</tr>
<tr>
<td>TUN</td>
<td>0.22</td>
<td>.</td>
</tr>
<tr>
<td>TUR</td>
<td>0.05</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Figure 42. Concentrations moyennes en Hg Total dans les sédiments (µg g⁻¹ dw) (UNEP/MAP, 2009).
Figure 43. Concentrations en Hg total dans les bivalves (µg g⁻¹ dw) par pays (UNEP/MAP, 2009).

Figure 44. Carte des concentrations moyennes en Hg Total dans Mytilus galloprovincialis (µg g⁻¹ dw) (UNEP/MAP, 2009).
d) Distribution du mercure dans différentes régions

Par éco-régions, les zones de l’ouest méditerranéen ont les plus hauts niveaux de mercure, tant dans les sédiments que dans la biosphère (Tableau 76).

Tableau 76. Médiane et gamme de concentrations en Hg total dans les sédiments et dans « Mytilus Galloprovincialis ».

<table>
<thead>
<tr>
<th>Région</th>
<th>HgT dans des sédiments (µg g⁻¹ dw)</th>
<th>HgT dans “Mytilus galloprovincialis” (µg g⁻¹ dw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adriatique</td>
<td>0.10 (0.01-166.9)</td>
<td>0.15 (0.01-8.45)</td>
</tr>
<tr>
<td>Egée – Levantin</td>
<td>0.16 (0.00-5.18)</td>
<td>0.06 (0.01-0.63)</td>
</tr>
<tr>
<td>Centrale</td>
<td>0.05 (0.01-6.00)</td>
<td>0.18 (0.01-7.00)</td>
</tr>
<tr>
<td>Ouest</td>
<td>0.16 (0.02-12.6)</td>
<td>0.16 (0.01-259)</td>
</tr>
</tbody>
</table>

8.2.3.2 Les projets MYTILOS/MYTIMED

Le principal objectif des projets Mytilos et Mytimed est d’évaluer le niveau de contamination chimique des eaux côtières de l’ouest et l’est méditerranéen en suivant le protocole standard développé depuis 1996 par l’IFREMER et utilisant des cages faites main contenant des moules (Mytilus galloprovincialis) (Andral et al., 2007).

Le mercure est un des métaux traces considérés dans ces projets. L’exploitation des résultats devrait être disponible via le site internet suivant : http://mytilos.tvt.fr/Projet/(language)/eng-GB.

8.2.3.3 Informations nationales

a) France

Le réseau français de suivi national (RNO)⁵⁹ fut créé en 1974 et est géré par l’IFREMER. Les polluants dans les sédiments et la biosphère sont suivis depuis 1979, et depuis 2003 il existe aussi des mesures des effets biologiques (imposex). Les paramètres incluent 9 métaux (dont le mercure), des composés organochlorés, αHCH, PCBs et PAHs. La biosphère est suivie annuellement alors que les sédiments sont

⁵⁹ http://www.ifremer.fr/envlit/surveillance/rno.htm
échantillonnés tous les 10 ans (l’adoption du WFD va impliquer à partir de 207 la fréquence des analyses à 6 ans).

Le set de données du RNO fournit les plus longues tendances temporelles disponibles dans la région méditerranéenne. Les données des concentrations en mercure pour les échantillons de MG collectées dans 21 stations au cours de la période allant de 1979 à 2006 sont disponibles et montrent en général un déclin (Figure 46).

![Figure 46. Tendance temporelle des concentrations en mercure dans « Mytilus Galloprovincialis » (µg g⁻¹ dw), le long des côtes françaises méditerranéennes. Source des données: RNO.](image)

b) Italie

Durant la période 2001-2005, 545 observations au total des niveaux de mercure dans les moules peuvent être obtenues à partir de la base de données SIDIMAR. La valeur moyenne est de 0.29 µg g⁻¹ dw (0.003-7.4 µg g⁻¹ dw).

c) Espagne

L’institut espagnol d’océanographie (The Spanish Oceanographic Institute (IEO)) conduit le réseau du suivi marin en collectant des données sur la qualité des sédiments et de la biosphère pour le programme MEDPOL. Ceci inclut l’analyse du mercure dans 27 stations le long des zones côtières de la Méditerranée. À côté de cela, les communautés autonomes mènent des réseaux de suivi des eaux côtières, comme c’est le cas dans la région de Murcia (35 stations) ou en Andalousie (mercure dans l’eau et les sédiments). Dans l’aire méditerranéenne d’Andalousie, les niveaux en mercure les plus élevés dans les eaux côtières ont été observés dans la Baie d’Algésiras (RAC/CP, 2010b).

Les autorités nationales portuaires (Puertos del Estado) notent aussi les données des différents ports en Espagne (i.e. Barcelone, Valence, Cartage, Iles Baléares) où des niveaux élevés en mercure ont été détectés dans les sédiments (RAC/CP, 2010b).

⁶⁰http://www.sidimar.tutelamare.it/
D'après les réponses du NFP, d'autres pays comme le Maroc ou la Tunisie ont leurs programmes nationaux de suivi de la qualité de l'environnement marin et utilisent ces données en réponse au programme MEDPOL.

8.2.3.4 Informations tirées de la littérature scientifique

La présence de mercure dans l'environnement marin a été largement étudiée et beaucoup de travaux de recherche peuvent être identifiés dans la littérature scientifique. Différents articles touchant à la Méditerranée ont souligné depuis les années 1970 les niveaux élevés en mercure dans l'environnement marin, particulièrement dans les poissons, bien que fréquemment ces études ne concernent que le nord-ouest du bassin. Ces niveaux élevés de la Méditerranée ont été parfois attribués aux niveaux naturels élevés du bruit de fond dans la région. Bien que cela soit hors de la portée de ce travail, quelques exemples de ces études et de leurs résultats sont présentés ci-dessous :

Dans les sédiments, des niveaux élevés de mercure sont le plus souvent trouvés dans l'environnement immédiat de côtes largement urbanisées et industrialisées (UNEP/MAP, 2010). Par exemple, Buccolieri et al. (2006) ont trouvé des niveaux de mercure dans le Golfe de Tarante s'élevant de 40 à 410 ng g⁻¹ dw dans les sédiments près des côtes et de l'ordre de 70 ng g⁻¹ dw dans les sédiments offshore au centre du Golfe. Une étude dans le détroit de Sicile a révélé que les niveaux de mercure étaient compris entre 50 et 70 ng g⁻¹ dw, avec des échantillons enregistrant de plus hautes valeurs dont des maxima jusqu'à 202 ng g⁻¹ dw (Di Leonardo et al., 2006). D'une façon similaire, les sédiments du détroit de l'Otrante atteignent des niveaux de mercure de l'ordre de 78 ng g⁻¹ dw. Les niveaux de mercure dans les sédiments offshore marin comme cela a été enregistré dans la mer Ionienne sont en général comparables à ceux d'autres régions méditerranéennes (environ 50 ng g⁻¹ dw) (UNEP/MAP, 2010).

En ce qui concerne la biosphère, les moules ont communément été utilisées dans des programmes de suivi et des études de recherche dans la mesure où elles accumulent les polluants dans leurs tissus à des niveaux élevés en relation avec la disponibilité biologique du polluant dans l'environnement marin alentour. Par exemple, Kljakovic-Gaspic et al. (2007) ont suivi le contenu en mercure dans les moules bleues (Mytilus galloprovincialis) dans la Baie de Mali Ston, située à l'est de la côte Adriatique entre 1998 et 2005. Le contenu moyen en mercure dans les tissus comestibles a été trouvé à 0.15 µg g⁻¹ dw et les analyses des tendances temporelles durant les 7 années de suivi montrent que les concentrations en métal n'ont pas changées durant ce temps. De plus hauts niveaux de mercure ont été mesurés dans les échantillons de moules proches des points chauds urbains ou industriels, tels que la Baie de Portman en Espagne (Benedicto et al., 2008), le lagon de Venise (Zatta et al., 1992), ou la Baie d'Izmir en Turquie ([Kucuksezgin et al., 2006]. En ces lieux des niveaux élevés en mercure ont aussi été mesurés dans les poissons.

Dans l'environnement marin, le mercure s'accumule dans la biosphère où il y est décuplé à tous les niveaux trophiques, entraînant une pression additionnelle aux populations prédatrices et un risque pour la santé humaine lors de la consommation de produits de la mer (Storelli, 2008). Dans la Méditerranée, les concentrations en mercure dans les prédateurs en haut de la chaîne alimentaire ainsi que les cétacées ont été annoncées comme étant plus élevées que dans d'autres régions marines, particulièrement dans les dauphins (Monaci et al., 1998; Capelli et al., 2007). Monaci et al. (1998) ont trouvé des niveaux de mercure aussi hauts que 5,441 µg g⁻¹ dw dans les foies et trippes des dauphins des mers Ligure et de Tyrrhée. Des études plus récentes de Capelli et al. (2007) ont aussi montré des niveaux élevés de mercure dans les...
cépacées, spécialement les dauphins, bien que les niveaux soient plus faibles que ceux observés par Monacci environ une décennie avant. Au sein de ces même espèces, de faibles gammes de concentration correspondent à des individus plus jeunes, indiquant l’effet sévère d’accumulation du mercure avec l’âge.

8.2.4 Denrées alimentaires et niveaux humains

8.2.4.1 Le système d’alerte rapide pour l’alimentation humaine et animale

En Europe, la Direction Générale de la Santé gère le système d’alerte rapide pour l’alimentation humaine et animale (Rapid Alert System for Food and Feed (RASFF)). Ce dernier a été installé pour fournir des autorités de contrôle sur l’alimentation humaine et animale avec des outils efficaces afin d’échanger l’information des mesures prises en répons à de sérieux risques détectés en relation avec l’alimentation humaine et animale. Cet échange d’information aide les états membres à agir le plus rapidement possible d’une manière coordonnée en réponse à toute menace de santé causée par l’alimentation.

Ce système différencie les notifications de « marché » et celles de « rejets aux frontières ». Les notifications de marché concernent les produits trouvés sur le territoire communautaire pour lesquels un risque sanitaire a été soulevé. Les produits sujets au rejet de frontière n’entrent jamais dans la Communauté et sont renvoyés au pays d’origine, détruits ou envoyés vers une autre destination.

D’après le dernier rapport annuel de la Direction Générale du système d’alerte (EC, 2009), les métaux lourds des poissons et crustacés sont particulièrement concernés puisqu’ils sont souvent et de plus en plus fréquemment détectés en quantité supérieure aux normes standards pour la santé. La Figure 47 montre que la majorité des notifications au sujet du mercure concerne les poissons (en particulier espadons et requins) alors que les crustacées et céphalopodes sont pointés du doigt pour leur contenu en cadmium.

Figure 47. Nombre de notifications de métaux lourds en 2008 sous le système d’alerte rapide pour l’alimentation humaine et animale (Rapid Alert System for Food and Feed (RAFFS)) (CE, 2009).

