19th Ordinary Meeting of the Contracting Parties to the
Convention for the Protection of the Marine Environment
and the Coastal Region of the Mediterranean and its Protocols

Athens, Greece, 9-12 February 2016

Agenda item 3 & 6.1:

Thematic Decisions, Report on Activities Carried Out in the Framework of UNEP/MAP since COP 18

Reports of the Meetings of MAP Components Focal Points during the Biennium 2014-2015

For environmental and economic reasons, this document is printed in a limited number. Delegates are kindly requested to bring their copies to meetings and not to request additional copies.
Report of the Meeting of the Focal Points of the Mediterranean Pollution Assessment and Control Programme (MED POL), Malta, 16-19 June 2015
MED POL Focal Points Meeting
Malta, 16-19 June 2015

Joint Session MED POL and REMPEC Focal Points Meetings
Malta, 17 June 2015

Report of the meeting

For environmental and economic reasons, this document is printed in a limited number. Delegates are kindly requested to bring their copies to meetings and not to request additional copies.
Table of contents

Report of the meeting

Annex I List of participants

Annex II Agenda of the meeting

Annex III Conclusions and recommendations

 Appendix 1 Recommendations of the informal online working groups
 Appendix 2 Main elements of the Integrated Monitoring and Assessment Programme
 Appendix 3 Guide on Fishing for Litter best practices
 Appendix 4 Guidelines on best environmental practices for the management of mercury contaminated sites
 Appendix 5 Guidelines for environmentally sound management of used lead batteries

Annex IV Guide for environmental sound management of PCBs

Annex V NAP update Guidelines
Report of the meeting

Introduction

1. The meeting of the MED POL Focal Points was held on 17-19 June 2015 at Corinthia Hotel, Attard, Malta, with a pre-session on marine litter on 16 June 2015. A joint session with REMPEC Focal Points was held on 17 June 2015 and was dedicated to the draft Offshore Protocol Action Plan and the main elements of the Integrated Monitoring and Assessment Programme for Ecological Objectives 5 (eutrophication), 9 (contaminants) and 10 (marine litter).

2. The main objectives of the meeting were to review the progress in the implementation of the current MED POL programme of work (PoW) for the biennium 2014 – 2015 including some of the key reports and technical guidelines produced. The meeting also reviewed and provided feedback on the pollution prevention and control component of the UNEP/MAP Mid Term Strategy (MTS) and related MED POL PoW for the 2016 – 2017 biennium.

Participation

3. The following Contracting Parties attended the meeting: Albania, Bosnia and Herzegovina, Croatia, Cyprus, Egypt, European Union, France, Greece, Israel, Italy, Lebanon, Libya, Monaco, Montenegro, Morocco, Slovenia, Spain, Tunisia and Turkey. Representative of Palestine participated as an observer. The meeting was furthermore attended by the representatives of International Atomic Energy Agency (IAEA), Basel Convention Regional Centre from Bratislava, Agreement on the Conservation of Cetaceans in the Black Seam Mediterranean Sea and Contiguous Atlantic Area (ACCOBAMS), European Environment Agency (EEA), Environment Agency Austria, Hellenic Centre for Marine Research (HCMR) and University of Piemonte/ DISIT. UNEP/ MAP and several Regional Activity Centres were attending, including Plan Blue (PB/RAC), Regional Marine Pollution Emergency Response Centre (REMPEC), Sustainable Consumption and Production centre (SCP/RAC), and Information and Communication centre (INFO/RAC). The full list of participants is included in Annex I of the present report.

Pre-session on marine litter

4. The pre-session on marine litter was conducted with the aim to enable preliminary expert discussion on the Updated MED POL Marine Litter Assessment Report and on the Guide on best practices for Fishing for Litter in the Mediterranean (documents UNEP(DEPI)/MED WG.417/13 and UNEP(DEPI)/MED WG.417/14).

5. The presentation of the Marine Litter Assessment Report (UNEP(DEPI)/MED WG.417/14) highlighted the situation in the Mediterranean, including the sources, main impacts and the most substantial reduction measures, as well as some recommendations for the implementation of Marine Litter Regional Plan including a proposal to establish a coordination mechanism with the relevant regional partner organizations under UNEP/MAP leadership. The Secretariat explained the rationale for the update of the 2010 marine litter assessment based on Article 11 of the Marine litter Regional Plan according to which an assessment report should be prepared by the Secretariat 2 years after its entry into force and based on existing information. The focal points were invited to comment on all the elements of the report including appropriateness and relevance of data sources used. The meeting acknowledged the comprehensiveness and quality of the report.
6. Presentation of the Fishing for Litter guide (UNEP(DEPI)/MED WG.417/13) was followed by several comments made by the focal points for consideration during the formal meeting session of the MED POL FP meeting.

7. The main comments and suggestions included the following: the need to add a definition of Fishing for Litter concept; recommend the passive rather the active approach to implementing the scheme; strengthen the health and safety section; and add a chapter on the key successful projects; The focal points also requested to Secretariat to supplement the guide with information on costs of implementing Fishing for Litter schemes.

Agenda item 1. Opening of the meeting

8. Mr. Habib N. El Habr, UNEP/ MAP Deputy Coordinator, opened the meeting making a reference to the 40th anniversary of MAP and MED POL and emphasising high relevance of the MED POL’s work in the past as well as today. The importance of continued contracting party commitments to pollution prevention and control was also emphasised. Pointing out that the meeting agenda was comprehensive and demanding, he assessed that the work completed during the past one and a half years provided a solid ground for a productive and successful meeting. Review of the proposed Integrated Monitoring and Assessment Programme for pollution related EcAp ecological objectives was singled out as one of the most important tasks, accompanied with the analysis of the work of the online expert groups on pollution and litter cluster. A considerable number of technical guidance documents for the key NAP/ SAP-MED sectors were delivered for final review and validation from the MDPOL FP. NAP update process was another important agenda item, including discussion of steps to be undertaken until COP 19. Finally and importantly, the meeting was meant to review and provide feedback on the proposed Mid-Term Strategy (MTS) and 2016-2017 programme of work for the pollution component of UNEP/ MAP.

Agenda item 2. Election of officers

9. In accordance with Rules of procedure for meetings and conferences of the Contracting Parties, the meeting elected a chair person, three vice-chair persons and one rapporteur as follows:

 Chair: Mr. Ilias Mavroeidis (Greece)
 Vice-Chair: Ms. Ghada Ahmed (Egypt)
 Vice-Chair: Mr. Samir Kaabi (Tunisia)
 Vice-Chair: Ms. Eda Bayar (Turkey)
 Rapporteur: Ms. Konstantinos Antoniadis (Cyprus)

Agenda item 3. Adoption of the Agenda and organization of work

10. The provisional agenda contained in the document UNEP(DEPI)/MED WG.417/2 was adopted as presented in Annex II to the present report. The meeting agreed to include presentation of ACCOBAMS on Ecological Objective 11 on underwater noise, as well as UNEP/ MAP briefing on the outcomes of the 6th meeting of the H2020 Review and Monitoring Subgroup and presentation on the new GEF project proposal under Any other business agenda item and/or as appropriate, depending on availability of time.
11. It was agreed that the meeting would be held in plenary with English and French simultaneous interpretation.

Agenda item 4. Progress achieved regarding the implementation of the Programme of Work 2014-2015 including the status of the implementation of the technical aspects of the Land Based Sources (LBS), Dumping and Hazardous Waste Protocols (HW), Regional Plans (RP) adopted in 2009, 2012 and 2013 as well as marine pollution monitoring programmes

12. The Secretariat presented UNEP(DEPI)/MED WG. 417/3 on the implementation of the PoW for the biennium 2014 – 2015, focusing on the key achievements as well as challenges faced and lessons learned. A set of technical guidelines was completed during the biennium (on a range of topics including NAP update, mercury, PCBs, lead batteries, tannery and lube oils), important assessment conducted and/or contributed to, and various trainings and meetings held on regional as well as on the national level. Efforts were also made to mobilise additional funding to support implementation of the PoW and achieve synergies with complementary policy frameworks, in particular with H2020 where UNEP/MAP acted as a co-chair of two sub-groups of H2020. Regarding the actions on the ground, safe disposal of PCBs in three countries was highlighted as an important contribution to achieving the SAP MED and the NAPs as well as the relevant global target under the Stockholm Convention.

13. The meeting acknowledged extensive and highly relevant work and the results achieved, and expressed appreciation for the Secretariat’s efforts. A specific comment was raised regarding precision of information presented in Annex III of the progress report, suggesting that some reports actually sent by countries were not recorded. The Secretariat asked the countries to review the Annex III and communicate any mistakes or omissions spotted.

14. Related to the work on strengthening quality assurance procedures for monitoring of contaminants, the representative of the International Atomic Energy Agency (IAEA) presented the results of two Proficiency Tests (PTs) organised in 2014. He noted that a significant number of laboratories did not send results for the PTs, although PT samples were sent to them in time following their nomination by the respective MED POL FPs. Furthermore, the results provided by a considerable number of participating laboratories didn’t meet the quality requirements for the PT and were rated as “unacceptable”. The IAEA representative also presented the lessons learned from the two Training Courses organised in 2014 in Monaco on the analysis of trace elements and organic contaminants. The courses were highly appreciated, however the analytical experience of the trainees was not at the same level and some trainees were not involved in the marine pollution monitoring programme of their respective countries.

15. The meeting called upon MED POL FPs to nominate appropriate candidates for the Training Courses and to encourage nominated laboratories to participate in the upcoming Proficiency Tests. The meeting also requested the Secretariat to send the laboratory results of the Proficiency Test to the respective MED POL FPs for information and action, as appropriate.

Agenda item 7 (b). Proposed environmental targets, assessment criteria and thresholds for the pollution and litter cluster of the Mediterranean EcAp-based ecological objectives (EO 5, 9 and 10)
16. Results of the work of informal working groups on ecological objectives 5, 9 and 10, as laid down in the UNEP(DEPI)/MED WG. 417/7, were presented by the chairs/ co-chairs of the respective groups – Ms Popi Pagou (Greece) for eutrophication, Ms Nevenka Bihari (Croatia) for contaminants and Mr Francois Galgani (France) for marine litter. The background report prepared by the groups was made available to the meeting as UNEP(DEPI)/MED WG.417/Inf.15. Recommendations of the informal groups were previously discussed at the last meeting of the EcAp Correspondence Group on Monitoring (CorrMon), which agreed with most of them, while as some recommendations were referred to the MED POL FP meeting for their further consideration.

17. The following specific observations and recommendations were made by the meeting:

The current work was commended and importance of its continuation emphasized, especially as regards further development of common assessment methods at the regional or sub-regional level.

The need to point out that TRIX was not a mandatory assessment method was stressed; the countries can continue using the methods applied up to now.

It was suggested to insert a clarification that all methods and criteria presented in the documents in relation to typology and chl-a reference and threshold values apply only to coastal areas.

It was also suggested to include the list of the non-mandatory eutrophication assessment methods proposed to be used by the countries (including the OSPAR method) in the report’s recommendations.

It was requested to add an explanation to UNEP(DEPI)/MED WG.417/Inf.15 to clarify that the included chl-a reference and threshold values related to specific Spanish Mediterranean water types were not common with other EU countries and were presented as an additional information.

With regard to contaminants, different views were expressed whether monitoring of both proposed biomarkers LMS and AChE should be mandatory (in fish and/ or mussels). However the meeting did not support the recommendation on compulsory monitoring of AChE. Importance of ensuring monitoring data quality assurance and control was re-emphasized and deemed necessary. The findings and work of the online group on contaminants were supported in general terms. The meeting did not agree on the proposed change in definition of CI 12 (Level of pollution effects of environmental contaminants on biological responses where a cause and effect can be explained).

18. With regards to marine litter, the meeting had the following specific proposals:

- Monitoring should adapt the whole Master list including the most frequent items to produce a shorter list, more useful and practical for the field work.

- Values for the proposed baselines were agreed upon but a more precise calendar for their future adjustment was requested based on the new data to be delivered following the implementation of relevant monitoring programmes.

- A deadline for beach litter reduction of 20% by 2024 received more support than by 2030.
19. Wrapping up the discussion on the agenda item 7 (b), the meeting agreed for the presented documents to be revised in line with provided suggestions and then submitted to EcAp coordination group meeting in September 2015 for further consideration in the process of preparing for the COP 19. The final version of the recommendations of online groups, as agreed by the meeting, are presented in appendix 1 of Annex III to the present report.

Agenda items 5 and 6. Proposed monitoring programme for the pollution and litter cluster of the Mediterranean EcAp-based ecological objectives (EO 5, 9 and 10) and General review of the draft Action Plan to implement the Offshore Protocol of the Barcelona Convention

20. In a joint session with REMPEC FPs, the Secretariat presented document UNEP(DEPI)/MED WG.417/6 containing proposed indicators for ecological objectives 5 (two indicators), 9 (5 indicators) and 10 (3 indicators).

21. Regarding eutrophication indicators, the meeting pointed out that frequency of monitoring needed to be adjusted for specific areas. As for the CI 11 (concentrations of key contaminants) the meeting discussed appropriate frequency of sampling in relation to the rate of sedimentation. Use of a 4-6 year range was recommended, to be decided by individual countries. Regarding CI 12 the meeting noted that for the determination of biomarkers, fish sampling was not as convenient as mussel sampling. The agreement was that the countries could decide to use either molluscs or fish, or both; LMS was confirmed as the only mandatory biomarker. In relation to CI 13, the meeting discussed the appropriate threshold for reporting on the oil spills: 100 m³ was not deemed appropriate and a reference was made to MARPOL threshold of 50 m³. The meeting concluded that spills of 50 m³ should be reported, whereas countries could also opt to report on spillages of lower amounts. For CI 16 on the amounts of marine litter on shore, the meeting suggested that the lower limit for marine litter items should be corrected from 2.5 to 0.5 cm (in line with recommendations of the online group). Another recommendation of the meeting was to ensure compatibility of the Master list for the Mediterranean with the EU list. The target of 20% reduction by 2024 or 2030 was assessed as appropriate (CI 16); the choice between the two proposed deadlines is to be made at the MAP FPs meeting in October 2015).

22. REMPEC presented Draft Offshore Protocol Action Plan (UNEP(DEPI)/MED WG.417/5), focusing on the preparation process and providing general information on the comments received. The meeting asked REMPEC to integrated the received comments and circulate revised version of the Action Plan to the Offshore Working Group prior to submission to the MAP FPs meeting in October 2015.

23. The discussion included topics such as new measures implemented in some countries towards Protocol’s ratification and implementation, willingness to cooperate on the Action Plan’s implementation (in particular as regards impacts of underwater noise and accidents), the need to better address liability and compensation issues in the final version of the document, and similar.

24. Following a wrap up of the joint session with REMPEC FPs, the meeting of MED POL FPs reconvened to finalise discussion on marine litter indicators.

25. ACCOBAMS presented Strategy for underwater noise monitoring in the Mediterranean (UNEP(DEPI)MED WG.417 Inf./22) and proposed it for discussion at the next EcAp meetings together with the main elements of the integrated monitoring programme.
26. The final version of the Main Elements of the Integrated Monitoring and Assessment Programme is presented in appendix 2 of Annex III to this report.

Agenda item 7(d). Updated Marine litter assessment report

27. Following the initial presentation of the document UNEP(DEPI)MED WG.417/14 during the marine litter pre-session on 16 June 2015, the meeting was invited to continue the review of the draft updated Marine Litter Assessment Report focusing on recommendations and on the proposal for establishment of marine litter coordination group for the Mediterranean. The meeting welcomed the report and approved proposal for creation of a coordination group under the leadership of UNEP MAP and with participation of key experts and stakeholders (GFCM, ACCOBAMS, private sector, UNEP/MAP RACs, NGO’s, IGOs, etc.). The assessment was carried out in line with Article 11 of the Regional Plan on Marine Litter.

28. The MED FPs were invited to propose amendments and corrections to the presented draft before July 10 2015 (the same applies to marine litter section of the document UNEP(DEPI)MED WG.417/7) for finalisation by the end of July and further consideration at the next MAP FPs meeting and the COP. The structure and proposed Terms of Reference for the marine litter coordination group were also open for comments and proposals until 10 July. Revised proposal will serve as a basis for a draft decision to be submitted to the COP.

29. In a side event to the meeting, the Adaptive Marine Policy (AMP) Toolbox developed under PERSEUS project was presented. The toolbox is meant to serve as one-stop repository of principles, methods and resources to elaborate marine policies in a cyclical process based on best available scientific information and knowledge and stakeholders’ participation. Options offered by the toolbox (primarily targeting policy makers) were illustrated on the example of marine litter.

Agenda item 7(a). Proposed updated list of priority contaminants in the Mediterranean

30. The Secretariat presented chapter 1 of the document UNEP(DEPI)/ MED WG.417/4 on the updated list of contaminants and explained the rationale behind the conducted analysis. The LBS Protocol and SAP-MED lists of contaminants were reviewed and compared with requirements/ lists of the relevant UN Conventions, OSPAR, HELCOM, EU WFD, MSFD, REACH as well as with available research results in an attempt to compile a more pertinent and up to date list of priority contaminants in the Mediterranean for further policy actions and monitoring.

31. The meeting concluded that substances identified in almost all of the reviewed lists – referred to as the Group 1 substances in the UNEP(DEPI)/ MED WG.417/4 – merited strong attention and further actions by the CPs in the framework of the LBS Protocol implementation. For the other two groups (substances necessitating additional scientific information and those included in the WFD priority list of substances) the meeting concluded it was too early to require their inclusion in the monitoring programmes and recommended additional analyses to be carried out. The Secretariat was requested to follow relevant developments in the region and to provide periodical updates and feedback to the FPs.

Agenda item 7(c). Guide on Fishing for Litter best practices
32. Revisions to the document UNEP(DEPI)/MED WG.417/13 made in line with suggestions tabled by the meeting during the pre-session on marine litter were presented. Both the work on integration of comments and the guide itself were commended, whereas the document was assessed as through, practical and simple. It was agreed that an effort will be made to amend the document with information on economic background of implementing the scheme for the next meeting of MAP FPs. The Guideline was developed in line with Article 10 of the Regional Plan on Marine Litter. The final version of the Guide, as agreed by the meeting, is presented in appendix 3 of Annex III to the present report.

33. The meeting noted and expressed appreciation of the overall good progress with marine litter management in the Mediterranean. The Secretariat expressed intention to support pilot Fishing for Litter projects in some countries conditional to availability of resources.

Agenda item 7(e). Mercury decontamination best practices and guidelines

34. The SCP/RAC representative presented the document UNEP(DEPI)MED WG. 417/8 titled Guidelines on best environmental practices for the management of mercury contaminated sites. The meeting assessed the document was extremely useful and already used in practice. Opportunities provided to the countries to contribute to the preparation of Guidelines were also highlighted as a very positive experience.

35. Suggestions for amending the Guidelines included provision of information on how long should the monitoring of mercury at landfill sites be conducted as well as on description of procedures (packaging, safety measures, etc.) for transporting wastes contaminated with mercury to the disposal sites.

36. The meeting approved submission of the Guidelines as slightly amended and presented in appendix 4 of Annex III to the present report to the MAP FP meeting and to the COP.

Agenda item 7(f). Guide for Environmental Sound Management (ESM) of Polychlorinated Biphenyls (PCB) in the Mediterranean

37. The Secretariat presented the document Guide for Environmental Sound Management (ESM) of PCBs in the Mediterranean (UNEP(DEPI)MED WG. 417/9). The Guide addresses the needs related to different categories of PCBs and aims to provide practical advices to competent authorities in the Mediterranean countries to comply with the Stockholm Convention commitments. The document was welcomed and endorsed by the meeting. Its submission to the COP was not deemed necessary whereas the meeting recommended publication in the MAP Technical series and invited the countries to use it. The final version of the guide is contained in Annex IV to this report.

Agenda item 7(g). Guidelines for environmentally sound management of used lead batteries in the Mediterranean

38. The representative of the Basel Convention Regional Centre presented the Guidelines for environmentally sound management of used lead batteries in the Mediterranean (UNEP(DEPI)MED WG. 417/12). The meeting expressed appreciation for the work done and for usefulness of the guidelines and urged the Secretariat to provide further support to their implementation.
39. The meeting asked the Secretariat to consider reformulation of the recommendation (included in the reviewed version of the Guidelines) on landfilling of used batteries to suggest future banning of such an option and its use only as the last resort i.e. when there are no other options for final disposal of used lead batteries.

40. The amended document (including a modified formulation on landfilling) was endorsed by the meeting and its publication in the MAP Technical series recommended, whereas the countries were encouraged to implement them. The final version of the Guidelines is presented in appendix 5 of Annex III to the present report.

Agenda items 7(h). Lube oil ESM Guidelines based on Sustainable Consumption and Production (SCP), Best Available Technology (BAT) and Best Environmental Practice (BEP)

41. The SCP/ RAC representative presented the Guide for the environmentally sound management of used lube oils in the Mediterranean (UNEP(DEPI)/MED WG.417/10).

42. The meeting expressed overall satisfaction with the existing version of the document while pointing out that an allowance should be made for positive national experiences and good practices to be reflected in the final version of the document. The countries were invited to provide relevant information/ case studies as well as comments on the draft Guide in the run up to the regional expert meeting that will be organized in a month’s time for detailed review of both the Lube oil ESM guidelines and the document on best practices for a sustainable tannery sector in the Mediterranean (the latter to be discussed under the next agenda item).

43. The Secretariat also asked the countries to complete and return disseminated questionnaires on used lube oil management to allow compilation of “Country Used Oil Factsheets” as planned. These would be used to tailor further technical assistance and support based on specific situation, needs and priorities in different countries.

Agenda items 7(i). Guide towards a more sustainable tannery sector in the Mediterranean

44. The SCP/ RAC representative presented the Guide towards a more sustainable tannery sector in the Mediterranean (UNEP(DEPI)/MED WG.417/11). An additional explanation was provided that the guide in a sense represented an extension of BAT and BEP approaches to introduce Sustainable Consumption and Production tools in the recommended management of the tanneries sector. Detailed review of this document is also planned for the next month’s regional expert meeting.

45. The meeting emphasized that national experiences with implementation of projects to improve environmental performance of tanneries should be included in the document. The initiative on developing the guide was welcomed and encouraged.

Agenda item 7 (j). National Action Plan (NAP) update roadmap until COP 19 and implementation of respective guidelines

46. The Secretariat presented the UNEP(DEPI)/ MED WG.417/4 – chapter 2 – on the NAP update roadmap and related Guidelines.
47. As for the proposed deadline for submission of NAPs to the Secretariat (November 2015) majority of countries requested postponement due to different reasons, including alignment with the calendar for finalisation of the EU MSFD Programmes of Measures for the EU countries, and some difficulties faced in other countries.Few countries reported they were on track with the previously agreed timeline, as included in the Roadmap.

48. The Secretariat explained that the fact COP 19 was deferred for February 2016 allowed for some flexibility and asked to receive the NAPs by December 2015 at the latest in order to enable COP’s review and endorsement of the documents. To save the time and if proved necessary, the countries were asked to submit NAPs to the Secretariat prior to completion of the national approval process. However, approval of the NAPs on the national level was necessary before the COP. The Secretariat would analyse the NAPs to determine their compliance with the LBS Protocol and EcAp requirements.

49. The meeting formally approved NAP update Guidelines (as contained in the document UNEP(DEPI)/ MED WG.417/Inf.6) and contained as Annex V to this report.

50. In a side event to the meeting, NBB info system was presented and details of NBB reporting were discussed.

Agenda item 8. Mid-Term Strategy (MTS) 2016-2021 with particular focus on pollution prevention and control as well as the respective assessment and environmental governance aspects

51. The Secretariat presented UNEP/MAP Mid-term Strategy (MTS) 2016 -2012 (UNEP(DEPI)/ MED WG.417/15) and the process that led to the current version of the document – starting from the issues paper to identification of priority strategic themes and revisions/ regrouping of the strategic themes following suggestions received by the MAP FPs. The final draft of the Strategy has to be prepared by mid-August to enable timely dissemination for the next MAP FP meeting scheduled for 13 – 15 October 2015.

52. The meeting agreed to proceed with presentation of the MED POL Programme of Work for the forthcoming biennium and then open for discussion of both documents.

Agenda item 9. MED POL Programme of Work 2016-2017

53. The Secretariat presented MED POL Programme of Work 2016–2017 (UNEP(DEPI)/ MED WG.417/16). The main elements that were elaborated in the document and proposed strategic lines of action for the next biennium include support to the countries with implementations of updated NAPs, strengthening of monitoring programmes and improvements of the information system, further work on the assessment methodologies and criteria, strengthening quality assurance and control, strengthening of partnership with H2020 and further development of synergies, marine litter and others.

54. Substantial part of the discussion was dedicated to indicators proposed under the pollution prevention and control component of the MTS, including relevance and methodology for the proposed indicator on elimination of hot spots, the need to extend the proposed list to include underwater noise indicators, frequency of reporting i.e. time periods at which indicators should be set, inclusion of energy sector, and others.
55. The meeting confirmed relevance of the hot spots indicator while pointing out the need for its modification to show a share of eliminated hot spots (rather than their absolute number) and the need to allow for flexibility in hot spots assessment. A remark was made on the 6-year period being too short for elimination of hot spots. As for the inclusion of indicators on underwater noise, concern was raised by one focal point that the focus should be placed on harmonization of national monitoring programmes to produce more coherent and comparable results, including the need for capacity building; ecological objective on underwater is important, however priority should be given to other ecological objectives in areas where there are more data and where concerns are more clear.

56. The countries were invited to submit proposals on indicators that were tabled during the meeting as well as potential new ones as appropriate to the Secretariat by 26 June 2015 for further consideration and inclusion in final draft of the MTS. The overall idea in developing the MTS was to limit the number of indicators to 5 per each strategic theme.

57. In general terms, the Programme of Work 2016–2017 was evaluated as a good programming effort for the coming biennium. The meeting suggested timeline for the implementation of activities and levels of priority (low, medium or high) to be added to the PoW. It was also suggested to clarify the roles of MAP components (RACs) and to allow for possibility that there might be other RACs capable of contributing to the planned activities.

58. The Secretariat invited the FPs to provide written proposals on the PoW to be sent within the next week. An attempt will be made to accommodate for all of them in the process of finalising the documents together with other UNEP/ MAP colleagues. The FPs requested that the revised PoW will be circulated to MED POL FPs before being sent to MAP FPs.

Agenda item 10. Any other business

59. The Secretariat informed the meeting on the main conclusions of the 6th meeting of the H2020 Review and Monitoring Subgroup, namely on the:

60. Proposal that national MED POL FPs should participate in the work of the RM Subgroup together with a representative of the national State of the Environment (SoE) reporting team; and

62. The Secretariat presented efforts to develop a new GEF project for the Mediterranean and the steps completed so far (i.e. current version of the concept note), and invited the countries to send inputs by mid-July to help with development of a consolidated project proposal.

63. At the end agenda item 10, the MED POL FPs were reminded that preparations for the 2015 Proficiency Tests and training courses were underway and their timely reaction was sought to ensure successful implementation of these activities.

Agenda item 11. Conclusions and recommendations

64. The participants reviewed draft conclusions and recommendations of the meeting and adopted them after proposing minor revisions. The final version of conclusions and
recommendations is presented as Annex III to the present report, with appendices 1 – 5 containing recommendations of online groups, main elements of the integrated monitoring programme, and guidelines on Fishing for Litter, management of mercury contaminated site and used lead batteries respectively.

65. Agenda item 12. Closure of the meeting

66. The participants expressed strong appreciation for a well-organized and productive meeting. In his closing remarks, the Chair thanked the participants for their contribution and declared the meeting closed at 17:00 hours on Friday, 19 June 2015.
Annex I – List of participants

REPRESENTATIVES OF CONTRACTING PARTIES / REPRESENTANTS DES PARTIES CONTRACTANTES

<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBANIA / ALBANIE</td>
<td>Mr Redi Baduni</td>
<td>Director of Environment Protection Directorate</td>
<td>Ministry of Environment, Forestry and Water Administration</td>
<td>+355 42 2224572</td>
<td>redi.baduni@moe.gov.al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rruga “Halil Bega”, nr. 23</td>
<td>Tirana, Albania</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tel: +355 42 2224572; Fax: +355 42 2270627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail: redi.baduni@moe.gov.al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSNIA & HERZEGOVINA /</td>
<td>Mr Nijaz Lukovac</td>
<td>Hydro-Engineering Institute</td>
<td>Stjepana Tomica 1, 71000 Sarajevo, Bosnia & Herzegovina</td>
<td>+387 33 212466/7</td>
<td>nijaz.lukovac@heis.ba</td>
</tr>
<tr>
<td>BOSNIE & HERZEGOVINE</td>
<td></td>
<td>Hydro-Engineering Institute</td>
<td>Stjepana Tomica 1, 71000 Sarajevo, Bosnia & Herzegovina</td>
<td>+387 33 212466/7</td>
<td>nijaz.lukovac@heis.ba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tel: +387 33 212466/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail: nijaz.lukovac@heis.ba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROATIA / CROATIE</td>
<td>Ms Barbara Škevin Ivošević</td>
<td>Head of the Department</td>
<td>Ministry of Environmental and Nature Protection Dept. For Sea and Coastal Protection Uzarska 2/L, 51 000 Rijeka</td>
<td>+ 385 51 213 499</td>
<td>barbara.skevin-ivosevic@mzoip.hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tel : + 385 51 213 499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail: barbara.skevin-ivosevic@mzoip.hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ms Nevenka Bihari</td>
<td>Prof. Dr. SC. Senior Scientist</td>
<td>Center for Marine Research “Ruđer Bošković” Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Paliaga 5, Rovinj 5210, Croatia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tel: +385 52 804 715; Mobile: +385 91 764 0586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail: bihari@irb.hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYPRUS / CHYPRE</td>
<td>Mr Konstantinos Antoniadis</td>
<td>Officer of Fisheries & Marine Research</td>
<td>Marine Environment Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNEP(DEPI)/MED WG.417/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annex I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Department of Fisheries and Marine Research Ministry of Agriculture, Natural Resources and the Environment 101 Vithleem Street, 1416 Nicosia, Cyprus
Tel: +35722807854
Fax:+35722775955
E-mail: kantoniadis@dfmr.moa.gov.cy |
|-------------------------|---|

| EGYPT / ÉGYPTE | Ms Ghada Ahmed
Director of Solid & Hazardous Waste Department Egyptian Environmental Affairs Agency, Alexandria Branch
Om Zeghio road, Km 21
Alexandria, Egypt
Tel: +2033020691
E-mail: ghada_am@yahoo.com |
|-------------------------|---|

| EUROPEAN UNION / UNION EUROPEENNE | Ms Lydia Martin-Roumegas
Unit C.2 – Marine Environment and Water Industry
BU-9 04/176
B-1049 Brussels
Belgium
Tel : +32 229 53518
E-mail : Lydia.MARTIN-ROUMEGAS@ec.europa.eu |
|-------------------------|---|

| FRANCE / FRANCE | Ms Lea Dalle Gerard
Chargée de mission "pollutions telluriques et substances "
Bureau des milieux marins, Direction de l'eau et de la biodiversité
Ministère de l'écologie, du développement durable et de l'énergie
Tour Séquoia
1 Place Carpeaux
92800 Puteaux
Tel: + 33 1 40 81 33 82
E-mail: lea.gerard@developpement-durable.gouv.fr
M Francois Galgani
Responsable de projet
IFREMER, Chaiman DG ENV/MSFD/GES TG
Marine Litter |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Country / Pays</td>
<td>Contact Person</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GREECE / GRECE</td>
<td>Mr Ilias Mavroeidis
Senior Scientific Expert
Department of International Relations and EU Affairs
Hellenic Ministry for the Environment, Energy and Climate Change
15 Amaliados Street
Athens 11523
Greece
 Tel: +30 210 6426531
E-mail: i.mavroidis@prv.ypeka.gr</td>
</tr>
<tr>
<td></td>
<td>Ms Kalliopi Pagkou
Research Director,
Coordinator of the IRIS-SES project (DG ENV)
Institute of Oceanography
Hellenic Center for Marine Research
46.7 km Athinon-Souniou Ave.
Mavro Lithari Anavissos
19013 Attica,
Greece
 Tel: +30 22910 76409
Fax: +30 22910 76347
E-mail: popi@ath.hcmr.gr</td>
</tr>
<tr>
<td>ISRAEL / ISRAEL</td>
<td>Mr Rani Amir
Director
Marine and Coastal Environment Division
Ministry of environment Protection
Pal Yam 15a
P.O Box 811
31007 Haifa
Israel
Tel : +972 48 633500
E-mail : rani@sviva.gov.il</td>
</tr>
<tr>
<td>ITALY / ITALIE</td>
<td>Mr Roberto Giangreco
Divisione VI Tutela Ecosistemi Marini e Costieri
Direzione Generale Protezione della Natura e del Mare
Ministero dell’Ambiente, della Protezione della Natura e del Mare
Via Cristoforo Colombo 44
00147 Roma
Italy</td>
</tr>
<tr>
<td>Country</td>
<td>Contact Person</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Ms Sabine Ghosn</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Libya</td>
<td>Mr Naser Nassir Bsher Madi</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Monaco</td>
<td>M. Philippe Antognelli</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td>Mr Pavle Djuraskovic</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Name</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Morocco / Maroc</td>
<td>Mr Mohamed Kabriti</td>
</tr>
<tr>
<td>Slovenia / Slovenia</td>
<td>Ms Valentina Turk</td>
</tr>
<tr>
<td>Spain / Espagne</td>
<td>Ms Marta Martinez-Gil Pardo de Vera</td>
</tr>
<tr>
<td>Tunisia / Tunisie</td>
<td>Mr Samir Kaabi</td>
</tr>
<tr>
<td>Turkey / Turquie</td>
<td>Ms Eda Bayar</td>
</tr>
<tr>
<td>OBSERVERS / OBSERVATEURS</td>
<td>PALESTINE / PALESTINE</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Mr Issam Qasem</td>
<td>Director of Tuikarem Office</td>
</tr>
<tr>
<td></td>
<td>Environment Quality Authority</td>
</tr>
<tr>
<td></td>
<td>Ramallah</td>
</tr>
<tr>
<td></td>
<td>Palestine</td>
</tr>
<tr>
<td></td>
<td>Tel:+972 92674558</td>
</tr>
<tr>
<td></td>
<td>E-mail:isammena@hotmail.com</td>
</tr>
<tr>
<td>UNITED NATIONS PROGRAMMES, FUNDS, AGENCIES AND RELATED ORGANIZATIONS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>REPRESENTANTS DES INSTITUTIONS SPECIALISEES DES NATIONS UNIES</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IAEA- INTERNATIONAL ATOMIC ENERGY AGENCY / AIEA- AGENCE INTERNATIONALE DE L’ÉNERGIE ATOMIQUE</th>
<th>Mr Michael Angelidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Head</td>
<td>Section Head</td>
</tr>
<tr>
<td>Section of Marine Environmental Studies Laboratory</td>
<td>Section of Marine Environmental Studies Laboratory</td>
</tr>
<tr>
<td>Division of IAEA Environment Laboratories</td>
<td>Division of IAEA Environment Laboratories</td>
</tr>
<tr>
<td>Department of Nuclear Sciences and Applications International Atomic Energy Agency</td>
<td>Department of Nuclear Sciences and Applications International Atomic Energy Agency</td>
</tr>
<tr>
<td>4 Quai Antoine 1er</td>
<td>4 Quai Antoine 1er</td>
</tr>
<tr>
<td>98000 Monaco</td>
<td>98000 Monaco</td>
</tr>
<tr>
<td>Principality of Monaco</td>
<td>Principality of Monaco</td>
</tr>
<tr>
<td>Tel: +377 97977236</td>
<td>Tel: +377 97977236</td>
</tr>
<tr>
<td>E-mail: m.angelidis@iaea.org</td>
<td>E-mail: m.angelidis@iaea.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BASEL CONVENTION REGIONAL CENTRE</th>
<th>Ms Dana Lapesova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Director</td>
</tr>
<tr>
<td>BCRC Bratislava</td>
<td>BCRC Bratislava</td>
</tr>
<tr>
<td>Karloveska 2</td>
<td>Karloveska 2</td>
</tr>
<tr>
<td>P.O Box 132</td>
<td>P.O Box 132</td>
</tr>
<tr>
<td>840 00 Bratislava</td>
<td>840 00 Bratislava</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Tel: +421 906314033</td>
<td>Tel: +421 906314033</td>
</tr>
<tr>
<td>E-mail: dana.lapesova@sazp.sk</td>
<td>E-mail: dana.lapesova@sazp.sk</td>
</tr>
</tbody>
</table>
REPRESENTATIVES OF OTHER INTERGOVERNMENTAL ORGANIZATIONS
REPRESENTANTS D'AUTRES ORGANISATIONS INTERGOUVERNEMENTALES

<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreement on the Conservation of Cetaceans in the Black Sea, Mediterranean Sea and Contiguous Atlantic Area (ACCOBAMS) / Accord sur la Conservation des Cétacés de la Mer Noire, de la Méditerranée et de la Zone Atlantique Adjacente</td>
<td>M Alessio Maglio</td>
<td>Joint ACCOBAMS-ASCOBANS-CMS Noise Working Group member</td>
<td>+33 2 50 01 15 52</td>
<td>alessio.maglio@sinay.fr</td>
</tr>
<tr>
<td>European Environmental Agency / Agence Européenne pour l'Environnement</td>
<td>Mr David Stanners</td>
<td>Senior Adviser Head of International Cooperation</td>
<td>+45 33367101</td>
<td>david.stanners@eea.europa.eu</td>
</tr>
<tr>
<td>Environment Agency Austria</td>
<td>Ms Sabah Nait</td>
<td>Key Account Manager</td>
<td>+431313043245</td>
<td>Sabah.Nait@umweltbundesamt.at</td>
</tr>
</tbody>
</table>
INSTITUTES / INSTITUTS

| HELLENIC CENTRE FOR MARINE RESEARCH (HCMR) | Mr Ioannis Chatzianestis
Research Director in HCMR
HCMR 47 Km Athens Sounion Avenue
Anavyssos
Greece
Tel:+302291076365
Mob:+306945217646
E-mail: jhat@hMrgr |
|--|--|
| UNIVERSITA DEL PIEMONTE ORIENTALE - DIPARTIMENTO DI SCIENZE E INNOVAZIONE TECNOLOGICA (DISIT) | Mr Aldo Viarengo
University of Piemonte
Alessandria
Italy
Tel:+393557182939
E-mail: aldo.viarengo@unipmn.it |
SECRETARIAT TO THE BARCELONA CONVENTION AND COMPONENTS OF THE MEDITERRANEAN ACTION PLAN
SECRETARIAT DE LA CONVENTION DE BARCELONE ET COMPOSANTES DU PLAN D’ACTION POUR LA MEDITERRANEE

| UNEP/MAP / PNUE/PAM | Mr Habib N. El Habr
| | Deputy Coordinator
| | Tel: +30 210 7273126
| | E-mail: habib.elhabr@unepmap.gr
| Ms Tatjana Hema
| MED POL Programme Officer
| Tel: +30 210 7273115
| E-mail: tatjana.hema@unepmap.gr
| Ms Virginie Hart
| Mediterranean Marine and Coastal Expert
| Tel: +30 210 7273122
| E-mail: virginie.hart@unepmap.gr
| Ms Marina Markovic
| MED POL Expert
| Tel: +30 210 7273116
| E-mail: NAP.sustainability.expert@unepmap.gr

CONSULTANTS

| Mr Panagiotis Ioakimidis
| 49 A ’ Attika str.
| GR-16342 Ilioupolis
| Greece
| Tel: +30 210 99167106
| Mobile: +306937503282
| E-mail: ioakimidispan@gmail.com
| Ms Pilar Zorzo
| KAI Marine Services
| C/ Nalón, 16
| 28240 Hoyo de Manzanares
| Madrid
| Spain
| Tel +34 666553112
| Fax +34 918565199
| E-mail: pzorzo@gmail.com
| United Nations Environment Programme
| Mediterranean Action Plan
| 48 Vassileos Konstantinou
| 11635 Athens
| Greece

<table>
<thead>
<tr>
<th>Plan Bleu Regional Activity Centre (PB/RAC) / Plan Bleu, Centre d'Activité Regional (PB/CAR)</th>
<th>Didier Sauzade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme écosystèmes marins / Marine Ecosystems</td>
<td></td>
</tr>
<tr>
<td>271 Corniche Kennedy</td>
<td></td>
</tr>
<tr>
<td>13007 Marseille - France</td>
<td></td>
</tr>
<tr>
<td>Tel: +33 484080052</td>
<td></td>
</tr>
<tr>
<td>Fax: +33 4 92387131</td>
<td></td>
</tr>
<tr>
<td>E-mail: dsauzade@planbleu.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) / Centre Regional Méditerranéen pour l'Intervention d'Urgence Contre la Pollution Marine Accidentelle (REMPEC)</th>
<th>Mr Gabino Gonzalez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of Office</td>
<td>Maritime House’</td>
</tr>
<tr>
<td>Lascaris Wharf</td>
<td>Valletta VLT 1921</td>
</tr>
<tr>
<td>Tel.: +356.22.583113</td>
<td>Fax: +356.21.339951</td>
</tr>
<tr>
<td>E-mail: ggonzalez@rempec.org, rempec@rempec.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mr Franck Lauwers</th>
<th>Programme Officer (Prevention) ‘Maritime House’, Lascaris Wharf Valletta VLT 1921 Malta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel.:+356 21337296/7/8</td>
<td>Fax: +356 21339951</td>
</tr>
<tr>
<td>E-mail: flauwers@rempec.org, rempec@rempec.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC)</th>
<th>Mr Federico Gallo Sallent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre d’Activités Regionales pour la Consomation et la Production Durables (CAR/CPD)</td>
<td>Senior Expert</td>
</tr>
<tr>
<td>C/ Anglí 31st, 3rd floor - 08017 Barcelona (Catalunya)- Spain</td>
<td></td>
</tr>
<tr>
<td>Tel:+34 935538790</td>
<td>Mob:+34675394880</td>
</tr>
<tr>
<td>E-mail: fgallo@scprac.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mr Manuel Clar Messanet</th>
<th>Associated Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miquel Santandreu, 27</td>
<td>Palma de Mallorca</td>
</tr>
<tr>
<td>07006 Palma de Mallorca</td>
<td>Spain</td>
</tr>
<tr>
<td>Tel:+34 871939891</td>
<td>Mob :+34 678562455</td>
</tr>
<tr>
<td>E-mail :mclar@pmecon.com</td>
<td></td>
</tr>
</tbody>
</table>
| **REGIONAL ACTIVITY CENTRE FOR INFORMATION AND COMMUNICATION (INFO/RAC) / CENTRE D’ACTIVITÉS REGIONALES POUR L'INFORMATION ET LA COMMUNICATION (INFO-CAR)** | **Mr Marco Montuori**
Institute for Complex Systems
c/o Physics Department
University La Sapienza
Pl. Aldo Moro 2
00185 Roma
Tel: +39 06 4991 3437
Mobile: +39 347 2312731
E-mail: marco.montuori@gmail.com |
| --- | --- |
| **Ms Ana Isabel Conde Mansilla**
National Manager
Technological Centre for Mercury Decontamination
Cerco San Teodoro s/n
Almaden
Spain
Tel: +34 608 268372
E-mail: aconde@ctndm.es |
Annex II – Provisional Agenda

Pre-session on Marine litter (16 June 2015)

17-19 June 2015

Agenda item 1: Opening of the Meeting
Agenda item 2: Election of Officers
Agenda item 3: Adoption of the Agenda and Organization of Work
Agenda item 4: Progress achieved regarding the implementation of the Programme of work 2014-2015 including the status of the implementation of the technical aspects of the Land Based Sources, Dumping and Hazardous Waste Protocols, Regional Plans adopted in 2009, 2012 and 2013 as well as marine pollution monitoring programmes
Agenda item 5: Proposed monitoring programme for the pollution and litter cluster of the Mediterranean EcAp-based ecological objectives (EO 5, 9 and 10)
Agenda item 6: General review of the draft Action Plan to implement the Offshore Protocol of the Barcelona Convention
Agenda item 7: Specific issues:
 a) Proposed updated list of priority contaminants in the Mediterranean,
 b) Proposed environmental targets, assessment criteria and thresholds for the pollution and litter cluster of the Mediterranean EcAp-based ecological objectives (EO 5, 9 and 10);
 c) Guide on fishing for litter best practices;
 d) Updated Marine litter Assessment Report;
 e) Mercury decontamination best practices and guidelines;
 f) Guide for the Environmental Sound Management (ESM) of Polychlorinated Biphenyls (PCB) in the Mediterranean;
 g) Guidelines for environmentally sound management of used lead batteries in the Mediterranean;
 h) Lube oil ESM Guidelines based on Sustainable Consumption and Production (SCP), Best Available Technology (BAT), and Best Environmental Practice (BEP);
 i) Guide towards a more sustainable tannery sector in the Mediterranean;
 j) National Action Plan (NAP) update roadmap until COP 19 and implementation of respective guidelines.
Agenda item 8: Mid Term Strategy 2016-2021 with particular focus on pollution prevention and control as well as the respective assessment and environmental governance aspects
Agenda item 9: MED POL Programme of work 2016-2017
Agenda item 10: Any other business
Agenda item 11: Conclusions and recommendations
Agenda item 12: Closure of the Meeting
Annex III – Conclusions and Recommendations

The meeting of the MED POL Focal Points was held on 17-19 June 2015 at Corinthia Hotel, Attard, Malta, with a pre-session on marine litter which was held on 16 June 2015 and a joint session with REMPEC Focal Points on 17 June 2015. The latter was dedicated to the draft Offshore Protocol Action Plan and the main elements of the Integrated Monitoring and Assessment Programme Ecological objectives on 5 (eutrophication), 9 (contaminants) and 10 (marine litter).

The main objectives of the meeting were to review the progress in the implementation of the current MED POL programme of work (PoW) for the biennium 2014 – 2015 including some of the key reports and technical guidelines produced. Moreover, the meeting was organized with the objective to review and provide feedback on the pollution prevention and control component of the UNEP/MAP Mid Term Strategy (MTS) and related MED POL PoW for the 2016 – 2017 biennium.

The meeting agreed on the following findings, conclusions and recommendations.

Progress Report

1. While acknowledging and expressing appreciation for the work carried out on implementing the PoW 2014 – 2015, as presented in the document UNEP(DEPI)/MED WG.417/3, the Focal Points (FPs) paid particular attention to quality assurance/control and reporting of marine pollution monitoring data.

2. In this respect, the meeting expressed strong concerns about data quality issues highlighted by the IAEA representative who reported on the results Proficiency Tests (PTs) carried out with a number of participating MED POL designated laboratories. The Secretariat was requested to send the results of the PTs to the respective MED POL FPs for information and action, as appropriate.

3. As regards the future PTs and training courses that will be organised in cooperation between the IAEA and MED POL and with the view to enhance efficiency and quality of monitoring, the meeting called upon the MED POL FPs to:
 - review the list of nominated laboratories and make necessary changes in order to include only laboratories that are participating in the national marine pollution monitoring programme;
 - ensure, in collaboration with MED POL, that the national laboratories participating in the PTs submit the results accordingly;
 - nominate candidates who are actually working on the analysis of samples for the national marine pollution monitoring programmes for the training courses.

4. Moreover, the meeting called upon the FPs to take necessary action to submit to the Secretariat all available pollution monitoring data up to 2014, if they have not done it yet. It was underlined that until a new format for submitting monitoring data is prepared and agreed by the FPs, the Contracting Parties shall submit their pollution monitoring data using the existing MED POL templates without delay.

5. The meeting took note of document UNEP(DEPI)MED WG. 417/Inf.14 on updated 10 Recommended methods for monitoring of contaminants in the marine environment prepared by IAEA for use as appropriate by the Contracting Parties.
Recommendations of the informal online working groups on eutrophication, contaminants, and marine litter

6. The Focal Points reviewed UNEP(DEPI)/MED WG. 417/7 presented by the chairs/ co-chairs of the respective groups – Ms Popi Pagou (Greece) for eutrophication, Ms Nevenka Bihari (Croatia) for contaminants and Mr Francois Galgani (France) for marine litter and commended the very good work done. The meeting encouraged the Secretariat to continue with efforts to strengthen collaboration and synergies with the process of the EU MSFD implementation, in particular as regards technical groups on marine litter and underwater noise.

7. The meeting made several suggestions and approved the proposed recommendations of the online groups as amended and presented in Annex I to these conclusions and requested the Secretariat to submit them to the EcAp coordination group meeting in September 2015 for its consideration and approval.

8. With regards to the proposed thresholds, background and environmental assessment criteria, as well as marine litter baselines contained in the agreed recommendations of Annex I, the meeting noted they would be revisited and validated through collaborative efforts of the Secretariat and the CPs as additional data from the implementation of the relevant monitoring programmes would become available.

9. The meeting took note of ACCOBAMS proposal that the Mediterranean Strategy on Underwater Noise monitoring (EO11) be discussed together with the main elements of the integrated monitoring programme in the next EcAp meetings.

10. With regards to document UNEP(DEPI)/MED WG.417/Inf.15. containing background information collected and assessed by the online groups, the MED POL FPs were invited to provide feedback and inputs as appropriate by 10 July 2015 at the latest to allow the online groups to finalise them and submit to the EcAp Coordination group meeting in September 2015.

Integrated Monitoring and Assessment Programme

11. Following the presentation by the Secretariat of the document UNEP(DEPI)/MED WG.417/6, the joint session of the MED POL and REMPEC FPs approved the main elements of the Integrated Monitoring and Assessment Programme related to Ecological Objectives 5, 9, 10 as presented in Annex II to these conclusions and requested the Secretariat to submit them to the EcAP Coordination Group meeting in September 2015 for further consideration and approval.

Draft Offshore Protocol Action Plan

12. Following the presentation of the Offshore Action Plan preparation process addressing in particular the comments received from a number of Contracting Parties, the meeting asked REMPEC to integrate the received comments so far, and initiate as soon as possible, a written procedure to all Contracting Parties for their review and comments. It was further agreed that a strict deadline should be fixed to reflect the comments of the Contracting Parties in the version to be submitted to the MAP Focal Points for further review.

Marine Litter Assessment Report

13. The updated Marine Litter Assessment Report (UNEP(DEPI)/MED WG.417/14) prepared by the Secretariat in line with Article 11 of the Regional Plan on Marine Litter (MLRP) was welcomed by the meeting as an effort to collect the existing and most up to date information
in the region on marine litter and its submission to MAP FP meeting/COP 19 as the first marine litter assessment report 2 years after the entry into force of the Regional Plan.

14. The MED POL FPs were invited to provide inputs to the draft Assessment Report before July 10, 2015 for finalisation by the Secretariat end of July 2015, final consideration by beginning of August 2015 by the MEDPOL FP and subsequent submission to the next MAP FPs meeting.

15. The meeting encouraged the creation of a regional coordination group under the leadership of UNEP/MAP to facilitate and coordinate actions for the implementation of the MLRP to be composed of key stakeholders (GFCM, ACCOBAMS, private sector, UNEP/MAP RACs, NGO’s, IGOs, etc.). Structure and proposed Terms of Reference for the regional marine litter coordination group are also open for comments and proposals until 10 July 2015. The revised proposal will serve as a basis for drafting a decision on ML to be submitted to the MAP FP meeting in October 2015 (addressing the Fishing for Litter Guidelines, coordination mechanism, the proposed ML baseline and environmental targets).

16. The Secretariat took note of the willingness of ACCOBAMS to continue supporting UNEP/MAP on marine litter and its involvement in the Coordination Group.

List of contaminants

17. Following the presentation of document UNEP(DEPI)/MED WG.417/4 – chapter 1 – on the updated list of contaminants, the meeting took note of the proposed categorization of contaminants in three groups as follows:

- Group 1 – Substances identified as present in almost all the reviewed lists including the SAP MED and substances for which LBS Protocol legally binding measures have been adopted as well as the lists of relevant MEA, WFD, REACH regulation, OSPAR and HELCOM;
- Group 2 – Substances for which additional scientific information (sources, quantities) is needed;
- Group 3 – Substances included in WFD priority list of substances, for which preliminary screening might be needed for the Mediterranean.

18. Following the discussion the meeting agreed on the proposed criteria for the categorization of contaminants and reconfirmed Group I as the group that should be given high attention by the CPs in the framework of the NAPs/LBS Protocol implementation while for the other groups as well as for those substances found through research studies in the Mediterranean sea, additional research were recommended as appropriate. The meeting asked the Secretariat to follow relevant developments and to provide periodical updates and feedback to the FPs.

Guidelines

19. The meeting took note of document UNEP(DEPI)/MED WG.417/Inf.13 An updated list of priority contaminants for the Mediterranean and encouraged the FP to provide feedback and additional information by end of July 2015 at the latest with the view to finalize and publish the report in the on line MAP technical Series.

20. Appreciating the high quality of the Fishing for Litter (FlF) guidelines (UNEP(DEPI)/MED WG. 417/13) and the work done on integration of comments raised during the pre-session held on 16 June 2015, the meeting approved the Guidelines as amended and presented in Annex III
for submission to MAP FP meeting and to the COP in line with Article 10 of the Regional Plan on Marine Litter. It should be noted that the main points suggested by the meeting during the pre-session addressed the need to include a definition of the Fishing for Litter concept, better reflect a number of Mediterranean best practices and FfL projects, strengthen the chapter on health and safety and improve explanations on distinctions between active and passive approaches with regards to EIA.

21. In addition the meeting requested the Secretariat to prepare a short paper with information of the costs of implementation of the Guidelines for submission to the MAP FP meeting and the COP.

22. Following the presentation by the representative of MAYASA Almaden (Ciudad-Real) on behalf of SCP/ RAC, the meeting expressed appreciation for the high quality of the Guidelines on BEPs for the management of mercury contaminated site (UNEP(DEPI)/MED WG. 417/8) as well as for opportunities provided to the countries to contribute to their preparation. The meeting approved the Guidelines as amended and presented in Annex IV, for submission to the MAP FP and to the COP in line with Article 5 paragraph 5 of the RP on Mercury).

23. Appreciating the quality of the PCB Guide as presented in document (UNEP(DEPI)MED WG. 417/9) the meeting endorsed their content and requested the Secretariat to publish them in the MAP Technical Series. The meeting invited the CPs to promote their implementation in line with global relevant standards and guidelines with a view to implement where appropriate relevant priority actions in the updated NAPs and SAP MED.

24. The meeting commended the Guidelines on lead batteries (UNEP(DEPI)/MED WG. 417/12). The content of the document was endorsed as amended and presented in Annex V, including a modified formulation on landfilling of used lead batteries. The document was suggested for publication in the MAP Technical Series and for further promotion and implementation by the CPs.

25. The meeting took note of the draft of Lube Oil and Tanneries Guidelines (UNEP (DEPI)/MED WG.417/ 10 and UNEP (DEPI)/MED WG.417/ 11) presented by the SCP/RAC and provided general feedback on their content. Pending the discussion at the forthcoming expert meeting, the CPs expressed satisfaction with the content and presentation of the draft guidelines as well as their willingness to provide comments in the run up to the expert meeting. The Secretariat invited the countries that have not already done so to send relevant information, complete and return relevant questionnaires to facilitate finalization of the guidelines.

NAP update

26. The meeting took note of the National Action Plans (NAPs) update Roadmap prepared by the Secretariat. Taking into consideration concerns and requests expressed by several CPs, the meeting agreed that the latest deadline for submission of updated NAPs to the Secretariat should be December 2015. In addition the meeting formally approved NAP update Guidelines as contained in the document UNEP (DEPI)/MED WG.417/ Inf.6, taking into account the need for revisiting them as appropriate in particular its technical annexes following their application.

NBB Reporting

27. Due to the importance of submitting the NBB 2013 data, the meeting called upon the Focal Points to make a special effort and submit the data by October 2015 at the latest to the newly developed NBB infosystem either through PRTR XML files and/or MED POL template for
NBB data. To this aim the meeting requested the Secretariat to develop user guidelines and organize face to face or virtual training sessions.

Programme of work and MTS

28. The meeting appreciated the work done for the preparation of the MTS as well as of the 2016-2017 programme of work and made several suggestions to further clarify the proposed indicators favorizing mainly the setting of indicators at 2-year level. It was agreed to provide comments to the Secretariat by 26 June 2015 at the latest addressing in particular the priority ranking of proposed activities in three categories (high, medium and low) as well as concrete suggestions on possible performance indicators.

29. The meeting also requested the Secretariat while finalizing the programme of work to add timelines for their implementation.

30. The Secretariat is requested to circulate the amended PoW to MED POL FP before the document is sent to the MAP focal points.

Other Business

31. Following the briefing of MAP deputy coordinator on the meeting of the Review and Monitoring (RM) Subgroup established under the H2020 held on 16 June 2015 back to back with MEDPOL FP meeting, it was agreed in principle to support the participation of national MEDPOL FP and another representative from SoE national reporting team as members of the RM subgroup with the view to enhance national coordination with regards to pollution assessment and reporting.

32. In addition due to the fact that UNEP/MAP is planning to prepare in 2019 SoE Report as per the mandate by the Contracting Parties as well as contribute together with the EEA to the preparation of a joint report on H2020 implementation, the meeting recommended to bring to the attention of the MAP FP the need for streamlining their preparation and delivering if possible one common report.

33. Following the presentation by the Secretariat of a concept note for a future GEF project in the Mediterranean, the MED POL FP were invited to provide feedback and inputs by mid-July 2015, with the view to enable the Secretariat to finalize a more consolidated project proposal and a Project Identification Form. In addition, the FPs were invited to coordinate with the national GEF focal points to ensure that national priorities are taken into account.

Side events

34. The meeting appreciated the demonstration session by the Secretariat of the NBB information system which allowed an exchange of views on ways and means to ensure a timely reporting of loads of pollutants by the Contracting Parties to the Secretariat.

35. The meeting also appreciated the presentation made by Plan Bleu with regards to marine policy toolbox developed in the framework of PERSEUS project as a useful tool to support EcAp application under UNEP/MAP Barcelona Convention and MSFD implementation.
Annex III, Appendix 1

RECOMMENDATIONS OF THE ONLINE INFORMAL WORKING GROUPS

I. INFORMAL ONLINE WORKING GROUP ON EUTROPHICATION

Proposed thresholds and methodological criteria for eutrophication assessment in Mediterranean.

Typology scheme

Typology is very important for further development of classification schemes of a certain area. The recommended water types for applying eutrophication assessment are based on hydrological parameters characterizing a certain area dynamics and circulation. The typological approach is based on the introduction of a static stability parameter (derived from temperature and salinity values in the water column). Such a parameter, on a robust numerical basis, can describe the dynamic behaviour of a coastal system. It is accepted that surface density is adopted as a proxy indicator for static stability as both temperature and salinity are relevant in the dynamic behavior of a coastal marine system. More information on typology criteria and setting is presented in document UNEP(DEPI)/MED WG 417/Inf.15.

In the Mediterranean a considerable number of eutrophication experts have built a typology scheme for the Mediterranean coastal waters during the first inter-calibration phase for the EU Water Framework Directive implementation, which is still in use after their update according to Commission Decision 2013/480/UE and represents a very simple typology approach that could be easily applied Mediterranean wide for coastal waters (sensu WFD, i.e. 1nm), since these coastal waters have been intercalibrated. In this context the major water types have been defined on the basis of surface density and salinity values as presented in Table 1:

Table 1 Definition of major coastal water types in the Mediterranean that have been intercalibrated (applicable for phytoplankton only) according to EU Comission Decision 2013/480/EU.

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type IIA Adriatic</th>
<th>Type IIIW</th>
<th>Type IIIE</th>
<th>Type Island-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>σt (density)</td>
<td><25</td>
<td>25<d<27</td>
<td>>27</td>
<td>>27</td>
<td>All range</td>
</tr>
<tr>
<td>salinity</td>
<td><34.5</td>
<td>34.5<S<37.5</td>
<td>>37.5</td>
<td>>37.5</td>
<td>All range</td>
</tr>
</tbody>
</table>

The different coastal water types, in an ecological perspective, can be described as follows:

- Type I coastal sites highly influenced by freshwater inputs
- Type IIA coastal sites moderately influenced not directly affected by freshwater inputs (continent influence)
- Type IIIW continental coast, coastal sites not influenced by freshwater inputs (Western Basin)
In addition, the coastal water type III was split in two different sub basins, the Western and the Eastern Mediterranean ones, according to the different trophic conditions and is well documented in literature.

Some examples of Water Types presence finally defined for the European countries, Party to the Barcelona Convention and LBS Protocol are shown in the Table 2.

Table 2 Examples of coastal water types in some Mediterranean countries

<table>
<thead>
<tr>
<th>New types</th>
<th>Croatia</th>
<th>Cyprus</th>
<th>France</th>
<th>Greece</th>
<th>Italy</th>
<th>Slovenia</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly influenced</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by freshwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>influenced by</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>freshwater input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type III WM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not influenced by</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>freshwater input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type III EM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Not influenced by</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>freshwater input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed recommendations

1. Contracting parties are invited to agree on the proposed criteria for typology of coastal waters as presented in Table 1.

2. Contracting parties are invited to apply the above criteria and define their coastal water types with the support from MEDPOL if needed, in the course of 2015.

2. Thresholds and reference conditions for chlorophyll-a in the different water types

Reference and threshold (Good/Moderate status) derived values (G-mean annual values based on long time series (>5 years) of monthly sampling at least) differ from type to type on a sub-regional scale and were build with different strategies. Summaries values are given in Table 3.
Table 3. Reference and threshold values of Chla in Mediterranean coastal water types (according to Commission Decision of 20 September 2013 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Decision 2008/915/EC).

<table>
<thead>
<tr>
<th>Coastal waters Typology</th>
<th>Reference conditions of Chla (μg L(^{-1}))</th>
<th>Boundaries of Chla (μg L(^{-1})) for G/M status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G(_{\text{mean}})</td>
<td>90% percentile</td>
</tr>
<tr>
<td>Type I</td>
<td>1.4</td>
<td>3.33(^1) - 3.93(^2)</td>
</tr>
<tr>
<td>Type II-FR-SP</td>
<td></td>
<td>1.90</td>
</tr>
<tr>
<td>Type II-A Adriatic</td>
<td>0.33</td>
<td>0.80</td>
</tr>
<tr>
<td>Type II-B Tyrrhenian</td>
<td>0.32</td>
<td>0.77</td>
</tr>
<tr>
<td>Type III-W Adriatic</td>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>Type III-W Tyrrhenian</td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>Type III-W FR-SP</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Type IIIIE</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Type Island-W</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The 90\(^{\text{th}}\) percentile and the geometrical mean can be derived one from the other according to the following equation:

\[
\text{Chl-a 90}^{\text{th}} \text{ p.} = 10^{\log_{10}(G_{\text{mean Chl-a}}) + 1.28 \times \text{SD}}.
\]

Note 2: The MEDGIG exercise phase III is in progress, therefore an update of the above table may occur, which will be considered, accordingly.

Proposed recommendations

1. The Contracting Parties are recommended to rely on the classification scheme on chl-a concentration (μg/l) in coastal waters as a parameter easily applicable by all Mediterranean countries based on the indicative thresholds and reference values presented in Table 3.

2. However, for a complete assessment of eutrophication and GES achievement, GES thresholds and reference conditions (background concentrations) are needed not only for chlorophyll-a, but such values must be set, in the near future, through dedicated workshops and exercises also for nutrients, transparency and oxygen as minimum requirements. Nutrient, transparency and oxygen thresholds and reference values may not be identical for all areas, since is recognized that area-specific environmental conditions must define threshold values. GES could be defined on a sub-regional level, or on a sub-division of the sub-region (such as the Northern Adriatic), due to local specificities in relation to the trophic level and the morphology of the area.

3. Following the evaluation of information provided by a number of countries and other available information, it has to be noted that the Mediterranean countries are using different eutrophication non mandatory assessment methods such as TRIX, Eutrophication scale, EI, HEAT, OSPAR, etc. These tools are very important to continue to be used at sub-regional or national levels because there is a long term experience within countries which can reveal / be used for assessing eutrophication trends.

4. However, in order to increase coherency and comparability regarding eutrophication assessment methodologies is recommended that further efforts should be made to harmonize existing tools through

\(^1\) Applicable to Golf of Lion Type I coastal waters
\(^2\) Applicable to Adriatic type I coastal waters
workshops, dialogue and comparative exercises at regional/subregional/subdivision levels in Mediterranean with a view to further develop common assessment methods.

II. INFORMAL ONLINE WORKING GROUP ON CONTAMINANTS

Specific Recommendations of the Contaminant Working Group

1. Indicate sampling and analytical methodology to follow and assess biological responses in the Main elements of the Draft Integrated Monitoring and Assessment Programme for Ecological Objectives 5, 9 and 10 (UNEP(DEPI)/MED WG 417/6) based where appropriate on the relevant methodologies used in OSPAR or other fora;

2. Amend the UNEP/MAP Technical Report Series No. 120 with particular reference to the sampling period (case of fish) and sampling frequency (case of sediments) based where appropriate on the relevant methodologies used in OSPAR or other fora;

3. Assess and test in the coming years the convenience of normalizing metal concentrations in samples from certain regions of the Mediterranean Sea when Aluminium, Iron and Organic content data from sediments would be available in MED POL database from possibly all Contracting parties;

4. Recommend mussel and fish LMS as mandatory biomarker and establish an effective data quality assurance and control as a crucial step to ensure reliable assessments

5. Follow the OSPAR approach of a “traffic light” system for both contaminant concentrations and biological responses, where there are two “thresholds” \(T_0 \) and \(T_1 \) to be defined (OSPAR, 2008; Davies et al., 2012);

6. Adopt BCs and BACs of contaminants (for naturally occurring substances) in sediments obtained from the analysis of pre-industrial layers of dated sediment cores established for the Mediterranean region (UNEP(DEPI)/MED WG. 365/Inf.8) where appropriate based on data availability;

7. Use for indicative purposes the existing EACs of contaminants in sediments and biota and of biological responses established by ICES/OSPAR until new ecotoxicological information is available including for Mediterranean species; (OSPAR, 2008; Davies et al., 2012);

8. Request the Contracting Parties and MED POL to further work and develop as appropriate new BCs and BACs of contaminants in sediments obtained by using data from sediments sampled at sites/areas which Mediterranean contracting parties consider being reference stations/areas to be defined based on commonly agreed criteria;

9. Request the Contracting Parties and ME POL to further work and develop new BCs and BACs of contaminants in biota (mussels and fish) obtained by using only data from organisms sampled at sites/areas which Mediterranean contracting parties consider being reference stations/areas to be defined based on commonly agreed criteria

10. Use the existing BACs and EACs of LMS, SoS, MN frequency and AChE activity biomarkers established (Davies et al., 2012); and further work to develop and discuss new BAC by using data from organisms sampled at sites/areas which the Mediterranean contracting parties consider a reference stations/areas, to be defined based on commonly agreed criteria;

11. Extend and amend the existing reporting formats used for contaminants and biological responses in MED POL database to avoid gaps of the information required and to facilitate the proper assessment of environmental criteria;

12. Request the Secretariat (MED POL) to continue supporting the Online Contaminants Working Group for long term developments of activities dedicated to chemical pollution and development of assessment.
III. INFORMAL ONLINE WORKING GROUP ON MARINE LITTER

1. Proposed baselines values (Rationale for this proposal presented in document UNEP(DEPI)/MED WG 417/Inf.15

<table>
<thead>
<tr>
<th>Indicator</th>
<th>minimum value</th>
<th>maximum value</th>
<th>mean value</th>
<th>Proposed baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Beaches (items/100 m)</td>
<td>11</td>
<td>3600</td>
<td>920</td>
<td>450-1400</td>
</tr>
<tr>
<td>17. Floating litter (items/km²)</td>
<td>0</td>
<td>195</td>
<td>3.9</td>
<td>3-5</td>
</tr>
<tr>
<td>17. Sea floor (items/km²)</td>
<td>0</td>
<td>7700</td>
<td>179</td>
<td>130-230</td>
</tr>
<tr>
<td>17. Microplastics (items/km²)</td>
<td>0</td>
<td>892000</td>
<td>115000</td>
<td>80000-130000</td>
</tr>
<tr>
<td>18. Sea Turtles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected turtles (%)</td>
<td>14%</td>
<td>92.5%</td>
<td>45.9%</td>
<td>40-60%</td>
</tr>
<tr>
<td>Ingested litter (g)</td>
<td>0</td>
<td>14</td>
<td>1.37</td>
<td>1-3</td>
</tr>
</tbody>
</table>

“It must be noted that the amount of existing information is limited to set definitive baselines that may be adjusted once the national monitoring programs could provide additional data. Moreover, Average values over large areas are difficult to harmonize, in particular for beach litter. Then, the setting or derivation of baselines should take the local conditions into account and may follow a more localized approach. Finally, additional specific baselines may be decided by CPs on specific litter categories especially when they may represent an important part of litter found or a specific interest (targeted measures, etc.).”.

2. Categories of marine litter on the beaches

Regarding the categories of marine litter on the beaches, the Marine Litter Working Group suggests that the CORMON should agree on a reduced list (desirably close to that in use in the others RSC), which would include the items more frequently found on the Mediterranean beaches, avoiding those that are found rarely. Moreover, the lists of litter categories considered in countries having monitoring programs dedicated to two RSC (e.g. Turkey, France or Spain) would need harmonization. For this, the MSFD derived MEDPOL list is now compatible with other RSC lists of beach litter categories.

With regards to the MSFD form presented in the Marine litter chapter integrated monitoring programme document UNEP(DEPI)/MED WG 417/6, it is proposed to merge some types of beach litter (e.g. different types of plastic drink bottles or different types of caps/lids and rings, etc.), split glass and ceramic items categories, consider the sanitary and medical wastes as a separate category and not to include several specific items that have not appeared in the running Mediterranean countries monitoring programmes (e.g. Spanish Monitoring Program on beach marine litter, implemented from 2013 in the Mediterranean). In addition, the online group proposes to use for surveys a minimum lower limit of particle size at 0.5 cm (upper size of microlitter); UNEP(DEPI)/MED WG 417/6.
3. Proposed Marine litter environmental targets:

<table>
<thead>
<tr>
<th>EcAp Indicators</th>
<th>Type of Target</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Recommendation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaches (EI16)</td>
<td>% decrease</td>
<td>significant</td>
<td>30</td>
<td>20% by 2024 or [2030]</td>
<td>Not 100% marine pollution</td>
</tr>
<tr>
<td>Floating Litter (EI 17)</td>
<td>% decrease</td>
<td>-</td>
<td>-</td>
<td>Statistically Significant</td>
<td>sources are difficult to control (trans border movements)</td>
</tr>
<tr>
<td>Sea Floor Litter (EI 17)</td>
<td>% decrease</td>
<td>stable</td>
<td>10% in 5 years</td>
<td>Statistically Significant</td>
<td>15% in 15 years is possible</td>
</tr>
<tr>
<td>Microplastics (EI 17)</td>
<td>% decrease</td>
<td>-</td>
<td>-</td>
<td>Statistically Significant</td>
<td>sources are difficult to control (trans border movements)</td>
</tr>
<tr>
<td>Ingested Litter (EI 18)</td>
<td>% decrease</td>
<td>-</td>
<td>-</td>
<td>Statistically Significant</td>
<td>Movements of litter and Animals to be considered</td>
</tr>
</tbody>
</table>

4. Other recommendations

<table>
<thead>
<tr>
<th>SCALE</th>
<th>Common baselines for the various EI (16, 17, 18) must be considered at the level of the entire basin (Mediterranean) rather than at sub regional level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESEARCH</td>
<td>Need to define an adapted protocol for microplastics(< 5mm) in sediments Research to support the development of an indicator dedicated to entanglement</td>
</tr>
<tr>
<td>BASELINES/TARGETS</td>
<td>Consider specific baselines and targets for litter categories that are individually targeted by reduction plans or measures by the Contracting Parties (cigarette butts, plastic bags, cotton buds, etc)</td>
</tr>
<tr>
<td>CATEGORIES</td>
<td>Consider the reduction of the number of items in MEDPOL monitoring protocol Adapt MEDPOL master list, MSFD derived, to harmonize with other RSC</td>
</tr>
<tr>
<td>MONITORING</td>
<td>Needs for adjustment of the monitoring guidance (more compatible definitions and wording, list of items/categories) Harmonization of the ECAP monitoring Guidance with the online group report and recommendations</td>
</tr>
<tr>
<td>SUPPORT</td>
<td>Consider the relevance of ML for monitoring marine pollution (lower costs, possible harmonization, easy protocols), especially on beaches, when compared with other approaches (e.g. analysis of contaminants) Support evaluation/adjustments of baselines/targets on the basis of the first monitoring results Improve knowledge on experimental indicator EI 18, Support capacity building and monitoring experiment on sea turtles at a pilot scale</td>
</tr>
<tr>
<td>QUALITY ASSURANCE</td>
<td>As the Mediterranean Action Plan on ML is based on measures and monitoring efforts should be shouldered by quality control/quality assurance (training, inter-comparisons, use of reference material for microplastics, etc.) to assist survey teams.</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>DATA MANAGEMENT</td>
<td>Data base is to be organized for the collection of data</td>
</tr>
<tr>
<td>Secretariat</td>
<td>Continue support for the ML expert group for long term developments of activities dedicated to Marine Litter, trends analysis and analysis of data from countries (art 11 of the MLRP)</td>
</tr>
<tr>
<td></td>
<td>Consider capacity building in long term, in support of the MLRP (training, inter-calibrations, etc.)</td>
</tr>
</tbody>
</table>
Annex III, Appendix 2

Main elements of the Integrated Monitoring and Assessment Programme

Table of contents

Note by the Secretariat...1

Chapter I Eutrophication chapter and related fact sheet...5

Chapter II Contaminant chapter and related fact sheet...17

Chapter III Marine Litter chapter and related fact sheet...41
Chapter I

Eutrophication chapter and related fact sheet
1. MONITORING AND ASSESSMENT METHODOLOGICAL GUIDANCE ON EOS: EUTROPHICATION

1. Introduction

Eutrophication is a process driven by enrichment of water by nutrients, especially compounds of nitrogen and/or phosphorus, leading to: increased growth, primary production and biomass of algae; changes in the balance of nutrients causing changes to the balance of organisms; and water quality degradation. The consequences of eutrophication are undesirable if they appreciably degrade ecosystem health and/or the sustainable provision of goods and services. These changes may occur due to natural processes. Management concern begins when they are attributed to anthropogenic sources. Additionally, although these shifts may not be harmful in themselves, the main worry concerns 'undesirable disturbance': the potential effects of increased production, and changes of the balance of organisms on ecosystem structure and function and on ecosystem goods and services.

In the Mediterranean, the UNEP/MAP MED POL Monitoring programme included from its inception the study of eutrophication as part of its seven pilot projects approved by the Contracting Parties at the Barcelona meeting in 1975 (UNEP MAP, 1990a,b). The issue of a monitoring strategy and assessment of eutrophication was first raised at the UNEP/MAP MED POL National Coordinators Meeting in 2001 (Venice, Italy) which recommended to the Secretariat to elaborate a draft programme for monitoring of eutrophication in the Mediterranean coastal waters. In spite of a series of assessments reviewing the concept and state of eutrophication, there are important gaps in the capacity to assess the intensity of this phenomenon, even more to compare or grade the various sites. Efforts have been devoted to define the concepts to assess the intensity and to extend experience beyond the initial sites in the Adriatic Sea admittedly the most eutrophic area in the entire Mediterranean Sea.

GES with regard to eutrophication is achieved when the biological community remains well-balanced and retains all necessary functions in the absence of undesirable disturbance associated with eutrophication (e.g. excessive algal blooms, low dissolved oxygen, declines in sea-grasses, kills of benthic organisms and/or fish) and/or where there are no nutrient-related impacts on sustainable use of ecosystem goods and services. The conceptual model of eutrophication is presented in Figure 1 for information purposes.