8.2.4.2 Informations nationales

a) Albanie
Aucune information sur le contrôle des niveaux de mercure dans le sang humain n'a pu être identifiée en Albanie. Le mercure contenu dans les cheveux de groupes de travailleurs exposés (soins dentaires) et non-exposés a été étudié par Babi et al (2000). Les auteurs ont trouvé une valeur moyenne du contenu en mercure dans les cheveux de 0.705 µg/g (plus faible que la valeur référence données par l'OMS). Il ressort de leur étude une corrélation positive significative du contenu en Hg avec le nombre d'amalgames dentaires, le temps d'exposition et la fréquence de la consommation de poissons dans l'alimentation.

b) Algérie
Le centre national de toxicologie entreprend des analyses sur les poissons et crustacées en utilisant comme référence les standards européens pour la santé (respectivement 1 ppm et 0.5 ppm pour les poissons et crustacées). Ce centre est aussi responsable de l'analyse du mercure dans le sang de travailleurs exposés (le standard est de 2µg/100ml).

c) Croatie
En Croatie, le contrôle des niveaux de mercure dans le sang humain est réalisé par l'Institut de Recherches Médicales et de la Santé au travail.

d) France
L'agence française de la Sécurité alimentaire, environnementale et de la santé au travail (French Agency for Food, Environmental and Occupational Health Safety (ANSES) accompli des études et une surveillance du mercure dans la nourriture, en particulier dans les produits de la mer (traînage du méthylmercure)

Un bilan des réseaux de suivi, des bases de données et des sources d'information disponibles sur les niveaux de différents polluants (dont le mercure) dans les produits alimentaires en France est fourni par Déléry & Mandin (2009). Ce rapport, dans son Annexe F, apporte aussi une synthèse des données collectées sur les niveaux en mercure total dans différents produits dont les valeurs moyennes sont résumées dans le Tableau 77. Comme l'on peut l'observer, les valeurs les plus élevées se retrouvent dans les produits de la mer.

<table>
<thead>
<tr>
<th>Tableau 77. Niveau de mercure dans différents produits alimentaires en France.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produits</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Produits de la mer</td>
</tr>
<tr>
<td>Produits à base animale</td>
</tr>
<tr>
<td>Produits à base de lait</td>
</tr>
<tr>
<td>Fruits et légumes</td>
</tr>
</tbody>
</table>
e) **Israël**

Le Ministère de la Santé réalise des contrôles et suivis réguliers des aliments locaux et importés.

f) **Monaco**

A Monaco, un contrôle annuel de la qualité des mollusques marins est conduit pour étudier l’accumulation de polluants, dont le mercure. L’accumulation de métaux traces dans les ivraies vivaces est aussi suivie à une fréquence indéterminée.

g) **Slovenie**

Erzen et al (2002) ont étudié l’apport alimentaire en mercure à partir de la consommation d’aliments (animaux/végétaux). 1583 échantillons d’aliments d’origine végétale (17 groupes) et animale (11 groupes) furent sélectionnés au total dans neuf régions de la Slovénie. Les auteurs ont montré que le contenu en mercure dans les aliments disponibles en Slovénie est faible, traduisant, par conséquent une quantité consommée de mercure dans les aliments analysés de 12,3% de l’apport provisoire tolérable par semaine (ou PTWI en anglais : Provisional Tolerable Weekly Intake).

Aucune information n’a pu être identifiée sur le suivi des niveaux du mercure dans le sang humain en Slovénie. Klemenc et al., (1992) ont évalué les niveaux de mercure dans des échantillons de sang et d’urine de groupes contrôlés et professionnellement exposés dans 63 cabinets dentaires en Slovénie. La valeur moyenne pour le mercure dans le sang était de 3.0 ng Hg/g (étendue : 0,9-7,7), ce qui est considéré comme une gamme normale dans la population en général. Les niveaux de mercure dans les urines étaient aussi faibles, seulement 3 à 44 valeurs dépassaient 15 ng Hg/g.

Par ailleurs, aucune information n’a pu être trouvée sur le suivi des niveaux de mercure dans le lait maternel en Slovénie. Kosta et al., (1982) ont mesuré les contenus en mercure d’échantillons de lait maternel (colostrum et transitoire principalement) dans la région de Ljubljana. La valeur moyenne de mercure établie dans cette étude était de 11.8 µg/kg dw, avec une étendue de 1,2 à 37,4 µg/kg dw.

h) **Espagne**

L’agence espagnole de la sécurité alimentaire et de la nutrition (Spanish Agency of Food Safety and Nutrition, AESAN) gère le système d’échange rapide d’informations coordonnées (Rapid Coordinated Information Exchange System, SCIRI), qui inclue le contrôle de la présence (au-dessus de certaines valeurs références) de substances chimiques dans les produits alimentaires.

D’après le dernier rapport annuel (AESAN, 2009) une importante part des notifications est liée à la présence des métaux lourds, et plus particulièrement au mercure dans les produits de la mer (espadon, thon et requin). Cette information est en conséquence retransmise au Système d’Alerte Européen pour l’Alimentation humaine et animale (European Rapid Alert System for Food and Feed, RASFF).

Dans les eaux de surface, comme cela a été indiqué précédemment, le réseau de surveillance des substances dangereuses (Hazardous Substances Monitoring Network) réunit les données sur les niveaux de mercure dans les poissons. Au sein des communautés autonomes un suivi de la bioaccumulation des métaux lourds dans les mousses est réalisé.
Différentes études publiées dans la littérature scientifique sont consacrées à l'exposition alimentaire au mercure dans plusieurs régions d'Espagne (i.e. Sahuquillo et al., 2007). Bien que la relation entre la consommation de produits de la mer et celle de mercure soit largement démontrée, des niveaux inacceptables d'exposition ont été observés (RAC/CP, 2007).

L'Institut de la Santé Carlo III, via un accord avec le Ministère de l'Environnement, est en train de développer une stratégie pour suivre et contrôler les polluants dans le corps humain. Cet institut réalisera au sein de la population espagnole une surveillance des niveaux de certains polluants prioritaires, incluant le methylmercur (RAC/CP, 2010b).

D'autres études scientifiques identifiées sur le territoire espagnol mettent parallèle l'exposition au travail (i.e. dentistes, travailleurs dans les usines de chlore-alcali) et la proximité des points chauds (i.e. Flix, Aznalcóllar). Ces deux facteurs se traduisent en effet par une augmentation des niveaux de mercure dans les échantillons humains (sang, cheveux, urine) (RAC/CP, 2007).

i) Tunisia

Le contrôle et suivi de la pollution par les métaux lourds dans la biosphère côtière est effectué dans le cadre du MEDPOL. Le Ministère de l'Agriculture, des Ressources Hydrauliques et de la Pêche réalise aussi d'autres contrôles sur la qualité des produits de la mer.

D'après le NFP, les niveaux de mercure dans le sang est contrôlé chez les travailleurs de certains secteurs d'activité en Tunisie.
9. Principales zones d’émission ("hot spots" et zones d’influence)

Dans cette section sont présentés les points chauds en mercure identifiés dans la région méditerranéenne grâce aux données d’émissions et de qualité environnementale disponibles. Pour ce faire, différentes sources d’information au niveau national et international ont été prises en compte et sont décrites ci-après.

9.1 Emissions des points chauds

Les points chauds peuvent être systématiquement identifiés grâce à l’inventaire des émissions de l’E-PRTR comprenant les rejets de mercure dans l’eau, le sol et l’air des installations industrielles majeures (c.f. section 8.1.3). Cette base de données ne couvre seulement que les pays membres de l’UE. Des sources d’informations additionnelles seront donc nécessaires pour identifier les points chauds des pays méditerranéens non européens.

Ces points chauds sont définis au niveau d’une installation ou d’une ville. La seconde option a été sélectionnée pour cette étude afin d’identifier toute agglomération potentielle d’installations émettrices de mercure au sein de très petits territoires. D’un point de vue environnemental, l’effet additif des rejets de mercure est d’un intérêt majeur pour l’environnement récepteur. Dans tous les cas, l’identification des installations émettrices a aussi été réalisée, amenant à des résultats similaires à l’identification des dits points chauds (i.e. résultats fréquents de villes dans des points chauds du fait de rejets provenant d’une seule installation majeure).

Les localisations ou villes correspondants au top 20 des émissions majeures en mercure dans l’air et l’eau sont présentées respectivement dans le Tableau 78 et le Tableau 79. Les secteurs sources principalement responsables de ces émissions y sont aussi spécifiés.

Le top 20 des points chauds d’émissions atmosphériques de mercure totalise environ 5 tonnes de mercure, c’est-à-dire 51% des émissions reportées dans les pays méditerranéens dans l’E-PRTR (9,9 tonnes.an⁻¹). Le point chaud majeur se trouve dans l’Agios Dimitrios en Grèce (0,52 tonnes an⁻¹ émises à partir d’une centrale à charbon), suivi par ceux des régions de Lierio (Espagne, industrie chimique) et de Cubillos del Sil (Espagne, centrale thermique). En général, la plupart des points chauds d’émissions atmosphériques de mercure ont pour origine des industries énergétique, cimentaire et chimique.

<table>
<thead>
<tr>
<th>Localisation/Ville</th>
<th>Pays</th>
<th>Emissions d’Hg dans l’air (Kg)</th>
<th>Secteur(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agios Dimitrios</td>
<td>Grèce</td>
<td>516.00</td>
<td>Energie</td>
</tr>
<tr>
<td>Lierio</td>
<td>Espagne</td>
<td>483.00</td>
<td>Industrie chimique</td>
</tr>
<tr>
<td>Cubillos del Sil</td>
<td>Espagne</td>
<td>403.00</td>
<td>Energie</td>
</tr>
<tr>
<td>Puertollano</td>
<td>Espagne</td>
<td>364.90</td>
<td>Raffinage des huiles, Energie</td>
</tr>
<tr>
<td>Pontes de Garcia Rodriguez</td>
<td>Espagne</td>
<td>353.00</td>
<td>Energie</td>
</tr>
<tr>
<td>Barcelone</td>
<td>Espagne</td>
<td>283.00</td>
<td>Industrie chimique, production de ciment</td>
</tr>
<tr>
<td>Meson do Vento</td>
<td>Espagne</td>
<td>274.00</td>
<td>Energie</td>
</tr>
<tr>
<td>Thann</td>
<td>France</td>
<td>252.00</td>
<td>Industrie chimique</td>
</tr>
<tr>
<td>Localisation/Ville</td>
<td>Pays</td>
<td>Emissions d'Hg dans l'air (Kg)</td>
<td>Secteur(s)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Kamari</td>
<td>Grèce</td>
<td>241.00</td>
<td>Production de ciment</td>
</tr>
<tr>
<td>Tineo</td>
<td>Espagne</td>
<td>241.00</td>
<td>Énergie</td>
</tr>
<tr>
<td>Tavaux</td>
<td>France</td>
<td>226.00</td>
<td>Industrie chimique</td>
</tr>
<tr>
<td>Brindisi</td>
<td>Italie</td>
<td>212.00</td>
<td>Énergie</td>
</tr>
<tr>
<td>Taranto</td>
<td>Italie</td>
<td>174.00</td>
<td>Industrie métallique</td>
</tr>
<tr>
<td>Martigues</td>
<td>France</td>
<td>159.00</td>
<td>Industrie chimique</td>
</tr>
<tr>
<td>Fos-sur-mer</td>
<td>France</td>
<td>157.60</td>
<td>Industrie métallique</td>
</tr>
<tr>
<td>Aviles</td>
<td>Espagne</td>
<td>150.00</td>
<td>Industrie métallique</td>
</tr>
<tr>
<td>Andorra</td>
<td>Espagne</td>
<td>150.00</td>
<td>Énergie</td>
</tr>
<tr>
<td>Portaria</td>
<td>Grèce</td>
<td>149.00</td>
<td>Production de ciment</td>
</tr>
<tr>
<td>Venezia</td>
<td>Italie</td>
<td>140.50</td>
<td>Industrie chimique, énergie</td>
</tr>
<tr>
<td>Mundolsheim</td>
<td>France</td>
<td>132.00</td>
<td>Raffinage des huiles</td>
</tr>
</tbody>
</table>

Le top 20 des émissions de mercure dans les eaux correspond à 5,3 tonnes.an\(^{-1}\) (Tableau 79), ce qui équivaut à 92% des rejets de mercure reportés. Le point chaud majeur se situe à Trieste en Italie, avec 3,7 tonnes issues d’une centrale thermique. D’autres points chauds importants se trouvent à Sestao (usine de retraitement des eaux usées dans le nord de l’Espagne) et à Metz (centrale thermique au nord de la France). En général, les usines de traitement des eaux usées et les industries chimiques (usines chlore-alcali) sont fréquemment identifiées comme point chaud des émissions de mercure. Les industries métallifères qui apparaissaient en tant que point chaud dans les précédents inventaires EPER et PRTR semblent avoir réduit leurs rejets atmosphériques et leurs rejets dans l’eau.

Afin d’identifier au mieux les points chauds, des critères additionnels peuvent être utilisés, tels que ceux listés ci-après:

- Le point chaud est situé dans le top 10 des émissions de mercure reportées dans l’eau ;
- Il se trouve dans le secteur de la région méditerranéenne (ou côtière) ;
- Il apparaît à la fois dans la list “air” et “eau”; et /ou
- Il est proche d’autres points chauds, entrainant ainsi un ensemble régional.

En tenant compte des critères ci-dessus et en élargissant la liste au top 20 des installations situées dans la région méditerranéenne, les priorités suivantes des points chauds d’émissions peuvent être identifiés en premier lieu:

- Agios Dimitrios – Ellispontos (Grèce); centrale thermique
- Trieste (Italie); centrale thermique
- Barcelone (Espagne); usine chlore-alcali et industries de ciment.
- Kamari (Grèce); usine de production de ciment
- Tavaux (France); usine chlore-alcali
- Brindisi (Italie); central thermique
- Taranto (Italie); industrie du fer et de l’acier
- Lyon & Saint-Fons (France): usine de traitement des eaux usées
- Grenade (Espagne): usine de traitement des eaux usées

Les informations disponibles dans l’E-PRTR permettent d’observer que les points chauds majeurs de sources d’émissions de mercure dans l’air et l’eau affectent les secteurs des fleuves de l’Ebre, du Rhône et du Po. La région Nord-Adriatique est aussi touchée par d’importants points-sources situés autour de la région de Venise et du Golfe de Trieste. Finalement, il faut souligner que différentes usines notées comme points chauds sont gérées par un petit groupe de sociétés des secteurs énergétique, cimentaire, chimique et métallique ; ainsi, toute amélioration supplémentaire adoptée par ces compagnies afin d’éviter les émissions de mercure pourrait avoir un effet notable sur les rejets dans la région méditerranéenne.

L’information fournie par le rapport de l’UNEP/MAP sur l’identification des points chauds aux pollutions prioritaires en Méditerranée (UNEP/MAP, 1999) peut être utilisée pour identifier d’autres points chauds de mercure potentiels dans des pays non couverts par l’inventaire E-PRTR. Le rapport procure quelques données sur les rejets de mercure dans certains points chauds qui sont présents dans le Tableau 80. Comme cela peut être observé dans le rapport, les émissions majeures reportées sont localisées dans le point chaud de la Baie de El-Mex en Égypte. Toutefois, une note de bas de page dans ce rapport indique que ces rejets ont été produits par des usines
chlore-alcali utilisant des cellules au mercure alors que ces cellules avaient déjà été démantelées et enterrées dans un enfouissement sécurisé.

Tableau 80. Rejets de mercure reportés dans la liste de “hot spot” de l’UNEP/MAP (UNEP/MAP, 1999).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Hot spot</th>
<th>Hg (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatie</td>
<td>Zadar + ind.zone</td>
<td>10.1</td>
</tr>
<tr>
<td>Chypre</td>
<td>Larnaca (raffinerie de pétrole)</td>
<td>0.07</td>
</tr>
<tr>
<td>Egypte</td>
<td>El-Mex Bay</td>
<td>1,278</td>
</tr>
<tr>
<td>Israël</td>
<td>Gush Dan</td>
<td>60</td>
</tr>
<tr>
<td>Israël</td>
<td>Haifa Bay (Industrielle)</td>
<td>7.3</td>
</tr>
<tr>
<td>Maroc</td>
<td>Tetouan</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Dans la liste des points chauds par pays, une série de références de pollution au mercure peuvent aussi être identifiées :

- Point chaud à Vlora (Albanie) dont la pollution en mercure dans les sols est due à une ancienne usine de production de PVC.
- Point chaud dans la Baie de Panzano (Golfe de Trieste, Italie) conséquent aux rejets de mercure d’une installation chlore-alcali.
9.2 Points chauds relatifs aux mines de mercure

9.2.1 Almadén, Espagne
Le district d’Almadén en Espagne peut être considéré comme la plus grande anomalie en mercure de la planète (Higueras et al., 2006). Les mines de mercure d’Almadén ont été en activité depuis 2000 ans et ont à elles seules contribué au tiers de la production totale mondiale (i.e. 305,000 tonnes extraites pour 923,000 tonnes exploitées au total dans le monde jusqu’à l’heure actuelle) (Hylander and Meili, 2003). L’exploitation des mines a cessé en 2003.

Une étude détaillée des différents compartiments environnementaux (sédiments et aux de rivière, sols, chimie du mercure dans l’eau et accumulation du mercure par les plantes et les crustacés aquatiques) autour de cette zone a été conduite par Higueras et al (2006). Leur étude met en évidence les points suivants: (1) la distribution du mercure dans les sols du district est extrêmement importante avec des valeurs pouvant atteindre 8889 g g⁻¹ et des pH élevés; (2) les concentrations en mercure mesurées dans les sédiments et les eaux de rivière sont exceptionnellement élevées (jusqu’à 16,000 g g⁻¹ and 11,200 ng L⁻¹ respectivement); (3) des concentrations très élevées ont été détectées dans des résidus de calcination (jusqu’à 3100 ng g⁻¹), des sédiments (0.32-82 ng g⁻¹) et des eaux (0.040-30 ng L⁻¹); (4) des concentrations en Hg pouvant atteindre 9060 ng g⁻¹ et 298 g g⁻¹ ont été mesurées dans les tissus musculaires de crustacés d’eaux douces et les plantes locales, respectivement.

Par ailleurs de très hautes concentrations en mercure dans des sédiments, eaux et bivalves ont été aussi mesurées par Berzas Nevado et al. (2003).

Des anomalies sévères ont aussi été détectées dans l’atmosphère autour du site métallurgique d’Almadén avec des concentrations de l’ordre de 14,000 ng Hg m⁻³ (Higueras et al., 2006). En outre, de hautes concentrations en mercure (100 – 5000 ng m⁻³) ont été mesurées dans les années 90 par Ferrara et al. (1998) dans le village d’Almadén. Ces auteurs ont estimé le flux total de mercure atmosphérique entre 600 to 1200 g h⁻¹ (jusqu’à 10 t par an).

9.2.2 Valle del Azogue, Espagne
La zone de mines de la vallée del Azogue est située au Sud-Est de l’Espagne dans la province d’Almeria. La mine de mercure a été active approximativement entre 1873 et 1890, produisant 1000 tonnes de mercure à partir de deux sites de fonderies proches des travaux miniers (Navarro et al., 2005).

Le minerai mercurique était traité dans des cornues et les calcines empilées à côté du fourneau. Ainsi, la végétation proche du site se trouve enrichie en mercure (Viladevall et al., 1999). Des contenus élevés en mercure ont été aussi mesurés dans les sols, les calcines et les déchets des mines dont les valeurs atteignent respectivement de 357.3, 66-470 and 530-1,000 mg kg⁻¹ (Navarro et al., 2005).

9.2.3 Mines de mercure des Asturias (Espagne)
Dans les Asturias, au Nord de l’Espagne, se trouvent des mines de mercure abandonnées. L’exploitation minière date de la période romaine bien que l’activité n’ait pris la forme d’une industrie prospère qu’aux 19ème et 20ème siècles, jusqu’à devenir une des plus grandes productions du monde de 1950 à 1970. Les mines ont été progressivement abandonnées depuis les années 70 et différentes études confirment

Etat du mercure dans les pays méditerranéens
une forte libération de mercure restant dans l'environnement (Loredo et al., 2003; Loredo et al., 2006). Autour de l'ancienne mine de La Brañalamosa, de hautes concentration ont été détectées dans les déchets miniers (valeur moyenne de 1045 µg/g Hg) et dans les sols affectés par les anciens sites miniers (400 fois plus élevés que le niveau local de base (Loredo et al., 2003). Sur un autre site, La Soterraña, Loredo et al. (2006) ont aussi trouvé des concentrations en mercure dans les sols pouvant atteindre 502 µg/g près de usines métallurgiques, valeurs 500 fois plus hautes que le niveau de base local. Des effets des mines se retrouvent donc intensément tant dans les eaux et les sédiments de rivière que dans l'atmosphère locale dont le contenu en mercure est 10 fois plus élevé que le niveau de base de cette région.

9.2.4 Mine d'Idrija (Slovénie) et du Golfe de Trieste

Environ 107,000 tonnes de mercure ont été produites dans la région minière d'Idrija (Slovénie) durant les 500 dernières années jusqu'à sa fermeture en 1995 (Hylander and Meili, 2003). D'après le NFP de Slovénie, cette aire (10km²) contient environ 4000 tonnes de mercure dans les anciens dépots résiduels et 100 additionnelles dans les résidus des anciennes fonderies autour d'Idrija. Les activités minières ont sévèrement accru la mobilisation du mercure; les gangues et les sols contaminés sont continuellement érodés et servent de source constante pour les rivières, les plaines d'inondations et le Golfe de Trieste (Horvat et al., 1999). L'impact de la mine de mercure d'Idrija sur l'environnement alentour et le Golfe de Trieste a été largement étudié.

Avec la réduction progressive de l'activité minière le mercure atmosphérique dans la région d'Idrija a remarquablement diminué avec le temps, passant de plus de 20,000 ng m⁻³ au début des années 70 à des valeurs inférieures à 100 ng m⁻³ dans les années 80, pour finalement atteindre le niveau de 10 ng m⁻³ en 2004 (Kotnik et al., 2005). Dans les sols, les concentrations de mercure ont varié entre 8,4 et 415 mg.kg⁻¹ et furent 40 fois plus hautes que le maximum autorisé et établi par la législation slovène (Kocman et al., 2004).

Les flux des émissions de mercure (FEM) des sols contaminés de cette région ont été récemment estimés à moins de 2 à 530 ng.m⁻².h⁻¹; les valeurs les plus élevées provenant des alluvions contaminés et des sols proches du district minier dans la ville d'Idrija (Kocman and Horvat, 2010).