2. The choice of indicators for monitoring and assessing eutrophication

Despite the great variability born by the water layers subject to active hydrodynamic processes, monitoring the characteristics of the seawater is still the most direct way of assessing eutrophication. A number of parameters have been identified as providing most information relative to eutrophication e.g. chlorophyll, dissolved oxygen, inorganic nutrients, organic matter, suspended solids, light penetration, aquatic macro-phytes, zoo benthos, etc. They all may be determined either at the surface or at various depths. However even though these variables are routinely determined by most marine laboratories they may pose some problems to some less specialized institutions. Remote sensing may also be employed and with great success when eutrophication extends over large areas such as in the case of the northern Adriatic Sea.
Figure 1. Conceptual model of eutrophication. The arrows indicate the interactions between different ecological compartments. A balanced marine ecosystem is characterised by: (1) a pelagic food chain (phytoplankton ▶ zooplankton/zooenethos ▶ fish), which effectively couples production to consumption and minimises the potential for excess decomposition (2) natural species composition of plankton and benthic organisms, and (3) if appropriate, a natural distribution of submerged aquatic vegetation. Nutrient enrichment results in changes in the structure and function of marine ecosystems, as indicated with bold lines. Dashed lines indicate the release of hydrogen sulphide (H2S) and phosphorus, under anoxic conditions at the sediment-water interface, which is positively related to oxygen depletion. In addition, nitrogen is eliminated by denitrification in anoxic sediment.

If only limited means are available, determination of those parameters that synthesize the most information should be retained. Chlorophyll determinations for example, although not very precise representations of the system, are data which provide a great deal of information. Reliable data on nutrients are extremely useful indicators of potential eutrophication. Turbidity and seawater colour (Forell scale, Wernard and van der Woerd, 2010) may also be a good measure of eutrophication, except near the mouths of rivers where inert suspended solids may be extremely abundant. Dissolved oxygen is one parameter that integrates much information on the processes involved in eutrophication, provided it is measured near the bottom or, at least, below the euphotic zone where an oxycline usually appears.

2.1. The choice of eutrophication indicators to be monitored under the LBS Protocol and the draft Integrated Monitoring and Assessment Programme (Common indicators 7 and 8, Concentration of key nutrients in the water column and Chlorophyll-a concentration in the water column)
Decision 21/3 of COP 18 of the Contracting parties to the Barcelona Convention (Istanbul, December 2013) provides for assessing eutrophication for the Ecosystem Approach by combining the information on nutrient levels, direct effects (specifically chlorophyll – a concentration and water transparency for the 2016 ECAP monitoring activities) and indirect effects (oxygen concentration for the 2016 ECAP monitoring activities). These elements to be monitored reflect the short term eutrophication monitoring strategy of UNEP/MAP MED POL Phase III and IV (UNEP (DEC) WG.231/14) according to which pilot monitoring programmes were implemented in different Mediterranean locations to build capacity in setting up and implementing integrated eutrophication monitoring programmes, (in which phytoplankton total abundance, abundance of major groups and bloom dominance would also be monitored on a discretionary basis). It is considered that the aim would now be focused within the ecosystem approach framework towards developing complete coherent datasets at the entire regional sea level.

In addition it is fundamental to link up to budgets of nutrient sources and loads (e.g. terrestrial, airborne) so the load can be associated with impairment and successful management measures can be developed from that relationship. Such an inventory of pollution sources and loads from land based activities (NBB) is prepared periodically by UNEP/MAP MED POL in the framework of the implementation of the LBS Protocol and the Strategic Action Programme (SAP-MED) to Address Pollution from Land Based Activities (adopted in 1997 and launched in 2000). The third cycle of the NBB reporting is currently ongoing and expected to be finalized in early 2015.

No single analytical tool is adequate to measure the degree of eutrophication of a given body of water. Instead, most experts believe the best approach is to measure many different parameters and to synthesize the results into a general model providing an overall, somewhat integrated degree of eutrophication for the water. Unless proper selection of the parameters to be measured is made, the amount of work required to assess the extent and intensity of eutrophication may be rather costly. Measurement strategy and sampling design are therefore keys to the success in monitoring eutrophic areas. It will certainly have to adapt to the morphological characteristics of the area to be monitored, its hydrodynamics and the sources of nutrients. It should be realized that simple measuring and sampling schemes will not provide much insight into an extremely complex phenomenon. Depending on the importance of the impact of eutrophication (plankton blooms, HABs, anoxic events) the amount of effort needed to be put into a monitoring plan can be assessed.

3. Monitoring strategy

3.1. Considerations regarding eutrophication monitoring methods

Traditional methods for eutrophication monitoring in coastal waters involve in situ sampling/measurements of commonly measured parameters such as nutrients concentration, chlorophyll ‘a’ concentration, phytoplankton abundance and composition, transparency and dissolved oxygen concentration. Concerning available methods for in situ measurements, ships provide flexible platforms for eutrophication monitoring, while remote sensing provides opportunities for a synoptic view over regions or sub-regions. Besides traditional ship measurements, ferry-boxes and other autonomous measuring devices have been developed that allow high frequency and continuous measurements.

In situ measurements are more suitable:

- In (sub) regions/areas/sites with an increasing eutrophication problem,
- When a sub-region/area/site is close to or under GES for eutrophication
- When the status with respect to eutrophication is still unclear
- In sub-regions/areas/sites where for other reasons accurate and reliable data are needed (generally these are coastal sub-regions, in particular close to rivers).
Modelling and remote sensing should also be considered as alternatives or in addition to in situ measurements, depending on the requirements with respect to data. In general, in situ measurements always remain necessary to validate and calibrate the models and data calculated from satellite measurements.

Model generated data are more suitable:

- In (sub) sub-regions with a stable, predictable eutrophication status
- In sub-regions in GES or where the eutrophication problem is decreasing
- In offshore areas where taking in situ measurements is costly and where nutrient levels are correlated with levels in the coastal zone (extrapolation)
- In case satellite data are inaccurate or not available
- Where there is a need for an average picture of the local eutrophication status; models are very good at calculating this average picture combining hydraulic models and in situ measurements of standard sampling sites (interpolation)

As with models, remote sensing generally allows the production of data with a higher spatial and temporal resolution than in situ measurements. Thanks to the use of satellites it is possible to have synoptic measurements over large areas. This makes the satellite data particularly useful for large-scale studies and observations and/or for studies of temporal trends.

Satellite data are more suitable:

- In (sub) sub-regions/areas/sites with a stable, predictable eutrophication status
- In sub-regions/areas/sites in GES or where the eutrophication problem is decreasing
- In offshore sub-regions/areas/sites where taking in situ measurements is costly and where nutrient levels are correlated with levels in the coastal zone
- In case models are inaccurate or not available
- For comparisons of the eutrophication status over large sub-regions
- For validation and calibration of the information on spatial distribution
- In sub-regions/areas where funds are limiting
- In sub-regions/areas where for other reasons the accuracy can be lower than provided by in situ measurements (generally these are offshore areas)
- In addition to in situ measurements

However, satellite data need to be supported by ground truth data. A good strategy appears to be a combination of remote sensing and scanning of the area known or suspected to be affected with automatic measuring instruments such as thermo-salinometer, dissolved oxygen sensors and in vivo fluorometer and/or nephelometer. Sampling for the determination of “in vitro” fluorescence and nutrient analysis may be carried out with relatively little effort if a proper pump and hose are mounted on the ship. The measurements may be done at the surface or just below it with a water intake on the hull of the vessel or at fixed or varying depths with a towed “fish” and pumping system.

Processing and evaluating the data should be carried out having a predefined model of the system under study. Models of the aquatic ecosystem may be good tools for monitoring eutrophication efficiently. Since none of the eutrophication indicators alone can provide an absolute account of the extent and/or intensity of eutrophication, numerical models in which quantitative relationships among the various characteristics are given, allow an overall assessment of the phenomenon to be made with a small number of field and/or laboratory measurements.
3.2. The frequency of eutrophication monitoring and location of sampling sites

The extent of eutrophication shows spatial variation, for instance coastal regions versus the open sea. The frequency and spatial resolution of the monitoring programme should reflect this spatial variation in eutrophication status and pressures following a risk based approach and the precautionary principle.

The first factor promoting eutrophication is nutrient enrichment. This explains why the main eutrophic areas are to be found primarily not far from the coast, mainly in areas receiving heavy nutrient loads. However, some natural symptoms of eutrophication can also be found in upwelling areas. Additionally, the risk of eutrophication is linked to the capacity of the marine environment to confine growing algae in the well-lighted surface layer. The geographical extent of potentially eutrophic waters may vary widely, depending on:

(i) the extent of shallow areas, i.e. with depth ≤ 20 m;
(ii) the extent of stratified river plumes, which can create a shallow surface layer separated by a halocline from the bottom layer, whatever its depth
(iii) extended water residence times in enclosed seas leading to blooms triggered to a large degree by internal and external nutrient pools; and
(iv) upwelling phenomena leading to autochthonous nutrient supply and high nutrient concentrations from deep water nutrient pools, which can be of natural or human origin.

Sub-regions/areas that are in sub-GES status in terms of eutrophication, or that could be considered at risk of not achieving GES generally require more intense monitoring than regions shown to be achieving GES.

Flexibility should be incorporated into the design of the monitoring programme to take account of differences in each marine sub-region/area. Furthermore in cooler regions winter is an optimal period for measuring nutrients since the data are not disturbed by (variable) uptake by algae/macrophytes. In those regions, spring/summer is an optimal period of the algal growing season and therefore for measuring effects of high nutrient availability. In warmer regions productivity continues during (a large part of) the winter period. In these regions, year round measurements of nutrients may be more appropriate.

In brief the geographical scale of monitoring for the assessment of GES for eutrophication will depend on the hydrological and morphological conditions of an area, particularly the freshwater inputs from rivers, the salinity, the general circulation, upwelling and stratification. The spatial distribution of the monitoring stations should, prior to the establishment of the eutrophication status of the marine sub-region/area, be risk-based and proportionate to the anticipated extent of eutrophication in the sub-region under consideration as well as its hydrographic characteristics aiming for the determination of spatially homogeneous areas. Consequently, each Contracting Party would be required to determine the optimum frequency per year and optimum locations for their monitoring stations. Each Contracting Party is responsible for the choice of the most representative sampling stations in order to detect a change over a selected period.

Salinity gradients can be a proxy for river discharge and salinity and nutrient concentrations are often strongly correlated. Salinity can thus be used to determine an optimal spatial distribution of sampling sites, in particular if a model is available to couple salinity and hydrodynamics to nutrient levels. Salinity and temperature are also important parameters supporting the interpretation of eutrophication indicators. Therefore, annual and seasonal temperature regime and, where relevant, spatial and temporal distribution of salinity should be measured in both GES and non-GES regions.

The current national eutrophication monitoring programme implemented so far by the Contracting Parties in the framework of the UNEP/MAP MED POL programme should be used as a sound basis for monitoring under the EcAp complemented with the additional elements based on the above mentioned considerations and each country/sub region/area specificity.
3.3 Characterization of Ecological Quality Status of coastal marine waters with regard to eutrophication

The TRIX index (Vollenweider et al., 1998) may be used for a preliminary assessment of the trophic status of coastal waters in relation to eutrophication providing that its advantages and shortcomings are taken into account (Primpas and Karydis, 2011). The adopted UNEP/MAP MED POL short term eutrophication monitoring strategy monitored parameters to support the TRIX index. This Index is widely used to synthesize key eutrophication variables into a simple numeric expression to make information comparable over a wide range of trophic situations:

\[
\text{TRIX Index} = (\log_{10} \left[\text{ChA} \cdot \text{aD}%O \cdot \text{DIN} \cdot \text{TP} \right] + k) \cdot m
\]

where:

- \(\text{ChA}\) = Chlorophyll a concentration as \(\mu g/L\);
- \(\text{aD}%O\) = Oxygen as absolute % deviation from saturation;
- \(\text{DIN}\) = Dissolved Inorganic Nitrogen, \(N\cdot(NO_3+NO_2+NH_4)\) as \(\mu g/L\);
- \(\text{TP}\) = Total Phosphorus as \(\mu g/L\).

- \(k = 1.5\)
- \(m = 10/12 = 0.833\)

The parameters \(k\) and \(m\) are scale coefficients necessary to fix the lower limit value of the Index and the extension of the related Trophic Scale, i.e. from 0 to 10 TRIX units. Referring to the ChA and a DO\% components, these factors are direct indicators of productivity, in terms of both the amount of phytoplankton biomass produced and the dynamic of that production, respectively. In other words, the TRIX Index summarises what the coastal system does (by including the contribution of the direct indicators of productivity, as “actual productivity”) and what the coastal system could do (contribution of the nutritional factors components, as “potential productivity”). As a result of the Log transformation of the four original variables, the annual distributions of TRIX over homogeneous coastal zones are usually of normal kind, and show a fairly stable variance, with STD around 0.9. As for the interpretation of TRIX values, those exceeding 6 TRIX units are generally associated to highly productive coastal waters, where the effects of eutrophication are represented by frequent episodes of anoxia in bottom waters. Values lower than 4 TRIX units are typical of scarcely productive waters, while values lower than 2 are generally associated to the open sea.

The TRIX index used for the assessment of trophic status of coastal waters has been applied in many European seas (Adriatic, Tyrrenhian, Baltic, Black Sea, and North Sea). However, all these waters are characterized by high nutrient levels and phytoplankton biomass; an index calibration based on systems that are principally euphotic may introduce bias to the index scaling. In the work of Primpas and Karydis, 2011, the TRIX trophic index is evaluated using three standard sets of data characterizing oligotrophy, mesotrophy, and eutrophication in the Aegean (Eastern Mediterranean) marine environment. A natural eutrophication scale based on the TRIX index that is suitable to characterize trophic conditions in oligotrophic Mediterranean water bodies is proposed. This scale was developed into a five-grade water quality classification scheme describing different levels of eutrophication.

It is recommended also that the contracting parties rely on the classification scheme on chl-a concentration (\(\mu g/l\)) developed by MEDGIG as an assessment method easily applicable by all Mediterranean countries based on the indicative thresholds and reference values adopted therein (see Table 2).
4. Development of assessment thresholds and identifying reference conditions for eutrophication in order to be able to monitor the achievement of GES

Three approaches may be used for GES determination:

a. In order to assess quantitatively the achievement of GES in relation to eutrophication, a measurable assessment threshold may be set, including the definition of reference conditions. GES assessment thresholds and reference conditions (background concentrations) may not be identical for all areas, especially where the marine environment is already disturbed by human presence for many years. In these cases a decision has to be made whether to set the threshold value for GES achievement independently to the setting of the reference conditions. The approach is based on the recognition that area-specific environmental conditions must define threshold values. A threshold value could include provisions to allow for statistical fluctuations (example: No nutrients and chl-a values exceeding the 90th percentile are present in a frequency more than statistically expected for the entire time series). GES could be defined on a sub-regional level, or on a sub-division of the sub-region (such as the Northern Adriatic), due to local specificities in relation to the trophic level and the morphology of the area.

b. A second approach to determine GES for eutrophication is to use trends for nutrients contents, and direct and indirect effects of eutrophication. When using the trend approach, a reference value representing the actual situation is needed, for comparison. In the case of nutrients and chl-a, such reference values exist due to data availability in most areas. Therefore, GES could be defined as no increasing trends in nutrient and/or chlorophyll-a concentrations over a defined period of time in the past (ex. 6 years), which are not explained by hydrological variability. For indirect effects, GES could ask for no decreasing trend in oxygen saturation beyond what would be statistically expected.

c. GES thresholds and trends are recommended to be used in a combined way, according to data availability and agreement on GES threshold levels. In the framework of UNEP/MAP MED POL there is experience with regard to using quantitative thresholds. It is proposed that for the Mediterranean region, quantitative thresholds between “good” (GES) and “moderate” (non GES) conditions for coastal waters could be based as appropriate on the work that is being carried out in the framework of the MED GIG intercalibration process of the EU Water Framework Directive (WFD), a project closely followed by the UNEP/MAP MED POL programme.

In this context regarding the definition of subregional thresholds for chlorophyll a water typology is very important for further development of classification schemes of a certain area. Within the MEDGIG exercise the recommended water types for applying eutrophication assessment is based on hydrological parameters characterizing a certain area dynamics and circulation. The typological approach is based on the introduction of a static stability parameter (derived from temperature and salinity values in the water column): such a parameter, on a robust numerical basis, can describe the dynamic behaviour of a coastal system.

On the basis of surface density and salinity values three major water types have been defined:
Table 1 Definition of major coastal typees in the Mediterranean that have been intercalibrated (applicable for phytoplankton only) according to EU Comission Decision 2013/480/EU (results of the 2nd phase of MEDGIG exercise).

<table>
<thead>
<tr>
<th>Type</th>
<th>Type IIA, IIA Adriatic</th>
<th>Type IIIW</th>
<th>Type IIIE</th>
<th>Type Island-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>σt (density)</td>
<td><25</td>
<td>25<d<27</td>
<td>>27</td>
<td>>27</td>
</tr>
<tr>
<td>Salinity</td>
<td><34.5</td>
<td>34.5<S<37.5</td>
<td>>37.5</td>
<td>>37.5</td>
</tr>
</tbody>
</table>

The different water types, in an ecological perspective, can be described as follows:

- **Type I** coastal sites highly influenced by freshwater inputs
- **Type IIA** coastal sites moderately influenced not directly affected by freshwater inputs (Continent influence)
- **Type IIIW** continental coast, coastal sites not influenced/affected by freshwater inputs (Western Basin)
- **Type IIIE** not influenced by freshwater input (Eastern Basin)
- **Type Island:** coast (Western Basin)

In addition, the coastal water type III was split in two different sub basins, the Western and the Eastern Mediterranean ones, according to the different trophic conditions and is well documented in literature.

As sugested by the on line expert group on eutrophication established by the Contracting parties it is recommended that with regard to nutrient concentrations, until commonly agreed thresholds have been determined, negotiated and agreed upon at a sub regional or regional level, GES may be determined on a trend monitoring basis.

With regards to chlorophyll a, the on line Mediterranean eutrophication group recommend the reference and threshold values of the MEDGIG approach to be used for assessing ewutrophication status as presented in Table 2. (results of the 2nd phase of MEDGIG exercise)

Table 2. Reference and threshold values of Chla in Mediterranean coastal water types (according to Commission Decision of 20 September 2013 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Decision 2008/915/EC).

<table>
<thead>
<tr>
<th>Coastal waters Typology</th>
<th>Reference conditions of Chla (μg L⁻¹)</th>
<th>Boundaries of Chla (μg L⁻¹) for G/M status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G_mean</td>
<td>90% percentile</td>
</tr>
<tr>
<td>Type I</td>
<td>1.40</td>
<td>3.93</td>
</tr>
<tr>
<td>Type II-FR-SP</td>
<td></td>
<td>1.90</td>
</tr>
<tr>
<td>Type II-A Adriatic</td>
<td>0.33</td>
<td>0.80</td>
</tr>
<tr>
<td>Type II-B Tyrrhenian</td>
<td>0.32</td>
<td>0.77</td>
</tr>
<tr>
<td>Type III-W Adriatic</td>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>Type III-W Tyrrhenian</td>
<td>0.48</td>
<td>1.17</td>
</tr>
<tr>
<td>Type III_W FR-SP</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Type IIIIE</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Type Island-W</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The 90th percentile and the geometrical mean can be derived one from the other according to the following equation:

\[\text{Chl-a 90th p.} = 10^{(\log_{10}(G\text{ mean Chl-a}) + 1.28 \times SD)} \]

Note 2: The MEDGIG exercise phase III is in progress, therefore an update of the above table may occur, which will be considered, accordingly.
In conclusion it is recommended to rely on the classification scheme on chl-a concentration (μg/l) in coastal waters as a parameter easily applicable by all Mediterranean countries based on the indicative thresholds and reference values presented in table 2.

However following the evaluation of information provided by a number of countries and other available information it has to be noted that the Mediterranean countries are using different eutrophication assessment methods such as TRIX, Eutrophication scale, EI, HEAT, OSPAR etc. These tools are very important to continue to be used as appropriate at sub-regional or national levels because there is a long term experience within countries which can reveal / be used for assessing eutrophication trends.
Indicators Monitoring Fact Sheets on Ecological Objective 5 : Eutrophication

ECOLOGICAL OBJECTIVE 05: Human- induced eutrophication is prevented, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algal blooms and oxygen deficiency in bottom waters

<table>
<thead>
<tr>
<th>Common Indicator Description</th>
<th>Description of Parameters and/or Elements, matrix</th>
<th>Assessment Method</th>
<th>Guidelines Reference Methods QA/QC</th>
<th>Recommendations /Additional Data needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Indicator 7, COP18 Indicator 5.1.1 : Concentration of key nutrients in the water column With Ecological Objective 5.1 : Human introduction of nutrients in the marine environment is not conducive to eutrophication</td>
<td>Total Nitrogen (N μmol/L), Nitrate (NO<sub>3</sub>-N μmol/L), Ammonium (NH<sub>4</sub>-N μmol/L), Nitrite (NO<sub>2</sub>-N μmol/L), Orthophosphate (P-PO<sub>4</sub> μmol/L), Total Phosphorus, Silicate (SiO<sub>2</sub> μmol/L)</td>
<td>UNEP/MAP MED POL State and Temporal Trend Monitoring Programme For coastal stations minimum sampling 4/year, 6-12/year recommended For open waters sampling frequency to be determined on a sub-regional level following a risk based approach</td>
<td>Guideline : Eutrophication Monitoring Strategy of UNEP/MAP MED POL UNEP(DEC) MED WG.231/14 Reference Methods : Sampling and Analysis Techniques for the Eutrophication Monitoring Strategy of UNEP/MAP MED POL (MAP Technical Reports Series No. 163) QA/QC : UNEP/MAP MED POL Inter-calibration exercises in agreement with QUASIMEME</td>
<td>*Units supporting the TRIX index, with Mediterranean sub-regional specifics</td>
</tr>
<tr>
<td>Common Indicator 7, COP18 Indicator 5.1.1 : Concentration of key nutrients in the water column Proposed Sub-indicator</td>
<td>Si:N, N:P, Si:P</td>
<td>Nutrient monitoring under UNEP/MAP MED POL State and Temporal Trend Monitoring Programme For coastal stations minimum</td>
<td>Guideline : Eutrophication Monitoring Strategy of UNEP/MAP MED POL UNEP(DEC)MED WG.231/14</td>
<td></td>
</tr>
<tr>
<td>Common Indicator Description</td>
<td>Description of Parameters and/or Elements, matrix</td>
<td>Assessment Method</td>
<td>Guidelines Reference Methods QA/QC</td>
<td>Recommendations /Additional Data needed</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>(COP18 Indicator 5.1.2) Nutrient ratios (silica, nitrogen and phosphorus) where appropriate</td>
<td></td>
<td>sampling 4/year, 6-12 /year recommended Simple mathematical derivation of ratios of nutrient concentrations</td>
<td>Sampling and Analysis Techniques for the Eutrophication Monitoring Strategy of UNEP/MAP MED POL (MAP Technical Reports Series No. 163)</td>
<td></td>
</tr>
<tr>
<td>Common Indicator 8, COP 18 Indicator 5.2.1 : Chlorophyll-a concentration in the water column With Ecological Objective 5.2 : Direct effects of nutrient over-enrichment are prevented State,Impact indicator</td>
<td>Chlorophyll –a concentration in seawater (μg/l)*</td>
<td>UNEP/MAP MED POL State and Temporal Trend Monitoring Programme For coastal stations minimum sampling 4/year, 6-12 /year recommended.</td>
<td>Guideline : Eutrophication Monitoring Strategy of UNEP/MAP MED POL UNEP(DEC)MED WG.231/14 Reference Methods : Sampling and Analysis Techniques for the Eutrophication Monitoring Strategy of UNEP/MAP MED POL (MAP Technical Reports Series No. 163) UNEP/MAP MED POL Inter-calibration exercises in agreement with QUASIMEME</td>
<td>*Unit supporting the TRIX index, with Mediterranean sub-regional specifics The indicative boundaries values for chlorophyll-a determined in the framework of MED GIG for the status classes required by the EU Water Framework Directive, namely between “good” and “moderate” status could be tested by non-EU Mediterranean countries to find out if they are relevant. Remote sensing techniques would be a useful tool for estimating chlorophyll concentrations. On a regional scale the remote sensing tool could be useful to identify emerging problem areas Pilot programmes are recommended to be carried out at the sub-regional scale to test the integration of remote sensing with in situ data</td>
</tr>
<tr>
<td>Common Indicator Description</td>
<td>Description of Parameters and/or Elements, matrix</td>
<td>Assessment Method</td>
<td>Guidelines Reference Methods QA/QC</td>
<td>Recommendations /Additional Data needed</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Common Indicator 8, COP 18 Indicator 5.2.1 : Chlorophyll-a concentration in the water column
With Proposed Sub-Indicator of Water Transparency where relevant
State, Impact Indicator | Water transparency measured as i.e., Secchi depth or according to ISO 7027:1999 Water Quality-Determination of Turbidity | UNEP/MAP MED POL State and Temporal Trend Monitoring Programme | Guideline : Eutrophication Monitoring Strategy of UNEP/MAP MED POL UNEP(DEC)MED WG.231/14
Reference Methods : Sampling and Analysis Techniques for the Eutrophication Monitoring Strategy of UNEP/MAP MED POL (MAP Technical Reports Series No. 163)
ISO standard 7027:1999 Water quality -- Determination of turbidity | |
| Common Indicator 8, COP 18 Indicator 5.2.1 : Chlorophyll-a concentration in the water column
With Proposed Sub-Indicator 5.3.1 : Dissolved oxygen near the bottom, i.e. changes due to increased organic matter decomposition and size of the area concerned
Pressure, Impact indicator | Dissolved Oxygen concentration (mg/l) and Saturation (%)* | UNEP/MAP MED POL State and Temporal Trend Monitoring Programme | Guideline : Eutrophication Monitoring Strategy of UNEP/MAP MED POL UNEP(DEC)MED WG.231/14
Reference Methods : Sampling and Analysis Techniques for the Eutrophication Monitoring Strategy of UNEP/MAP MED POL (MAP Technical Reports Series No. 163)
*Unit supporting the TRIX index as absolute % deviation form saturation, with Mediterranean specifics reflected on sub-regional level Daily variations of Dissolved Oxygen Profiles in the critical season along with T_0 and Salinity, performed through specific buoy applications | |
Chapter II
Contaminant chapter and related fact sheet
II. MONITORING AND ASSESSMENT METHODOLOGICAL GUIDANCE ON EO9: CONTAMINANTS

1. Introduction

In most Mediterranean countries, the monitoring of concentrations of a range of chemical contaminants in water, sediments and biota is undertaken in response to the UNEP/MAP Barcelona Convention, its Land-Based Protocol, UNEP/MAP MED POL monitoring programmes, international (e.g. WFD) or national drivers. The scope and scale of this monitoring varies, but should be considered as a base from which to introduce a greater degree of harmonisation between Contracting Parties and to ensure that contaminants and matrices of importance within assessment sub regions are covered by appropriate monitoring programmes. Biological effects monitoring is generally less widely established in both national or international programmes, and the number of countries undertaking such studies (and the intensity of the coverage) is much smaller. Therefore, it will be essential in coming years to expand and develop further the use of biological effects methods to cover properly the EO9.

GES under Ecological Objective 09 is achieved when contaminants cause no significant impact on coastal and marine ecosystems and human health. As the type and quantities of emissions have changed and environmental legislation has led to reductions in pollution for certain substances and areas, the monitoring of contaminants needs to be adapted and focused to address present and upcoming risks that might affect the achievement of GES (GES). However coverage from current national programmes is limited. Therefore, for pragmatic reasons, initial assessments of GES under Ecological Objective 9 will probably be based upon data of a relatively small number of contaminants and biological effects, reflecting the scope of current programmes and the availability of suitable agreed assessment criteria. Important development areas over the next few years will include harmonisation of monitoring targets (determinands and matrices) within assessment sub-regions, development of suites of assessment criteria, integrated chemical and biological assessment methods, and review of the scope of the monitoring programmes to ensure that those contaminants which are considered to be important within each assessment area are included in monitoring programmes. Through these, and other, actions, it will be possible to develop targeted and effective monitoring programmes tailored to meet the needs and conditions within each assessment sub-region.

A considerable amount of monitoring data from the past decades is available through the pollution monitoring and assessment component of UNEP/MAP MED POL Programme under UNEP/MAP-Barcelona Convention. These data have been used e.g. for the identification of significant marine contaminants and the development of monitoring strategies and guidance. With respect to implementing the requirements of the Ecosystem Approach Process, there are considerable benefits to be gained from taking advantage of monitoring data and information developed through the UNEP/MAP MED POL Monitoring programme. Such actions include (1) the use of existing experience in the design of monitoring programmes, (2) the use of existing guidance on analytical etc. methods to inform technical aspects of ecosystem approach monitoring, (3) the use of existing sampling station networks as a framework for ecosystem approach sampling networks, (4) the use of existing statistical assessment tools and work on assessment criteria as the basis for assessments of ecosystem approach data, (5) the use of existing data to describe the distributions of contaminants and effects in the sea, and (6) the use of existing time series as the basis of monitoring against a “no deterioration” objective. The availability of quality assured data with confirmed quality is of importance for the assessment of trends in pollutant concentrations.

Monitoring the pressure deriving from chemical contaminants over time and space is a basic requirement for a quantitative assessment of the environmental status of the seas. Baseline assessments are necessary in order to monitor trends and prevent deterioration. Monitoring plans need to be proactive, not reactive and combined with risk assessments. Monitoring instruments and assessment criteria need to be sensitive and comparable.
While all Land Based Sources and Activities (LBS) Protocol substances should ideally be considered, their monitoring in the marine environment might not be performed for all, due to the absence of sources or the physicochemical characteristics of the substances. The availability of source information is crucial to the selection of substances for monitoring.

In view of the adoption in COP19 of the UNEP/MAP Barcelona Convention Offshore Protocol3 Action Plan, the development and adoption of Mediterranean monitoring procedures and programmes for offshore activities, is envisaged to take place in 2016 - 2017, building, inter alia, on the Integrated Monitoring and Assessment Programme of the EcAp.

Sampling a particular environmental compartment should be based on the anticipated pathway, fate and effect of each pollutant. Each compartment of the marine environment (water, sediments, biota) provides specific information about the pollution status, trends and sources of toxic substances.

The identification of pollution sources and how their associated inputs change over time is also fundamental to assess the effectiveness of the pollution mitigation strategies and to direct the further efforts needed to achieve GES. UNEP/MAP MED POL implements a periodic inventory of pollution sources and loads from land based activities, in the framework of the LBS Protocol and the Strategic Action Programme (SAP) to Address Pollution from Land-based Activities (adopted in 1997 and launched in 2000). The pollution sources database of UNEP/MAP MED POL holds 12,500 records of pollutant loads from industrial and municipal sources reported by the countries on a 5-year period (Data reported on 2003 and 2008). Each record indicates the emission of a substance for a given activity sector and sub-sector, in an administrative region and country. The database covers about 100 different substances or groups of substances and parameters according to national legislation and country development specificities. However a restricted number of substances are common to almost all national pollutant releases.

1. Monitoring Strategy for contaminants and effects (Applicable to all contaminants related indicators, ie Common Indicators 11-15)

1.1. The risk approach and precautionary principle

According to the risk approach monitoring needs to be carried out in coastal and marine areas where chemical contaminants have been found to represent significant risks to the marine ecosystems, and the data provided by the monitoring should serve the needs posed by the Ecosystem Approach process. Monitoring should allow the necessary statistical data treatments and long-term time-trend data analysis. Early warning of upcoming issues, such as emerging contaminants, should eventually become an integral part of the future monitoring systems.

The precautionary principle requires that, in doubt, protective measures should be implemented. In particular the marine environment is vulnerable due to possible accumulation of contaminants in the specific food chains and the irreversibility of impact on its ecosystems.

1.2. Selecting locations for environmental monitoring of contaminants and biological effects

The grid of monitoring stations will depend on the purpose of the specific campaigns. Most monitoring stations will be part of the UNEP/MAP MED POL monitoring schemes. It has been recognized that the open and deep sea is much less covered by monitoring efforts than coastal areas.

There is a need to include within monitoring programmes also areas beyond the coastal areas in a representative and efficient way, where risks warrant coverage.

A joint strategy for monitoring should include master stations, distributed spatial spread and other approaches, such as transect sampling, if applicable.

The selection of sites for the monitoring of contaminants and biological effects in the marine environment is a direct function of the assessment of risks and the monitoring scope:

- Areas of concern identified on the basis of the review of the existing information and linked to UNEP/MAP MED POL and WFD assessments.
- Areas of known past and/or present release of chemical contaminants.
- Offshore areas where risk warrants coverage (aquaculture, offshore oil and gas activity, dredging, mining, dumping at sea...).
- Sites representative in monitoring of other sea-based (shipping) and atmospheric sources.
- Reference sites: For reference values and background concentrations.
- Representative sensitive pollution sites/areas at sub regional scale.
- Deep-sea sites/areas of potential particular concern

The selected sites should allow the collection of a realistic number of samples (e.g. be suitable for sediment sampling, allow sampling a sufficient number of biota for the selected species during the duration of the programme). Modelling tools can provide information for the best placement of monitoring stations with respect to ocean currents and input pathways.

Contracting Parties should provide their proposed sampling locations and the reasons for monitoring. It is essential that the monitoring strategies are being coordinated at regional and/or sub regional level. Coordination with monitoring for other Ecological Objectives is crucial for cost-effective approaches. The organization of cruises as a joint effort from different Contracting Parties might be an effective option.

1.3 Geographic scale of monitoring and assessment

The geographic scale of monitoring for the assessment of GES for contaminants and their effects depends on the specific conditions of an area that may influence the background concentration of contaminants, including local mineralogy, inputs from rivers, hydrodynamic conditions, sediment texture, etc. A risk based approach should be used in order to follow a screening procedure to decide the areas to be assessed and monitored more frequently.

The areas where greater pollution pressure occurs could be divided into smaller areas for assessment purposes and could be monitored more frequently than remote and non-affected marine waters.

Monitoring for the assessment of GES for totally anthropogenic contaminants such as organochlorine compounds, could be carried out on a regional scale, since the background concentration for these contaminants is zero. However, local specificities in the production and use of these compounds (pesticides and industrial compounds) have created a difference between the sub-regions that has to be considered.

Furthermore, although coastal levels of pollutants are mainly influenced by local processes (river runoff, coastal hot spots), open-sea biota and sediments are mainly influenced by regional or even super-regional pathways (atmospheric transport and deposition of pollutants emitted from remote areas). The latter is also true for PAHs.
Based on the above, it could be appropriate to consider monitoring for assessing a regional GES threshold for open sea and a different one for coastal zones.

For naturally occurring contaminants such as heavy metals in addition to the previous remarks, as local mineralogy plays an important role in the definition of the GES threshold, since metal deposits are present in different Mediterranean locations, monitoring for the assessment of GES for heavy metals may need to be carried out on a subdivision of the sub-region according to local characteristics.

For contaminants biological effects and occurrence of oil spills, monitoring for the assessment of GES could be carried out on sub-regional or even regional level, provided appropriate information is available.

Also, for pathogenic microorganisms in bathing water, monitoring for the assessment of GES could be carried out on a sub-regional or even local level due to the nature of microbiological contamination (the impact is restricted to a relatively short distance from the pollution source due to the short survival time of microorganisms in seawater).

1.4 Monitoring frequency

Monitoring frequencies will be determined by the purpose of the sampling effort. They can range from shorter time scales for seasonally variable input, to large time scales for sediment core monitoring. For trend determination the timescales will depend on the ability to detect trends considering the variability in the whole analytical process and the number of replicates. It can be possible to decrease the monitoring frequency in cases where established time series show concentrations well below levels of concern, and without any upward trend over a number of years. For multiannual parameters, opportunities for joint organization between Contracting Parties and between or within Regional Seas Conventions should be considered.

3. Development of assessment criteria for the definition of threshold limit values for chemical environmental status monitoring of contaminants in order to be able to determine the achievement of GES.

Report UNEP(DEPI)MED WG.394/Inf.3 on the development of assessment criteria for hazardous substances in the Mediterranean presents a methodology to develop assessment criteria for the definition of threshold limit values for contaminants, in order to assess the achievement of GES in the Mediterranean marine environment in relation to the Ecological Objective EO9, in the framework of the gradual application of the ecosystem approach for the management of human activities in the Mediterranean, by MAP.

The report follows a relevant methodology developed by OSPAR, which proposes two threshold limits to be defined in sediments and biota: T0 to define the threshold at “pristine” sites and T1 to define the threshold between acceptable (GES) and unacceptable environmental conditions.

Using Mediterranean data from the UNEP/MAP MED POL database and applying the OSPAR methodology, the report presents an evaluation of the background concentrations (BCs) and the background assessment concentrations (BACs)\(^4\) of trace metals (mercury, cadmium and lead) and organic contaminants (chlorinated hydrocarbons and PAHs) in sediments and biota in the Mediterranean basin.

Regarding the definition of BACs in Mediterranean sediments, the report states that it should be noted that limited data was available and therefore more dated sediment cores from different areas are needed in order to increase the confidence of the proposed values. Additionally, in order to further test

\(^4\) Background assessment concentrations” (BACs) are statistical tools defined in relation to the background concentrations (BCs), which enable statistical testing of whether observed concentrations can be considered to be near background concentrations. Observed concentrations are said to be ‘near background’ if the mean concentration is statistically significantly below the corresponding BAC.
if normalization is convenient for sediment particle variability, aluminum (Al) and organic carbon (OC) should be considered as mandatory parameters in the new MAP integrated monitoring programme. There are already evidences from certain regions of the NW Mediterranean where it is well demonstrated that normalization is not convenient as these environmental factors are not well correlated with contaminant concentrations (León et al. et al, 2014). It will be also necessary to further investigate sub regional differences on sedimentation rate and geocomposition of the sediments.

In order to define the relationship between BC and BAC, the report states that a statistical test is required, taking into consideration the data variability of reported data on Certified Reference Materials (sediment and biota) used by Mediterranean laboratories in proficiency tests and in inter-calibration exercises. At this stage a statistical test, as described in the text of the report, on the UNEP/MAP MED POL monitoring programme is not yet available. Alternatively the report states that OSPAR defined relationships between BC and BAC for metals in sediments, fish and shellfish to assess the BACs levels could be adopted. Thus, for sediments and shellfish BAC = 1.5 x BC, for fish BAC = 2 x BC. However, that report states that it is recommended to perform a statistical test to evaluate the precision of UNEP/MAP MED POL monitoring programmes (on a country basis).

Furthermore, the report states that considering the statistical evaluation of the UNEP/MAP MED POL database performed in the report, and the large variability in the concentration levels, it is essential to perform a quality control examination of the datasets in order to better assess BAC values.

As regards the definition of Mediterranean Assessment Criteria for biota using the UNEP/MAP MED POL database, the report underlines that it is biologically inappropriate to evaluate absolute BC, BAC and Environmental Assessment Criteria (EAC) metal levels in one species from the parallel levels of even a close relative species. Therefore, BCs and BACs levels were calculated / assessed in the report generally according to OSPAR procedures.

The report states that in OSPAR assessments, some EACs have not been used mainly because they are less than the OSPAR BACs. The EACs for Cd and Pb in sediment, Hg in mussels and Hg and Cd in fish are below the corresponding BACs. In addition, the BCs and BACs for trace metals in sediments are normalized to 5% aluminum whilst proposed EACs are normalised to 1% organic carbon. It has been concluded by OSPAR that EACs for PAHs or trace metals in sediment and for metals or CBs in biota cannot be used to describe the threshold (T1) between acceptable (GES) and unacceptable environmental conditions. Therefore, in cases where the EACs have not been recommended, alternative approaches to appropriate criteria for the assessment of data on contaminant concentrations in sediment and biota were applied (as shown in Table 9.1.):

- For the Transition (T0) which represents an assessment that concentrations should be at, or close to, background concentrations, BACs are used by OSPAR.
- For the Transitions (T1), the assessment criteria were the ERLs (Effects Range Low) for PAHs and trace metals in sediment.
- It is a demanding task to determine real EAC levels, generally and also according to OSPAR documents. Therefore, until an appropriate approach becomes available for the assessment criteria for metals in biota, the EC maximum acceptable dietary levels

5 Effects range low (ERL) and effects range median (ERM) are specific chemical concentrations that are derived from compiled biological toxicity assays and synoptic sampling of marine sediment. These numerical values are sediment quality guidelines that were developed by Long and Morgan for the National Oceanic and Atmospheric Administration’s (NOAA) National Status & Trends programme as informal tools in screening sediment. ERL and ERM are considered guidelines to help categorize the range of concentrations in sediment at which effects are scarcely observed or predicted (below the ERL) and the range above which effects are generally or always observed (above the ERM). These guidelines are used for screening sediments for trace metals and organic contaminants.
(Commission Regulation (EC) No 1881/2006) were used by OSPAR (QSR 2010 assessment).

In addition, it has to be noted that there are experiences in the Mediterranean according to which ERL has been adopted as threshold for T1 as it was not possible to normalize for TOC in sediment due to low TOC content.

Table 3. Transition points for assessing contaminants in sediments and biota applied by OSPAR (OSPAR 2009).

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Transition Point</th>
<th>Sediment</th>
<th>Biota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg, Cd, Pb</td>
<td>T0</td>
<td>BAC</td>
<td>BAC</td>
</tr>
<tr>
<td>Hg, Cd, Pb</td>
<td>T1</td>
<td>ERL</td>
<td>EC</td>
</tr>
<tr>
<td>PAHs</td>
<td>T0</td>
<td>BAC</td>
<td>BAC</td>
</tr>
<tr>
<td>PAHs</td>
<td>T1</td>
<td>ERL</td>
<td>EAC</td>
</tr>
<tr>
<td>PCBs (individual congeners)</td>
<td>T0</td>
<td>BAC</td>
<td>BAC</td>
</tr>
<tr>
<td>PCBs (individual congeners)</td>
<td>T1</td>
<td>EAC</td>
<td>EAC</td>
</tr>
<tr>
<td>Σ7CBs ICES</td>
<td>T0</td>
<td>BAC</td>
<td>-</td>
</tr>
<tr>
<td>Σ7CBs ICES</td>
<td>T1</td>
<td>ERL</td>
<td>-</td>
</tr>
<tr>
<td>Lindane</td>
<td>T0</td>
<td>BAC</td>
<td>BAC</td>
</tr>
<tr>
<td>Lindane</td>
<td>T1</td>
<td>ERL</td>
<td>EAC</td>
</tr>
<tr>
<td>HCB</td>
<td>T0</td>
<td>BAC</td>
<td>BAC</td>
</tr>
<tr>
<td>HCB</td>
<td>T1</td>
<td>ERL</td>
<td>-</td>
</tr>
<tr>
<td>pp-DDE</td>
<td>T0</td>
<td>BAC</td>
<td>BAC</td>
</tr>
<tr>
<td>pp-DDE</td>
<td>T1</td>
<td>ERL</td>
<td>-</td>
</tr>
<tr>
<td>α-HCH</td>
<td>T0</td>
<td>-</td>
<td>BAC</td>
</tr>
<tr>
<td>α-HCH</td>
<td>T1</td>
<td>ERL</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>T0</td>
<td>BAC</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>T1</td>
<td>ERL</td>
<td></td>
</tr>
</tbody>
</table>

3.1. **Forward procedure for monitoring the achievement of GES for contaminants in the Mediterranean marine environment.**

The recommendations and information presented in the report are proposed to be followed up/utilized to establish a forward procedure for monitoring the achievement of GES for contaminants. This inter alia would imply further work in separate Contracting Party allocated expert groups, particularly for updating the current BACs and setting EACs for contaminants in biota on a sub-regional level.

Until EACs are defined for the major substances of concern, a two-fold approach could be adopted to support monitoring for the assessment of GES: i) a threshold value for GES (BAC) could be set using concentrations from relatively unpolluted areas on a sub-regional level and ii) a decreasing trend should be observed from values representing the actual level of contaminants concentrations that are above the background assess concentrations (BACs). Thus, GES could be defined for toxic metals (Hg, Cd, Pb), chlorinated organic compounds and PAHs, for which monitoring data exist as a result of running monitoring programmes.
Temporal trend monitoring

Marine monitoring implies the repetitive observing for defined purposes, of one or more elements of the marine environment, according to prearranged spatial and temporal schedules using comparable methodologies. The temporal trend monitoring starts with the objective to detect trends in concentrations with the aim of monitoring the effectiveness of control measures taken at polluted sites. Trends in pollutant or contaminant levels, in general, are also considered as “state” indicators of pollution and are included in most of the regional monitoring programmes to provide inputs to the assessments of the state of the marine environment.

Surface sediments and biota can be used for recognizing possible temporal trends of trace metals, organochlorine compounds, PAHS, and those that are accumulated in these matrices in the marine environment, and, thus, can be an important tool for the assessment of the effectiveness of control measures taken at the polluted sites and also for state assessment. However, data variability can be influenced by several factors other than contaminant inputs, namely those associated with sampling and the representativeness of the collected samples. In any case, the first requirement is the availability of data series long enough, so that long-term monitoring programmes are maintained in time.

In the 2005 review and analysis of UNEP/MAP MED POL Phase III Monitoring Activities (UNEP (DEC)/MED WG 282/3) consisting of an evaluation of the UNEP/MAP MED POL database for the trend monitoring of contaminants it was concluded that the UNEP/MAP MED POL Phase III programme objectives preliminarily set, were not sufficient to achieve the temporal trend of any selected contaminant for a selected site. The major reason for this was the various difficulties in data analysis, especially when normalization was intended for reducing the variance of the data set by taking into account the differences in morphology (e.g. sediment grain size) or composition (e.g. tissue fat content) of the samples. Both the selected trace metals and the organic contaminants will co-vary strongly with such factors.

A second aspect to be considered is the time span necessary for trends assessment.

In general, the first temporal trend evaluation using sessile marine organisms can be performed with data sets of more than five years ongoing programmes. The use of sediments still require a longer time span (>10yr) for evidencing and assessing significant variations. However, after ten years of the monitoring programme, certain countries still did not have valid and continuous data covering at least five years.

The 2011 analysis of the trend monitoring activities and data for UNEP/MAP MED POL Phase III and IV (UNEP (DEPI) MED365/Inf.5) concluded that though substantially improved after the last trend data evaluation in 2009, some problems were identified mainly dealing with the lack of maintaining the declared sampling strategy. The weakest part of the programme remains the data transfer and manipulation. To overcome these problems, the report states that involved countries are encouraged to write a detailed programme manual where all issues regarding a successful programme achievement would be addressed. Such a manual would include the programme objectives and a detailed methodological approach to successfully maintain the programme over time (positioning, sampling, methods, and data elaboration, exchange and presentation).

From the trend monitoring point of view the report states that the best sampling strategy always leads with attaining the best information on the sampling variance and with that a valuable determination of the underlying trend. While it is advisable to avoid pooling whenever possible, the suggested strategy for smaller organisms, mainly molluscs that are not always sufficient for all analyses, is to use 3-5 samples with 15 pooled specimens or in any case a number of pooled specimens that guarantees the necessary amount of sample to conduct all the chemical analyses. If one sampled organism, mainly

6 A revised manual for sediment sampling and analysis was adopted in 2006 (UNEP (DEC) MED WG.282/Inf.5/Rev.1.)
fish, provides enough sample for all analyses the use of from 15 to 25 (preferred) samples is suggested if the underlying variances are not known. The sample should be collected in a length stratified manner: divide the size distribution in three or five classes (log scale and depending on size: MG -1 cm; MB - 2 cm.) and sample the central one; the same size class should always be sampled.

4. Monitoring Biological Effects

Biological effects monitoring is considered as an important element in programmes which aim to assess the quality of the marine environment, since such monitoring aims to demonstrate links between contaminants and ecological responses. Biological effects monitoring can thus be used with the intention to indicate the presence of substances, or combinations of substances, not previously identified as being of concern and to identify regions of decreased environmental quality.

Biomarkers include a variety of measures of specific molecular, cellular and physiological responses of key species to contaminant exposure. A response is generally indicative of either contaminant exposure or compromised physiological fitness. The challenge is to integrate individual biomarker responses into a set of tools and indices capable of detecting and monitoring the degradation in health of a particular type of sentinel organism.

The use of biomarkers is relatively new when compared to traditional chemical monitoring. Even today those biomarkers which are considered well understood often still lack historic track records and simple data management adequate for routine risk assessment and monitoring. Some results were produced in the last twenty years through individual research projects national or international programmes in marine waters (BIOMAR, BEEP, IOC-IMO UNEP funded programme of Global Investigation of Pollution of the Marine Environment). Despite the important principle underlying the biomarker concept, that is, response should lead to ecological effects, there are still few examples where biomarker measurements have been directly linked to community level responses. However, many examples revealing environmental problems, that is, acting as warning signals of potential future problems, have been demonstrated in the past decades (Demetrio et al., 2003; Martínez-Gómez et al., 2010; Fernández et al., 2011).

Biological effects monitoring should be coordinated with the monitoring of chemical contaminants in a cost-effective manner, conducting field sampling, whenever possible, within the same time-frame.

The integrated assessment (biological effect and chemical measurements) should comprise only a limited number of stations including at least:

- Reference sites: For reference values and background concentrations
- Areas of concern identified on the basis of the review of the existing information linked to MED POL, WFD and MSFD assessments
- Representative sensitive pollution sites/areas at subregional scale

Strategy for sampling and analysis should include, whenever possible:

- Sampling and analyses of the same tissues and individual/populations than chemical monitoring
- Sampling of individuals for biological effects from the same site/area as that used for chemical analyses at a common time
- Sampling sediments at the same time and location as collecting biota (i.e. fish)
For all stations, biometrics (size/length, age), biological supporting parameters such as condition index (mussels), condition factor, gonadosomatic index, hepatosomatic index (fish) and data on temperature, salinity and oxygen dissolved of the ambient water should be also registered.

For an integrated biomarker data management, an Expert System has been developed at the University of Piemonte Orientale, Italy (DISAV) in the framework of the BEEP (Biological Effects of Environmental Pollutants) EU programme. The function of the Expert System is to rank the level of the pollutant-induced stress syndrome by integrating the data obtained from:

- Early warning biomarkers: i.e. sensitive biomarkers of stress, or of exposure, revealing the effects of pollutants at the molecular and/or cellular level.
- Biomarkers of stress, suitable to reveal the development of the stress syndrome at the tissue/organ level: i.e. histological biomarkers, but also biochemical biomarkers such as the GST (Glutathione Transferase) test recently developed (i.e. evaluation of the GST released from the cells and present in molluscan haemolymph).
- Biomarkers of stress at the organism level: i.e. biomarkers able to show that the stress syndrome has decreased the mussel’s capacity of survival and/or growth and reproduction (such as stress on stress response, scope for growth, gonad and gamete alterations, survival index).

A good interpretation of the development of the stress syndrome by the expert system depends on the possibility to utilize control samples for each assessment and biomarkers of stress able to integrate the toxic effects of pollutants over a sufficient caging period. Among these, are those biomarkers that show a trend characterized by a continuous increase or decrease in the value of the selected parameter (such as lysosomal membrane stability, lysosomal lipofuscin accumulation, lysosomal neutral lipid accumulation, micronuclei frequency) in relation to an increase in toxicity. Moreover, the expert system takes into account possible interferences among the different biomarkers. However, the representation of the assessment does not maintain all of the supporting information, and it is not easy to identify the causative determinands that may be responsible for the final result on the level of stress syndrome. In addition, different stages of the assessment cannot be readily unpacked to a previous stage to identify either contaminant or effects measurements of potential concern or sites contributing to poor regional assessments.

Besides of expert system, different indexes have being developed to assess contaminant-related biological responses by combining results from different biomarkers such as Integrated Biomarker Response (IBR) (Belaiief and Burgeot, 2002), the Health Assessment Index (HAI) (Adams et al., 1993), the Bioeffect Assessment index (Broeg at al., 2005), and the Integrative Biomarker Index (Marigómez et al., 2013). Furthermore, different models are becoming available in the Mediterranean region to elaborate various typologies of data with the 5 classes approach, and to aggregate them in a final evaluation, still based on the 5 classes discrimination (Benedetti et al., 2012).

Molluscs (mainly mussels, Mytilus sp.) and fish (Mullus sp., Platichthys flesus L., Zoarces viviparus, Perca sp.) from natural populations have both been widely employed as sentinel organisms in routine biomonitoring programmes, both at a national and an international level (UNEP/MAP UNEP/MAP MED POL Biomonitoring Programme; OSPAR Convention, RAMOGE, etc.), although some subregional and national research projects have also been conducted in the past years using caged mussels (RINBIO; MYTILOS, MYTIMED Project, etc). Exposure periods lasting several months are generally required to assess bioaccumulation of most persistent organic contaminants and to reveal more subtle chronic effects on organisms. Although caged mussels can be used to assess certain early biological effect responses, they cannot substitute the pollution biomonitoring programmes based on the sampling of mussels from natural populations. As the experience have demonstrated, the use of caged mussels for large-scale biomonitoring programmes involves a higher-cost monitoring strategy...
than the use of mussels from natural populations because at least, two field sampling campaigns have
to be organised, and recovery of the cages is not guaranteed. The use of caged mussels for effect
monitoring can however be useful in short-term exploratory environmental studies, e.g. around hot
spots.

While the use of fish in biological effects monitoring programmes, building on the key position of
these organisms in the trophic chain and their high commercial value is well established, their usage
already in the initial stage of the monitoring programme on a regional level would present some
problems, including the difficulties encountered in caging experiments with fish as well as more
importantly the cost of sampling, caging, transportation. However, field sampling to assess
contaminants levels in fish tissues could be integrated and coordinated with sampling of other fish
tissues (liver, blood, gonads, brain, etc) to implement in future the use of biological effects in fish
from natural populations instead of caging fish. Their inclusion in the integrated monitoring
programme thus is not foreseen in the initial phase, but could be envisioned afterwards..

Molluscs have been taken as the bioindicators of choice on the basis of their wide geographic
distribution, their straightforward availability in the field and through aquaculture, and their suitability
for caging experiments along coastlines. In the framework of UNEP/MAP MED POL Phase IV, it was
decided to apply a 2-tier approach, using caged molluscs:

- the first tier would include a single biomarker, namely, lysosomal membrane stability, and
 mortality;
- the second tier would include a whole set of biomarkers including acetyl cholinesterase
 activity, micronuclei frequencies, lipofuscin accumulation, neutral lipid accumulation, oxidative
 stress, metallothionein content, peroxisome proliferation, lysosome to cytoplasm ratio, and stress on
 stress.

An intercalibration exercise financed by UNEP/MAP MED POL was organised in 2010 by DiSAV
with the participation of 11 Mediterranean laboratories from 8 countries (Croatia, Egypt, Greece, Italy,
Slovenia, Spain, Syria and Tunisia) and 3 non-Mediterranean laboratories (Norway and UK, from the
OSPAR region). The results of the intercalibration exercise showed excellent performance of all
laboratories for the measurement of lysosome membrane stability and very good performance for the
measurement of metallothionein content. Also a Training course on the measurement of two
biomarkers (lysosome membrane stability and micronuclei frequency) was organised in Alessandria,
Italy by DiSAV in 2010, with the participation of 15 scientists from 10 countries (Algeria, Croatia,
Egypt, Greece, Italy, Morocco, Slovenia, Spain, Tunisia, Turkey) and with the contribution of
scientists from ICES-OSPAR (UK).

Based on the work already carried out, the results of the intercalibration exercises and the publication
of relevant papers by Mediterranean scientists involved in the UNEP/MAP MED POL programme on
biological effects monitoring, there is a network of laboratories in the Mediterranean region with the
capacity to carry out biomonitoring activities, in line with the new monitoring requirements to be
defined in the framework of the Ecosystem Approach for the management of human activities in the
Mediterranean.

Of the second tier biomarkers proposed, only the micronuclei frequency biomarker is able to indicate
the presence of genotoxic chemicals in the environment, especially in sites heavily polluted by
polycyclic aromatic hydrocarbons, and in organisms that may also be considered as seafood. With
growing concern over the presence of genotoxins in the sea, the application of cytogenetic assays to
ecologically relevant species offers the chance to perform early tests on health in relation to exposure
to contaminants. Acetylcholinesterase activity is a cost effective biomarker of neurotoxic effects of
pollutants, especially pesticides, applicable with instrumentation available in the Contracting Party
laboratories. Its responsiveness has been demonstrated also to various other groups of chemicals
present in the marine environment, including heavy metals, and hydrocarbons. Laboratory and field
studies have demonstrated the applicability of anoxic/aerial survival as an early warning indicator of
contaminant-induced stress. The reduction of survival in air, or stress on stress (SoS), is a simple, low-cost, whole-organism response and can show pollutant-induced alterations in an organism’s physiology that render the animal more sensitive to further environmental changes. Bivalve molluscs can survive for a long time in air, but individuals stressed by pre-exposure to pollutants show greater mortality than controls or individuals collected from a reference location. The method for determining SoS in mussels has been applied routinely to both toxicant-exposed mussels in laboratory studies and mussels collected in national monitoring programmes from polluted environments and along pollution gradients. Taking into account the number of samples to be analyzed and available facilities in the Contracting Party laboratories, the best number of further to these biomarkers to be gradually introduced into the biological effects monitoring programme could be determined.

While recognizing that contaminant-specific techniques that cannot guarantee that measuring responses within marine organisms from natural populations are ceased to the exposure of single specific contaminants, the most widely used specific technique is the measurement of TBT effects (imposex) on gastropods, where a cause and effect relationship has been established. There is a possibility to use available information for TBT thresholds for GES from other regions (Davies and Vethaak, 2012) in order to propose similar effects thresholds for the Mediterranean.

In general the monitoring of contaminant-related biological effects should be coordinated with the monitoring of chemical contaminants in a cost-effective manner, conducting field sampling, whenever possible, within the same time-frame.

4.1. Assessing Biological Effects

In a similar manner to contaminant concentrations, ICES/OSPAR has proposed two/three categories to assess the biological effects observed, by using two assessment criteria: BAC and EAC (Davies et al., 2012). Assessing biomarker responses against BAC and EAC allows establishing if the responses measured are at levels that are not causing deleterious biological effects, at levels where deleterious biological effects are possible or at levels where deleterious biological effects are likely in the long-term. In the case of biomarkers of exposure, only BAC can be estimated, whereas for biomarkers of effects both BAC and EAC can be established. However, unlike contaminant concentrations in environmental matrices, biological responses cannot be assessed against guideline values without consideration of factors such as species, gender, maturation status, season and temperature.

It is expected that in the forthcoming years, the scope of experts groups would be to prepare an adapted manual establishing the BAC and when possible, the formulation of EAC for selected biomarkers in Mediterranean species.

One of the challenges in assessing the health status of organisms using assessment criteria is precisely the strategy by which to integrate the multivariate results obtained. The approach recently developed by ICES was based on an assessment of single responses by assessment criteria, then scoring them in a multi-step process to arrive at a final risk assessment (Davies and Vethaak, 2012).

5. Monitoring acute pollution events for the quantification of acute chemical spills, specifically of oil and its products, but not excluding others (Common Indicator 13 Occurrence, origin and where possible extent of acute pollution events)

The UNEP/MAP-Barcelona Convention and its Prevention and Emergency Protocol aim at the protection of the environment against oil and chemical spills with a coherent coverage and equal level of protection for the entire Mediterranean Sea. The Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) is responsible for the prevention of, preparedness for and response to marine pollution. In this regard, the Centre’s database on alerts and accidents in the
Mediterranean Sea contains data on accidents causing or likely to cause pollution of the sea by oil (since 1977) and by other harmful substances (since 1989).

While there should be no overlap or double work with existing provisions, the guidance on integrated monitoring should here ensure that all aspects are being covered under the various frameworks, that monitoring information is exchanged between the networks and that potential for a cost effective integrated monitoring is used.

The operational objective contains two different criteria:

- Occurrence, origin, extent.
- Impact on biota physically affected.
- Monitoring efforts can therefore use the following methods for quantification:
 - Quantification of oil and other chemical spills and their size by observation and reporting.
 - Satellite radar images, plane observation and imaging approaches.
 - Backtracking of oil spills to their source by hind cast modelling.
 - Fingerprinting using chemical analysis (GC-MS) and comparison with possible sources.

The organizational framework under which the monitoring of oil and other chemical spills is being dealt with under the UNEP/MAP Barcelona Convention is REMPEC. Mediterranean coastal States, contracting Parties to the 2002 Prevention and Emergency Protocol to the UNEP/MAP Barcelona Convention, committed themselves (Article 9 of the Prevention and Emergency Protocol) to inform each other, either directly or through the Regional Centre (i.e. REMPEC) on:

- all accidents causing or likely to cause pollution of the sea by oil and other harmful substances
- the presence, characteristics and extent of spillages of oil or other harmful substances observed at sea which are likely to present a serious and imminent threat to the marine environment or to the coast or related interests of one or more of the Parties;
- their assessments and any pollution combating actions taken or envisaged to be taken
- the evolution of the situation.

In relation to their obligations under the abovementioned Article 9 of the Prevention and Emergency Protocol, at their Fifth Ordinary Meeting, the Contracting Parties to the UNEP/MAP Barcelona Convention adopted the Guidelines For Co-operation In Combating Marine Oil Pollution In The Mediterranean (UNEP/IG.74/5, UNEP/MAP, 1987) which recommend Parties to report to REMPEC at least all spillages or discharges of oil in excess of 100 cubic metres.

Article 18 of the UNEP/MAP Barcelona Convention Protocol for the Protection of the Mediterranean Sea against Pollution Resulting from Exploration and Exploitation of the Continental Shelf and the Seabed and its Subsoil, states that in cases of emergency the Contracting Parties shall implement mutatis mutandis the provisions of the Emergency Protocol.

While Contracting Parties are under the obligation for the above monitoring, data submitted to REMPEC is still scarce. Thus the main aim during the Initial Phase of the Integrated Monitoring is to strengthen monitoring efforts towards this already existing obligation.

At the same time, for the further development of the Integrated Monitoring and Assessment Programme, it is recommended to analyse closer the links in between acute pollution events and their

effects on biota and develop specific assessment criteria for this latter (see Martínez-Gómez et al., 2010).

6. **Monitoring of contaminants in fish and other seafood used for human consumption**

(Common Indicator 14 Actual levels of contaminants that have been detected and number of contaminants which have exceeded maximum regulatory levels in commonly consumed seafood)

Substances to be monitored

Monitoring of contaminants in biota used for human consumption only measures contaminants in fish and other seafood for which regulatory limits have been set in national and international regulations for public health reasons. The significance of an increase for specific contaminants in the marine environment through trend analysis should be regarded as an important element for inclusion in seafood monitoring. Similarly, when results from monitoring of contaminants in the marine environment indicate a very low likelihood for elevated levels in fish and seafood for human consumption, additional monitoring on these commodities is not justified.

Monitoring should at least consider the following contaminants for which regulatory levels have been laid down: Heavy metals (lead, cadmium, and mercury), polycyclic aromatic hydrocarbons, dioxins (including dioxin-like PCBs). Additionally, further contaminants of relevance should be identified.

Species

The selection of the species to be used for monitoring should consider the following criteria:

- Species more prone to biomagnify/bio-accumulate specific classes of contaminants
- Species representative of the different trophic levels or habitats
- Species representative for entire (sub) region
- Species representing consumer habits

Moreover, in order to make monitoring results more comparable between (sub) regions, it would be advisable to select a limited number of target species from the most consumed species of fish and other seafood.

Sample collection

Only unprocessed products should be sampled for this purpose. A key element will be to analyse seafood in the sea from known locations. The monitoring of contaminants in seafood is executed by the responsible authorities in charge, which often are different from the authorities implementing the EcAp and its associated monitoring. Here, cooperation with authorities and environmental institutions in charge of health monitoring is strongly encouraged. Topics for coordination are:

- Providing information on the origin of the samples: Sampling of fish and seafood at retail stage shall only be done when all necessary conditions (e.g. avoid cross contamination, traceability to (sub) region) can be guaranteed
- Exploring synergies in the monitoring of marine top predators
- Exchanging information on data, approaches and methodologies between environmental monitoring institutions and human health risk related monitoring institutions

9 A list of maximum levels for contaminants in foods set by the FAO/WHO Codex Alimentarius Commission can be found at ftp://ftp.fao.org/codex/Meetings/cccf7/cccf7_e07_INFe.pdf
7. Monitoring microbiological pollution (Common Indicator 15: Percentage of intestinal enterococci concentration measurements within established standards)

Taking into consideration that the Mediterranean Sea continues to attract every year an ever increasing number of international and local tourists that among their activities use the sea for recreational purposes, the issue of monitoring for potential microbiological pollution is of particular importance. Although the general situation has improved considerably in several parts of the region through the establishment of sewage treatment plants and the construction of submarine outfall structures, the matter is still of major concern in a number of areas and the quality of recreational waters needs regular monitoring.

Revised Mediterranean guidelines for bathing waters were formulated in 2007 based on the WHO guidelines for “Safe Recreational Water Environments” and on the EC Directive for “Bathing Waters”. The proposal was made in an effort to provide updated criteria and standards that can be used in the Mediterranean countries and to harmonize their legislation in order to provide homogenous data.

The values agreed for the Mediterranean region in COP 17 (Decision IG.20/9 Criteria and Standards for bathing waters quality in the framework of the implementation of Article 7 of the LBS Protocol, (UNEP/MAP, 2012) are presented in Table 4 and could be used to define GES for the indicator on pathogens in bathing waters.

By definition monitoring for the assessment of GES for bathing waters is expected to be close to the shore, but the threshold is valid on a regional level. Therefore, the category A or B values could be defined as a GES threshold for intestinal enterococci in bathing waters in the Mediterranean.

Table 4. Water quality criteria for intestinal enterococci in bathing water

<table>
<thead>
<tr>
<th>Category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit values</td>
<td><100*</td>
<td>101-200*</td>
<td>Up to 185**</td>
<td>>185**(1)</td>
</tr>
<tr>
<td>Water quality</td>
<td>Excellent quality</td>
<td>Good quality</td>
<td>Sufficient</td>
<td>Poor quality/ Immediate Action</td>
</tr>
</tbody>
</table>

* 95th percentile intestinal enterococci/100 mL (applying the formula 95th Percentile = antilog (μ + 1,65 σ))

** 90th percentile intestinal enterococci/100 mL (90th Percentile=antilog (μ + 1,282 σ), μ calculated arithmetic mean of the log10 values; σ= calculated standard deviation of the log10 values.

8. Quality Assurance and Quality Control of contaminants monitoring

The accuracy and comparability of the data collected is a key requirement for the assessment and description of environmental status and for the assessment of anthropogenic influences and required measures. Quality assurance (QA) and quality control (QC) measures ensure that monitoring results of stated quality are obtained across the Mediterranean Region and at any time.
Much effort has been made by the MAP Secretariat so that the Contracting Parties would be in a position to generate accurate data on marine contaminants. UNEP/MAP MED POL will continue to collaborate with the International Atomic Energy Agency and the specific Marine Environmental Studies Laboratory (MESL), based in Monaco.

The MESL produces Certified Reference Materials (for trace elements and organic compounds in sediment and marine biota) and develops fit-for purpose Recommended Analytical Methods for the analysis of contaminants in marine samples. Also, in collaboration with Regional Organisations and national authorities, MESL organises Proficiency Tests and Training Courses on the analysis of contaminants of concern.

9. Reference methods and guidelines for marine pollution monitoring under UNEP/MAP MED POL

In the framework of the LBS Protocol, UNEP/MAP is assisting Mediterranean Contracting Parties in the assessment of the state of the marine environment and of its resources, of the sources and trends of pollution and the impact of pollution on human health, marine ecosystems and amenities. In order to assist the countries and to ensure that the data obtained through this assessment can be compared on a world-wide basis and thus contributing to the Global Environmental Monitoring System (GEMS) of UNEP, a set of reference methods and guidelines for marine pollution studies, covering technical aspects of monitoring, sample selection, preservation and analysis, have been developed and recommended to be adopted by Governments participating in the Regional Seas Programme. The methods and guidelines have been prepared in cooperation with the relevant specialised bodies of the United Nations system (WHO, FAO, IAEA, IOC) as well as other organisations and are tested by competent experts. The Methods and Guidelines are periodically revised taking into account the development of our understanding of the problem, of analytical instrumentation and the actual need of the users. The Marine Environment Laboratory of the International Atomic Energy Agency (IAEA) in Monaco is responsible for the technical co-ordination of the development, testing and intercalibration of Reference Methods.

The Reference Methods for the analysis of pollutants in water, sediment and biota, in the framework of the UNEP/MAP-UNEP/MAP MED POL, can be found at www.unepmap.org (Document and publications; Library Resources; Reference Methods). UNEP/MAP has recently updated selected recommended methods to be used as appropriate for monitoring of contaminants in the marine environment.
ECOLOGICAL OBJECTIVE 09: Contaminants cause no significant impact on coastal and marine ecosystems and human health

<table>
<thead>
<tr>
<th>Common Indicator description</th>
<th>DESCRIPTION Parameters and/or Elements, matrix</th>
<th>Assessment Method</th>
<th>Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods</th>
<th>Recommendations /Additional work, data needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Indicator 11, COP18 indicator number 9.1.1: Concentrations of key harmful contaminants in the relevant matrix (biota, sediment, seawater)</td>
<td>Hg, Cd, Pb, PCBs, halogenated pesticides (aldrin, dieldrin, HCB, lindane, ΣDDTs), PAH. In sediment and representative biota (bivalves i.e Mytilus galloprovincialis, fish i.e. Mullus barbatus). PAHs in fish are not considered representative. Aluminum (AL) and Organic Carbon(OC) measurements in sediment for testing normalization purposes pH in seawater to measure</td>
<td>UNEP/MAP MED POL State and Temporal Trend Monitoring Programme At least annually, for biota (for mussels at the pre-spawning period and for fish at the non-spawning period) and every 4-6 years for sediments in low sedimentation areas, (annually for sediments in high sedimentation areas including estuaries and harbours), at the most stable hydrographic conditions.</td>
<td>UNEP/MAP MED POL Programme for the Assessment and Control of Pollution in the Mediterranean Region MAP Technical Reports Series No. 120 QA/QC through UNEP/MAP MED POL/IAEA MESL Sampling Analysis Reference Methods are listed in the Integrated Monitoring Guidance document.</td>
<td>Further contaminants may be added following countries specificities and/or regional importance following a review and assessment of LBS Protocol Priority List of substances [such as another trace metals, TBT, PBDE, etc.]. Specification of EAC required for trace metals in sediment and biota and PAH in sediments. Online expert group established to develop BAC and EAC as appropriate First estimates of background concentrations for trace metals in sediments and biota and PAHs in sediments are available from CP National Monitoring Programmes. Common decision needed on whether to develop methodology in order to include monitoring of oil affected seabirds (quantification, aimed at chronic oil pollution events not acute ones). Common decision needed on whether the indicator only covers (a) the period since the cut-off from data used for the UNEP/MAP MED POL initial assessment; (b) only the period from the start of the</td>
</tr>
<tr>
<td>Common Indicator description</td>
<td>DESCRIPTION Parameters and/or Elements, matrix</td>
<td>Assessment Method</td>
<td>Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods</td>
<td>Recommendations /Additional work, data needed</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acidification</td>
<td></td>
<td></td>
<td></td>
<td>ECAP monitoring programme; or (c) a longer time period, e.g. in view of the interest to show the overall changes in the marine environment</td>
</tr>
<tr>
<td>Levels of pollution effects of key contaminants where a cause and effect relationship has been established</td>
<td>Monitoring of contaminants in seawater presents specific challenges and therefore recommended to be carried out on a country by country decision basis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common Indicator 12, COP18 indicator number 9.2.1:

Levels of pollution effects of key contaminants where a cause and effect relationship has been established

With Operational Objective of 9.2 Effects of released contaminants are minimized.

Impact indicator

- **Lysosomal Membrane Stability (LMS)** Tier 1 mandatory biomarker on the basis of the 2-Tier approach.
- **Reduction of survival in air or Stress on Stress (SoS)** Tier 2 optional biomarker on the basis of the 2-Tier approach.
- **Acetylcholinesterase (AChE)** assay as a method for assessing neurotoxic.

Assessment Method

- UNEP/MAP MED POL State and Temporal Trend Monitoring Programme.
- Sampling minimum annually or semi-annually in the pre-spawning period in case of mussels.

Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods

- **MTS 120**
- **UNEP/RAMOG: Manual on the Biomarkers Recommended for the UNEP/MAP MED POL Biomonitoring Programme. UNEP, Athens, 1999.**
- **UNEP/MAP, 2005. Fact sheets on Marine Pollution Indicators. WGUNEP(DEC) / MED/ WG.264 / Inf.14.**
- **Background document: stress on stress (SoS) in bivalve molluscs. Concepción Martínez-Gómez and John Thain. In ICES Cooperative Research Report No 315.**

Recommendations /Additional work, data needed

- Further biomarkers may be added following countries specificities and/or regional importance recommendation list established by experts.
- Ache and Micronucleus assay recommended to build the capacity of UNEP/MAP MED POL designated laboratories for a period of 3-4 years after which consideration whether adopted as mandatory components of the UNEP/MAP MED POL ECAP Monitoring Programme.
- For AChE BAC and EAC should be estimated for different geographical regions and include the differences in seawater T°
- Several studies have demonstrated that Micronuclei baseline frequencies depend.
<table>
<thead>
<tr>
<th>Common Indicator description</th>
<th>DESCRIPTION Parameters and/or Elements, matrix</th>
<th>Assessment Method</th>
<th>Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods</th>
<th>Recommendations /Additional work, data needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>effects in aquatic organisms. Tier 2 optional biomarker on the basis of the 2-Tier approach. Micronucleus assay as a tool for assessing cytogenetic/DNA damage in marine organisms. Tier 2 optional biomarker on the basis of the 2-Tier approach. In bivalves (i.e. mussels Mytilus galloprovincialis)</td>
<td>Background document: Acetylcholinesterase assay as a method for assessing neurotoxic effects in aquatic organisms Thierry Burgeot, Gilles Bocquené, Joelle Forget-Leray, Lúcia Guilhermino, Concepción Martínez-Gómez, and Kari Lehtonen. In ICES Cooperative Research Report No 315. Background document: micronucleus assay as a tool for assessing cytogenetic/DNA damage in marine organisms Janina Baršienė, Brett Lyons, Aleksandras Rybakovas, Concepción Martínez-Gómez, Laura Andreikenaite, Steven Brooks, and Thomas Maes. In ICES Cooperative Research Report No 315. QA/QC through UNEP/MAP MED POL Inter-calibra-tion exercises in agree-ment with University of Piemonte Orientale Italy (DiSAV)</td>
<td>on water temperature. Common decision needed on whether to develop methodology (including deciding on sentinel species) in order to include monitoring for imposex in gastropods for the effect of TBT. Decission should be taken after a period of several years when imposex data are starting to be available for Mediterranean Region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All accidents causing or likely to cause pollution of the sea by oil and other chemical spills and their size by observation and reporting.</td>
<td>UNEP MAP Emergency Protocol Reporting Guidelines available through REMPEC Report available through REMPEC (POL)</td>
<td>Contracting Parties would need to improve reporting of information to REMPEC as part of their commitments under the Emergency and Prevention and Emergency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common Indicator 13, COP18 indicator number 9.3.1 Occurrence, origin
<table>
<thead>
<tr>
<th>Common Indicator description</th>
<th>DESCRIPTION Parameters and/or Elements, matrix</th>
<th>Assessment Method</th>
<th>Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods</th>
<th>Recommendations /Additional work, data needed</th>
</tr>
</thead>
</table>
| (where possible, extent of significant acute pollution events (e.g. slicks from oil, oil products and hazardous substances) and their impact on biota affected by this pollution) | other harmful substances
The presence, characteristics and extent of spillages of oil or other harmful substances observed at sea which are likely to present a serious and imminent threat to the marine environment or to the coast or related interests of one or more of the Parties;
Their assessments and any pollution combating actions taken or envisaged to be taken
The evolution of the situation. | Optional utilization of:
- Satellite radar images, plane observation and imaging approaches
- Backtracking of oil spills to their source by hind cast modelling;
- Fingerprinting using chemical analysis (Gas Chromatography-Mass Spectrometry) and comparison with possible sources | REP) for reporting to REMPEC spills in excess of 50m³ For lower levels reporting should be at the discretion of the countries. Sampling analysis, reference methods are available through REMPEC/IMO. | Protocols. |
| Common indicator 14, COP18 Indicator 9.4.1: Actual levels of | At least the following contaminants for which regulatory levels have been assessed | Assessment of the results of monitoring executed/commissioned by the authorities responsible for health monitoring, of contaminants in fish and other seafood used for human consumption. | Monitoring executed/commissioned by the authorities responsible for health monitoring, of contaminants in fish and other seafood used for human consumption. | This type of monitoring was not included under UNEP/MAP MED POL Phase IV. It is recommended that to connect the required monitoring data to the |
Common Indicator Description

<table>
<thead>
<tr>
<th>Common Indicator Description</th>
<th>DESCRIPTION Parameters and/or Elements, matrix</th>
<th>Assessment Method</th>
<th>Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods</th>
<th>Recommendations /Additional work, data needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>contaminants that have been detected and number of contaminants which have exceeded maximum regulatory levels in commonly consumed seafood</td>
<td>laid down: Heavy metals (Pb, Cd, Hg), PAH, dioxins including dioxin-like PCBs</td>
<td>monitoring for cases for which monitoring of contaminants under indicator 9.1.1 (and possibly 9.2.1) show cause for concern</td>
<td></td>
<td>UNEP/MAP MED POL Database by the Contracting Parties. In order to make monitoring results more comparable between sub-regions it would be advisable to select a limited number of target species from the most consumed species of fish and other seafood. A list of maximum levels for contaminants in foods set by the FAO/WHO Codex Alimentarius Commission can be found at: ftp://ftp.fao.org/codex/Meetings/ccc7/ccf07_INFe.pdf</td>
</tr>
<tr>
<td>Common indicator 15, COP 18 Indicator 9.5.1: Percentage of intestinal enterococci measurements</td>
<td>Intestinal enterococci in seawater in bathing and other recreational areas</td>
<td>UNEP/MAP MED POL/WHO Bathing and Recreational Water Monitoring Programme Sampling fortnightly in spring and summer to autumn</td>
<td>Criteria and Standards for Bathing Waters in the Mediterranean Region. COP 17 Decision IG 20/9 QA/QC available through UNEP/MAP MED POL/WHO ISO 7899-2 based on membrane filtration technique or any other approved technique</td>
<td></td>
</tr>
<tr>
<td>Common Indicator description</td>
<td>DESCRIPTION Parameters and/or Elements, matrix</td>
<td>Assessment Method</td>
<td>Monitoring Guidelines, data and existing QA/QC Sampling and Analysis Reference Methods</td>
<td>Recommendations /Additional work, data needed</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>within established standards With Operational Objective 9.5: Water quality in bathing waters and other recreational areas does not undermine human health Pressure, Impact indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter III

Marine Litter chapter and related fact sheet
III. MONITORING AND ASSESSMENT METHODLOGICAL GUIDANCE ON EO10: MARINE LITTER

1. Introduction

In the UNEP/MAP Barcelona Convention/LBS Protocol system, the monitoring of marine litter is regulated both through the Regional Plan on Marine Litter management (herein after referred to as MLRP), adopted by COP 18, 2013 and the COP18 EcAp Decision. The latter specified the key relevant marine litter ecological and operational objectives as well as a set of three ML state indicators.

Article 12 of the MLRP provides for a Mediterranean Marine Litter Monitoring Programme, which will be in synergy with the relevant international and regional guidelines including the relevant work carried out under the EU MSFD.

The EcAp CorGest meeting held in February 2014 adopted EcAp marine litter common indicators (common indicators 16-17) and one candidate indicator (candidate common indicator 18).

Special attention was paid to two key relevant documents on marine litter monitoring namely the UNEP Operational Guidelines for Comprehensive Beach Litter Assessment (Cheshire et al. 2009) and the “Guidance on Monitoring of Marine Litter in European Seas” produced between 2012 and 2013 by the European Union Task Group on Marine Litter (TSG ML). Both aforementioned documents were presented as information documents UNEP DEPI (MED) WG 394. Inf.4 and UNEP DEPI (MED) WG 394. Inf.5 for the EcAp Coordination Group in September 2015.

The recent overviews by UNEP (Cheshire et al., 2009), and by NOAA, (Opfer et al., 2012), are the most comprehensive and useful overviews for monitoring methods on the coast. The UNEP overview includes a comprehensive comparison of existing marine litter survey and monitoring methods and protocols in which beach surveys were assessed. Much of the information included in the TSG ML report for the monitoring of beach litter is taken from the UNEP Operational Guidelines for Comprehensive Beach Litter Assessment (Cheshire et al., 2009) and the NOAA Marine Debris Shoreline Survey Field Guide (Opfer et al., 2012).

The objective of the “Guidance on Monitoring of Marine Litter in European Seas” is to provide EU Member States with recommendations and information needed to implement harmonized monitoring programmes for marine litter. The report describes specific protocols and considerations to collect, report and assess data on marine litter, in particular beach litter, floating litter, seafloor litter, litter in biota and micro-litter.

The TSG ML monitoring guidance document was developed through a collaborative programme involving the European Commission, all EU Member States, the Accession Countries and Norway, international organisations, including all the Regional Sea Conventions and other stakeholders and Non-Governmental Organisations. The document should be regarded as presenting an informal consensus position on best practice agreed by all partners. Dealing with a topic under development through research efforts and by fast growing experience this guidance is regarded as a living document to be regularly reviewed.

All the protocols suggested by TSG-ML are aimed mainly at assessing environmental status and environmental targets. All protocols can supply quantitative data, and allow the assessment of trends. The beach litter protocol is also designed to identify sources by using a detailed list of identifiable items, while other protocols can do this to some extent through their lists of items, but also by modifying the sampling strategy (where and when to sample) to match the likely effects of specific measures.

In their analysis of the protocols, the issue of compatibility and coherence has been important. Most of the protocols proposed can be applied across the Regional Seas scale. However, some of the protocols
for litter in biota cannot be identical, for the simple reason that the proposed species do not all occur across the Regional Seas.

A complete analysis of risk should ideally include quantitative knowledge of harm. An analysis of harm will be a focus area for future work. In the event of insufficient quantitative data availability on harm, the risk-based approach is chosen to be addressed by an assessment of where the amounts of litter are likely to be highest or the type of litter which has the largest impact (e.g., microplastics). Already in the selections of protocols a degree of risk-based approach is used. For example, it is proposed to measure litter on the sea surface rather than in the whole water column, because pilot studies indicate that litter quantities are higher on the sea surface. Similarly, the protocols for monitoring on the sea floor propose to assess where litter tends to accumulate (e.g., through pilot studies or oceanographic modelling), and then to direct monitoring towards such areas. While there may be problems to generalize the results from this kind of monitoring to other areas, such strategies are in line with a risk-based approach.

As mentioned above in the document, due to lack of experience on marine litter monitoring within the UNEP/MAP MED POL programme, the Secretariat has developed the present working document drawing largely on the above mentioned UNEP Operational Guidelines for Comprehensive Beach Litter Assessment and on the Guidance on Monitoring of Marine Litter in European Seas.

2. Establishing a monitoring framework for marine litter in the Mediterranean

The COP18 EcAp Decision includes definitions of GES and targets for marine litter indicators. These indicators refer to litter washed ashore or deposited on coastlines, litter in the water column, including microplastics, and on the seafloor and litter ingested by or entangling marine organisms, especially marine mammals, seabirds and marine turtles.

Fulfilling the monitoring requirements under the Regional Plan on Marine Litter and under EcAp is a major undertaking, and resources for monitoring can be limited. Contracting Parties are, therefore, faced with the decision of what to monitor, and whether it is essential to assess litter amounts, in all of the environmental compartments mentioned above. It is then important to remember that these different compartments can indicate different pathways and sinks for marine litter, and do not necessarily substitute each other.

Our present understanding of litter in the marine environment, which is based on information for only a subset of these compartments, is not sufficient to draw conclusions about the trends and amounts of litter, in the various size categories, in the total marine environment. Biota indicators have a different, but not less important, function: they give an indication of possible harm. Furthermore, the compartments selected for monitoring should also provide information for the identification of sources, not only in terms of the nature and purpose of the items, but also their original source (which can be related to unsuitable or accidental disposal), and the pathway through which the item entered the marine environment. Again, this may vary among the different environmental compartments. At the same time, it is acknowledged that the protocols/methods such as those listed in the TSG-ML report have different degrees of maturity, i.e. to what extent they are tested in the field, and are in common use.

It is strongly recommended that Contracting Parties, which currently have plans to monitor only in a subset of environmental compartments, to start with small pilot research or development projects in other compartments. This would provide baseline data to make an informed decision about future, full-scale monitoring programmes. Without information on trends and amounts, in all the marine compartments, a risk-based approach to litter monitoring and measures is not possible.

A considerable number of citizens, communities (NGOs, civil society initiatives) and environmental protection associations and institutes across the Mediterranean are already taking part in activities to tackle marine litter. The aim would be to enable them to participate in a Mediterranean regional
attempt to address marine litter issues as envisaged through the MLRP and to empower citizen networks to help improve the evidence base needed to reach the EcAp main objectives.

2.1. **Some general considerations on spatial distribution of survey sites: site selection strategies**

The strategy used to select sites is partly a statistical/technical issue but foremost it is related to the purpose of monitoring, a decision to be taken when a monitoring strategy is defined. The site selection strategy has fundamental consequences for the monitoring analysis, as has the selection of the survey method. Monitoring programmes are not compatible or comparable if they use the same survey methods, but different site selection strategies (e.g. special site selection on the basis of litter pollution levels, or a randomised selection of sites.)

Sites can be chosen individually because they have certain characteristics and they represent what is needed for the CPs (marine pollution, characterization of sources, etc.). This may be because they are considered to have certain environmental or societal values. For example, a beach that has a high number of visitors, because the beach is situated in a certain area, or simply because the site has heavy litter loads. Usually, the site is revisited during subsequent surveys to assess trends. The advantage of this approach is that if several sites are chosen for sharing the same characteristics, the litter load they receive is expected to be more similar than those chosen randomly and, therefore, the variation will be less than those chosen randomly. With this in mind, the ability to detect statistically significant trends will be increased. The main disadvantage of the strategy is that, as individual sites are chosen deliberately for special features, they are therefore different from other sites. Hence they may be less suitable for drawing conclusions about average litter levels etc. for a given region. It may add difficulty in interpreting statistical results for technical and philosophical reasons.

Sites may be chosen randomly from a large number of possible sites, meeting certain criteria based upon the method and the monitoring purpose. Sites may be revisited or chosen for each monitoring occasion; the important issue is how they were selected in the first place, e.g. a random selection from many possible sites. The main advantage of this strategy is that results can be extrapolated to other possible sites, i.e. we can use the results to draw conclusions about larger areas. Nevertheless, the variation among sites can be high, making it difficult and costly to find statistically significant trends.

In practice, these two strategies are rarely used in their pure form. Instead a combination is used which is sometimes referred to as, “stratified randomised sampling strategy”. Sites meeting certain criteria are (more or less) randomly chosen. The criteria may include geographic, environmental, societal and other factors. An example would be to choose sites that are close to harbours, to monitor effects of pollution from harbours, and/or sites that are situated in relatively remote areas, to monitor large-scale pollution levels without strong influence from local sources. This is compatible with a risk-based approach. Priority should be given to monitoring programmes that measure environmental status and trends, in sites where the risk of harm is greatest. The criteria for the site selection should then be based on prediction of potential harm. Prediction of potential harm could be based on practical knowledge of which environmental values are most sensitive to harm. However, the current understanding of how different species or biotopes react to litter is insufficient, and should be further researched. Another approach to harm may be based on aspects that are particularly “valuable” to society for other reasons e.g. economically, socially or environmentally. A third approach is to assume that harm is more likely to occur in areas/environments where there is a lot of litter and select sites based on screening monitoring to identify them. While this option may be practical and make sense in terms of societal needs, it is important to remember that we do not know if statistical trends from such sites are representative of other sites (probably not), but represent a “worst case” scenario.

One way to make best use of limited resources is to take advantage of other studies and programmes where litter monitoring can be integrated (what is called “opportunities to reduce costs”). An example is to combine monitoring for litter on the sea floor with scientific trawling for fish stock biomass.
estimation (such as under the Mediterranean International Trawl Survey, MEDITS). In such a case, the selection of sites is designed for the original monitoring programme purpose, and representation of other areas are already defined. Where use of such a scheme is made, it is important to analyse the sampling strategy to assess if this is suitable for litter monitoring too.

For marine litter, a stratified, randomised sampling strategy where possible is advocated. Also, that the purposes of the monitoring programmes define the criteria for selecting sites. Simplification is necessary when resources are limited, and concentration of monitoring effort is the logical result.

Monitoring for trend analysis: Statistical power or how many sampling stations are needed to detect a change?

The ability of a monitoring programme to show a statistically significant trend or difference is called statistical power. Statistical power is influenced by the magnitude of the trend, the variation among replicates, and the number of replicates.

The magnitude of the trend is a characteristic of the combined effect of the environment and our (miss) handling of litter. In that sense, the magnitude of the trend is dependent on the action we take against litter. When designing a monitoring programme an important decision is related to the magnitude of change we wish to detect. It is of course easier to detect a large trend than a small trend. The smaller the magnitude we want to detect, the more comprehensive the monitoring programme needs to be. If the action plans to tackle marine litter aim at reducing litter amounts significantly, then monitoring programmes can detect real changes.

The number of replicates is something that is easy to change given sufficient resources. Replicates, in the case of litter trends, are a combination of monitoring sites and monitoring occasions. Using the same amount of sites, the ability to detect a significant trend increases with time. In monitoring programmes, which often are complex with multiple temporal and spatial layers, the actual number of replicates is less easy to define.

The variation among replicates is a characteristic of the system studied. All biological systems tend to be very variable. To a certain extent, we can influence this by having well defined monitoring protocols and quality assessments, to minimize the added variation due to handling. More important, however, is the ability to decrease variation among sites, by introducing criteria for the sampling, as described in the section on site selection strategies above. This is not cutting corners or cheating, but it is important to realize that the possibility to extrapolate to un-sampled sites decreases.

Common to all three factors influencing statistical power is that they are case specific. It is not possible to give general advice on how many replicates are adequate, except to say the more the better. Firstly, decisions about the purpose of a specific monitoring programme, and what the sites should represent have to be made. Then some estimate of variation is necessary. The data on variation should, ideally, come from a pilot study using the same sites. Otherwise data from similar programmes can be used. Only then can calculations of statistical significance be made, and thus the required number of sites for the monitoring programme be arrived at.

An important and encouraging fact is that it is of value to start a monitoring programme even if the initial resources are limited. The initial data from monitoring can nevertheless be used for subsequent trend analysis (albeit with reduced statistical power), but more importantly, the data collected can be used to refine the design of the programme, including power calculations.

Power calculations for litter monitoring, using methods suggested in this report, have been made for some protocols, e.g. the Sea-bird litter ingestion protocol applied to Fulmars.
A possible challenge in monitoring of time trends of microparticles

Microparticles in the marine environment may enter directly as such from synthetic textile fragments, plastic particles used in cosmetic, or industrial cleansers, etc., but they can also result from the progressive fragmentation of larger pieces or items already present in the sea. If the former source is the dominant, conclusions may be drawn from fluctuation of trends. If the latter is the main source it is more problematic. Then it is possible to interpret increasing or decreasing trends as a net input of fragments or microparticles into the marine environment, when the increase may be caused by changes in the rate of breakdown of larger particles, i.e. not caused by a change in the overall amount of marine litter.

2.2. Some general considerations regarding Quality Assessment/Quality Control approaches and requirements

Since important decisions will be taken, based on the results obtained by monitoring programmes, it is important that the data generated is of acceptable quality. In order to ensure the quality and integrity of marine litter monitoring data, investment must be made in the capacity-building of national, regional and local survey coordination and management.

The use of quality control and assurance measures, such as inter-calibrations, use of reference material where appropriate, and training for operators should accompany the implementation of adopted monitoring protocols. These approaches should be developed in the context of dedicated research.

The value of the monitoring programmes results can be enhanced where a standard list of litter items is used as a basis for preparing assessment protocols. A master-list of categories of litter items has been prepared by TSG-ML. The use of appropriate field guides with examples of each litter type will assist survey team members (particularly volunteers) to be consistent in litter characterization. Such field guides should be coupled to the master list of litter items, and be made available over the web to increase consistency between survey teams working at remote locations.

The use of standard lists and definitions of items will enable the comparison of results between regions and environmental compartments. Items can be attributed to a given source e.g. fisheries, shipping etc. or a given form of harm e.g. entanglement, ingestion etc. The value of monitoring results can be increased further by identifying the main sources of marine litter pollution, and the potential level of harm that marine litter may inflict. This will enable a more target-orientated implementation of measures. Throughout the period 2013-2014, the TSG-ML will further elaborate on approaches to link detailed categories of items to the most probable source, and to other important strategic parameters which can help design and monitor measures and UNEP/MAP may also benefit from this work.

3. Monitoring of litter washed ashore and/or deposited on coastlines (Common indicator 16, Trends in the amount of litter washed ashore and/or deposited on coastlines, ie Beach Litter)

3.1. Introduction to Beach Litter

The recent overviews by UNEP, in Cheshire et al. (2009), and by NOAA, in Opfer et al. (2012), are the most comprehensive and useful overviews for monitoring methods on the coast. The UNEP overview includes a comprehensive comparison of existing marine litter survey and monitoring methods and protocols in which beach surveys were assessed (Cheshire et al., 2009).

Much of the information included in the Final Report of TSG ML is taken from the UNEP Operational Guidelines for Comprehensive Beach Litter Assessment (Cheshire et al., 2009) and the NOAA Marine Debris Shoreline Survey Field Guide (Opfer et al., 2012).
When designing marine litter surveys it is necessary to differentiate between standing-stock surveys, where the total load of litter is assessed during a one-off count, and the assessment of accumulation and loading rates during regularly repeated surveys of the same stretch of beach with initial and subsequent removal of litter.

Both types of survey provide information on the amount and types of litter, however, only the accumulation surveys provide information on the rate of deposition of litter and trends in litter pollution. As the ECAP requires an assessment of trends in marine litter recorded on coastlines only methods for the assessment of accumulation would be recommended.

The type of survey selected depends on the objectives of the assessment and on the magnitude of the pollution on the coastline. A single survey method has been recommended by TSG-ML with different spatial parameters for light to moderately polluted coastline and for heavily polluted coastlines.

3.2. **Requirements of a harmonised protocol**

The comparison of beach litter data between assessment programmes is the primary aim of a harmonised protocol. Comparison is difficult if different methods, different spatial and temporal scales, different size scales of litter items and different lists or categorisation of litter items recorded on beaches are used within the Regional Seas.

The type of survey selected depends on the objectives of the assessment and on the magnitude of the pollution on the coastline. A single survey method is recommended by the TSG-ML, with different spatial parameters for light to moderately polluted coastline and for heavily polluted coastlines.

Amounts of litter on the shore can be relatively easily assessed during surveys carried out by non-scientists using unsophisticated equipment. Coastal surveys are thus a cost effective way of obtaining large amounts of information. The litter deposited on the coastline can vary greatly between sites and seasons, affected by hydrographical and geomorphological characteristics of the area (e.g. prevailing winds and currents, exposure of the beach to the sea) but also depending on the use of the coast (e.g. larger amounts can be deposited during the tourist season or during special events). Therefore, coastal surveys should focus on fixed sites, which fulfil the requirements of the protocol, and the timing of the survey (i.e. season) should take into account the potential sources of litter to the site (e.g. flooding in rainy seasons may increase the amounts). Sites can be placed far from known sources, in order to better reflect reference values for background litter pollution levels, or close to potential sources. By using temporal trends for assessments, both of the survey strategies give important information for managers.

3.2.1 **Amounts, composition, distribution and sources of Beach Litter**

Amounts of litter on the shore can be relatively easily assessed during surveys carried out by non-scientists using unsophisticated equipment. Coastal surveys are thus a cost effective way of obtaining large amounts of information. The litter deposited on the coastline can vary greatly between sites and seasons, affected by hydrographical and geomorphological characteristics of the area (e.g. prevailing winds and currents, exposure of the beach to the sea) but also depending on the use of the coast (e.g. larger amounts can be deposited during the tourist season or during special events). Therefore, coastal surveys should focus on fixed sites, which fulfil the requirements of the monitoring protocol, and the timing of the survey (i.e. season) should take into account the potential sources of litter to the site (e.g. flooding in rainy seasons may increase the amounts). Sites can be placed far from known sources, in order to better reflect reference values for background litter pollution levels, or close to potential sources. By using temporal trends for assessments, both of the survey strategies give important information for managers.
Trends in amounts of litter

The variation in the amount of litter present on a given beach between surveys and the variation between beaches, even in the same region, can be extremely large. This makes the identification of trends difficult, especially taking into account seasonal variations. Moreover, as litter accumulates on beaches, surveys should be carried out at regular intervals in time so that the accumulation periods are approximately of the same length.

Composition of litter

The assessment of composition of litter is one of the great strengths of coastal assessments. A detailed assessment of litter composition provides information on potential harm to the environment and in some cases on the source of the litter found. The assessment of composition must follow commonly agreed categories in order to provide results which are comparable over larger regions.

Spatial distribution

Amount and composition of marine litter varies over geographical scales and reflects hydrographical (e.g. currents, wave exposure, wind directions) and geomorphological (e.g. steepness of a shore, amounts of inlets or islands) characteristics of the coast. Hydrographical characteristics determine the amount of litter accumulating in waters adjacent to the coast, whereas geomorphological characteristics determine how much of this litter becomes washed ashore.

Sources of marine litter

The source of litter found on the coast can be clearly identified for some litter items. These are mostly items which originate from fisheries, or debris flushed down sewerage systems. Even with these items some caution is needed e.g. a fish box may originate from a fishing vessel or from a fishing port.

A comprehensive master list of items and categories has been developed within the TSG-ML. The sources for some items need to be designated at a regional level, because initial assessments of litter on coastlines show that sources for a given item can be different between regions.

The master list will enable at least a rough estimate of the sources of litter found on coastlines, but it should be evaluated in survey sites against known local sources. If detailed information is required it will be necessary to carry out detailed research into the sources involved e.g. to identify between litter deposited directly on the beach by tourists and litter arriving on the beach from adjacent waters. In addition drift analysis of litter in adjacent waters could provide valuable information on its geographical origin.

3.2.2 Strategy for monitoring beach litter

Selection of survey sites

Ideally the selected sites should represent litter abundance and composition for a given region. Not any given coastal site may be appropriate, as they may be limited in terms of accessibility, suitability to sampling (sand or rocks/boulders) and beach cleaning activities. If possible the criteria below should be used:

- A minimum length of 100m;
- Clear access to the sea (not blocked by breakwaters or jetties) such that marine litter is not screened by anthropogenic structures;
- Accessible to survey teams year round, although some consideration needs to be;
- Ideally the site should not be subject to any other litter collection activities, although it is recognized that in many parts of Europe large scale maintenance cleaning is carried out periodically; in such cases the timing of non-survey related beach cleaning must be known such that litter flux rates (the amount of litter accumulation per unit time) can be determined.
• Survey activities should be conducted so as not to impact on any endangered or protected species such as sea turtles, sea birds or shore birds, marine mammals or sensitive beach vegetation; in many cases this would exclude national parks but this may vary depending on local management arrangements. Within the above constraints, the location of sampling sites within each zone should be stratified such that samples are obtained from beaches subject to different litter exposures, including:

• Urban coasts may better reflect the contribution of land-based inputs;
• Rural coasts may better reflect background values for litter pollution levels
• Coasts close to major rivers, if downstream from the prevailing drift, may better reflect the contribution of riverine input to coastal litter pollution.

Number of sites

At present there is no agreed statistical method for recommending a minimum number of sites that may be representative for a certain length of coast. This depends greatly on the purpose of the monitoring, on the geomorphology of the coast and how many sites that meet the criteria described above are available. The representativeness of survey sites should be assessed in pilot studies, where initially a large numbers of beaches are surveyed. Subsequently, selection of representative beaches from these sites should be made on the basis of a statistical analysis.

Frequency and timing of surveys

At least two surveys per year in spring and autumn are recommended and ideally 4 surveys in spring, summer, autumn and winter. However, because of the large seasonal variation in amounts of litter washed ashore, initially a higher frequency of surveys may be necessary in order to identify significant seasonal patterns, which can then be considered when treating raw data for long-term trend analyses.

Preferably, the surveys for all participating beaches in a given region should be carried out within the shortest timeframe possible within a survey period. Coordinators within these regions should try and coordinate the survey dates between beaches. Furthermore a given beach should be surveyed on roughly the same day each year if possible.

It should be kept in mind that circumstances may lead to inaccessible and unsafe situations for surveyors: heavy winds, slippery rocks and hazards such as rain, snow or ice, etc. The safety of the surveyors must always come first. Dangerous or suspicious looking items, such as ammunition, chemicals and medicine should not be removed. Inform the police or authorities responsible. If working on remote beaches it is recommended to work with a minimum of two people.

Documentation and characterisation of sites

It is very important to document and characterise the survey sites. As surveys should be repeated on exactly the same site the coordinates of the site should be documented.

Sampling unit

Once a beach is chosen sampling units can be identified. A sampling unit is a fixed section of beach covering the whole area between the water edges (where possible and safe) or from the strandline to the back of the beach.

• At least 1 section of 100m on the same beach, optimum 2 sections, are recommended for monitoring purposes on lightly to moderately littered beaches
• At least 2 sections of 100 m for heavily littered beaches (exceptionally 50m section with a normalisation factor of up to 100m to ensure coherence)
Permanent reference points must be used to ensure that exactly the same site will be monitored for all surveys. The start and end points of each sampling unit can be identified by different methods. For example, numbered beach poles could be installed at the site or easily identifiable landmarks could be used. Coordinates obtained by GPS are useful for identifying the reference beaches especially where easily identifiable landmarks are lacking.

Units (quantification) of litter

Counts of items are recommended as the standard unit of litter to be assessed on the coastline.

Collection and identification of litter items

All items found on the sampling unit should be entered on survey forms. On the survey forms, each item is given a unique identification number. Data should ideally be entered on the survey form while picking up the litter. Collecting the litter first and identifying it later may alter numbers as collected litter tends to get more entangled or broken.

Unknown litter or items that are not on the survey form should be noted in an appropriate “other item box”. A short description of the item should then be included on the survey form. If possible, digital photos should be taken of unknown items so that they can be identified later and, if necessary, be added to the survey form.

A master list of litter categories and items is included in the TSG-ML Final Report. This master list includes a list of categories and items to be recorded during beach litter surveys. A reduced list for the Mediterranean, MSFD and OSPAR compatible (see annex), that includes the most frequent items found in Mediterranean beaches may be considered and more useful and practical for the field work. This will also enable a coordinated and harmonized monitoring when operated by NGOs.

It has been strongly recommended to produce regional photo guides including pictures of all litter items on the regional survey protocol. This will assist in the correct identification and allocation of recorded items.

Size limits and classes of items to be surveyed

There are no upper size limits to litter recorded on beaches.

The lower limit of detection, when walking a beach, is probably somewhere around 0.5 cm (plastic pellets), however, it is doubtful that such small items can be monitored effectively using the standard protocol for Marine Litter and in a repeatable fashion during beach surveys.

A lower limit of 0.5 cm in the longest dimension is recommended for litter items monitored during beach surveys. This would ensure the inclusion of caps & lids and cigarette butts in any counts.

Removal and disposal of litter

Removal of litter should be carried out at the same time as monitoring the litter. Coupling removal with monitoring ensures better accuracy of reporting and enables comparison of litter accumulation over time; It also has the added advantage of leaving a clean beach. It is important to note that only the 100m ref section(s) need to be monitored and cleaned. Further areas of a beach can be cleaned without monitoring if surveyors/volunteers wish to do so.

The litter collected should be disposed of properly. Regional or national regulations and arrangements should be followed. If these do not exist local municipalities should be informed.

Larger items that cannot be removed (safely) by the surveyors should be marked, with for example paint spray (for marking trees) so they will not be counted again at the next survey.
Many municipalities will have their own cleaning programme, sometimes regularly, sometimes seasonal or incident related. Arrangements should be made with the local municipalities so that they either exclude the reference beach from their cleaning scheme or they provide their cleaning schedule so surveying can be carried out a few days before the municipality will clean the beach.

Preferably a set time should be established for each beach between the date when the beach was last cleaned and the date when the survey is carried out. It is advisable to contact the municipality before starting a survey to obtain the latest information on beach cleaning activities. Sometimes an incident, for example a storm, will alter their cleaning programme.

3.3. **Quality Assessment /Quality Control for beach litter**

Based on the UNEP Guidelines (Cheshire et al., 2009), any long-term marine litter assessment programme will require a specific and focussed effort to recruit and train field staff and volunteers. Consistent, high quality training is essential to ensure data quality and needs to explicitly include the development of operational (field based) skills. Staff education programmes should incorporate specific information on the results and outcomes from the work so that staff and volunteers can understand the context of the litter assessment programme.

Quality assurance and quality control should be primarily targeted at education of the field teams to ensure that litter collection and characterization is consistent across surveys. Investment in communication and the training of the country/regional and local survey coordinators and managers is thus critical to survey integrity.

The quality assurance protocol of Ocean Conservancy’s National Marine Debris Monitoring Program (USA) required a percentage of all locations to be independently re-surveyed immediately following the scheduled assessment of litter (Sheavly, 2007). The collected litter from the follow-up survey could then be added to that of the main collection and could be used to provide an estimate of the error level associated with the survey.

3.4. **Conclusion**

In order to enable temporal and spatial comparisons within and across regions, standard litter survey methods should, where possible, be applied at all levels (local to regional) and the assessment of its composition follows agreed categories of items.

4. **Monitoring of litter at sea (Common Indicator 17 Trends in the amount of litter in the water column including microplastics and on the seafloor, so-called Floating Litter)**

Note: Because of the low occurrence of litter in midwater, it is recommended that the indicator focus on surface and seafloor litter

4.1. **Introduction to floating litter**

There exists early documentation of the occurrence of man-made objects, mainly plastic, floating at sea (Venrick 1972, Morris, 1980). While significant actions in waste management and disposal have been taken, floating litter is still a concern. It poses a direct threat to fish, marine mammals, reptiles and birds. Harm can occur through ingestion of whole items or pieces or by feeding on larger litter items. Entanglement can occur by floating bags, nets and other fishing gear. It can be assumed that marine macro litter is a precursor of marine micro litter.
4.2. **Scope and key questions to be addressed**

Monitoring of litter at open sea and on long transects, is not currently addressed as this requires different approaches, in particular regarding the observation conditions provided by the ships used for the surveys and regarding the possibility to monitor smaller items.

The fraction of litter under discussion, includes floating items in the water column close to the surface, as caused e.g. by the temporary mixing of floating particles under the water surface due to wave action. Litter in the deeper water column is currently not recommended for routine monitoring and should be subject of research efforts.

4.3. **Existing approaches for visual ship-based observation of floating litter**

HELMEPA (Hellenic Mediterranean Protection Association) uses a fleet of ocean going member vessels on a voluntary basis to obtain monitoring data through a reporting sheet. The EcoOcéan Institut is performing monitoring of floating litter in parallel with monitoring of marine mammals in the north-western Mediterranean Sea. UNEP guidance considers both sampling of an area through a dedicated observation pattern and transect sampling for monitoring of surface floating litter (UNEP, 2009).

4.3.1. Discussion of observation protocol elements

The observation of floating marine litter from ships is subject to numerous variables in the observation conditions. They can be divided into operational parameters, related to the ship properties and observation location.

The processing of the collected information, starting from the documentation on board, its compilation, elaboration and further use should be part of a protocol in order to derive comparable final results. The format should allow a compilation across different observing institutes and areas or regions. This would allow a plotting of floating litter distribution over time and thus finally allow the coupling with oceanographic current models.

4.4. **Strategy for monitoring of floating litter**

4.4.1. Source attribution of floating marine litter

Due to the observation methodology, the source attribution for floating litter is challenging. The type of marine litter objects can only be noted during very short visual observation. Therefore, in difference to beach litter, it is likely that only rough litter categories can be determined.

The spatial distribution of floating marine litter instead gives, in combination about currents, and river information indications about the physical source, i.e. the litter input zone and its pathway, which is very valuable information about source strength and may help to design appropriate measures and check their efficiency.

The monitoring of floating litter is very likely to be an iterative process during which in an initial phase hot spots and pathways are determined, while in an evolving monitoring programme selected transects help with the quantification of trends.

4.4.2. Spatial distribution of monitoring

The monitoring of floating marine litter by human observers is a methodology indicated for short transects in selected areas. In a region with little or no information about floating marine litter abundance it might be advisable to start by surveys in different areas in order to understand the variability of litter distribution. The selected areas should include expected low density areas (e.g. open sea) as well as expected high density areas (e.g. close to ports). This will help to obtain maximum/minimum conditions and train the observers. Other selected areas (e.g. in estuaries), in the
vicinity of cities, in local areas of touristic or commercial traffic, incoming currents from neighbouring areas or outgoing currents should be considered.

Based on the experience obtained in this initial phase, a routing programme including areas of interest should then be established.

4.4.3. Timing of floating marine litter monitoring

The observation of floating marine litter is much depending on the observation conditions, in particular on the sea state and wind speed. The organization of monitoring must be flexible enough to take this into account and to re-schedule observations in order to meet appropriate conditions. Ideally the observation should be performed after a minimum duration of calm sea, so that there is no bias by litter objects which have been mixed into the water column by recent storms or heavy sea.

The initial, investigative monitoring should be performed with a higher frequency in order to understand the variability of litter quantities in time. Even burst sampling, i.e. high sampling frequency over short period, might be appropriate in order to understand the variability of floating marine litter occurrence.

For trend monitoring the timing will depend on the assumed sources of the litter, this can be e.g. monitoring an estuary after a rain period in the river basin, monitoring a touristic area after a holiday period.

The timing of the surveys will also depend on the schedule of the observation platforms. Regular patrols of coast guard ships, ferry tracks or touristic trips may offer frequent opportunities which thus also allow the use during the needed calm weather conditions.

4.5. Visual monitoring of floating litter

The reporting of monitoring results requires the grouping into categories of material, type and size of litter object. The approach for categories of floating litter is linked with the development of a “master list” with the categories for other environmental compartments such as the “master list” prepared by the TSG-ML. This allows cross comparisons.

The categories of items for floating litter should be, as far as practical, consistent with the categories selected for beach litter, seafloor litter and others. There are limitations to this, but in principal the derived data should allow a comparison across different environmental compartments, in particular between beach and surface floating litter. Therefore the list of item categories that should be adopted for floating litter corresponds to the Master List of items. For the practical use during the monitoring the list has to be arranged by object occurrence frequency so that the data acquisition can be done in the required short time. Tablet computer applications for facilitating the data documentation are under development.

As floating litter items will be observed but not collected, the size is the only indicative parameter of the amount of plastic material that it contains. The size of an object is defined here as its largest dimension, width or length, as visible during the observation.

The lower size limit for the observations is determined by the observation conditions. These should be harmonized so that a lower limit of 2.5 cm can be achieved. That size appears to be reasonable for observation from “ships-of-opportunity” and is in line with the size for beach litter surveys. This denotes that observations not achieving this minimum size limit cannot be recommended.

For reporting purposes size range classes must be introduced as visual observation will not permit the correct measuring of object sizes. Only the estimation of size classes is feasible.
The size determination/reporting scheme should enclose the following classes:

- 2.5 – 5 cm
- 5 - 10 cm
- 10 – 20 cm
- 20 – 30 cm
- 30 – 50 cm

While also wider size range classes (e.g. 2.5–10cm, 10–30cm, 30–50 cm) could be utilized, it will be important that a common approach is used, as the data will be combined in common data bases. The test phase of implementing a monitoring protocol should allow the determination of overall accepted and final size range classes. The upper size limit will have to be determined by statistical calculations regarding the density of the object occurrence in comparison to transect width, length and frequency. In coherence with the beach litter surveys an upper limit of 50 cm is here provisionally proposed. It has to be evaluated in experiments and from initial data sets if items larger than 50 cm should be reported, as their relevance in the statistical evaluation of data from short and narrow coastal transects might be questionable.

4.6. Visual monitoring of floating litter

A harmonized approach for the quantification of floating marine litter by ship-based observers has been developed by the TSG-ML. It has the scope to harmonize the monitoring of floating marine litter:

- In the size range from 2.5 to 50 cm,
- Observation width needs to be determined according to observation set-up,
- It is planned for use from ships of opportunity,
- It is based on transect sampling,
- It should cover short transects, and
- Also record necessary metadata.

4.6.1. Observation

The observation from ships-of-opportunity should ensure the detection of litter items at 2.5 cm size. The observation transect width will therefore depend on the elevation above the sea, the ship speed and the observation conditions. Typically a transect width of 10 m can be expected, but a verification should be made and the width of the observation corridor chosen in a way that all items in that transect and within the target size range, can be seen. Table 10.1 below provides a preliminary indication of the observation corridor width, with varying observation elevation and speed of vessel (kn = knot = nautical mile/h). The parameters need to be verified prior to data acquisition.

The ideal location for observation will often be in the bow area of the ships. If that area is not accessible, the observation point should be selected so that the target size range can be observed, eventually reducing the observation corridor, as ship induced waves might interfere with the observations. An inclinometer can be used to measure distances at sea (Doyle, 2007).
Table 5: Width of “observation corridor” based on observation height and ship speed (to be reviewed)

<table>
<thead>
<tr>
<th>Observation elevation above sea</th>
<th>Ship speed 2 knots = 3.7 km/h</th>
<th>6 knots =11.1 km/h</th>
<th>10 knots = 18.5 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>6m</td>
<td>4m</td>
<td>3m</td>
</tr>
<tr>
<td>3m</td>
<td>8m</td>
<td>6m</td>
<td>4m</td>
</tr>
<tr>
<td>6m</td>
<td>10m</td>
<td>8m</td>
<td>6m</td>
</tr>
<tr>
<td>10m</td>
<td>15m</td>
<td>10m</td>
<td>5m</td>
</tr>
</tbody>
</table>

The protocol will have to go through an experimental implementation phase during which it is applied in different sea regions by different institutions, its practicality is tested and feedback for definition of observation parameters is provided.

The observation, quantification and identification of floating litter items must be made by a dedicated observer who does not have other duties contemporaneously. Observation for small items and surveying intensively the sea surface leads to fatigue and consequently to observation errors. The transect lengths should therefore be selected in a way that observation times are not too long. Times of 1 h for one observer could be reasonable, corresponding to a length of a few kilometres.

4.6.2. Reporting of monitoring results

A harmonized reporting of monitoring results is crucial for the comparison of data. The data output from the application of the protocol, when using a computer interface, is a list of geo-referenced objects according to a list of categories. The use of a portable computer device for documenting marine floating litter has clear advantage over paper documents. A specific application, based on the TSG -ML protocol for the monitoring of floating macro litter will be developed by JRC and field tested within the PERSEUS project.

It is not uncommon that floating litter items appear grouped, either because they have been released together or because they accumulate on oceanographic fronts. The reporting system should acknowledge this and foresee a way to report such groups. The occurrence of such accumulation areas needs to be considered when evaluating the data.

For floating marine litter the unit of reporting will be: items/km². The data will be available for the different categories and size classes. They can then be aggregated at different levels for providing overview data.

Along with the litter occurrence data, a series of metadata should be recorded, including geo-referencing (coordinates) and wind speed (m/s). This accompanying data shall allow the evaluation of the data in the correct context.

4.6.3. Quality assessment/Quality control

The widespread acquisition of monitoring data will need some kind of inter-comparison or calibration in order to ensure comparability of data between different areas and over time, for trend assessments. Approaches for this should be developed and implemented. This can be hands (eyes)–on training courses with comparisons of observations. Such events should be organized at Regional level with further implementation at national scale.
A methodology for calibrating observation quality by artificial targets may be devised through research efforts.

4.6.4. Equipment

The equipment used for the monitoring of floating litter is very limited. Besides the transportation platform some instruments may facilitate the work:

- A system for visually marking the observation area,
- GPS for determination of ship speed and geographical coordinates,
- A tablet PC (with GPS) for documenting the results (including a dedicated application/program),
- A system for training and calibrating size classification.

4.6.5. Implementation of the TSG-ML Protocol

The finalization and wide acceptance of the protocol proposed by TSG –ML will require an experimental testing period during which observation parameters and reporting approaches are being studied on a wide range of ships and conditions, covering different regional seas. This can be achieved through the ECAP implementation process and through dedicated activities in research projects, such as PERSEUS. Resulting data can be used for adjusting the protocol. Once the protocol parameters, such as standardized size ranges, categories and observation conditions are confirmed, a final version can be prepared. The final protocol should be widely disseminated and accompanied by activities for its implementation. Training courses and workshops can contribute to the harmonized acquisition of comparable datasets.

4.7. Other methodologies

Open sea surveys

While the proposed protocol is aiming at coastal surveys, there are also approaches for monitoring of litter from large, seagoing vessels. While covering large areas, these surveys face considerably different observation conditions and therefore different observation protocols.

Aerial surveys

The opportunistic use of aerial surveys (e.g. for marine mammal observation/monitoring) has been considered. The minimum size of observed objects is at ca. 30 cm, therefore this approach might be adequate to the size fraction above 30 cm considered by the TSG-ML.

Net tow surveys for macro litter

Physical sampling of floating macro litter requires large net openings operated at the sea surface. Given the density of larger macro litter items occurrence this would require significant dedicated ship time and specific equipment. This method is applicable for floating micro litter. There should be methodological research on how to cover the size range between 5 mm and 2.5 cm, which is very relevant to ingestion by marine biota.

Riverine litter monitoring

While not envisaged in the current litter monitoring framework, the TSG –ML protocol is equally well applicable for the monitoring of floating litter on rivers as an indication of a potential source of loads of litter to the marine environment, by observation from bridges or similar platforms.
New methodologies

Closely related to the monitoring by human visual observation is the monitoring through image acquisition by digital camera systems and their subsequent analysis by image recognition techniques. Such is the Sealittercamera, which is being developed by the EC JRC, a system being temporarily deployed on Costa Crociere cruise ships in the Western Mediterranean Sea (Hanke, 2011, publication in preparation).

4.8. Conclusions

Key messages to the ECAP implementation process:

- The monitoring of floating marine litter in selected coastal transects is recommended
- Monitoring Marine Litter suspended in the middle water column is not recommended
- Monitored size categories should include a range covering relevant small items
- Monitoring of floating litter should follow a specific protocol agreed on a Regional scale within the ECAP/UNEP/MAP MED POL monitoring implementation process

5. Seafloor Litter (Common Indicator 17, Trends in the amount of litter in the water column including microplastics and on the seafloor)

5.1. Introduction to seafloor litter

The most common approaches to evaluate sea-floor litter distributions use opportunistic sampling. This type of sampling is usually coupled with regular fisheries surveys (marine reserve, offshore platforms, etc.) and programmes on biodiversity, since methods for determining seafloor litter distributions (e.g. trawling, diving, video) are similar to those used for benthic and biodiversity assessments. The use of submersibles or Remotely Operated Vehicles (ROVs) is a possible approach for deep sea areas although this requires expensive equipment. Monitoring programmes for demersal fish stocks, undertaken as part of the Mediterranean International Bottom Trawl Surveys (MEDITS), operate at large regional scale and provide data using a harmonized protocol, which may provide a consistent support for monitoring litter at Regional scale on a regular basis and within the ECAP requirements.

5.2. Scope and key questions to be addressed

For shallow waters, the monitoring of litter on the seafloor may not be considered for all coastal areas because of limited resources. In these areas the strategy is to be determined by each contracting Party at national level, depending on the priority areas to be monitored. Opportunistic approaches may be used to minimize costs. Valuable information can be obtained from on-going monitoring of benthic species in protected areas, during pipeline camera surveys, cleaning of harbours and through diving activities. Additional monitoring might have to be put in place to cover all areas creating a consistent monitoring network. The sampling strategy should enable the generation of good detail of data, in order to assess most likely sources, the evaluation of trends and the possibility of evaluating the effectiveness of measures. The TSG-ML proposes simple protocols based on existing trawling surveys and two alternative protocols based on diving and video imagery which fit with the ECAP requirements and support harmonisation at Regional level, if applied trans-nationally.

Trawling (otter or beam trawl) is an efficient method for large scale evaluation and monitoring of seafloor litter. The monitoring strategy for sea-floor can efficiently be based on on-going monitoring already developed at Regional level. It must be noted, however, that the geomorphology may impact
the accumulation of litter in the seafloor and some sampling restrictions in rocky areas (incompatible with trawling) may lead to underestimation of the quantities present. Designing and developing an adequate monitoring programme will have to take account of these limits. Existing fisheries stock assessment programmes are covering most Regional Seas.

Only some countries will have to consider deep sea areas in terms of monitoring of sea-floor litter. The strategy is to be determined by each Contracting Party at national level, depending on affected areas but previous results indicate that priority should be given to coastal canyons. Protocols based on video imagery are the only approaches to monitor deep sea areas. These protocols are based on the use of (ROVs)/submersibles. As litter accumulates and degrades slowly in deep sea waters, a multiyear evaluation will be sufficient.

5.3 Monitoring the shallow sea-floor (<20m)

The most commonly used method to estimate marine litter density in shallow coastal areas is to conduct underwater visual surveys with SCUBA/snorkelling. These surveys are best based on line transect surveys of litter on the sea-floor, which is derived from UNEP (Cheshire, 2009). The protocol is actually in use for evaluation of benthic fauna. It requires SCUBA equipment and trained observers. Only litter items above 2.5 cm are considered, between 0 and 20 m (to 40 meters with skilled divers).

5.3.1. Technical requirements

Frequency

The minimum sampling frequency for any site should be annually. Ideally it is recommended that locations are surveyed every three months (allowing an interpretation in terms of seasonal changes).

Transects

Surveys are conducted through 2 line transects for each site. Unbiased design-based inference requires allocating the transects randomly in the study area or on a grid of systematically spaced lines randomly superimposed. However, with a model-based approach like density surface modelling (DSM), it is not required that the line transects are located according to a formal and restrictive survey sampling scheme, although good spatial coverage of the study area is desirable. Line transect are defined with a nylon line, marked every 5 meters with resistant paints, that is deployed using a diving reel while SCUBA diving.

Individual litter within 4 m of the line (half of the width – Wt - of the line transects) are recorded. For each observed litter item, when possible, the corresponding line segment of occurrence and its perpendicular distance from the line (yi - for the estimation of detection probability, measured with the use of a 2 m plastic rod), and litter size category (wi) are recorded. The nature of the bottom/habitat is also recorded. The length of the line transects vary between 20 and 200 m, depending on the depth, the depth gradient, the turbidity, the habitat complexity and the litter density (Katsavenakis, 2009). Results are expressed in litter density (items/m² or items/100 m²).

Detectability

In distance sampling surveys, detectability is used to correct abundance estimations (Katsavenakis, 2009). The standard software for modelling detectability and estimating density/abundance, based on distance sampling surveys, is DISTANCE (Thomas et al., 2006).
5.3.2. Use of volunteers in shallow waters surveys

Recreational and professional scuba divers can provide valuable information on litter they see underwater and they are uniquely positioned to support benthic litter monitoring efforts. They can access, have the skills and the equipment needed to collect, record, and share information about litter they encounter underwater. Many dive clubs and dive shops organize underwater clean-ups, often in partnerships with NGOs or local governments. Many of these events, when managed, can be a valuable source of information and possibly be a part of a regular survey, monitoring or even assessment efforts while using volunteers.

For some Contracting Parties use of volunteer divers might be a good opportunity for shallow-water litter monitoring but standardization and conformity with common methodologies and tools such as those propose by TSG-ML should be achieved. Fixed sites, common frequency and sampling methodology can be easily established by each Contracting Party and training, material distribution etc. can be achieved relatively easily when partner NGOs or research institutions are involved.

5.4 Monitoring the Sea-floor (20-800m)

From all the methods assessed, trawling (otter trawl) has been shown to be the most suitable for large scale evaluation and monitoring (Goldberg, 1995, Galgani et al., 1995, 1996, 2000). Nevertheless there are some restrictions in rocky areas and in soft sediments, as the method may be restricted and/or underestimate the quantities present. This approach is however reliable, reproducible, allowing statistical processing and comparison of sites. As recommended by UNEP (Cheshire, 2009), sites should be selected to ensure that they (i) Comprise areas with uniform substrate (ideally sand/silt bottom); (ii) consider areas generating/accumulating litter, (iii) avoid areas of risk (presence of munitions), sensitive or protected areas; (iv) do not impact on any endangered or protected species. Sampling units should be stratified relative to sources (urban, rural, close to riverine inputs) and impacted offshore areas (major currents, shipping lanes, fisheries areas, etc.).

General strategies to investigate seabed litter are similar to methodology for benthic ecology and place more emphasis on the abundance and nature of items (e.g. bags, bottles, pieces of plastics) rather than their mass. The occurrence of international bottom trawls surveys such as MEDITS (Mediterranean/Black Sea) provide useful and valuable means for monitoring marine litter. These are using common gears depending on region (MEDITS net in the Mediterranean) and provide some harmonized and common conditions of sampling (20 mm mesh, 30-60 min tows, large sampling surface covered) and hydrographical and environmental information (surface & bottom temperature, surface & bottom salinity, surface & bottom current direction & speed, wind direction & speed, swell direction and height). More than 20 sampling units are sampled within each region as recommended by UNEP (Cheshire, 2009).

Therefore, the TSG-ML strongly recommends using these on-going and continuous programmes to collect data on marine litter in the sea-floor. This will enable to compare data from one country to another and to evaluate transnational transportation.

5.5 Technical Requirements

The protocol of the TSG-ML for sampling and trawling margins (20-800m) has been standardized for each region:

Mediterranean and Black Seas

For the Mediterranean Region, the protocol is derived from the MEDIT protocol (see the protocol manual, Bertran et al., 2007). The hauls are positioned following a depth stratified sampling scheme with random drawing of the positions within each stratum. The number of positions in each stratum is proportional to the surface of these strata and the hauls are made in the same position from year to year. The following depths (10 – 50; 50 – 100; 100 – 200; 200 – 500; 500 - 800 m) are fixed in all
areas as strata limits. The total number of hauls for the Mediterranean Sea is 1385; covering the shelves and slopes from 11 countries in the Mediterranean.

The haul duration is fixed at 30 minutes on depths less than 200m and at 60 minutes at depths over 200m (defined as the moment when the vertical net opening and door spread are stable), using the same GOC 73 trawl with 20 mm mesh nets (Bertran et al, 2007) and sampling between May and July, at 3 knots between 20 and 800 m depth.

Detecting trends

Consistency of results is based on sampling strategy and monitoring efforts. Long term monitoring of litter on the sea floor has been performed in Spain and France. In some cases such as the margins of gulf of Lion (France), trends studies (70 Stations, depth 40-800m,) indicated a statistically significant decrease \[
\text{Abundance (10-4) = 0.038 x (Year) + 1.062 (R2 =0.36)} \]

enabling the measurement of 15% decrease in 15 years.

However, Power Analysis of IBTS related sampling by Cefas indicates that detection of a 10% change over 5 or 10 years is unlikely without massive sample sizes. However, 50% changes over 5 or 10 years look to be readily detectable with current designs based on fish stock surveys such as IBTS.

Data recording and Management

Templates for data recording have been integrated in MEDITS Manuals. Data on litter should be collected on these templates using items categories such as those listed for Sea-floor prepared by TSG-ML. Other elements from the haul operations should be also recorded – See MEDITS for the Mediterranean/Black Sea.

Data on litter should be reported as items/ha or items/km2 before further processing and reporting.

5.6 Litter categories for Sea-floor

As marine litter degradation is affected by light, oxygen and wave action, the persistence of marine litter on the sea floor and deep sea floor is increased with notable outcomes on the nature of litter found. Another important factor influencing the composition of benthic litter is related to the type of activity. Typically, the analysis of sources indicated the importance and differences between ship based litter, as in the Southern North Sea, and land based litter such as in the Mediterranean. The definition of categories will have to take this in account when defining a protocol. Although marine litter is strongly affected by transportation, fishing has been shown as a main source of litter in some fishing or aquaculture grounds. Similarly specific types of marine litter were also found in areas affected by tourism, around beaches, as in the Mediterranean Sea. This may affect the strategy for monitoring selected areas, such as shallow waters.

A standardized litter classification system has been defined for monitoring the sea floor by TSG-ML. The categories were defined in accordance with types of litter found at regional level, enabling common main categories for all regions. The main categories have a hierarchical system including sub categories. It considers 4 main categories of material for the Mediterranean (wood, paper/cardboard, other, unspecific). There are various subcategories for a more detailed description of litter items. Other specific categories may be added by Contracting Parties and additional description of the item may provide added-value, as long as the main categories and sub-categories are maintained. Furthermore, the weight, picture and note of potential attached organisms may further complement the classification of items.

Other parameters

Site information and trawling sampling characteristics such as date, position, type of trawl, speed, distance, sampled area, depth, hydrographical and meteorological conditions should be recorded
Data-sheets should be filled out for each trawl and compiled by survey. If multiple counts (transects/observers) are run at any given site then a new sheet should be used for each trawl shot. After each survey data must be aggregated for analysis and reporting.

5.7. **Complementary sea-floor monitoring – Video camera**

Large-scale evaluations of marine litter in the deep sea-floor are scarce because of available resources to collect data. Special equipment is necessary including ROVs and/or submersibles that may be very expensive to operate, especially in deep sea areas.

Towed video camera for shallow waters (Lundqvist, 2013) or ROVs for deeper areas are simpler and generally cheaper and must be recommended for litter surveys. There are some available protocols where litter is counted on routes and expressed as item/km, especially when using submersibles/ROVs at variable depths above the deep sea floor (Galgani et al., 1996) however technology enables the evaluation of densities through video-imagery using a standardized approach especially for shallow waters.

5.8. **Quality Assessment /Quality Control for sea-floor litter**

Several Contracting Parties from UNEP/MAP MED POL have indicated they will use their fish stock surveys for benthic litter monitoring. This is considered to be an adequate approach although quantities of litter might be underestimated, given restrictions in some areas. The adoption of a common protocol will lead to a significant level of standardization among the Contracting Parties countries that apply this type of sampling strategy.

Data on litter in shallow sea-floor are collected through protocols already validated for benthic species. Until now, no quality assurance programme has been considered for litter monitoring on the sea-floor. For MEDITS, sampling data are collected in the DATRAS database and participate in data quality checking for hydrographical and environmental conditions. This process may also support quality insurance for data on litter. Currently, there are on-going discussions on how to organize and harmonize a specific system to collect, validate and organize data through a common platform, enabling the review and validation of data. MEDITS has included litter data to be analysed within a specific sub-group.

5.9. **Conclusions**

Considering opportunities to couple monitoring efforts may be the best approach to monitor litter on the sea-floor.

There may be other opportunities to couple marine litter surveys with other regular surveys (monitoring in marine reserves, offshore platforms, etc.) or programmes on biodiversity.

6. **Litter ingested by or entangling marine organisms, especially mammals, marine birds and turtles (Litter in Biota, Candidate Common Indicator 18, Trends in the amount of litter ingested by or entangling marine organisms focusing on selected mammals, marine birds and marine turtles)**

Note: Due to the availability of protocols and the state of knowledge, it is recommended that the indicator focus on the sea turtle *Caretta caretta*
6.1. **Scope and key questions to be addressed**

In the North Sea, an indicator is available, which expresses the impact of marine litter (OSPAR EcoQO). It measures ingested litter in Northern Fulmar and it is used to assess temporal trends, regional differences and compliance with a set target for acceptable ecological quality in the North Sea area (Van Franeker et al., 2011). A combined protocol is proposed by TSG-ML which can be used for seabirds in general, e.g. to be applied in regular monitoring for shearwaters in parts of the Mediterranean.

However alternative tools are needed for the Mediterranean Sea. On the basis of available information and expertise, a monitoring protocol for marine litter in sea turtles with focus on relevant parameters for application in the Mediterranean is proposed by TSG-ML. The approach taken for the development of the protocols for ingestion consists of the application of the same categorization of marine litter for all ingestion studies of vertebrates. The applied standard categories follow the existing fulmar methodology, in which a number of plastic categories is counted, and weighted as a unit. Additionally further knowledge is being compiled on the occurrence of entanglement events in marine organisms. Based upon these findings a harmonized protocol for the assessment of the use of plastic litter as nesting material and associated entanglement mortality in birds breeding colonies including shearwater is proposed by the TSG-ML for immediate application.

Entanglement in beached animals, entanglement in live animals (other than in relation to seabird nests), ingestion of litter by marine mammals, ingestion of litter by marine invertebrates and research on food chain transfer are reflected in the final report of the TSG-ML. However only ingestion of and entanglement in marine litter by marine mammals are considered by the TSG-ML for further development whereas the other aspects are crucial issues for research but not suitable to be recommended for wide monitoring application at this stage.

6.2. **Seabirds**

The methodology of the tool proposed by the TSG-ML follows the OSPAR Ecological Quality Objective (EcoQO) methods for monitoring litter particles in stomachs of northern fulmars (Fulmarus glacialis). The stomach contents of birds beached or otherwise found dead are used to measure trends and regional differences in marine litter. Background information and the technical requirements are described in detail in documents related to the fulmar EcoQO methodology. A pilot study evaluating methods and potential sources of bias was conducted by Van Franeker & Meijboom (2002). Bird dissection procedures including characters for age, sex, cause of death etc. have been specified in Van Franeker (2004). Further OSPAR EcoQO details were given in OSPAR (2008, 2010a, b) and in Van Franeker et al., (2011a, 2011b).

Related marine compartments:

Seabirds like fulmars or shearwaters are feeding on the surface of the sea. Therefore the water column and especially the water surface is the marine compartment addressed when quantifying litter in the stomachs of fulmars.

6.2.1. **Technical requirements**

Bird corpses are stored frozen until analysis. Standardized dissection methods for Fulmar corpses have been published in a dedicated manual (Van Franeker, 2004) and are internationally calibrated during annual workshops. Stomach content analyses and methods for data processing and presentation of results were described in full detail in Van Franeker & Meijboom (2002) and updated in later reports. The methodology has been published in peer reviewed scientific literature (van Franeker et al., 2011a, b). For convenience, some of the methodological information is repeated here in a condensed form.
At dissections, a full series of data is recorded to determine sex, age, breeding status, likely cause of death, origin, and other issues. Age, the only variable found to influence litter quantities in stomach contents, is largely determined on the basis of development of sexual organs (size and shape) and presence of Bursa of Fabricius (a gland-like organ positioned near the end of the gut which is involved in immunity systems of young birds; it is well developed in chicks, but disappears within the first year of life or shortly after). Further details are provided in Van Franeker 2004.

After dissection, stomachs of birds are opened for analysis. Stomachs of Fulmars have two 'units': initially food is stored and starts to digest in a large glandular stomach (the proventriculus) after which it passes into a small muscular stomach (the gizzard) where harder prey remains can be processed through mechanical grinding. For the purpose of most cost-effective monitoring, the contents of proventriculus and gizzard are combined, but optional separate recordings should be considered where possible.

Stomach contents are carefully rinsed in a sieve with a 1mm mesh and then transferred to a petri dish for sorting under a binocular microscope. The 1 mm mesh is used because smaller meshes become easily clogged with mucus from the stomach wall and with food remains. Analyses using smaller meshes were found to be extremely time consuming and particles smaller than 1 mm seemed rare in the stomachs, contributing little to plastic mass.

If oil or chemical types of pollutants are present, these may be sub-sampled and weighed before rinsing the remainder of stomach content. If sticky substances hamper further processing of the litter objects, hot water and detergents are used to rinse the material clean as needed for further sorting and counting under a binocular microscope.

Litter Categories – source related information

In the Fulmar EcoCO, stomach contents are sorted into categories, and this categorisation is followed for marine biota monitoring ingestion in seabirds, marine turtles and fish.

The fulmar categorisation of stomach contents is based on the general ‘morphs’ of plastics (sheet-like, filament, foamed, fragment, other) or other general rubbish or litter characteristics. This is because in most cases, particles cannot be unambiguously linked to particular objects. But where such is possible, under notes in datasheets, the items should be described and assigned a litter category number using as master list, such as the “Master List” developed by the TSG ML group.

For each litter category/subcategory an assessment is made of:

1) incidence (percentage of investigated stomachs containing litter);
2) abundance by number (average number of items per individual), and
3) abundance by mass (weight in grams, accurate to 4th decimal)

Because of potential variations in annual data, it is recommended to describe ‘current levels’ as the average for all data from the most recent 5-year period, in which the average is the ‘population average’ which includes individuals that were found to have zero litter in the stomach.

As indicated, EcoQO data presentation for Northern Fulmars is for the combined contents of glandular (proventriculus) and muscular (gizzard) stomachs. Results of age groups are combined except for chicks or fledglings which should be dealt with separately. Potential bias from age structure in samples should be checked regularly.

Size range

In the fulmar monitoring scheme, stomach contents are rinsed over a sieve with mesh 1 mm prior to further categorisation, counting and weighing. The size range of plastics monitored is thus ≥ 1 mm. Unpublished data on particle size details in stomachs of fulmars show that a smaller mesh size would not be of use because smaller items have passed into the gut.
Spatial coverage

Dead birds are collected from beaches or from accidental mortalities such as long-line victims; fledgling road kills etc. (for methodology see Van Franeker, 2004).

Survey frequency

Continuous sampling is required. A sample size of 40 birds or more is recommended for a reliable annual average for a particular area. However, also years of low sample size can be used in the analysis of trends as these are based on individual birds and not on annual averages. For reliable conclusions on change or stability in ingested litter quantities, data over periods of 4 to 8 years (depending on the category of litter) is needed.

Maturity of the tool
The method is mature and in use.

Regional applicability of the tool
The tool is applicable to the regions where fulmars occur; for similar seabird species such as any of the family of the tubenoses, the methodology can follow this approach. This could for example be applied to shearwater species occurring in the Mediterranean Sea.

6.2.2. Quality Assessment /Quality Control

The methodology referred to in this tool is based on an agreed OSPAR methodology which has been developed over a number of years with ICES and OSPAR and which has received full quality assurance by publication in peer reviewed scientific literature (Van Franeker et al., 2011a). The EcoQO methodology has been fully tested an implemented on Northern Fulmars *Fulmarus glacialis*, including those from Canadian Arctic and northern Pacific areas. All methodological details can be applied to other tubenosed seabirds (Procellariiformes) with no or very minor modifications. Trial studies are being conducted using shearwaters from the more southern parts of the north Atlantic and Mediterranean. In other seabird families, methods may have to be adapted as stomach morphology, foraging ecology, and regurgitation of indigestible stomach contents differ and can affect methodological approaches.

Trend assessment

In the Fulmar EcoQO, statistical significance of trends in ingested litter, i.e. plastics, is based on linear regression of ln-transformed data for the mass of litter (of a chosen category) in individual stomachs against their year of collection. ‘Recent’ trends are defined as derived from all data over the most recent 10-year period. The Fulmar EcoQO focuses on trend analyses for industrial plastics, user plastics, and their combined total.

6.3. Sea turtles

The stomach contents of stranded Loggerhead sea turtles *Caretta caretta* (Linnaeus, 1758) are used to measure trends and regional differences in marine litter. A recent pilot study evaluating methods and potential sources of bias was conducted during 2012 by ISPRA, CNR-IAMC Oristano, Stazione Zoologica Napoli; University of Siena, University of Padova, ArpaToscana.

Related marine compartments

Caretta caretta feeds in the water column and at the seafloor. Therefore these two marine compartments are addressed when quantifying litter in the stomachs of stranded Loggerhead sea turtles.
6.3.1. Technical requirements

The Loggerhead sea turtle *Caretta caretta* is a protected species (CITES Appendix I), therefore only authorized people can handle them.

Upon finding the animal, its discovery should be reported to the main authorities and the operation of coordinated with the local authorities (depending on national law). Based on initial observations and if possible still at the place of discovery, some data should be recorded on an “Identification Data” Sheet. The animal should be transported to an authorized service centre for necropsy. In case the body is too decomposed, the integrity of the digestive tract should be assessed before disposal at the licensed contractor. If the necropsy cannot be carried out immediately after recovery, the carcass should be frozen at -16 °C, in the rehabilitation facility.

Before the necropsy operation, morphometric measurements should be collected and recorded on an appropriate Data Sheet. External examination of the animal should be conducted, including inspecting the oral cavity for possible presence of foreign material. The methodology suggested in the TSG ML report could be followed to carry out a dissection of the animal to expose the gastrointestinal system (GI).

The following sampling procedure of GI contents can be applied to any section of the GI: the section of the GI should be placed in a graduated beaker of adequate size, pre-weighed on electronic balance (accuracy of ± 1g). The section of GI should be open and the contents emptied into the beaker with the help of a spatula, followed by the record of the net weight and volume of the content. The section of the GI should be observed and any ulcers or any lesions caused by hard plastic items should be recorded.

The contents should be inspected for the presence of any tar, oil, or particularly fragile material that must be removed and treated separately. The liquid portion, mucus and the digested unidentifiable matter should be removed, by washing the contents with freshwater through a filter mesh 1 mm, followed by a rinse of all the material collected by the filter 1mm in 70% alcohol and finally again in freshwater. The retained content should be enclosed in plastic bags or pots, labelled and frozen, not forgetting the sample code and corresponding section of the GI. Finally, the contents can then be sent for analysis.

NOTE: If the contents are stored in liquid fixative, note of the compound and the percentage of dilution should be noted and communicated to the staff in charge of further analysis.

For the analysis of the contents of the GI, the organic component should be separated from any other items or material (marine litter). The fraction of marine litter should be analysed and categorised with the help of a stereo-microscope, following the approach used in the protocol for ingestion in birds (Van Franeker et al., 2005; 2011b; Matiddi et al., 2011) and using a Standard Data-Sheet.

The fraction of marine litter should be dried at room temperature and the organic fraction at 30°C. Both fractions should be weighted, including the different categories of items identified within the marine litter fraction. The volume of the litter found should also be measured, through the variation of water level in a graduated beaker, when the items are immersed without air. If possible, different categories of “food” should also be identified. Otherwise, the dry contents should be kept in labelled bags and sent to an expert taxonomist.

An optional methodology for application for sampling litter excreted by live sea-turtles (faecal pellet analysis) in case of finding a specimen alive is recommended by the TSG-ML.

Extraction of data

Following the protocol for seabirds, abundance by mass (weight in grams, accurate to 3th decimal) is the main information useful for the monitoring programme.
Data entry is carried out using a Standard Form.

Litter Categories - source related information

For turtle analyses, stomach contents are sorted into the same categories as for birds. Following the method for seabirds, abundance by mass (weight in grams, accurate to 3th decimal) is the main information useful for the monitoring programme. Other information such as the colour of items, volume of litter, different type of litter, different incidence of litter in oesophagus, intestine and stomach, incidence and abundance by number per litter category, are useful for research and impact analysis.

Size range

≥1 mm (stomach contents are rinsed over 1 mm mesh sieve)

Spatial coverage

Dead sea turtles are collected from beaches or at sea from accidental mortalities such as victims of long-line fishing (by catch) or of boat collisions.

Survey frequency

Continuous sampling is required. Minimum sample population size for year and period of sampling must be established for reliable conclusions on change or stability in ingested litter quantities.

Maturity of the tool

The tool is not considered mature at this stage. Specific monitoring programmes are required.

Regional applicability of the tool

The tool is applicable to the Mediterranean Sea region.

6.3.2. Quality assurance/quality control

There is a lack of quality assurance/quality control (QA/QC) due to lack of long-term monitoring programmes. More publications in peer reviewed scientific literature are required.

Trend assessment

Specific long-term monitoring programmes are required.

Target definitions

Specific long monitoring programmes are required.

6.4. **Considerations on further options for monitoring impacts of marine litter on biota**

6.4.1. Entanglement rates among beached animals

Direct harm or death is more easily observed and thus more frequently reported for entanglement than for ingestion of litter. This applies to all sorts of organisms, marine mammals, birds, turtles, fishes, crustaceans etc.

It is, however, difficult from simply looking at the outside appearance of an animal to identify whether a particular individual has died because of entanglement in litter rather than from other causes, mainly entanglement in active fishery gear (by-catch). Nevertheless it is possible to differentiate between
animals that have died quickly due to entanglement and sudden death in active fishing gear and those suffering a long drawn out death after entanglement in pieces of nets, string or other litter items, because entangled birds, which have been entangled for a time before death are emaciated.

Proportions of sea birds found dead with actual remains of litter attached as evidence for the cause of mortality are extremely low. The possible use of entangled beached birds as an indication of mortality due to litter will be further investigated by the TSG-ML.

In marine mammals, numbers of beached animals and especially cetaceans are often high and many have body marks suggesting entanglement, although remains of ropes or nets on the corpses are mostly rare. Given that in a number of places well working stranding networks are already in place, dead marine mammals should, whenever possible, become subject to pathologic investigations which need to include an assessment for the cause of disease and death and the relevance of marine litter in this connection.

This issue will be further investigated and the development of a dedicated monitoring protocol for the entanglement of marine mammals in marine litter will be considered in the next report of the TSG ML.

6.4.2. Ingestion of litter by marine mammals and entanglement.

Ingestion of litter by a wide range of whales and dolphins is known. Although known rates of incidences of ingested litter are generally low to justify a standard ECAP monitoring recommendation at this point, it can also be argued that the number of pathologically studied animals is low as well. Dead marine mammals should, whenever possible, become subject to pathologic investigations which need to include an assessment for the cause of disease and death and the relevance of ingested marine macro- and microlitter in this connection.

The development of a monitoring protocol for the ingestion of marine litter in the different size categories by marine mammals will therefore be considered in the next report of the TSG ML. Opportunistic monitoring of marine mammals is envisaged under the population demographic characteristics component of the EcAp biodiversity common indicators.

7. Microlitter (with special reference to microplastics)

7.1. Introduction to microlitter

In effect microparticles consist of similar materials to other types of litter; they are merely pieces of litter at the very small end of the size spectrum. Microparticles of a range of common material types including glass, metal, plastic and paper litter are undoubtedly present in the environment. The focus is on microplastics, implying that they are considered to be the most significant component of the microlitter in the environment. This statement is partly based on the frequency of reports of microplastics (Hidalgo-Ruz et al. 2012, but relative proportions of material types will be influenced by the physical conditions of the habitat sampled, for example metal and glass microlitter is not likely to be found at the sea surface.

When first described the term microplastic was used to refer to truly microscopic particles in the region of 20 µm diameter (Thompson et al. 2004. The definition has since been broadened to include all particles < 5 mm (Arthur et al. 2009. Microplastics are widely dispersed in the environment and are present in the water column, on beaches and on the seabed.

Under EcAp, it is considered that in order to achieve GES that the quantities of microplastics in the environment should not result in harm. When defining methodological criteria it is essential to recognise that our understanding of the potential impacts of microplastic on organisms and the
environment (i.e. the ‘harm’ that they might pose from the perspective of EcAp) is still not fully understood.

An upper size bound of 5mm has been widely (but not exclusively) adopted and for the purpose of EcAp it is suggested that the upper bound to be taken to as items <5mm in their largest dimension as recommended by the TSG-ML. Current definitions do not explicitly state a lower size limit and lower size limits have seldom been reported for microplastic concentrations in the environment. The lower size limit is perhaps assumed to be the mesh size of the net or sieve through which the sample passed during the sampling, sample preparation or extraction. The size limits of microplastic particles that can be reported are also dependent on the method of detection, in many cases microscope-aided visual inspection. When identifying microparticles there are also size limits imposed by the analytical techniques employed (e.g. minimum sample intake requirements for detection and analysis). Hence an important part of establishing standard methods and protocols within EcAp will first be to define the appropriate size range, and this aspect is considered in the report of the TSG-ML.

After an initial period of discovery, microplastics research now finds itself at a stage of development where there is a lack of quality assurance/quality control (QA/QC) instruments available: e.g. no organisations yet offer proficiency training or testing, there have been no inter-laboratory studies, no certified reference materials are available, no standardized sampling and analysis protocols have been published, no accreditation certificates have been issued and some procedures in use have not yet been validated. Approaches for QA/QC will therefore be very useful for evaluating sources of variability and error and increasing confidence in the data collected.

Microplastics comprise a very heterogeneous assemblage of pieces that vary in size, shape, colour, specific density, polymer type, and other characteristics. For meaningful comparisons and to answer the specific questions and to test hypotheses through monitoring, it is important to define methodological criteria to quantify such metrics as for e.g. the abundance, distribution and composition of microplastics and to ensure sampling effort is sufficient to detect the effects of interest. Protocols to monitor microplastics in sediments, sea surface, and biota have been prepared by the TSG-ML. At present our understanding of the sources, distribution and fate of microplastics in the environment are very limited, as is our understanding of any associated effects on wildlife. As a consequence it is not possible to present fully validated standard operating procedures. Instead the TSG-ML presents recommendations for monitoring supported by a discussion of considerations and limitations according to the knowledge base at the time of writing. It considers monitoring design, sampling, analysis, reporting. The aim of the TSG-ML text is to maximise consistency and comparability of future data collection by recommending approaches.

7.2. General Sampling Methods

Sampling of microplastics in different main marine environments (sea surface, water column, sediment and biota) has been approached using a variety of methods: samples can be selective, bulk, or pre-treated to reduce their volume (Hidalgo-Ruz et al., 2012).

Most studies use a combination of these steps after which a purification step is required to sort the micro litter from natural particulates. Visual characterisation is the most commonly used method for the identification of microplastics (using type, shape, degradation stage, and colour as criteria). Chemical and physical characteristics (e.g., specific density) can also be used. However, the most reliable method is to identify the chemical composition of microplastics by infrared spectroscopy (Hidalgo-Ruz et al., 2012). This approach requires equipment that may be considered relatively costly compared to sampling of large items of debris.

In all four compartments (sea surface, water column, sediment and biota) the TSG-ML recommends quantifying microplastics in the size range 20µm to 5mm. Since the lower size limit is perhaps
assumed to be the mesh size of the net or sieve through which the sample passed during the sampling, sample preparation, or extraction, for sampling purposes, this could in the majority of cases taken to be 330 µm. Microplastics should be categorized according to their physical characteristics including size, shape, and colour. Categories used to describe microplastics appearance are available in the TSG M-L report. To achieve the greatest efficiency regarding sampling frequency, it is recommended that microparticles be sampled alongside other routine sampling programmes. Sampling of the sea surface could be incorporated into routine monitoring programmes.

Sampling seawater for microplastics

Seawater samples have mostly been taken by nets, the main advantage being that large volumes of water can be sampled quickly, retaining the material of interest. Most studies from surface waters have used Neuston nets and from the water column, zooplankton nets. Another instrument, that is deployed on a global scale and that has also been used for microplastic sampling, is the continuous plankton recorder (CPR). The most relevant characteristics of the sampling nets are mesh size and the opening area of the net. Mesh sizes used for microplastic sampling range from 0.053 to 3 mm, with a majority of the studies (rather than individuals samples collected) ranging from 0.30 to 0.39 mm. The net aperture for rectangular openings of neuston nets (sea surface) ranged from 0.03 to 2.0 m². For circular-bongo nets (water column) the net aperture ranged from 0.79 to 1.58 m². The length of the net for sea surface samples has varied from 1.0 to 8.5 m, with most nets being 3.0 to 4.5 m long. Techniques using apparatus to collect seawater and pass it through a filter on-board ship are being developed where the ship water inlet is used, collecting seawater from the side at specified depths, mostly ranging between 4m and 1m depth. The seawater is passed through sieves or nets in closed containers after which these can be removed and analysed for microplastics.