Le Golfe de Trieste est une des régions de Méditerranée les plus contaminées par le mercure; du fait de la contribution élevée en mercure du fleuve Isonzo dont l’affluent, le fleuve Idrijca draine la région minière du même nom (Covelli et al., 1999). D’après le NFP slovène, les sédiments des fleuves Idrija et Soča contiennent environ 30.000 tonnes de mercure qui ont été émises par les activités minières sur une période de 500 as. Les concentrations totales en mercure des sédiments s’étendent de 0.064 à 30.38 mug g⁻¹, avec une moyenne de 5.04 mug g⁻¹ (Covelli et al., 2001). L’enrichissement en Hg des sédiments dans le secteur central du Golfe de Trieste atteint un maximum 25 fois supérieur à la valeur de base naturelle régionale de 0.17 mug g⁻¹ (Covelli et al., 2001). Les données obtenues à partir des différents compartiments environnementaux (eau de mer et des estuaires, sédiments et organismes) entre 1995 et 1997 montrent que 10 ans après la fermeture de la mine les concentrations des sédiments et de l’eau sont encore très élevées et ne présentent pas la décroissance attendue dans le Golfe de Trieste (Horvat et al., 1999). La source majeure de mercure inorganique est encore observée dans le fleuve Soča (Isonzo) alors que celle de méthyl mercure est présente dans les sédiments du fond du Golfe (Horvat et al., 1999; Fanganelli et al., 2003).
9.2.5 Monte Amiata, Italie

En Italie, le mercure a été extrait de la mine de l'Abbadia San Salvatore (Monte Amiata, Toscane) depuis la fin du XIXème siècle jusqu'à 1982, date de fermeture de la fonderie. Durant le XXème siècle cette mine fut une des plus grandes sources de mercure du monde (Hylander and Mieli, 2003). Dans cette région, les émissions atmosphériques de mercure signalées proviennent de centrales géothermiques, des constructions de la mine abandonnée et des crassiers de minerai de cinabre grillé (Ferrara et al., 1998; Bacci et al., 2000). Les concentrations atmosphériques en mercure de la zone affectée par ces sources de mercure sont de 20 ng m⁻³ durant l'été et 10 ng.m⁻³ en hiver (Ferrara et al., 1998). Un niveau très élevé de mercure se retrouve aussi dans les produits agricoles récoltés dans cette région (Barghigiani and Ristori, 1994).

9.2.6 Mines de mercure dans l'Ouest de la Turquie et la Baie d'Izmir

L’exploitation minière du mercure en Turquie date des temps anciens avec plus de 50 sites de dépots connus présents dans la moitié ouest du pays. Ces mines furent graduellement abandonnées jusqu’au début des années 90 pour des raisons financières (prix et demandes faibles) et suite à des considérations environnementales (Gemici and Oyman, 2003).

Actuellement, le drainage acide et les déchets des mines, dangers pour les eaux de surface et souterraines ainsi que les sols, favorisent les problèmes environnementaux potentiels tout autour de ces mines (Gemici, 2004). Différents évaluations sur les effets environnementaux du mercure des mines abandonnées dans cette région ont été conduits dans les anciennes mines de Alaşehir, Karaburun, Kalecik, Odemis, Halikoy, or Türkün (Gemici and Oyman, 2003; Gemici, Ü, 2004; Gemici and Tarcan, 2007; Gemici, Ü, 2008; Gemici et al., 2010). La localisation de certaines d’entre elles est présentée dans la Figure 48.

Le drainage de ces zones polluées jusqu’à la Baie d’Izmir a induit une hausse du niveau de mercure dans les sédiments et le biotope de cette zone. Pour l’instant, les concentrations des poissons de la baie d’Izmir n’excèdent pas les limites autorisées par l’OMS (Kontas, 2006).
9.2.7 Azzaba, Algérie

L’Algérie a produit 200 à 500 tonnes de mercure par an au cours des années 90 et a stoppé sa production en 2005. Le cinabre était extrait des mines d’Azzaba (Province de Skikda), puis traité au complexe mercuriel d’Ismail (opéré par ENOF).

Les informations disponibles sur les activités et les caractéristiques de ce site sont limitées et des pollutions significatives en mercure ont été diagnostiquées dans les sols, l'eau et l'air environnants (Benderradji, M., 1999). D'après le NFP, la zone affectée couvre 25 hectares avec 600,000m³ de déchets contenant du mercure stockés à ciel ouvert, entrainant une contamination potentielle des eaux souterraines.
9.3 Points chauds fondés sur les données de qualité environnementale

9.3.1 Points chauds d’après la base de données de MEDPOL

L’évaluation de l’état de l’environnement et des tendances des pollutions qui était conduite par MEDPOL en utilisant les informations incluses dans la base de données des niveaux des polluants dangereux dans la Méditerranée (UNEP/MAP, 2009) a permis l’identification des stations avec des hauts niveaux en mercure observés dans les sédiments et la biosphère (c.f. Figure 42 et Figure 44). Même si les informations ne couvrent pas entièrement le Bassin méditerranéen, des niveaux très élevés en mercure ont pu être situés dans quelques stations de l’Italie à la Croatie pour ce qui concerne les sédiments et sur les côtes espagnoles quant à la biosphère.

Cependant, cette identification des points chauds est seulement indicative dans la mesure où il est encore nécessaire d’établir dans la région méditerranéenne des critères d’évaluation environnementale (environmental assessment criteria - EAC) pour les sédiments et la biosphère.

9.3.2 Hot spots d’après d’autres sources d’information

9.3.2.1 Questionnaires remplis par les pays émetteurs

Très peu d’informations ont été obtenues du NFP sur les points chauds en mercure. La plupart des réponses sont relatives à d’anciennes usines chlore-alcali qui ont déjà supprimé progressivement les cellules au mercure, comme la Croatie, la Tunisie ou encore l’Egypte. Plus d’informations détaillées sur les usines chlore-alcali anciennes et actuelles ont été apportées dans la section 4.2.1. Des plans de rémédiation ont aussi été adressés à ces anciennes usines (i.e. en Tunisie). L’Algérie a fourni des données sur les anciennes mines de mercure d’Azzaba (c.f. informations section précédente) et la Turquie a aussi signalé deux aires côtières avec de hauts niveaux de mercure dans l’environnement : les golfes de Candarli et d’Izmir.

9.3.2.2 Littérature

Le rappot de l’EEA sur les issues prioritaires dans la région Méditerranée (EEA, 2006) basée sur les informations UNEP/MAP, identifie les lieux suivants affectés par la pollution au mercure :

- Le district de Vlora district (Albanie): une contamination au mercure est signalée à l’intérieur de l’ancienne usine chlore-alcali et dans l’aire des 20 ha autour de l’usine à une profondeur de sol de 1,5 m (plus d’information sur ce point chaud sont apportées plus bas);
- La Baie d’Alger (Algérie): des métaux lourds dont le mercure sont signalés dans les sédiments suite à l’écoulement d’eaux usées urbaines et industrielles ;
- Skikda (Algérie): une pollution par les métaux lourds est signalée suite à l’écoulement d’eaux usées urbaines et industrielles, ces dernières provenant d’industries dont celle de production de mercure.
- Mostaganem (Algérie): une pollution au mercure est signalée due aux eaux usées urbaines et industrielles.
- Le lac Maryut (Egypte): une accumulation significative de métaux lourds, dont le mercure, dans les sédiments et la biosphère est signalée en conséquence d’arrivées d’eaux usées industrielles.
- La zone côtière de Sfax coastal zone (Tunisie): des eaux usées industrielles (12 000 tonnes of fluorure, 5 700 tonnes of phosphore, 2.4 tonnes de cadmium et une tonne de mercure) et des déchets de phosphogypse ont été déversés en bord de mer (19 millions de m³ sur deux sites de déversement).
- Le fleuve Buyuk Menderes (Turquie): des eaux usées industrielles non traitées ont entrainé une pollution au mercure et aux autres métaux lourds.
L’ancienne usine à PVC de Vlora: L’ancienne usine à PVC, située 3 km à l’ouest de la ville de Vlora (Albanie), a fait partie d’un complexe industriel plus grand qui produisait du chlore, de la soude, du monomère de chlorure de vinyl (MCV), de l’acide chlorhydrique, et d’autres produits chimiques. Ce complexe a été fermé en 1992, et ses bâtiments ont été complètement détruits à l’époque. La contamination des sols et des eaux par le mercure était due à des carences technologiques et des rejets d’eau incontrôlés. La quantité de mercure relargué dans l’environnement sur la seule période 1977-1983 a été estimée à environ 65 tonnes (Beqiraj et al., 2008). De forts taux de mercure ont été mesurés dans les sols environnants (5,000-60,000 mg/kg), dans les eaux souterraines et dans les sédiments côtiers de Vlora Bay (jusqu’à 2.33 mg/kg) (UNEP/MAP, 2010). En Juillet 2002, une mission du PNUE/PAM (Projet GEF GF/ME/6030-00-08) a identifié cette région comme étant un « hot spot » et a recommandé qu’une étude de réhabilitation soit réalisée. Aussi, dans le cadre du projet Environmental Clean-up de l’usine de PVC de Vlora (Décembre 2007 - Janvier 2008), une étude géochimique a été réalisée afin d’étudier les concentrations actuelles de mercure dans les sols, les eaux, les boues, les lessivâtes, et l’air, et d’estimer les volumes de sols contaminés devant être placés dans une installation de stockage confiné (Beqiraj et al., 2008). Au total, il a été estimé qu’environ 50,000m³ devaient être confinés. Certains travaux de remédiation ont été réalisés sur le site par Geotest61.

61 http://www.geotest.cz/engl/aalban.htm
10. Analyse des forces et faiblesses

En 2005, la Commission européenne a développé un plan de communication à propos de sa stratégie vis-à-vis du mercure (EC, 2005b), qui a été complété par une évaluation d’impact étendue (EC, 2005c) qui a permis d’identifier les impacts des différentes options pour réduire la pollution au mercure. Le Tableau 81 présente les objectifs et les actions proposées par la stratégie pour le mercure de l’UE.

Tableau 81. Objectifs et actions proposées par la stratégie mercure de l’UE.