A key consideration in collecting seawater samples is the cost of ship time. Hence the advantage to sample during existing cruises or from existing monitoring programmes such as the Continuous Plankton Recorder. Manta and bongo nets have been used at the sea surface. With nets it is important to deploy the trawl out of the wake zone as turbulence inside the wake zone does not allow for a representative sample to be collected. A spinnaker boom or ‘A’ frame may be used to deploy the trawl away from the side of the vessel. A close eye on the net while trawling would need to be kept to observe its performance and adjust speed and cable length if necessary. Sampling at the peak of plankton blooms should be avoided as this may clog the net.

Since most plastics are buoyant they are likely to accumulate at the sea surface. Surface sampling techniques can be used close inshore, but are restricted to calmer weather conditions, whereas CPR and other sub-surface approaches can be used in rougher weather. High-speed Manta trawls can be deployed in a range of sea states, but CPR is the least sensitive to sea state and samples at an average depth of around 6m. Manta trawls can be used to sample large volumes of surface water, but are relatively insensitive to smaller size fractions (< 1mm) which can be difficult to separate or sort form the large surface area of the net. CPR has a very much smaller aperture (around 1.6cm²) and hence samples smaller quantities of water per km but can be deployed for much longer periods (distances) than the Manta trawl without clogging. With the CPR the entire filter is sealed automatically and then transferred to the laboratory for examination under the microscope. Preliminary data indicate CPR and Manta nets collect similar quantities of debris per unit volume of water sampled; however because of the larger aperture of nets such as Manta the quantity of debris collected per distance towed is substantially greater than CPR. During trawls it is important to maintain a steady linear course at a constant speed. A hi-speed manta trawl can be deployed up to 8 knots, building up the speed slowly towards maximum speed. Higher speeds reduce the ability to sieve seawater, creating a bow wake in front of the trawl. For surface samples, results are most often expressed as items/meter square, because the vertical movements of neuston and manta nets do not enable estimations of net opening.

At present it is not appropriate to recommend one approach over all others. Each approach has advantages and disadvantages and may be preferable according to local availability / sampling
opportunities, the characteristics of the area to be sampled. The recommendation of the TSG-ML is to obtain samples from sea water and to ensure the following details are recorded to accompany each sample: type of net, aperture, mesh size (preferably 333 µm mesh, 6m length for greatest inter-comparability among sampling programmes). It is not possible to specify standard haul duration as at some times of year, for example during a plankton bloom, nets may readily become clogged with natural material rendering them inefficient – a duration of 30 min is suggested and the duration of the trawl and the estimated water volume must be recorded. Samples from nets should be stored in glass jars taking care to rinse material as thoroughly as possible from the sides of the net using filtered sea water. Microparticles are recorded as the total quantity of such captured by the net during the period it is deployed.

The TSG-ML report provides detailed information on Laboratory analyses of microplastics samples collected in the field and detailed protocol for sampling surface waters.
ECOLOGICAL OBJECTIVE 10: Marine and coastal litter do not adversely affect the coastal and marine environment

<table>
<thead>
<tr>
<th>Common Indicator description</th>
<th>DESCRIPTION</th>
<th>Assessment Method</th>
<th>Guidelines Reference Methods</th>
<th>Recommendations /Additional Data needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts of litter items minimum lower limit 0.5 cm in the longest dimension on at least 1 section of coastline of 100m on lightly to moderately littered beaches (optimum 2 sections) and 2 sections of 100m on heavily littered beaches (exceptionally 50m section with a normalization factor of up to 100m to ensure coherence),</td>
<td>UNEP/MAP MED POL Trend Monitoring Programme</td>
<td>As Guideline, with reference methods: UNEP DEPI (MED) WG 394, Inf.5</td>
<td>QA according to recommended Quality Assurance Protocols (i.e. Ocean Conservancy National Marine Debris Monitoring Programme (Sheavly, 2007, see text of ECAP monitoring guidelines)</td>
<td></td>
</tr>
<tr>
<td>With Operational Objective10.1.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The impacts related to properties and quantities of marine litter in the marine and coastal environment are minimized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Common indicator 17, COP 18 Indicator 10.1.2: Trends in amounts of litter at sea, including micro-plastics* and on the seafloor | Litter in the water column: Items of floating litter, 2.5 to 50cm, per km²
Litter on the seafloor shallow coastal waters (0-20m): visually surveyed litter items size above 2.5cm
Litter on the seafloor 20-800m: items/ha or items/km² of litter collected in bottom trawl surveys | For floating litter visual ship-based monitoring of floating litter 2.5cm to 50cm as items/km²
For litter on the seafloor shallow coastal waters (0-20m): minimum annual, maximum quarterly underwater visual surveys with SCUBA/snorkelling based on line transect surveys in use for evaluation of benthic fauna
For seafloor 20-800m collection of litter data through on-going and continuous bottom | For Guideline and reference methods: UNEP DEPI (MED) WG 394. Inf.5
For floating litter: approaches for inter-comparison and calibration are to be developed at regional level and implemented
For shallow seafloor: Data on litter in shallow sea-floor are collected through protocols already validated for benthic species.
For Litter on the seafloor 20-800m, the adoption of a | It is recommended to focus on surface and sea floor litter
*For microplastics at the surface, samples taken by zooplankton nets (333μm mesh, 6m length, sampling for 30 minutes) or by Continuous Plankton Recorder (CPR). Minimum size 330 μm
Collection of data on microplastics is costly and it will be critical to identify monitoring approaches (and associated metadata such as QA/QC) that directly support the... |
environment are minimized
Pressure, Impact

| Candidate Indicator 18, COP18 Indicator 10.2.1.: Trends in the amount of litter ingested by or entangling marine | Quantities of ingested litter (minimum size 1mm), by mass (weight in grams) from stomach contents of seabirds (any of the family of the tubenoses - Procellariiformes i.e. shearwater species)

Quantities of ingested litter (minimum size 1mm) by mass (weight in grams) in the stomach contents of stranded Loggerhead sea turtles (*Caretta caretta*) | Continuous sampling of dead birds collected from beaches or accidental mortalities such as long line victims, fledgling road-kills etc., to obtain a sample size of 40 birds or more for a reliable annual | For Guidelines and reference methods: UNEP DEPI (MED) WG 394. Inf.5
For seabirds the tool works only locally
For sea turtles the tool require a validation (long term data, QA/QC). | Specific |
<table>
<thead>
<tr>
<th>Impact</th>
<th>Average for a particular area or lower sample sizes for the analysis of trends based on individual birds. Continuous sampling of dead sea turtles collected from beaches or at sea from accidental mortalities such as victims of long-line fishing (by-catch) or of boat collisions.</th>
<th>Quality assurance by publication in peer reviewed scientific literature. For sea turtles there is a lack of QA/QC due to the lack of long-term monitoring programmes. Monitoring programmes are required to commence as pilots, to establish minimum sample population size for year and period of sampling, for reliable conclusions on change or stability in ingested litter quantities.</th>
<th>This issue of entanglement requires further investigation for the development of a dedicated monitoring protocol for the entanglement of marine organisms in marine litter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms, especially mammals, marine birds and turtles</td>
<td>With Operational Objective: 10.2. Impacts of litter on marine life are controlled to the maximum extent practicable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX: MEDPOL Form for 100 m beach monitoring

<table>
<thead>
<tr>
<th>ID</th>
<th>PLASTIC/POLYSTYRENE</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>4/6-pack yokes, six-pack rings</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>Shopping bags incl. pieces</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>Small plastic bags, e.g. freezer bags incl. pieces</td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>Plastic bag collective role; what remains from rip-off plastic bags</td>
<td></td>
</tr>
<tr>
<td>G7/G8</td>
<td>Drink bottles</td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td>Cleaner bottles & containers</td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td>Food containers incl. fast food containers</td>
<td></td>
</tr>
<tr>
<td>G11</td>
<td>Beach use related cosmetic bottles and containers, e.g. Sunblocks</td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td>Other bottles & containers</td>
<td></td>
</tr>
<tr>
<td>G14</td>
<td>Engine oil bottles & containers <50 cm</td>
<td></td>
</tr>
<tr>
<td>G15</td>
<td>Engine oil bottles & containers >50 cm</td>
<td></td>
</tr>
<tr>
<td>G16</td>
<td>Jerry cans (square plastic containers with handle)</td>
<td></td>
</tr>
<tr>
<td>G17</td>
<td>Injection gun containers (including nozzles)</td>
<td></td>
</tr>
<tr>
<td>G18</td>
<td>Crates and containers / baskets</td>
<td></td>
</tr>
<tr>
<td>G19</td>
<td>Car parts</td>
<td></td>
</tr>
<tr>
<td>G21/24</td>
<td>Plastic caps and lids (including rings from bottle caps/lids)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Item Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>G26</td>
<td>Cigarette lighters</td>
<td></td>
</tr>
<tr>
<td>G28</td>
<td>Pens and pen lids</td>
<td></td>
</tr>
<tr>
<td>G29</td>
<td>Combs/hair brushes/sunglasses</td>
<td></td>
</tr>
<tr>
<td>G30/31</td>
<td>Crisps packets/sweets wrappers/ Lolly sticks</td>
<td></td>
</tr>
<tr>
<td>G32</td>
<td>Toys and party poppers</td>
<td></td>
</tr>
<tr>
<td>G33</td>
<td>Cups and cup lids</td>
<td></td>
</tr>
<tr>
<td>G34/35</td>
<td>Cutlery and trays/Straws and stirrers</td>
<td></td>
</tr>
<tr>
<td>G36</td>
<td>Fertiliser/animal feed bags</td>
<td></td>
</tr>
<tr>
<td>G37</td>
<td>Mesh vegetable bags</td>
<td></td>
</tr>
<tr>
<td>G40</td>
<td>Gloves (washing up)</td>
<td></td>
</tr>
<tr>
<td>G41</td>
<td>Gloves (industrial/professional rubber gloves)</td>
<td></td>
</tr>
<tr>
<td>G42</td>
<td>Crab/lobster pots and tops</td>
<td></td>
</tr>
<tr>
<td>G43</td>
<td>Tags (fishing and industry)</td>
<td></td>
</tr>
<tr>
<td>G44</td>
<td>Octopus pots</td>
<td></td>
</tr>
<tr>
<td>G45</td>
<td>Mussels nets, Oyster nets including plastic stoppers</td>
<td></td>
</tr>
<tr>
<td>G46</td>
<td>Oyster trays (round from oyster cultures)</td>
<td></td>
</tr>
<tr>
<td>G47</td>
<td>Plastic sheeting from mussel culture (Tahitians)</td>
<td></td>
</tr>
<tr>
<td>G49</td>
<td>Rope (diameter more than 1cm)</td>
<td></td>
</tr>
<tr>
<td>G50</td>
<td>String and cord (diameter less than 1 cm)</td>
<td></td>
</tr>
<tr>
<td>G53</td>
<td>Nets and pieces of net < 50 cm</td>
<td></td>
</tr>
<tr>
<td>G54</td>
<td>Nets and pieces of net > 50 cm</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>G56</td>
<td>Tangled nets/cord</td>
<td></td>
</tr>
<tr>
<td>G57/58</td>
<td>Fish boxes - plastic or polystyrene</td>
<td></td>
</tr>
<tr>
<td>G59</td>
<td>Fishing line/monofilament (angling)</td>
<td></td>
</tr>
<tr>
<td>G60</td>
<td>Light sticks (tubes with fluid) incl. Packaging</td>
<td></td>
</tr>
<tr>
<td>G62/63</td>
<td>Floats for fishing nets/ Buoys</td>
<td></td>
</tr>
<tr>
<td>G65</td>
<td>Buckets</td>
<td></td>
</tr>
<tr>
<td>G66</td>
<td>Strapping bands</td>
<td></td>
</tr>
<tr>
<td>G67</td>
<td>Sheets, industrial packaging, plastic sheeting</td>
<td></td>
</tr>
<tr>
<td>G68</td>
<td>Fibre glass/fragments</td>
<td></td>
</tr>
<tr>
<td>G69</td>
<td>Hard hats/Helmets</td>
<td></td>
</tr>
<tr>
<td>G70</td>
<td>Shotgun cartridges</td>
<td></td>
</tr>
<tr>
<td>G71</td>
<td>Shoes/sandals</td>
<td></td>
</tr>
<tr>
<td>G73</td>
<td>Foam sponge</td>
<td></td>
</tr>
<tr>
<td>G75</td>
<td>Plastic/polystyrene pieces 0 - 2.5 cm</td>
<td></td>
</tr>
<tr>
<td>G76</td>
<td>Plastic/polystyrene pieces 2.5 cm - 50 cm</td>
<td></td>
</tr>
<tr>
<td>G77</td>
<td>Plastic/polystyrene pieces > 50 cm</td>
<td></td>
</tr>
<tr>
<td>G91</td>
<td>Biomass holder from sewage treatment plants</td>
<td></td>
</tr>
<tr>
<td>G124</td>
<td>Other plastic/polystyrene items (identifiable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>including fragments</td>
<td></td>
</tr>
</tbody>
</table>
Please specify the items included in G124

<table>
<thead>
<tr>
<th>ID</th>
<th>RUBBER</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G125</td>
<td>Balloons and balloon sticks</td>
<td></td>
</tr>
<tr>
<td>G127</td>
<td>Rubber boots</td>
<td></td>
</tr>
<tr>
<td>G128</td>
<td>Tyres and belts</td>
<td></td>
</tr>
<tr>
<td>G134</td>
<td>Other rubber pieces</td>
<td></td>
</tr>
</tbody>
</table>

Please specify the items included in G134

<table>
<thead>
<tr>
<th>ID</th>
<th>CLOTH</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G137</td>
<td>Clothing / rags (clothing, hats, towels)</td>
<td></td>
</tr>
<tr>
<td>G138</td>
<td>Shoes and sandals (e.g. Leather, cloth)</td>
<td></td>
</tr>
<tr>
<td>G141</td>
<td>Carpet & Furnishing</td>
<td></td>
</tr>
<tr>
<td>G140</td>
<td>Sacking (hessian)</td>
<td></td>
</tr>
<tr>
<td>G145</td>
<td>Other textiles (incl. rags)</td>
<td></td>
</tr>
</tbody>
</table>
Please specify the items included in G145

<table>
<thead>
<tr>
<th>ID</th>
<th>PAPER / CARDBOARD</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G147</td>
<td>Paper bags</td>
<td></td>
</tr>
<tr>
<td>G148</td>
<td>Cardboard (boxes & fragments)</td>
<td></td>
</tr>
<tr>
<td>G150</td>
<td>Cartons/Tetrapack Milk</td>
<td></td>
</tr>
<tr>
<td>G151</td>
<td>Cartons/Tetrapack (others)</td>
<td></td>
</tr>
<tr>
<td>G152</td>
<td>Cigarette packets</td>
<td></td>
</tr>
<tr>
<td>G27</td>
<td>Cigarette butts and filters</td>
<td></td>
</tr>
<tr>
<td>G153</td>
<td>Cups, food trays, food wrappers, drink containers</td>
<td></td>
</tr>
<tr>
<td>G154</td>
<td>Newspapers & magazines</td>
<td></td>
</tr>
<tr>
<td>G158</td>
<td>Other paper items, including fragments</td>
<td></td>
</tr>
</tbody>
</table>

Please specify the items included in G158

<table>
<thead>
<tr>
<th>ID</th>
<th>PROCESSED / WORKED WOOD</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G159</td>
<td>Corks</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>METAL</td>
<td>Nº units</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>G174</td>
<td>Aerosol/Spray cans industry</td>
<td></td>
</tr>
<tr>
<td>G175</td>
<td>Cans (beverage)</td>
<td></td>
</tr>
<tr>
<td>G176</td>
<td>Cans (food)</td>
<td></td>
</tr>
<tr>
<td>G177</td>
<td>Foil wrappers, aluminium foil</td>
<td></td>
</tr>
<tr>
<td>G178</td>
<td>Bottle caps, lids & pull tabs</td>
<td></td>
</tr>
</tbody>
</table>

Please specify the items included in G171:

- G171 Other wood < 50 cm

Please specify the items included in G172:

- G172 Other wood > 50 cm
Annex III, Appendix 2

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G179</td>
<td>Disposable BBQ's</td>
</tr>
<tr>
<td>G180</td>
<td>Appliances (refrigerators, washers, etc.)</td>
</tr>
<tr>
<td>G182</td>
<td>Fishing related (weights, sinkers, lures, hooks)</td>
</tr>
<tr>
<td>G184</td>
<td>Lobster/crab pots</td>
</tr>
<tr>
<td>G186</td>
<td>Industrial scrap</td>
</tr>
<tr>
<td>G187</td>
<td>Drums, e.g. oil</td>
</tr>
<tr>
<td>G190</td>
<td>Paint tins</td>
</tr>
<tr>
<td>G191</td>
<td>Wire, wire mesh, barbed wire</td>
</tr>
<tr>
<td>G198</td>
<td>Other metal pieces < 50 cm</td>
</tr>
</tbody>
</table>

Please specify the items included in G198.

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G199</td>
<td>Other metal pieces > 50 cm</td>
</tr>
</tbody>
</table>

Please specify the items included in G199.

ID GLASS Nº units

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G200</td>
<td>Bottles incl. pieces</td>
</tr>
<tr>
<td>G202</td>
<td>Light bulbs</td>
</tr>
<tr>
<td>G208</td>
<td>Glass fragments >2.5cm</td>
</tr>
<tr>
<td>G210a</td>
<td>Other glass items</td>
</tr>
</tbody>
</table>
Please specify the items included in G210a

<table>
<thead>
<tr>
<th>ID</th>
<th>CERAMICS</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G204</td>
<td>Construction material (brick, cement, pipes)</td>
<td></td>
</tr>
<tr>
<td>G207</td>
<td>Octopus pots</td>
<td></td>
</tr>
<tr>
<td>G208</td>
<td>Ceramic fragments >2.5cm</td>
<td></td>
</tr>
<tr>
<td>G210b</td>
<td>Other ceramics items</td>
<td></td>
</tr>
</tbody>
</table>

Please specify the items included in G210b

<table>
<thead>
<tr>
<th>ID</th>
<th>SANITARY WASTE</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G95</td>
<td>Cotton bud sticks</td>
<td></td>
</tr>
<tr>
<td>G96</td>
<td>Sanitary towels/panty liners/backing strips</td>
<td></td>
</tr>
<tr>
<td>G97</td>
<td>Toilet fresheners</td>
<td></td>
</tr>
<tr>
<td>G98</td>
<td>Diapers/nappies</td>
<td></td>
</tr>
<tr>
<td>G133</td>
<td>Condoms (incl. packaging)</td>
<td></td>
</tr>
<tr>
<td>G144</td>
<td>Tampons and tampon applicators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other sanitary waste</td>
<td></td>
</tr>
</tbody>
</table>
Please specify the other sanitary items

<table>
<thead>
<tr>
<th>ID</th>
<th>MEDICAL WASTE</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G99</td>
<td>Syringes/needles</td>
<td></td>
</tr>
<tr>
<td>G100</td>
<td>Medical/Pharmaceuticals containers/tubes</td>
<td></td>
</tr>
<tr>
<td>G211</td>
<td>Other medical items (swabs, bandaging, adhesive plaster etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Please specify the items included in G211

<table>
<thead>
<tr>
<th>ID</th>
<th>FAECES</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G101</td>
<td>Dog faeces bag</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>PARAFFIN/WAX PIECES</th>
<th>Nº units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G213</td>
<td>Paraffin/Wax</td>
<td></td>
</tr>
</tbody>
</table>

Presence of industrial pellets?

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Presence of oil tars?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL COMMENTS
Annex III, Appendix 3

Guide on Fishing for Litter Best Practices

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. Objective</td>
<td>4</td>
</tr>
<tr>
<td>3. Implementing a Fishing for Litter practice step by step</td>
<td>5</td>
</tr>
<tr>
<td>3.1. Selection of fishing harbours and vessels</td>
<td>5</td>
</tr>
<tr>
<td>3.2. Marine litter collection</td>
<td>6</td>
</tr>
<tr>
<td>3.3. Marine litter reception</td>
<td>6</td>
</tr>
<tr>
<td>3.4. Marine litter management</td>
<td>6</td>
</tr>
<tr>
<td>3.5. Additional steps</td>
<td>7</td>
</tr>
<tr>
<td>3.5.1. Appointment of a coordinator</td>
<td>7</td>
</tr>
<tr>
<td>3.5.2. Public relations campaign and other incentives</td>
<td>7</td>
</tr>
<tr>
<td>3.5.3. Monitoring of the collected litter</td>
<td>9</td>
</tr>
<tr>
<td>3.5.4. Monitoring and evaluation of the Fishing for Litter practice</td>
<td>9</td>
</tr>
<tr>
<td>4. Health and safety implications</td>
<td>9</td>
</tr>
<tr>
<td>5. Environmental impact assessment including transboundary impacts</td>
<td>10</td>
</tr>
<tr>
<td>6. References</td>
<td>10</td>
</tr>
<tr>
<td>Annex 1. Monitoring forms</td>
<td>12</td>
</tr>
<tr>
<td>Annex 2. Summary of the FfL projects</td>
<td>17</td>
</tr>
<tr>
<td>Annex 3. Elements for the health and safety risk assessment</td>
<td>20</td>
</tr>
</tbody>
</table>
Background

Marine litter has been acknowledged at global level as an emerging threat with significant implications for the marine and coastal environment. Its impacts are environmental, economic, health and safety and cultural, and are rooted in our prevailing production and consumption patterns. The problem originates mainly from land-based activities as well as from sea-based activities. The limited governmental financial resources, the poor stakeholders understanding of their co-responsibility in generating and solving the problem, and the weak enforcement of laws and regulations are among the main factors that the problem of marine litter has not been addressed effectively.

Marine litter has been an issue of concern in the Mediterranean since the 1970s. The LBS Protocol of the Barcelona Convention recognised the importance of dealing with the problem of marine litter. The amended LBS Protocol, 1996 and entered into force in 2008 provides for litter as any persistent manufactured or processed solid material which is discarded, disposed, or abandoned in the marine and coastal environment.

The Mediterranean was designated a Special Area for the purposes of Annex V (Prevention of pollution by garbage from ships) of the MARPOL 73/78 Convention.

In December 2013 COP 18 of the Barcelona Convention adopted the Regional Plan on Marine Litter Management in the Mediterranean (hereinafter MLRP) that represents among others a set of legally binding measures to prevent and reduce marine litter generation and improve its management with the view to achieve the ECAP GES and targets on marine litter also adopted by COP 18. Thus, the Mediterranean Sea is the first regional sea to have a plan in dealing with the issue of marine litter. In the MLRP the following marine litter definition is provided: “Marine litter, regardless of the size, means any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment”.

Fishing for Litter (hereinafter FfL) is referring to the removal of marine litter from the sea by the fishermen.

The MLRP provides for FfL as one of the most important measures that has the potential to reduce the amounts of marine litter at sea by involving one of the key stakeholders sectors, the fishing industry. Apart from removing litter from the sea, mainly from the seafloor, these practices substantially contribute to raising awareness on the problem within the sector and the need for better waste management.

In 2011 the Honolulu Strategy, developed in the course of and after the 5th International Marine Debris Conference, organised by UNEP and the US National Oceanic and Atmospheric Administration (NOAA) Marine Debris Programme, stated FfL in its strategies C4 and C5.

FfL initiative has demonstrated on a limited scale that the objectives and aims of the scheme can gain the support of the fishing industry, harbour authorities and local authorities. Furthermore, it can contribute to changing practices and culture within the fishing sector, provide a mechanism to remove marine litter from the sea, and raise awareness among the fishing industry, other sectors and the general public.

FfL initiative integrates several benefits: environmental, social, economic and scientific.

The MLRP has two provisions addressing FfL: explore and implement to the extent possible by the year 2017 the FfL environmentally sound practices (Art. 9.6) and the need to consider EIA and environmental impacts of implementing FfL drawing the attention that the best environmental
practices and techniques should be used for this purpose due to the fact that such interventions may also have a very negative impact on marine environment and ecosystems (Art. 10.e).

In the Convention on Biological Diversity Expert Workshop to Prepare Practical Guidance on Preventing and Mitigating the Significant Adverse Impacts of Marine Debris on Marine and Coastal Biodiversity and Habitats held in Baltimore, USA in December 2014, “Encourage fishing for litter initiatives” is included on the list of suggestions made for marine debris mitigation and management (predominantly plastic) of the Draft Background Document. This document also provides an update to the review of the impacts of marine litter undertaken by the Scientific and Technical Advisory Panel of the GEF in collaboration with the Secretariat of the Convention on Biological Diversity, and jointly published as CBD Technical Series 67 in 2012.

FfL activities have been widely applied mainly in NE Atlantic Ocean, and specifically in the North Sea; FfL actions in the Baltic Sea and in the Mediterranean Sea have been undertaken more recently while no such actions have been initiated yet in the Black Sea. At global level, one project is under development in the United States with energy recovery from the fishing gear removed.

In the Mediterranean, five projects are currently being implemented: Ecological bags on board (Spanish East Coast), Ecopuertos (Andalusian Coast, Spain), DeFishGear (Adriatic Sea), Port of San Remo (Ligurian Coast, Italy) and Port of Rovinj (Northern Adriatic Sea, Croatia). A summary of these projects are presented in Annex 2.

Despite FfL is mainly considered at local scale, marine litter is a transboundary problem and therefore a coordinated, harmonised and coherent approach is the best way to tackle it.

At all levels, cooperation in FfL practices should be based on the exchange of relevant information and on addressing significant transboundary marine litter issues. Agreements should be made so that any vessel involved in the FfL practice can land non-operational waste at participating harbours in Mediterranean countries and other neighbouring countries.

Cooperation between Regional Seas Conventions will be more effective if the work undertaken within these conventions following their regulatory framework takes the same approach.

In this context, in accordance with UNEP/MAP Programme of work on pollution assessment and control thematic priority and the objectives of the project on ecosystem approach funded by the EC the following “Guide on best practices for Fishing for Litter in the Mediterranean” are developed to be commonly agreed at the Mediterranean level and implemented accordingly.

1. **Introduction**

There are two types of FfL practices: active and passive. Active practices are specifically performed to remove marine litter and fishermen involved are paid; passive practices are carried out by fishermen during their normal fishing activities without financial compensation.

Regarding to active ones the following practices can be considered:

1. Marine litter removal practices during specific fishing trips to remove litter from hotspots (marine litter accumulation) or from protected areas with financial compensation of the fishermen involved.
2. Retrieval of derelict (abandoned, lost or otherwise discarded) fishing gear at sea where individual fishermen are contracted to retrieve nets.

In both cases, expertise is needed to undertake marine litter removal actions. This removal involves fishermen and qualified divers locating and removing marine litter and derelict fishing gear (hereinafter DFG). They use various technologies to locate litter, such as side-scan sonar for seabed surveys, map locations on the basis of interviews with fishermen, or in the case of DFG information systems that track lost gear, and remove the litter from the marine environment using specialist equipment.

The removal of marine litter requires specific skill sets and experience from the fishermen – especially when bulky or heavy items and nets are retrieved. It is recommended to work with active fishermen that have good knowledge of techniques and the targeted areas (i.e. of the level of activity of the various fisheries in these areas, now and in the past).

Divers might be used to support retrieval operations, depending on the depth and the topography of the seafloor. Working with divers can help to minimise the impact of marine litter and DFG removal on the marine environment and to increase its efficiency and effectiveness. Marine litter and DFG retrieval requires a thorough understanding of the safety and environmental issues of working with marine litter and DFG. Only qualified divers with appropriate experience and training should attempt marine litter and DFG retrieval.

In this sense, and for marine litter removal practices in protected areas, operations using specific fishing gear and divers should be licensed. Therefore relevant permits should be requested to the competent authority (managing body of the protected area). In these cases, due to the sensitivity of these areas environmental impact assessment of the removal practice should be developed.

There are many environmental benefits of retrieval actions of marine litter, these benefits increase when developing in sensitive areas where protection and conservation of marine biodiversity are priority but the precautionary principle should be applied.

Last, regarding passive FfL practices, marine litter removal initiatives undertaken by fishermen during their normal fishing activity can be considered. Fishing vessels are given free bags to collect any marine litter they catch in their nets during fishing operations and are provided with free disposal facilities in harbour. Operational or galley waste generated on board, and hence the responsibility of the vessel, continues to go through the established harbour waste management system.

All types of marine litter are targeted depending on the gear type used. Most amounts are from seafloor litter collected with bottom-contacting gear. Full bags are deposited on the quayside where the participating harbours monitor the waste before moving the bag to a dedicated skip for disposal. Normally, litter is weighed and, where possible, composition recorded, providing data that may be useful in subsequent policy development and management. Participation of fishermen is voluntary and without financial compensation but they should be motivated with indirect benefits to achieve their engagement.

This practice reduces the volume of debris washing up on our beaches and also reduces the amount of time fishermen spend untangling their nets. Therefore FfL is one of the most innovative and successful concepts to tackle marine litter at sea based on cooperation with fisheries associations.

This last type of practices, i.e. passive FfL practices, will be those considered in this guide and therefore their aspects related will be described accordingly.

2. Objective

The objective of this guide is two-fold: to provide technical guidance on the mechanism to remove litter from the sea in an environmentally friendly manner ensuring negative impacts on marine environment and ecosystems are avoided, and to provide guidance on the process of involving the
stakeholders responsible for the implementation and coordination of FfL practices. As stated above, the FfL practices considered within this guide are the passive FfL ones.

These practices are expected to be implemented in local areas at small-medium scale due to the specific characteristics of the Mediterranean trawling fishing fleet. FfL practices are described in areas where fishermen are able and allowed to fish.

3. Implementing a Fishing for Litter practice step by step

The steps of a FfL practice are presented in the following scheme (blue colour) and are elaborated in the chapters that follow. Where possible to implement, additional steps are also provided (orange colour).

3.1. Selection of fishing harbours and vessels

For the selection of fishing harbours and vessels that will participate in the FfL practice it is recommended to contact with fishermen’s associations (both national and local) to explore the possibilities of collaboration. It is also recommended to contact with ports and harbours authorities because the point to collect waste will be located in the harbour area and other harbour facilities could be used for the purposes of the FfL practice. To complete the establishment of contacts with relevant stakeholders it is recommended to contact with waste management authorities and companies for the involvement of these sectors into the FfL practice.
3.2. **Marine litter collection**

For marine litter collection, bags solid enough will be needed. The size of bags used will depend on the vessel size to ensure enough free space on board during fishing activities. Typical bags, called big bags, used for FfL practices measure L90 x W90 x H90 cm and have a weight capacity of 200 kilogrammes, and a volume of 100 litres. The bags are usually made of polypropylene, for greater strength, and can be reused several times.

The following guidelines to collect marine litter should be followed by the fishermen to ensure the smooth running of the FfL practice:

- Marine litter should only be collected in the bags.
- Only marine litter caught in your nets should be collected in the bags. Ordinary galley and operational waste should still be disposed of through existing procedures.
- Garbage including plastics, domestic wastes, cooking oil, operational wastes and fishing gear should never be thrown overboard in the Mediterranean.
- Objects of natural origin (e.g., submerged and drifting shrubs, trees, their branches, etc.) which could be entrapped by fishing gear can be subsequently discharged back to the sea.
- Drums of fluids, chemicals or oil and hazardous items such as batteries are considered special waste under waste regulations and should be dealt with through the harbours existing special waste procedures.
- No items of marine litter should be brought onto or retained on board the vessel if the master, in his opinion, considers that doing so would have an adverse effect on the stability and seaworthiness of the vessel.
- Number of bags and approximate weight of marine litter collected in every fishing trip should be recorded.

3.3. **Marine litter reception**

The bags of marine litter should be unloaded and placed safely on the quayside in order to no marine litter losses occur and no marine litter may return to the sea. The bags will then be taken to the existing waste reception facilities in the harbour. Permanent and large containers that are emptied on regular basis and made available at the shortest possible distance from fishing boats will facilitate handling of both wastes and bags. Either fishermen will take the bags to reception facilities themselves or staff from the harbour authority or waste management company will take the bags to the reception facilities.

To ensure the smooth running of the FfL practice appropriate waste reception facilities in the harbour should be available. Marine litter will be disposed in closed containers with lids, large enough to receive the amounts and sizes of items removed.

Who takes the bags to the waste reception facilities will depend on what is agreed with the harbour authority during the FfL practice and the normal arrangements for handling waste from vessels in the port. It is recommended that the arrangements for handling marine litter are the same as the normal arrangements for handling the fishing vessels’ own waste.

3.4. **Marine litter management**

Once ashore, marine litter removed has to be properly managed in order to not return to the sea. In this sense, in addition to appropriate waste reception facilities, appropriate waste treatment facilities should be available.

Waste management should ensure that waste is segregated and recycled conveniently prioritising the recovery (both material and energetic) from the deposit. Thus, ideally the management system should apply the following waste hierarchy as a priority order: recycling, energy recovery and disposal.
If the final destination of the waste is landfilling, waste disposal will take place in a controlled facility.

As indicated above, the management system of marine litter collected could be integrated in the harbour existing waste management system, could establish an independent management system based on collecting it by an authorised waste manager that ensures its subsequent separation and recovery or could consist of a combined system of the two previous options. Agreements between waste management authorities and private sector could be made to put into the market segregated materials.

3.5. Additional steps

When possible, depending on available resources for the FfL practice the following steps could be implemented.

3.5.1. Appointment of a coordinator

FfL practice coordinator at national or regional level might be appointed. The coordinator might be in charge of these tasks:

- Searching for resources
- Involving fishing harbours and vessels: contact with fishermen's associations, ports and harbours authorities, waste management authorities and companies
- Developing of the public relations campaign
- Reporting monitoring data

From the experiences, the FfL practice coordinator could belong to a scientific or academic institution, NGO or a local authority as appropriate.

3.5.2. Public relations campaign and other incentives

A public relations campaign might be developed with the aims to encourage fishing industry to participate in the FfL practice and to inform general public about the FfL practice. The success of this kind of practices is the high engagement and involvement of fishermen and a good public perception could strengthen the fishermen support to the FfL practice.

Specific objectives of the campaign are outlined below:

- Raise awareness of the FfL practice within the fishing industry
- Highlight the role of the funding bodies
- Demonstrate good practice within the fishing industry to the general public
- Change attitudes and behaviour within the fishing industry
- Influence policy makers

The main aspects public relations campaign should cover are summarised below.

3.5.2.1. Key messages of the campaign

Three are the key messages that the campaign needs to disseminate during the FfL practice:

- Marine litter is a problem that can be solved if everyone takes responsibility for their actions.
- Marine litter damages fishermen’s livelihood (decrease of catches because fish can get caught in litter, time span spent cleaning nets) as well as the environment and it is in everyone’s interest to solve the problem.
- Marine litter is a resource\(^{11}\), not a waste.

\(^{11}\) The increasing scarcity of resources and rising commodity prices is encouraging producers to find new ways to recover used products and to turn waste into a resource. Many end-of-life products, including plastics and
3.5.2.2. **Practical objectives of the campaign**

Practical objectives of the campaign are listed below:

- Develop corporate image for the FfL practice (logo, colours, etc.)
- Develop A4 information leaflet on the FfL practice aimed at fishermen\(^{12}\)
- Develop identification flags of the FfL practice for participating vessels
- Develop specific equipment for participating fishermen
- Develop display material for exhibitions
- Official launch of the FfL practice
- Develop Fishing for Litter content on a website
- Press launch of first new harbour in the FfL practice
- Coverage of the FfL practice on a rural affairs television programme
- Press launch for final harbour in the FfL practice
- Publication of the report on the analysis of the monitoring programme

3.5.2.3. **Media contacts**

Local agencies should have extensive contacts with the Trade Media and National Press. These should be utilised throughout the FfL practice to gain the maximum amount of coverage.

3.5.2.4. **Crisis management**

The risk of bad publicity from a FfL practice is very low however there are some situations that could impact adversely on the press coverage. For example, if a participating vessel is caught disposing of marine litter at sea. In such a situation the FfL practice coordinator should immediately release a press release condemning the action and reaffirming their commitment to eradication of such behaviour. It should also state their intention to enter into a dialogue with the vessel and master to ensure there was not a repeat incident. However as a last result if there was no cooperation the vessel in question should be removed from the FfL practice.

Another possible scenario is that one of the vessels involved in the scheme is caught fishing illegally. In this situation the coordinator would not comment unless directly approached by the press and then only to state that they are only involved in waste management issues and fisheries management is outside their remit.

3.5.2.5. **Other incentives to promote fishermen engagement**

The following incentives may be taken into account to promote fishermen engagement in the FfL practice:

- increasing self-esteem by agreements with food banks to donate a part of the catches
- giving them visibility in communication media and to the Authorities
- encouraging them to constitute companies for fish commercialisation and subproducts elaboration, providing them with contacts with commerce
- studying engineering solutions to save fuel (such as hybrid engines)

\(^{12}\) Threats and impacts of marine litter should be highlighted on the leaflets developed.
3.5.3. Monitoring of the collected litter

The monitoring might be implemented to ensure adequate collection, sorting, recycling and/or environmentally sound disposal of the fished litter.

For monitoring marine litter brought ashore as part of the FfL practice a marine litter collected form might be filled in. With regards to seafloor litter, this form is based on the Master List of main categories of Litter Items as agreed in the UNEP/MAP Integrated Monitoring and Assessment Programme. The number of items will be recorded according to the categories defined (Plastic/Polystyrene, Rubber, Cloth/Textile, etc.) as well as the total weight of marine litter caught (see Table 1 in Annex 1).

However, this Master List may be adjusted and shortened for the purpose of the implementation of the Guide on FfL based on the most frequent items found in the course of implementation.

The tasks of recording composition and weight of waste brought ashore might be developed daily on the quayside by qualified personnel and monthly data might be reported to the FfL practice coordinator accordingly. The staff responsible for the characterisation of marine litter (composition and weight) should ensure that no items are lost during this process. Composition is recorded in order to identify sources of marine litter and the weight to ensure the final waste management.

Annually, monthly tons and composition of marine litter collected in each of participating harbours as well data related to harbour details (number of participating vessels, main vessel type) might be reported to the National Competent Authority for the protection of the marine environment (see Tables 2 and 3 in Annex 1).

3.5.4. Monitoring and evaluation of the Fishing for Litter practice

Data collected (number of vessels and harbours participating, amounts and composition of litter collected, etc.) might be periodically reviewed by the competent authority to evaluate the success of FfL initiatives, and might look at such factors as costs, benefits and governance. It may also enable to locate accumulation areas and support an optimised strategy to further focus on hot spots.

Regular FfL practice monitoring and evaluation might help to assess the impacts of the practice and to identify lessons that can be used to improve future initiatives. It might also help to prove to any organisations providing funding or other support that the practice is on track to achieve what it plans to achieve.

4. Health and safety implications

The experience of FfL projects in the North Sea developing since 2000 indicates that there have been no instances of accidents or injuries directly related to the collection, storage or transfer to shore of marine litter collected as part of these projects.

The UK Maritime and Coastguard Agency (MCA) undertook a Feasibility Study for the Conduct of a Pilot Project for Offshore Marine Debris Analysis, Project 496 (Day) that identified some of health and safety implications. The study suggested that the health and safety aspects of implementing these types of initiatives would be the same as normal fishing activities (operations) and therefore there would likely not be any additional implications.

The stability and seaworthiness of the vessel may be affected by the items of marine litter brought onto or retained on board. Thus, no object of marine litter will be collected if there is suspicion of hazard, adverse effect or risk jeopardizing the stability of the vessel. The master and crew of the vessel have the responsibility for effective operational risk assessment. It is recommended to consider elements provided in Annex 3 for health and safety risk assessment.

Fishermen should maintain litter on board in a manner that should avoid any possible fish cross pollution from marine litter.
5. **Environmental impact assessment including transboundary impacts**

FfL passive practices are carried alongside normal fishing operations therefore there are no, in principle, potential adverse effects on the marine environment. However, the MLRP highlights the need to consider EIA and environmental impacts of implementing FfL and draws the attention that the best environmental practices and techniques should be used for this purpose due to the fact that such interventions may also have a very negative impact on marine environment and ecosystems in particular regarding the FfL active practices.

The main potential environmental impacts of FfL practices may be related to the harm to the seafloor and the associated benthic communities, In addition, pollution with marine litter will happen in case of exceed the capacity of the harbour waste reception and storage facilities together with human health and safety risks. Best practices established in this guide could be considered as mitigation measures of potential negative impacts of FfL practices on marine environment.

[An environmental impact assessment for active FfL practices should be considered taking into account the aspects listed below:

1. Characteristics of the FfL practice: (a) the size and design of the whole FfL practice; (b) cumulative effects with other existing and/or approved FfL practices; (c) the use of natural resources, in particular land, soil, water and biodiversity; (d) the production of waste; (e) pollution and nuisances; (f) the risk of major accidents and/or disasters which are relevant to the FfL practice concerned, including those caused by climate change, in accordance with scientific knowledge; (g) the risks to human health.

2. Location of the FfL practice: environmental sensitivity of geographical areas affected by the FfL practice with particular regard to marine protected areas.

3. The transboundary nature of the potential impacts.]

6. **References**

MARITIME AND COASTGUARD AGENCY GREAT BRITAIN (2004). *Research Project No. 496: Feasibility Study for Conduct of a Pilot Project for Offshore Marine Debris Analysis: Notice to Environmental Regulators, Ports and Harbours, Fishing Industry, Non-Governmental Organisations, Government Departments (Dft and Defra) and Local Authorities (Marine information note)*.

OSPAR COMMISSION (2010). *OSPAR Recommendation 2010/19 on the reduction of marine litter through the implementation of fishing for litter initiatives and its annex.*

Annex 1 Monitoring forms

Table 1. Marine litter collected form.

<table>
<thead>
<tr>
<th>Harbour</th>
<th>Vessel</th>
<th>Date</th>
<th>Number of bags</th>
<th>Total weight (Kg)</th>
<th>Observations</th>
</tr>
</thead>
</table>

#### ID PLASTIC/POLYSTYRENE	Total No.
G2 | Bags |
G6 | Bottles |
G10 | Food containers incl. fast food containers |
G18 | Crates and containers / baskets |
G20 | Plastic caps and lids |
G27 | Cigarette butts and filters |
G39 | Gloves |
G48 | Synthetic rope |
G51 | Fishing net |
G55 | Fishing line (entangled) |
G59 | Fishing line/monofilament (angling) |
G61 | Other fishing related |
G66 | Strapping bands |
G67 | Sheets, industrial packaging, plastic sheeting |
G93 | Cable ties |
G124 | Other plastic/polystyrene items (identifiable) |

#### ID RUBBER	Total No.
G125 | Balloons and balloon sticks |
G127 | Rubber boots |
G128 | Tyres and belts |
G132 | Bobbins (fishing) |
G134 | Other rubber pieces |

#### ID CLOTH/TEXTILE	Total No.
G136 | Shoes |

This Annex is prepared for indicative purposes. Its final version will be based on the agreed list under the Integrated Monitoring and Assessment Programme of UNEP/MAP.
<table>
<thead>
<tr>
<th>ID</th>
<th>ID</th>
<th>Description</th>
<th>Total No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>G137</td>
<td>Clothing / rags (clothing, hats, towels)</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>G141</td>
<td>Carpet & Furnishing</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>G142</td>
<td>Rope, string and nets</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>G145</td>
<td>Other textiles (incl. rags)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>PAPER/CARDBOARD</td>
<td>Total No.</td>
</tr>
<tr>
<td>146</td>
<td>G146</td>
<td>Paper/Cardboard</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>G148</td>
<td>Cardboard (boxes & fragments)</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>G158</td>
<td>Other paper items</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>PROCESSED/WORKED WOOD</td>
<td>Total No.</td>
</tr>
<tr>
<td>160</td>
<td>G160</td>
<td>Pallets</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>G170</td>
<td>Wood (processed)</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>G173</td>
<td>Other (specify)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>METAL</td>
<td>Total No.</td>
</tr>
<tr>
<td>175</td>
<td>G175</td>
<td>Cans (beverage)</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>G176</td>
<td>Cans (food)</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>G180</td>
<td>Appliances (refrigerators, washers, etc.)</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>G182</td>
<td>Fishing related (weights, sinkers, lures, hooks)</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>G185</td>
<td>Middle size containers</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>G187</td>
<td>Drums, e.g. oil</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>G193</td>
<td>Car parts / batteries</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>G194</td>
<td>Cables</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>G196</td>
<td>Large metallic objects</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>G197</td>
<td>Other (metal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>GLASS/CERAMICS</td>
<td>Total No.</td>
</tr>
<tr>
<td>200</td>
<td>G200</td>
<td>Bottles incl. pieces</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>G201</td>
<td>Jars incl. pieces</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>G208</td>
<td>Glass or ceramic fragments >2.5cm</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>G209</td>
<td>Large glass objects (specify)</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>G210</td>
<td>Other glass items</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>SANITARY WASTE</td>
<td>Total No.</td>
</tr>
<tr>
<td>95</td>
<td>G95</td>
<td>Cotton bud sticks</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>G96</td>
<td>Sanitary towels/panty liners/backing strips</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>G98</td>
<td>Diapers/nappies</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>G133</td>
<td>Condoms (incl. packaging)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>MEDICAL WASTE</td>
<td>Total No.</td>
</tr>
<tr>
<td>99</td>
<td>G99</td>
<td>Syringes/needles</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL
Table 2. Reporting format - Monthly tons of marine litter collected.

<table>
<thead>
<tr>
<th>Harbour</th>
<th>Number of vessels</th>
<th>Main vessel type</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tons of marine litter collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total
Table 3. Reporting format-Monthly composition of marine litter collected.

<table>
<thead>
<tr>
<th>Harbour</th>
<th>Number of vessels</th>
<th>Main vessel type</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G6</td>
</tr>
<tr>
<td>G10</td>
</tr>
<tr>
<td>G18</td>
</tr>
<tr>
<td>G20</td>
</tr>
<tr>
<td>G27</td>
</tr>
<tr>
<td>G39</td>
</tr>
<tr>
<td>G48</td>
</tr>
<tr>
<td>G51</td>
</tr>
<tr>
<td>G55</td>
</tr>
<tr>
<td>G59</td>
</tr>
<tr>
<td>G61</td>
</tr>
<tr>
<td>G66</td>
</tr>
<tr>
<td>G67</td>
</tr>
<tr>
<td>G93</td>
</tr>
<tr>
<td>G124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>RUBBER</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G125</td>
<td>Balloons and balloon sticks</td>
<td></td>
</tr>
<tr>
<td>G127</td>
<td>Rubber boots</td>
<td></td>
</tr>
<tr>
<td>G128</td>
<td>Tyres and belts</td>
<td></td>
</tr>
<tr>
<td>G132</td>
<td>Bobbins (fishing)</td>
<td></td>
</tr>
<tr>
<td>G134</td>
<td>Other rubber pieces</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>CLOTH/TEXTILE</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G136</td>
<td>Shoes</td>
<td></td>
</tr>
<tr>
<td>G137</td>
<td>Clothing / rags (clothing, hats, towels)</td>
<td></td>
</tr>
<tr>
<td>G141</td>
<td>Carpet & Furnishing</td>
<td></td>
</tr>
<tr>
<td>G142</td>
<td>Rope, string and nets</td>
<td></td>
</tr>
<tr>
<td>G145</td>
<td>Other textiles (incl. rags)</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>PAPER/CARDBOARD</td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
<td>Mai</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
<td>Total</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>G146</td>
<td>Paper/Cardboard</td>
<td></td>
</tr>
<tr>
<td>G148</td>
<td>Cardboard (boxes & fragments)</td>
<td></td>
</tr>
<tr>
<td>G158</td>
<td>Other paper items</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>PROCESSED/WORKED WOOD</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G160</td>
<td>Pallets</td>
<td></td>
</tr>
<tr>
<td>G170</td>
<td>Wood (processed)</td>
<td></td>
</tr>
<tr>
<td>G173</td>
<td>Other (specify)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>METAL</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G175</td>
<td>Cans (beverage)</td>
<td></td>
</tr>
<tr>
<td>G176</td>
<td>Cans (food)</td>
<td></td>
</tr>
<tr>
<td>G180</td>
<td>Appliances (refrigerators, washers, etc.)</td>
<td></td>
</tr>
<tr>
<td>G182</td>
<td>Fishing related (weights, sinkers, lures, hooks)</td>
<td></td>
</tr>
<tr>
<td>G185</td>
<td>Middle size containers</td>
<td></td>
</tr>
<tr>
<td>G187</td>
<td>Drums, e.g. oil</td>
<td></td>
</tr>
<tr>
<td>G193</td>
<td>Car parts / batteries</td>
<td></td>
</tr>
<tr>
<td>G194</td>
<td>Cables</td>
<td></td>
</tr>
<tr>
<td>G196</td>
<td>Large metallic objects</td>
<td></td>
</tr>
<tr>
<td>G197</td>
<td>Other (metal)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>GLASS/CERAMICS</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G200</td>
<td>Bottles incl. pieces</td>
<td></td>
</tr>
<tr>
<td>G201</td>
<td>Jars incl. pieces</td>
<td></td>
</tr>
<tr>
<td>G208</td>
<td>Glass or ceramic fragments >2.5cm</td>
<td></td>
</tr>
<tr>
<td>G209</td>
<td>Large glass objects (specify)</td>
<td></td>
</tr>
<tr>
<td>G210</td>
<td>Other glass items</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>SANITARY WASTE</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G95</td>
<td>Cotton bud sticks</td>
<td></td>
</tr>
<tr>
<td>G96</td>
<td>Sanitary towels/pantry liners/backing strips</td>
<td></td>
</tr>
<tr>
<td>G98</td>
<td>Diapers/happies</td>
<td></td>
</tr>
<tr>
<td>G133</td>
<td>Condoms (incl. packaging)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>MEDICAL WASTE</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G99</td>
<td>Syringes/needles</td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | | | | | | | | | | | | | | |
Annex 2. Summary of the FfL projects

<table>
<thead>
<tr>
<th>Practice / Project</th>
<th>Implementing Organisation</th>
<th>Scope</th>
<th>Period</th>
<th>Litter Removed</th>
<th>Activities Undertaken</th>
<th>Added Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological bags on board</td>
<td>Villajoyosa fishermen’s association</td>
<td>Alicante Coast (E Spain)</td>
<td>2012-2013</td>
<td>Seabed and floating</td>
<td>1 harbour, 38 boats (30 trawls, 8 trammels)</td>
<td>Fishermen initiative</td>
</tr>
<tr>
<td>Ecopuertos</td>
<td>RELEC Chair (University of Cadiz, Spain)</td>
<td>Andalusian Coast (port of Motril, Granada)</td>
<td>August 2013-December 2014</td>
<td>Seabed</td>
<td>Until 30th September 2014: 41701 items of seabed litter collected and 17603 kg of fish donated</td>
<td>Integrated waste management system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On average 5 vessels participating each month (trawling fishing vessels)</td>
<td>Fishing discards of the participating fleet provide food to charity canteens through Granada Food Bank Foundation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The project finalised at the beginning of December 2014 but the continuity of this initiative is assured thanks to funding from the port of Motril</td>
<td></td>
</tr>
<tr>
<td>DeFishGear</td>
<td>Lead partner: National Institute of Chemistry (Slovenia)</td>
<td>Adriatic Sea</td>
<td>Beginning of 2014-ongoing</td>
<td>Seabed and fishing gears</td>
<td>Fishing for litter pilot actions started in October and will last from 6 to a maximum of 12 months</td>
<td>Implementation of a Derelict Fishing Gear Management System in the Adriatic Region – DeFishGear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recovering and reuse fishing nets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 trawlers of San Remo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project countries: Slovenia, Italy, Greece, Croatia, Bosnia and Herzegovina, Montenegro and Albania</td>
<td>Ligurian Coast</td>
<td>2015-ongoing</td>
<td>Seabed</td>
<td>The objectives of the</td>
<td></td>
</tr>
</tbody>
</table>
Port of San Remo

(The Ligurian Observatory on Fishery and Environment) (Port of San Remo, Italy)

Partners: Liguria region; ARPA Liguria; Municipality of San Remo; fishery cooperatives (LegaPesca, Federpesca, AGCI Pesca); port authority of San Remo; FLAG (Fisheries Local Action Group) 'Il mare delle alpi'; waste management companies (AIMERI SpA); Accordo Pelagos and RAMOGE; tourism industry (Consorzio Mediterraneo; Costa Crociere Foundation); ARPA Toscana; University of Genova; Institut Ruđer Bošković (Port of San Remo, Italy)

are involved project are: improve the marine environment and in particular the environmental status of the sea bottom by reducing marine litter; promote behavioural change among stakeholders and raise awareness on marine litter issues; provide evidence on marine litter hot-spots in Liguria

Port of Rovinj

Lead partner: Center for Marine Research of the Ruđer Bošković Institute

Partners: fishermen of Rovinj; Port authority of Rovinj; Komunalni

Northern Adriatic Sea, Istrian Coast (Port of Rovinj, Croatia)

2015- Seabed

- 20-25 vessels are involved in the first stage of the project
- The objectives of the project are: Remove marine litter and contribute to the implementation of the Marine Strategy Framework Directive in Croatia and to
servis d.o.o (municipal waste management company); NGO Zelena Istra (Green Istria); Chamber of Commerce of Istria; Municipality of Rovinj achieving good environmental status; Collect data on marine litter in the Northern Adriatic Sea; Raise awareness on the problem of marine litter
Annex 3. **Elements for the health and safety risk assessment**

Hazards

The fish quay (slippery surfaces, mooring ropes, blocks and bollards)

<table>
<thead>
<tr>
<th>Hazard no:</th>
<th>Risk Factor</th>
<th>Likelihood of occurrence</th>
<th>Hazard severity</th>
<th>Likelihood / Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Medium</td>
<td>Low likelihood</td>
<td>High / mod risk</td>
<td>Severe</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>Low likelihood</td>
<td>High / mod risk</td>
<td>Severe</td>
</tr>
<tr>
<td>3</td>
<td>Minor</td>
<td>Low likelihood</td>
<td>Low risk</td>
<td>Medium</td>
</tr>
<tr>
<td>4</td>
<td>Minor</td>
<td>Low likelihood</td>
<td>Low risk</td>
<td>Medium</td>
</tr>
<tr>
<td>5</td>
<td>Minor</td>
<td>Low likelihood</td>
<td>Moderate risk</td>
<td>Minor</td>
</tr>
<tr>
<td>6</td>
<td>Medium</td>
<td>Likely</td>
<td>Moderate / low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>7</td>
<td>Medium</td>
<td>Unlikely</td>
<td>Low risk</td>
<td>Negligible Risk</td>
</tr>
</tbody>
</table>

To assess the risk arising from the hazard:

1. Select the expression for likelihood which most applies to the hazard
2. Select the expression for degree of harm which most applies to the hazard
3. Cross reference using the above table to determine the level of risk

Existing Control Measures

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Control Measures</th>
<th>Re-assessed</th>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vessel survey, trainee staff, good safety equipment</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vessel survey, trainee staff, good safety equipment</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Survey the quay</td>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vessel survey, staff familiar with equipment</td>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Survey the quay</td>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Issue of safety equipment (gloves, boots, hard hat)</td>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Staff to be familiar with craning procedures</td>
<td>Minor</td>
<td></td>
</tr>
</tbody>
</table>
Annex III, Appendix 4

Guidelines on Best Environmental Practices for the environmental sound management of mercury contaminated sites
Note by the Secretariat

These Guidelines have been commissioned by the Programme for the Assessment and Control of Marine and Coastal Pollution in the Mediterranean Region (MEDPOL) and the Regional Activity Center for Sustainable Consumption and Production (SCP/RAC) of the Mediterranean Action Plan (UNEP/MAP) to the Spanish National Technological Center for Mercury Decontamination (CTNDM), which counts with a vast technological experience in mercury management and offers scientific and technological support to eliminate the hazards related to the presence of mercury in products, emissions and wastes.

The Guidelines have been prepared by Manuel Ramos, Javier Carrasco, Ana Conde and Engracia Delacasa, from the CTNDM and from Minas de Almadén (MAYASA), with collaborations of Marc Pujols and Gracia Ballesteros from ACUAMED; Antoni Malet and Antonio Caprino from SOLVAY IBÉRICA, and Josep Maria Chimenos from the University of Barcelona.

The Directorate General for Risk Prevention (Service of Technological Risk, Management of Contaminated Sites) of the French Ministry of Ecology, Sustainable Development and Housing, the Institute for Environmental Protection and Research (ISPRA) of the Italian Ministry for the Environment and the Protection of Land and Sea, and the Waste Agency of Catalonia have contributed with comments and suggestions.

The coordination and technical supervision was ensured by SCP/RAC.

The Guidelines were discussed at the MED POL Focal Points Meeting in March 2014 and have been updated to accommodate the comments received by the Focal Points.
Table of contents

1. Introduction ...4
2. International Legislation ...6
3. Identification of mercury-contaminated sites ...9
4. Identification of environmental impacts ...13
5. Environmental characterization of mercury-contaminated sites14
6. Sample preparation and analytical procedures ...22
7. Risk assessment ..25
8. Remediation of mercury-contaminated sites ...29

ANNEX : CASE STUDIES ..47

1. Reconditioning of the “Cerco de san Teodoro” slag heap. Minas de Almadén (Ciudad Real, Spain). ..48
2. Decontamination of the Flix dam in the Ebro river (Tarragona, Spain) ...55
3. Environmentally safe decommission of a mercury cell ...67
4. Stabilization of soils contaminated with heavy metals using low-grade magnesium oxide....76
1. Introduction

In general, a **contaminated site** is a place where there is an accumulation of toxic substances or residues which may affect the soil, groundwater, sediments and, in the case of mercury, even air to levels that pose a risk to the environment or human health or be above the safe limits recommended for a specific use.

Metallic mercury is a liquid at room temperature, the only metal with this property and also evaporates at room temperature. Mercury is one of the most problematic toxic substances that may be found at contaminated sites: the special physical and chemical characteristics of mercury make a challenge the management of mercury contaminated sites, especially when it comes to remediate large industrial sites and mercury mining sites. Due to its properties, once mercury has entered the environment, it remains there adopting different physical and chemical forms reaching all of the environmental compartments to a greater or lesser extent: air, soil, water, sediments and even the buildings used for the activity.

Inorganic mercury can be transformed by bacteria into methylmercury in sediments and soils, at a rate depending of the physic-chemical characteristics of the soil. Methylmercury (CH\(_3\)-Hg\(^+\)) is a highly toxic bioavailable form of organic mercury and cumulative throughout the food chain. Consumption of fish and shellfish poisoned by direct dumping of methylmercury in the wastewater from a chemical factory in the Minamata bay (Japan) during decades was the cause of one of the worst episodes of chemical pollution recorded in the past century.

The three major forms (speciation) that can be found in the environment are:

- Metallic mercury (Hg\(^0\)), in liquid and gas equilibrium depending of the temperature.
- Inorganic mercury (Hg\(^{2+}\), HgO, HgCl\(_2\), HgCl…)
- Organic mercury (CH\(_3\)-Hg-CH\(_3\), CH\(_3\)-Hg-NH\(_2\), CH\(_3\)-Hg-SH…)

Various activities have led historically to mercury-contaminated sites, generally as a result of lack of environmental regulations, use of pollutant technologies and poorly waste management practices. These activities mainly include: mercury mining and quarrying\(^{15}\); the chlor-alkali industry; coal-fired power-plants; cement industry; production of pig iron, steel and non-ferrous metals; the waste sector; the production of chemical substances, chemical fertilizers, pharmaceutical products and catalysers; batteries and fluorescent lights.

Currently the most important source of emission of mercury in the Mediterranean region are the coal-fired power plants\(^{16}\).

\(^{14}\) Mercury can easily change its chemical state in the environment because of the low Hg\(^{2+}\)/Hg\(^0\) standard potential, thus causing drastic changes in its mobility and toxicity.

\(^{15}\) The most common ore form of Hg is cinnabar (HgS). It has been exploited in the Mediterranean region mainly in Spain and also in Algeria, Slovenia, Turkey and Italy.

\(^{16}\) “Diagnosis of Mercury in the Mediterranean Countries”. CP/RAC, 2010.
Remediation of a contaminated site is a corrective measure to mitigate or eliminate the pollution. The first step towards achieving this is to thoroughly examine the origin, extent, type and amount of existing contamination. Once these parameters have been defined, the next step is to determine how and to what extent the environment and human health is or may be affected. Finally, and only after having investigated the aforementioned aspects, corrective measures should be proposed and adopted to remediate safely the environmental damage and limit or eliminate the risk of the contamination to any environmental vector and to the human health.
2. International Legislation

2.1 Minamata Convention on Mercury

The Minamata Convention on Mercury provides for control and reductions across a range of products, processes and industries where mercury is used, released or emitted.

With regard to contaminated sites, the global Convention on mercury shall adopt guidance on managing contaminated sites, but does not pose an obligation on remediation of contaminated sites.

The parties are encouraged to cooperate in the formulation of strategies and the execution of activities to identify, measure, classify depending on priorities, manage and, as appropriate, remediate contaminated sites.

2.2. Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean (Barcelona Convention)

- The maximum concentration of mercury in effluent before dilution in the Mediterranean Sea is 50 µg/l.
- New outlets for mercury-containing effluents in the Mediterranean Sea should be designed and constructed to prevent an increase of mercury concentration in the biota and sediments to above 50% of the background level in a 5 km radius from the discharge point.

2.2.2 Regional Plan on the reduction of inputs of Mercury (2012).

In the framework of the implementation of article 15 of the Protocol of Land Based Sources of pollution, the Mediterranean Action Plan (MAP) of the Barcelona Convention adopted in 2012 a legally binding text in order to reduce Mercury pollution, by which the Parties should establish limits of emission (ELVs) to different industrial sectors, among other measures.

An inventory of contaminated sites - including mercury mines and chloralkali facilities which use or have used in the past mercury cells-, has to be forwarded to the Secretariat of the Barcelona Convention. The countries have also to identify and envisage appropriate measures for these sites.

17 Open for signature in 2013 and enters into force in 2018
2.3. European Union Legislation

2.3.1 Surface water and Groundwater

2.3.1.2 Directive 2006/118/EC of 12 December 2006, on the protection of groundwater against pollution and deterioration.
 - Indicates criteria for assessing good chemical status of groundwater.
 - Set the threshold values of the analytical parameters.
 - Mercury is included in the minimum list of pollutants or groups of pollutants and indicators of pollution that member states should establish.

2.3.2 Soils

2.3.2.3 The thematic strategy for soil protection, Communication COM[2006]231-final, includes concepts like:

 - the establishment of a legal framework to protect and use the soil sustainably;
 - the integration of protection policies;
 - the identification of risk areas
 - the inventory of contaminated land and facilities
 - the restoration of degraded soils.

2.3.2.4 The implementation of the Strategy and ongoing activities since 2006 were presented in document COM (2012) 46 final.

2.3.2.5 Directive 2010/75/EU on Industrial Emissions (IPPC). The industrial activities dealing with hazardous substances will have to establish through a baseline report the state of soil and groundwater before the start of activities and after the cessation of the activities.

2.3.2.6 Directive 99/31 on landfill of waste. The operator shall be responsible for the maintenance, monitoring and control in the after-care phase for as long as may be required by the competent authority, taking into account the time during which the landfill could present hazards. In some countries this period is not inferior to 30 years.
2.3.3 All media

 2.3.3.1 Regulation EC no.166/2006, concerning the establishment of an European pollutant release and transfer Register (E-PRTR), setting as compulsory to inform on emissions to air, water and soil above given limits.

2.3.4 Health and safety at work

 2.3.4.1 Commission Directive 2009/161/EU establishing a list of indicative occupational exposure limit values.

2.3.5 Transport of hazardous waste

 2.3.5.1 European Agreement concerning the international carriage of dangerous goods by road (ADR)

 2.3.5.2 Regulation EC 1013/2006 on shipments of waste, specifies the procedures for controlling waste shipments to improve environmental protection.

 2.3.5.3 Directive 2008/98 on waste (Framework Directive), includes the conditions for transportation of waste, including minimum standards of transporters.
3. Identification of mercury-contaminated sites

The first step is to produce a census of current and former industrial sites that hosted industrial activities likely to have used - intentionally or unintentionally - mercury in the process or be emitted or dumped into the environment (see list of activities in the introduction). To this list, sites can be added for which analyses and diagnoses revealed the presence of significant mercury anomalies in the soil, air, water, sediments. To detect these anomalies, it is necessary to compare the results found on the site with those of natural or anthropogenic geological background.

The realization of studies on the site to characterize the pollution in its breadth and scope is a critical phase to define the actions to undertake cleanup activities later.

To characterize the pollution it should be established:

- What are the forms of mercury present (metallic mercury, methyl mercury …);
- The amount of mercury;
- What are the environmental compartments impacted;
- What is the extent of the contaminated area;
- The behavior of mercury in environmental compartments;
- What are the consequences of the pollution, both in and out of the site.

Several tools can be implemented on the site:

- Historical studies, literature and recollection of memories from workers may reconstitute industrial and environmental practices in the site to target potentially polluted areas and type of pollutants potentially present.
- The hydro-geological studies will show the soil characteristics (granulometry, composition of soil and rock, fragmentation areas..) and underground hydrological networks (flow direction of the water, connection between groundwater tables, depth, variation in levels of the groundwater table..). This helps to identify potential transfer and the possible pollution extent.

Information gathering will also seek to identify issues to protect in the site and if the pollution exits the site: local population, uses of the environment (orchards, fishing, water consumption, swimming areas, walking areas ...), media exposure, and the protection of natural resources.

The program of investigations conducted on the site defines environmental compartments and study samples to be taken in order to ultimately develop the conceptual site layout. The latter can map the relationships between the sources of pollution, the various transfer media and issues to protect.

The environmental compartments to be studied are water (surface, groundwater); biota (fish, plants...); soil, soil gas and sediments and air.

The sampling and analyzes have to be performed according to the protocols and standards. In the case of mercury pollution, it is convenient to associate each sampling with a collection of field
observations and measurements of parameters to be able to assign bias indices to the results. These observations or parameters taken into consideration may be:

- In the air: temperature and internal pressure, temperature and pressure of the outside air.

- In the soil: environment in the area of sampling (sub-slab, bare soil, grassy floor, soil with nearby trees...), soil type (natural, backfills, lithology, homogeneity/ heterogeneity, granulometry, moisture, etc.) soil temperature, ambient air temperature, pH, Eh, dissolved oxygen, organic content (TOC), iron, sulfates, major element and/or traces characterizing the geochemical background, chlorinated solvents (HVOC, chlorinated monocyclic aromatic compounds, total hydrocarbons, etc.), types of bacteria present in the soil (anaerobic, aerobic ...)

- In the soil gas: temperature and pressure of the soil, temperature and air pressure outside.

- In the water: pH, Eh, dissolved oxygen, electron acceptors (nitrates, nitrites sulfates, iron and manganese), content of chlorides, COD.

- In sediments: pH, Eh, sulfides / sulfates, Total Organic Carbon (TOC), granulometry.

If there are droplets of mercury in soil or sediments, the results may be biased depending if the droplet is taken or not in the sample, especially if the weight of the sample is very small. Sampling sizes should be carefully considered in this case to minimize this risk. A good safety measure to validate the results is to include also sampling and measurements of soil gas.

During analysis of mercury in the sample, it is necessary to perform mercury speciation, which will let to have a precise evaluation of the toxicity, lability and the associated risks. The speciation will distinguish the different forms of mercury present: total mercury, dissolved elemental mercury, dissolved reactive mercury, gaseous mercury Hg °, particulate and colloidal mercury.

Taking into account that metallic mercury is the most present form (99%) in the air and soil gas, the speciation in the samples should preferably be carried out in water - groundwater and surface water -, soil and sediments.

Sampling is described in more detail in chapter 5.

3.1 Stage I: Preliminary report on the situation

The preliminary report should contain a theoretical model of the mercury-contaminated site that draws on all of the previously known information. Data on the following aspects will be gathered during this stage:

- The location, surface area, and details of the physiographic region of the site.
- Historical records of the site and the surrounding area (climatology, etc.).
- Past, current and future uses of the place.
✓ Analytical data from previous studies.
✓ A survey of the site and the nearby area.

One important tool that helps to identify, quantify and characterize the contamination is a list of the activities and processes that have taken place on the site associated with mercury use and the estimated amount of mercury-containing wastes.

Once these factors have been identified, stage II should be carried out. This stage involves the drafting of a more detailed additional report to assess the degree of mercury contamination.

3.2 Stage II: Additional report

This report will contain the information required to draw conclusions and determine **whether or not** a more in-depth analysis is needed.

It is advisable to carry out a preliminary site inspection to meet three specific objectives: a) **describe the site**, b) **examine the type of contamination produced** by the mercury and c) **define the mechanisms of mercury mobility and the points of exposure**.

If detailed studies of the site are required, the environmental characterization stage will be carried out (Chapter 5).

The three specific objectives are discussed in more detail below.

3.2.1 Description of the site

This should include generalities on the location of the site, climatology, hydrology, hydrogeology, the demography of the area (size and distance from the nearest population), and potential environmental affection.

The report should include at least the following data:

- **Location.** A complete description of the location of the site and access to it. Geographic information on the site. Potential movement of the material deposited there, the production processes carried out, the source of mercury waste, amounts of waste, etc.

- **Form and structure of any facilities.** Geometric characteristics, the building system and sequence, an estimation of the volume of material, the boundaries of the site and the uses of the immediately adjacent area.

- **Climatology.** A complete description of the climate using all available data, the average seasonal temperature, the annual rainfall and its distribution, the maximum precipitation, the predominant wind direction and seasonal wind patterns.
3.2.2 Type of contamination

Unless chemical analyses have been carried out, it is difficult to accurately determine which contaminants are present at a site. However, during a site visit, it is possible to define with sufficient clarity the type of mercury contamination that has taken place. To achieve this, it is essential to find out about the activities and processes carried out in the area of interest, through interviews with the local authorities and with the population of the surrounding area. Information that is gathered in this way must always be summarized and filtered, particularly if the polluting activity was halted a long time ago.

The site should be defined in as much detail as possible in relation to the geometric and physical characteristic of the structure or structures that could potentially produce the contamination.

3.2.3 Identify the mechanisms of mercury mobility and points of exposure

A description of the site and of the type of contamination will enable us to predict the mechanisms of mercury mobility and the environmental compartments that are affected, where applicable. A good selection of points of exposure is extremely important, as environmental sampling should be comprehensive.

During the first site visit, the specialist in charge of the study should also define the areas in which there is no evidence of contamination. These areas will be used to take reference samples, which will serve to establish the natural or background level of mercury in the study area.

A preliminary precautionary decision can be made to limit access and uses of the potentially contaminated area if knowledge of points of exposure gained in this first visit leads to the conclusion that there may be an exposure risk for people or animals. The relevant local authority must be informed of this decision. The advisability of the measure can be reviewed later when the results of the analyses are available.
4 Identification of environmental impacts

National environmental safety and protection criteria should be used as a reference to identify environmental impacts at the contaminated site.

If no specific regulations exist, the principle of prudence should be considered in the study of the mercury-contaminated site. In this case, applicable published data, recommendations and international guidelines should be used as a reference. The conclusions obtained in this way and the decision of the relevant authority/ies will enable future actions to be evaluated.

As mercury is mobile, environmental impacts should be assessed in the various environmental compartments to determine the following risks.

Hydrological risk:
- Alterations in natural surface drainage and contamination of river beds due to runoff and leachate from the contaminated site.
- Changes in the courses of streams adjacent to the site due to the accumulation or piling up of material in the beds, which may cut off the natural flow or be washed away in a flood and pollute the downstream.

Atmospheric risks:
- Resuspension or reemission of particles of dust from the mercury-contaminated site that are carried by the winds.
- Regasification and release of mercury present in piled up or contaminated materials, due to seasonal changes in temperature.

Changes in soils:
- Occupancy by accumulation of materials.
- Nearby soil affection by dispersion of materials from the contaminated site, the deposition of dust or the runoff of rainwater.

Impact on vegetation and wildlife:
- Affection of plant species from the area and movement of wildlife to adjacent habitats.

Morphology and landscape:
- Visual impact on the main basins in the natural landscape due to the effect of piling up of material, lack of vegetation or colour changes.
5 Environmental characterization of mercury-contaminated sites

The selection of the environmental compartments that should be sampled will depend on the characteristics of the contaminated site or location: each site is different, so criteria that apply to one might not be applicable to another. In some places, surface water and sediment should be sampled; in others soil sampling may be sufficient; and in yet others emissions should be measured and soil, surface water and groundwater should be sampled.

Sampling and analyses are essential elements in the assessment of mercury-contaminated sites: it will determine the extent of soil contamination with environmental damage, and the precise boundaries of contaminated areas.

When mercury contamination is detected at a site, it should also be sought in the surrounding area. Sampling should be carried out both ‘inside’ and ‘outside’ the site, to assess the possibility that the contamination affects adjacent surroundings.

In all cases, it is essential to obtain a reference sample to determine the background levels of mercury. If the site is in a mining area, a great deal of caution must be taken in defining the reference level. The mineral deposits could extend beyond the limits of the mine, due to the continuation of the geological formation that contains the deposit. Thus, high metal content results could be obtained that are not strictly due to the mining activity. In these cases, special attention should be paid to soils and aquifers.

Sampling

The tasks of sampling, analysis and monitoring should be carried out by qualified professionals, in accordance with a well-thought-out plan, using widely accepted methods. The same methods should be used throughout the programme.

It should be stressed the importance that sampling has on a decontamination project. Sampling errors or deviation from the standard operating procedures could produce data detrimental to the programme, which is why the samples must be representative and must conform to the desired levels of reliability. Samples should be preserved and stored in the shortest time possible after collection. The time elapsed between the taking of samples and their preparation for analysis should be the minimum, and is recommended to maintain the samples refrigerated until delivered to the Laboratory.

In addition, rigorous quality assurance and control measures should be applied.

Sampling may be selective, systematic and random, including all matrices (soil, sediment, water):

- Selective sampling
 The sample collection points are determined by the experience of the sampler, and usually include factors such as the visibility of the area of a chemical spill, changes in soil color,
areas of previous physical disturbance or areas with no vegetation or dead vegetation. In environmental studies, selective sampling is often the basis of an exploratory investigation.

- **Systematic Sampling**
 It is useful at sites with chemical spills or aerial deposition of pollutants, this method is useful to document probable concentration gradients and is often used in monitoring programs. The points of sampling can form various patterns in the soil: zigzag, diagonal, grid, sinuous, etc. Subsamples should also be taken at each vertex where the direction of the pattern changes.

- **Random Sampling**
 Allows every possible combination of sample units to be selected and the number of possible combinations is limited only by the size of the sample.

Analyses

In order to obtain significant, acceptable results, the analytical laboratory should have the required infrastructure and proven experience with the matrix and type of mercury to be analyzed. One excellent way to verify the validity of results is the participation in an inter-laboratory comparison programme.

In addition, procedures such as homogenization and acceptance criteria for handling and preparing samples in the laboratory should be established. Chapter 6 deals with sample preparation and analytical considerations. For further considerations about the pretreatment of the samples, consult the standard NEN-EN-16179: 2012 “Sludge, treated biowaste and soil: Guidance for sample pretreatment”

The methods to analyse the various matrices of mercury may assess the total mercury content or the speciation of mercury. Some have been defined by the International Organization for Standardization (ISO) and the European Committee for Standardization (CEN). Other national methods have been drawn up, such as those of the United States (EPA) or Japan.

The following criteria must be met to obtain high quality results:

a) Specification of the analytical technique.
b) Presentation of reports, according to the established quality procedure
c) Maintenance of the analytical equipment.
d) Validation of all of the methods used (including the laboratory’s own methods).
e) Training of laboratory staff.

In addition, procedures such as homogenization and acceptance criteria for handling and preparing samples in the laboratory should be established.
5.1 Characterization of surface water and groundwater

Analysis of water samples is usually carried out in the lab rather than in the field. However, some field testing is possible. Use of Teflon bottles washed with HCl acid is recommended as a good means of preventing cross contamination. Ensure the acid used is mercury-free, as acids can serve as a source of various contaminants, including Hg.

Speciation in water is an important topic for the understanding of mercury behavior in the environment and for the treatability of water contaminated with mercury. Various forms of Hg arising from various means of treatment of the water sample have to be distinguished (e.g., filtration of sample and treatment with BrCl yields information on $\text{Hg}_{D} = \text{Hg}^0 + \text{Hg}_{R} + \text{Hg}_{C}$; however, acid digestion followed by analysis yields information on $\text{Hg}_{T} = \text{Hg}_{P} + \text{Hg}_{D}$):

- Hg_{T} = total
- Hg_{P} = particulate
- Hg_{D} = dissolved Hg
- Hg_{R} = reactive
- Hg^0 = gaseous
- Hg_{C} = colloidal / residual

Analysis of water samples for methyl-Hg may be accomplished with the use of isotopic tracers and GC-ICP-MS analysis.

5.1.1 Surface water

The mercury content of surface water at the contaminated site and in the surrounding area should be studied, as water may act as a pathway for the dispersal of contamination by leaching from the site.

To determine the impact of the contaminated site on surface water, an analysis will be carried out upstream of the supposed mercury point source and downstream of all the possible points of exposure. This analysis should focus on points at which the water is used for human consumption, recreation, cleaning clothes, etc.

Unfiltered samples are generally used to analyse surface water. In addition, mercury sampling must be carried out in all of the seasons, that is, in periods of rain and drought, heat and cold.

Whenever a body of surface water is analysed, information should be gathered on the sediments. For this purpose, simple and surface samples (0-5 cm) should be taken at places upstream and downstream of the pollution point source.

In areas where contamination is found in water, it is important to know if the aquatic fauna is fished for food, in order to assess the possibility of fishing restrictions.
Once the drainage network has been defined in the additional report, a sampling campaign should be designed for liquids and solids (sediments). The aim is to assess:

1- the water quality in the area surrounding the site;
2- the sediment quality in stream beds in the area;
3- whether sediments are affected by contaminated material or by the contaminant itself carried by the water.

The following tasks should be carried out to design the sampling campaign:

- Inventory of surface water points.
- Field survey of all the types of water points.
- Selection of sampling points and the period (or periods) most suitable for carrying out the sampling, depending on the climate.
- Establishment of background mercury levels in the area. Sampling points should be selected upstream of the study area, to assess the levels of mercury present before the water reaches the polluted area.

Mercury levels in surface water that are above the limits established for water for human consumption (1 µg/l) should generally be sufficient to merit an in-depth analysis of the source. Such levels could be proof of contamination or due to natural enrichment.

5.1.2 Groundwater

Aquifers are one of the media that are most vulnerable to contamination in hazardous sites. Therefore, they should be monitored not only by means of man-made wells, but also through samples collected from springs and other natural underground water sources.

Hydrogeological studies should be carried out in the study area, and should include some of the following activities:

- The design of a preliminary scheme for hydrogeological conditions in the area, including the creation of an inventory of water points (water catchment points and springs in the area).
- Field survey of all the water points. The following data should be gathered: construction characteristics, extraction capacity, piezometric level and physicochemical characteristics of the water.
- Selection of sampling points and the period or periods that are most suitable for carrying out the sampling, depending on the climate.

When required by the size and complexity of the situation, additional information may need to be gathered through the following activities:
d) Test drilling around the site through structures and formations of hydrogeological or hydrochemical interest. This will reveal changes in the piezometric level and enable the detection of vertical gradients.

e) Hydraulic characterization tests in areas not investigated by the test drilling, to determine the permeability of the main structures in the area through the different rocks.

f) Hydrochemical sampling along the test drill holes by clogging stretches to reveal the chemical characteristics of the underground flow at different depths of water upstream and downstream of the pollution point source.

Due to the natural variability in aquifers, they should be analysed at least three times a year, depending on the local climate.

The following parameters should be measured in the water:

- Parameters measured in situ:
 - Temperature
 - Conductivity (salinity)
 - pH (acidity)
 - Dissolved oxygen
 - Eh (redox potential)

- Concentrations of metals:
 - Mercury
 - Arsenic
 - Barium
 - Chromium
 - Iron
 - Nickel

In addition to these analytical determinations, other tests can be carried out according to the type of production process that generated the mercury deposit, and the expected composition of the pollution point source.

Likewise, other measures can be implemented to determine the presence of anions such as sulphates, nitrates, nitrites, carbonates and ammonium.

Mercury levels in aquifers can only be compared with reference values (for example, those of the US-EPA) when the analysed samples have not been filtered. The analysis should also include samples from domestic taps, as the concentration of contaminant in taps could be different from the values found in a well or spring.

In all cases, mercury levels above the reference levels for human consumption (1 μg/l) should be analysed to determine their source.
5.2 Soils and sediments

Before the soil sampling campaign is designed, a site survey should be carried out to take into account various factors, including:

- Geomorphology of the site.
- Topographical and geological characteristics, land uses, identification of escarpments, slopes, steeply sloping hillsides, instability, etc.
- Accessibility of the site and sampling areas.
- Identification of areas of natural ground and areas formed by backfill due to the movement of deposited materials. This point is of particular interest in the sampling of urban areas, where it is important to determine whether soil has been removed or mixed up by urban development works.
- Historical site uses (industrial process, tanks, pipelines, waste storage, landfill areas…)

On the basis of this information and data from the additional report, guidelines will be established for the sampling campaign. Contamination is mainly dispersed by wind, through resuspension and sedimentation of fine materials (generally the distribution is marked by the directions of the main winds in the area), and by surface water.

Taking into account the distribution of the winds and the surface water that runs through the site, a rhombus-shaped sampling grid should be established with sides measuring 50 by 50 metres. The grid should be symmetrical about the direction of the prevailing winds direction, as it is considered a priori that these winds will have the maximum concentration of suspended particles in the gradient of contamination. In addition to the aforementioned grid, a series of regularly spaced points should be sampled in a concentric pattern around the boundary of the contaminated site to compare and assess the impact of non-prevailing winds on the movement of solid particles.

Surface soil sampling will be carried out by removing a thin layer of earth and then taking the sample with a clean spatula. The deep soil sample will be taken at the same point as the surface sample using appropriate sampling equipment (auger).

In particular for soil/sediment, the sampler cylinder should be used, since this allows a sample unaltered in which it can be seen the profile and the depth of contamination.

The hydrogeological test drill holes can be used for sampling, which should be preferably of continuous recovery of core.

Each sample can weigh approximately one kilogram, to ensure the representativity of the sample, of which a homogenized portion of around 100 ml will be taken later on in the Lab for analysis. The rest of the sample will be kept referenced and stored for further tests, if necessary. For sediment sample, the weight could be less according to the analyses to carry out.
In the case of mining activities, the soil samples should be taken at three levels: simple surface (0-5 cm), at a depth of 0.5 m, and from rock samples obtained in test drill holes, if applicable. The aim of sampling at the first two levels is to discover potential variance between surface and deep soils due to mercury enrichment caused by migration from soil and concentration in the contact surface with the bedrock. The in-depth network sampling can be done at half of the points and alternating them.

5.3 Characterization of air and food

5.3.1 Air

Mercury levels in ambient air should be considered because of the high dispersion and ease of evaporation of this metal. As mentioned above, sampling points should take into account industrial activities within and outside the site, as well as meteorological conditions.

There may be many sources of mercury in ambient air. However, high levels naturally indicate that there is mercury in the area. The measurement of mercury concentration in air is a rapid way to confirm the presence of the metal. This is because contaminants are commonly dispersed in air, but do not remain in it. As a result, levels drop once the source of contamination has been removed or reduced.

In its *Air Quality Guidelines for Europe*, the World Health Organization (WHO) established a guideline value of 1000 nanogram/m3 (1 microgram/m3) as an annual average for mercury in ambient air.

The United States Environmental Protection Agency (EPA) selected a reference concentration of mercury of 300 ng/m3 for exposure in residential areas.

European Directive 2009/161/EU establishes maximum occupational exposure (8 hours per day) at 20,000 ng/m3.

Modelling can be carried out to identify the most likely pollution point sources (samples of ambient air should always be taken). Air samples can be collected in 24-hour periods according to a schedule that takes into account the meteorological conditions throughout the year.

A detailed record should be kept of the meteorological conditions and all the activities that were being carried out in the area at the time of each sampling.

5.3.2 Food

The mercury content should be determined in plant and animal samples of the food produced in the area and other food that is frequently consumed by the population. Food generated by fishing and hunting should be included, as well as those from agricultural sources.
When sediments are contaminated, sampling should include species that are bottom feeders in rivers, streams and lakes. It is not as important to include fish that feeds in the water column.

According to the principle of precaution, the intake levels described in World Health Organization (WHO) recommendations should not be surpassed. In 2008, WHO published a guidance document http://www.who.int/ipcs/assessment/public_health/mercury/en/ to provide information on the potential impact of mercury exposure and to help, as much as possible, to identify at-risk populations.

In the guidance document, WHO indicates that two groups are particularly vulnerable to the effects of mercury. Fetuses are particularly sensitive to the effects of mercury. Intrauterine exposure to methyl mercury due to maternal consumption of fish (especially Tuna, Swordfish, Shark..) or seafood may damage a baby’s brain and nervous system. The main consequence of methyl mercury is potential disorders of neurological development. As a result, exposure to this substance during the fetal stage may affect a child’s cognitive ability, memory, concentration ability, language, fine motor skills and spatial and visual skills. Therefore, particular attention should be paid to pregnant women, breastfeeding women and women of childbearing age.

The second group is that of people who are systematically exposed (chronic exposure) to high levels of mercury. This group includes people with fish as staple food (subsistence fishing) or those individuals occupationally exposed.

As the population’s eating habits could mean that their mercury intake approaches the limits, it is advisable to restrict access to affected foods and even to regulate the use of the land and/or the types of crops that can be grown in the affected area, to ensure that the health of the surrounding population is protected.
6 Sample preparation and analytical procedures

A well-contrasted methodology is described in the following section, taking into account that other different techniques may be used depending on each specific case, the expertise of its analysts and the technical means available.

A. SAMPLE PREPARATION

a) Soils saturated with water and Sediments

Two alternative procedures are described, the drying of the sample at room temperature and the lyophilization.

a.1 Drying at controlled room temperature (max. 20-22 °C)

1- If the sample is saturated with water, it should be filtered to separate the liquid phase. If the original sample is dry enough, then proceed directly with the homogenization phase (point 3). In any case, the humidity content of a sub-sample shall be determined in parallel in a kiln or in a thermobalance (see footnote6).

2- The solid part is put over absorbent paper at controlled room temperature (not above 20-22 °C), and it is weighed periodically until the weight becomes constant.

3- Homogenize the sample.

4- If no prior information about the approximate concentration of mercury is available, an option could be to run an ESCHKA18 analysis for guidance on the most suitable technique to determine the Hg content of the sample.

5- Perform the analysis depending on the expected concentration, with the guidance given later on in point B. For this, except when using the technique of pyrolysis, it will be necessary a prior dissolution of the sample. The most common procedure is the aqua regia attack, but there are other alternative methods depending on the characteristics of the sample

- ISO 11466.3 (aqua regia)
- EPA 3050B (HNO₃-H₂O₂-HCl).
- MICROWAVE ASSISTED ACID DIGESTION EPA 3015, 3051, SW 846

6- Give the result referring to dry matter, with the moisture correction formula (see note19)

18 The method ESCHKA is based on the mercury amalgamation process on a gold plate. The soil sample is introduced in a porcelain crucible and covered first with a layer of iron powder and later with a layer of zinc oxide. Then, the porcelain crucible is covered with a gold plate. After that, the crucible is subjected to a calcination process and it leads to the formation of gaseous mercury which is fixed to the gold plate. The difference on the weight of the gold plate let us to determine the mercury contained in the soil sample. The measured range of mercury can be from around 0.2% to more than 30%.

19 Moisture correction: The resulting concentration of mercury in the original sample, expressed on dry sample will be:
a.2 Lyophilization

Lyophilization (freeze drying) is a method that minimizes the loss of volatile components, such as mercury, in the drying process of samples with humidity, being also very convenient for organic tissues (fish, shellfish, algae, etc). The result is a sample with a very low moisture content that can be directly analyzed. Lyophilization is especially suitable for small amounts of sample.

b) **Dry soil sample**

1 - Dissolution of the sample, usually in aqua regia, except when using a pyrolisis technique.
2 - Make the corresponding analyses.
3 - Reference the results on a subsample dried at 105 °C, as described above.

c) **Determination of Hg in liquid samples**

For the analysis of mercury in liquid samples, the measurement is made directly (prior to vacuum filtering with filter size of 0.20 microns) depending on the expected range of mercury (see point B).

\[
R = \frac{L \cdot b \cdot F}{1000 \cdot M \cdot 100 - H}
\]

R: concentration of mercury on dry solid sample mg/kg (ppm)
L: mercury concentration in the solution analyzed (micrograms/liter)
b: final digestion volume in milliliters.
F: dilution factor of the digestion, if any
M: weight of original solid sample digested, in grams.
H: value of loss at 105 °C, in % of original sample.
B. MOST COMMON ANALYTICAL PROCEDURES

1. For solid samples with mercury concentrations above 300 ppm, the exact concentration of mercury can be determined directly following the ESCHKA method (see footnote 5).

2. For solid samples with a mercury concentration between 20 and 300 ppm, the exact concentration of mercury can be directly determined by pyrolysis of the sample (i.e., the RP-91C attachment from LUMEX company is intended for decomposition of a sample and the reducing of mercury from the bound state into an atomic state using the pyrolysis technique) and subsequent analysis by atomic absorption spectrophotometer.

3. For samples with a mercury concentration between 0.05 to 20 ppm, the exact concentration can be determined by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), also referred to as Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), performing a pre-digestion of the sample in an acid mixture.

4. Alternatively, for more than 1 ppm of Hg, the technique of cold vapor system (CVAAS) with subsequent measurement by atomic absorption spectrophotometry (based on ISO 12846:2012), which is the most extended in the Laboratories, or its equivalents FIAS and FIMS can be used. Problems that may arise are that organo-mercury compounds will not respond to the cold vapor atomic absorption technique and possible interferences may appear with chlorides, iodides, sulfides, copper and VOCs. It is recommended first to eliminate organic bonds with aqua regia in solid samples and with digestion with nitric acid in liquid samples followed by an oxidation of all mercury to its bivalent state with permanganate or dichromate, and finally reduce as usual with borohydride or stannous chloride. A safe option would be the use of the method of standard additions to confirm the results, or to change the technique if the problems persist.

5. Solid samples with a concentration of less than 0.05 ppm mercury - although it can also be used for higher concentrations - can be analyzed directly without dissolution from the original solid sample by thermal decomposition (i.e., the RP-91C attachment from LUMEX company is intended for decomposition of a sample and reducing the mercury from bound state into an atomic state using the pyrolysis technique), then amalgamation with atomic absorption spectroscopy (i.e., the equipment AMA-254). The method is based on norm EPA 7473 SW 846.

In any case, when the pyrolitic process is used and mercury is suspected to be bound in silicates or other matrices that may not thermally decompose, validation of direct analysis of the solid should be confirmed with total acid digestion with an appropriate method (such as method EPA 3052), followed by analysis with AMA-254 or other equivalent mercury analytical techniques.
7. Risk assessment

The Environmental Risk Assessment (ERA) will help to answer the following questions:

- Does the site represent a real or potential risk to the human population and/or to the biota?
- What is the magnitude of the risk?
- Should the site be restored to reduce the risk?
- If the site is not restored, could the risk increase and/or spread?

ERA is a process that assigns magnitudes and probabilities to the adverse effects of contamination. Consequently, it is an instrument that can help to define whether or not environmental measures should be implemented at a contaminated site. Risk assessment can establish the urgency to act: the greater the risk of the contamination affecting living beings, the greater is the need to implement restoration programmes.

Risk assessment can be used to define remediation objectives for a site, which may be to reach (a) the maximum acceptable limits established by current legislation or relevant authorities or (b) specific limits set for the site on the basis of the assessment.

ERA constitutes a tool for deciding whether to carry out corrective actions at the contaminated site and for setting the final remediation objective, thus selecting the best clean-up strategies. The ideal objective is to restore the site and its uses with concentrations to the levels found in the environment prior to contamination through techniques described in point 7.1. However, this may be economically unfeasible and other options should be considered, as it is mentioned in that point.

The establishment of a target clean-up level on the basis of a risk assessment means that the contamination will be reduced to its maximum accepted level, which may be not necessarily zero (speciation, lability and biodisponibility of mercury are parameters that can be taken into account). Thus, at the end point, the residual concentration of the contaminant will not constitute a risk to the human population and biota.

Risk assessment can be carried out in four clearly defined stages with specific objectives:

1. Identification and characterization of what is at risk. All analyses of these characteristics should help to assess the risk to human health and to ecosystems.
2. Analysis of the hazard level and toxicity. The aim of this stage is to identify elements or compounds that may be critical; to characterize the kind of effects they may have; and to evaluate dose-effect relationships, in order to predict the response to the contaminant for a wide range of doses. This analysis is based on contaminant data and characteristics, referring to its environmental and toxicological behavior.
3. Analysis of exposure. The aim is to estimate the rate of contact with the identified contaminants. The analysis is based on a description of exposure scenarios, as well as characterization of the nature and extent of the contamination.
4. Analysis of risks. The results of the previous stages are combined to objectively estimate the likelihood of adverse effects on the protected elements under the specific conditions of the site.

Other contaminants besides mercury may have an impact. Therefore, if there is evidence that other contaminants are present at the site, the responsible of the process must take the decision to include them in the study and assessment.

7.1 Characterization of toxicological effects

This section of the risk assessment evaluates and describes the effects of the significant contaminant (mercury) on the receptors identified through the different exposure routes.

Contamination receptors that are frequently at risk in mercury-contaminated sites are:

7.1.1 Humans

In humans and some animals, the potential effects and symptoms of mercury intoxication vary according to the chemical form of mercury, the exposure route (inhalation or ingestion) and the exposure dose, including the exposure time and the concentration of the mercury.

For all the inhabitants of an area where a mercury-contaminated site is located, the main potential exposure routes are as follows:

- Breathing (absorption by inhalation) of mercury and/or dust.
- Eating (absorption by ingestion). It is considered that mercury ingested in food is mainly in the form of methylmercury (an organic compound of mercury).
- Dermal contact.

7.1.2 Terrestrial animals

In general, the symptoms of intoxication reported in animals for cases of mercury poisoning are not specific and depend on the exposure route, as in humans.

7.1.3 Aquatic biota

Many factors influence the potential toxicity of mercury in aquatic biota. These include the form of mercury, the developmental stage of affected organisms, and the chemistry of the water.

Changes in temperature, salinity and the hardness of the water also alter the toxicity of mercury to the biota.
It is widely accepted that the most toxic form of mercury is methylmercury. Reducing conditions (i.e. low-oxygen concentration) are needed for methylation to occur. It is well known that bacterial action promotes methylation, which is the main process responsible for the transformation of inorganic mercury to an organic formulation able to enter throughout the food chain.

In aquatic systems, fish are the main receptors of mercury through ingestion, as they are exposed to mercury both in water and through the ingestion of plants and macroinvertebrates.

Fish and macroinvertebrates like shellfish can also absorb mercury through the gills. Macrinovertebrates may also be exposed to mercury in sediments, as are species of fish that feed on material deposited on top of the sediments. Due to their position at the top of the food chain in aquatic systems, it is assumed that fish have the highest concentration of mercury of all kinds of aquatic biota.

7.1.4 Plants

Plants are generally not sensitive to inorganic forms of mercury (i.e. elemental mercury and ionic mercury), probably due to the high level of absorption of the metal by soil particles. This largely prevents the absorption of mercury and toxicity in plants, which normally do not concentrate heavy metals\(^{20}\), but show greater access to organic forms of mercury, such as methylmercury, than to inorganic forms.

7.2 Evaluation of exposure

By this stage, we know the exposure routes, the receptors, the concentrations and the toxicity.

The evaluation of exposure consists in combining the results of the risk assessments for humans and ecosystems with dispersion studies to assess the degree of mobility of contaminants and to analyse concentrations in the different media that are affected.

The exposure sources that should be considered at a mercury-contaminated site are the media analysed in the environmental characterization, i.e: particles in suspension (PS), gas emissions, surface water, groundwater, soil and sediments.

7.3 Risk characterization

Risk characterization is the final stage in the risk assessment. During this stage, the probability of the occurrence of adverse effects due to mercury exposure is evaluated, and the bases are established for future actions.

In addition, data and conclusions from the stages in which the toxicological characteristics and the effects of the significant contaminant were reviewed are analysed together, along with the evaluation of exposure. All of these data are combined with the reasoning behind the proposed conceptual model.

For human health, the contaminant dose received by an individual (calculated on the basis of the characterization of the exposure scenario) is compared with the toxicological reference values set for this substance and population strata.

The following results should be obtained:

a. Conclusions on the actual risk of contamination at the site for human and ecosystem receptors, as well as the risk of dispersion (future risk).

b. Estimation of the level of uncertainty in the risk analysis, in order to accurately evaluate the conclusions of the characterization.

This stage can be carried out with the help of validated software to simplify the calculations, taking into account that its suitability should be justified for the specific characteristics and conditions of the site. Otherwise another method of calculation should be used. If software is used, screenshots of the process should be provided to confirm the values that were entered and the conclusions obtained.

Different approaches have been developed for the risk characterization stage, each one with its dedicated commercial software available, like:

- Risk-based corrective action (RBCA)
- Probabilistic risk assessment (PRA)
- Biotechnology-based direct toxicity assessment
8. Remediation of mercury-contaminated sites

Remediation measures for mercury-contaminated sites depend on various factors associated mainly with the location itself and with the potential impact on the environment and human health.

One or more remediation technologies can be considered, taking into account the results of the site study, the target clean-up levels, the capacity of the available remediation technologies, and the intended future use of the site.

The main factors that influence the selection of an initial set of treatment technologies are:

a) Receptors (surface water and / or groundwater, soil, air, biota, human..).
b) The (potential) mobility of mercury in the hydrological system.
c) The possibility of leaching of mercury from soil or sediments.
d) The pollution point source.
e) Mercury concentrations in human, animal and plant receptors, which indicate exposure levels.
f) The chemical states of mercury at the contaminated site.
g) Bioavailability to the aquatic biota, invertebrates and edible plants.
h) The amount of mercury released during the operations.
i) The possibility of mercury methylation.
j) Background mercury contamination, regional atmospheric deposition of mercury that is not associated with local sources.
k) The local/national clean-up regulations for water, soils/sediments and air.
l) In the case of mining operations, it is important to know precisely the geological formations that led to mercury extraction in order to not to include them as polluted soil due to the mining activities.

Once these factors have been evaluated, a more comprehensive analysis of the appropriate remediation techniques can begin.

Depending on the gravity, magnitude, degree and type of contamination by mercury and other pollutants and on the receptors, the recovery plan is likely to involve various remediation techniques or measures to reduce or contain the amount or toxicity of the contamination as effectively and efficiently as possible.

Below, some of the treatment options for mercury-contaminated media are described. These techniques can be used – alone or in combination - in the remediation of a contaminated site. In general, the aim of the techniques listed below is to recover the area by removing the mercury.

As mention in point 3.2.3, there is the possibility to restrict use of the contaminated area and limit access to it, at least until work can be started on recovery of the site.
Alternatively, a site can be contained by making it impermeable using natural materials such as clays or geosynthetic materials such as high density polythene sheets to prevent the evaporation and leaching of mercury.

In addition, waste can be transported for safe storage in landfills engineered for this purpose.

Another option is to propose different treatments for each area or product in a mercury-contaminated area.

8.1 Treatment of mercury-contaminated effluents and soils

Numerous techniques can be used to treat mercury-contaminated effluents. Some processes are merely physical (sedimentation), others are physicochemical (coagulation-flocculation, adsorption, etc.), yet others are chemical (oxidation-reduction, precipitation, etc.). The appropriate choice depends on various factors, mainly the speciation of the element and the presence of other agents.

Point 8.1.1 treats specifically groundwater and surface water remediation

a) Precipitation

Precipitation of mercury in the form of insoluble salts is one of the most common practices in effluent treatment.

The main precipitant is sulphide. Mercury sulphide is one of the most insoluble salts and is the form in which most of the mercury on the earth’s crust is found (cinnabar).

The optimum pH for the reaction is 7. The precipitate that is formed is then subjected to a sedimentation process, which can be assisted by the addition of flocculants. Mercury concentration values after sulphide precipitation are between 10 and 100 µg/litre.

This process has some disadvantages, such as the formation of high volumes of sludge that require subsequent treatment, and the formation of soluble species due to an excess of sulphide. Therefore, it is not the most suitable treatment for mercury-contaminated effluents.

b) Adsorption

Treatments involving adsorption produce lower mercury concentration levels than those obtained by precipitation. As the concentration of the adsorbent increases, the levels of remaining mercury decrease. Other factors that affect this process are pH and mercury speciation.

21 (Source EPA 1997)
The most commonly used adsorbent is activated carbon. This is generally in the form of granular activated carbon, in which the carbon has a relatively large particle size and can be used to fill columns.

c) Ion exchange

This is one of the main treatments for mercury-containing effluents. A wide range of resins can capture the different species of mercury. The technology is primarily designed to bind ionic mercury. It is not highly effective for organomercury compounds or elemental mercury.

The process is carried out in columns or tanks filled with the corresponding resin and equipped with systems for intake and outlet of the effluent, as well as clean water for rinsing, and regenerating solution.

Ion exchange systems have several advantages: they operate as needed, they are relatively insensitive to variability in effluent, they can produce zero concentration values, and a wide range of resins is available. The disadvantages include sudden exhaustion of the capacity, which means that the process must be monitored continuously, generation of a saline water effluent containing mercury, which must be treated, and potential problems when the process is used with water that contains a high level of total dissolved solids.

d) Oxidation – reduction

In some cases, oxidation and reduction processes are used to change the oxidation state of the mercury and thus promote its dissolution or decantation.

Oxidation is used in effluents that contain metallic mercury or organometallic compounds to transform them into the ionic form or to dissolve them as mercury halide. The process can take place in batch or plug flow reactors. Mercury salts separate from the matrix of waste materials and are then sent for further treatment, for example acid extraction or precipitation.

The most common oxidants are: sodium hypochlorite, ozone, hydrogen peroxide, chlorine dioxide and chlorine gas.
Reduction is used as a method for removing mercury in solution in the form of metallic mercury and then to sediment, filter or centrifuge it, for example. The most common reducing agents are: aluminum, iron, zinc, hydrazine, stannous chloride and sodium borohydride.

The decontamination rate is high in reduction processes when the mercury concentration is relatively high (up to 2 g/l). However, the efficacy of the process drops when the levels of mercury are low. In this case, further treatment is required.

e) Others

Other methods for treating mercury-contaminated effluents have given good results like membrane separation processes (such as ultrafiltration and reverse osmosis).

Others, some in the experimental stage, are biological treatments (microorganisms that can absorb mercury or reduce it), liquid emulsion membrane extraction and solar photocatalysis with titanium dioxide.

8.1.1 Technology for groundwater and surface water remediation (*Biester, 2013*)

In many cases, contaminant removal may not be possible and hydraulic containment may be necessary to protect the surrounding environment. In these cases, the most currently applied technology for groundwater and surface water remediation is Pump & Treat (P&T). Basically, P&T systems involve the installation of extraction wells below the water table within or slightly downgradient from the zone of contamination. As the mass of contamination remains in the subsurface, P&T systems must operate in perpetuity to prevent off-site migration. As extracted water must be treated at the surface, well placement and pumping rate should be chosen to ensure capture of contaminated groundwater and limit recovery of clean water. Monitoring wells have to be installed around the contaminant plume to assess containment and evaluate hydrogeochemical conditions.

For high concentrations of mercury, the treatment technologies are similar to mercury recovery processes of industrial liquid effluents as described before (mercuric brine of chlor-alkali waste water, etc.). The treatment from bulk contaminated water enabling to reach concentrations below the remediation goals encompasses several treatment steps which may include for example: sulphuration, chemical reduction (hydrazine), co-precipitation and adsorption, ion exchange. These technologies are efficient for high concentrations (over 1 mg/L) and low flow rate (less than 10 m³/hour). It is often applied in batch processor. It has to be considered that this low flow rate treatment may reduce the ability of the pumping to capture the contamination plume.

For low concentrations (< 10 µg Hg/l), the most advisable treatment technique is groundwater filtration with sulphur-activated granular carbon (see table below).

Most frequently applied filtration technologies to remove mercury from water (HPC AG Freiburg, 2011):

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Modified activated granular carbon</th>
<th>Sulphur impregnated granular activated carbon</th>
<th>Ion exchange resins (e.g. Ambolite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle</td>
<td>Sorption</td>
<td>Ion exchange and sulphuric sorption</td>
<td>Ion exchange on thiol group (-SH)</td>
</tr>
<tr>
<td>Efficiency (µg Hg/l)</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>
8.2 Treatment of mercury-contaminated solid waste

Mercury-contaminated solid waste treatments have been classified into four categories:

a) Thermal treatments (retorting or roasting, among others)

b) Solidification/Stabilization (including amalgamation)

a) Washing/Acid extraction

b) Vitrification

a. Thermal treatments Thermal desorption and retorting are two common methods for full-scale thermal treatment of mercury-contaminated waste and for the treatment of soils and sediments.

These treatments volatilize the mercury by low-pressure heat transfer, followed by condensation on a cold surface.

Elemental mercury that is collected in this way can be reused in processes or stored. Off-gases should be treated to avoid emissions of mercury or other components.

a.1 Retorting/roasting (Source: ITRC 1998)

Source: *Treatment technologies for Mercury in Soil, Waste and Water, EPA 2007*
Pre-treated waste is sent to a desorber or retort where it is heated at low pressure to volatilize the mercury. Heating may be direct through contact with combustion gases or indirect through a metal wall (e.g. electrical heating).

When desorbers are in operation, the waste inside them is agitated continuously. The movement increases heat and mass transfer, leading to higher evaporation rates. In contrast, waste in retort and roasting equipment is static.

The most common desorbers are directly heated rotary kilns and indirectly heated screw systems.

Direct heating systems require high volumes of combustion gases when a large volume of waste is treated. Consequently, complex control systems are required, and gas emissions must be treated. In these cases, the investment and operating costs could be much higher than in an indirectly heated system, in which combustion gas is not mixed with the hazardous waste.

a.2 Gas treatment

Gases from the retort system are filtered through fabric filters to remove particulate matter. Subsequently, the gas is cooled in a condenser to transform gaseous mercury into a liquid. The gas is then treated in control systems comprised of activated carbon filters and catalytic oxidants to capture any leakage of mercury vapor and organic volatile matter.

b. Solidification/Stabilization

Solidification and stabilization are physicochemical processes that tend to reduce the mobility of mercury to a certain extent by physically enclosing it (solidification) or forming chemical bonds with it (stabilization). Amalgamation, that is, the formation of a solid or semi-solid alloy of mercury with other metals, is a form of solidification.

There are two main solidification processes:

- Macroencapsulation: the encasing material is poured over and around the waste mass.
- Microencapsulation: the waste is mixed with the encasing material before solidification occurs.

b.1 Stabilization by Sulphur

This process consists of converting liquid mercury into mercury sulphide (HgS); a form that is the most insoluble and common in nature.

There are two crystalline forms of mercury sulphide: alpha HgS and beta HgS, both of which are practically insoluble and have a very similar solubility in water.
If waste contains elemental mercury, Hg is mixed with S at room temperature and agitated rapidly.

The energy produced by mixing is sufficient to cause the activation. Alternatively, a reaction can be carried out between Hg vapour and S inside a mixer with an inert atmosphere, to prevent the formation of HgO.

Oxidation of mercury to HgO should be avoided, as this species is more soluble than the sulphur. Therefore, it is advisable to work in an inert atmosphere and to add antioxidants (Na₂S).

b.2 Sulphur–polymer stabilization

This is a modification of the sulphur process. It consists in stabilizing the mercury through a reaction with sulphur, followed by solidification/microencapsulation in a polymer matrix.

It is carried out in two steps:

1. Stabilization: Reaction between elemental mercury and sulphur polymer cement (SPC, a mix of 95% sulphur and 5% polycyclopentadiene).

2. Solidification (and microencapsulation): Heating to 135°C.

There are several advantages to this process: the product that is obtained is monolithic and has a low specific surface area. Hence it is less volatile and leaching is less likely.

b.3 Amalgamation

This process consists in the formation of a mercury alloy with other metals (amalgam). As the concentration of metal increases, the amalgam becomes more solid. The metals that are most frequently used are: copper, selenium, nickel, zinc and tin.

To accelerate the process, finely divided metals are added to the mercury.

b.4 Other stabilizing agents – solidifying agents

Other substances that are used as a medium in these processes are: cement, calcium polysulfide, chemically bonded ceramic phosphate, phosphates, platinum and polyester resins, among others.

Of the various matrices used in solidification processes, we can distinguish between those that require previous stabilization and those that do not. The distinction is based on the strength of the material, to ensure that mercury is not released.
c. Washing /Extraction

Soil washing and acid extraction are used for ex situ treatment of mercury-contaminated soil and sediments.

Soil washing is a water-based process that uses a combination of physical particle size separation and aqueous-based chemical separation to reduce contaminant concentrations in soil. This process is based on the concept that most contaminants tend to bind to the finer soil particles (clay and silt) rather than the larger particles (sand and gravel). Physical methods can be used to separate the relatively clean larger particles from the finer particles because the finer particles are attached to larger particles through physical processes (compaction and adhesion). This process thus concentrates the contamination bound to the finer particles for further treatment.

Commonly used methods for treating the wastewater include ion exchange and solvent extraction. Acid extraction uses an extracting chemical such as hydrochloric acid or sulfuric acid to extract contaminants from a solid matrix by dissolving them in the acid. The solid and liquid phases are then separated using hydrocyclones, and the solids are transferred to a rinse system, where they are rinsed with water to remove entrained acid and contaminants.

The precipitated solids may require additional treatment or may be disposed in a landfill, and the acid extraction fluid and rinse waters are then treated to remove the heavy metals.

The principal advantage of soil washing /acid extraction is that hazardous contaminants are separated from soils and sediments, thereby reducing the volume of hazardous waste to be treated / disposed. The performance and viability of soil washing depends on factors like soil type, composition, particle size distribution, homogeneity and Total Organic Carbon present. Also, complex, heterogeneous contaminant compositions can make it difficult to formulate a simple washing solution, requiring use of multiple, sequential washing processes to remove contaminants.

d. Vitrification

Vitrification uses electrical current to heat, melt and vitrify the treatment material in place, thus incorporating them into the vitrified end product, which is chemically durable and leach resistant. Electric current is passed through soil by an array of electrodes inserted vertically into the surface of the contaminated zone.

The temperature of the contaminated soil can reach between 1,600 and 2,000 °C. A single melt can treat a region up to 1,000 tons.

Vitrification is used to treat wastes up to a depth of 6 meters. Large contaminated areas are treated in multiple blocks that fuse together to form one large treated zone.
The gases produced must be collected and sent to a treatment unit. Dioxins and furans may also form when excess chlorides are present and enter the off-gas treatment system.

Mercury may be difficult to treat because of its high volatility and low solubility in glass (less than 0.1 percent), but may be effectively treated at low concentrations.

Chlorides in excess of 0.5 weight percent will typically fume off and enter the off-gas. If chlorides are excessively concentrated, salts of alkali, alkaline earth, and heavy metals may accumulate in the solid residues collected by off-gas treatment. Separation of the chloride salts from the residue may be necessary, therefore, if the residue is returned to the process for treatment.

The following table presents a summary of the pros and cons of the most usual strategies and treatments:
<table>
<thead>
<tr>
<th>Technology</th>
<th>Principle</th>
<th>Key advantages</th>
<th>Key disadvantages</th>
<th>Targeted mercury</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source removal with excavation</td>
<td>Excavation of the polluted materials on the whole contaminated area or specifically on the hot spots where the mercury masses are concentrated</td>
<td>Provide total remedy, radical with no residual concentrations to manage if the whole area is excavated</td>
<td>Could be expensive due to health and safety constraints for workers and surrounding. Risk of remobilization of labile elemental mercury. Geotechnical limitation due to groundwater level and/or existing infra-structures Transport of the polluted soil to the landfill Necessity of an engineered landfill suitable for Hg wastes If only hot spots are removed, management with other technologies of residual non-excavated soils.</td>
<td>Total labile mercury</td>
<td>Reliable technology but with difficulties inherent to the occurrence of mercury</td>
</tr>
<tr>
<td>In situ containment with vertical barriers and capping</td>
<td>Isolation of existing contaminated areas in the subsurface from the surrounding uncontaminated environment</td>
<td>-Relatively simple and rapid to implement -Uses standard construction equipment -Can be more economical than excavation and removal of waste, and thermal treatment -Can be applied to large areas or volume of waste -Avoids use of monocell space and risks associated with removal and transport -Provides a total remedy that addresses all mercury present in the targeted area -Provides a relatively passive system that doesn’t rely on active management</td>
<td>Mercury remains on site and there is no reduction of toxicity and masses; this represents a potential risk should containment fail / degrades Geotechnical limitations due to existing infra-structures Vertical barrier limited to depth less than 20 m due to increasing capital costs. Vapour treatment by gas-drainage-capping</td>
<td>Total labile mercury</td>
<td>A variety of barrier materials are easily available</td>
</tr>
<tr>
<td>Technology</td>
<td>Principle</td>
<td>Key advantages</td>
<td>Key disadvantages</td>
<td>Targeted mercury</td>
<td>Status</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Soil-washing with preprocessing (mechanical separation)</td>
<td>Ex situ technique where soils and polluted materials are washed, generally with water and/or oxidative acid solutions. Wash water and wash solutions can be treated and recycled.</td>
<td>Possible reuse of treated material on site for filling. Reduction of waste to be treated/landfilled.</td>
<td>-Source removal required -Pre-processing with physical separation, sorting, grinding of the material may be required -Technical difficulty increases depending of the type of soils and contaminants -Technology only viable for important volumes to treat due to costs.</td>
<td>Hg(^0) and inorganic mercury</td>
<td>Soil washing units have efficiently treated soils and mercury wastes in different countries.</td>
</tr>
<tr>
<td>On-site immobilisation: stabilization & solidification, amalgamation with on-site or off-site disposal</td>
<td>Chemical reaction (stabilization) and physically encapsulation (solidification) to reduce the hazard potential of a contaminated material by converting the contaminant into less soluble, less volatile, less mobile, and/or less toxic forms. On-site or off-site disposal in special engineered landfill licensed to receive mercury wastes.</td>
<td>-Lower waste classification by reaching the acceptance criteria for leaching; -Reducing the risk during transportation -Enable containment in special engineered landfill (monocell).</td>
<td>-Required excavation -Required site-specific testing at laboratory and pilot scale prior to full-scale application -possible passivation of elemental mercury during mixing and inefficiency of the treatment when Hg(^0) droplets occurs (high elemental mercury content) -Increase of the bulk waste volume -the long term stability of stabilized media is uncertain or has not been assessed with some reagents --Carbon fingerprint when transportation of the waste off site -Elevated cost for large volume of waste (800 to 1000 € per tonne) -Long term monitoring required</td>
<td>Total labile mercury, especially Hg(^0)</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Principle</td>
<td>Key advantages</td>
<td>Key disadvantages</td>
<td>Targeted mercury</td>
<td>Status</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **In situ thermal desorption (ISTD)** | In situ heating of contaminated soils causing direct volatilization – removal of volatilized products through soil vapor extraction. | - No excavation required
- Selective extraction of labile mercury (which is the environmental issue)
- Short duration of operation | - Could be expensive and technically difficult to conduct
- Requires dense combined borehole networks for both soil vapor extraction + heating
- Mercury captured in the vapor treatment system must be managed.
- Fugitive emissions of mercury vapor must be controlled.
- Secondary treatment of wastewater streams from condensed water would be complex
- Large energy consumption | Hg° and inorganic mercury | ISTD has been demonstrated commercially at full scale for high boiling point organic compounds remediation. |
| **Ex situ Thermal Desorption (ESTD)** | Ex situ thermal desorption is a continuous process normally conducted in rotary kilns (or equivalent) | - Recovery of mercury and separation from material that could be reused for filling on site
- High abatement efficiency | - excavation and temporary storage required
- re-treatment would be required
- Large energy consumption
- Fugitive emissions of mercury vapor must be controlled
- Mercury captured in the vapor treatment system must be managed
- Secondary treatment of wastewater streams from condensed water would be complex | Hg° and inorganic mercury | ESTD has been demonstrated commercially at full scale for mercury remediation only for low concentration (< 10 mg Hg/kg). |
<table>
<thead>
<tr>
<th>Technology</th>
<th>Principle</th>
<th>Key advantages</th>
<th>Key disadvantages</th>
<th>Targeted mercury</th>
<th>Status</th>
</tr>
</thead>
</table>
| **Batch retorting** | Ex situ process where contaminated soils are heated in a controlled manner – volatizing contaminants (e.g. mercury) which is then recovered from off-gases. | -Thermal desorption under controlled conditions
-Recorvery of mercury and separation from material that could be reused for filling on site
-High abatement efficiency | -excavation and temporary storage required
-limited to treatment capacities of the order of one to five tons per day
-expensive, high energy requirements, require vapor treatment, and significant handling effort and long treatment times (1 to ten years based on the capacity of 5 tons per day) | Hg\(^\circ\) and inorganic mercury | It has been demonstrated commercially at full scale for small volume of highly polluted materials |
| **In situ Vitrification (ISV)** | High temperature process that immobilizes contaminants by incorporating them into a vitrified matrix which is durable and leach resistant | -High abatement efficiency.
-No excavation required | -Operation and maintenance would likely be technically difficult and expensive
-Required site-specific testing at pilot scale prior to full-scale application
-Required dense combined borehole networks for both soil vapor extraction + heating
-Mercury captured in the vapor treatment system must be managed Fugitive emissions of mercury vapor must be controlled
-Secondary treatment of wastewater streams from condensed water would be complex
-Large energy consumption
-the long term stability of in situ immobilized media is uncertain or has not been assessed (metastability of glassy material) | All forms and combination of mercury | All forms and combination of mercury | One application reported at full scale with ex-site treatment in the USA for mercury wastes. |
8.3 Safety measures. Prevention of occupational risks during clean-up work

Remediation tasks may lead to mercury exposure and all the risks that this entails, in addition to all the usual risks associated with the activity itself. To avoid risks, it is essential to know the mercury levels that workers are exposed to.

Environmental monitoring of the concentration of a toxin in air is the main instrument in the prevention of health-related occupational risks in general, and in relation to mercury in particular. There are two forms of environmental monitoring. The first involves sampling the air in a work area. The second focuses on staff and involves sampling the level of exposure of workers during their working day, as staff normally moves from one place to another during the day.

Another control for each exposed worker individually is the biological monitoring. This occupational health procedure measures a potential toxin, in this case mercury, its metabolites or an unwanted chemical effect in a biological sample, in order to assess individual exposure.

These measurements are known as biological exposure indicators or biomarkers. Biological monitoring measures the amount of the agent that has been absorbed, regardless of the pathway. It takes into account the elimination pathways, the toxicokinetics and the toxicodynamics of the corresponding substance. As a preventative measure, biological monitoring should be carried out regularly and repeatedly, but should not be confused with procedures for diagnosing occupational illness.

The daily environmental exposure limit values for mercury and for divalent inorganic compounds of mercury, including mercury oxide and mercury chloride (measured in mercury), is 0.02 mg/m³, measured or calculated for a reference period of 8 h. These values are in accordance with Commission Directive 2009/161/EU establishing a third list of indicative occupational exposure limit values.

There are several procedures for the environmental determination of mercury. Both active and passive systems can be used. The choice of system will depend on the type of evaluation that is required, the instrumental conditions and the available techniques, as well as on the form of the contaminant. Devices for taking direct readings can be used to measure a specific concentration.

The most common method involves trapping mercury as a vapor. This is usually achieved through the use of adsorbent tubes (hopcalite, manganese bioxide and activated carbon, among others) or passive monitors (for example, gold and silver plates) that amalgamate the mercury. When mercury is trapped in adsorbent tubes, the amount is usually determined using atomic absorption spectrophotometry. If passive monitors have been used, variations in electrical conductivity are generally measured. If the mercury is in the form of particulate matter (powder), it is trapped in filters and analysed by Atomic Absorption spectrophotometry. Electrochemical techniques, such as polarography and stripping potentiometry, can also be used for the analytical determination.

Biological indicators can be established for elemental mercury and inorganic compounds. These are appropriate parameters in biological media from a worker (urine and blood), and can be measured at a specific time.
The biological limit value for total inorganic mercury in urine can be set at 35 µg/g of creatine before the working day, i.e. after 16 hours without exposure. The limit value for total inorganic mercury in blood can be set at 15 µg/l at the end of the working week, that is, after 4 or 5 consecutive days of exposure at work. These values correspond with the Occupational Exposure Limits for Chemical Agents in Spain (National Institute of Safety and Hygiene at Work, 2012).

Preventative measures can reduce workers’ levels of exposure. These include ventilation systems that increase air renewal in working spaces. Clean air is brought into the work area and contaminated air is extracted to treat it in activated carbon filters. In addition, protective clothing can be worn, such as mouth and nose masks with Hg P3 filters, in accordance with European Respiratory Protection Standards (EN 141: 2000).

8.4 Environmental monitoring required during remediation work

Environmental remediation projects for mercury-contaminated sites should include an Environmental Monitoring Plan (EMP) in addition to the remediation activities themselves.

The aim of the EMP is to determine and assess the environmental impact or damage to the area around the contaminated site to be remediated, in all stages of the remediation work. Thus, the EMP will describe appropriate measures for mitigating or avoiding negative environmental effects of the remediation activity. Measures will apply to the design and location of the remediation activity, the remediation procedures, purification, and general mechanisms for protecting the environment.

The EMP for remediation activities at a mercury-contaminated site will define monitoring and measurement activities. Measurements will be divided into two groups:

1. Those made during implementation of the remediation work.
2. Those made after the remediation work or monitoring activities.

In these two groups, there will be a particular focus on:

- Surface water and groundwater quality.
- Particle and gas emissions that affect the quality of life of inhabitants of the area.

In addition, remediation activities will be monitored by means of topographic control and a photographic record. Meteorological data will also be gathered.

The EMP will establish the method for monitoring remediation actions: the kind of reports that are required, the content of the reports, their frequency, and when they will be issued in the framework of the remediation project.

Quality control of the remediation work and of the significant environmental aspects that were identified for the project (in the design, implementation and maintenance stages) will be carried out according to the guidelines established in the Environmental Monitoring Plan.
An example of the main aspects to include in an EMP for a remediation project at a mercury-contaminated site is showed at the end of the chapter.

8.5 Monitoring and control of the expected results and of implemented activities

Once the option of remediation has been selected, a monitoring plan should be designed, implemented and run. This plan will determine the times and places at which monitoring will be carried out to assess the progress of the remediation actions and confirm that the targets have been met and that the site is not a risk to human health or the environment.

The design and implementation of a monitoring plan (MP) is highly specific to the type of remediation carried out and the contaminated site. Monitoring should be accompanied by assessment of the indicators, to verify whether or not progress has been made in the various activities that form part of the system or project under evaluation.

The aim of the basic control and monitoring indicators should be to verify that:

- Processes within the contaminated site that has been remediated are carried out according to plan.
- The environmental protection systems work exactly as proposed in the remediation project.
- There is compliance with the conditions of authorized use of the contaminated site.

At least the following indicators should be evaluated during the period established by the relevant authority:

1. Meteorological data. It is essential to establish the meteorological data that will be collected from the site:
 - Volume of precipitation (daily and monthly values)
 - Minimum and maximum temperature (monthly average)
 - Direction and strength of the prevailing wind
 - Evaporation (daily and monthly values)
 - Atmospheric humidity (monthly average)

2. Emission data:
 - Monitoring of surface water at representative points. The monitoring of surface water should be carried out at two or more points, including water upstream of the site and water downstream of the site.

 Samples will be taken in different seasons, preferably every six months. The parameters will vary according to the characteristics of the site to be remediated. In the case of mercury contamination, the parameters should include the concentration of mercury and of other heavy metals, anions, pH, conductivity, etc.
• Monitoring of groundwater. This will be carried out at one point, or more, situated upstream from the site's inlet, according to the groundwater flow direction, and at two points downstream from the site’s outlet.

The number of monitoring points could be increased on the basis of a hydrogeological survey of the area.

The sampling frequency will be specific to each location and will be determined on the basis of the knowledge and assessment of the groundwater flow rate. The recommended parameters include pH, conductivity, heavy metals and anions.

• Monitoring of mercury vapor emissions and particulates with mercury content. A monitoring network should be established both within and outside the site to be remediated, to determine the environmental levels of mercury, and thus check the effectiveness of the remediation actions.

3. Soil sampling survey

The duration of the MP and the sampling and data collection frequency generally depends on the environmental authority.

The following table shows some of the main parameters to include in a MP for a remediation project at a mercury-contaminated site, during implementation of the remediation activities and once the project is finished.
MONITORING PLAN

<table>
<thead>
<tr>
<th>MONITORED MEDIUM</th>
<th>MONITORING FREQUENCY</th>
<th>LOCATION</th>
<th>MONITORING PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water</td>
<td>Monthly, first two years</td>
<td>Water upstream of the immediate surroundings of the site to be remediated</td>
<td>Temperature, pH, Conductivity, Dissolved oxygen, Redox potential (Eh), Nitrites, COD, Ammonia, Mercury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water downstream of the immediate surroundings of the site to be remediated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Six-monthly, remaining years</td>
<td>Water upstream of the area near the site to be remediated</td>
<td>Temperature, pH, Conductivity, Heavy metals: mercury.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water downstream of the area near the site to be remediated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>Water upstream of an area further from the site to be remediated</td>
<td>Temperature, pH, Conductivity, Mercury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water downstream of an area further from the site to be remediated</td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td>Monthly, first 2 years</td>
<td>Drilling around the site to be remediated</td>
<td>Mercury</td>
</tr>
<tr>
<td></td>
<td>Six-monthly, remaining years</td>
<td>Drilling around the site to be remediated</td>
<td>Mercury</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>Wells and springs around the site to be remediated</td>
<td>pH, conductivity, HCO₃⁻, SO₄²⁻, Cl⁻, Ca²⁺, Mg²⁺, Na⁺, NO₃⁻, NO₂⁻, NH₄⁺, Mercury</td>
</tr>
<tr>
<td>Monitoring of meteorological data</td>
<td>Monthly</td>
<td>Site and surroundings</td>
<td>Direction, speed and frequency of prevailing wind</td>
</tr>
<tr>
<td>Monitoring of the mercury level in air</td>
<td>Monthly, first 2 years</td>
<td>Site and surroundings</td>
<td>Level of mercury in the air</td>
</tr>
<tr>
<td></td>
<td>Quarterly remaining years</td>
<td>Site and surroundings</td>
<td></td>
</tr>
<tr>
<td>Monitoring of the mercury level in suspended matter</td>
<td>Monthly, first 2 years</td>
<td>Site and surroundings</td>
<td>Level of mercury in particles in suspension</td>
</tr>
</tbody>
</table>
APPENDIX 1: CASE STUDIES

1. Reconditioning of the Almadén mines.
3. Environmentally safe decommission of a mercury cell chlor-alkali plant
4. Stabilization of soils contaminated with heavy metals using low-grade magnesium oxide

LEGAL DISCLAIMER: These case studies are a non-exhaustive compilation of recent projects undertaken for mercury decontamination, and provided only for informative purposes, without implying necessarily neither a certification nor an approval by UNEP/MAP of all the procedures employed in each of the sites and of the levels of contamination that may remain in them.
CASE STUDY 1: RECONDITIONING OF THE “CERCO DE SAN TEODORO” SLAG HEAP. MINAS DE ALMADÉN (CIUDAD REAL, SPAIN).

Background

Minas de Almadén y Arrayanes, S.A. (MAYASA) is a public company belonging to Sociedad Estatal de Participaciones Industriales (SEPI), which manages the mercury mines in Almadén (Ciudad Real).

Mining began in Almadén over 2,000 years ago, with production accounting for a third of historical world production.

The Almadén mining and metallurgy complex is found in the areas known as “Cerco de San Teodoro”, near the urban area and the road to Córdoba. The site includes historic mines and those in operation until July 2003.

Minas de Almadén undertook in 2005 the most important environmental project in its history: the reconditioning of the "Cerco de San Teodoro” slag heap.

For centuries the “Cerco de San Teodoro” slag heap has been the dump site for both sterile tailings from mining operations and slag from metallurgy processes, reaching 3.5 million tonnes and covering an area of 10 hectares.
ACTION

In deciding which rehabilitation model to follow, a number of studies were made of the slag heap and the surrounding area. A summary of these studies concluded that the **materials dumped on the slag heap are hazardous due to their mercury content** and that the permeability of the underlying substrate is low, with no discernible lithological changes or fractures that may constitute preferential drainage paths.

Bearing these considerations in mind it was decided to undertake **reconditioning of the slag heap with in-situ encapsulation** to guarantee waterproofing of the upper part of the heap, preventing refilling and therefore minimizing the effects on groundwater and surface water, as well as reducing dispersion of the material dumped on the heap that may affect the surrounding soils.

The reconditioning of the Cerco de San Teodoro slag heap was undertaken from 2005 to 2008 and cost close to 9 million euros.

In addition to the aforementioned environmental tasks, the reconditioning of the Cerco de San Teodoro slag heap has turned the mining and metallurgy complex into a social and cultural space open to the public: the Almadén Mining Park (www.parqueminerodealmaden.es).

METHODOLOGY USED

The slag heap lies within the easternmost part of the urban area and is a topographic high compared to the surrounding relief; the foot is well defined, limited to the south by the Córdoba road, to the west by other property, and to the north by the path to the Virgen del Castillo.

The materials are piled in a slag heap outside the Cerco de San Teodoro that extends south-east and north-west, surrounding the mining site, and in a second heap inside the Cerco in the south-westernmost area.

The studies characterizing the slag heap and surrounding area yielded the following data:

COMPONENT MATERIALS

- Old metallurgy waste
- Current metallurgy waste
- Mining waste
- Other

ENVIRONMENTAL EFFECTS

- Hydrological risk
- Atmospheric risk
- Land use
- Effects on plant and animal life, geophysical processes–morphology and landscape–, and infiltration
The following action plan was drawn up to meet the established objectives:

A) **slag heap conformation**

The aim of this stage was the remodeling of the slag heap to improve stability and integrate it into the surrounding area. To do so, material was moved from one part of the heap to another to reduce the slope of the sides, enabling the subsequent laying of a geosynthetic pack to seal the heap.

![REMODELLING OF THE CERCO DE SAN TEODORO SLAG HEAP MARCH 2006. Photo by Paisajes Españoles](image)

B) **sealing of the slag heap**

The aim was to stop water entering the heap, and thus prevent the formation of leachates, the dispersion of materials through physical and thermal insulation and prevent mercury evaporation over the entire surface of the heap. A geosynthetic pack made up of 5 layers was installed.

The seal package comprises: a geotextile layer, a bentonite blanket layer, a layer of high-density polyethylene, another of drainage geocomposite, and finally a layer of reinforcement geogrid, or geocells, depending on the steepness of the sides after remodeling.
The geosynthetics have different functions:

- **GEOTEXTILE**: The geotextile layer prevents piercing.
- **BENTONITE BLANKET**: This waterproofs the surface, reducing leachate formation and gas migration.
- **HIGH-DENSITY POLYETHYLENE**: The main component of the geosynthetic pack, as it guarantees that sealed area is totally impermeable.
- **DRAINAGE GEOCOMPOSITE**: This conveys water, separating and filtering the soil on which the geocomposite is laid.
- **FLEXIBLE REINFORCEMENT GEOGRID 80 kN/m**: Installing this layer improves the stability of the earth on the surface of most the slopes on the heat.
- **GEOCELLS**: Drainage geocells are made of strips of high-density polyethylene, laid to stabilise the earth on the steepest slope.

The diagrams below show the distribution of the geosynthetic pack, according to slope.
UNEP(DEPI)/ MED WG.417/17
Annex III, Appendix 4
Page 52

SEALING SURFACE SCHEME
LOW INCLINATION SLOPE

SEALING SURFACE SCHEME
HIGH INCLINATION SLOPE
C) installation of a water collection, circulation and discharge system

This stage of the remediation aims to prevent erosion that may affect the stability of the slag heap. A water collection, circulation and discharge system was installed, through the construction of ditches, drainpipes and perimeter channels that collect runoff and prevent future erosion, which would affect the stability of the slopes.

D) restoration of plant cover

This action aims to recover plant life on the restored surface and integrate the slag heap into its surroundings. To do this, 50 cm of earth was added to the whole surface, a total of 180,000 m3, followed by the mechanical hydroseeding of a 16-ha area to aid the regeneration of plant cover.

EVALUATION OF RESULTS AND CONCLUSIONS

Since the reconditioning work was completed in 2008, the most obvious results observed have been:

- Integration of the slag heap into the landscape.
- Elimination of waste dispersal in the immediate area.
- Acceptable levels of mercury evaporation into the atmosphere.
- Leachate formation is almost zero, with no addition to nearby streams or groundwater.
Quality control during the course of the works, along with the significant environmental aspects identified for the project, was undertaken according to the Environmental Monitoring Plan (EMP) designed for the reconditioning project.

Currently, the post-completion monitoring established in the EMP continues. To date, the most reliable result observed is the drop in mercury levels in the air, as can be seen in the figures below from the study of air emissions undertaken during and after the reconditioning works.

In regard to water quality, although in some surface waters a notable improvement was observed, some more time is needed before more significant results are obtained.

The development of the analytical data on these waters can be followed on the website of the “Centro Tecnológico Nacional para la Descontaminación de Mercurio (CTNDM): http://www.ctndm.es/proyectos/1-in.php where the data obtained is dumped monthly under the reconditioning Environmental Monitoring Plan, which includes the gathering of monthly samples at a number of points in surface and groundwater around the slag heap.
CASE STUDY 2: DECONTAMINATION OF THE FLIX DAM IN THE EBRO RIVER (Tarragona, Spain)

Authors: Marc Pujols, Project Manager, and Gracia Ballesteros, Deputy Director of Engineering and Construction. ACUAMED.

SUMMARY

The Flix dam, located in the lower stretch of the Ebro, retains in its basin some six hundred thousands cubic meters of sludge mainly dumped by a chemical plant located on the right bank. This sludge was the residual product of the plant’s operations, and is composed of both chemicals and inert components. There are three main groups of contaminants: organochlorines (with persistent organic pollutants such as DDT and PCBs), heavy metals (mainly mercury) and radionuclides.

http://www.ctndm.es/proyectos/1-in.php
The concentration of the contaminants in the mud is relatively high, and they can be potentially mobilized; in fact, such transmission has actually occurred—as shown in the register of specific episodes in which the limits of tolerance of aggressive components contained in the ecosystem have been exceeded.

In light of this situation, the Spanish Ministry of Environment decided to start a process of designing, analysing, developing, comparing and finally choosing the means by which to correct and prevent, or mitigate, the transmission of these toxic elements into the environment.

As a result, the state company Aguas de las Cuencas Mediterraneas, S. A. (ACUAMED) was entrusted with the project of the elimination of the chemical pollution of the reservoir at Flix.

BACKGROUND

The accumulation of historical dumping can lead to situations that make the ecosystems vulnerable due to natural phenomena - floods, winds or sudden temperature changes. Just such a scenario is the situation in the Flix reservoir.

The production of chemical products on the banks of the river began in the late nineteenth century, and since then, the kind of substances produced have been large and varied, in accordance with technological advances and demand.
The initial processes were based on chlorine and caustic soda, obtained from the raw material of common salt, through an electrolytic process using mercury. More recently, apatite has been introduced in huge amounts as raw material in order to produce di-calcium phosphate. This apatite naturally contains a percentage of radionuclides, which, during the production process, are physically dumped. In addition to this, also to be considered is the fact that some of the contaminants found in the mud also come from the natural drag occurring upstream of the factory.

In addition, the River Ebro’s morphology has substantially changed over the past century. Every time that a dam is built on the river, the immediate consequence is that the pool produced in the water increases sedimentation, and therefore reservoirs have a propensity for clogging. The Flix reservoir is no exception. The erosive force and natural drag of the River Ebro as it passed through this area was reduced following construction of the dam. Until then, most of what was dumped from the factory had been washed away downstream, but after construction of the dam, the vast majority of the dumped materials remained in the reservoir basin.

In light of all of this preliminary data, a search for solutions has been undertaken, in order to avoid either continuous or periodic risk of contamination.

WASTE GENERATING PROCESSES

The materials that make up the bank of the reservoir beside the factory mostly come from factory activity. The processes that produced or caused the majority of the materials deposited or that have settled in the bank are:

a) Combustion of coal.
b) Dissolution of salt.
c) Trichloroethylene.
d) Perchloroethylene and carbon tetrachloride.
e) Dicalcium phosphate.

POTENTIALLY POLLUTING PROCESSES

As previously mentioned, the contaminants belong to three main groups: heavy metals (mainly mercury), organochlorines and radionuclides (from the mineral used in the phosphate process).

Given the variety of processes carried out at the factory, in addition to those already mentioned, there may be others arising from chlorination processes, like DDT (1945-1975), PCBs (1959-1987), Hexachlorobenzene, and diverse reaction by-products.

SOLUTIONS CONSIDERED

Studies carried out have established that possible solutions can be classified into two groups depending on whether the waste is finally kept in the reservoir (in-situ solutions) or, conversely, collected and placed at another point (ex-situ solutions).

The key elements that define the optimal solution within each group are:

• In-situ solution: the creation of a working area, making up of waste, waste treatment and protection from river erosion.

• Ex-situ solution: creating a working site, removal of waste, treatment, transport to a dumping area and the dumping area itself.

ADOPTED RESOLUTION

The Monitoring Commission formed by various government bodies, including the Hydrographic Confederation of the Ebro, the Spanish Ministry of the Environment, the Government of Catalonia, the Flix municipality, the Spanish National Research Council, the Consortium for the Protection of the Ebro Delta (CEPIDE) and the project promoter (ACUAMED), after studying all the responses received from more than 80 organizations consulted to study the alternatives, including that of ‘no action’, decided that the ex-situ solution was the most environmentally safe alternative, since it actually worked (2012).
reduced the level of pollutants and provided more guarantees.

When designing and planning activities, a series of corrective measures to minimize the impact on wildlife were considered, because a nature reserve was located upstream nearby, with flooded grasslands and wildlife as diverse as the golden eagle, imperial heron and the otter.

PRELIMINARY WORKS

- Construction of a **double wall of sheet piling 1300 m in length**, enclosing a working area on the right bank of the reservoir to isolate the contaminated river sludge, which must be executed prior to manipulation of the significantly contaminated mud. The main aim is to create a protected area (still water), independent from the Ebro’s flowing water, so that during the performance (during the works inside the reservoir) the river can flow through a channel at the left bank of the reservoir. Should an incident occur during the process, the working area will remain confined and pollution won’t be sent downstream.

23 BOE (Spanish Official Gazette), RESOLUTION of 25 October 2006, of the General Secretariat for Pollution Prevention and Climate Change, formulating an environmental impact statement on the assessment of the project Removal of Chemical Pollution from Flix Reservoir (Tarragona).
Construction of a secant pile retaining wall 1100 m in length on the shoreline of the right bank of the reservoir, to avoid the risk of landslip of the bank due to the removal of the waste, while preventing subsurface flow from the factory into the river.

Construction of an interceptor sewer for the existing waste drains at the factory.

Construction, within the factory compound, of various industrial buildings to house the treatment facility for the extracted material and water, as well as the collection centres.

Construction of seven wells for the supply of water to the towns situated downstream. Its use is exclusively reserved in case of emergency.

Adequacy and waterproofing of a Class II landfill (type of landfill engineered for wastes that are neither toxic nor inert) in el “Racó de la Pubilla” (at a distance of 6 kilometers away from the river), following demanding criteria above and beyond that required by current legislation.
Conditioning works in the “Racó de la Pubilla” Landfill

DEPOLLUTION WORKS

One of the wells constructed for drinking water supply to downstream towns in case of emergency
After building the site, the removal of waste can proceed. The removal of the submerged fraction of mud will be done using suction ecological dredges, which will work surrounded by floating plastic curtains. This will minimize the disturbance of contaminants and will create a depression in the dredge area, where the water will be easily kept. This is complemented by the provision of a small pump that can operate when the dredger stops. To prevent the disturbance of contaminants, the dredging should be necessarily low.

Once removed, the material must be subjected to a treatment, the aim of which is to achieve waste conditions that enable it to be admitted for final containment in the dumping area provided.

The treatment consists of:

- **Soil size classification**, using sieves and hydrocyclones, followed by the **drying** of all the extracted material, with settling tanks and press filters.

- The solid fraction will be classified depending on its contaminant concentrations, sending clean fractions directly to the filling area, and dealing specifically with those fractions that would be rejected at the dumping area. After studying all the possibilities, the chosen treatments (alternative or sequentially) are:

 - **Thermal desorption** (vs. organic compounds): The material is introduced into the desorption oven at less than 350°C to avoid evaporating the mercury. The gases coming from the desorption oven pass to a thermal oxidation oven where they are heated again, this time to 1100°C. After this, the temperature is cooled quickly to less than 200°C to prevent the formation of dioxins. The resulting gas from the thermal oxidation oven passes through a fabric filter to collect the particles in suspension.
Oxidation:

- the principal contaminants from the dehydrated sludge are volatile compounds in moderate concentrations, it is oxidized in the mixing tank by the addition of reagent and water. After mixing, the material passes to the reaction tanks. Two hours later, the result is an inert compound that is insoluble in water and ready to be taken to the landfill site.

- **Stabilization** (vs. heavy metals): If the dredged sludge has high concentrations of mercury and other heavy metals, it is processed in the stabilization plant. Passing through some hoppers, the sludge is inertized with cement and specific additives to stabilize the mercury and prevent its presence in the possible leaching of the sludge.

- **Water** is sent to a treatment plant (WWTP), the capacity of which is around one hundred litres per second.

The diagram below highlights the crucial importance of the contamination controls at the end of each process, before approving the continuation in the chain of decontamination. Strict security guidelines are also followed during the handling of materials, to prevent any impact on people or the environment.

After the treatment, the material will be transported by trucks to the “Racó de la Pubilla” class II landfill (type of landfill designed for residues that are neither toxics nor inerts.)

DISMANTALING WORKS

The works are due to be finished by the end of 2015, and it will imply the following actions:

- Closure of the landfill site.
- Dismantling of the sheet pile wall.
- Dismantling of the surface water inceptors and repositioning of the landfill to the reservoir for the rainwater drains.
- Removal of the mobile and mechanical elements from the treatment plant.
- Dismantling of the plant building and fixed elements contained within.
• Reinforcement via coarse rubble slope against the pile wall along the full extension of where the extraction of material has taken place next to the secant pile protection wall.

SECURITY MEASURES

As already pointed out, the security measures include the floating plastic curtains and the double wall of sheet piling, as well as an intensive daily quality control of the water, upstream and downstream, both outside and inside the enclosure area.
These tests, as well as the analysis of the dredged material, are carried out in the ‘on site’ laboratory, which includes the following equipment:

- Gas chromatography coupled with mass spectrometry.
- Ion chromatography with conductivity detection.
- Atomic fluorescence.
- Visible and ultraviolet molecular absorption spectrophotometry.
- Plasma induced spectroscopy emission.
- Selective electrode system.
- Alpha radiation meters with zinc sulphur detectors.
- Beta radiation meter using a detector proportional to the gas flow.
- Gamma radiation meters using sodium iodide and germanium detector.

INFORMATION TO THE PUBLIC
A website has been devoted to inform the public with the details and news of the project.

"On site" Laboratory

www.decontaminationflix.com/
COST OF THE PROJECT

The total cost estimated is around 192 M€, of which 70% is co-financed by European Union funding, with the following breakdown of major items:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment plant</td>
<td>50</td>
</tr>
<tr>
<td>Conditioning of dumping area</td>
<td>38</td>
</tr>
<tr>
<td>Sheet pile wall</td>
<td>21</td>
</tr>
<tr>
<td>Pile wall</td>
<td>15</td>
</tr>
<tr>
<td>Dredging</td>
<td>12</td>
</tr>
<tr>
<td>Other</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
</tr>
</tbody>
</table>
CASE STUDY 3: ENVIRONMENTALLY SAFE DECOMMISSION OF A MERCURY CELL (CHLOR-ALKALI PLANT)

Author: Antonio Caprino. Electrolysis Production Manager. SOLVAY IBERICA, MARTORELL.

The decommission of a mercury-cell (chlor-alkali plant) is potentially one of the processes most likely to involve major release of mercury into the environment. It involves a series of steps that require thorough and carefully planning. The amount and composition of the waste generated may vary greatly, from protective equipment of workers like gloves to slag, production equipment, containers, rubble….

Below are the steps to be followed in the decommissioning of a mercury-cell, with special emphasis on the precautions to be taken to ensure human health and safety and to prevent environmental contamination, based on Euro Chlor documentation on decommissioning and on Solvay’s experience in this field.

1. Introduction

In the 20th century, mercury electrolysis was commonly used in chlorine production worldwide; however, the use of mercury and the advent of new technologies mean that this technique is now largely obsolete. Indeed, no electrolysis plant using this technique has been built since the 1960s.

Given the challenge facing the sector in regard to the change in technology, Euro Chlor (an organisation that groups together most European chlorine manufacturers) undertook voluntarily to cease mercury-based chlorine production in Europe by 2020. In the Mediterranean Region no mercury-based plants shall remain in operation by 2020\(^{24}\).

At global level a similar process is being followed: in 2002 there were 92 mercury-based plants, while by 2011 only 53 remained. UNEP reached an agreement in 2013 (Minamata Convention on Mercury), under which mercury-cell chlor-alkali plants will cease to operate between 2025 and 2035 in those countries that ratify the Convention.

Given this situation, it seems appropriate to compile a document of good practices to be followed during the decommissioning of such plants.

\(^{24}\) Legal requirement of the Regional Plan of the Barcelona Convention for the reduction of inputs of Mercury. UNEP MAP, 2012.
2. The case of Solvay

Solvay is a world leading producer of chlorine with 13 plants producing over 2 Mt of chlorine a year. Four of these plants still use mercury cell technology. Between 2006 and 2011 there were 3 conversions made from Hg to membrane cells:

2006 in Rosignano, Italy
2007 in Bussi, Italy
2009 in Santo André, Brazil
Two changeovers will be completed in 2013: Lillo (Belgium), and Tavaux (France).

Based on these experiences, an explanation is given of how the decommissioning of a mercury cell plant is managed during the technology change process. The reference documents will be cited, along with the team in charge of the process and a breakdown of the operations to be carried out at local level, all based on the latest cases at Rosignano and Santo André. Finally, the main lessons learned from these processes are summarised in a list of good practices to be considered.

2.1 Managing the decommissioning process

2.1.1 Reference documents

- Euro Chlor Env Prot 19. *Guidelines for the preparation for permanent storage of metallic mercury above ground or in underground mines.*
- Local documents such as: SHD (Syndicat des Halogènes et Dérivés) France - ‘Protocol for decommissioning of a mercury cathode electrolysis unit’,
- Company’s own documents (Internal procedures, Schedules, action plans…)

2.1.2 Organisation

In order to undertake the required decommissioning processes it was decided to put together a team to define how these processes should be managed at the various Group plants.

The team was made up of process experts and SHE (Safety, Health and Environment) experts who defined the process and its scope, and created a technical database on the mercury-contaminated equipment and the recommended treatment.

The team also included experts in procurement to ensure good economic management during the investment period.

2.1.3 Phases of the operating process

2.1.3.1 Phase 1: preparation and planning
An estimate must be made of the contaminated waste to be treated, including the anticipated amount and concentration of mercury.
Likewise, it must be decided which equipment is to continue to operate during the decommissioning process to prevent workers from being exposed to mercury and contamination of the environment. This is normally gas scrubbing and wastewater treatment installations.

Based on experience, the amount of contaminated material to be treated varies between 1000 and 6000 t per plant (excluding buildings), a non-comprehensive list is given below by way of example:

- Carbon steel and other metals such as copper and aluminum
- Mercury
- Graphite and activated carbon
- Polyester reinforced and non-reinforced PVC, polyester resins, other plastics
- Coverings, e.g. ebonite, neoprene and butyl
- Joints made from diverse materials
- Sand and clay
- Electrical equipment
- Concrete, brick, rubble
- others

This list is used to define the treatment of each type of waste or whether it is to be sent to landfill. The treatment of each waste type is decided according to the description in the database prepared by the central team and the stipulations of each country’s legislation.

One important point to be borne in mind is that, at the beginning of the process, suitable metal containers must be made available to store the metallic mercury from the electrolysers temporarily.

Next, a call for bids can be made amongst contractors and a detailed plan of the process drawn up. This plan should include informing the authorities that all aspects of waste have been considered, including treatment, environmental control during the decommissioning process and all those concerning the protection of the personnel involved.

Finally, the number of workers required must be defined, both on the pay roll and freelancers, protective equipment, biomonitoring and environmental control.

2.1.3.2 Phase 2: Operations

This in turn is divided into three stages.

Stage one, called ‘Basic Health and Safety Provisions’ comprises the following operations:
- Emptying installations containing metallic Hg and process fluids.
- Thorough cleaning and confinement of the various contaminated cells, and, if necessary, covering them with water, to prevent emissions of Hg into the atmosphere.
- Dismantling of uncontaminated equipment (e.g. anodes, cell panels, etc.).
Such work must be undertaken by qualified personnel, usually the same involved when the plant was in operation.

In **stage two** the mercury-contaminated equipment is dismantled and undergoes appropriate treatment according to the establish plan. Only the equipment that must remain operable for reasons of SHE is not dismantled. This work can be undertaken by contractors if there is not enough permanent staff.

Finally, in **stage three**, the remaining equipment is dismantled (e.g. control gear, treatment units, etc.). This work is mostly done by contractors.

3. Case study photos
Below are some case study photos that illustrate the steps described.

![Cells confinement for dismantling](image-url)
Working area for safe handling of contaminated equipment connected to the Hg effluent treatment unit, regularly washed down with water
Floor of cell room regularly washed down

First stage of operations
4. **Good practices learned**

The decommissioning of a mercury-cell chlor-alkali plant must be managed as a specific project:

1. By a full-time team, enthusiastic and committed to the project, able to come up with innovative solutions that improve on current procedures. Personnel must be qualified and experienced, particularly those in charge of emptying circuits and dismantling contaminated cells in stage one.

2. The project must be carefully planned following available documentation and according to the specificities of each plant.

3. A number of things must be defined in the initial phase:

 a. How to shut down the cell room (all at once or in sections)
 b. Which cells should remain operative for SHE reasons.
 c. Listing contaminated cells and waste types with the corresponding treatment, which will serve when informing the authorities and drawing up requests for bids from contractors.

4. The protection of workers and the environment is a crucial aspect. Prior to the start of the work, the protective equipment to be used, the cells which are to remain operative to ensure minimum exposure, monitoring of the environment and water and biomonitoring must all be determined.