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réduire les entrées de mercure dans la société en coupant les réserves et les demandes.</td>
<td>Action 2. La Commission encouragera les Etats membres et l’industrie à fournir davantage d’informations sur les émissions de mercure et les techniques de prévention et de contrôle, de manière à définir des conclusions, reportées dans le BREF, qui permettent ensuite de réduire les émissions. La seconde édition du BREF sur le chlore-alcali inclura des informations sur les précautions à prendre lors du décommissionnement des piles au mercure.</td>
</tr>
<tr>
<td></td>
<td>Action 3. La Commission entreprendra une étude en 2005 pour déterminer les options permettant de réduire les émissions de mercure causées par les combustions de charbon de petite échelle, à considérer à côté de l’évaluation élargie CAFE.</td>
</tr>
<tr>
<td></td>
<td>Action 4. La Commission encouragera les Etats membres à fournir davantage d’informations sur les émissions de mercure et les techniques de prévention et de contrôle, de manière à définir des conclusions, reportées dans le BREF, qui permettent ensuite de réduire les émissions. La première édition du BREF sur le chlore-alcali inclura des informations sur les précautions à prendre lors du décommissionnement des piles au mercure.</td>
</tr>
<tr>
<td></td>
<td>Action 6. À court terme, la Commission demandera au Groupe d’experts des appareils médicaux de se pencher sur l’usage du mercure dans les amalgames dentaires et demandera l’avis du Comité scientifique sur la santé et les risques environnementaux, dans le but de déterminer quelles mesures réglementaires complémentaires seraient pertinentes.</td>
</tr>
<tr>
<td></td>
<td>Action 8. La Commission étudiera ensuite, à court terme, les quelques produits et applications restants qui, en UE, utilisent de petites quantités de mercure. À plus long terme, tous les usages restants seront sujets à autorisation et à l’examen d’une éventuelle procédure de substitution, conformément à la Réglementation14 REACH, précédemment adoptée.</td>
</tr>
<tr>
<td></td>
<td>Action 10. La Commission entreprendra d’autres études, à court et moyen termes, sur le sort du mercure dans les produits qui sont déjà en circulation dans la société.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 11.</td>
<td>À court terme, EFSA enquêtera particulièrement sur certaines absorptions alimentaires des différents types de poissons et de fruits de mer, chez certaines catégories vulnérables de la population (i.e. femmes enceintes, enfants).</td>
</tr>
<tr>
<td>Action 12.</td>
<td>La Commission fournira des informations complémentaires sur la présence du mercure dans l'alimentation, à chaque fois que de nouvelles données seront disponibles. Les autorités nationales seront invitées à prodiguer leurs conseils en fonction des spécificités locales.</td>
</tr>
<tr>
<td>Action 13.</td>
<td>Les priorités des recherches sur le mercure seront compilées dans le programme cadre du 7e RTD, et d'autres mécanismes de financements appropriés.</td>
</tr>
<tr>
<td>Action 14.</td>
<td>La Communauté, les États membres et les autres actionnaires doivent poursuivre leurs contributions aux forums et activités internationaux et à l'occasion des engagements et des projets bilatéraux avec les pays en développement, y compris les transferts de technologies, afin de sensibiliser au problème mercure.</td>
</tr>
<tr>
<td>Action 15.</td>
<td>La Commission étudiera l'établissement d’un dispositif spécifique de financement des recherches et des projets pilotés de réduction des émissions de mercure causées par la combustion du charbon dans les pays hautement dépendants des combustibles solides, i.e. la Chine, l’Inde, la Russie, etc., dispositifs proches du Programme CARNOT qui promeut l’usage propre et efficace des combustibles solides.</td>
</tr>
<tr>
<td>Action 16.</td>
<td>La Communauté doit soutenir l’initiative visant à inscrire le mercure sous le régime de la procédure PIC de la Convention de Rotterdam.</td>
</tr>
<tr>
<td>Action 17.</td>
<td>La Communauté et les États membres doivent soutenir le travail dans le cadre du protocole des métaux lourds, au sein de la Convention UNECE sur la pollution transfrontalière et de longue portée de l’air.</td>
</tr>
<tr>
<td>Action 18.</td>
<td>La Communauté, les États membres et les autres actionnaires doivent encore soutenir le Programme mondial sur le mercure de l’UNEP, i.e. l’examen des matériels et la prestation de savoir technique et de moyens humains et financiers.</td>
</tr>
<tr>
<td>Action 19.</td>
<td>La Communauté et les États membres doivent soutenir les efforts mondiaux contribuant à réduire l'usage du mercure dans le secteur minier aurifère, i.e. le projet mondial mercure UNDP/GEF/UNIDO. Ils étudieront également les manières de soutenir individuellement les pays en développement, grâce aux différents instruments de coopération et d’assistance au développement, en prenant en compte les stratégies nationales pour le développement.</td>
</tr>
<tr>
<td>Action 20.</td>
<td>Afin de réduire les réserves de mercure à l’échelle internationale, la Communauté doit défendre une suppression globale de la production primaire et encourager les autres pays à stopper la réintroduction sur le marché des surplus, dans le cadre d’une initiative similaire au Protocole de Montréal concernant les substances qui amenuisent la couche d’ozone. Dans ce but, l’amendement envisagé de la Réglementation (EC) No. 304/2003 disposera l’interdiction des exportations depuis la Communauté pour 2011.</td>
</tr>
</tbody>
</table>

Les résultats des objectifs établis par la Stratégie et l’Évaluation Etendue d’Impact sont les suivants: (i) des restrictions sur la vente de certains appareils de mesure (thermomètres, baromètres) contenant du mercure, (ii) une interdiction, prenant effet en 2011, de l’exportation de l’UE du mercure métallique, des composés de mercure et des mélanges (>95% pds/pds) et (iii) la mise en application de nouvelles règles sur le stockage sécurisé. Actuellement la Stratégie européenne sur le mercure est en cours de réévaluation ((EC (DG ENV), 2010) et des actions non terminées ainsi que des actions supplémentaires sont en train d’être évaluées (c.f. section 2.2.2).

Une analyse des forces et faiblesses de la stratégie des actions menées en contexte méditerranéen est présentée dans le Tableau 82. Elle se base sur les résultats de l’Évaluation Etendue des Impacts, le niveau de conformité des objectifs de la Stratégie aujourd’hui et l’adaptation de ces actions dans le contexte méditerranéen.
Si l’on considère les options pour réduire les émissions de mercure à partir de la combustion des charbons dans de grandes centrales (plus de 50 MWth), il est important de souligner que l’Evaluation Etendue d’Impact a indiqué qu’il n’était pas nécessaire de mettre en application de nouvelles mesures puisque la combustion au charbon dans de larges centrales était déjà couverte par la législation de la Communauté Européenne. Cependant, le rapport récent examinant la Stratégie identifie les émissions de mercure en provenant des centrales à combustion de charbon et des émissions industrielles comme un sujet d’action non terminé par l’application de la Stratégie et propose des mesures additionnelles pour y remédier. Les principales mesures additionnelles consistent en l’adoption et la mise en application effective de valeurs limites d’émissions associées à la combustion du charbon et aux émissions industrielles grâce aux meilleures techniques disponibles (Best Available Techniques (BAT)). L’option de définir des valeurs limites d’émission en fonction de l’importance des centrales (taille moyenne ou large) est en outre reconsidérée.

Finalement, l’Evaluation Etendue d’Impact indique aussi qu’il n’est pas approprié de mettre en application des politiques de réduction des émissions de mercure à partir de la crémation, que se soit à partir d’outils de réglementation traditionnels que d’initiative normalisée. Les émissions de mercure à partir de la crémation sont en effet couvertes par la Recommandation OSPAR et par la législation de certains états membres qui ne sont font pas partie de la Convention OSPAR. De plus, les données disponibles sur ce type d’émissions sont limitées.

D’autres actions possible sur le traitement des déchets au mercure, qui ne sont pas couvertes par la Stratégie Mercure de l’Europe mais ont cependant été identifiées, sont listées dans le Tableau 83.

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Options</th>
<th>Description</th>
<th>Forces</th>
<th>Faiblesses</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action 16</td>
</tr>
<tr>
<td>Réserves et commerce du mercure (incluant le devenir des surplus de mercure de l'industrie de chloro-alcali)</td>
<td>• Addition du mercure à la liste des substances couvertes par la procédure PIC (Prior Informed Consent) de la Convention de Rotterdam.</td>
<td>• Les composés de mercure sont couramment inclus dans l'Annexe III de la Convention seulement dans la catégorie des pesticides. Les utilisations industrielles du mercure dans les produits et procédés ne sont pas listées actuellement.</td>
<td>• Les pays devront rendre une décision claire concernant l'autorisation ou non des importations de mercure. • Réduction des utilisations du mercure et de son émission d’un ordre modéré de magnitude. • Cette option implique une légère réduction des exportations de mercure, particulièrement dans les pays développés où certaines utilisations du mercure prévalentes sont illégales (i.e. exploitation des mines d’or à petite échelle).</td>
<td>• Quelques pays méditerranéens n’ont pas encore ratifié la convention de Rotterdam et aucun des pays l’ayant ratifiée n’a adopté des actions finales de réglementations pour les composés au mercure (ANNEX III chemicals). • D’autres utilisations du mercure, outre les pesticides, ne sont pas couvertes par la procédure PIC. • Cela n’impliquerait pas une restriction légale actuelle sur la production du mercure, ses réserves et exportations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action 20</td>
</tr>
<tr>
<td></td>
<td>• Arrêter la production primaire de mercure.</td>
<td>Le mercure n’est plus exploité dans les mines de la région méditerranéenne</td>
<td></td>
<td>N.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Arrêt de l’exportation de mercure en provenance des régions méditerranéennes.</td>
<td>En conséquence, les surplus de mercure en provenance de l’industrie chloro-alcali doivent être conservés et stockés.</td>
<td>• La production primaire dans la région méditerranéenne ne doit pas se relancer. • Réduction des réserves globales de mercure</td>
<td>• Augmentation possible des réserves de mercure du fait de l’augmentation des prix. • Risque que plus de mercure arrive dans les stockages de déchets.</td>
<td>Action 5</td>
</tr>
<tr>
<td></td>
<td>• Stockage temporaire du mercure provenant de l’industrie chloro-alcali.</td>
<td>Le mercure provenant de l’industrie chloro-alcali est entreposé temporairement comme aux USA et dans l’UE.</td>
<td>• Moins de mercure sur le marché • L’impact environnemental de l’entreposage est vraiment très faible</td>
<td>• Risques que les installations de stockage pourraient être négligées ou endommagées dans le futur. • Bénéfices sociaux associés avec la perte de revenus et de jobs pour des compagnies exportant des produits contenant du mercure. • Coûts des stockages.</td>
<td>Action 9</td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Emissons</th>
<th>Options</th>
<th>Description</th>
<th>Forces</th>
<th>Faiblesses</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>reduction des émissions de mercure à partir de l'extraction artisanale de l'or</td>
<td>• Effet social négatif possible pour la région choisie pour le stockage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Moins cher que le stockage permanent</td>
<td>• Stockage permanent du mercure provenant de l'industrie chlore-alcali</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cette option élimine la possibilité au mercure de s'échapper dans l'environnement après des négligences ou des accidents dans les installations</td>
<td>• Impacts environnementaux dépendant des options de stockage choisies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Solution à long terme.</td>
<td>• Risques possibles du fait de procédés naturels sur le long terme</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Un rapport sur les besoins des installations et les critères d'acceptation pour le stockage de mercure métallique développé sous les recommandations de la CE</td>
<td>• Si dans le futur les besoins en mercure augmentent, en conséquence d'une nouvelle technologie, l'option de stockage permanent impliquerait la nécessité de nouvelles activités minières.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Prétraitement (stabilisation du soufre) du mercure métallique et stockage conséquent permanent dans des mines de sel (plus haut niveau de protection de l'environnement, coûts acceptables)</td>
<td>• Coûts pour un stockage permanent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Prétraitement (stabilisation du soufre) du mercure métallique et stockage conséquent dans une formation souterraine de roche dure (haut niveau de protection de l'environnement, coûts acceptables)</td>
<td>• Impact possible sur la compétitivité de l'UE pour l'industrie de chlore-alcali si elles sont obligées de gérer les frais de stockage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Stockage permanent du mercure métallique dans des mines de sel (haut niveau de protection de l'environnement, option la plus efficace au niveau coût)</td>
<td>• Action 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Le mercure serait placé hors de portée humaine.</td>
<td>• Action 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Les appareils de mesure et de contrôle ne sont pas autorisés sur le marché de l'UE du fait d'un amendement à la «Directive des Limitations»63</td>
<td>• La manipulation d'équipements de mesure et contrôle contenant du mercure déjà dans les ménages n'est pas comprise dans cette action, même si cela est plus important pour une perspective quantitative que la vente de nouveaux équipements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quelques exceptions sont autorisées, par exemple le shygmomanomètres au mercure</td>
<td>• Pour quelques appareils industriels spécifiques et de mesure scientifique les substituts adéquats ne sont pas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Le mercure dans les déchets des soins de santé est faible. La conséquence est une réduction des émissions de mercure à partir des sites d'enfouissement et d'incinération</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