5. Finally, to ensure the success of the process, it is essential to implement progress indicators for the control and monitoring of the project.
5. Safe treatment of waste from the decommissioning of a chlor-alkali plant

The table below shows some recommended forms of treatment for waste containing mercury in the chlor-alkali industry, according to the BAT reference document.²⁵

<table>
<thead>
<tr>
<th>Type of waste</th>
<th>Characteristic</th>
<th>Typical amounts (g/t Cl₂)</th>
<th>Hg content before treatment (g/kg)</th>
<th>Treatment</th>
<th>Final Hg mercury (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine sludge</td>
<td>Inorganic waste</td>
<td>Up to 20 000, depending on the quality of the salt</td>
<td><0.150</td>
<td>Landfill following stabilisation</td>
<td></td>
</tr>
<tr>
<td>Sludge from effluent treatment</td>
<td>Activated carbon</td>
<td>50-400</td>
<td>10-50</td>
<td>Distillation/landfill following stabilisation</td>
<td></td>
</tr>
<tr>
<td>Carbon sludge from caustic filtration</td>
<td>Activated carbon</td>
<td>20-50</td>
<td>150-500</td>
<td>Distillation/landfill following stabilisation</td>
<td>Hg recovered / <10 in waste</td>
</tr>
<tr>
<td>Gas emission filters</td>
<td>Activated carbon</td>
<td>10-20</td>
<td>100-200</td>
<td>Chemical treatment Landfill following stabilisation</td>
<td>Hg recovered / 20-200 in waste</td>
</tr>
<tr>
<td>Sludge from storage tanks, sinks, etc.</td>
<td>May contain large quantities</td>
<td>High Hg content in general</td>
<td>Distillation</td>
<td>Hg recovered</td>
<td></td>
</tr>
<tr>
<td>Rubber coating</td>
<td>Variable</td>
<td>Variable</td>
<td>Acid bath, cryogenic and/or washing Incineration</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Metal-coated materials</td>
<td>Surface contamination</td>
<td>In general, <0.1%</td>
<td>Heat, cutting and washing or cryogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel and iron parts from building</td>
<td>Variable amounts</td>
<td>Inhomogeneous</td>
<td>Acid bath/sold as waste</td>
<td><5-10</td>
<td></td>
</tr>
<tr>
<td>Concrete and other construction waste</td>
<td>Variable amounts</td>
<td>Inhomogeneous/</td>
<td>Landfill as hazardous waste or other waste according to content</td>
<td>>10 /<10</td>
<td></td>
</tr>
</tbody>
</table>

The table below shows the typical waste materials generated following the decommissioning of a chlor-alkali plant and their possible treatments for mercury recovery. 26

<table>
<thead>
<tr>
<th>Material</th>
<th>Typical percentage of Hg w/w</th>
<th>Physical state</th>
<th>Possible treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge from storage tanks and sinks</td>
<td>10 - 30</td>
<td>Wet solid</td>
<td>Retorting</td>
</tr>
<tr>
<td>Sludge from sedimentation tanks, drains, etc.</td>
<td>2 - 80</td>
<td>Wet solid</td>
<td>Retorting</td>
</tr>
<tr>
<td>Sulphurised or iodised charcoal from hydrogen purification</td>
<td>10 – 20</td>
<td>Dry solid</td>
<td>Retorting</td>
</tr>
<tr>
<td>Carbon from soda filters</td>
<td>Over 40</td>
<td>Wet solid</td>
<td>Retorting</td>
</tr>
<tr>
<td>Graphite from decomposers</td>
<td>2</td>
<td>Porous solid</td>
<td>Retorting</td>
</tr>
<tr>
<td>Rubber/packaging</td>
<td>Variable</td>
<td>Variable</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Brick/concrete</td>
<td>0.01 – 0.1</td>
<td>Dry solid</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Hg cell components (anodes, side walls, pipes…)</td>
<td>Variable</td>
<td>IC</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Steel (cells, decomposers, scrap metal, H₂ condensers, pumps, pipes…)</td>
<td>0.001 – 1</td>
<td>SSC</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Plastic equipment</td>
<td><0.1</td>
<td>SSC</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Copper conductors</td>
<td>0.04</td>
<td>SSC</td>
<td>(For flexible sheets)</td>
</tr>
<tr>
<td>Cell seal (concrete layers)</td>
<td>0.01</td>
<td></td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Asphalt</td>
<td>1 - 20</td>
<td>IC</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Concrete and subsoil</td>
<td>Variable</td>
<td>IC</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Wood</td>
<td>Variable</td>
<td></td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Floor</td>
<td>Variable</td>
<td>IC</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>0.03</td>
<td></td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Retort waste</td>
<td>< 0.1 – 0.1</td>
<td>Porous dry solid</td>
<td>Retort to mercury cells</td>
</tr>
<tr>
<td>Wooden floors</td>
<td>0.05 – 0.08</td>
<td>IC</td>
<td>Retort to mercury cells</td>
</tr>
</tbody>
</table>

IC: Inhomogeneous contamination / SSC: Solid with surface contamination

CASE STUDY 4: STABILIZATION OF SOILS CONTAMINATED WITH HEAVY METALS USING LOW-GRADE MAGNESIUM OXIDE

Author: José María Chimenos. University of Barcelona (UB)

The stabilization treatment with a pH-buffering chemical is an option to consider when the best alternative considered is to remove a contaminated soil with heavy metals from its emplacement, without a process of decontamination, and move it to a suitable landfill or safety cell.

This process of chemical stabilization minimizes heavy metals solubility. Lime or a mix of cement and lime are the usual buffering agent for many kinds of waste, but with the high pH values obtained with lime - a strong alkali -, the leachate water collected in the landfill may contain high concentrations of heavy metals, due to the redissolving of the previously formed metal hydroxides.

The most common heavy metal hydroxides reach their minimum solubility at a pH between 8 and 10. In the chemical stabilization of soils polluted with heavy metals it should be used an alkaline product with solubility equilibrium at that pH interval, and with a competitive price compared to lime.

Magnesium hydroxide, Mg(OH)$_2$, can be the most appropriate candidate, as it has minimum environmental impact, low solubility and pH equilibrium on contact with water close to 9.5. However, natural magnesium hydroxide (Brucite) is scarcely reactive, and the hydroxide on the market costs ten times the price of calcium oxide or hydroxide. More affordable is the low-grade magnesium oxide (MgO), which can be used as a stabilizing agent and is obtained from the calcination of the mineral Magnesite.

If mercury is present in the soil, it has to be carefully considered the possibility of formation of methylmercury, or its complexation with organic matter, such as humic acid. In this case, the stabilizing agent wouldn’t be effective.

Here below is a description of some cases of stabilization of soils contaminated with heavy metals using low-grade MgO.

1- In 1998, Inabonos S.A. (a Roullier Group company) undertook the cleaning and decontamination of a 74,408 m2 plot in a former emplacement in Lodosa (Navarra, Spain), by moving contaminated soil to a safety cell, with the objective to build a new housing development. The process causing the contamination was the production of sulphuric acid from pyrite –iron sulfide-, a mineral with a high content of heavy metals. The waste generated in the process contained iron oxides and heavy metals such as lead, zinc, arsenic, copper, mercury, cobalt, cadmium, chrome, nickel, tin, selenium, tellurium, and antimony and could be found up to a depth of 2.5 meters. Mercury concentration reached a peak of 1.7 g/Kg in the first half meter of depth.

120,000 m3 of contaminated soil were extracted from the site, transported to a safety cell and stabilized. Stabilization was a gradual process, alternating layers of earth, approximately 0.5 m thick, with layers of hydrate - obtained from the calcination of natural magnesite and produced and marketed by the company Magnesitas Navarras S.A.-. This layer acted as a filter bed for the percolates from upper layers. The percentage of stabilizer added was about 5-6% by weight of the contaminated soil dumped in the safety cell. After dumping and stabilization, the safety cell was...
closed. Thus, leachates collected in the troughs of the safety cell could be discharged into natural watercourses without undergoing prior treatment, except those effluents with a high sulphate content.

2- On a coastal city nearby Barcelona, the ex situ stabilization of 12.5 hectares containing ashes from pyrite roasting along with pyrite mineral with high sulphur concentration of a former inorganic fertiliser factory was undertaken using 10% low-grade magnesium oxide. The final objective of this treatment was to move the stabilized soil to a Class II controlled landfill.

3- On a Spanish coastal city, a pre-pilot study was undertaken of in-situ stabilization with magnesium oxide of soil contaminated by the uncontrolled dumping of a former fertiliser factory. The area treated covered 200 m2 and was 2 m deep. The stabilizing agents were added by injection and the contaminated soil homogenized using a rotovator. The results obtained show that the leachates from the samples stabilized with low-grade magnesium oxide enable a pH of between 9.5 and 10.5, which is the optimal interval to minimise the solubility of heavy metals.
Annex III, Appendix 5

Guidelines for environmentally sound management of used lead batteries
Note by the Secretariat:

These draft guidelines were prepared and delivered in the framework of the MedPartnership project and MAP PoW 2014-2015, with the technical support of the Basel Convention Regional Centre in Bratislava in 2014.

The present Guidelines was reviewed and agreed by the Regional Meeting of experts nominated by the Contracting Parties held from 18-19 March 2014, Bratislava, Slovak Republic, which agreed to their submission to the MED POL Focal Point meeting.
Table of contents

1. Definitions ... 4
2. Description of a lead battery .. 4
3. Environmental and health aspects .. 6
4. Sources of waste lead batteries, estimation of amounts of produced used lead batteries 7
5. Overview of available standards, technical specification and guidelines on the storage and treatment of batteries and accumulators .. 10
 5.1. European Union Legislative Framework .. 10
 5.2. Best Available Techniques Reference Documents of the European Commission 11
 5.3. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal 14
 5.4. Guidelines on best available techniques and provisional guidance on best environmental practices of the Stockholm Convention .. 14
 General information on emissions from secondary lead smelters 14
 Emissions of PCDD/PCDF to air during the smelting process 15
6. Collection, transport and storage of used lead batteries .. 15
 6.1. General occupational health and safety recommendations for workers during the waste
 management and treatment of used lead batteries ... 16
 6.2. Collection and sorting of used lead batteries ... 17
 6.3. Transport of used lead batteries ... 20
 6.4. Storage of used lead batteries .. 23
7. Treatment of used lead batteries ... 27
8. Recovery of used lead batteries .. 29
9. Disposal of used lead batteries .. 41
 9.1. Landfills for hazardous wastes .. 42
 9.2. The underground long-term storage for hazardous wastes ... 46
 9.3. Accepting waste for disposal .. 46
10. Transboundary movement of used lead batteries .. 47
 10.1. General requirements for “transport” / ADR ... 48
 10.2. Special care for batteries and accumulators with a liquid electrolyte 51
11. Potential Sources of Environmental Contamination ... 51
 11.1. Battery Breaking Process ... 51
 11.2. Lead Reduction Process ... 52
 11.3. Lead Refining Process ... 53
 11.4. Bad examples of potential contamination of the environment 54
12. Economic aspects of environmentally sound management of used lead batteries 55
13. Conclusions and recommendations ... 56
14. Literature .. 58
1 Definitions

Battery - any device that stores energy for later use; common use of the word, “battery”, however, is limited to an electrochemical device that converts chemical energy into electricity, by use of a galvanic cell.

Galvanic cell - a device consisting of two electrodes (an anode and a cathode) and an electrolyte solution; batteries may consist of one or more galvanic cells.

Lead battery - the electrical accumulator in which the active material of the positive plates is made up of lead compounds and that of the negative plates is essentially lead, the electrolyte being a dilute sulphuric acid solution.

Used lead battery - the battery which is no longer capable to be recharged or cannot retain its charge properly, its lifetime reaches its end and it becomes a waste.

Management of used lead batteries - the overall process of collection, transport, recovery and or disposal of used lead batteries, including the supervision of such operations

Separate collection - the gathering of used lead batteries, including the preliminary sorting and preliminary storage of used lead batteries for the purposes of transport to a treatment facility

Storage - placing of used lead batteries in the room of waste management or treatment facilities in sites with impermeable surfaces and suitable weatherproof covering or in suitable containers

Treatment of used lead batteries - means recovery or disposal operations with used lead batteries, including preparation prior to recovery or disposal

Recovery - means any operation the principal result of which used lead batteries serving a useful purpose by replacing other materials which would otherwise have been used to fulfil a particular function, or waste being prepared to fulfil that function, in the plant or in the wider economy

Recycling - means any recovery operation by which used lead batteries materials are reprocessed into products, materials or substances whether for the original or other purposes

Fractions of used lead batteries – material parts and pieces produced from treatment of used lead batteries and relevant by-processes of used lead batteries

Disposal - means any operation which is not recovery even where the operation has as a secondary consequence the reclamation of substances or energy

2 Description of a lead battery

A battery mainly consists of electrodes (two plates, made from lead) placed in an electrolyte solution (sulphuric acid). The metal in the anode oxidises releasing negatively charged electrons and positively charged metal ions. The electrons travel from the anode to the cathode. The electrons combine with the material in the cathode through reduction and release a negatively charged metal – oxide ion. When the anode is fully oxidised or the cathode is fully reduced, the chemical reaction will stop and the battery is considered to be discharged. The schematic description of a lead battery is shown in Figure 1.
Fig. 1: Schemes of a lead battery and pictures with its labelling (Author: Neil McNiven)

Positive and negative terminals: made of lead, and where the external electricity consumer devices are connected;

Plugs: one for each battery element, where distilled/deionised water can be replaced whenever needed and also to provide an escape route for gases formed in the cells;

Connectors: made of lead, that makes electrical contact between plates of same polarity and also makes electrical contact between separated elements;

Cap and box: originally made of ebonite, but now more commonly made from either polypropylene or co-polymer;

Sulphuric acid solution: the electrolyte of the battery;

Element separators: usually a part of the box and made of the same material provide chemical and electrical isolation between the electrical elements. They are connected in a serial layout in order to increase the final voltage of the battery;
Plate separators: made of PVC or other porous materials, avoid physical contact between two contiguous plates but, at the same time, allowing free movement of ions in the electrolyte solution;
Negative plates: constituted by a metallic lead grid covered by a lead dioxide (PbO2) paste;
Positive plates: constituted by metallic lead plates;
Battery element: a series of negative and positive plates placed consecutively and isolated between each other with plate separators. Plates of same polarity are electrically connected.

The battery plates are constituted by metallic lead structures, known as grids, covered by a lead dioxide paste, in the case of the negative plates, or by a porous metallic lead paste, in the case of the positive plates. The lead used in both the plates may also contain several other chemical elements such as antimony, arsenic, bismuth, cadmium, copper, calcium, silver, tin and sometimes other elements. The plates manufacture process also uses expander materials, such as barium sulphate, lampblack and lignin added in order to prevent the plate retraction during use. Once prepared, the plates are dried, cured and shaped ready to be assembled into the battery elements.

Automotive battery manufactures produce a full range of starter batteries for all types of vehicles using petrol and diesel engines. The characteristic of lead acid batteries are large weight, relatively short shelf life without recharge, and a good ability to deliver high currents. Lead batteries are very adapted for uses requiring (occasional) high current draw, and where charging is regular (i.e. automotive). The lead battery has high energy storage capacity and low cost.

3 Environmental and health aspects

Used batteries pose a threat to our environment and should be managed properly. The toxic materials present in the battery can cause harm to the environment and to human beings also. This is the reason why waste battery recycling should be done properly. The incorrect management of waste lead batteries cause danger to waters, soil and air, as well as to human health.

Batteries are safe, but precaution applies when touching damaged cells and when handling lead acid systems that have access to lead and sulphuric acid. Lead batteries are labelled as hazardous material.

Lead is a toxic metal that can enter the body by inhalation of lead dust or ingestion when touching the mouth with lead-contaminated hands. If leaked onto the ground, the acid and lead particulates contaminate the soil and become airborne when dry.

Exposure to lead causes a variety of health effects, and affects children in particular. Lead is a metal with no known biological benefit to humans. Too much lead can damage various systems of the body including the nervous and reproductive systems and the kidneys, and it can cause high blood pressure and anaemia.

There is no known safe blood lead concentration. But it is known that, as lead exposure increases, the range and severity of symptoms and effects also increases [3].

The sulphuric acid in a lead acid battery is highly corrosive and is potentially more harmful than acids used in other battery systems. Eye contact can cause permanent blindness; swallowing damages internal organs that can lead to death.
There are many facilities which have implemented scrap battery recycling as part of their pollution prevention efforts. The facility that makes the decision to implement used battery recycling will help to protect the environment and insure the compliance with environmental laws. There are many benefits of the lead battery scrap processing.

- Used battery recycling keeps all the hazardous metals in one place;
- The metals obtained in discharged car battery processing are reused in manufacturing process to build more batteries;
- The plastic (PP) from outer case of battery is also recycled for further use;
- Lead waste battery processing follows good environmental policy;
- The battery scrap recycling saves natural resources.

The major use of lead in the world is in the form of lead acid batteries. Lead acid storage batteries are an essential component of the automotive industry for which there are currently no electro-chemical, economic or environmentally acceptable alternatives. So this makes the used battery recycling more important. Lead recycling saves money, lead and most importantly, the environment.

4 Sources of waste lead batteries, estimation of amounts of produced used lead batteries

Lead batteries are used in vehicles of all types. As the amount of vehicles is gradually increasing all around the world, the amount of used batteries is also growing (in Figure 3, 4 and 5 the examples of the European market for automotive batteries are shown).
Fig. 3: Vehicle Production Europe and the outlook 2011-2015 (in k units) for CARS, HCV - Heavy Commercial Vehicles and LCV - Light Commercial Vehicles, Automotive Battery Committee, 2012

Fig. 4: Aftermarket battery volume for EU (2011 – 2015, in k Units). [5]
Another example is the consumption of lead acid batteries in Australia provided by the Australian Battery Recycling (ABRI) Initiative from 2010 [6]. In total, about 9.2 million lead acid batteries are purchased and 7.8 million reach the end of their useful life in Australia every year. By weight, lead acid batteries make up 91%, or over 120,000 tonnes of the batteries disposed of in Australia. Australian households purchase more than 7.6 million or 86,000 tonnes of lead acid batteries each year, and dispose of more than 6.4 million or 92,000 tonnes of them. Lead acid batteries are most commonly used in cars, according to both the Pollinate and the ABRI research (see Table 1). Car batteries make up 63% of all lead acid batteries used in Australia.

Table 1: Lead acid battery use in Australian households reported by Australian Battery Recycling Initiative in 2010 based on the survey. [6]

<table>
<thead>
<tr>
<th>%</th>
<th>Q1 Items owned</th>
<th>Q2 Most recent change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>87</td>
<td>80</td>
</tr>
<tr>
<td>Home alarm systems</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Boat</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Solar panel</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Electric scooter</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>None of these</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>1000</td>
<td>893</td>
</tr>
</tbody>
</table>
Q1: Which of the following items do you have?
Q2: Which of the following items had their battery changed MOST recently?

Base: Total sample Australians aged 14 – 64 (September 2011, n = 1000)

The source of used lead batteries in the country are mostly professional car services, construction companies using internal car maintenance, agricultural farms using internal car maintenance and some other industrial companies. In countries with lower living standard also individuals change car batteries by themselves and households represent an important source of used lead batteries. In European countries the amount of produced used lead batteries per inhabitant and year is approximately 1.2 – 1.5 kg.

A typical composition of lead – acid battery scrap is given in Table 2 [7].

Table 2: Composition of typical lead – acid automotive battery scrap [7]

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (alloy) component (grid, poles…)</td>
<td>25 - 30</td>
</tr>
<tr>
<td>Electrolyte paste (fine particles of lead oxide and lead sulphate)</td>
<td>35 - 45</td>
</tr>
<tr>
<td>Sulphuric acid (10 – 20% H₂SO₄)</td>
<td>10 - 15</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>4 - 8</td>
</tr>
<tr>
<td>Other plastics (PVC, PE, etc.)</td>
<td>2 - 7</td>
</tr>
<tr>
<td>Ebonite</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Other materials (glass, etc.)</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

5 Overview of available standards, technical specification and guidelines on the storage and treatment of batteries and accumulators

5.1. European Union Legislative Framework

The European Commission’s “Questions and answers on the Batteries Directive” [8] provide an introduction to the requirements which must be met by EU waste battery treatment systems and to the requirements which must be met during export of waste batteries:

In addition to levels of recycling efficiency, the Directive specifies how waste batteries are to be treated. The minimum requirement is that fluids and acids must be removed. The Directive also describes the conditions under which waste batteries must be treated and stored (Article 12(2) and Annex III, Part A).

☐ What requirements must be met if batteries are exported for recycling?
When waste batteries are exported outside the European Union, Member States must require sound evidence that the recycling takes place under conditions equivalent to those set out in the EU Batteries Directive, including recycling efficiencies.

Article 12(2) and Annex III, Part A of the EU Batteries Directive (2006/66/EC) [9] set following requirements on waste battery treatment:

☐ Exclusively best available techniques are to be used.
The minimum requirements set to be met include:

1. Treatment shall, as a minimum, include removal of all fluids and acids.
2. Treatment and any storage, including temporary storage, at treatment facilities shall take place in sites with impermeable surfaces and suitable weatherproof covering or in suitable containers.

Recycling processes shall achieve the following minimum recycling efficiencies:

a) recycling of 65% by average weight of lead-acid batteries and accumulators, including recycling of the lead content to the highest degree that is technically feasible while avoiding excessive costs;

b) recycling of 75% by average weight of nickel-cadmium batteries and accumulators, including recycling of the cadmium content to the highest degree that is technically feasible while avoiding excessive costs; and

c) recycling of 50% by average weight of other waste batteries and accumulators.

In Article 13 of the EU Batteries Directive (2006/66/EC) [9] it is recommended

- that Member States shall encourage the development of new recycling and treatment technologies and
- that Member States shall encourage treatment facilities to introduce certified environmental management schemes (e.g. EMAS or ISO 14000).

No further details on how to treat waste batteries and accumulators are provided by EU legislation [9].

5.2. Best Available Techniques Reference Documents of the European Commission

In order to specify what the Best Available Techniques for the respective sectors and industrial processes are a number of Reference Documents on Best Available Techniques (BREFs) were prepared on the request of the European Commission. A dedicated BREF on waste battery treatment does not exist. However, following BREFs contain some specifications which are relevant for waste battery treatment:

A) Reference Document on Best Available Techniques on Emissions from Storage [10] (for a summary of this BREF see Table 3).

C) Best Available Techniques (BAT) Reference Document for Iron and Steel Production , [12] (for a summary of this BREF see Table 5).

D) Reference Document on Best Available Techniques for the Waste Treatment Industries [13] (for a summary of this BREF see Table 6).
Table 3: Summary of the BREF on Emissions from Storage [10]

The BREF on Emissions from Storage addresses the storage and the transfer/handling of liquids, liquefied gases and solids, regardless of the sector or industry. It addresses emissions to air, soil and water. However, most attention is given to emissions to air. Energy and noise are also addressed but to a lesser extent.

Following storage methods for solids are addressed in particular:

- Heaps
- Sacks and bulk bags
- Silos and bunkers
- Packaged dangerous solids
- Containers and the storage of containers.

For the transfer and handling of solids, techniques such as mobile unloading devices, grabs, dump pits, fill pipes, thrower belts, conveyors and feeders are described. In each case the emission sources are identified.

Table 4: Summary of the BREF on Best Available Techniques in the Non Ferrous Metals Industries , [7], [11]

The BREF on best available techniques in the Non Ferrous Metals Industries covers the techniques for the production of both primary and secondary non-ferrous metals. The production of 42 non-ferrous metals and the production of ferro alloys are addressed. Ten groups of metals with similar production methods are dealt with in the document:

- Copper and its alloys, Tin and Beryllium
- Aluminium and its alloys
- Zinc, Lead, Cadmium, Antimony and Bismuth etc
- Precious metals
- Mercury
- Refractory metals, e.g. Chromium, Tungsten, Vanadium, Tantalium, Niobium, Rhenium, Molybdenum
- Alkali and alkaline earth metals, Sodium, Potassium, Lithium, Strontium, Calcium, Magnesium and Titanium
- Nickel and Cobalt
- Carbon and graphite electrodes. The production of carbon and graphite anodes is included because of the production of anodes at some aluminium smelters as an integral part of the production process.
Table 5: Summary of the Best Available Techniques (BAT) Reference Document for Iron and Steel Production [12]

The BREF on Best Available Techniques for Iron and Steel Production covers the processes involved in the production of iron and steel in integrated works as well as the production of steel in electric arc furnace steelworks. The main operations covered are:

- Loading, unloading and handling of bulk raw materials
- Blending and mixing of raw materials
- Coke production
- Sintering and palletisation of iron ore
- Production of molten iron by a blast furnace route, including slag processing
- Production and refining of steel using the basic oxygen process, including upstream ladle desulphurisation, downstream ladle metallurgy and slag processing
- Production of steel by electric arc furnaces, including downstream ladle metallurgy and slag processing
- Continuous casting.

Other downstream metal processing activities can be found in other BREF documents (e.g. see BREF on Ferrous Metals Processing Industry [12] or BREF on Smitheries and Foundries Industry [14]).

Table 6: Summary of the BREF for the Waste Treatment Industries [13]

The BREF for the Waste Treatment Industries covers the installations of a number of waste (hazardous and non-hazardous) treatment processes, and deals with:

- Common waste treatment processes such as temporary waste storage, blending and handling, repackaging, waste reception, sampling, checking and analysis, waste transfer and handling installations, and waste transfer stations
- Biological waste treatment processes such as aerobic/anaerobic treatment processes and mechanical and biological treatment processes
- Physico-chemical waste treatment processes of such as neutralisation, chromic acid and cyanide treatment, dewatering, filtration, harbour reception facilities, oil/water separation, precipitation, separation of Mercury from waste, settlement, solidification and stabilisation, and UV and ozone treatment
- Treatment processes to recover waste material for secondary use such as the re-concentration of acids and bases, the recovery of metals from liquid and solid photographic waste, the regeneration of organic solvents and spent ion exchange resins, and the re-refining of waste oils
- Treatment processes to produce mainly solid and liquid fuels from hazardous and non-hazardous waste.
The Best Available Techniques from the BREF for the Waste Treatment Industries [13] are of special importance for meeting the requirements set out in Annex III Part A of the EU Batteries Directive [9]. Some examples on relevant topics from this BREF are:

- Requirements for the treatment of waste containing mercury;
- Requirements to be considered during crushing, shredding and sieving operations;
- Best Available Techniques to prevent or control emissions;
- Best Available Techniques to prevent soil contamination;
- Best Available Techniques for storage and handling;
- Best Available Techniques on the management of the residues generated by the waste treatment process.

5.3. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal

Basel Convention on the Control of Transboundary Movements of the Hazardous Wastes and Their Disposal regulates conditions for transboundary shipment of hazardous wastes to protect environment of the developing countries from the negative effects of inappropriate waste disposal. The Secretariat of the Basel Convention has published several guidelines, one of them dealing with management of waste lead – acid batteries [1]. The guideline in detail describes applied technologies of waste lead batteries treatment and recycling together with environmental and health aspects.

5.4. Guidelines on best available techniques and provisional guidance on best environmental practices of the Stockholm Convention

The Guidelines on best available techniques and guidance on best environmental practices the is the harmonized framework and guidance initiated by UNEP Chemicals which provide the necessary guidance called for in paragraph c) of the Article 5 of the Stockholm Convention. The use of best available techniques and the promotion of the application of best environmental practices shall be promoted in some cases and required to minimize releases of POPs from unintentional production [24].

Thermal process of used lead batteries in the metallurgical industry i.e. secondary lead smelting involves the production of lead and lead alloys, primarily from scrap automobile batteries, and also from other used lead sources (pipe, solder, drosses, lead sheathing). Production lead processes include lead batteries scrap treatment, smelting and refining. Incomplete combustion; high levels of oils, plastics and other organic materials in feed; and temperatures between 250°C and 500°C may all give rise to chemicals listed in Annex C of the Stockholm Convention. Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) performance levels associated with best available techniques for secondary lead smelters are <0.1 ng I-TEQ/Nm³ (at operating oxygen concentrations). Best available techniques include the use of plastic-free and oil-free feed material, high furnace temperatures above 850°C, effective gas collection, afterburners and rapid quench, activated carbon adsorption, and dedusting fabric filters.

General information on emissions from secondary lead smelters

Air emissions from secondary lead smelting can escape as stack or fugitive emissions, depending on the facility age or technology. Main contaminants are sulphur dioxide (SO₂), other sulphur compounds and acid mists, nitrogen oxides (NOx), metals (especially lead) and their compounds, dusts and traces of PCDD and PCDF. SO₂ is collected and processed into sulphuric acid in acid plants. Fugitive SO₂ emissions can be controlled by good extraction and sealing of furnaces. NOx can be reduced using
low-NOx or oxy-fuel burners. Particulate matter is collected using high-efficiency dust removal methods such as fabric filters and returned to the process.

Emissions of PCDD/PCDF to air during the smelting process

The most problematic PCDD/PCDF are formed during base metals smelting through reaction of products of incomplete combustion, unburnt organic contaminants and chlorine compounds, usually by de novo synthesis in the cooling zone at temperatures between 250°C and 450°C.

PCDD/PCDF or their precursors may be present in some raw materials and there is a possibility of de novo synthesis in furnaces or abatement systems. PCDD/PCDF are easily adsorbed onto solid matter and may be collected by all environmental media as dust, scrubber solids and filter dust. The presence of oils and other organic materials on scrap or other sources of carbon (partially burnt fuels and reductants, such as coke), can produce fine carbon particles which react with inorganic chlorides or organically bound chlorine in the temperature range of 250°C to 500°C to produce PCDD/PCDF.

Although PCDD/PCDF are destroyed at high temperature (above 850°C) in the presence of oxygen, the process of de novo synthesis is still possible as the gases are cooled through the 'reformation window' [24].

Full description of primary and secondary measures on PCDD/PCDF minimization is given in the chapter "Thermal processes in the metallurgical industry not mentioned in Annex C, part II" of the "Guidelines on BATs and Provisional Guidance on BEPs" of the Stockholm Convention.

6 Collection, transport and storage of used lead batteries

The used lead batteries are an important source of environmental hazard and it is necessary to operate the effective system of management of used lead batteries. The result of the system is the environmentally safe handling and disposal of lead wastes as well as the production of valuable secondary raw materials.

The life cycle of lead batteries consists of these steps:

1. Production
2. Consumption
3. Collection and sorting
4. Transport
5. Storage
6. Treatment (dismantling)
7. Recovery (recycling)
8. Disposal

The scheme of life cycle of lead batteries is shown in Figure 6.
Fig. 6: Scheme of the life cycle of lead batteries

The used lead batteries system consists of the steps 3 to 8. All these activities must be under the strict control of authorities including the permit system for waste management activities. There are listed the most comprehensive ways of treatment and requirements identified by an investigation of many potential sources:

General treatment of lead accumulators

- Collected waste batteries and accumulators shall be stored in weatherproof conditions in leak proof containers that are acid-resistant.
- Lead accumulators shall be treated separately from all other batteries and accumulators.
- At any rate, the treatment of lead accumulators shall demonstrably recover lead and plastics of adequate purity so that they can be recycled and thus, shall ensure their re-introduction in the production cycle.
- The treatment shall include measures to prevent diffusive lead emissions.
- Free sulphuric acid shall be recovered.

6.1. General occupational health and safety recommendations for workers during the waste management and treatment of used lead batteries

The actions and certain recommended measures in connection with occupational health and safety should be taken to improve waste management and treatment of used lead batteries of each treatment plant, and to achieve good environmental control practices.

From the health point of view, the proposed preventive measures are activities that should be observed in the occupational environment in order to prevent the workers exposed to lead from suffering adverse effects of lead contamination.

First aid treatment that is necessary part of each facility in case of contact with sulphur acid calls for flushing the skin for 10 to 15 minutes with large amounts of water to cool the affected tissues and to
prevent secondary damage. Immediately remove contaminated clothing, thoroughly wash the underlying skin and call for the doctor.

The most important proposed measures are to [1]:

(a) consider every material containing lead as a possible source of environmental and human contamination;
(b) keep the work environment in compliance with the national regulations for industrial safety;
(c) segregate the work and eating areas i.e. prohibit eating and smoking inside the working areas;
(d) prohibit children and pregnant women from working in lead recycling facilities;
(e) undertake the development of educational and informative programs;
(f) ensure the use of personal protection equipment in working places containing at least:
 - effectively protective cloth;
 - hard hats and safety footwear;
 - daily clean-up of the used cloths;
 - check and clean respirators daily;
 - protective masks which may vary in accordance of the average lead concentration in air;
(g) control the lead concentrations in the working environment;
(h) demand periodic medical checks of lead exposed workers;
(i) enforce showering at the end of work.

6.2. Collection and sorting of used lead batteries

As used batteries are a valuable source of lead it is important to provide separate collection under controlled conditions to get the material for recovery as clean as possible. The second reason for controlled collection is environmental protection to prevent unprofessional dismantling with release of electrolyte to waters or soil.

The aim of separate collection is to get the used lead batteries from waste producers to authorised treatment facilities to prevent environmental and health hazards.

The outcome of the project [2] proposed the extended producer responsibility where the producers (importers) are obliged to provide (prepare, organise and finance) the system of waste collection, treatment and disposal. The producers will provide one or several systems of separate collection of waste batteries in order to meet collection limits given by legislation.

There are several systems of separate collection of used lead batteries. The simplest system is collection at sources, in vehicle services where the important amounts of used lead batteries are arisen.

The services have special containers for used lead batteries. It is prohibited to open or dismantle waste batteries. The container should be double-bottomed and market with notice containing information on the waste type, hazardous properties and first-aid instructions. The batteries should be placed into the container bottom down to prevent spilling of the electrolyte.
The other separate collection system is the collection in gas stations. Gas station is equipped with double-bottom container where the used lead batteries are placed (bottom down). Take-back system in
specialised shops can be also introduced; the seller (distributor) of new lead batteries could be obliged to take back waste battery when the customer is buying a new one. It is required that the system is legally set in the country which decides the environmentally sound management of used lead batteries.

The next system is mobile collection organised by producers in cooperation with municipalities. The vehicle responsible for shipment of hazardous wastes having all permits and marking collects used lead batteries in municipalities in given term and given place. This system enables to collect used batteries from households and small facilities as farms or small services. The used lead batteries can be also collected in collection points operated by municipalities in special containers.

Fig. 9: Collection point operated by municipality Košice (Slovakia)

All collection systems are organised and financed by producers (importers). It is expected that collection is realised on the basis of agreements between operators of collection places (gas stations, services, municipalities) and producers (importers). It is acceptable to realise the separate collection on the basis of the agreement between operator of collection place and authorised treatment facility. It is necessary to control that all collected waste batteries will get to the authorised treatment facility or exported in accordance with the Basel Convention.

Based on the different treatment requirements and treatment options for the different battery types, a classification of batteries and accumulators according to different battery chemistry types, like the one shown in Table 7, is recommended. Batteries and accumulators should be sorted and prepared for separate treatment according to these battery chemistry types.

Due to the different characteristics of batteries containing liquids and other batteries, a differentiation between batteries containing liquids and batteries which are free of liquids is proposed (see also different recommendations for storage – chapter 6.4).

A mixture of liquid and non-liquid containing waste batteries should be regarded as batteries containing liquids.
Table 7: Recommended sorting fractions of batteries and accumulators

<table>
<thead>
<tr>
<th>Sorting fraction - Battery type according to battery chemistry</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-acid accumulators - liquid</td>
<td>including sealed lead acid accumulators with non-fixed electrolyte (using a catalyst to re-combine hydrogen and oxygen)</td>
</tr>
<tr>
<td>Pb accumulators – others</td>
<td>in sealed accumulators (sealed lead accumulators - SLA) the electrolyte is fixed by adding silica gel or by using a fibreglass mat (absorbent glass mat accumulator - AGM)</td>
</tr>
</tbody>
</table>

This classification according to battery chemistries is used to give information on specific storage requirements (see chapter 6.4) and on specific treatment requirements.

Fig. 10: Bad examples of used lead batteries collection [25]

6.3. Transport of used lead batteries

Used lead-acid batteries must be considered as hazardous wastes when transport is needed. Again, the main problem associated with battery transport is the electrolyte, which may leak from used batteries, requiring control measures in order to minimize the risk of spillage and define the specific actions to be taken in event of an accident:

(a) used batteries must be transported inside containers: no matter which mode of transport is being used, i.e. boat, train, etc., used lead-acid batteries must be transported inside sealed containers due to the risk of leakage, which may be high even if the batteries are appropriately transported in upright position. The transport may displace the batteries from their original positions, including eventual box breakages or turning them upside down, which will certainly leak the electrolyte content, thus making it necessary to provide a shock resistant and acid resistant sealed container;

(b) containers must be well packed to the transport vehicle: containers should not be allowed to move while being transported. Therefore, they must be bound, shrink wrapped or stacked properly to avoid this problem;
(c) the transport vehicle should be identified with symbols: the vehicle, whether it is a ship a truck or a van must be correctly identified, following international conventions, symbols and colours, identifying the fact that corrosive and hazardous products are being transported;

(d) specific equipment: a minimum set of equipment necessary to combat any simple spillage or leakage problems should be provided and the transport team trained on how to use it;

(e) drivers and auxiliaries should be trained: people dealing with hazardous wastes should always be trained in emergency procedures, including fire, spilling, etc. and how to contact emergency response teams. Besides this, they should be aware of the specific kind of hazardous material is being transported and how to deal with it;

(f) personal protection equipment: PPE should be provided for the transport team and they should be trained in the use of the equipment, in case of any accident;

(g) transport schedule and map: if possible, hazardous waste transport should always choose routes that minimize the risk of possible accidents or other specific problems. This is made possible if they follow a certain predefined path and restrict themselves to a known schedule [1].

Every transport should be controlled by state authorities (Regional Districts) by the means of permits. It is recommended the permit should contain the following minimum information:

- Name and identification of sender receiver (address, ID number, statutory or other responsible person)
- Name and identification of receiver (address, ID number, statutory or other responsible person, method of next waste management – storage, treatment, recycling, disposal)
- Name and identification of transporter (address, ID number, statutory or other responsible person)
- Amounts of transported waste
- Identification of the transported waste (waste code or other identification including indication of hazardous characteristic)
- The duration of the permit

It is strongly recommended to authorise the transporters (companies providing transport of hazardous wastes) by the Ministry of Environmental Affairs.

The transport must be realised only in vehicles that meet safety requirements. The vehicle must be labelled.

![Symbol 1: Explosive substances](image1.png)
![Symbol 6: Toxic substances](image2.png)
![Symbol 8: Irritant substances](image3.png)

Fig. 11: Labelling of hazardous cargos according to ADR
The vehicle must be furnished with first-aid set, set for elimination of accident consequences and the driver must be instructed on techniques in the case of accident.

Fig. 12: Packaging of used lead batteries ready to transport – good example
Source: http://www.blacksmithinstitute.org/blog/?tag=ulab

Fig. 13: Improved packaging – steps need to be done to reach good example
Source: ABRI, [26]
Fig. 14: Good examples of used lead batteries transport

Source: Responsible recycling of used lead acid batteries, How to manage the environmental, financial and reputational risks, Australian Battery Recycling Initiative, ABRI [26]

6.4. Storage of used lead batteries

Storage, including temporary storage, of waste batteries at treatment facilities shall take place in sites with impermeable surfaces and suitable weatherproof covering or in suitable containers. Table 8 shows recommendations on breaking down these requirements to a more detailed specification [15]. These specifications are valid for storage at treatment facilities including sorting facilities and storage facilities.

Storage buildings [10]

Storage buildings are used for storing all kinds of substances, from drums with flammable liquids, cylinders with pressurised gas, to packaged products such as chemicals and pesticides or chemical wastes awaiting disposal. They can be a standalone building or be part of another building.

Good design and construction of storage buildings containing dangerous materials focuses on events such as fire, explosion and releases of dangerous substances, in particular to prevent or control them as much as possible. Also good management practices and operational procedures are important.

 Mostly, but not always, storage buildings are constructed from non-combustible materials. The degree of fire-resistance offered by the building itself determines the minimum distance to other buildings and to the boundaries of the danger zone. With a sufficient degree of fire resistance the storage building can be part of another establishment.

The storage space can be separated into different compartments for storing different types of hazardous material each by partition walls or by leaving a storage-free zone empty between the compartments. Some warehouses have an inbuilt store within the main warehouse. This interior store can be used to store particularly hazardous materials, such as highly flammable liquids or gases as well as peroxides.

The floors of the building are usually made of non-combustible material, are liquid-tight and are resistant to the stored substances.
The roof of the building is resistant to wind-blown fires, with the roof structure being of a fire resistant construction to prevent fire entering the store. The degree of fire-resistance depends on different factors such as, how close the store is to the border of the site or other buildings and the type of substances stored.

A storage building is normally equipped with adequate ventilation to prevent the formation of an explosive gas mixture from leakages and to extract any harmful or unpleasant fumes.

The use of electrical equipment can generate sparks that might ignite a fire in the storage building. Therefore, it is important to use explosion-protected electrical equipment. However, proper earthing of the steel structure also may be sufficient.

If a fire breaks out in a storage facility, part of the stored substances may be released.

The storage facility should be constructed in such a way that the released substance cannot cause any harm. In particular provisions are to be taken to prevent polluted extinguishant from entering the soil, the sewage systems or surface water.

![Image: Improved Storage Facility in Central America and the Caribbean](image)

Fig. 15: Improved Storage Facility in Central America and the Caribbean [25].

Outside storage (storage yards) [10]

In principle, measures and provisions for storing dangerous (packaged) materials outside do not differ from those for storage inside a building. The amount and type of substances stored determines the minimum distances from boundaries and buildings to be observed. To protect the storage from direct sunlight and rain, the storage area may be covered by a roof.

The provisions for collecting of spilled substances and possibly released extinguishant are the same as those applied in storage buildings as described above. When the storage is not covered with a roof, provisions for the cleaning of possibly polluted rainwater and its controlled discharge should be in place.

The level of fire prevention and fire-fighting measures depend on many factors, such as the flammability of the stored substances, the flammability of the packaging and the quantity of material stored.
Table 8: Proposal for the specification of the possible treatment requirement: “Impermeable surfaces and suitable weatherproof covering” [15]

<table>
<thead>
<tr>
<th>Proposed Specifications for Waste Battery Storage</th>
<th>Applying to batteries:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>containing liquids</td>
</tr>
<tr>
<td>Surfaces in operational areas should be resistant to chemicals and fire</td>
<td>yes</td>
</tr>
<tr>
<td>Storage of waste batteries at treatment and recycling facilities should take place in a proper building or a covered place with the following minimum recommended requirements:</td>
<td>yes</td>
</tr>
<tr>
<td>- Impermeable and acid and/or alkali resistant floor depending on the electrolyte used</td>
<td>yes</td>
</tr>
<tr>
<td>- Efficient water collection system which directs spilled liquids towards the effluent or electrolyte treatment plant</td>
<td>yes</td>
</tr>
<tr>
<td>Storage in a proper building or under cover should also be applied to any container that is pending, sampling or emptying.</td>
<td>yes</td>
</tr>
<tr>
<td>Storage may be carried out without cover if the stored waste batteries and containers are not affected by ambient conditions (such as sunlight, temperature, water)</td>
<td>yes</td>
</tr>
<tr>
<td>Covered areas should have adequate provision for ventilation.</td>
<td>yes</td>
</tr>
<tr>
<td>Containers holding substances that are known to be sensitive to heat, light and water, and thus may stay under cover and protected from heat and direct sunlight, are to be available in sufficient quantities and should have free access to appropriate storage areas.</td>
<td>yes</td>
</tr>
<tr>
<td>For storing quantities of more than 2,500 litres or kilograms of dangerous substances a storage building and/or an outdoor storage area covered with a roof should be used according to the BREF on Emissions from Storage [10]</td>
<td>yes</td>
</tr>
<tr>
<td>For storing quantities of less than 2,500 litres or kilograms of dangerous substances, at least a storage cell should be used according to the BREF on Emissions from Storage [10]</td>
<td>yes</td>
</tr>
<tr>
<td>Batteries with alkaline and acidic electrolyte shall be stored separately</td>
<td>yes</td>
</tr>
</tbody>
</table>

The limit of 2,500 kilograms introduced in Table 8 as the recommended threshold for requiring a dedicated storage building should be applied to collection facilities like stores, car repair centres etc. where batteries and accumulators are taken back from final users. In these facilities batteries and accumulators are stored until a pick-up service transports them to treatment facilities.

Used lead batteries can be stored only in special storehouses designated for storage of hazardous wastes. The place for storage must be covered and the floor must be made from acid-resistance materials. It is forbidden to store used lead batteries near heating sources or fire because the danger of
explosion is present. It is also forbidden to smoke or use open fire in the storehouse. The storehouse must be equipped with air exhaustion system. The storehouse must be connected to sewage system or retention tank.

The used batteries must be placed to double-bottom containers or the storehouse must be constructed as the catch tank or the containers must be placed into the catch tank to prevent the leakage of the electrolyte.

The storehouse as well as the containers with waste batteries must be marked with notice containing information on waste type, hazardous properties and first-aid instructions. The first-aid set must be placed in the storehouse (close to the door easily available).

The mobile storehouse can be used but the temperature of the ambient air must be measured because the temperature over 40°C can cause the danger of spontaneous explosion.

![Mobile storehouse of hazardous wastes](image)

Fig. 16: Mobile storehouse of hazardous wastes

It is recommended to regulate the requirements for storage of hazardous waste by legislation and to submit special permits for storage of hazardous waste by authorities (Regional Districts).

The intention is that this small scale storage for portable batteries and accumulators does not to need a permit for the storage of hazardous wastes, as long as the batteries are not stored longer than one year (interim storage).

The interim / small scale storage for portable batteries and accumulators has to fulfil technical requirements such as:
• suitable containers are to be used (see Table 9),
• all storage areas have impermeable surfaces (see Table 8),
• the storage building and/or the outdoor storage area are covered with a roof (see Table 8),
• the storage building or area is inaccessible for unauthorised person.

In addition
• an interim storage for portable batteries and accumulators must be limited to the storage of this type of batteries;
• it shall also be limited by a maximum storage quantity and/or a maximum storage time of the average turnover of batteries. Proposed limits are:
 - a maximum storage quantity of 7.5 t (amount for a full ‘medium-size’ truck),
 - a maximum storage time of 1 year;
• this interim / small scale storage facility should fall under the same inspection requirements as the regular storage facilities which need permits.

Table 9 shows recommendations on which requirements should be fulfilled in order to make a container suitable for waste battery storage [15].

Table 9: Proposal for the specification of the minimum treatment requirement: “suitable containers” [15]

<table>
<thead>
<tr>
<th>Proposed Specification for a Suitable Waste Battery Storage Container</th>
<th>Applying to batteries: containing liquids</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage must take place in leak proof containers that are acid and/or alkali resistant depending on the electrolyte used.</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Use UN standardized containers</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Containers must be clearly labelled as regards the nature of the waste and the relevant danger symbols</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>If appropriate, the use of re-usable packaging (drums, containers, IBCs5, pallets, etc.) should be maximised.</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

7 Treatment of used lead batteries

The treatment of used lead batteries is sometimes called wet technology, as the liquid electrolyte is present.

![Fig. 17: Typical used lead batteries recovery process [7]](image-url)
The Technical Guidelines [1] describes following treatment steps and two methods in order to isolate the metallic lead from this mixture that may be applied:

- battery breaking – including a description of processes and potential sources of environmental contamination,
- lead reduction including a description of pyrometallurgical (also known as fusion-reduction method) and hydrometallurgical methods (also known as electrolytic method) and potential sources of environmental contamination,
- lead refining - especially describing pyrometallurgical refining and potential sources of environmental contamination.

The battery scrap obtained from the breaking process is a mixture of several substances: metallic lead, lead oxide (PbO), lead sulphate (PbSO\(_4\)) and other metals such as calcium (Ca), copper (Cu), antimony (Sb), arsenic (As), tin (Sn) and sometimes silver (Ag) [1].

As pollutants which potentially are emitted from the treatment processes e.g. electrolyte, dust, sulphur dioxide (SO\(_2\)) are described and some measures for pollution prevention are mentioned.

Relevant requirements for lead-acid accumulators derived from the Technical Guidelines [1] are included in Chapter 10.2 - Special care on batteries and accumulators with liquid electrolyte and Chapter 6.2 - Treatment requirements with regard to the battery chemistry.

Requirements for removal of fluids

According to the EU Batteries Directive (2006/66/EC) Article 12(2) and Annex III, Part A [9], waste battery treatment shall, as a minimum, include removal of all fluids and acids.

Table 10 specifies specifications for removal of fluids and acids as recommended in [15] in order to limit the environmental impact of these processes.

Table 10: Proposal for the specification of the minimum treatment requirement: “Removal of all fluids and acids, their collection and treatment” [15]

Proposed Specification for the Removal of Fluids and Acids from Waste Batteries	Applying to batteries:	
	containing liquids	other
Batteries should be drained and prepared for recycling by adequately trained workers wearing personal protection.	yes	-
In operational areas a ground cover has to be utilised that may retain any leakage and direct it to a collecting container from where it can be removed.	yes	-
The capacity to retain leakage must at least be equal to the amount of liquid stored	yes	-
Surfaces of operational areas, drainage systems and other subsurface structures should be maintained, including applying measures to prevent or quickly clear away leaks and spillages.	yes	-
Electrolyte should be directed to appropriate treatment (recycling/recovery or appropriate waste treatment) | yes | -
Recycling/recovery of electrolyte should be done if appropriate; direct discharge of neutralised and/or untreated electrolyte should be avoided. | yes | -
When applying a neutralisation process customary measurement methods have to be used. | yes | -
Neutralised waste water from the neutralisation process has to be stored separately | yes | -
A final inspection of the neutralised waste water from the neutralisation process has to be performed | yes | -

In specific cases the removal of fluids is not feasible, e.g. if the electrolyte is solidified (lead acid gel accumulators). In such cases the recycling process must be optimised individually with the aim to minimise emissions and hazards to human health as well as to achieve high recycling efficiency.

During the treatment processes the environmental hazard must be taken into account. The collecting vessel must be acid-resistant, usually having special pavestone bottom and walls covered by resistant foil and stainless steel. The space around collecting vessel is monitored for leakage.

The main environmental issues of the lead industry are air and water pollution and the generation of hazardous wastes. The facilities generally have their own wastewater treatment facilities and wastewater recycling is usually practised. Many wastes are reused but the major item is leach residue that has a high environmental impact. Some local aspects, like noise, are relevant to the industry. Due to the hazardous nature of some solid and liquid waste streams, there is also a significant risk for soil contamination.

As it is not purpose of the guidelines to describe into the detail some technical specifications but the waste management it is recommended to follow guidelines [14, 24].

8 Recovery of used lead batteries

The recovery of secondary lead consists of smelting, refining and doping.

<table>
<thead>
<tr>
<th>Treatment →</th>
<th>Smelting →</th>
<th>Refining →</th>
<th>Doping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slag</td>
<td></td>
<td>Cu, As, Sb, Sn</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 18: Typical used lead batteries recovery process [10]
Recovery of lead from products of wet technology is operated in metallurgy part of the technology. There are two main types of process for the recovery of lead from automotive batteries:

a. Batteries are drained of acid and fed whole into a blast or shaft furnace (Varta process). Whole batteries and fluxes are fed into a blast furnace via a seal and oxygen enriched air is used in the blast. Antimonial lead bullion is produced, along with silica based slag and a lead/iron matte that can be recovered in a primary lead smelter. Organic components in the furnace off-gases are
oxidised in an after-burner and the gases are then cooled and filtered in a fabric filter. The filter dust is de-chlorinated and returned to the furnace.

b. Batteries are drained of acid broken and separated into various fractions using automated proprietary equipment (MA and CX processes). Both the MA and CX (Engitec) processes use hammer type mills to crush the whole batteries. The crushed material then passes through a series of screens, wet classifiers and filters to obtain separate fractions containing metallic components, lead oxide sulphate paste, polypropylene, non-recyclable plastics and rubber and dilute sulphuric acid. Some processes use a second milling stage before the plastic fraction is finally treated. Polypropylene is recycled as far as possible. The sulphuric acid drained from the batteries is neutralised unless there is a local use for it and the sodium sulphate produced can be re-crystallised and sold. These are strongly market dependent options.

As it is not purpose of the guidelines to describe into the detail technical specifications of the lead recovery metallurgical processes but the waste management it is recommended, however, for more details to follow chapter 5.2 Best Available Techniques Reference Documents of the European Commission where BREFs contain many specifications which are relevant for waste battery treatment. Nevertheless, several alternatives are used to deal with the sulphur contained in the battery materials from the environmental point of view.

- Prior to smelting, the lead sulphate paste may be de-sulphurised by reaction with sodium carbonate or sodium hydroxide (in the CX and related processes).
- Lead sulphate can be separated and sent to an installation capable of treating the sulphur content in the gases for example one of the direct smelting primary lead processes.
- The sulphur may be fixed in the slag or as a Fe/Pb matte.

Paste de-sulphurisation prior to smelting can reduce the quantity of slag produced and, depending on the smelting method used, the amount of sulphur dioxide released to the air.
Fig. 21: Example of scheme of the wet treatment technology (Engitec) [16]

The lead and lead paste are transported to the smelting reactor that can be:

- rotary furnace,
- reverberatory furnace and blast or electric furnace,
- rotary kiln,
- ISA Smelt furnace,
- electric furnace.
Fig. 22: Example of lead rotary furnace [27]

Fig. 23: Example of reverberatory furnace [28]
Fig. 24: Examples of blast furnace [29]

Fig. 25: Example of rotary kiln [30]

Fig. 26: Example of ISA Smelt furnace [31]
Rotary and reverberatory furnaces can be either gas or oil fired. Oxygen enrichment is used in several installations. Smelting is usually carried out in batches, slag and metal are tapped out separately and batches of slag are treated to recover more lead and produce a slag that is stable. The bulk of the sulphur in the charge is fixed in the slag, which is a sodium-iron-sulphur compound with small amounts of lead and other metals.

In the ISA Smelt process de-sulphurised paste and reductant are continuously fed into the furnace and lead bullion is tapped periodically. When the process vessel contains the maximum volume of slag, reductant and fluxes are added to produce high antimony bullion and a discard slag. The slag may also be reduced in a separate furnace.

The electric resistance furnace is used for complex secondary materials and uses an open slag bath covered by coke. Raw materials are fed onto the top of the bath where they react to produce metal and slag, which are tapped periodically. The waste gas contains CO and is burnt and flue dust is collected. The furnace is fed with input materials that are lead metal and lead pasta, resp. dust outlet, slag formers, reductant and calcinated soda. After feeding the input opening is closed and the furnace is heated. After the smelting the content of furnace is poured out to pre-heated mould. The slag remains in the top part of the mould and the lead is pin down to ingot mould [10, 11, 16].

![Fig. 27: Furnace of Industrias Meteoro S.A. - Dominican Republic [25].](image)

The following tables give input and output balances for some lead plants in Europe as an example [11].

Table 11: Example of input and output data for a battery recovery plant without de-sulphurisation

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting materials</td>
<td>Products</td>
</tr>
<tr>
<td>t/t Pb</td>
<td>t/t Pb</td>
</tr>
<tr>
<td>Battery scrap</td>
<td>63</td>
</tr>
<tr>
<td>Other melting materials</td>
<td>21</td>
</tr>
<tr>
<td>Bullion, scrap lead</td>
<td>16</td>
</tr>
<tr>
<td>Lead and lead alloys</td>
<td>Battery paste</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>t/t Pb</td>
</tr>
</tbody>
</table>
After the recovery of lead from battery scrap the refining of crude lead is operated. Lead bullion may contain varying amounts of copper, silver, bismuth, antimony, arsenic and tin. Lead recovered from secondary sources may contain similar impurities, but generally antimony and calcium dominate. There are two methods of refining crude lead:

a) electrolytic (hydrometallurgical method) refining, which refining uses anodes of decopperised lead bullion and starter cathodes of pure lead,

b) pyrometallurgical (also known as fusion-reduction method) refining that consists of a series of kettles, which are indirectly heated by oil or gas.

Hydrometallurgical Methods

The objective of the hydrometallurgical methods, or electrolytic methods, is to electrically and selectively reduce all lead compounds to metallic lead, such as in the PLACID technology.

The chemical concept behind the electrolytic process is the conversion of all lead compounds into a single chemical species, lead in oxidation state +II (Pb²⁺ or plumbous lead) in this case, which is then electrolytically reduced to produce metallic lead. The electrolysis deposits lead as dendrites or sponge, which are subsequently shaken off and collected on a conveyor belt and pressed to form platelets of
pure lead (99.99%), which can then be conveyed to a melting kettle for casting into ingots. The whole extraction process can be run continuously 24 h/d, without interruption.

Although it may be sometimes costly when considered as an isolated plant, this process provides good results when linked to a low temperature smelting plant since, with the appropriate separation of raw materials, it is a technological solution to overcome the lead refining processes [1].

![Diagram of an electrolytic lead process](image1)

Fig. 28: Diagram of an electrolytic lead process [1]

![Diagram of electrochemical process in hydrometallurgical lead production](image2)

Fig. 29: Electrochemical process in hydrometallurgical lead production [1]

Pyrometallurgical Methods

The objective of the pyrometallurgical methods (fusion-reduction) is to chemically reduce all metallic compounds to their metallic or reduced forms by means of heating and providing adequate fluxing and reducing substances.
Fig. 30: Diagram of a lead smelting pyrometallurgical process [1]

Prior to smelting, some methods may be employed to de-sulphurise the lead sulphate paste by reacting it with a mixture of sodium carbonate (Na$_2$CO$_3$) and sodium hydroxide (NaOH), such as in the CX and related processes, converting the lead sulphate (PbSO$_4$) to lead oxide (PbO). Sometimes the desulphurizing agent may also be iron oxide (Fe$_2$O$_3$) and limestone (CaCO$_3$). This procedure reduces the amount of slag formation and also, depending on the smelting method, the amount of sulphur dioxide (SO$_2$) released into the air. However, other methods simply add controlled amounts of lead sulphate as well as desulphurizing agent directly into the furnace.

The acid electrolyte must also be treated before its lead content may be sent to the smelting furnace. This is carried out by neutralization of the electrolyte solution with sodium hydroxide, which precipitates the present lead as lead hydroxide [Pb(OH)$_2$]. This compound is then removed by decantation or filtration and directed to the furnace. The remaining solution, sodium sulphate diluted in water (Na$_2$SO$_4$), may be further purified and the salt isolated in high purity grades (up to food grade quality).

The metallic fraction and the lead compounds derived from the de-sulphurization and neutralization processes are then added to the furnace and smelted with fluxing and reducing agents. The necessary heat is provided by several sources depending on the specific method oil, gas, coke, electricity, etc. The fluxing agents, which melt at a temperature below the lead compounds melting temperature, are added not only to reduce the lead smelting temperature, but also to provide a liquid solvent, which traps several unwanted compounds during the smelting and reducing processes. As the flux starts to be contaminated with all sort of impurities from the smelting process the formation of slag also starts. The physical and chemical properties of this slag, which are important characteristics to be considered in a later treatment, are entirely dependent on the chemical composition of the flux that is used.

Reducing agents, on the other hand, are added with the purpose of reducing the lead oxide (PbO) and hydroxide [Pb(OH)$_2$] to metallic lead. It is usually a carbon based compound such as coke, coal fines or other natural carbon source.
After the process had been properly balanced, the melted metallic lead starts to accumulate in the bottom of the vessel. However, as mentioned earlier, it is sometimes heavily contaminated with other metals of economic value. Therefore, this lead bullion must undergo a refining process before pure lead can be recovered from it [1].

Fig. 31: Diagram of more detailed lead refining process [11]
Fig. 32: Lead bars as the final product

The process of lead scrap recovery produces emissions to air and waste waters. The main emissions to air are [7]:

- sulphur dioxide SO_2, other sulphur compounds and acid mists;
- oxides of nitrogen NO_x and other nitrogen compounds;
- metals and their compounds;
- dust;
- VOC’s and PCDD/F [11, 14]:

Table 13: Example of mass release of metals from battery scrap recovery in some plants in Europe [7]

<table>
<thead>
<tr>
<th>Process</th>
<th>Production (tons)</th>
<th>Dust (g/t_product)</th>
<th>Zn (g/t_product)</th>
<th>Pb (g/t_product)</th>
<th>Cd (g/t_metals)</th>
<th>As (g/t_metals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery – Whole (shaft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-process</td>
<td>49 000</td>
<td>10 - 25</td>
<td>0.1</td>
<td>2.5</td>
<td><0.1</td>
<td><0.15</td>
</tr>
<tr>
<td>-refinery</td>
<td>53 000</td>
<td>0.49</td>
<td>NA</td>
<td>0.024</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>-secondary*</td>
<td><2 mg/Nm3</td>
<td>NA</td>
<td><0.01 mg/Nm3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Battery – de-sulphurised paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-process</td>
<td>43 000</td>
<td>1 - 3</td>
<td>NA</td>
<td>0.1 - 1</td>
<td>0.01</td>
<td>0.18</td>
</tr>
<tr>
<td>-refinery</td>
<td>52 000</td>
<td>4</td>
<td>NA</td>
<td>0.5</td>
<td>0.02</td>
<td>0.24</td>
</tr>
<tr>
<td>-secondary*</td>
<td>6</td>
<td>NA</td>
<td>0.3</td>
<td>NA</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Battery – Whole (short rotary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-process</td>
<td>10 000</td>
<td>15 - 35</td>
<td>NA</td>
<td><0.5</td>
<td>NA</td>
<td><0.3</td>
</tr>
</tbody>
</table>

*Secondary hood dedusting
Table 14: Example of national emission limits for standard conditions (dry gas) for secondary lead technology (Slovak Republic)

<table>
<thead>
<tr>
<th>Pollution source</th>
<th>Emission limit (mg/m³)</th>
<th>Solid pollutants</th>
<th>SO₂</th>
<th>NOₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport and handling</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnace aggregates</td>
<td>20</td>
<td>350</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Smelting and casting</td>
<td>10</td>
<td>350</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

The battery breaking and washing stages produce an effluent which is acidic and contains lead and other metals in suspension and solution. This effluent is neutralised and the water is recycled in the process. If possible, the acid is used elsewhere. A portion is usually bled from the system to control dissolved salts. Cooling water can also arise from cooling the crushing process [7].

These processes also produce contaminated surface water and consequently this water is also treated and reused. It is common practice to discharge a bleed of this sealed water circuit after further treatment and analysis. Road and surface contamination is minimised by the frequent wet cleaning of roads, hard standing areas, lorry and by cleaning up spillages.

The quality and quantity of waste water depends on the process used, the composition of the raw materials used in the process and the practices used by the operators. The reuse of process water and rainwater is common.

Cooling water from the granulation of slag or the cooling pond is usually recirculated in a closed circuit system.

Typical components in waste water from some processes are given in Table 15 [7].

Table 15: Example of typical waste water analysis [7]

<table>
<thead>
<tr>
<th>Process</th>
<th>Effluent (m³/yr)</th>
<th>Flow (m³/h)</th>
<th>Main components (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical battery separation (CX)+ Rotary Furnace *</td>
<td>190 000</td>
<td><0.2</td>
<td>Pb 0.02 Cd 0.07 As <0.0005 Zn 0.27 Ni 0.09</td>
</tr>
<tr>
<td>Mechanical battery separation (MA) + rotary furnace *</td>
<td>124 000</td>
<td>0.40</td>
<td>Pb 0.01 Cd 0.07 As <0.0001 Zn 0.01 Ni <0.05 COD 96</td>
</tr>
<tr>
<td>Whole battery *</td>
<td>150 000</td>
<td>40</td>
<td>Pb 0.13 Cd 0.01 As 0.01 Zn 0.01 Ni 0.03 COD 96</td>
</tr>
<tr>
<td>Shaft furnace *</td>
<td>17 000</td>
<td><0.2</td>
<td>Pb <0.2 Cd <0.1 As <0.3 Zn <0.05 Ni <0.3 COD 96</td>
</tr>
<tr>
<td>CX + rotary furnace + Pb refinery *</td>
<td>105 000</td>
<td>2.1</td>
<td>Pb 0.13 Cd 0.01 As 0.01 Zn 0.01 Ni 0.03 COD 96</td>
</tr>
</tbody>
</table>

*Secondary furnaces; COD (Chemical Oxygen Demand)

9 Disposal of used lead batteries

The main objective of the environmental policy in the field of used lead batteries is to maximise the separate collection, reuse lead as valuable recoverable resource and to minimise disposal of used batteries as mixed municipal waste.
According to Article 14 of the EU Batteries Directive (2006/66/EC) [9] the European Member States shall prohibit the disposal in landfills or by incineration of waste industrial and automotive batteries and accumulators. However, residues of any batteries and accumulators that have undergone both treatment and recycling may be disposed of in landfills or by incineration.

From the above, it becomes clear that waste management such as landfilling and incineration cannot be considered as an environmentally sound management of used lead batteries, not only for economic reasons but also for health and environmental reasons.

However, there are cases in which the disposal is necessary, especially when no treatment and recycling facilities exist or the fractions got from dismantling of used batteries are not suitable for consequent recovery in the country which is not the European Member States.

"It is recommended to ban the disposal of used lead batteries or fractions of their dismantling. When no viable end market is available it should be permitted only in landfills or underground long-term storages that are designed and operated for disposal of hazardous wastes. Such landfills of underground storages must be authorised by national competent authorities.

It is recommended to ban the incineration of used lead batteries.

9.1. Landfills for hazardous wastes

Some wastes - unrecoverable wastes produced during the lead recycling process will not be recycled any further or reused and, therefore, will need a sound destination for disposal. It must be stressed that usually such wastes have lead contents as high as 2-5% and must be treated as hazardous wastes, even if the lead is not leachable, and thus requires a destination in a regulated hazardous waste landfill site. Stabilized slag from refining steps is the major hazardous waste formation from the whole process and the sodium slag arising from the utilization of sodium carbonate does not have any use due to its physical and chemical properties, and, therefore, it is being directed to hazardous waste landfills. There are other pollution sources produced during the treatment such as effluents and electrolytes that may be treated by sodium carbonate (Na2CO3) or calcium carbonate (CaCO3), thus producing sodium sulfate (Na2SO4) or gypsum (CaSO4) which, after removing lead sludges by filtration, can be further purified and sold to the cement industry or the building trade.

Thus, despite some cost increases in recycling, calcium slags have found some use as a raw material in cement production which has been employed in road building, bricks, etc., with promising results [1]. In such cases of production of hazardous waste the location of the landfill for hazardous wastes must be taken into account:

a) secure distance from the boundary of the future landfill site to residential and recreation areas, waterways, water bodies and water sources,

b) geological, hydrological, hydrogeological and mechanical-geological conditions in the vicinity,

c) the protection of nature, landscape and cultural heritage in the vicinity,

d) the acceptable burden on the territory,

e) possible extreme meteorological effects and their impacts,

f) conclusions from the environmental impact assessment study.
The landfill site shall have:
 a) an information board,
 b) an approach road to the landfill and paved carriageways at the landfill site,
 c) a fence and lockable gates,
 d) a weighing-machine,
 e) operating premises containing all the necessary equipment,
 f) fire extinguisher,
 g) a sealing system,
 h) a drainage system with a leachate collection tank,
 i) a drainage system for landfill gas and an installation for its use or disposal, except for landfills for wastes where landfill gas is not likely to originate,
 j) a groundwater monitoring system,
 k) a landfill gas monitoring system, except for landfills for wastes where landfill gas is not likely to originate,
 l) a drainage system for surface water,
 m) an installation for cleaning vehicles,
 n) other installations necessary for operation of the landfill.

Any landfill must have a fence in order to prevent free access to the landfill. The gates must be locked outside operating hours. The system of control and access to the landfill must contain measures to prevent dumping of wastes at the landfill without a consent of the landfill operator. On landfills where an artificial sealing barrier is used, the geological substratum of the landfill, considering the morphology of the landfill, must be sufficiently stable to prevent settlement that may cause damage to the artificial bottom sailing.

During the operation of a landfill measures shall be taken to minimise effects of the landfill on the environment caused by emissions of odours and dust, wind-blown material, noise and traffic, birds, vermin and insects, formation of aerosols or fires.

The landfill must be equipped and operated in such a way that dirt from it, caused mainly by the vehicles/means of transport, is not dispersed onto public roads and the surrounding land.

At the landfill site waste shall be deposited in layers 0.3 to 0.5 m thick, which are then compacted; the working layer after compacting shall be no more than 2.0 m thick. Waste shall be compacted no later than the day following its dumping unless provided otherwise. The first layer of waste shall be deposited at the bottom of the landfill in such a way as not to damage the sealing and drainage systems of the landfill; the first layer of deposited waste may only be compacted if it is 2 m thick; the first layer may not contain waste which could damage the base of the landfill. There shall be a suitable peripheral drainage system of suitable dimensions for the drainage of surface water from the vicinity of the landfill.
Appropriate measures shall be taken at any landfill in order to control leachate and manage the leachate regime providing in particular for control of water from precipitations entering into the landfill body, prevention of surface water and groundwater from entering into the landfill waste, drainage and collection of leachate, the treatment of leachate collected from the landfill in order to comply with discharge values into the sewerage system or recipient or transport of the leachate to a suitable sewage treatment plant.

The emplacement of waste on the landfill site shall take place in such a way as to ensure stability of the waste deposited and associated structures of the landfill and the necessary construction equipment, particularly in respect of avoidance of slippages.

Landfill gas shall be collected from all landfills receiving biodegradable waste. The collected landfill gas must be treated and used to produce energy; if the landfill gas collected cannot be used to produce energy, it must be flared. The collection, treatment and use of landfill gas shall be carried on in a manner which minimises or does not have any negative effects on the environment and human health.

The operator of the landfill must provide the monitoring of:
 a) meteorological data (precipitation, temperature, wind, evaporation, humidity),
 b) emission data (amount and composition of leakage, emissions of gases),
 c) measurement of quality of underground water (pH, TOC, phenols, heavy metals, fluorides, hydrocarbons, etc.),
 d) topography of the landfill.

For monitoring groundwater quality in the vicinity of a landfill site, a sufficient number of measuring points must be constructed; there must be at least three, one in the groundwater inflow region and two in the outflow region. The original values of groundwater quality must be ascertained before commencement of landfill operations.

Fig. 34: Artificial geological barrier for landfill
Fig. 35: Artificial barrier using HDPE foil for landfill

Fig. 36: Foundation of landfill
9.2. The underground long-term storage for hazardous wastes

Hazardous wastes including used lead batteries can be stored in long-term underground storages as closed salt- or potash-mines in appropriate containers.

The very strict controls on the accepted types of waste are undertaken at the mine in drums or bulk containers. After verification the used lead batteries, if accepted by the mine, are loaded into transit capsules for transport underground.

Drums are then offloaded and stacked in their allocated safe storage areas to a maximum height determined by their contents. The location of each waste consignment is recorded for future reference. Once each disposal zone has been filled, walls (known as stoppings) are erected between the rock salt pillars to create physical barriers between storage zones. The operation of long-term storage must be held in that way that no harm for underground water or ambient air is ensured.

Usually underground mines undertake extensive research, establish detailed design and operational procedures and produce thorough qualitative and quantitative short and long-term risk assessments, all supported by complementary evidence.

Thanks to the geological and hydro-geological features that so effectively isolate the underground beds of rock salt from the biosphere, even in the worst case scenario the facility is likely to have “little or no adverse consequence” on the environment.

9.3. Accepting waste for disposal

Waste may only be accepted at a landfill or a long-term storage if the waste holder presents to the operator of the landfill or a long-term storage with each delivery of waste document on quantity and type of waste delivered, a consignment note and identification notes for hazardous wastes, details about the characteristics and composition of waste in the form of report on analytical control of wastes.

![Fig. 37: Balancing of container at the acceptation of the waste for disposal](image-url)
At the time of delivery of the verification of whether the required waste documentation is complete and correct, verification of the data, and other conditions agreed for waste acceptance, control of quantity of waste delivered, visual inspection of waste delivery in order to verify declared information concerning origin, characteristics and composition of waste, ensuring controlled random sampling of waste and tests and analyses of waste in order to verify given information about origin, characteristics and composition of waste and recording accepted waste must be done. The operator of the landfill or a long-term storage shall confirm the acceptance of the waste to the waste holder, indicating the date and time of its acceptance.

10 Transboundary movement of used lead batteries

The transboundary movement of used lead batteries is subject of the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal. The import and export are a matter of notification of state authorities of both exporting and importing parties according to the article 6 of the Convention.

Such notification shall contain the declarations and information specified in Annex V A, written in a language acceptable to the State of import. Every shipment must be accompanied by the documentation containing information defined in Annex V B of the Convention.

The used lead batteries are classified as “A1160 Waste lead-acid batteries, whole or crushed” with Y-code “Y31 Lead; lead compounds” and H-codes “H1 Explosives”, “H8 Corrosives” and “H11 Toxic”. Entry A1160 refers to “waste lead-acid batteries, whole or crushed”, while entry A1170 refers to “unsorted waste batteries excluding mixtures of only list B batteries and waste batteries not specified on list B containing Annex I constituents to an extent to render them hazardous”.

The mirror entry B1090 refers to “waste batteries conforming to a specification, excluding those made with lead, cadmium or mercury”. However, it can be assumed that all marketed battery systems contain at least one Annex I constituent, namely the electrolyte (which is either an acid Y34, alkali Y35, or a solvent Y42). Regardless of this classification, waste batteries are to be classified as hazardous waste in accordance with Article 1,1,b of the Convention anyhow. Therefore every transboundary transport of waste batteries is to be notified.

If the country of import is the EU Member State it is necessary to follow requirements of Regulation on shipment of waste [18]. The used lead batteries are defined as”A1160 Waste lead-acid batteries, whole or crushed” and only import for recovery is allowed, the import for disposal is allowed only the Community and its Member States, have concluded bilateral or multilateral agreements or arrangements with the country of export or in cases on exceptional grounds during situation of crisis, peacemaking, peacekeeping or war according to the Article 41 of the Regulation. The procedural requirements are described in Article 44 of the Regulation with the requirement of prior written notification in accordance with Article 4 of the Regulation and the conditions for shipment of the waste are given by Article 44 (4) of the Regulation.

To allow the Competent Authority a full evaluation of the foreign waste treatment or recycling process the notifier of the transboundary transport should at least provide the Competent Authority with the following (technical) information:

- Chemical composition of the wastes (data from literature, no chemical analysis required in the case of batteries).
- A technical description of the waste treatment / recycling process including a mass flow scheme.
Information of the recovery (R-operation) or disposal (D-operation) of the output of the treatment / recovery process.

Relevant information on the license (date of expire, licensed wastes).

Information on emissions (reference to BAT, mandatory or plant specific emission limits, current measurements of the emission to air and/or water, type of applied emission abatement technique).

Existence of a quality assurance system or an environmental performance assessment.

The Competent Authority shall scrutinize these documents and consent in the transboundary movement only if the environmentally sound treatment appears to be secured.

If the waste lead batteries are shipped into countries that signed international convention ADR [19] or RID [20] the requirements of the convention must be met.

For the transport of batteries and accumulators the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR) [19] has to be considered. This is an agreement that prescribes requirements for the transboundary transport of dangerous goods by road vehicles. The ADR specifies detailed requirements for the transport of the different battery types e.g. batteries, wet, filled with acids.

10.1. General requirements for “transport” / ADR

Requirements regarding the transport of lead-acid batteries from the Technical Guideline for the Environmentally Sound Management of Waste lead-acid Batteries [1] were summarised [4] as follows:

- Used batteries must be transported inside shock resistant and acid resistant sealed containers.
- In order to prevent move of containers during transport they must be well packed to the transport vehicle (i.e. they must be bound, shrink wrapped or stacked properly).
- The transport vehicle should be identified with symbols (transport of corrosive and hazardous products).
- The container shall be labelled with UN-Number 2794 BATTERIES, wet, filled with acid, electric storage, Class 8.
- A minimum set of specific equipment to combat spillage or leakage during transport must be available in the transport vehicle.
- Drivers and auxiliaries should be trained.
- Effective personal protection equipment is to be provided and available in the transport vehicle.
- Transport schedule and route is to be selected in a way that reduces the risk of possible accidents.

In principle the provisions of the ADR are applicable to the transport of waste batteries. However, according to Vol. II, clause 598 of the ADR ‘used storage batteries’ are not subject to requirements of ADR when:

- their cases are undamaged;
- they are secured in such a way that they cannot leak, slip, fall or be damaged, e.g. by stacking at pallets;
- there are no dangerous traces of alkalis or acids on the outside of the articles;
- they are protected against short circuiting.
Fig. 38: Examples of good packaging before transport, ABRI [26].

Black plastic wrap is not acceptable.

Fig. 39: Examples of bad packaging before transport, ABRI [26].

(Black plastic impedes inspection by the transport driver and facility staff, who will make a judgment on compliance with environmental and dangerous goods regulations, and this standard, based on observation. For example, any liquid on or leaking from the consignment could be deemed as leaking battery acid (electrolyte). Clear plastic wrap is the best option.) [26].

Polystyrene slip sheets are not acceptable

(Slip sheets must be used between the layers to minimise the potential for short circuit and post penetration. Heavy duty cardboard slip sheets are preferable to Masonite or chipboard because they are recyclable, and small spills can be absorbed and are visible. Polystyrene slip sheets are not to be used as they are difficult and costly to recycle (suppliers may incur an environmental disposal levy to cover the costs of disposing of any polystyrene received).) [26].

Fig. 40: Examples of bad packaging before transport, ABRI [26].
(There must be at least two vertical straps tying the load to the pallet)
(Batteries need to be wrapped as well as strapped)

Fig. 41: Examples of bad packaging before transport, ABRI [26].

(Broken pallets are unacceptable)
(The pallet load needs horizontal as well as vertical strapping)

Fig. 42: Bad and unacceptable examples of transport conditions
10.2. Special care for batteries and accumulators with a liquid electrolyte

Batteries and accumulators with free liquid electrolyte may cause specific damage during storage and transport. They shall be kept separately based on the nature of their electrolyte (acidic, alkaline or organic) and stored in tight, leak proof and stable containers. It is recommended to use UN-tested and correctly labelled containers even for intermediate storage to avoid extensive manipulation/repackaging when the batteries are shipped.

Lead acid batteries are listed under UN-Number 2794/Class 8, alkaline batteries under UN-Number 2795/Class 8.

Accumulators with an organic electrolyte until recently have not been in common use and therefore are not mentioned in the ADR.

Sealed batteries/accumulators (e.g. consumer batteries type AA, AAA, C, D) are normally not regarded as batteries with liquid electrolyte. However, sealed lead acid batteries should be regarded as accumulator with liquid electrolyte since the acid may leak out quite easily due to mechanical damage. It is therefore recommended to collect, store and transport seal lead acid batteries in the same way as normal lead acid batteries.

11 Potential Sources of Environmental Contamination

11.1. Battery Breaking Process

Each step of handling with used lead batteries is possible sources of contamination that may occur in the recovery processes. It is described shortly and should be understood as the predictable list of common contamination sources and where to look when searching for them. Specific sources of contamination will have to be determined in the light of the process employed.

The common sources of environmental impacts in the battery breaking process are then:

(a) spilling batteries - acid electrolyte and lead dust contamination source: battery spillage may be a very common source of environmental contamination as well as human health injuries since the electrolyte is not only a strongly corrosive solution but also a good carrier of soluble lead and lead particulates. Therefore, if this solution spills in an unprotected area, it may contaminate the soil or injure workers. Besides, after spilling on unprotected soil, the soil itself becomes a source of lead dust once the solution evaporates and the lead becomes incorporated into soil particles which may blow by wind or raised by vehicle transit;

(b) manual battery breaking – source of human health injury and environmental damage through heavy spillage and lead contaminated dust formation: manual breaking usually relies on primitive tools, poorly protected workers and no environmental protection whatsoever. The situation is even worst in the case of sealed batteries, which are not easily drained, increasing dramatically the risk of heavy spillage and damage to human health. Therefore, it should be avoided at all costs;

(c) mechanical battery breaking – source of lead particulate: the process of breaking batteries through crushing on hammer mills may spread lead particulate. However, the fact that the mill is sealed and uses copious quantities of water the formation of such particulates is prevented;

(d) hydraulic separations – contaminated water leakage: the hydraulic separations, both metallic from organic and heavy organics from light organics, are usually preformed inside sealed machines and
with a closed water system. However, if any water leakage occurs, it will be heavily contaminated by lead compounds;

(e) plastic and ebonite chips – contaminated wastes: ebonite scraps removed from the breaking process may pose a problem, since they are usually contaminated by levels as high as 5% (w/w) of lead. Therefore, it is important that the final traces of lead are removed by a second wash, preferably in an alkaline solution, followed by another rinse prior to further treatment or disposal [1].

11.2. Lead Reduction Process

The common sources of environmental impacts in the pyrometallurgical lead reduction process are:

(a) lead compounds derived from the breaking process – lead and lead compounds in dust and water: the separated and fine materials from the breaking process are usually wet, since the main processes of separation are based on water techniques. However, if they are not incorporated in a fully automated process, they will have to be transported from the breaking facility to the reduction facility and some muddy and/or watery material may spill and fall from the transport system. After drying, these materials become a powder and may contaminate the factory and its surroundings as fine lead dusts;

(b) drosses – lead contaminated materials: drosses are formed while the fusion process takes place. Its function is to remove materials that are not easily incorporated or wanted in the crude lead. However, these drosses still contain lead that can be recovered and are recycled in the fusion process. In order to accomplish these task, the drosses must be removed and transported to the furnace charging bay, but since they are usually a dusty material and occasionally powdery (copper dross), they may be a source of lead contamination while being transported;

(c) filters – lead contaminated dusts: furnaces need filters in order to capture lead dusts formed in the fusion process. After being used, they are usually recycled in the same smelting process since they may contain as much as 65% of lead. However, the care and maintenance of these filters may be an important source of contaminating dust, which could pose a risk to the human health and the environment. Besides, over-used filters no longer capture lead dusts as originally intended and the dust emissions from the fusion oven becomes an important source of contamination. Finally, one must also realize that the furnace inlet is itself a source of lead dust to the environment, since it can be an open system. The high temperature fume that leaves the furnace inlet and tapping area, for example, have a high lead content, and will be readily absorbed by the human body;

(d) sulphur dioxide (SO$_2$) emissions – the percentage of sulphur from a given amount of lead scrap load that leaves the reduction system as sulphur dioxide (SO$_2$) is highly dependent not only on the furnace conditions, but also in the kind of skim material being formed. As a general trend, this number may fall between 0% and 10% and it is significantly reduced if the flux used is a mixture of iron and sodium based compounds producing sodium skims and pyrites. Ebonite also has 6-10% of sulphur that may contribute to the SO$_2$ emission if it is added to the furnace charge;

(e) organic material combustion – tar formation: a well structured and controlled refinery does not need to worry about tar formation, since its reduction process consumes all organic materials. On the other hand, the less controlled the reduction process is, the greater are the tar emissions, especially in artisan foundries. If the reduction furnace has filters, the emission of tars is an even greater problem since they are very pyrogenic and may produce fires in the filtration plant, thus increasing the risk of an accident and the possibility of a rogue emission. The introduction of afterburners to complete the combustion of gases from the furnace is the usual solution to this problem, but a complete restructuring of the process, removal of organics for example, may present better perspectives;
(f) chlorine (Cl_2) and chlorine compounds emission: an initial separation of the materials allowed to enter the reduction process reduces the chlorine emission considerably. Cl_2 is source for PCDD/PCDF formation during lead smelting thermal process (see chapter 5.4). However, increasing amounts of PVC in the furnace increases the chances of chlorine emissions. The major part of it is absorbed by the basic skims of calcium or sodium, however some of the chlorine is chemically converted into lead chloride which is volatile under furnace conditions but captured by dust filters as the temperature decreases;

(g) slag production: this is the majority of the waste production during the reduction process. As an average picture, around 300-350kg of slag is produced for each ton of metallic lead, depending on specific factors of the process and the kind of residue being formed (calcium or sodium skims), and around 5% (w/w) of this slag is composed of lead compounds. Therefore, special consideration must be given to the leachate that may be produced if an unstable water soluble slag comes into contact with water or moist air. A purpose built under cover storage bay to store this material must be planned well in advance in order to avoid human health and environmental problems [1].

11.3. Lead Refining Process

The refining process can be a polluting process if some control measures are not taken. Some sources of environmental impacts in the lead refining process are:

(a) over heated lead – lead fumes: sometimes the lead from the reduction process is introduced directly into the refining kettle, which may be as hot as 1,000°C. Therefore, it is not uncommon that the lead refining process produces large amounts of lead vapour. Ideally lead should be tapped from the furnace directly into a lead bath or allowed to cool prior to pouring;

(b) sulphur dioxide (SO_2) emissions: the copper removal by addition of elementary sulphur may produce large quantities of sulphur dioxide (SO_2), since sulphur oxidizes readily in the presence of oxygen at the oven temperatures. The use of iron pyrites eliminates this problem;

(c) skim production and removal – metal contaminations: the skim production and removal from the refining kettle while refining unwanted metals from the crude lead may pose threats to the human health and environment due to the physical characteristics of the skims. Sometimes they are in the form of a very fine and dry dust with a high percentage of lead and other metals, it is important to provide adequate covered or sealed transport, storage and a sound destination to this potentially hazardous by-product;

(d) chlorine (Cl_2) tin (Sn) removal and recovery – chlorine gas release: If the tin is removed by chlorine gas for later recovery, then this is a very delicate procedure. The intake of gas is planned in order avoid chlorine release, i.e. the gas reacts with the tin before reaching the surface of molten lead. However, an uncontrolled addition of chlorine may release the poisonous gas to the environment. Besides, the storage and handling of chlorine is itself a delicate operation due to its corrosiveness and toxicity;

(e) oxygen (O_2) enriched air tin (Sn) removal – lead fume: while the air is being passed inside the molten metal, the nitrogen (N_2) present in the air does not react. The consequence of this is that the gas bubbles violently in the surface of the metals releasing dusts and metallic fume [1].
11.4. Bad examples of potential contamination of the environment

Fig. 43: Examples of bad used lead batteries management
Source: http://www.worstpolluted.org/projects_reports/display/78

Fig. 44: Examples of bad used lead batteries management
Source: http://www.blacksmithinstitute.org/blog/?tag=ulab

Fig. 45: Examples of bad used lead batteries management
Source: http://www.blacksmithinstitute.org/blog/?tag=ulab
12 Economic aspects of environmentally sound management of used lead batteries

The project [2] proposes the application of extended producer responsibility as a system for financing the environmentally sound management of used lead batteries according to the model of EU stated in the Battery Directive [9]. The extended producer responsibility is based on the responsibility of producers / importers of batteries to establish and operate system of separate collection, treatment and recovery of used batteries, what means also to finance whole system. The producers can fulfil their obligations individually or collectively through collective scheme.

Producers must cooperate with producers (holders) of used batteries, as services and maintenance facilities as well as with municipalities to provide for separate collection of used batteries in order to fulfil legal limits of collection, given usually as a percentage of amount put on the market. The industrial association or governmental authority (ministry, agency…) collects data on amount of batteries put on the market during the years by every producer / importer. Every producer / importer can calculate his market share that is a base for calculation of the collection share.

The producer / importer is also obliged to fulfil recycling and recovery limits. He must cooperate also with the facilities dealing with the treatment and recovery of used lead batteries in the country or abroad. If the price of the treatment of used batteries is minus the producer / importer must pay also the costs connected with treatment.

If the producer / importer fulfil his obligation individually he has to finance the separate collection of the amount of used batteries that is equivalent to his collection share. If the producer / importer join the collective scheme then he pays to the system money equal to the amount of batteries that he put on the market and rate. The rate reflects real costs of separate collection, treatment and recovery of used batteries, as well as the costs of the information campaigns and the operation of the collective scheme itself.

However, obtaining secondary lead from used lead batteries is economically attractive, cutting about 25 % from the energy bill compared with mining primary lead. In addition, batteries are a ubiquitous product with a predictable lifetime, and the large market for recycled lead creates economies of scale. As a result, battery manufacturers rely heavily on secondary lead, most of it sourced from recycled batteries. Some of the lead recycled from batteries in the informal sector, however, does not re-enter the manufacturing sector but is used instead for other purposes, such as sinkers for fishing lines.

The costs of used lead batteries treatment and recovery vary according to the market situation. It is impossible to make estimation of the costs because prices in Europe are different from the prices in other regions.
The simplified scheme of waste, finance and information streams in used lead batteries EPR system is given in Figure 47.

![Scheme of waste, finance and information streams in used lead batteries EPR system](image)

Fig. 47: Scheme of waste, finance and information streams in used lead batteries EPR system

Last but not least, it must be understood that the lead environmentally sound management process is deeply embedded in social and economic aspects that dictate several problems as well as several solutions not covered and which could not possibly be covered in this guideline. Therefore, a specific contextual map should be generated, encompassing local politics, economical aspects, social aspects, local and international market aspects, etc., and the lead recycling plant inserted into this context. No solutions or orientations given here should be taken for granted but, instead, analyzed under the lights of this contextual map and its possibilities.

13 Conclusions and recommendations

As the lead batteries are at once an important source of secondary lead and environmental danger it is necessary to operate efficient system for environmentally sound management of used lead batteries in the countries. The very effective model for used batteries is implemented in European Union based on extended producer responsibility. This model generalise sufficient financial sources that can cover all costs of separate collection, treatment and recycling of used lead batteries. This is the main assumption for building an effective system.

The first and the most important step of used lead batteries management is separate collection. It is obvious that throwing away the used lead batteries together with mixed household waste is wasting material resources and could lead to the potential burden of the environment and public health. It is
recommended to collect used batteries in places of their production, i.e. in services and maintenance operations. Effective system is mobile collection when mostly batteries from households and very small operations are collected. There are also other collection systems available for used batteries collection. The efficiency of secondary lead production is depended on the sorting and treatment of used lead batteries. It is recommended to operate treatment in the same facility and technology as recycling by metallurgical technologies but it is not the necessary condition. The treatment means dismantling of used lead batteries in order to get metals and other components. It is recommended to respect European standards for used lead batteries treatment given by BREF documents, mainly given by BREF on Non-Ferrous Metals [7]. European standards also cover the best available techniques for lead recycling.

Some wastes arisen during the processes of treatment and recycling cannot be recovered and they must be landfilled on special landfills for hazardous wastes. The technical and environmental conditions for landfilling of hazardous wastes are also introduced.

The necessary part of all steps of waste management is transport. As lead batteries (new or used) are hazardous and introduce danger especially for waters (surface or underground) special conditions for transport must be followed.

The system of environmental sound management of used lead batteries can be successfully implemented only when four conditions is met:

1. legislative rules are effective and applicable,
2. all or at least most of producers /importers of lead batteries are participating in the system,
3. facilities for lead recycling are available in appropriate distance (best of all in the country or in a not-very-far distance in neighbouring countries),
4. effective state control and supervision to prevent human health and environmental hazard together with good law enforcement.
14 Literature

[17] www.geomat.sk

http://en.wikipedia.org/wiki/ISASMELT#The_ISASMELT.E2.84.A2_Furnace
Annex IV

Guide for environmental sound management of PCBs in the Mediterranean
Table of Contents

Note by the Secretariat

1. **Introduction** ... 9

 1.1 Polychlorinated Biphenyls (PCBs) ... 9

 1.2 Basel Convention ... 9

 1.3 **Stockholm Convention** .. 10

 1.3.1 PCBs Elimination Network (PEN) ... 11

 1.3.2 Handling of PCBs Regulated in the Stockholm Convention 11

 1.4 **Rotterdam Convention** (PIC Convention) 11

 1.5 UNEP/MAP-Barcelona Convention and its Protocols 12

2. **Data collection, Identification, Sampling and Monitoring** 13

 2.1 Data collection and Inventory ... 13

 2.2 **PCB Applications** ... 15

 2.2.1 Sampling of Transformers, Capacitors and Construction Materials 16

 2.2.2 General Sampling Procedures ... 18

 2.2.3 Sampling of Transformers .. 19

 2.2.4 Sampling of Phased Out and Drained Transformers 20

 2.2.5 Sampling of Concrete and Brick Walls 23

 2.2.6 Sampling of Soil .. 25

 2.3 **Screening Test Kits and Laboratory Analysis** 26

 2.3.1 Analysis by Gas Chromatography (GC) 29

 2.3.2 Analysis Proceedings .. 30

 2.4 **Database** ... 31

 2.5 Labelling of Checked Equipment ... 32

 2.6 **Site Monitoring** .. 33

 2.6.1 Land Register of Areas and Storage Facilities with Possible PCB Contamination or contaminated equipment ... 34

 2.6.2 Risk Assessment .. 34

 2.6.3 Analysis ... 34

 2.6.4 Extent of Contamination .. 35

3. **PCB Management of Closed Applications** 36

 3.1 **PCB Management Plan** .. 36

 3.1.1 Designation of a PCB Responsible 36

 3.1.2 Training and Instruction of Staff .. 36

 3.1.3 Inventory ... 36

 3.1.4 Database on Locations with PCB Equipment, Waste or Contamination 36

 3.1.5 Maintenance Plan ... 36

 3.1.6 PCB Spill Prevention, Control and Countermeasure Plan (SPCC Plan) 36

 3.1.7 Disposal and Site Decontamination Plan 37

 3.2 **Spill Prevention, Control and Countermeasure Plan (SPCC Plan)** 37

 3.2.1 Prevention ... 37

 3.2.2 Spill Prevention Tools .. 37

 3.2.3 Countermeasure .. 38

 3.3 **Priorities for Disposal and Site Decontamination** 38

4. **Maintenance of In-Service PCB Equipment** 38

 4.1 Maintenance of In-Service PCB Equipment 38

 4.2 **Best Working Practices** ... 40

 4.3 **Inspection of PCB Containing Transformers** 40

 4.3.1 Visual Checks .. 40

 4.3.2 Leaks of Transformers .. 41

 4.3.3 Oil Level of Transformers .. 42

 4.3.4 Temperature Gauge ... 42
4.3.5 Pressure-Vacuum Gauge ... 42
4.3.6 Corrosion on Tank and Radiator Fins .. 42
4.3.7 Performance Tests .. 42
4.4 Evaluation of PCB Containing Capacitors 42
4.5 Substitute Fluids .. 43
5. Safety ... 45
5.1 Safety and Personal Protective Equipment 45
6. Emergency Actions and Clean Up .. 48
6.1 Emergency Actions for Cold Incidents ... 48
6.2 Emergency Actions for Hot Incidents ... 49
6.2.1 Incident Caused by an Internal Failure 49
6.2.2 Fires ... 50
6.3 First Aid in Case of Contact with PCB .. 51
6.4 Clean Up after Incidents .. 51
6.4.1 Assessment of an Incident ... 51
6.4.2 Decontamination Methods .. 52
6.4.3 Protection of Workers and the Environment 53
6.4.4 Disposal .. 53
6.5 Check of Clean Up (Monitoring) .. 53
6.5.1 Tolerable Remaining Contamination after a Clean-up 53
7. Phase Out ... 54
7.1 Phase Out of Transformers ... 54
7.2 Phase Out of Capacitors .. 55
7.2.1 Preparation ... 55
7.2.2 Dismantling .. 56
7.2.3 Phase Out of Other Equipment ... 56
8. Packing ... 57
8.1 Packing According to ADR ... 57
8.2 Summary of Possible Containers for PCB Transports 58
8.2.1 Labelling of the Packaging ... 62
8.2.2 Labelling for Storage or Transport 62
8.3 Handling of Packed Waste ... 64
9. Temporary Storage ... 65
9.1 Temporary Storage - On Site ... 65
9.2 Central Storage Platform .. 66
9.3 Authorization and Control .. 71
10.1 International Regulations for the Transport of Hazardous Goods 72
10.2.2 Documentation .. 73
10.3 National Transports ... 74
10.4 Transboundary Movement of Hazardous Waste 74
10.5 Loading and Safety Check before Transport Takes Place 75
10.5.1 Loading on a Truck for Local Transports 75
10.5.2 Loading of Containers for International Transport 75
10.6 Waste Transportation by Air ... 77
11. Pre-treatment, Treatment and Disposal .. 78
11.1 Technologies and Methods in General 78
12. Annexes .. 81
12. 1 In-Depth Information on the Internet: Conventions and Guidance
Documents .. 81
12.3 PCB Pre-Treatment Technologies (Extract only) 84
12.4 PCB Non-Combustion Technologies 84
12.5 PCB Combustion Technologies ... 87
12.6 PCB Emerging Technologies .. 87
12.7 PCB Treatment and PCB Disposal Companies

12.8 Emergency Response Plan for Cold Incidents

12.10 Best Working Practices

12.11 PCB Instructions for Workers

12.12 First Aid in Case of Contact with PCBs

12.13 Guidelines for the Inspection of Sites and the Sampling of Transformers and Capacitors (two persons)

12.14 Draft Inventory Questionnaires

12.15 Example of a Possible Register

12.16 PCB Equipment Monthly Maintenance Plan

12.17 PCB Interim Storage Facility Monthly Inspection Report

12.19 Dangerous Good Declaration and Container Packing Certificate

12.20 Application Form for Membership in the PEN
Abbreviations and Definition of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADR</td>
<td>European agreement on the international road transport for hazardous goods</td>
</tr>
<tr>
<td>Askarel</td>
<td>Trade name of PCB cooling fluid (USA, Monsanto)</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Technique</td>
</tr>
<tr>
<td>BC</td>
<td>Basel Convention on the trans-boundary movement of hazardous wastes and their disposal</td>
</tr>
<tr>
<td>BCD</td>
<td>Base catalysed decomposition</td>
</tr>
<tr>
<td>BEP</td>
<td>Best Environmental Practice</td>
</tr>
<tr>
<td>BRS</td>
<td>Basel, Rotterdam, Stockholm Convention (Secretariat)</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>Capacitor</td>
<td>Equipment or unit to supply lagging kilovars for power factor correction of an electric system; some capacitors were manufactured with PCB as cooling fluid</td>
</tr>
<tr>
<td>Capacitor Bank (General)</td>
<td>Practically there are three different ways of power factor (PF) correction: Capacitors for "individual" PF-correction; the capacitor is directly connected to the terminals of an equipment (motors, welding machine etc.) producing the "lagging kilovars"</td>
</tr>
<tr>
<td>Capacitor Bank (LV)</td>
<td>Capacitors for "group" PF-correction; the capacitor(s) is (are) connected to the LV-busbar of a transformer station, which feeds a number of consumers with individual motors, welding machines etc.</td>
</tr>
<tr>
<td>Capacitor Bank (MV)</td>
<td>Capacitors for "central" PF-correction; Large capacitor installation connected to the Middle- or High Voltage busbars of a substation where many individual electrical appliances (motors etc.) of various size operate at different times and periods.</td>
</tr>
<tr>
<td>CHD</td>
<td>Catalytic hydrodechlorination</td>
</tr>
<tr>
<td>Closed Systems</td>
<td>Capacitors and transformers, where the PCB itself is in completely closed containers; PCBs rarely emit from closed systems (in good condition)</td>
</tr>
<tr>
<td>Congener</td>
<td>Depending on the number and position of the chlorine atoms in the Biphenyl molecule, 209 isomers and homologue Chlorine Biphenyls are theoretically possible. A single compound from this group is called PCB congener.</td>
</tr>
<tr>
<td>Container 20'</td>
<td>Internationally used expression for Transport or Storage Containers with the Standard size of 2 x 2 x 6 meters (40' Container – 2 x 2 x 12 meters)</td>
</tr>
<tr>
<td>Container Box</td>
<td>There are various types of 20' and 40' Containers available, the most common is the Box Container with a front door, from an open top Container the roof can be removed for loading and off-loading activities (e.g. ideal for transformers)</td>
</tr>
<tr>
<td>Cooling Fluid</td>
<td>Dielectric fluid</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DE</td>
<td>Destruction efficiency</td>
</tr>
<tr>
<td>DRE</td>
<td>Destruction and removal efficiency</td>
</tr>
<tr>
<td>e.g.</td>
<td>Exempli gratia / for example</td>
</tr>
<tr>
<td>ESM</td>
<td>Environmentally Sound Management</td>
</tr>
<tr>
<td>ETI</td>
<td>Environmental Technology International Ltd. / Switzerland</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography; Procedure for the determination of evaporating substances</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GEF</td>
<td>The Global Environment Facility (GEF) is an international financial entity with 177 countries as members</td>
</tr>
<tr>
<td>GHS</td>
<td>Globally harmonized system of classification and labelling of chemicals</td>
</tr>
<tr>
<td>GPCR</td>
<td>Gas-phase chemical reduction</td>
</tr>
<tr>
<td>GTO</td>
<td>Gate turn-off thyristor</td>
</tr>
<tr>
<td>HV</td>
<td>High voltage</td>
</tr>
<tr>
<td>IATA DGR</td>
<td>IATA regulations on the transport of dangerous goods / transport by air</td>
</tr>
<tr>
<td>IBC</td>
<td>Intermediate Bulk Container</td>
</tr>
<tr>
<td>ID (number)</td>
<td>Identification (number)</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated-gate bipolar transistor</td>
</tr>
<tr>
<td>IMDG</td>
<td>International maritime dangerous goods code / transport by sea</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolts</td>
</tr>
<tr>
<td>kVA</td>
<td>Kilovolt ampere</td>
</tr>
<tr>
<td>kVAR</td>
<td>Kilovolt ampere reactive</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LBS</td>
<td>Land based sources and activities Protocol</td>
</tr>
<tr>
<td>LV</td>
<td>Low voltage (230/400 V)</td>
</tr>
<tr>
<td>MAP MEDPOL</td>
<td>Programme for the Assessment and Control of Marine Pollution in the Mediterranean</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mg/kg</td>
<td>Milligram per kilogram</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MV</td>
<td>Medium voltage (Normally in the range between 11 and 66kV)</td>
</tr>
<tr>
<td>MVA</td>
<td>Megavolt ampere</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram (1000 ng = 1 μg)</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental organization</td>
</tr>
<tr>
<td>Open Systems</td>
<td>Applications where PCB is consumed during its use or not disposed of properly after its use or after the use of the products that contain PCB; Open systems emit PCB directly in the environment (e.g. softeners in PVC, neoprene and other rubbers containing chloride)</td>
</tr>
<tr>
<td>PBB</td>
<td>Polybrominated Biphenyls</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>PCDD</td>
<td>Dibenzo-p-dioxins or dioxin; Highly toxic by-product of PCB</td>
</tr>
<tr>
<td>PCDF</td>
<td>Dibenzofurans or furan; Highly toxic by-product of PCB</td>
</tr>
<tr>
<td>PCT</td>
<td>Polychlorinated Triphenyls</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PE-HD</td>
<td>High-density polyethylene</td>
</tr>
<tr>
<td>PE-LD</td>
<td>Low-density polyethylene</td>
</tr>
<tr>
<td>PEN</td>
<td>PCB Elimination Network of UNEP Chemicals</td>
</tr>
<tr>
<td>Persistent</td>
<td>Very slightly degradable in the environment</td>
</tr>
<tr>
<td>PIC</td>
<td>Prior Informed Consent</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>POP</td>
<td>Persistent Organic Pollutants</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million (mg/kg)</td>
</tr>
<tr>
<td>Primary source</td>
<td>A product to which PCB was added voluntarily to influence the product’s characteristics (e.g. cooling fluids for transformers like Sovol, Sovtol, Askarel, Pyralene, Clophen, etc.); Such products emit PCB continuously</td>
</tr>
<tr>
<td>RC</td>
<td>Rotterdam Convention on the Prior Informed Consent Procedure (PIC) for certain hazardous chemicals and pesticides in international trade</td>
</tr>
<tr>
<td>RID</td>
<td>Regulation for the international transport of hazardous goods / transport by rail</td>
</tr>
<tr>
<td>SAP-MED</td>
<td>Strategic Action Programme to address pollution from land-based activities in the Mediterranean Region</td>
</tr>
<tr>
<td>SBC</td>
<td>Secretariat of Basel Convention</td>
</tr>
<tr>
<td>SC</td>
<td>Stockholm Convention Persistent Organic Pollutants (POPs)</td>
</tr>
<tr>
<td>SCWO</td>
<td>Supercritical water oxidation</td>
</tr>
<tr>
<td>Secondary source</td>
<td>A product that originally was free of PCB, but later contaminated by PCB emitting from primary sources (e.g. by emission from primary sources or use of contaminated pumps, hoses, etc.) Such products also emit PCB</td>
</tr>
<tr>
<td>SNV</td>
<td>Swiss Association for Standardization</td>
</tr>
<tr>
<td>SPCC</td>
<td>Spill Prevention, Control and Countermeasure</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable daily intake</td>
</tr>
<tr>
<td>TEQ</td>
<td>Toxic equivalency factor</td>
</tr>
<tr>
<td>Transformer</td>
<td>Equipment used to increase or reduce voltage; PCB containing transformers are usually installed in sites or buildings where electricity is distributed.</td>
</tr>
<tr>
<td>TTCB</td>
<td>Tri-tetrachlorobenzenes</td>
</tr>
<tr>
<td>UN-approved</td>
<td>Equipment that fulfils the specific United Nations testing procedures</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNIDO</td>
<td>United Nations Industrial Development Organization</td>
</tr>
<tr>
<td>UNITAR</td>
<td>United Nations Institute for Training and Research</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Note by the Secretariat

This Guide has been prepared in the framework of the MedPartnership project and MAP Programme of work 2014-2015. The purpose of this Guide is to provide technical guidance on different aspects of PCB life cycle environmental sound management (ESM) including inventory and monitoring until their final phasing out and disposal.

The Guide was reviewed and agreed at a Regional Expert meeting organized by the MEDPOL Programme, with experts nominated by the Contracting Parties, which was held from 7-9 April 2015 in Istanbul, Turkey.

The present document is proposed to be reviewed and approved as appropriate by the MED POL focal point meeting to serve as a technical guidance to enhance the application of ESM of PCB at company level and in conformity with the relevant national legislation.
1. Introduction

1.1 Polychlorinated Biphenyls (PCBs)

Persistent Organic Pollutants (POPs) have been identified by the international community for immediate international action by means of the Stockholm Convention. The pesticide DDT, highly toxic Dioxins and Furans (unintentionally formed by-products as a result of incomplete combustion or chemical reactions) as well as PCBs count among the POPs.

PCBs have serious health and environmental effects, which can include carcinogenicity, reproductive impairment, immune system changes, and effects on wildlife causing a loss of biological diversity (Carpenter 2006, Hotchkiss et al. 2008, Wirgin et al. 2011). PCBs bio-accumulate in the fatty tissue of humans and other living organisms. The chemical is transported over long distances to regions where it has never been used or produced before. This process of evaporation, movement with the air streams, condensation and deposition on the ground is known as the “grasshopper effect”.

PCB production started in 1929. PCBs were manufactured by a number of companies in many industrialised countries, and maximum production was reached in the late 1960s. After 1983 production was stopped in most countries, except for some Eastern European countries and Russia, where manufacture ceased between 1987 and 1993.

PCBs were mostly used in closed applications for example as cooling and isolating agents in transformers and capacitors, in heat transfer systems and hydraulic systems, in particular in mining equipment. PCBs mixtures were, however, also widely used in open and partially open applications, for example in caulks/sealants, paints, anti-corrosion coatings, surface coatings, cables and cable sheaths, small capacitors, etc.

From the technical point of view, the characteristics of PCBs were quite advantageous, thus they found a wide range of applications as mentioned above.

The Stockholm Convention on Persistent Organic Pollutants (POPs) counts PCBs among the substances targeted for worldwide elimination. The existing PCBs and all equipment contaminated with PCBs have to be eliminated in an environmentally sound manner without producing hazards for humans or the environment by 2028. PCB treatment or disposal technology must comply with the highest safety and environmental standards and must be capable of reducing the PCB contamination level of those pieces of equipment suitable for re-classification below the legally permitted level of 50 ppm as well as assure that the PCB level remains below that limit.

Other global and regional conventions regulate the management of dangerous chemicals and hazardous wastes addressing PCB such as the Basel Convention, as well as the Rotterdam Convention. In addition the Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and its related Protocols (Land-based Sources and Activities Protocol, and the Hazardous Waste Protocol) also addresses the PCB phase out and disposal.

1.2 Basel Convention

In 1989, the Basel Convention was adopted to improve monitoring of the transboundary movements of hazardous wastes.

The Basel Convention has the following key objectives:

- To reduce transboundary movements of hazardous wastes to a minimum consistent with their environmentally sound management
- To dispose of hazardous wastes as closely as possible to their source of generation
- To minimize the generation of hazardous wastes in terms of quantity and hazardousness
Prohibition of an export of hazardous waste to developing countries that do not have suitable disposal technologies

The Basel Convention has set up a very strict operational control system based on the prior written notification procedure. The procedure for the notification of transboundary movements of hazardous wastes or other wastes can take place only upon prior written notification to the competent authorities of states of export, import and transit (if appropriate) and upon consent from these authorities permitting the transboundary movement of waste. Any transboundary movement of hazardous wastes or other wastes carried out in contravention of notification system is considered illegal traffic.

1.3 Stockholm Convention

This Convention regulates the prohibition of - so far - 23 toxic chemicals called the POPs (Persistent Organic Pollutants).

The text of the Stockholm Convention on Persistent Organic Pollutants was adopted on 22 May 2001 and entered into force on 17 May 2004; 90 days after the 50th member country had ratified it.

The initial twelve POPs are Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Hexachloro-benzene, Mirex, Toxaphene, Polychlorinated Biphenyls (PCBs) as well as Dioxins and Furans (unintentionally formed by-products as a result of incomplete combustion or chemical reactions).

At its fourth meeting held from 4 to 8 May 2009, the Conference of the Parties (COP) adopted amendments to Annexes A (elimination), B (restriction) and C (unintentional production) of the Stockholm Convention to list nine additional chemicals as persistent organic pollutants: Chlordecone, Hexabromobiphenyl, Lindane, Alpha Hexachlorocyclohexane and Beta Hexachlorocyclohexane, Tetrabromodiphenyl ether and Pentabromodiphenyl ether, Hexabromodiphenyl ether and Heptabromodiphenyl ether, Perfluorooctane Sulfonic Acid, its salts and Perfluorooctane Sulfonyl Fluoride, Pentachlorobenzene. These amendments entered into force on 26 August 2010.

During the fifth meeting of the Conference of the Parties in April 2011, the Parties agreed to list Endosulfan in Annex A to the Convention, with specific exemptions. One year later, Endosulfan became the 22nd POP.

Finally, at its sixth meeting held from 28 April to 10 May 2013, the Conference of the Parties adopted an amendment to Annex A to list Hexabromocyclododecane with specific exemptions (decision SC-6/13). On 26 November 2014, one year after notification, the amendment listing HBCD in Annex A to the Stockholm Convention entered into force for most parties.

The contracted parties to the Stockholm Convention must take the following measures:

- Production, use, import, and export of the 23 most dangerous POPs shall be eliminated or restricted. For DDT a special regulation has been stipulated, as this product is used in developing countries to fight malaria
- When constructing new plants/installations measures shall be taken to minimize a possible production of POPs
- Stockpiles and wastes that are contaminated with POPs shall be recorded in an inventory and disposed of in an environmentally sound manner
- The use of devices containing PCB is still permitted until 2025, under the condition that certain safety precautions and conditions are fulfilled
- By the year 2028, however, all PCB equipment shall be disposed of in an environmentally sound manner
1.3.1 PCBs Elimination Network (PEN)

The PCBs Elimination Network (PEN) was launched at the simultaneous extraordinary meetings of the Conferences of the Parties to the Basel, Rotterdam and Stockholm Conventions in Bali on 22 February 2010. The PEN has been established as an arrangement for information exchange on the promotion of the cost-effective completion of the environmentally sound management (ESM) of liquids and equipment containing or contaminated with PCBs. The PEN is designed as an equal partnership for stakeholders from different sectors with an interest in the ESM of PCBs to interact within a voluntary framework to undertake the following:

- Promote ESM of PCBs and its equipment
- Foster cooperation
- Promote technical assistance and technology-transfer
- Provide and facilitate information exchange
- Raise awareness
- Encourage development and adoption of environmentally sound techniques and practices to eliminate PCBs
- Establish linkages between stakeholders

The PEN is an arrangement built on the platform of the clearinghouse mechanism, providing support to developing country Parties and Parties with economies in transition to reach the goals of the Stockholm Convention in relation to PCBs. The PEN shall implement its work on information exchange being mindful of the obligations of the Basel Convention on the transboundary movement of hazardous waste and its disposal and of the Rotterdam Convention on the prior informed consent procedure for certain hazardous chemicals and pesticides in international trade. The application form for becoming a member of the PCBs Elimination Network (PEN) is attached in Annex 12.200.

1.3.2 Handling of PCBs Regulated in the Stockholm Convention

It is forbidden:

- To produce, import and trade PCBs
- To re-use and process PCB waste
- To re-fill PCB equipment

Legal and physical entities that possess PCBs, used PCBs and PCB equipment are obliged to report the quantity, origin, nature and content of PCBs, used PCBs and PCB containing/contaminated equipment to the responsible government agency/body for the professional activities in the field of environment not later than one year after the Convention enters into force. Entities are obliged to proper label the equipment. Legal and physical entities handling PCBs, used PCBs and PCB equipment are obliged to keep records in accordance with the convention.

1.4 Rotterdam Convention (PIC Convention)

Toxic pesticides and other hazardous chemicals kill or seriously sicken thousands of people every year. They also poison the natural environment and damage many wild animal species. Governments started to address this problem in the 1980s by establishing a voluntary Prior Informed Consent procedure. PIC required exporters trading in a list of hazardous substances to obtain the prior informed consent of importers before proceeding with the trade.

In 1998, governments decided to strengthen the procedure by adopting the Rotterdam Convention, which makes PIC legally binding. The Convention establishes a first line of defence by giving importing countries the tools and information they need to identify potential hazards and exclude chemicals they
cannot manage safely. If a country agrees to import chemicals, the Convention promotes their safe use through labelling standards, technical assistance, and other forms of support. It also ensures that exporters comply with the requirements. The Rotterdam Convention entered into force on 24 February 2004. The contracting parties take measures to:

- Establish an official notification procedure i.e. to inform the importing country that an export of a chemical figuring on the PIC list will take place before the first shipment
- Inform the importing country that an export of a chemical that is banned or severely restricted for use within its territory will take place before the first shipment
- Inform other countries of each national ban or severe restriction of a chemical

1.5 UNEP/MAP-Barcelona Convention and its Protocols

The UNEP/MAP-Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean was adopted in 1995 thus amending the Barcelona Convention on the protection of the Mediterranean sea against pollution adopted in 1976 by the Mediterranean coastal states and European Union. The Barcelona Convention operates in the framework of the Mediterranean Action Plan adopted and amended respectively in 1975 and 1995. The Secretariat is provided by UNEP through the UNEP/MAP Coordinating Unit located in Athens, Greece.

The Barcelona Convention is associated by seven important protocols out of which two address different aspects of POPs management namely the Land based sources and activities Protocol, 1996 (LBS Protocol) and the Protocol on the trans-boundary movement of hazardous waste in the Mediterranean, 1996.

The LBS Protocol provides for the contracting parties to take legally binding measures to phase out a number of substances including PCB and their stocks in synergy with the work and commitments taken under the Stockholm Convention.

UNEP/MAP- Barcelona Convention is supporting the Contracting Parties to implement the SAP-MED (Strategic Action Programme to address pollution from land-based activities in the Mediterranean Region) and associated National Action Plans adopted in accordance with Land Based Sources and Activities Protocol of the Barcelona Convention which provide for a number of regional targets by 2025 related to hazardous waste and POPs ESM including phasing out and disposal.

The Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem (MedPartnership) is a collective effort of leading environmental institutions and organizations together with countries sharing the Mediterranean Sea to address the main environmental challenges that Mediterranean marine and coastal ecosystems face. The project is led by UNEP/MAP and is financially supported by the Global Environment Facility (GEF) and other donors, including the European Commission and all participating countries. Within the framework of the project, UNEP/MAP, through its MEDPOL programme, aims to support countries in the implementation of the SAP-MED. The project is supporting the EMS disposal of up to 870 tons PCB as well as undertaking important capacity building activities in four Mediterranean countries, including the preparation of EMS Guidelines for PCB.

The proposed Guide on PCB ESM is prepared with the technical support of Urs K. Wagner (ETI Umwelttechnik AG, Chur/Switzerland).
2. Data collection, Identification, Sampling and Monitoring

2.1 Data collection and Inventory

The inventory is the initial stage in the management of PCB contaminated equipment and it should be generated in the most ecological way. Implementing the following general activities will support a reliable PCB data collection:

- Assessment of the national PCB situation
- Legal assessment of national regulations
- Identification of possible stakeholders
- Awareness raising workshops for possible stakeholders, capacity building
- Preliminary inventory
- Public information
- Adaptation of national regulations
- Information of the identified stakeholders
- Detailed inventory (physical inspection, sampling, analysis, database)
- Infrastructure (handling, transport, interim storage, disposal)

The aim of the inventory is to identify, quantify and keep records of the equipment and the materials prone to containing or being contaminated with PCBs. These bits of information are indispensable when preparing a plan for PCB management, which should encompass the entire cycle of these products, as follows:

- Usage
- Management
- Storage
- Decontamination
- Elimination

Table 16: Potential holders of PCB

<table>
<thead>
<tr>
<th>Electric Utilities</th>
<th>Maintenance Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Facilities</td>
<td>Hospitals</td>
</tr>
<tr>
<td>Railroad Systems</td>
<td>Research Laboratories</td>
</tr>
<tr>
<td>Mining Industry</td>
<td>Manufacturing Plants</td>
</tr>
<tr>
<td>Army Installations</td>
<td>Waste Water Discharge Facilities</td>
</tr>
<tr>
<td>Residential or Commercial Buildings</td>
<td>Car Service Stations</td>
</tr>
<tr>
<td>Holiday Resorts / Hotels</td>
<td>Small/Medium sized Co.</td>
</tr>
<tr>
<td>School Buildings</td>
<td>Airports</td>
</tr>
<tr>
<td>Cold Storage Depots</td>
<td>Wood Processing Co.</td>
</tr>
<tr>
<td>Suppliers</td>
<td>Disposal & Recycling Companies</td>
</tr>
</tbody>
</table>

The sites with possibly PCB containing equipment shall be inspected by field teams or engineers of the authorised body in the field of environmental protection. During the inspection the particulars given in the questionnaires shall be checked and further data regarding the particular type of PCB equipment or PCB waste collected and recorded, for example kVA rating, brand name, fluid quantity, type of fluid, location of the device, serial number, PCB concentration, year of manufacture, and weight. During the visit, the site shall also be checked for visual contamination. An inventory is always a chance for preventive maintenance.
The following data need to be collected and recorded when compiling the PCB inventory:

In-service transformers
- kVA rating
- Brand name
- Fluid quantity
- Type of fluid (brand of the fluid)
- Location of transformer producer
- Number
- PCB concentration (not for refilled transformers)
- Year of manufacture
- Weight of the transformer
- Status/owner

Out of service transformer
- kVA rating (transformer capacity)
- Brand name
- Fluid quantity
- Location of the transformer producer
- Number
- PCB concentration (not for refilled transformers)
- Year of manufacture
- Weight of the transformer
- Status/owner

In-service capacitors
- kVAR rating
- Brand name
- Location of the capacitor producer
- Number
- Year of manufacture
- Weight of the capacitor
- Status/owner

Out of service capacitors
- kVAR rating
- Brand name
- Location of the capacitor producer
- Status/owner
- Number
- Year of manufacture
- Weight of the capacitor

Bulk storage tanks, drums and containers
- Type
- Location
- Weight
- Fluid quantity
- PCB concentration
- Status/owner

In order to facilitate the inspection, country-tailored inventory forms shall be developed which include all data necessary for the determination of the parameters needed for the evaluation of the risk associated with the PCB equipment and waste.

Also, ID numbers shall be determined for each piece of potentially contaminated equipment and waste. Each owner of potentially PCB contained equipment should affix the ID number to it and fill in the inventory form. If conclusion about PCB presence cannot be made based on the available data, then equipment has to be sampled. The data entry for status can include codes for leaking, stable, packed etc., which can be found at the transformer nameplate.

Not only the PCB content of transformers in use has to be checked, but also the contamination of devices out of use or in reserve. Rigorous examinations must include spare oils and other equipment that could contain PCBs (capacitors, voltage regulators, circuit breakers, heat exchangers, oil cisterns, pipe systems, etc.). Only equipment exceeding the capacity of one litre must be declared. All transformers have to be sampled even if they are of recent date of manufacture because a later unintended contamination of the transformer could have occurred (see also chapter 2.4). If a device cannot be sampled for technical reasons (e.g. capacitor), it has to be regarded as containing PCB until the sampling performed at the time of the phase out proves the opposite.

27 Voltage regulators are devices similar to transformers and have an iron core and windings used to boost up the voltage in long overhead power lines (the American-English name for a voltage regulator is booster). A rectifier is a device to change Alternating Current (AC) to Direct Current (DC). In use are semiconductors as Thyristors, GTO’s IGBT’s to “rectify” the AC. These electronic devices do not contain PCB.
2.2 PCB Applications

Closed, partially open and open applications of PCBs are presented in the tables below.

Table 17: Closed Applications of PCBs

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation and/or cooling fluid in transformers</td>
</tr>
<tr>
<td>Dielectric fluid in capacitors</td>
</tr>
<tr>
<td>Hydraulic fluid in lifting equipment, trucks and high pressure pumps (mining industry especially)</td>
</tr>
</tbody>
</table>

Table 18: Partially Open Applications of PCBs

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum pumps</td>
</tr>
<tr>
<td>Switches</td>
</tr>
<tr>
<td>Voltage regulators</td>
</tr>
<tr>
<td>Liquid filled electrical cables</td>
</tr>
<tr>
<td>Liquid filled circuit breakers</td>
</tr>
<tr>
<td>Heat transfer fluids</td>
</tr>
<tr>
<td>Hydraulic fluids</td>
</tr>
</tbody>
</table>

Table 19: Open Applications of PCBs

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caulks/sealants (buildings)</td>
</tr>
<tr>
<td>Paints and plaster</td>
</tr>
<tr>
<td>Anti-corrosion coatings (indoors and outdoors)</td>
</tr>
<tr>
<td>Surface coatings (e.g. floors)</td>
</tr>
<tr>
<td>Cables and cable sheaths</td>
</tr>
<tr>
<td>Sealed double glazing windows</td>
</tr>
<tr>
<td>Lubricating fluid in oils and grease; cutting oils</td>
</tr>
<tr>
<td>PCBs as flame retardant and impregnating agent (e.g. indoor wood sealing for panels and floor finishers)</td>
</tr>
<tr>
<td>Adhesives</td>
</tr>
<tr>
<td>Carbonless copy paper</td>
</tr>
<tr>
<td>Inks</td>
</tr>
<tr>
<td>etc.</td>
</tr>
</tbody>
</table>

The Chemical lifecycle of POPs and specifically PCB shall always be considered.

Chart 1: Chemical lifecycle of PCBs
2.2 Periodic Examinations and Maintenance of PCB Containing Devices

Devices containing PCB are subject to regular periodic checks. These examinations mainly consist of checking the parameters from a technological and production aspect (e.g. technical characteristics, electric permeability of insulating materials, losses).

Due to possibility of contamination of the environment, additional inspections are needed with devices identified as PCB-containing. These inspections are mainly from the aspect of leakage of contaminating insulating oils. Thus, the following inspections should be added to the warrant for regular inspections (if not already envisaged from another aspect):

- Inspection of all sealing elements of the device
 (the check consists of a visual inspection if some element leaks)
- Inspection whether any of the elements containing insulating oil is oxidized (corroded)
 (this check is performed visually, because devices containing insulating oil are painted regularly due to easier dissipation of heat)
- Inspection for deformations of the housing of the device (hermetically sealed capacitors often “puffed up”)

If any of the above damages are confirmed, then a proposed intervention procedure follows:

- The bolts are re-tightened. If this does not stop the leakage, then a part of the insulating oil is drained “under the level of the edger” and the sealer is switched.
- The oxidized surface is cleaned from the oxide with a steel brush and sanding paper to reach metal shine. Afterwards, the spot is degreased with solvents, and the metal is checked for punctures and leakage with absorbing paper (filter paper or common paper handkerchief will also do the job). Even if there is no leakage, the spot is impregnated with means for neutralizing the iron oxide (“Antirost” or similar) and at the end are painted with basic and covering paint as the other part of the transformer. If even smallest leakage is noticed, the element (i.e. the radiator) must be demounted and welded, replaced if possible or the transformer should be taken to an industrial reparation. If the element is a condenser, it is discarded and replaced with a new one.
- The capacitor is discarded and replaced with a new one.

ADVICE: ALL THESE INTERVENTIONS ARE TO BE PERFORMED BY SKILLED AND AUTHORISED SERVICE ONLY.

2.2.1 Sampling of Transformers, Capacitors and Construction Materials

It is advisable to prepare a sampling box that contains basic equipment for sampling activities. This ensures access to essential equipment immediately when required.

Picture 1: Inside view with possible equipment
Picture 2: Consider also electric safety precautions
Normally glass bottles are used for liquid samples and glass or plastic containers for solids. However if a high PCB content is expected (e.g. in case of pure PCB) glass bottles must always be chosen, because PCB can diffuse through plastic containers.

Sampling containers must be absolutely clean. Whenever sampling containers are transported over long distances, demands on the glass quality (unbreakable) obviously increase.

When preparing the sampling box, the intended minimum number of samples has to be considered. This depends on the kind of PCB analysis and possible further analyses (e.g. oil quality in case of negative PCB result).

Table 20: Minimum sample quantities and sampling containers

<table>
<thead>
<tr>
<th>Method</th>
<th>Matrix</th>
<th>Quantity</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clor-N-Oil</td>
<td>Oil</td>
<td>10 ml</td>
<td>20 ml glass vial (white lid)</td>
</tr>
<tr>
<td>Clor-N-Soil</td>
<td>Solids (e.g. soil, concrete dust, etc.)</td>
<td>10 g</td>
<td>60 ml glass vial (white lid) 250 ml PE-HD container (plastic, white with blue lid)</td>
</tr>
<tr>
<td>L 2000 DX</td>
<td>Oil</td>
<td>10 ml</td>
<td>20 ml glass vial (white lid) 30 ml glass bottle Hexavis (brown with black lid)</td>
</tr>
<tr>
<td>L 2000 DX</td>
<td>Solids (e.g. soil, concrete dust, etc.)</td>
<td>Minimum 10 g, if possible more</td>
<td>60 ml glass vial (white lid) 250 ml PE-HD container (plastic, white with blue lid)</td>
</tr>
<tr>
<td>GC (lab)</td>
<td>Oil</td>
<td>20 ml</td>
<td>20 ml to ½ litre bottles</td>
</tr>
<tr>
<td>GC (lab)</td>
<td>Solids (e.g. soil, concrete dust, etc.)</td>
<td>10 g</td>
<td>60 ml glass vial (white lid) 250 ml PE-HD container (plastic, white with blue lid)</td>
</tr>
</tbody>
</table>

Please consider that the above-mentioned quantities are minimum figures. It is advisable to always take more sampling material e.g. to fill a 250 ml PE-HD container with soil. For drill samples minimum quantities are acceptable because of the often difficult sampling procedures.

To determine the quality of a transformer’s cooling fluid at the same time, sample at least 500 ml of the oil. It should be filled in a 500 ml glass bottle (with blue lid). There are various manufacturers of quality glass bottles as e.g. Schott, Duran or Simax.

Picture 3: Glass vial Picture 4: 30 ml Glass bottle Hexavis Picture 5: 500ml Glass bottle Duran

2.2.2 General Sampling Procedures

The main source of error is the sampling process itself. Therefore the following points must be particularly considered:

Risk of Cross Contamination
Contamination is easily spread from one sample to another. When using one-way material (e.g. Kleenex, pipettes, metal scoops, etc.) it must be ensured that a new product is used for every new sample. If this is not possible, the used equipment must always be cleaned before another sample is taken. If possible, solvents (e.g. technical acetone) should be used for cleaning purposes.

Confusion of Samples
In order to prevent a confusion of samples, it is crucial to clearly mark the sample containers immediately after the sample has been taken. The identical data must also be recorded in a sampling report. A label must be affixed to the sampling containers.

Sampling Reports:
The sampling report must be filled in immediately. If it is completed at a later stage, important information could be lost or forgotten.

Sampling forms must be used to record the data required for evaluation and interpretation, for quality assurance and to ensure comparability with other assessment observation.

As opposed to laboratory procedures, no standard procedure for the performance of sampling can be given, since both the circumstances and the potential problems encountered are manifold. The ISO (ISO 2002c) recommends that quality assurance be performed according to the principles of the ISO 9000 standard (SNV 1999). An adequate standard of quality demands the application of quality assurance methods. Quality assurance involves strategies for the reduction of errors in sampling and sample treatment from the planning to the operational stage, by making the procedural steps readily
comprehensible and retraceable (ISO 9000). Quality assurance also obliges those performing the sampling activities to uphold the necessary standards during their task and on all sites.

2.2.3 Sampling of Transformers

In order to prevent skin from getting into contact with PCBs, one-way protective gloves must be worn. Eyes must be protected against possible oil splashes by wearing goggles.

The sample can be taken by using the drain tap, which usually is at the bottom of the transformer. If a transformer has been disconnected from power for over 72 hours the sample should generally be taken from the bottom, as PCB sinks to the lower level because of its higher density. Sometimes the gasket gets damaged when the drain tap is opened. It is therefore advisable to always have a spare gasket ready.

Alternatively, transformers can be sampled via the oil filling cap by using a hand pump (consider: a new hand pump must be used for each transformer). Oil samples from the expansion receptacle cannot always be regarded as representative, because the oil does not circulate and thus it is not really mixed.

Often, transformers are sampled when they are in use. Appropriate protective measures and safety regulations by responsible Electricians must be known and considered at any time!

If only the PCB content of the oil is analysed, 20 ml glass vials can be used provided analysis is performed on site. If the analysis is performed elsewhere and the samples have to be transported over long distances, 30 ml glass bottles should be used as sample containers because they are more robust. If a holder of a transformer also wants to have the quality of the oil tested, a 500 ml glass bottle should be used.

If a PCB inventory demands an analysis of the cooling fluid, the owner has the possibility to test the oil quality at the same time. This is dependent on the age and condition of the equipment. Such a preventive maintenance allows an assessment of the technical condition of the transformer and thus helps prevent possible damages/failures resulting from e.g. acidity or increased dampness.

Oil quality analyses must only be run after negative PCB result; otherwise the laboratory equipment will be contaminated with PCB.

The following steps must be followed when sampling a transformer:

- Place a drip tray under the drain tap,
- Label the sample bottle with the same serial number as on the inventory form,
- Drain off the required oil into the glass vial - quantity depending on screening/analysis
- Carefully retighten the seal.
- Then affix a label on the transformer with the same serial number as on the inventory form and the glass vial. The label usually contains the Identification number and Date of sampling

Step-by-step Sampling of a Transformer
If the oil quality shall also be tested, the following steps have to be considered:

- Sampling via drain tap: Drain off 1 to 2 litres of oil first in order to clean the drain from particles which might have accumulated in that area,
- Amount of oil required: 0.5 to 1 litres,
- Leave the oil for 24 hours, in order to allow particles and water to settle,
- Take sample from the upper third of the oil for the analysis using a pipette, and
- Return the drained 1 to 2 litres of oil back into the transformer (only if the oil filling cap is out of reach of the high voltage, otherwise shut off the transformer before refilling the drained oil)

All wastes must be disposed of in an environmentally sound manner – the disposal method always depends on the analysis result.

Remark: Sampling is also an opportunity to collect useful information for the database.

2.2.4 Sampling of Phased Out and Drained Transformers

Often transformers have already been phased out, temporarily stored and drained at the time a PCB inventory is compiled. In such cases, it needs to be decided on site, how the sampling shall be performed.

Even if a device has been drained, there should still be some oil present in the passive part of the transformer due to the leaching in the days and weeks after the draining. Depending on the size of the transformer, the leaching from the solid parts of the device (wood, insulation paper, etc.) can leave a few litres of oil at the bottom of the transformer. However, usually there is not enough oil to sample it via the drain tap, as the oil layer is deeper than the valve.

In such cases, the device needs to be sampled through an opening in the top. Stiff tubes (e.g. glass or PE) can be used to take a sample of the oil at the bottom of the transformer.
The PCB results obtained from drained transformers could be higher than the original contamination in the transformer. This is due to the leaching effect from the core and windings into only a limited volume of oil.

If there is no oil at all left in the device, solid materials from the active part of the transformer could be sampled and analyzed (wood or insulation paper). However, such analysis can only be performed in a laboratory by gas chromatography.

Due to practical reasons it might be advisable to label such drained transformers as PCB-contaminated and note it accordingly in the physical site inspection report (respectively inventory form) and leave it for future investigations.

2.2.5 Sampling of Capacitors

Power capacitors are built into hermetically closed containers and there is no direct access to the cooling liquid.

In many cases, the manufacturer provided information about the type of dielectric liquid, either with identification on the nameplate or with a separate tag confirming that the contents are harmful for the environment. Such capacitors do not need further investigation. They definitely contain PCBs and must be treated accordingly.

If a designation is missing and relevant information from the manufacturer is not available, the only way to test the dielectric liquid is to drill a hole in the casing on the top or cut the isolator and retrieve an oil sample. This can be done by (e.g.) using a pipette (using only once).
After having opened the capacitor, it is damaged and unusable and thus must be stored in appropriate containers (e.g. in an UN-approved steel drum).

Thus only phased out capacitors can undergo this procedure. Capacitors still in service and manufactured before 1993, with missing information about the dielectric liquid have to be labelled as PCB suspected equipment (see chapter 2.5).

If there is a series of the same capacitors, it is usually sufficient to sample only two devices out of the series. Preferably a mixed sample originating from the two capacitors with the lowest serial numbers should be analysed. Caution should be taken if the analysis reveals PCB, even if it is only a slight contamination. Such contamination could have been caused during the production e.g. when using the same pumps for mineral oil and PCB oil. In such cases, all capacitors of one series must be analytically tested.

Personal Protective Equipment (PPE)

The PPE for these activities consist of protective gloves and goggles. Respiratory protection is not necessary when taking single samples. If several samplings are taken within short intervals light respiratory protection is recommended.

Sampling of Small Sized Capacitors

Usually capacitors of a smaller size do not contain PCB as a floating liquid in the casing, but rather as an impregnating agent of the insulation layers in the capacitor. It is therefore not possible to drill a hole in the casing and take an oil sample with a pipette.

Prepare the working place with an oil carpet and a tray (metal if available). The personal protective equipment comprises gloves, safety goggles and in case of poor ventilation a respiratory mask. Firstly, a circle has to be cut around the top end of the capacitor casing near the contacts using a small iron saw. Once the top has been lifted, it is usually possible to pull out the active part (caps don’t have windings as such). With a tool remove about 1 cm³ of the insulation and conductor layers and place them in a 60 ml glass vial. The samples can then be prepared in the laboratory and analysed by gas chromatography. All tools and materials that came in contact with the capacitors have to be cleaned e.g. with acetone, or be disposed of as hazardous waste.

Picture 15: Small sized capacitors

Picture 16: Sampling of small sized capacitors
Step-by-step identification of PCB Capacitors

| Step 1 – Year of Manufacture: | Check nameplate for year of manufacture. If the capacitor was manufactured in or after 1993 → “PCB free”
There is no SC or global regulatory policy on a deadline. The decision is based from where electrical devices were imported and experience data. Therefore it may vary from country to country, in many Countries the deadline is set on 1993
** Final Year and/or additional text to be provided by the countries. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 – Declaration:</td>
<td>Check nameplate for declaration “PCB” or “PCB trade name”, e.g. Aroclor, Askarel, Clophen, Delor, Elaol, Fenclor, No Flamol Phenoclor, Pyralene, Pyranol, Sovol, etc. → “PCB containing”</td>
</tr>
<tr>
<td>Step 3 – Capacitor Lists:</td>
<td>Compare nameplate/serial number with capacitor lists. Many devices can be identified or categorised according to information in capacitor lists. → “PCB free or PCB suspect”</td>
</tr>
<tr>
<td>Step 4 – Sampling/Analysis:</td>
<td>If capacitor cannot be identified according to Steps 1-3 above, it must be sampled and analysed according to the procedure with transformers. Alternatively, the capacitor can be regarded as PCB containing. Please see the appropriate Factsheets.</td>
</tr>
</tbody>
</table>

2.2.6 Sampling of Concrete and Brick Walls

A cordless drill can be used for taking samples. Drills (bits) with a diameter of 20 mm to 22 mm should be used to drill holes in the PCB suspected areas. The collected concrete dust from the drilling activity forms the sample for the analysis.

Safety Precautions
The drilling procedure produces dust that must be regarded as contaminated. Consequently the safety precautions during the sampling must be followed strictly and it is essential to wear:

- Leather and/or Nitrile gloves,
- Safety goggles,
- Respiratory mask with a filter for organic vapours and dusts,
- Ear protection while drilling.

28 It is recommended to choose the year of manufacturing of the capacitors in line with national legislation. In case a reference year is missing in national legislation, it is recommended to use 1993 as reference year.
If samples are taken from a brick wall, cross contamination must be avoided by taking steps such as covering the floor with plastic liner or industrial carpet. These materials have also to be disposed of as hazardous waste.

Defining the Extent of the Contaminated Area

When confronted with a spill the first step is a visual inspection of the site. In most cases, the oily parts can be distinguished visually. The extent of the contamination should be investigated and the source of spill traced.

These first impressions must be verified by a few well-chosen samples. The first sample will be taken from the estimated centre, to determine whether the spill contains PCB. If the first sample indicates that PCB is present, the next samples will be taken in order to delineate the contaminated area. Not only is the size of the contamination on the surface important, but also it is essential to know the depth of penetration into the material. The limit for a sample to be considered as contaminated is 50 mg/kg (ppm), thus all samples below 50 mg/kg (ppm) can be regarded as PCB free.

In order to save costs, a strategy should be prepared to delineate the contaminated area with a small number of samples. This can be done in many ways. The appropriate strategy will be determined by the specific situation. A chosen strategy can be adapted or optimized by considering the results of an on-site analysis of the samples. An example of a visible contamination is shown in Picture 17 and Picture 18. If a rather large area can be assumed as being PCB-free, there is a way to reduce the expenditures for sampling by collecting mixed samples to verify this. Instead of taking a number of «single» samples and analysing them separately, one sample with an equal mixture from several sampling spots can be analysed in one go. If the result turns out to be well below the limit of 50 mg/kg, it can be assumed that all spots are PCB free. If the result shows a contamination around 50 mg/kg or more, the source of the contamination has to be located by further single samples.

Picture 17: Proposal strategy - horizontally **Picture 18: Proposal strategy - vertically**

If the extent of the contamination is not visible a site specific strategy for the problem has to be applied. The area, where a contamination cannot be excluded, could be subdivided into a grid with equal parts with collection of a (mixed) sample in each field.

Sampling

After preparing a sampling strategy and considering the safety precautions mentioned above, the drilling can be executed. The sampling report must be filled in correctly and the sample containers marked accordingly.

Before drilling, the auger has to be cleaned e.g. with acetone, in order to prevent any contamination from former drillings.

For field analysis purposes, 10 grams of concrete or brick dust are needed, though it is advisable to take more so that the results can be double checked or verified by gas chromatography. Consider that it has to be assumed that the contamination varies with the depth of the drilled hole.
Therefore it is advisable to drill no deeper than 1.5 cm within one sample. If the necessary amount of dust cannot be obtained from this hole it is recommended to drill another one right next to it, instead of drilling deeper.

The drill dust can be collected by using a poly spoon (Picture 19) and put into the sample container. After the sampling any remaining dust has to be collected with a brush and a weighing dish and disposed of as hazardous waste. Materials that came in contact with the soil/dust have to be cleaned with acetone or disposed of as hazardous waste.

Picture 19: Sampling of concrete

Picture 20: Cleaning of leftover dust

Sampling a brick wall requires the assistance of another person who collects the drilling dust with an appropriate dish.

Sampling in Depths

Depending on the chosen strategy to define the extent of the contamination, the limits of the contamination in depth have to be verified by taking samples.

Below an explanation of the proceedings for a sampling in depths is given for an assumed depth of contaminant penetration of 10 cm:

Firstly: the area is covered with an oil pad (approx. 30 x 30 cm, with a hole in the middle of around the size of the drill bit). Secondly: a hole with a depth of 10 cm is drilled, the dust collected and the hole cleaned. Then the oil pad is removed and disposed of as hazardous waste including the dust. The spot is then covered with a new oil pad as previously described and sticky tape is placed over the hole to facilitate the dust collecting. The drilling is continued to the required depth for the sample. The collected dust should not get in contact with the contaminated surface, otherwise or the sample will be a mixture and indicate wrong results. Finally the oil pad is removed and disposed of as hazardous waste.

2.2.7 Sampling of Soil

During the sampling it is recommended to wear:

- Disposable gloves (Nitrile or Vinyl).

If a site is heavily contaminated, the wearing of the following is recommended:

- Respiratory mask with a filter for organic vapours and dusts,
- Tyvek overall and boots.

The defining of the extent of the contaminated area works along the same principles as with the sampling of concrete and brick walls (see previous chapter). With regard to soil samples, the choice of where to take the sample has an influence on the results obtained.
Suspected contaminated areas are sites where either transformers containing PCB, contaminated transformers and/or capacitors containing PCB are or were installed or stored. In some cases oil-stains resulting from leakage or improper storage are even visible. The soil or gravel in such areas needs special attention.

If there are no visible stains in the mentioned areas, mixed samples must be taken directly from the surface. A strategy to delineate the contaminated area should be prepared (see also sampling of concrete or walls). The samples from the surface are taken with a clean poly spoon. After the exercise the spoon must be cleaned with solvents (acetone) to prevent any possible cross contamination.

The sampling report29 has to be filled in correctly and the sample container has to be marked accordingly. Glass vials or PE-HD plastic containers should be used.

Big stones are not appropriate for an analysis as the extraction solution to extract the PCBs for the analysis does not deeply penetrate stone. Material with small sized gravel or sand should be preferred.

Cross contamination must be avoided in any case. After use the scoop and all other items, which were in direct contact with the soil, have to be cleaned with acetone or disposed of as hazardous waste.

Sampling of soil and groundwater is to be carried out according to protocols, whose detailed description is beyond the scope of this guide.

2.3 Screening Test Kits and Laboratory Analysis

PCB analysis can be divided into two categories: Specific and non-specific methods.

Specific methods include gas chromatography (GC) and mass spectrometry (MS) which analyse for particular PCB molecules.

Non-specific methods identify classes of compounds such as chlorinated hydrocarbons, to which PCBs belong. These non-specific methods include PCB field screening tests like CLOR-N-OIL and CLOR-N-SOIL test kits as well as the L2000 DX field Analyzer.

In general, PCB specific methods are more accurate than non-specific methods but they are more expensive, take longer to run, qualified staff is needed, and they cannot be used on site.

Two non-specific tests are below described that are however ABSOLUTELY NOT recommended to be used due to uncertainties in results and high potential of polluting water and air!

29The sampling report format could be used on the base of the PCB Inventory Form according to the “Regulation on criteria and conditions for handling, storage and disposal of PCBs”
Density Tests
The easiest way to verify whether or not oil contains heavy concentrations of PCBs is a simple density test:

1. Use a 10 ml glass vial
2. Pour some water into the vial
3. Add some dielectric liquid. If the oil layer is at the bottom of the vial the density of the oil is > 1. In such a case there is no doubt that the PCB concentration is rather high. If the oil layer remains on top of the water layer; it can be assumed that it is a mineral oil with a density of < 1.

![Picture 23: Density Test with oil in water on a scrap yard](image1)

![Picture 24: The same method in an oil laboratory](image2)

However, a density test only remains an emergency method in order to identify a pure PCB source. It cannot be recommended as a reliable tool for inventory purposes, as contaminated oil cannot be detected. Furthermore, there is a high risk of water/sewage contamination by hydrocarbons due to non-environmental conform disposal.

Beilstein Method
A piece of copper oxide fastened to a platinum wire is moistened with the oil to be tested and held in the outer zone of a Bunsen flame. As soon as the carbon has burned away, the presence of chlorine is indicated by the greenish or greenish-blue colour of the flame. This colour is produced by volatilizing copper chloride and its intensity and duration depends on the amount of chlorine present.

![This test may only be performed in a laboratory by chemists in appropriate lab-chapel and/or ventilated rooms. There is a risk that highly toxic dioxins are unintentionally formed and released.](image3)

Generally, both the Density test and the Beilstein method may only be used as an emergency method, or in case of severe lack of resources and under certain circumstances.

Chlorine Detection Test Kits
There are a variety of different brands of chlorine detection test kits available:

- Immunoassay technology ENVIROGARD by Millipore;
- CLOR-N-OIL and CLOR-N-SOIL by Dexsil. The Dexsil test generally distinguishes between the PCB test kits for oil (e.g. CLOR-N-OIL) and for soils (e.g. CLOR-N-SOIL).
Both Dexsil tests rely on the same principle: The chlorine atoms are chemically stripped away from the PCBs, the total chlorine concentration is determined and indicated by a colorimetric reaction. Three different test levels are available: **20 ppm, 50 ppm and 500 ppm**. Each kit is used in the same way. The end point for each has been adjusted so that it changes color at the required level. The kit is a «GO / NO GO» type of test where the result is either positive or negative.

More information and links regarding test kits and their applications can be found in Annex 12.1.

Instrumental Detection of the Chlorine Concentration

Instrumental detections of the chlorine concentration are methods that use instruments or analyzers to determine the chlorine concentration in the samples.

The L2000DX relies on the same basic chemistry as the CLOR-N-OIL test kits, however instead of a colorimetric reaction; the L2000DX uses an ion specific electrode to quantify the contamination in the sample. Sample analysis is available for transformer oils, soils, water and surface wipes. The usable measurement range for oils and soils is 2 to 2'000 ppm, 20 ppb to 2'000 ppm for water and 2 to 2'000 ug/100 cm² for wipe samples.

The L2000DX Analyzer is pre-programmed with conversion factors for all major Aroclors and most chlorinated pesticides and solvents. The built-in methods include corrections for extraction efficiencies, dilution factors and blank contributions.

The L2000DX can be used in the field or laboratory by non-technical personnel. An oil sample requires about five minutes to run while water, soil and surface tests take about ten minutes each. This eliminates the need to wait days or even weeks for laboratory results. Crews working at a site can take immediate action to secure equipment, isolate a site, or remove contaminated soil.
Instrument calibration is required at the beginning of each day (takes about 2 minutes). After calibrating, a reagent blank is tested to ensure the analysis is being run properly and to provide a baseline for accurate low-level results.

Blank subtraction can be incorporated into the method and is automatically updated upon calibration. The preparation steps involve extracting the chlorinated organics from the soil, water or wipe material, (not required for PCB in transformer oil), and reacting the sample with a sodium reagent to transform the chlorinated organics into chloride. The resulting chloride is quantified by the L2000DX Analyzer. Several samples can be prepared concurrently, than analyzed in less than a minute per sample. One operator can complete about 65 oil tests, or 45 soil or surface wipe tests in an eight hour day.

Table 21: Advantages and disadvantages of field screening tests

<table>
<thead>
<tr>
<th>Field Screening Tests</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: Within minutes one has proof whether the sample contains > or < than 20/50/100 ppm PCB.</td>
<td></td>
<td>Can provide false-positive results (but never false-negative)</td>
</tr>
<tr>
<td>Easy to use: The tests follow a simple procedure anyone can perform in the field or lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inexpensive: A PCB determination by test kits is less expensive than analysis in the laboratory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economical: Many samples need not to be analyzed by GC at all.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regarding waste generated during the sampling and screening activities it is generally advised to consider all waste as PCB contaminated. Therefore, UN-approved packaging (Steel- or PE drums, Big Bags, Containers etc.) for both, liquid and solid waste must be available. Also all used reagents, test kits etc. shall be collected and disposed of as industrial waste.

2.3.1 Analysis by Gas Chromatography (GC)

Gas chromatography separates the components of a mixture and allows an electron capture detector to detect any compounds containing chlorine, including PCBs.
Due to their unique retention time, PCBs can usually be singled out from other chlorinated compounds using this technique. If closely related chlorinated compounds are present in the sample, then a mass spectrometry detector can «fingerprint» the PCBs and confirm their identity.

A common question is whether such analyses should be focused on mixtures of PCBs (e.g., Aroclor mixes) or on individual congeners. Congener-specific analyses have important advantages over analyses of mixtures: generally, congener analyses offer lower detection limits and greater information content. In addition, compositions of weathered, degraded, and metabolized PCB mixtures can be measured and interpreted more easily.

Also, it is easier to detect interferences caused by other chemicals, and quantification of individual congeners is more accurate. However, co-elution of analytes is a problem in a PCB congener analysis, so a strong quality assurance program and reliable reference materials are needed by the analyst.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact results</td>
<td>Relatively high costs</td>
</tr>
<tr>
<td>Identification of PCB type possible</td>
<td>Long waiting time for result</td>
</tr>
</tbody>
</table>

Analyses shall be carried out by accredited and registered laboratories. Laboratories carrying out PCB analyses shall incorporate quality assurance and quality control programs.

Table 22: Advantages and disadvantages of gas chromatography

Analyses shall be carried out by accredited and registered laboratories. Laboratories carrying out PCB analyses shall incorporate quality assurance and quality control programs.

2.3.2 Analysis Proceedings

To save analysis costs and time it is advisable to use screening tests whenever applicable. Nevertheless, it has to be considered that these methods test for the presence of chlorine in the sample being examined. As a result other chlorinated compounds, which can be part of the sample, could cause false positive results because the analysis method assumes all chlorinated compounds are PCBs. False negative results are not possible as if there is no chlorine present, PCBs cannot be present either.

Thus if a screening test shows a negative result (PCB below 50 ppm) it must be true, so there is no need of verification by another method.

If a test kit or the L2000 DX analyzer shows positive screening result (PCB > 50 ppm) verification by gas chromatography is always necessary.

In this case the sample for gas chromatography analysis is to be kept and forwarded to the appropriate laboratory. If results of a GC analysis show a significantly lower result than the screening tests there is no reason to be alarmed.

The tests are standardized for Aroclor 1242 with chlorine content of 42 %. Analyses with higher chlorinated PCB samples (e.g. Aroclor 1260 with chlorine content of 60 %) consequently show a higher result than the true PCB content. Thus the screening tests are always on the safe side.

Although false positive results obtained by the screening tests can cause unnecessary secondary testing, non-specific methods can be very economical when used on samples such as transformer oil, in which few sources of chlorine other than PCB exist. Used crankcase and cutting oils however always contain
some chlorinated paraffin and almost every non-specific test produces false positive results. More expensive laboratory analysis is advised when testing for PCBs in these chlorine-containing oils.

2.4 Database

The information on PCB containing equipment and its owners, which is compiled in the course of the national inventory, has to be recorded in a database:

An Access or similar database is an ideal tool to estimate the overall amount of PCB. This information is essential regarding possible project proposals e.g. for an installation of a decontamination or elimination plant in the country. The database enables the environmental authorities to control the PCB equipment in regard to the deadlines for the elimination. As the addresses of all owners of PCB containing equipment are recorded, the database can also be used if the environmental authorities have to send mailings to the owners.

Picture 31: Example of input mask of database

The database’s input mask should match with the inventory form. All information from the form should be recorded in the database. The extent of the information to be declared by the stakeholders in the inventory form should include at least: general data about ownership, equipment details as dimensions, ratings, location: indoor / outdoor etc. and also information that could be essential regarding future elimination (as leakages status of PCB-screening etc.). Furthermore, data related to PCB contaminated hotspots, including sites and groundwater, should be included.

Even photographs of the equipment and eventual leakages are to be incorporated in the National PCB Database. Therefore the database software in use should cover functions to enable storage of digital pictures.

Depending on the criteria for the deadlines of elimination (see also chapter 3.3) the following information should be considered:

- Is the equipment in use or out of use?
- Is the concentration of PCB <500mg/kg or >500mg/kg
- Is the technical condition of the equipment good or bad? and
- Is the equipment located near places of higher risk (e.g. hospitals, medical centres, food industries, water and sanitation services, highly frequented buildings etc.)?

Ideally the above criteria are linked to a search or output function in the database, which enables the user to control and monitor each piece of equipment that has to be eliminated by a certain deadline.