État du mercure dans les pays méditerranéens
<table>
<thead>
<tr>
<th>Emissions</th>
<th>Options</th>
<th>Description</th>
<th>Forces</th>
<th>Faiblesses</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion du charbon et activités industrielles</td>
<td>• Analyse des options possibles pour une réduction supplémentaire des émissions de mercure à partir de la combustion du charbon et des activités industrielles</td>
<td>• Adoption et implémentation effective des valeurs limites d'émission associées avec les meilleures techniques disponibles (Best Available Techniques, BAT) en considérant les usines à combustions et les émissions industrielles. • Considérer un ELV défini pour les émissions de mercure à partir des usines à combustion de taille moyenne ou grande • Les options possibles pour réduire les émissions de mercure dans des usines à combustion de petite taille et émissions résidentielles sont à l'étude. • Réglementer la sortie future du mercure des usines de chlore-alcali</td>
<td>• Réduction des émissions de mercure à partir de la combustion du charbon et des activités industrielles</td>
<td>• Coûts pour les usines à combustion de charbon et les industries</td>
<td>Action 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Options</th>
<th>Description</th>
<th>Forces</th>
<th>Faiblesses</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitement des déchets</td>
<td>• Revoir le traitement des déchets des amalgames dentaires</td>
<td>• Construire des installations d’une haute efficacité quant aux séparateurs d’amalgames et filtres de manière obligatoire dans les cliniques dentaires ; avec ajout d’inspection, maintenance et documentation obligatoire, le tout certifié par des services fournisseurs spécialisés.</td>
<td>• Réduction des émissions de mercure dans les systèmes des eaux usées.</td>
<td>• Coûts pour les cliniques dentaires.</td>
<td>• Coûts pour le stockage et recyclage sécurisés des déchets contenant du mercure au-dessus des valeurs limites.</td>
</tr>
<tr>
<td></td>
<td>• Terminer la gestion des déchets contenant du mercure au respect de l’environnement</td>
<td>• Augmenter la conscience et la compréhension technique de la présence de mercure dans les déchets (en général, et pour des produits spécifiques) et la nécessité d’une collecte et d’un traitement sécurisé, grâce à une communication efficace à tous les niveaux.</td>
<td>• Réduction des rejets de mercure à partir des enfouissements et des activités de recyclage des déchets.</td>
<td>• Coûts pour le stockage et recyclage sécurisés des déchets contenant du mercure au-dessus des valeurs limites.</td>
<td>• Coûts pour le stockage et recyclage sécurisés des déchets contenant du mercure au-dessus des valeurs limites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Encourager les activités nationales (guidées par les états ou initiatives privées) pour collecter activement, recycler sainement et stocker les produits obsolètes contenant du mercure en provenance de résidences, instituts, cliniques et de tout autre endroit</td>
<td>• Réduction des émissions de mercure dans les systèmes des eaux usées</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Définir des valeurs limites pour le contenu de mercure dans les déchets.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etat du mercure dans les pays méditerranéens
11. Conclusions et recommendations

Sources d’information

2. A l’échelon national, l’information disponible a été majoritairement extraite de :
 - Questionnaires envoyés au RAC/CP et au MEDPOL (National Focal Points).
 - Rapports des gouvernements pour la première session du Comité de négociation intergouvernemental préparant un accord légal global sur le mercure (INC1) ainsi que pour d’autres études.
 - Inventaires sur les émissions régionales et les réseaux de qualité environnementale comme le programme UNEP Hg, l’UNEP/MAP NBB, UNECE-EMEP, EU-PRTR, et le programme MEDPOL.
 - Diagnostics, stratégies et inventaires nationaux, selon disponibilités.
 - Littérature scientifique.

Considérations générales

3. Le mercure est l’objet d’une prise de conscience et d’une attention globales du fait de sa dissémination de longue portée dans l’atmosphère, de sa persistance dans l’environnement, de sa capacité à s’accumuler dans les éco-systèmes et de ses effets négatifs significatifs sur la santé humaine et l’environnement.

4. Le mercure peut se répandre dans l’environnement du fait d’une grande variété d’activités humaines ou d’objets le contenant. A cause de ses propriétés chimiques, le mercure a été utilisé dans une large gamme de produits et de procédés industriels, dans son état naturel. Par ailleurs, il peut être répandu accidentellement au cours de divers processus industriels, notamment lorsque ceux-ci impliquent une combustion.

5. En conséquence, il est admis qu’une réglementation à la fois globale et locale est requise afin de protéger la santé humaine et l’environnement de l’émission de mercure et de ses composants, en minimisant voire en éliminant là où c’est possible la libération massive et d’origine humaine du mercure dans l’air, l’eau et la terre.

Cadre légal

et a mandaté un Comité international de négociation (INC) pour sa préparation. Les négociations sont en cours et les résultats attendus pour 2013.

7. Plusieurs accords environnementaux internationaux et régionaux sont consacrés au mercure, à chaque fois selon un angle particulier, par exemple :
 - La Convention de Rotterdam, qui régule le commerce international de certains produits chimiques dangereux.
 - La Convention de Bâle, qui régule les mouvements transfrontaliers des déchets dangereux ainsi que leur saine gestion environnementale et leur stockage.
 - La Convention LRTA (Protocole Aarhus), qui régule les phénomènes longue distance et transfrontaliers de pollution de l'air, notamment par les métaux lourds.
 - La Convention OSPAR, qui a pour but de protéger l'environnement marin du Nord-Est Atlantique.
 - La Convention de Barcelone, qui a pour vocation de protéger la Mer Méditerranéenne contre la pollution d'origine terrestre et côtière.
 - La Stratégie de l'Union Européenne sur le mercure, vaste plan consacré à la pollution au mercure aux échelles européenne et mondiale.

8. Alors que la Convention de Bâle a été ratifiée par tous les pays méditerranéens, la Convention de Rotterdam ne l'a été que par la moitié ; le Protocol Aarhus sur les métaux lourds n'a été signé que par cinq d'entre eux.

9. La Convention de Barcelone et la Stratégie de l'Union Européenne sur le mercure sont les accords qui concernent principalement la région méditerranéenne :
 - S'appuyant sur la Convention de Barcelone, le Protocole pour la protection de la Mer Méditerranée contre la pollution des activités d'origine côtière (Protocole Land-Based Sources) exhorte les parties à éliminer les émanations de métaux lourds et leurs composants provenant de sources côtières et terrestres. Le Programme d'action stratégique (Strategic Action Programme - SAP MED) délivre des mesures spécifiques de réduction de la pollution afin de réduire les émissions de mercure, en appliquant les meilleures techniques disponibles (Best Available Techniques – BAT) et les meilleures pratiques environnementales (Best Environmental Practices – BEP) ; il adopte des valeurs limites d'émission (Emission Limit Values – ELV) et des standards de qualité environnementale. Le Programme MEDPOLL est chargé du suivi de l'application du Protocole LB S.
 - En marge des dispositions légales sur le mercure dérivant de politiques thématiques (air, eau, déchets, etc.), la Stratégie de l'Union Européenne sur le mercure impose des restrictions sur la vente des appareils de mesure contenant du mercure, l'interdiction de l'exportation du mercure depuis l'Union Européenne et de nouvelles règles touchant la sûreté du stockage du mercure. La Stratégie est régulièrement réexaminée et des restrictions supplémentaires ont été ajoutées, qu'il s'agisse de
l'interdiction des importations de mercure ou de l'extension de l'interdit d'exportation.

10. La plupart des pays méditerranéens ont signalé avoir pris des dispositions légales concernant le mercure. Les plus nombreuses touchent l'évacuation des eaux, les émissions aériennes et l'incinération des déchets. L'instauration de tels cadres légaux communs implique l'établissement conjoint de valeurs-limites d'émission.

11. La réglementation sur l'émission aérienne et l'évacuation des eaux touche principalement les usines de chlore-alcali, la production des ciments, les installations de combustion de grande ampleur et d'incinération des déchets.

12. La collecte séparée des déchets contenant du mercure est instituée dans pratiquement toute la région méditerranéenne. Les principaux déchets réglementés sont les batteries et les accumulateurs, les équipements électriques et électroniques ainsi que les véhicules en fin de vie.

13. La plupart des dits pays ont également signalé l'instauration de mesures de contrôle du mercure dans les produits alimentaires, l'eau et des critères de qualité des sols.

14. Seuls quelques pays méditerranéens ont signalé avoir établi une législation spécifique consécutive aux 4ᵉ et 5ᵉ sessions ordinaires des parties contractantes à la Convention de Barcelone, touchant, respectivement, à la concentration maximum du mercure dans les produits de la mer, les critères qualité des eaux de baignade (UNEP/IG.56/5) et à la concentration maximum du mercure pour des émissions en mer Méditerranéenne (UNEP/IG.74/5).

15. Le commerce du mercure a été seulement limité dans l'Union Européenne, où les exportations de mercure métallique et des composés de mercure d'une concentration supérieure ou égale à 95% en poids sera interdite à partir de mars 2011. Parmi les pays méditerranéens, seule la Croatie a déclaré développer des réglementations équivalentes.

16. Aucune réglementation sur le stockage du mercure n'a encore été instaurée pour l'instant dans les régions méditerranéennes.

17. Des réglementations sur la restriction des produits comportant du mercure ne sont pas massivement adoptées en Méditerranée. Cependant, elles sont progressivement instaurées sous l'impulsion des états méditerranéens appartenant à l'Union. Les usages restreints du mercure sont les suivants :

 o Pesticides.
 o Préparations destinées à la prévention de l'encrassement, à la protection du bois, à l'imprégnation des textiles et au traitement des eaux industrielles.
 o Cosmétiques.
 o Véhicules : l'utilisation de mercure dans les voitures, y compris les interrupteurs et les relais, est interdit, à la seule exception des lampes à émission et des tableaux de bord.
 o Équipement électrique et électronique : l'usage de mercure dans ces équipements, y compris les interrupteurs et les relais, est interdit à l'exception de certaines sources lumineuses. Les appareils médicaux et les instruments de contrôle et de surveillance sont exclus.
Batteries and accumulateurs: ils ne peuvent pas contenir plus de 0.0005% de mercure en poids. Les piles-bouton peuvent contenir jusqu’à 2% en poids de mercure. Les piles pour les “équipements médicaux” et les “systèmes d’alarme” sont exemptes de l’interdiction.

- Les appareils de mesure (thermomètres et baromètres, avec certaines exceptions).
- Biocides.
- Matériel d’emballage.
- Jouets.

Mesures sur l’application du Programme mercure de l’UNEP

18. Quelques pays méditerranéens (Algérie, Croatie, Maroc et Espagne) ont déclaré avoir édicté un accord et/ou une planification national(e) sur le mercure.

19. Cependant, la plupart des pays méditerranéens ont déclaré avoir pris des mesures concrètes touchant la gestion du mercure, i. e. des inventaires, des réseaux de surveillance et de contrôle des usages, de la production ou des émissions du mercure.

20. D’un autre côté, les mesures prises par ces pays méditerranéens sont le contrôle des niveaux de mercure dans le sang humain et le lait maternel, l’implantation de procédés de substitution au mercure et le développement des inventaires des sols contaminés par le mercure.

Production du mercure

21. La principale source de mercure est l’extraction minière, suivi par la récupération du mercure des usines chlore-alcali en cours de décommissionnementet des produits dérivés des exploitations d’autres minerais et de la purification du gaz naturel.

22. L’exploitation mondiale du mercure décroit régulièrement. Cependant, cette réduction est pour partie compensée par l’augmentation du mercure recyclé, notamment par les installations chlore-alcali. Désormais, la Chine et le Kirghisztan sont les deux principaux producteurs primaires de mercure.

24. Les mines slovènes et algériennes ont cessé leurs opérations suite à des difficultés économiques et techniques, alors que d’autres, telles la mine d’Almadén en Espagne, ont subi des pressions liées à la prise de conscience internationale de la pollution par le mercure, qui ont conduit à leur fermeture, en 2004. Il faut souligner qu’il n’y a pas de la part de ces pays de déclaration formelle de non réouverture de ces mines.
25. Le mercure peut être obtenu comme produit dérivé lors de l'extraction de la plupart des métaux non ferreux, comme le zinc, le cuivre, le plomb, l'or et l'argent. Au Maroc, environ une tonne par an est récupérée lors du raffinage de l'argent. Qui plus est, le mercure peut être récupéré lors de la purification des gaz naturels, en quantité trace (Algérie, Croatie, Égypte et Lybie).

Stockage du mercure et des déchets contenant du mercure

26. Le plus important stock mondial de mercure se trouve à Almadén, Espagne, sur le site de la mine désaffectée. La compagnie minière d’Almadén, MAYASA, a signé un accord avec Euro Chlor, l’association des industries européennes de chlore-alcali, l’autorisant à acheter le mercure provenant d’installations européennes modifiant leur processus industriel au profit de productions sans mercure, et de le vendre sur le marché. Environ 1500 tonnes auraient été collectées depuis septembre 2006.

27. Les autres stocks en région méditerranéenne sont : 1 million de tonnes de scories de minerai de mercure sur le site de la mine d’Azzaba (Algérie) ; 3920 tonnes en Turquie ; en Slovénie, environ 4000 tonnes de mercure sont stockées dans des dépôts de déchets d’anciennes mines, à proximité de l’aire d’Idrija. D’autres réserves se trouvent en France, en Italie ou dans des usines chlore-alcali en Espagne ; des stocks plus petits ont été recensés par Israël, la Tunisie et l’Égypte.

29. Le site d’Almadén demeure un candidat potentiel pour le stockage permanent des surplus européens de mercure. La résolution du Parlement européen sur la Stratégie commune sur le mercure (2005/2050(INI)) en date du 14 mars 2006 considère l’éventualité du stockage des réserves existantes de mercure métallique ou de ses dérivés industriels provenant de toute l’Europe, à Almadén. Les stocks de mercure des pays de l’est et du sud méditerranéen peuvent également être déplacés à Almadén ou dans d’autres installations voisines d’anciens sites d’extraction de mercure (i.e. Turquie et Algérie).

Commerce du mercure et des déchets contenant du mercure

30. L’Espagne demeure le deuxième plus important exportateur de mercure (à hauteur de 10.3% des exportations mondiales, en termes de valeur monétaire entre 2007 et 2009), grâce à l’activité de la compagnie minière d’Almadén, MAYASA.

31. La plupart des pays méditerranéens sont exportateurs nets de mercure. Le plus important d’entre eux est la France (103 tonnes en 2008). Les seuls exportateurs nets sont l’Espagne (221 tonnes), l’Italie (62 tonnes) et la Turquie (20 tonnes).

32. Les données disponibles concernant les échanges des produits contenant du mercure sont rares.
33. Concernant les échanges de déchets contenant du mercure, l’Allemagne et la France sont les pays recevant le plus de déchets de la région méditerranéenne, alors que l’Italie et la France sont ceux qui exportent le plus de ces déchets.

Usages et substituts

34. Il y a très peu d’informations disponibles sur l’usage du mercure dans les pays méditerranéens ; les usages principaux sont la production de chlore-alcali, les batteries, les amalgames dentaires, les appareils de contrôle et de mesure, les lampes, les appareils électriques et électroniques et le mercure chimique.

35. Son usage comme catalyseur dans la production du monomère de chlorure de vinyle et dans l’extraction d’or à petite échelle est considéré comme insignifiant en région méditerranéenne.

36. L’usage du mercure a décru ces dernières années du fait de la substitution graduale du mercure pour les produits et processus sous réglementation.

38. Alors que l’usage du mercure dans l’amalgame dentaire décroit régulièrement dans les pays méditerranéens européens, il a toujours court dans les pays extra-européens, tels la Syrie, la Slovénie, le Maroc et Israël.

39. Le mercure a été massivement utilisé dans les véhicules, pour différentes applications. Des procédures de substitution ont été instaurées. Dans l’UE, la plus récente application dans les voitures a été les capteurs de force G des ABS, sur quelques modèles neufs depuis 1996. Il n’y a pas d’information sur les usages du mercure ou sur les produits de substitutions dans les véhicules, pour les pays méditerranéens non européens ; cependant il est connu que des véhicules anciens sont toujours en activité dans plusieurs pays méditerranéens.

40. Le mercure est aussi utilisé dans les laboratoires en tant que réactif, conservateur et catalyseur dans de nombreuses applications. La plupart de ces usages peuvent faire l’objet d’alternatives sans mercure, i.e. : catalyseur pour la production d’élastomère PU, sulfate de mercure (II) pour l’analyse DOC, conservateur dans les vaccins et autres produits pharmaceutiques, biocide dans la peinture.

41. Le mercure est toujours utilisé pour les batteries miniatures ou les piles boutons, dont la production s’accroît mondialement. Les techniques alternatives au mercure ne sont en effet pas en mesure de combler la demande de batteries miniatures. Les lampes contenant du mercure (i.e. tubes fluorescents, compact fluorescent, lampes haute intensité) sont toujours utilisées du fait de leur coefficient énergie/efficacité plus favorable par rapport aux procédés de substitution. Les LED peuvent se substituer aux lampes fluorescentes compactes ou linéaires contenant du mercure, mais elles ne sont appropriées que pour un nombre limité d’applications du fait de leur faible puissance lumineuse et de leur coût plus élevé.

42. Des procédés alternatifs sans mercure sont disponibles et utilisés pour les thermomètres, les amalgames dentaires, les sphygmomanomètres, les
thermostats et les batteries non miniatures, les interrupteurs et relais, et les lampes automobiles à haute intensité (High Intensity Discharge - HID). Dans la plupart des cas, le coût de ces techniques de substitution est équivalent à celui des procédés mercure, et dans certains cas il est même inférieur.

43. En sus, les technologies pour réduire les émissions non intentionnelles de mercure lors de la combustion des énergies fossiles, des ciments, de l’acier et du fer, des métaux non ferreux, des papiers et des pâtes, dans l’industrie et la fonte du fer sont techniquement et économiquement réalisables, selon la bibliographie des Meilleures techniques disponibles (Best Available Techniques – BAT).

44. L’information sur la substitution du mercure est rare dans la région méditerranéenne et le nombre de substitutions déclaré par les pays en question est inégal. Les principaux procédés de substitutions engagés concernent les piles chlore-alcali au mercure, les amalgames dentaires, les batteries, les cosmétiques, les appareils de contrôle et de mesure, les pesticides et biocides, les produits pharmaceutiques et les peintures.

45. Les procédés alternatifs au mercure, dans les régions méditerranéennes, sont à un niveau de développement moindre pour les sources lumineuses et les appareils électriques et électroniques.

Sources d'émission du mercure

46. Les émissions de mercure peuvent émaner, de manière intentionnelle, d'une grande variété de produits: les amalgames dentaires, les batteries, les lampes au mercure, les appareils de contrôle et de mesure, les mercures chimiques. L'usage des produits contenant du mercure provoque des émanations de mercure à différentes étapes:

 - Lors de la production (dans l'air, l'eau ou les sols), ces émanations dépendent de la manière dont les systèmes manufacturiers sont étanches, et des manipulations et des procédures de travail dans les unités de production;
 - Elles peuvent subvenir lors des cassures et des pertes de produits (dans l'air, l'eau ou les sols) à l'usage;
 - Lors de l'élimination et du stockage des produits après usage (directement dans le sol ou l'enfouissement, et par conséquent dans l'eau et l'air), les émanations dépendent étroitement du type et de l'efficacité des procédures de collecte des déchets et des manipulations effectuées.

47. Le mercure peut être également répandu dans l'air, l'eau et la terre, lors de processus industriels, principalement les équipements de chlore-alcali.

48. Les produits dérivés ou les émanations involontaires de mercure sont principalement répandus dans l'air. Les secteurs qui impliquent la combustion de charbon et d'huile, la production de fonte brute et l’acier, la production de métal non ferreux, la production de ciments et le traitement des déchets sont les plus concernés.

Valeurs limites d’émission et objectifs qualité
49. Les organismes internationaux qui édictent les standards touchant au mercure, servent de référence pour les pays méditerranéens qui veulent se doter de valeurs limites d’émission du mercure et de standards de qualité environnementale:
 - Le cadre légal de l’UE a constitué la référence pour l’adoption dans les pays méditerranéens de restrictions mercure, lors des incinérations.
 - Les critères de l’OMS concernant l’eau destinée à la consommation humaine ont été également adoptés massivement par ces pays.

50. Par ailleurs, des valeurs limites d’émission ont été différemment adoptées par les pays méditerranéens, en fonction des facteurs suivants :
 - Les valeurs limites d’émission dans l’air varient selon les secteurs industriels et les technologies, i.e. les usines chlore-alcali.
 - Les valeurs limites d’émission pour les eaux usées répandues dépendent de l’environnement destinataire et du traitement ultérieur.
 - Les standards qualités pour l’air, l’eau et le sol sont fonction de la localisation géographique, les conditions locales et les usages potentiels.

Inventaire des émissions

55. Plusieurs inventaires régionaux et nationaux des émissions de mercure (principalement des rejets aériens) ont été identifiés, même si leurs chiffres peuvent difficilement être comparés directement, du fait des différences entre les zones géographiques couvertes, entre les secteurs sources inclus ou entre les méthodologies ou les facteurs utilisés.

56. Selon les données disponibles, les émissions atmosphériques totales en région méditerranéenne ont été estimées à environ 70 tonnes/an (environ 3,6% des émissions globales). Cinq pays (Turquie, Italie, Espagne, Grèce, France) totalisent 80% des émissions totales de la zone.

57. Les émissions non intentionnelles résultant de l’usage d’énergie fossile (dans l’industrie de l’énergie ou dans celle du ciment) constituent les sources majeures des rejets de mercure dans l’atmosphère en Méditerranée, ce qui est en accord avec les inventaires de mercure des autres zones. Les émissions aériennes et dans l’eau de l’industrie chlore-alcali (usage intentionnel) ont été notablement réduites ces dernières années. Très peu d’informations sont disponibles sur les rejets de mercure intentionnels d’autre sources, i.e. amalgames dentaires, bris d’appareils de mesures, etc…

Réseaux de surveillance
59. Le réseau le plus pertinent de surveillance de la qualité de l'air, en Méditerranée est le réseau de mesure UNECE/EMEP, qui inclut dix pays méditerranéens. Cependant, les données sur le mercure sont difficilement disponibles pour la plupart des stations, bien que les mesures ont été initiées dans plusieurs pays et alors que d'avantage de données sont attendues dans les années à venir. D'autres pays européens, non membres de l'EMEP, prévoient la surveillance du mercure, comme Israël et la Tunisie, mais un manque d'information peut être constaté pour les pays du sud et de l'est méditerranéen. Dans les pays du nord, le mercure est communément mesuré dans les eaux potables, dans le but de satisfaire aux cadres légaux des politiques de l'UE sur l'eau.

60. Dans l'environnement marin, le mercure a été détecté dans les sédiments et le biotope depuis plusieurs années – selon le programme MEDPOL, et bien que les informations ne soient toujours pas disponibles pour tous les pays. L'estimation des données de la base MEDPOL n'est pas concluante mais montre que les niveaux les plus élevés de mercure dans les sédiments et le biotope apparaissent dans certaines zones du bassin du nord-ouest et la mer Adriatique. Les Critères d'Évaluation Environnementale (Environmental assessment criteria - EACs) sur le mercure et autres polluants dangereux sont toujours en attente d'application en Méditerranée.

61. Des informations complémentaires issues de la littérature scientifique et des réseaux nationaux de surveillance indiquent que les taux de mercure dans l'environnement marin méditerranéen ont baissé lors des dernières décennies, mais plus lentement que les émissions.

62. Une surveillance du mercure dans l'alimentation est conduite dans la plupart des pays de l'UE ainsi que dans d'autres pays méditerranéens tels que l'Algérie, la Tunisie et Israël. L'information disponible en provenance des réseaux de surveillance de l'alimentation (i.e. le Système d'alerte rapide de l'UE pour l'alimentation humaine et animale - EU Rapid Alert System for Food and Feed) démontre que la consommation de fruits de mer est la principale voie de contamination humaine au mercure. La littérature scientifique confirme le haut niveau de mercure chez les poissons (i.e. le thon et l'espadon) et les cétacés de Méditerranée, où la bioaccumulation a fréquemment été observée à des niveaux plus élevés que dans d'autres régions marines.

63. Très peu d'informations ont pu être collectées touchant au contrôle du mercure dans le sang ou le lait humain, encore que certains pays ont lancé des politiques de surveillance sur une base périodique (i.e. l'Espagne).

Points chauds

64. Dans les pays méditerranéens de l'UE, les sites industriels qui concentrent actuellement la plupart des émissions de mercure, peuvent être identifiés en recourant au registre E-PRTR. La centrale thermique d'Ellispontos (Grèce du nord) produit les émissions aériennes les plus importantes (0,51tonne/an). Généralement, la plupart des points chauds d'émissions aériennes sont les centrales à charbon, les usines de chlore-alcali et les industries du ciment.

65. Pour ce qui concerne les rejets marins, un point chaud majeur est situé à Trieste, en Italie, avec 3,7 tonnes rejetées par une centrale thermique. Les usines de retraitement des eaux usées et les installations chlore-alcali sont
régulièrement identifiées comme des points chauds d'émissions de mercure dans l'eau.

66. Les anciens sites industriels constituant des points chauds sont généralement associés avec des usines chlore-alcali désaffectées (ou des installations en activité ayant adopté des procédés sans mercure). Nombreux sont ceux qui ont déjà démantelé leur stocks de mercure ou pris des mesures d'atténuation, comme en Croatie, en Égypte ou en Tunisie. Une ancienne usine de PVC à Vlora (Albanie) est un autre point chaud identifié en Méditerranée, bien que des actions d'atténuation ont été prises pour confiner les sols pollués.

67. Les anciennes mines de mercure, tout autour de la Méditerranée, ont provoqué la contamination des aires environnantes, du fait de l'élimination sur place des déchets d'extraction contenant de hautes concentrations de mercure. Ces sites se trouvent en Espagne (Almadén, Valle del Azogue, Asturies), Slovénie (Idrija), Italie (Monte Amiata), Turquie occidentale et Algérie (Azzaba). Le drainage de ces zones d'extraction a accru les taux de mercure sur les côtes environnantes, comme le golfe de Trieste ou le golfe d'Izmir en Turquie.

Recommandations

- Du fait des propriétés du mercure et de ses forts effets négatifs, des dispositions aux échelles mondiales et locales sont nécessaires afin de protéger la santé humaine et l'environnement. Les futurs instruments légaux et contraignants sur la question du mercure devront servir de cadre aux pays méditerranéens afin qu'ils s'attaquent au problème d'une manière intégrée.

- Tous les pays méditerranéens doivent ratifier la Convention de Rotterdam et le Protocole sur les métaux lourds.

- Pour les pays qui n'auraient pas encore réalisé de diagnostic national sur le mercure, il est fermement recommandé de développer une analyse d'ensemble et multidisciplinaire. Comme les informations disponibles sur l'usage du mercure dans les pays méditerranéens est maigre, un effort complémentaire devra être réalisé pour réunir des données pertinentes afin de nourrir les politiques de réduction et de gestion du mercure.

- Comme la plupart des pays méditerranéens ont déjà développé des dispositions légales concernant le mercure, il est capital que toutes ces dispositions s'accompagnent de procédures efficaces d'exécution, i.e. les valeurs limites d'émission.

- L’existence d’une législation sur l’émission n’est pas suffisante pour assurer son application conforme. Un système conséquent d’exécution et contrôle doit être mis en place, dans le cadre duquel l’autorité n’a pas seulement le devoir d’appliquer la législation la plus adéquate mais dispose également des compétences techniques pour maîtriser les procédures de contrôle et de mesure des émissions, etc.

- Pour certains types d’industries particulièrement polluantes, par exemple l’industrie chlore-alcali, l’incinération des déchets, la production des ciments et les usines de combustion intense, la législation doit exiger l’usage de méthodes de production spécifiques et moins polluantes, ainsi que le recours à des technologies prévenant la pollution (Best Available Techniques - BAT) associées à des valeurs limites d’émission (Emission limit values - ELV).
Parallèlement à l'achèvement des diagnostics nationaux et l'instauration de cadres légaux correspondants, de grands efforts sont nécessaires pour l'assistance technique et la capacité constructive, particulièrement dans les pays méditerranéens en développement, afin de s'assurer que les dispositions sont appliquées, contrôlées à échéances régulières, éventuellement mises à jour et révisées.

- Un engagement formel de ne pas rouvrir les anciennes mines de mercure doit être adopté par les pays méditerranéens.
- Un plan progressif de suppression des usines de piles chlore alcali au mercure doit être adopté et appliqué dans la région.
- Des collectes séparées et la récupération du mercure dans les déchets tels batteries, véhicules en fin de vie, équipements électriques et électroniques, doivent être instituées pour réduire les pertes de mercure dans les régions méditerranéennes.
- Une gestion raisonnée du point de vue environnemental des déchets mercuriels doit être assurée.
- Du fait de son rapport prix-efficacité, l'installation de filtres de haute qualité dans les cliniques dentaires doit être menée à bien pour réduire les pertes de mercure des amalgames dentaires, dans les systèmes d'évacuation des eaux.
- Pour tous les produits pour lesquels une alternative technique est possible et viable économiquement, les procès de substitutions doivent être encouragés par la législation et par des incitations économiques (thermomètre au mercure, baromètres, sphygmomanomètres, catalyseur des élastomères PU et amalgames dentaires).
- La région méditerranéenne dans sa totalité doit envisager l'instauration d'une interdiction des exportations/importations de mercure et l'adéquation de pareilles régulations en regards des cadres contraignants internationaux (convention de Rotterdam) et des conclusions extraites des publications de la Stratégie Mercure de l'UE, concernant les restrictions futures sur les importations de mercure et l'extension de l'interdiction d'export des autres composés mercure, les mélanges de moindre teneur en mercure et les produits contenant du mercure, en particulier les thermomètres, les baromètres, et sphygmomanomètres.
- A un stade intermédiaire, le développement d'une base de donnée détaillée et complète sur les échanges de produits contenant du mercure au sein des pays méditerranéens serait hautement recommandée, afin de définir et d'accompagner une politique efficace de réduction de la consommation de mercure.
- En prenant en compte les tendances internationales à l'interdiction ou à la réduction du mercure, ainsi que l'interdiction des exportations de mercure par l'UE, les futurs excédents en région méditerranéenne et les besoins potentiels de stockage sûr du mercure métallique devront ensuite être explorés. Parallèlement, un examen des usages potentiels des anciens gisements de mercure autour de la région doit être mené.
- Des recherches complémentaires et des développements technologiques sont nécessaires qui viendraient se substituer aux piles boutons, dont la production mondiale est en augmentation, sachant que les alternatives existantes, sans recours au mercure, ne sont pas toujours à même de combler la demande de batteries miniatures.
Des développements technologiques supplémentaires sont nécessaires pour permettre la substitution des lampes à mercure par des LED, dans davantage de cas. Des alternatives sans mercure, économiquement compétitives et utilisables diversement, aux lampes HID et aux rétroéclairages LED pour ordinateurs et télévisions, doivent également être développées.

Des données plus pertinentes sur les dégagements de mercure dans l’air et dans l’eau, notamment dans les pays de l’est et du sud méditerranéen sont nécessaires. Parallèlement, les réseaux de surveillance du mercure (air, eau, sol) doivent être renforcés afin d’identifier les actions prioritaires et d’estimer les effets des politiques et des stratégies conduites. Le contrôle du mercure dans l’alimentation, en particulier les fruits de mer, est également une priorité.

Des actions de suivi doivent être conduites afin de s’assurer que les points chauds du mercure sont proprement requalifiés et que les environnements concernés évoluent positivement. Une attention complémentaire doit être portée sur les anciennes mines de Turquie et d’Algérie.

Des mesures favorisant l’échange des informations et la prise de conscience publique des effets du mercure doivent être promues dans l’ensemble de la région.
Références

Babi, D; Vasjari, M; Celo, V; Koroveshi, M., 2000. Some results on Hg content in hair in different populations in Albania. Science of the Total Environment, 259, pp 55-60.

Barghigiani, C; Ristori, T, 1994. Mercury levels in agricultural productos of Mt Amiata (Tuscany, Italy). Archives of Environmental Contamination and Toxicology, 26, pp 329-334.

cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios. Sci.Total Environ., 390: 569-578.

Covelli, S; Faganeli, J; Horvat, M; Brambati, A, 2001. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Applied Geochemistry, 16, pp 541-558.

Dg Environment by BiPRO GmbH, 2010. Requirements for facilities and acceptance criteria for the disposal of metallic mercury.

Horvat, Milena; Covelli, Stefano; Faganeli, Jadran; Logar, Martina; Mandic, Vesna; Rajar, Rudi; Sirca, Andrej; Zagar, Dusan (1999) Mercury in contaminated coastal environments; A case study: The Gulf of Trieste. Science of the Total Environment, 237-238, pp 43-56.

STRATEGIC ACTION PLAN (SAP) TO ADDRESS POLLUTION FROM LAND BASED ACTIVITIES.

RAC/CP, 2010b. Actualización del informe de vigilancia y monitorización de metales pesados en España y su referenciación geográfica. Ministerio de Medio Ambiente, Departamento de Medio Ambiente y Vivienda de la Generalitat de Catalunya, Centro de Actividad Regional para la Producción Limpia.

fish and seafood products and estimated daily intake for the Spanish population.
Food Additives and Contaminants 24, 869-876.

SCENIHR, 2009. Mercury Sphygmanometers in Healthcare and the Feasibility of
Alternatives. Scientific Committee on Emerging and Newly Identified Health Risks
(SCENIHR). European Commission. DG Health & Consumers. 23 September
2009.

Storelli, M.M., 2008. Potential human health risks from metals (Hg, Cd, and Pb) and
polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of
target hazard quotients (THQs) and toxic equivalents (TEQs). Food and
Chemical Toxicology, 46, 2782–2788.

UNE, 2002. Global mercury assessment,
http://www.chem.unep.ch/mercury/report/Final%20report/final-assessment-
report-25nov02.pdf

UNE, 2006a. Summary of supply, trade and demand information on mercury.
UNEPCheitals Branch,
http://www.chem.unep.ch/mercury/HgSupplyTradeDemandJM.pdf

UNE, 2006b. Guide for reducing major uses and releases of mercury,

UNE, 2008a. Report on the current supply of and demand for mercury, including the
possible phase-out of primary mercury mining. Note by the secretariat. Ad Hoc
Open-ended Working Group on Mercury. Second meeting, Nairobi, Kenya, 6–10
October 2008. Item 3 of the provisional agenda: Review and assessment of
options for enhanced voluntary measures and new or existing international legal
instruments.
add_1.doc

UNE, 2008b. Report on the major mercury containing products and processes, their
substitutes and experience in switching to mercury free products and processes.
Review and assessment of options for enhanced voluntary measures and new or
existing international legal instruments. Ad Hoc Open-ended Working Group on
Mercury.

Coal. A report from the Coal Combustion Partnership Area.

Reference Report. Revised Inventory Level 2 Report Including Description of

UNE, 2010b Assessment of the Mediterranean Sea: Fulfilling Step 3 of the
Ecosystem Approach Process. Draft Assessment Report. Second meeting of
technical experts on the Application of the Ecosystem Approach by MAP.
Barcelona, Spain, 6-7 July 2010. UNEP(DEPI)/MED WG.350/3.

USGS, Minerals Yearbook

DATA-BASES:
Comtrade: http://comtrade.un.org
Comext: http://epp.eurostat.ec.europa.eu/newxtweb/