Each party of the Stockholm Convention is obliged to provide a report to the Conference of the Parties (COP) every five years on the progress in eliminating PCB. Therefore a function of the database should cover the recording and print out of all eliminated equipment in a given period.
A PCB database should not only be considered as a way to store all gathered information, but also as a tool which will be continually updated, assessed and adapted, until the last device containing PCB is eliminated (2028).

2.5 Labelling of Checked Equipment

When compiling the inventory, the inspected equipment shall be marked with labels as a precautionary measure. According to the result of the analysis of a sample or to the examination of the manufacturer’s plate on a capacitor, a label as specified below will be affixed to the equipment.

This shall guarantee that the equipment can be separated easily and correctly for the disposal at the time of the dismantling activities. In addition, in case of an incident it ensures that the hazards of the situation can be assessed immediately at first glance from the color of the label.

Picture 32: Label for PCB free equipment

The equipment has been checked. Either the analysis of a sample has shown a PCB content of < 50 ppm or it has been possible to definitely determine that the equipment does not contain PCB e.g. by manufacturer’s plate, nameplate, etc. (only possible with capacitors).

Picture 33: Label for PCB containing equipment

The red label is affixed to equipment where a PCB concentration of > 50 ppm has been analytically proven or if the equipment could clearly be identified as PCB containing by means of manufacturer’s information e.g. name of cooling fluid. (possible with transformers and capacitors).

Picture 34: Label for PCB suspected equipment

The equipment has been recorded but not yet tested for PCBs e.g. if a sampling is only possible after a phase out. Such labelled equipment remains PCB suspected, a sample must be analyzed after dismantling respectively before disposal.
It is recommended that the contracting Parties use the proposed labels, presented in pictures 32 to 34 for the purpose of easy recognition while in service, for maintenance and phased out equipment. For the export purposes countries must use additionally the labels as referred to in chapter 8.2.2 in line with the Basel Convention requirements.

Picture 35: Example labelled transformers

Picture 36: Example labelled capacitors

Picture 37: Label for decontaminated PCB equipment

<table>
<thead>
<tr>
<th>Decontaminated PCB Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The liquid containing PCBs was replaced:</td>
</tr>
<tr>
<td>- with ... (name of replacement liquid)</td>
</tr>
<tr>
<td>- on ... (date)</td>
</tr>
<tr>
<td>- by ... (contractor)</td>
</tr>
<tr>
<td>Weight percentages of PCBs in the liquid in the equipment:</td>
</tr>
<tr>
<td>- old liquid ...</td>
</tr>
<tr>
<td>- replacement liquid</td>
</tr>
</tbody>
</table>

Obviously, the concentration of PCB will increase after some time because of remaining PCBs in the active parts of the equipment (transformer). Therefore, a reliable measurement of the concentration is only valid after a given time after the decontamination.

The owner of decontaminated transformer should retest the oil in the transformer not before six months after treatment, and again after 2-3 months of operating time before a transformer can be reclassified.

Labels will be made by the owners of the equipment in accordance with the provisions (regarding size and material of the labels) stipulated in the Inventory Regulations.

2.6 Site Monitoring

The aim of a site monitoring is to identify all materials that could have been contaminated by equipment containing PCB during their life as a result of leaks, inexpert working practices, spills, inexpert storage or incidents. Places to investigate include concrete floors or gravel under former PCB containing equipment, concrete floor in workshops or storage sites, soil in the area of former incidents or dumping places, etc.

Site monitoring covering the entire area of a company can be regarded as the last step after the disposal or decontamination of all equipment containing PCB in that company. Nevertheless, it is also recommended
to perform site monitoring on a smaller scale after the disposal or decontamination of a single piece of equipment. In this case the monitoring would only cover the area of the concerned device.

2.6.1 Land Register of Areas and Storage Facilities with Possible PCB Contamination or contaminated equipment

In a POPs contaminated areas database all spots are summarized that potentially could be contaminated by PCBs. It includes all locations where PCB or equipment containing PCB has been in use, repaired or stored.

It must also be investigated, in what locations and circumstances PCB had been used in the past. Company archives about material flow or documents about former equipment can be a useful source of information. It is further worthwhile to interview employees of the company who are or were in charge of the acquisition or maintenance of potentially PCB containing equipment. Interviews should cover the types of purchased equipment, practices of maintenance, possible refills, stored drums with PCB for topping-ups, places of storage and workshops, incidents, etc.

The information obtained must be checked visually to substantiate the suspicion of PCB. The places which have to be visited are:

- Current and former sites of potentially PCB containing equipment (check ground under the equipment for leaks especially),
- Current and former workshops,
- Current and former storage sites for potentially PCB containing equipment or spare insulation fluid,
 Sites of incidents (spills, internal failures, etc.), and Dumping sites.

All buildings where the PCB contaminated equipment is stored the following label should be affixed on building doors as indicated above.

2.6.2 Risk Assessment

To optimize the further proceedings it is advised to assess the associated risks of the sites that are listed in the POPs contaminated areas database. The questions to be considered are:

- Is the suspected PCB contamination secured or is it currently still spreading?
- Is the contamination endangering drinking water (ground water)?
- Is the location highly frequented by workers or passers-by (residential area)?
- Quantification: What is the size of the potential contamination or quantity of the endangered goods? and
- Storage: Are the suspected PCB containing goods stored appropriately (in drums or trays, sheltered, locked and separated from other goods) or inexpertly (no trays, in the open air)?

Sites that present an increased risk for humans or the environment have to be imposed with a higher priority for immediate action.

2.6.3 Analysis

In the next step a suspicion concerning possible PCB contamination has to be proved or disproved by taking and analysing specific samples. It is important to note that even if a visible spill does not contain PCB it is very likely that it does contain hydrocarbons, which are also a risk for the environment and have to be treated.
2.6.4 Extent of Contamination
When a site has been confirmed as being PCB contaminated, the extent of the contamination has to be delineated by taking further specific samples. In addition, the surrounding conditions of the site in terms of accessibility for machinery, availability of water and power, etc., need to be clarified. On the basis of the information obtained a decontamination of the site can be prepared. The following flow chart provides an overview of the procedures for a site monitoring.

![Flow Chart: Site monitoring – procedures]

Chart 2: Site monitoring – procedures
3. PCB Management of Closed Applications

3.1 PCB Management Plan

Due to the noxious properties of PCBs every owner of equipment containing PCB should prepare a PCB management plan. It must cover the whole life cycle of these products (use, handling, storage and disposal) taking into consideration the dates as per PCB regulation. The management plan should be based on the polluter pays principle and should be in line with national law, regulations and priorities. Usage, handling and storage of PCB equipment should be considered as significant aspect by organization’s Environmental Management Systems and should also be considered as hazard during the occupation health and safety risk assessment. A PCB management plan includes the following components.

3.1.1 Designation of a PCB Responsible

Every company has to assign to one or several people, depending on the size of the company, the responsibilities of implementing the procedures described below. In case of a PCB incident the PCB Representative will lead the emergency procedures.

3.1.2 Training and Instruction of Staff

Staff members must be instructed periodically about the risks for humans and the environment posed by these products and the safety measures as described in chapter 5. Precautions in order to prevent contamination of PCB free transformers (e. g. by refilling with untested oil) and the measures to take in case of an incident should be revised from time to time.

3.1.3 Inventory

All equipment in and out of use that may contain PCBs has to be identified and checked (also see chapter 2.1 Inventory). All tested devices must be correctly labeled as described in chapter 2.5.

3.1.4 Database on Locations with PCB Equipment, Waste or Contamination

As described in chapter 2.5 the inventoried devices, liquids, solids, soils and wastes shall be recorded in an appropriate database. This shall enable to categorize and visualize the data, and for example show all locations with PCB transformers on a map. For larger companies and authorities such a clearly arranged plan or map can serve as a useful working tool when planning the future elimination of equipment, and help make quick decisions in case of an incident.

3.1.5 Maintenance Plan

The maintenance of PCB containing equipment as described in chapter 4, must be performed regularly. In order to control its frequency, a maintenance register has to be kept that includes all PCB equipment of the company and in which every performed maintenance activity is noted.

An example of a “PCB Equipment Monthly Maintenance Plan” follows in Annex 12.16.

3.1.6 PCB Spill Prevention, Control and Countermeasure Plan (SPCC Plan)

A SPCC plan has to be prepared to prevent spills into the environment, and to act accordingly to a situation if it should occur. More information about SPCC plan is given in chapter 3.2.
3.1.7 Disposal and Site Decontamination Plan

Equipment containing PCB and wastes must be decontaminated or disposed of solely by companies that have a special permit for treatment of such kind of materials and waste obtained by the authorized body in the field of environmental protection, or other foreign companies which provide such services and approved by the Government of their countries.

As decontamination or disposal of equipment containing PCB usually implies a great expense for a company, it is advisable to formulate a disposal plan, which defines dates of decontamination or disposal and replacement for every unit of equipment. In addition, financial planning for the disposal costs as well as for new equipment can be included in the plan.

PCB contaminated sites and soils should be decontaminated in order to avoid volatilisation and diffuse recirculation of PCBs from contaminated water, soil and sewage sludge. Soils for example can be bio-remediated with the use of bacteria, which break down the chlorinated (and other) hydrocarbons, it can be also incinerated or extracted by means of venting (passage of air to remove vapours) or by solvent washing. The choice of technique is based on the previous analytical assessment, the extent and concentration of contamination, the matrix and the type of area (e.g. industrial, agricultural etc.). It shall also be taken into consideration that PCBs are a mixture, which may undergo biological degradation only to a certain extent. Highly chlorinated PCBs often remain intact (persistent).

3.2 Spill Prevention, Control and Countermeasure Plan (SPCC Plan)

The SPCC plan has to be elaborated to eliminate or minimize the potential environmental risk of a PCB spill, which could for example result from substation operations. The PCB Representative in the company will be in charge of the correct implementation of the following components:

3.2.1 Prevention

All doors to rooms where equipment containing PCB or wastes are located or stored must be clearly marked on the outside with a label. The use or storage of PCB transformers is prohibited in any location where human food or animal feed products could be exposed to PCBs released from the transformers. The storing of inflammable materials next to equipment containing PCB or waste is forbidden. Best working practices as described in chapter 4.2 have to be followed.

3.2.2 Spill Prevention Tools

Under each transformer a retention system has to be installed to prevent the dissemination of PCB into the environment in case of a leak. The best solution is a steel tray, however concrete or brick walls around the transformer are also acceptable as long as the basin is tight and its retention volume is greater than the volume of the fluid in the transformer. In case of concrete basins they obviously should contain an oil resistant paint (e.g. appropriate kind of Epoxy). Spare equipment or equipment out of use and other PCB wastes must be stored in steel drums or steel trays as described in chapters Error! Reference source not found. 7 and 8.

![Picture 38: Labelling of a transformer room door](image1)

![Picture 39: Retention system made from steel](image2)
The floors of workshops for activities like draining and dismantling of transformers has to be tight and fairly easy to decontaminate (e.g. Epoxy coating). The thresholds have to be elevated and all other openings close to the floor have to be sealed to prevent the dissemination of PCB into the environment in case of a spill.

3.2.3 Countermeasure

Emergency response plans as described in Annexes 12.8 and 12.9 have to be affixed near equipment containing PCB in an easily visible spot. In order to be able to react immediately in case of an incident it is recommended to keep appropriate materials and tools for immediate actions in an easily accessible place (protective gloves, drip tray, repair material, absorbents to seal leaks, etc.). Such storage depots can be recorded in the PCB register to allow immediate access in case of emergency.

3.3 Priorities for Disposal and Site Decontamination

According to the risk that PCB containing equipment or contaminated sites and soil pose to humans or the environment there are different priority levels. These shall be stipulated in the national PCB regulation:

1. PCBs that are stored as spare oil, as waste or as electrical devices out of service have to be disposed of no longer than three years after their declaration to the Competent National Authority in the frame of the national inventory,
2. PCB containing electrical devices
 - of PCB concentrations higher than 0.05 mass percentages (500 mg/kg)
 - in a bad technical condition
 - situated near places of a higher risk for the people (hospitals, medical centres, commercial centres, schools and universities, food industries, water and sanitation services, highly frequented buildings) have to be decontaminated or disposed of with priority,
3. All other electrical equipment with a PCB concentration between 0.005 and 0.05 mass percentage (50 and 500 mg/kg) can remain in service until the end of their useful life, but no longer than the year 2025, and
4. PCB polluted soil and/or sites with direct impact to the environment or potential health risks, such as but not restricted to e.g. PCB contaminated agricultural land or sites close to food processing areas.

Particular importance should be given to get better insight in unknown sources, equipment or hotspots.

4. Maintenance of Equipment Containing PCB

The maintenance of a device should be performed according to the procedures issued by the manufacturer and by the corresponding national standards. In the following, a general view of the key elements of the maintenance of PCB containing transformers and capacitors is presented.

4.1 Maintenance of In-Service PCB Equipment

In-service equipment containing PCBs may need to be maintained according to the manufacturer’s instructions for proper functioning or to clean up or prevent releases of PCBs. It is not within the scope of this document to discuss routine maintenance of equipment. The maintenance issues that are of importance for PCB Management are:

1. Transfer of liquid PCBs during maintenance
2. Replacement of leaking seals and repair of cracks and holes
3. Clean-up of minor leaks or spills during maintenance activities
All work on PCB containing equipment should be carried out in accordance with the site specific health and safety plan and applicable government regulations. Staff should be trained in the maintenance of the equipment and in the correct methods to handle hazardous materials.

If a piece of equipment containing liquid PCBs needs to have internal components “topped-up” or recharged, serviced or repaired (and is the type of equipment that is normally opened for servicing) serious consideration should be given to replacing the equipment or decontaminating it (removing the PCBs) and re-filling it with a non-PCB fluid. The Basel and Stockholm Conventions recommend phase-out of this equipment (under specific timelines) rather than continued use. Replacement fluids for electrical transformers include silicones, aliphatic hydrocarbons, poly-olefins, chlorinated benzenes and esters (Environment Canada, 1988).

If servicing of equipment is unavoidable, all work should be done with the objective of minimizing releases to the environment and minimizing the amount of contaminated material created through the servicing work. Recommended practice for this purpose includes:

- Plan the servicing in accordance with the manufacturer’s recommendations, applicable regulations and codes and with the advice of experienced professional service persons.
- Turn the equipment off and disconnect it from the power source. De-pressurize the equipment if necessary. Allow the equipment and PCB liquid to cool to ambient temperature. Servicing equipment at ambient temperatures above 25°C should be avoided if possible due to the increased volatility of the PCBs at higher temperatures (i.e. more PCB vapours will be released at higher temperatures).
- Inspect the equipment before beginning service for leaks, holes, rust, low fluid level, high or low pressure (above or below specifications), high temperature (above specifications), malfunctions and gaseous emissions.
- Inspect the opening valves, latches, lids, etc. for blockages, breakage or malfunction.
- Re-consider and re-plan the servicing plan if any leaks, holes, malfunctions etc. are found.
- Ensure that spill containment measures are in good shape and adequate to contain the PCB liquid if spilled. It may be advisable to place plastic sheeting or absorbent mats under the equipment before opening it if the surface of the containment area is not coated with a smooth surface material (paint, urethane, epoxy, etc.).
- Additional ventilation may be required to keep the atmospheric PCB level below the recommended levels and to provide adequate oxygen for workers.
- Remove the liquid PCB either by removing the drain plug or by pumping with a peristaltic pump and Teflon or silicon tubing. Store the PCB liquid temporarily in one or more steel containers (drums) with tight-fitting lids or bungs. Leave a space of 8-10 cm at the top of the container for heat expansion and to avoid spillage when opening the container. Pumps, tubing and drums should be dedicated to the transfer of PCB liquids (not used for any other purpose).
- Inspect the inside of the equipment for damage, rust and cracks. Complete servicing and repairs.
- Replace any worn or broken seals.
- After completing the servicing replace the drain plug if applicable, replace the PCB liquid by pumping, add make-up fluid if necessary, and re-seal the equipment.
- Clean up any spills with cloths or paper towels. Triple rinsing contaminated surfaces with a solvent such as kerosene is usually necessary to remove all of the residual PCBs.
- All tools used for the servicing should be dedicated for PCB use.
- All absorbents, disposable protective clothing, plastic sheeting and removed components should be treated as PCB waste.
4.2 Best Working Practices

When performing light repair or maintenance work on PCB containing equipment, the following safety precautions for the protection of the employees and the environment have to be taken:

- Direct contact of the skin with PCB contaminated materials must be avoided by wearing gloves and safety goggles. According to the type of work to be performed, protective clothing and a respiratory mask must also be put at the workers’ disposal (see also chapter 5.1. Personal Protective Equipment),
- The working area must be adequately ventilated,
- Spills must be prevented in every case by using drip trays or adequate plastic tarps,
- Every contact of PCBs with a flame or any other heat source over 300 °C and use of a grinder must absolutely be avoided (risk of highly toxic Dioxins and Furans),
- All used tools and other working materials that got in contact with PCBs must be disposed of as PCB contaminated waste in an environmentally sound manner or otherwise have to be decontaminated with an appropriate solvent (technical acetone). The only possible materials to be decontaminated are steel, glass, and ceramics. All other materials, such as rugs, PPE, etc. must be disposed of as hazardous wastes; tools and certain equipment (e.g. pumps and hoses) may be reused but only for operations with PCB-containing equipment and must therefore be clearly marked/labeled as PCB-contaminated,
- Operations which involve draining, rewinding of coil, etc. may only be performed by companies approved for such tasks by the competent country authorities.
- The role of universities, NGOs and related stakeholders in promoting the dissemination of PCB management’s best practices shall be strengthened.

In Annex 12.11 a proposal of a flyer can be found. It is recommended to print and distribute this flyer to owners of equipment containing PCB, so they can affix it to walls near the equipment or in workshops.

4.3 Inspection of PCB Containing Transformers

4.3.1 Visual Checks

The simplest and the cheapest test of a transformer in service or in storage is the visual check. PCB Transformers shall be visually inspected quarterly by the equipment owner, who is also responsible for maintaining records of inspections.
The following areas shall be examined:

- Oil stains near the equipment
- Oil stains or weep marks on the equipment (welding seams, gaskets, valves, etc.
- Gross physical damage
- Tightness of drip tray

Table 23: Routine inspections for transformers

<table>
<thead>
<tr>
<th>Inspection</th>
<th>What to look for (and corrective action)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition of gauges</td>
<td>➢ Cracked faceplates or damaged gauges (install a Plexiglas sheet over gauges for protection).</td>
</tr>
<tr>
<td>Reading of gauges</td>
<td>➢ Change in readings since last inspection.</td>
</tr>
<tr>
<td></td>
<td>➢ Readings within the safe or acceptable range (if they are not, consider the addition of make-up fluid).</td>
</tr>
<tr>
<td>Corrosion on tank and radiator fins</td>
<td>➢ Condition of fins. They are manufactured of thin steel to obtain maximum cooling and will rust through more quickly than the rest of the transformer, especially in a caustic environment (clean to bare metal and paint if rusted).</td>
</tr>
<tr>
<td>Paint finish of tank and radiator fins</td>
<td>➢ Weathering paint (repaint as often as necessary).</td>
</tr>
<tr>
<td>Leakage of PCB from:</td>
<td>➢ Wet slickness and gummy residue.</td>
</tr>
<tr>
<td>- tank</td>
<td>➢ Deteriorating gaskets or seals.</td>
</tr>
<tr>
<td>- radiator fins</td>
<td>(Important – if there has been leakage, take steps to clean it up promptly and reported to the appropriate provincial authority. All materials used for cleaning up the PCB leakage must be safely stored as PCB-contaminated waste.)</td>
</tr>
<tr>
<td>- top cover (if gasketed)</td>
<td></td>
</tr>
<tr>
<td>- manhole cover</td>
<td></td>
</tr>
<tr>
<td>- top or bottom drain spout</td>
<td></td>
</tr>
<tr>
<td>- high and low voltage bushings</td>
<td></td>
</tr>
<tr>
<td>Pressure-relief valve</td>
<td>➢ Improperly seated valve due to displaced gaskets.</td>
</tr>
<tr>
<td>High and low voltage bushings</td>
<td>➢ Cracking or chipping. (Replace cracked or chipped bushings.)</td>
</tr>
<tr>
<td>Colour of PCB</td>
<td>➢ Colour changes.</td>
</tr>
<tr>
<td></td>
<td>➢ Take a small sample. If the color is changing from clear to a blue, green, red or black, the PCB is becoming contaminated (consider a laboratory test to check its quality).</td>
</tr>
</tbody>
</table>

4.3.2 Leaks of Transformers

When a leak or spills have been detected on or near a transformer, it is necessary to look into the cause of the leak to prepare remedial action. Most common are leaks at seals and gaskets. Various possibilities for effective reparations are apt and help avoid affecting the main body of the transformer in any way. However, only experienced electrical specialists who are aware of the dangers of PCBs shall perform such work.

A more serious situation occurs when the leakage or seepage is due to damage in the metallic structure of the transformer. Such leaks can be caused by mechanical and accidental damage to the transformer casing. In such cases, it is recommended to seal the leak temporarily with a sealing paste and place a drip tray underneath the leak for safety reasons. As this is only a temporary solution, a proper repair has to be carried out soon as possible.

A leak can also be caused by a slow degradation of the cooling fluid, which increases its corrosiveness. If corrosion is already advanced and causing leaks, then the transformer must immediately be sealed with a sealing paste, phased out as soon as possible and replaced by a new device.
4.3.3 Oil Level of Transformers

Most transformers have a direct or indirect device allowing the cooling fluid level to be controlled. Before topping up a decreased cooling fluid level, it is vital to check the PCB content of the transformer as well as the additional cooling fluid to avoid a possible contamination.

4.3.4 Temperature Gauge

The temperature gauge indicates the temperature of the dielectric fluid within the transformer. Excessive temperatures point towards an overheating of the transformer, possibly due to loss of dielectric fluid. Action should be taken immediately to detect the cause of the overheating, as the rate of the deterioration of insulating materials in the transformer can rise rapidly above the normal operating temperature.

4.3.5 Pressure-Vacuum Gauge

The pressure-vacuum gauge measures the pressure changes in the space between the dielectric liquid and the tank lid. Unusually high pressure indicates that short circuits and arcing may have occurred. In this case, a performance test has to be performed as soon as possible. An unusually low pressure reading indicates a low level of the dielectric fluid. Action should be taken immediately to identify the cause of the dielectric fluid loss.

4.3.6 Corrosion on Tank and Radiator Fins

The condition of the tank and the radiator fins has to be checked regularly, as they are prone to show corrosion. If corrosion occurs, the affected area has to be cleaned to the metal and painted.

4.3.7 Performance Tests

Transformers must be periodically checked to detect any changes which may be the first signs of degradation in the performance of the transformer, and therefore of possible risks arising. Among others, the following characteristics have to be checked:

- Functioning of all protection devices
- Electrical performance of the transformer
- Oil quality (physical and chemical tests)

4.4 Evaluation of PCB Containing Capacitors

Visual checks are easy and they can be carried out frequently if the conditions in the substation require so.

Visual checks allow detecting the following damages on capacitors:

- Leaks in the container
- Swelling out or deformation of the container
- Oxidation of the container
- Dirty bushings

In the first two cases, the capacitors must be phased out immediately and disposed of in an environmentally sound manner.

The swelling of the container is a clear indication of a soon short circuit in the capacitor!
Visual checks must be complemented by technical examinations, which require qualified staff. Depending on the condition of the equipment, the frequency of the examinations is determined (at least once a year).

4.5 Substitute Fluids

PCB oils in transformers have often been replaced by common mineral oils like «Shell Diala B». However, other substitute fluids have also been used. The table below lists substitutes fluids for new transformers, together with their advantages and disadvantages.

Table 24: Substitute fluids

<table>
<thead>
<tr>
<th>Substitute Fluid</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicones</td>
<td>- low pour point
- high fire point
- low rate of heat release upon combustion
- fairly low viscosities over the entire range of operating temperatures</td>
<td>- not compatible with some gasket materials, such as silicone rubbers and certain insulation materials.
- specific gravity of fluid is such that water will sink to bottom of transformer while ice crystals are buoyant and float to top. Melted ice crystals could migrate through fluid and reduce its dielectric strength
- cost is relatively high
- PCBs are soluble in silicones only up to 8 %</td>
</tr>
<tr>
<td>Aliphatic hydrocarbons (e.g., RTEmp, produced by extensive refinement of crude oil and blending of anti-oxidants, stabilizers and other additives)</td>
<td>- low degree of in-service degradation
- compatibility with all materials of construction normally used in electrical equipment
- fluid is compatible with all other dielectric fluids
- specific gravity is below that of both water and ice
- fluid is not a serious environmental hazard (same effects as other mineral oils), is biodegradable and can be disposed easily
- cost is lowest of all PCB substitutes and raw materials are plentiful</td>
<td>- high viscosity at lower temperatures
- high rate of heat release during combustion
- blended additives (proprietary to the supplier) are required to depress pour point and improve thermal and oxidative stabilities
- gassing tendency under electrical stress is equal to or higher than for conventional (naphthenic) transformer oils which are in turn higher than all other PCB substitute fluids</td>
</tr>
<tr>
<td>Poly-a-olefins (synthetic hydrocarbons)</td>
<td>- compatibility with all materials used for transformer construction and all other hydrocarbon fluids
- lower pour point and slightly better low temperature viscosity than natural aliphatic hydrocarbons
- specific gravity below that of water</td>
<td>- relatively high rate of heat release during combustion
- relatively high cost</td>
</tr>
</tbody>
</table>
and ice
- no gassing under electrical stress

| Chlorinated benzenes (Tri-tetrachlorobenzenes are components of PCB but can also be use alone) | physical properties similar to properties of PCB |
| - transformers designed for PCBs are generally suitable for TTCBs | not suitable for use at very low ambient temperatures because of high pour point |
| - exhibit some toxicity and not easily biodegradable |

| Esters (blend of pentaerithritol and fatty acids) | high dielectric strength |
| - low flammability |
| - low pour point |
| - no toxic substances generated during arcing conditions |
| - compatible with most materials used in transformers | no significant disadvantages except higher cost than RTEmp fluid |
5. Safety
5.1 Safety and Personal Protective Equipment

People handling PCBs or people that can be potentially exposed to PCBs have to use adequate protective equipment. The level of protection and the choice of protective equipment depend highly on the tasks carried out.

Table 25: Description of personal protection equipment (PPE)

<table>
<thead>
<tr>
<th>Task</th>
<th>Personal Protective Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling of liquids or soil</td>
<td>- Gloves (Vinyl or Nitrile, no Latex)</td>
</tr>
<tr>
<td></td>
<td>- Light respiratory mask (Filter A2P2; for organic vapors and particles, voluntary)</td>
</tr>
<tr>
<td>Sampling of a capacitor</td>
<td>- Gloves (Vinyl or Nitrile, no Latex)</td>
</tr>
<tr>
<td></td>
<td>- Safety goggles, only while opening or drilling</td>
</tr>
<tr>
<td></td>
<td>- Light respiratory mask (Filter A2P2; for organic vapors and particles)</td>
</tr>
<tr>
<td>Sampling of concrete or brick wall (e.g. by drilling)</td>
<td>- Leather gloves</td>
</tr>
<tr>
<td></td>
<td>- Safety goggles while drilling</td>
</tr>
<tr>
<td></td>
<td>- Light respiratory mask (Filter A2P2; for organic vapors and particles)</td>
</tr>
<tr>
<td></td>
<td>- Ear protection (while drilling)</td>
</tr>
<tr>
<td>Dismantling of capacitors (no leakage)</td>
<td>- Working overall</td>
</tr>
<tr>
<td></td>
<td>- Helmet (according to companies’ safety rules)</td>
</tr>
<tr>
<td></td>
<td>- Steel capped (rubber) boots</td>
</tr>
<tr>
<td></td>
<td>- Leather gloves</td>
</tr>
<tr>
<td></td>
<td>- Light respiratory mask only in case of leakage (Filter A2P2; for organic vapors and particles)</td>
</tr>
<tr>
<td>Dismantling of capacitors (with leakage)</td>
<td>- Protective suit (Tyvek)</td>
</tr>
<tr>
<td></td>
<td>- Steel capped (rubber) boots</td>
</tr>
<tr>
<td></td>
<td>- Neoprene gloves</td>
</tr>
<tr>
<td></td>
<td>- Light respiratory mask (Filter A2P2; for organic vapors and particles)</td>
</tr>
<tr>
<td>Clean-up activities (choice of PPE according to type of contamination and extent of work)</td>
<td>- Protective suit (Tyvek)</td>
</tr>
<tr>
<td></td>
<td>- Steel capped rubber boots</td>
</tr>
<tr>
<td></td>
<td>- Safety gloves (heavy duty)</td>
</tr>
<tr>
<td></td>
<td>- Respiratory mask (light or full face, Filter A2P2; for organic vapors and particles)</td>
</tr>
<tr>
<td></td>
<td>- Helmet (if necessary)</td>
</tr>
<tr>
<td></td>
<td>- Ear protection (if necessary)</td>
</tr>
</tbody>
</table>
The most important parts of Personal Protective Equipment (PPE) for handling PCB-containing materials are shown below:

Picture 43: Protection overall, one way, oil-resistant

Picture 44: Safety gloves, Neoprene

Picture 45: Breath protection masks, light, FFP2 or 3

Picture 46: Breath protection masks, medium, A2/P3

<table>
<thead>
<tr>
<th>Table 26: Filter classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Particles; classified as P1, P2, and P3 according to removal efficiency</td>
</tr>
<tr>
<td>ABEK, ABEK-P3, ABEK-HgP3</td>
<td>Combination filters against multiple hazards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 27: Particle filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>FFP2</td>
</tr>
<tr>
<td>FFP3</td>
</tr>
</tbody>
</table>

The appropriate choice of masks and filters respectively PPE in general shall be based on a risk evaluation, as other hazardous substances could be present depending on site, area and tasks to be performed.
One-way gloves for the sampling of liquids should be made of Nitrile or Vinyl. Latex or Butyl rubber gloves should not be used as PCBs might penetrate through them!

Protection of the Environment

When handling PCBs, all necessary safety precautions need to be taken in order to prevent a contamination of the environment.

When taking samples of PCB suspected equipment or PCB suspected material, it must be worked tidily without losing or spreading sample material. Use oil absorbing carpet as foundation if needed.

All working material must be cleaned either with acetone or disposed of as hazardous waste, including PPE. Only metal and glass can be cleaned entirely, synthetic material and plastic, wood, etc. cannot be cleaned and have to be disposed of as hazardous waste.

When confronted with leaking equipment or equipment in bad technical condition during the inventory, it must be ensured that the leak can be stopped or that the entrainment of the contamination can be prevented.

In areas with spills: The contaminated area shall be marked and fenced off if possible. Clothing and footwear shall be changed when entering or leaving the contaminated area in a designated place (compartment). If possible, the leak shall be located and sealed e.g. with a sealing paste. Furthermore, the leaking device shall be placed in a steel basin or drip tray when out of service otherwise absorbent pads shall be placed around and replacement foreseen as soon as possible.

In case of leakage due to damaged equipment, uncontrolled spillage must be prevented by the appropriate positioning of a drip tray, as a first measure. Small leaks should be sealed, and suitable safety equipment must be used while carrying out this work. It is therefore advisable to always keep suitable material (drip tray, rubber gloves, sealing material) in the vicinity of such equipment.

Visibly contaminated soil or concrete should be removed as quickly as possible in order to avoid further contamination. Surfaces of objects (vehicles, sidewalks, buildings, etc.) should be cleaned by using oil absorbent materials and by wiping the surface with solvents. After the cleaning, the surfaces must be analytically tested to check the cleaning success. The used cleaning materials should be placed in drums for disposal.
6. Emergency Actions and Clean Up

Emergencies involving PCBs can occur with equipment in service, in storage, during transport or at a disposal facility. These emergencies may take the form of:

- A leak or spill of PCB liquid
- The failure of a piece of in-service equipment
- The accidental breach of a container of PCBs
- Fires

All companies operating storage facilities or transporting PCBs should develop and implement a fire and emergency action plan. Such a plan should be developed in conjunction with the local fire department.

All personnel working with PCBs should become familiar with the contents of the emergency plant. It is recommended that employees be trained in the use of the plan, preferably through emergency drills. As well, employees should be trained in the use of personal protection equipment, spill control kits, and fire extinguishers. They should also be made aware for the hazards of PCBs.

In case of incidents, accidents or spills the company shall notify all competent authorities in line with national regulation and environmental permit standards.

6.1 Emergency Actions for Cold Incidents

The seeping of PCB from a device in the environment is described as a «cold incident». Cold incidents can be caused by unintended mechanical damage to the transformer’s cooling fins or by corroded transformer walls. Spills can, however, also occur during draining activities or the handling of stored oil.

The following measures must be taken:

<table>
<thead>
<tr>
<th>Measures in case of «cold incidents»</th>
</tr>
</thead>
<tbody>
<tr>
<td>- If a lot of PCB has leaked from the equipment and if there is a risk of the PCB contaminating the environment, the chemical brigade must be called immediately. If there are doubts whether or not the oil does contain PCB, then the oil should be regarded as containing PCB until the contrary has been proven.</td>
</tr>
<tr>
<td>- Inform the doctor in charge and equip the chemical response team with appropriate personal protective equipment according to chapter 5.1.</td>
</tr>
<tr>
<td>- Switch off the power supply to the concerned device and check grounding.</td>
</tr>
<tr>
<td>- Limit the spreading of the seeping oil by sealing the leak and using absorbing materials (sand, sawdust or cement) or by pumping in appropriate containers. If possible, a drip tray can be placed under the leak.</td>
</tr>
<tr>
<td>- Prevent the contamination of watercourses by PCB. Drains as well as channels and pipes that lead to open waters must be sealed. Furthermore, it must be ensured that no water can flow into the contaminated area (e.g. sprinkler systems). Consider: A pollution of watercourses or puddles does not necessarily have to be visible. PCB is heavier than water and thus there is no oil film on the water.</td>
</tr>
<tr>
<td>- Fence off and mark the contaminated area. A tent with different compartments must be set up to control the access of people and the movement of material into or out of the contaminated zone, in order to prevent clean areas from being contaminated. The personal protective equipment is put on/taken off in the tent every time when entering/leaving the contaminated zone.</td>
</tr>
<tr>
<td>- Within the contaminated zone, attention must be paid to the soles of the shoes. They must be clean; otherwise the floor could be contaminated with PCB by the soles.</td>
</tr>
<tr>
<td>- The contaminated floor or concrete should be removed as quickly as possible to prevent a further cross contamination.</td>
</tr>
</tbody>
</table>
If the incident has happened inside a building: Evacuate people from all concerned rooms/buildings, switch off ventilation, close doors, and windows.

Inform the competent authorities. All details about the incident have to be reported so that the population can be warned, if necessary (e.g. contamination of drinking water).

An Emergency Response Plan for cold incidents is given as a checklist for separate distribution in Annex 12.8. This checklist shall be regarded as a basic list and adapted to current actualities including contact addresses of competent authorities.

6.2 Emergency Actions for Hot Incidents

Incidents involving PCB equipment can also be caused by short circuits or a fire in the vicinity of the equipment. In case of a «hot incident», the temperature in the device exceeds the boiling point of PCB (approx. 300 °C).

If this happens locally even for a short time only (e.g. short circuit), PCB vapors can be released, and they can contain highly toxic Furans (PCDFs). If PCB gets in contact with oxygen (fire), not only Furans, but also Dioxins (PCDDs) can be formed.

6.2.1 Incident Caused by an Internal Failure

An electrical short circuit (arc) constitutes the greatest danger. In a capacitor, it gives rise to temperatures of several thousand degrees Celsius within fractions of a second.

Failures of this kind primarily occur in capacitors. The heat causes excess pressure in the equipment, resulting in the bursting of the capacitor. A black, viscous mass leaks out. This is PCB containing carbon black. Due to the increased temperatures gaseous PCB is formed, which is contaminated by Furans. These vapors can deposit viscous oil films on fittings, floors and walls, even at a distance from the place where the incident happened.

In addition to the measures mentioned in the previous chapter, the following points must be considered:

- Personal protective equipment must absolutely include respiratory protection.
- Lock the building immediately and stop air circulation by closing/sealing ventilation slits, if possible.
- Evacuate people from all rooms at risk.

Picture 49: Hot incident

Picture 50: Burst capacitor

Picture 50 above shows the former position of a burst capacitor within a capacitor battery. The oil squirted out and contaminated the wall behind the capacitors.
6.2.2 Fires

Fires of transformers or capacitors have been very rare. The causes of incidents usually were fires in the vicinity of the PCB containing equipment.

During a fire, there is danger of a decomposition of PCB caused by the heat and the effect of oxygen. Hydro-chlorinated gas is formed and the decomposition process can also result in highly toxic Furans (PCDF) and Dioxins (PCDD).

The order of the measures to be taken in case of a fire is given below:

- Call the fire brigade immediately and carefully describe the situation so that the appropriate equipment can be chosen for the fire-fighting operations. If there are doubts whether or not the devices do contain PCB, then they should be regarded as containing PCB until the contrary has been proven. Calling the fire brigade immediately can highly reduce the effects of an incident.
- Inform the doctor in charge and equip the chemical response team with appropriate personal protective equipment. The protective equipment proposed in chapter 5.1 is not sufficient for areas where Dioxins and Furans have been released (and hardly kept handy everywhere). Consequently, the chemical response team should only approach the danger zone if absolutely necessary.
- Switch off power supply.
- Hermetically seal the rooms or the entire building. Switch off ventilation systems.
- Evacuate people from all concerned buildings, and on a larger scale in the direction of the wind.
- Inform the competent authorities: All details about the incident have to be reported so that the population can be warned or evacuated, if necessary.
- Fence off the contaminated zone and strictly control access. Only people wearing appropriate personal protective equipment are allowed to enter the zone. When fencing off, the direction of the wind must be considered.

An Emergency Response Plan for hot incidents as a checklist for separate distribution can be found in Annex 12.9.

Instructions for the fire brigade should include:

- To use CO₂ to extinguish the fire
- If water is used at all, then only to cool down the environment
- If water is used, it must not flow into the sewage system or open waters (pump!)
- To ensure that all skin is covered to prevent exposure to smoke containing PCBs
- Clothes and protective clothing that has come into contact with PCB or decomposition products (soot) must be regarded as being toxic and disposed of appropriately
- All firemen should shower thoroughly to remove any soot that may have contacted uncovered skin
- If a fireman develops a skin rash after a fire, he should go for a medical check-up
6.3 First Aid in Case of Contact with PCB

The following table summarizes the immediate actions that have to be taken after an exposure to PCB. Additionally, a doctor should be seen in any case.

Table 28: First aid measures

<table>
<thead>
<tr>
<th>Kind of Exposure</th>
<th>First Action</th>
<th>Second Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid PCB on the skin</td>
<td>Use water and soap to wash thoroughly</td>
<td>See doctor if rash develops</td>
</tr>
<tr>
<td>Liquid PCB in the eyes</td>
<td>Rinse eyes with lukewarm jets of water for 15 minutes, always keeping eyes wide open*</td>
<td>See doctor</td>
</tr>
<tr>
<td>Liquid PCB in the mouth and in the stomach</td>
<td>Rinse mouth with water, do not drink anything else</td>
<td>Write down details about swallowed liquid, take victim to hospital emergency or doctor immediately</td>
</tr>
<tr>
<td>Highly concentrated vapors of PCB</td>
<td>Take affected people outside in the open air</td>
<td>If discomfort does not clear up, take victim to doctor</td>
</tr>
</tbody>
</table>

* An on-site eye wash station should be provided where PCBs are handled frequently

6.4 Clean Up after Incidents

6.4.1 Assessment of an Incident

In case of an incident, the operator/owner of the equipment must try to obtain the following information immediately, to enable a first assessment of the situation:

- Do the concerned devices really contain PCB?
- Is the PCB concentration known (e.g. from earlier analyses)?
- What is the assumed extent of the PCB or PCDF/PCDD contamination?
- Are there any visible billows of smoke, soot deposits?
- Weather conditions: Direction of the wind, wind force, rain, snow?
- Is the sewage system or the groundwater affected?
- Access roads used for possible fire-fighting operations (cross contamination)?
- When and where exactly did the incident happen (order of events)?
- If the incident happened in a closed room, it shall be reported if ventilation was in use and when it was switched off, respectively. Additionally, the names of all the people that came in contact with PCB or smoke shall be listed (for medical care, if necessary).

The assessment of the incident, which is done by experts, highly depends on the quality of the obtained information/responses to the above questions. Based on the received information, the experts take samples that are analyzed to determine the extent of the contamination. Cleaning activities should only be started with after the availability of the results, except for immediate actions, e.g. to control oil spills (to prevent a further contamination of soil, concrete and air). Incidents should immediately be reported to the competent authority in the field of Environmental Protection and Emergency Situations.
6.4.2 Decontamination Methods

The decontamination technique depends on the extent of the contamination; the pollutant(s), the concentration, and the contaminated material itself (concrete, soil, ceramic, plastic, etc.).

Table 29: Decontamination methods

<table>
<thead>
<tr>
<th>Material</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>Remove until material is below the limit of 50 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Remove until material is below the limit of 50 mg/kg</td>
</tr>
<tr>
<td>Uncoated concrete floors</td>
<td>Use industrial vacuum cleaners with appropriate filters and wet wipe the floor</td>
</tr>
<tr>
<td></td>
<td>Repeated solvent scrub process followed by an absorbing clean up, until material is below the limit of 50 mg/kg</td>
</tr>
<tr>
<td>Walls, brick walls</td>
<td>Use water to clean, or remove plaster</td>
</tr>
<tr>
<td></td>
<td>See concrete floors</td>
</tr>
<tr>
<td>Ceilings</td>
<td>Use industrial vacuum cleaners with appropriate filters to clean and wet wipe the ceilings</td>
</tr>
<tr>
<td></td>
<td>See concrete floors</td>
</tr>
<tr>
<td>Untreated metal, window panes</td>
<td>Use solvents to clean carefully</td>
</tr>
<tr>
<td></td>
<td>See above</td>
</tr>
<tr>
<td>Coated metal surfaces</td>
<td>Use solvents to clean</td>
</tr>
<tr>
<td></td>
<td>Completely remove coating</td>
</tr>
<tr>
<td>Plastic parts (insulating material, etc.)</td>
<td>Use solvents to clean</td>
</tr>
<tr>
<td></td>
<td>Remove, replace</td>
</tr>
<tr>
<td>Fittings</td>
<td>Dismantle completely and use solvents to clean</td>
</tr>
<tr>
<td></td>
<td>Clean or remove, depending on concentration and quantity</td>
</tr>
</tbody>
</table>

The choice of the appropriate solvents or cleaning agents shall be made from case to case. It is recommended to use technical acetone to clean soot, dust, and similar materials. Spills are best cleaned by means of a biodegradable cleaning agent.

Visibly contaminated soil or concrete shall be removed in order to avoid further contamination. Surfaces of objects (vehicles, sidewalks, buildings, etc.) should be cleaned first by using oil absorbent materials and then by either a solvent scrub process or rather by using a biodegradable cleaning detergent. After the cleaning, the surfaces should be analytically tested to check the cleaning success. The decontamination process has to be repeated, until the remaining contamination is lower than the applicable limit value (50 mg/kg). If this procedure does not lead to a success, the structure has to be removed.
Spills into waters could pose a difficult clean-up problem and require special consideration. Since pure PCBs are denser than water, they will settle to the bottom and dredging of contaminated sediment will be necessary.

6.4.3 Protection of Workers and the Environment

In certain serious cases, the contaminated area should be sealed off by a protective tent around the zone. Such a tent must be air- and dust-tight, protect against the weather and control access by a system of compartments. The contaminated zone must only be entered through this system and personnel must wear personal protective equipment (PPE) when entering. The purpose of the sealing off is to prevent a cross contamination in the environment. A controlled exhaust system installed at the tent collects and filters (by an activated carbon filter) contaminated dust and particles that are formed during the clean-up activities.

6.4.4 Disposal

The appropriate disposal of the wastes is a very important part of clean-up activities after a PCB incident. Unfortunately, this aspect is often underestimated during the planning phase. Not only contaminated soil or removed contaminated building material, but also associated wastes like vacuum cleaner bags, solvents, personal protective equipment, cleaning material, sealing-off material, etc. must be disposed of in an environmentally sound manner. Please find more details about disposal in chapter 11.

6.5 Check of Clean Up (Monitoring)

The supervision of clean-up activities by an independent expert and/or representatives of the responsible authority is a key element of success and should be regarded as useful assistance. Representative sampling during and at the end of the clean-up activities shall prove that the remaining contamination does not exceed the tolerable and agreed values.

6.5.1 Tolerable Remaining Contamination after a Clean-up

The guide values for tolerable remaining contamination shall be decided in cooperation with the competent environmental authorities in case by case decisions. Furthermore, the control of the contamination after the clean-up shall be regulated. It can make sense to determine the limit values from case to case, depending on the project.

The following values can be regarded as a guidance based on limit values in various European Countries. Of course, the specific limit values of a country depend on its national laws and regulations.

<table>
<thead>
<tr>
<th>Description</th>
<th>Substance</th>
<th>Guide value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfaces (for example cleaned/decontaminated metal surfaces)</td>
<td>PCB</td>
<td>100</td>
<td>µg/m²</td>
</tr>
<tr>
<td>Solids (for example concrete, building materials, etc.)</td>
<td>PCB</td>
<td>50</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Indoor Air Rooms with a stay of eight hours per day (Intervention value)</td>
<td>PCB</td>
<td>> 6'000</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Indoor Air Rooms with permanent stay (Intervention value)</td>
<td>PCB</td>
<td>> 2'000</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Indoor Air Value to be achieved after a PCB clean-up</td>
<td>PCB</td>
<td>300</td>
<td>ng/m³</td>
</tr>
</tbody>
</table>
7. Phase Out
7.1 Phase Out of Transformers

The practical phasing out of transformers starts with the disconnecting procedure, which has to follow the local safety, rules for work on electrical equipment as well as (if available) the instructions of the manufacturer. Before any activity on the transformer can start it must be ensured that it has been switched off on the high- as well as the low voltage side, that the in- and out-coming lines are short circuited, safely and visibly earthed at the working place and that the operating panel of the circuit breaker and the low voltage power switches are marked with a clear visible sign «do not switch works ahead». Furthermore, it must be ensured that access to the transformer is possible without any remaining risk.

The working area should be fenced off to avoid unauthorized access. A fire extinguisher must be positioned in a suitable place on site, ready to use in case of a fire hazard.

First of all inspect the transformer accurately on damage and leakage, then to avoid any further cross contamination it is, in case of leakages, essential to seal the leaking spots e.g. with SEDIMIT. Furthermore, remove all visible pollution on the metal parts e.g. with acetone to enable safe handling of the transformer afterwards.

Secondly it is, to avoid any risk of loss of PCB containing cooling fluid during dismantling and transport, advisable to drain the transformer on its location beforehand according to a well prepared work schedule and provision of all necessary equipment as PCB pumps, drums, personal protective equipment and tools. This procedure has also the advantage that it reduces the total weight of the transformer during transport considerably.

Before draining the oil, precautions for a spill have to be taken by covering the ground with one or two layers of extra strong plastic tarp and drip trays under the crucial parts like the oil pump, hose joints, etc. It is also advisable to have absorbents like sand, cement, or sawdust ready.

Due to the viscosity of the (pure) PCB cooling fluid, it might be difficult to open the drain tap. This has to be considered in advance to find the best possible solution. In case it is not possible to open the tap, drain the transformer via the oil filling cap or by removal of an insulator.

Before the transformer is entirely drained off, it should be positioned at an angle to pump off as much cooling fluid as possible. It must be considered that there will remain some kilos of oil in the transformer after the draining off, which will be sweat out from the windings in time. The drain tap must be closed after the draining activities and, if possible, the transformer should be filled with an absorbent or some sawdust to bind the remaining PCB oil.

After removal of the device from its enclosure, investigate the area visually and decontaminate the floor, trench covers, walls and cables if necessary before installation of a new transformer.
If a transformer is free from damage and has no leakage and a clean surface, and the drainage is not performed on site, then the removal can be done in normal working overalls. Filling the same drum with PCB contaminated oil from different transformers is allowed if their PCB content is known and of a similar concentration. If no information about the PCB content of the oil is available, the oil must be considered as PCB contaminated and the drums with the unidentified oil have to be marked as PCB contaminated.

All persons assigned to handle PCB equipment should be thoroughly instructed in the proposed procedures, particularly with respect to safety precautions, the use of safety equipment and the applicability of national regulations.

Wherever possible, PCB liquids should be transferred by pumping to minimize splashing and spillage. Centrifugal-type pumps, having all wetted surfaces made of stainless steel should be used. The shaft seal should be an external carbon ring type to eliminate exposure of the packing material to the deteriorating effects of PCBs. Valves should be brass or stainless-steel lined. Hoses should be flexible metal or lined with tetrafluorethylene or silicone polymers, and drip trays should be paces under all pumps, valves and hose couplings.

7.2 Phase Out of Capacitors

7.2.1 Preparation

The phase out of capacitors starts with the disconnecting procedure, which has to follow the applicable safety, rules for work on electrical equipment as well as manufacturer’s instructions.

Before working on a capacitor or capacitor bank, the following operations must be carried out:

- Ensure that the circuit breaker or power switch and eventual line isolators for the affected capacitor are open and marked with a sign «do not switch works ahead»
- Short-circuit the incoming lines for the capacitor at the earliest 10 minutes after switch off.
- For high voltage capacitor banks connect earthing rods for each rack to the ground circuit by means of braids.
- Most capacitors are equipped with discharge resistors. Nevertheless, the terminals of the capacitor cases have to be shortened before any work is carried out on them, because the discharging circuits may be damaged.

The working area has to be fenced off by red/white plastic bands to avoid unauthorized access. A fire extinguisher has to be positioned, ready to use in case of a fire hazard.

Before the dismantling, it has to be checked if capacitors are leaking or if they are damaged. Leaks have to be sealed. Contaminated surfaces have then to be cleaned with e.g. rugs and acetone solvent. Puddles of PCB containing dielectric have to be sucked up by pumps or soaked up by adsorbents. All arising waste has to be collected and disposed of as hazardous waste.
If spills are situated in areas where workers have to enter during the dismantling activities, these areas must be covered with oil absorbent carpet to prevent an entrainment of the contamination by the sole of the rubber boots.

Before packing any UN-approved drum with waste, the drums must be checked (damage, leaks, UN approval).

7.2.2 Dismantling

While dismantling the capacitors, the bushings must be regarded as the «weakest» parts of the capacitors. Especially for heavy capacitors, it is not allowed to hold on to the bushings while carrying them, as they might loosen or break off and cause a spill of PCB-containing fluid. The capacitors must be safely packed into UN-approved steel drums on site.

If capacitors have to be stored temporarily, they have to be placed standing upright (bushings up). It is recommended to place them into steel trays or, if not available, on oil absorbing carpets to prevent any spills.

7.2.3 Phase Out of Other Equipment

Other electrical devices like circuit breakers mostly contain small quantities of oil. After the phasing out of such equipment containing oil, it has to be checked e.g. with a suitable test kit if the cooling fluid is PCB contaminated. If the test kit shows a contamination of > 50 mg/kg the equipment must be considered as PCB contaminated and disposed as hazardous waste.
8. Packing

If there are no specific or sufficient national regulations referring to packaging, storage or transport of PCB, the international regulations shall apply.

Transport and packing of dangerous goods are regulated by various international regulations. There is a separate regulation for each means of transport (road, rail, sea) as you may see in chapter 10.1. The packing instructions are very similar to each other. The specifications of the different packaging types for PCB containing material according to the ADR (European Agreement concerning the International Carriage of Dangerous Goods by Road) are mentioned below:

8.1 Packing According to ADR

Due to the easy handling, open head steel drums are usually used for solids and tight head steel drums for liquids, respectively.

Table 31: Packaging types

<table>
<thead>
<tr>
<th>Packaging Type</th>
<th>Purpose</th>
<th>Packaging Type Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight head steel drum</td>
<td>Liquids</td>
<td>1A1*</td>
</tr>
<tr>
<td>Open head steel drum</td>
<td>Solids</td>
<td>1A2*</td>
</tr>
</tbody>
</table>

* Explanation of packaging type codes:
 - The codes 1A1 and 1A2 describe the packaging type:
 - The first figure specifies the kind of packaging (1 = drum)
 - The letter describes the material (A = steel)
 - The second figure characterizes the opening (1 = tight head drum, 2 = open head drum)

The maximum volume authorized by the ADR is 450 litres. However, drums with a volume of 220 litres are easier and safer to handle and therefore usually chosen. In addition, a volume of 220 litres is also permitted for a transport by sea (IMDG limit for liquid PCB: 250 litres).

Packaging must conform to the construction and testing instructions stipulated in the ADR regulations. Strength and tightness are tested. UN approved steel drums have an imprint to prove a successful testing.
For the transport of PCB containing capacitors, the code can read as follows:

UN 1A2 Y 400 03 CH2025, meaning:

Table 32: Code for UN approved drums

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN</td>
<td>Symbol of the United Nations or the letters UN</td>
</tr>
<tr>
<td>1A2</td>
<td>Code for packaging type</td>
</tr>
<tr>
<td>Y</td>
<td>Two-part code: Letters of packaging group</td>
</tr>
<tr>
<td>400</td>
<td>For solids: Maximum gross weight in kg (example)</td>
</tr>
<tr>
<td>03</td>
<td>The last two figures of the year of manufacture (example)</td>
</tr>
<tr>
<td>CH2025</td>
<td>Manufacturer’s code (example)</td>
</tr>
</tbody>
</table>

In case of liquid PCB, drums must never be completely filled. Approx. 50 mm or 10% of the volume should be left empty for a possible extension of PCB in case of higher temperatures. Pumps should be used to fill the drums; pouring the liquid from one drum into another is not viable option. As disposal prices and techniques depend on the kind of waste, liquid and solid wastes should always be separated.

The European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR) was done at Geneva on 30 September 1957 under the auspices of the United Nations Economic Commission for Europe, and it entered into force on 29 January 1968. The Agreement itself was amended by the Protocol amending article 14 (3) done at New York on 21 August 1975, which entered into force on 19 April 1985.

The Agreement itself is short and simple. The key article is the second, which says that apart from some excessively dangerous goods, other dangerous goods may be transported internationally in road vehicles subject to compliance with:

- the conditions laid down in Annex A for the goods in question, in particular as regards their packaging and labelling; and
- the conditions laid down in Annex B, in particular as regards the construction, equipment and operation of the vehicle transporting the goods in question.

Annexes A and B have been regularly amended and updated since the entry into force of ADR. The last amendments entered into force on 1 January 2007, and consequently, a revised consolidated version was published as document ECE/TRANS/185, Vol. I and II (“ADR 2007”).

Annex A: General provisions and provisions concerning dangerous articles and substances

- Part 1: General provisions
- Part 2: Classification
- Part 3: Dangerous goods list, special provisions and exemptions related to dangerous goods packed in limited quantities
- Part 4: Packing and tank provisions
- Part 5: Consignment procedures
- Part 6: Requirements for the construction and testing of packaging, intermediate bulk containers (IBCs), large packaging and tanks
- Part 7: Provisions concerning the conditions of carriage, loading, unloading and handling

Annex B: Provisions concerning transport equipment and transport operations

- Part 8: Requirements for vehicle crews, equipment, operation and documentation
- Part 9: Requirements concerning the construction and approval of vehicles

8.2 Summary of Possible Containers for PCB Transports

Apart from the commonly used steel drums, also other packaging types can be used, as long as they are UN approved and comply with the instructions of the ADR for the transport of the goods. UN approved drums or containers should only be procured from an authorized manufacturer (ask for UN Certificate).
Table 33: Summary packaging

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Containers</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB liquids</td>
<td>UN approved steel drums for solids 1A1 Large packaging IBC, 31A, 31B, 31N Tank Containers</td>
<td>60 to 220 liters 500 to 1260 liters Various sizes</td>
</tr>
<tr>
<td>PCB capacitors</td>
<td>UN approved steel drums for solids 1A2</td>
<td>Usually 220 liters</td>
</tr>
<tr>
<td>PCB transformers (only when drained)</td>
<td>Steel trays 20' Box Containers with tip tray</td>
<td>Height over 800 mm Various</td>
</tr>
<tr>
<td>PCB solids, (metals, soil, debris)</td>
<td>UN approved steel drums for solids 1A2</td>
<td>Usually 220 liters</td>
</tr>
<tr>
<td>Damaged packaging (e.g.220 liters steel drums)</td>
<td>Recovery drums Various types</td>
<td>Recovery drums Various types 307 liter and 427 liter</td>
</tr>
</tbody>
</table>

There are many different types of UN-approved packaging available. The choice of the appropriate packaging depends on type of waste, quantity, mode of handling/transportation but also foreseen method of disposal/treatment. For contaminated soil it might be advisable to use UN-approved Big Bags.

Picture 61: UN approved steel drums

Picture 62: Different types of alternative PE packaging

As described, UN approved steel drums have an imprint to prove a successful testing. Where an imprint is not possible, the containers must have an UN approval plate stating conformity to UN regulations.

Picture 63: Example of UN approval plate
Special bulk containers can be used for the storage or transport of PCB containing or contaminated solids as long as they conform to UN standards. A respective UN approval plate must be affixed to such bulk containers.

Picture 64: UN approved ICB solids Picture 65: UN approved IBC liquids Picture 66: 20’ tank container liquids

Due to safety and handling reasons, however, PCB wastes should ideally be packed into UN approved steel drums. For example, capacitors shall be packed into UN approved drums (1A2). In the drum, they must always be stored standing upright. Any moving of the waste inside the drum has to be avoided, i.e. by using absorbents, wood, rugs, etc.

Picture 67: Phase out and cleaning of PCB capacitor Picture 68: PCB capacitors in steel drum

Special attention is needed during dismantling and packing of leaking PCB containing capacitors. The main aim shall be to avoid cross contamination. Therefore immediately after phase out of the capacitors, the devices need to be placed in a drip tray. The surface should be cleaned and if necessary a leakage stop device can be used. When packing capacitors an appropriate part of the area shall be covered with e.g. chemical absorbing industrial carpet, an oil absorbent sheet or other suitable materials, in order to protect it from cross contamination or incidents during the packing procedure.

The lid should be removed from an empty drum and the drum carefully checked for damages as also new drums could be punctured due to careless handling. Ideally, PE-LD drum inlets are first placed in the drums. Then a thin layer of oil absorbent (e.g. absorbent material) should be placed in the drum. The PCB containing capacitors can then be carefully placed in the drum. As many capacitors as space allows may be placed in a drum. Ideally, appropriate material like Styrofoam should be placed between and around the single devices so that movement during transport will not be possible. Of course, all this depends on the size of the electrical devices and is mainly for low and medium voltage capacitors. If the height of the capacitors exceeds the drum, it might be necessary to carefully break off the bushings. Such activities shall only be allowed after the capacitors have been put into drums. Capacitors already placed in drums (upright position), but showing leaking isolators, do not pose a risk. Additionally, a layer of sawdust should be placed in each drum, in order to absorb any liquids if necessary.

According to today’s regulations, unpackaged transformers and capacitors may be carried in cargo transport units fitted with a leak proof steel tray, having a volume of at least 125 % of the remaining PCB liquid in the transformer and a height of at least 800 mm, and containing sufficient inert absorbent material to absorb at least 1.1 times the volume of any free liquid.
Adequate provisions shall be taken to seal the transformers and capacitors to prevent leakage during normal conditions of carriage.

Due to their size, transformers cannot normally be packed in boxes or even drums. Therefore, they have to be prepared and loaded on trucks in such a way, that no contamination of the surrounding materials is possible. Precautions have to be taken to prevent leakage and secure the devices.

Due to safety reasons, UN approved drums or alternatively UN approved boxes, should be used, whenever possible.

Damaged or leaking drums as well as drums that do not conform with the regulations must be stored and transported in recovery drums. Appropriate measures must be taken to prevent movements of the inner drum.
If the recovery drum carries liquid PCB, a sufficient quantity of absorbing material should be added to immediately absorb possible liquid coming out of the inner drum.

8.2.1 Labelling of the Packaging

The labels identify the dangers posed by the packed goods and is destined to attract the attention of the person handling the goods to take the necessary precautions during storage or transport.

The «Orange Book» defines the identification of a hazardous material or article. These assigned identification numbers are also generally referred to as «UN numbers».

Table 34: UN numbers for PCB

<table>
<thead>
<tr>
<th>UN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 2315</td>
<td>Polychlorinated biphenyls, liquid</td>
</tr>
<tr>
<td>UN 3151</td>
<td>Polyhalogenated biphenyls, liquid or Polyhalogenated terphenyls liquid</td>
</tr>
<tr>
<td>UN 3152</td>
<td>Polyhalogenated biphenyls, solid or Polyhalogenated terphenyls solid</td>
</tr>
<tr>
<td>UN 3432</td>
<td>Polychlorinated biphenyls, solid</td>
</tr>
</tbody>
</table>

8.2.2 Labelling for Storage or Transport

If waste is transported by road (ADR), each packaging must be marked clearly and durably with the UN number of the contained goods, the letters “UN” coming first. A label of class 9 “Miscellaneous dangerous substances and articles” must be affixed to each packaging (see Picture 78 and Picture 79). In case of recovery drums, the designation «OVERPACK» must be added.

Remark: The class 9 pictogram is included in the UN Model Regulations but has not been incorporated into the GHS because of the nature of the hazards. In the GHS system the nature of hazards has been defined in such a way that various class 9 materials are included in other more specific classes. Nevertheless, the transport labels are still the same as in the Dangerous Goods transport regulations. GHS only concerns the packaging of materials and concerning waste there are some exemptions, in other words, less stringent definitions concerning the exact composition of materials. Consequently, class 9 is used when transporting PCBs.
The UN number for PCB capacitors is UN 2315.

The identification of containers for a transport by sea is different. The IMDG (International Maritime Dangerous Goods Code) applies for such shipments.

In addition to the UN number, the proper shipping name (PCB) must be mentioned and some indication about the condition of the contents (LIQUID or SOLID) must be made. The class 9 label as well as a marine pollutant label must be affixed on the containers. Since 2009 a new marine pollutant label shows a dead tree and dead fish.

The weatherproof drum/container labels should at least contain the following data:

- UN number
- UN classification
- “HAZARDOUS WASTES”
- Waste identification code
- Waste designation
- Tracking form number
- Origin of the wastes
- Weight of the drum
- Drum tracking number
Examples of labels to be used for PCB waste declaration:

8.3 Handling of Packed Waste

It is essential to weigh the packed drums. If possible a mobile scale can be used on site. This allows a reliable planning of the transport of the waste. The following information shall be additionally written clearly on the lid of the drum:

- Contents
- Name of the location, where the packed goods originate from
- Date
- Weight and signature

The drums with open lid must be secured by «splints». Full drums should preferably be carried by a safety drum lift, forklift or crane. If using a crane, there are special drum clamps available for safe handling. Only checked and clean drums shall leave for disposal respectively to the temporary storage area.

Packaging depends on type of waste, waste quantity, mode of transport and method of treatment or disposal. Further details are mentioned in chapter 8.2.
9. Temporary Storage

9.1 Temporary Storage - On Site

PCB containing wastes should generally not be stored on sites that are not specifically designed for interim storage of hazardous wastes. Usually, there is no appropriate infrastructure to guarantee a safe storage. Uncontrolled and inexpert interim storages as shown in the pictures below endanger people and the environment, and result in unnecessary additional costs.

![Picture 84: Bad example I (open air storage)](image1) ![Picture 85: Bad example II (no tip trays)](image2)

PCB containing devices should be packed safely and in compliance with the applicable laws (see chapter 8.1.) as soon as they have been phased out, even if their disposal takes place at a later stage. Irrespective of the quality of the temporary storage, the final and environmental sound disposal of the waste must be scheduled and coordinated so that storage will not exceed twelve months. Generally, electrical equipment should only be phased out and stored, once an appropriate method of disposal has been chosen.

When setting up a temporary storage for PCB wastes it is important to choose an appropriate storage area. Locations close to rivers, groundwater, residential or farming areas, and ecological reserves or for example food processing industries CANNOT be considered suitable. If possible, the interim storage should be specifically designed for PCB containing equipment and wastes.

<table>
<thead>
<tr>
<th>Table 35: Minimum requirements for temporary storage on site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing</td>
</tr>
<tr>
<td>➢ Capacitors must always stand upright. The insulators are the weakest parts. Never lift a capacitor by holding the insulators, they can easily break off.</td>
</tr>
<tr>
<td>➢ Capacitors must be stored on steel drip trays and leaking devices should be sealed. It is advisable to add absorbents to the steel trays.</td>
</tr>
<tr>
<td>➢ It is possible to put capacitors and contaminated solids into containers that are not UN approved. However, such containers must be checked for damage and leaks before use and cannot be utilized for transports. After use, the containers must be regarded as contaminated and also be disposed of as hazardous waste!</td>
</tr>
<tr>
<td>Building</td>
</tr>
<tr>
<td>➢ The floor of a temporary storage must be solid and tight. The storage must be walled and protected against the weather on all sides.</td>
</tr>
<tr>
<td>➢ All entrances to the storage must be marked with an appropriate warning, and access for unauthorized people must be forbidden.</td>
</tr>
<tr>
<td>➢ The area must be fenced and controlled.</td>
</tr>
<tr>
<td>➢ Display emergency procedures and best working practices (see Annexes 12.8 and 12.9).</td>
</tr>
<tr>
<td>➢ The building should have some openings for permanent ventilation (ventilation systems with filters).</td>
</tr>
<tr>
<td>➢ Increased risks of fires must be excluded (no wooden shed, no storage of inflammable goods in the same building or in the neighbourhood). A smoke and fire alarm system should be installed.</td>
</tr>
<tr>
<td>➢ Fire extinguishers (powder) and absorbents (e.g. sawdust) must be available and easy accessible.</td>
</tr>
<tr>
<td>➢ The building should be separated in different areas (reception, handling, separate storage of different waste categories, equipment, etc.)</td>
</tr>
<tr>
<td>➢ No food storage or food processing companies in the neighbourhood.</td>
</tr>
</tbody>
</table>
All goods/wastes must be clearly marked giving information about the kind of waste, the date of packing, the weight, the origin and further important data. An up to date storage list must be accessible at any time.

Temporary storage CANNOT be accepted as long-term solution.

Picture 86: Example 1 of a sound storage platform

Legend
- A - security fence
- B - padlocked door
- C - concrete floor (no drains)
 - all cracks and expansion joints between slabs sealed with compound
 - floor painted with epoxy paint to prevent PCBs to penetrate in concrete
- D - concrete curb around perimeter of storage area; inside of curb painted with epoxy
- E - sealing compound (grouting) at corner of curb to prevent leakage under curb
- F - ramp over concrete curb, into storage area
- G - drums containing PCB-wastes
 - stored on pallets for mobility
- H - recovery drum
- I - spare drum
- J - clean-up materials, stored in bin
- K - locker for PPE worn when working with PCBs
- L - pumps and hoses for use with PCBs
 - laid in a drip tray
- M - scrapped transformer in protective crate
- N - delivered capacitors on pallets for packing
- O - first-aid kit
- P - PCB label on door
- Q - powder or foam-type fire extinguisher

9.2 Central Storage Platform

A central storage platform shall provide the necessary storage room, where PCB devices and associated waste can be collected and stored until their final disposal. Such a platform could also be used as a «buffer zone» by regional or national authorities, or by waste treatment / disposal plants to guarantee a constant running of their plants.

PCB equipment and PCB wastes shall be stored according to their category or priority. Appropriate areas shall be defined for each type/category of PCB waste. Ideally, already existing storage facilities, for example the facilities of PCB equipment holders could be upgraded to meet safe and professional standards.

Available Site
The available site must be carefully monitored and reported in respect of existing groundwater and its level, existing soil contaminations as well as permeability of underground. The most suitable location shall be defined under consideration of the following criteria.

- The storage building shall be located and maintained in conditions that will minimize volatilization, including cool temperatures, reflective roofs and sidings, shaded location, etc.
- The surrounding land should be sloped to provide drainage away from the site
- The area must be fenced and controlled
- All entrances to the storage platform must be marked with appropriate warnings
An access control system shall be installed to ensure access of authorized staff only.

Human and Environmental Hazards
PCB belongs to the group of POPs banned by the Stockholm Convention. Therefore all relevant precautions must be provided to avoid human and environmental hazards. The entire interim storage facility must meet BAT and BEP requirements.

Technical Hazards
The whole area used by the interim storage facility must be protected against spillage of contaminated oil and of chemicals.

Area Preparation
- Wherever necessary, the ground must be sealed with adequate material, considering PCB but also associated solvents and chemicals when handling and treating PCB containing electrical equipment and oil. The sealed area must be dewatered with special sewers, capable for retaining any oils and other insoluble organics.
- Due to the possibility of fire hazards, efficient fire protection and firefighting equipment must be provided. In combination with the firefighting equipment, an appropriate collecting volume for effluent water must be provided.

Logistics
- The existing transport infrastructure to and from the area (road and railways) shall be used for the proposed storage facilities.
- The building shall be accessible by forklifts and trucks.
- There should be enough space for any truck or crane movement in front of the building. This central receiving area where PCB equipment and wastes are loaded and unloaded from transport vehicles should have a PCB impervious floor and containment system to properly control any spills during loading or unloading.

Handling of Incoming Goods
- Each incoming waste delivery shall be examined and checked as follows:
 - Internal information and weighing
 - Check of accompanying tracking forms/sheets, sampling and visual check of wastes
 - If necessary, screening of waste sample
 - Labelling and storage at defined storage area, according to waste category
- Only equipment accompanied by duly signed tracking forms/sheets shall be accepted and stored in the interim storage. Tracking of the waste generator must be ensured at any time.
- Transformers for dismantling or revision, delivered by rail or road transport must be kept in a covered and spillage-protected area until they are tested for contamination with PCB. After testing they shall be stored inside the storage building in separate compartments for contaminated and not contaminated units. If ever possible, the transformers shall be stored on racks mounted on drain trays. But if stored on racks or not, all units must be placed in such drain trays.
- Handling equipment like overhead cranes and forklifts for all kind of transformers shall be provided.
- Every container with transformer oil, which is present in the intermediate storage facility, must be tested, labelled, and stored in compartments according to their contamination.

Capacity
- There shall be an intermediate storage in a suitable size for the needs of the area/region. It is recommended to store as a maximum 25 transformers in sizes of 200 to 1’500 kVA as well as boxes and drums with some 150 to 200 tons of PCB waste.
- These maximum capacity restrictions shall assist in keeping the intermediate storage platforms real temporary and no long-term solution storages.
Capacitors and wastes which cannot be treated shall be shipped to a licensed disposal facility within Europe on a periodical basis.

PCB wastes shall be packed in accordance with the instructions stipulated in the ADR, RID and in some cases also according to IATA.

Foundation

- The storage building must contain a foundation suitable for mounting metal sheet walls and roof as well as piles designed to support overhead cranes for the handling of the delivered transformers.
- All structures above ground level must be coated and sealed like the floor.

Floor

- The floor profile must be shaped in a way that no spillage from transformer handling or effluent from firefighting may flow outside the facility into the unprotected area.
- All floors inside the storage building must be industrial type floors (e.g. steel or concrete) and sealed with a PCB resistant sealant such as two-component epoxy paint.
- It is recommended that the sealant coating is inspected periodically to check its integrity.
- The building shall be set on asphalt or concrete.
- The floor inside the building shall be concrete; coated with a durable epoxy polymer to prevent PCBs to penetrate in concrete.
- The floor must be solid and tight, all cracks and expansion joints between slabs must be sealed.
- Floor drains shall be reduced to a minimum and must be connected with an internal sump.

Curb

- The storage area for transformers within the intermediate storage shall contain 6 inch high curbs that provide a containment volume equal to at least twice the internal volume of the largest PCB item.
- Concrete curb around perimeter of storage area; inside of curb painted with epoxy. Sealing compound (grouting) at corner of curb to prevent leakage under curb.
- The storage building may not have any openings, expansion joints or drains that would permit liquids to flow from the curbed area.
- A ramp over the surrounding concrete curb shall be provided to allow access with forklifts into the storage and handling area.

Walls, Doors and Windows

- The walls of the storage building may consist of a light metal sheet construction. Doors and windows have to be foreseen according to the requirements of the user, logistics and treatment process.
- Doors must open to the outside. Minimum width for any door is 80 cm.
- Windows must be planned and built in such a way that they face each other.

Roofing

- In order to prevent the atmosphere in the storage building from extended temperatures (vapour pressure of PCB!) the roof shall be reflective.
- The roofs of the building shall be sloped so as to provide drainage away from the site.

Layout of the building

The building shall be separated in different areas:

- Reception area
- Handling area
- Treatment area
- Separate storage areas or rooms for each type of PCB waste:
- PCB containing transformers
- PCB containing capacitors
- Drums with PCB oil
- PCB solid wastes

- Equipment area
- Office
- Sanitary installations

There must be a fairly big working area, where e.g. transformers can be drained or waste handled and packed. The floor of this area should be preferably covered by steel (like a drip tray) and absolutely tight, optionally, a special, PCB resistant epoxy coating could be applied.

PCB wastes should be packed as to ensure that the potential for leakage or spills is kept to a minimum (e.g. in UN approved drums). The containers should be clearly labelled and marked with the date of entry to the storage. Drums or other portable containers of PCB and PCB equipment should be placed on pallets.

Sufficient space should be left between stored containers and equipment to permit inspection and allow the safe movement of vehicles such as forklifts. Drums or other containers of PCB liquids should be separated from each other by pallets and not stacked more than two containers high.

Ventilation
- A ventilation of the entire storage facility must be installed to avoid elevated concentrations in the atmosphere of PCB and other POPs which might be present. Generally the exhausted air must be cleaned by activated carbon filters. If necessary, the ventilation must be supported by an induced draft fan.
- A fresh air inlet shall be installed in accordance to induced draft fan specification. If there is no specific legislative requirement a guideline will be a twofold to sixfold air volume exchange during normal operation with the possibility to increase to tenfold or twelvefold in case of high gas concentration alarm.

Fire alarm / Fire protection
- Due to the extreme environmental and health hazards in case of a fire in the storage building, it is very important that a smoke- and fire alarm system covering the entire facility will be installed.
- The detection-, alarm- and fighting system must meet all relevant national and community regulations as well as international BAT and BEP standards.
- The building shall have a fire suppression system; preferably a non-water system. If the fire suppressant is water then the floor of the storage room shall be curbed and the floor drainage system must not lead to the sewer or storm-sewer or directly to surface water but should have its own collection system such as a sump.
- Fire extinguishers (powder) and absorbents (e.g. sawdust) must be available and easily accessible.
- A lightning protection system covering the whole interim storage facility must be installed.

Electrical Installations
- All the electrical installations must be installed at least 1.5 meters above ground level to assure a certain protection against explosion risks.
- The quantity and design of electrical connectors shall be defined in cooperation with the operator of the waste preparation units.

Installations for control of water run-offs
- The sumps within the protected area shall contain a level alarm high and high+.
- Water run-offs and canals must be leak-proof and easily accessible for cleaning purposes.
Pipelines

- Any pipeline to be installed in the interim storage facility must be over ground.

Emergency equipment

- All the necessary emergency equipment for a safe shut down of the plant and all necessary equipment for a safe and controlled evacuation of the storage facility in case of fire must be available and easily accessible.

Emergency response plan

- Emergency procedures and best working practices shall be displayed.

Health and safety plan

- A health and safety plan shall be displayed.

Spill prevention, control and countermeasure plan (SPCC)

- The site should be subjected to monthly inspections for leaks, degradation of container materials, floors, drains, draining systems, personal protection equipment, integrity of fire alarms and fire suppression systems, vandalism, security fences and general status of the site.

Database of Interim Storage Platform

- A complete database of the PCB wastes and other equipment and chemicals in the storage site shall be created and kept up to date as waste is added or disposed of. The records should include:
 - An inventory of each item of PCB waste and the quantity of PCB therein
 - The date and source of PCB waste transferred to storage and the date and destination of waste leaving storage
 - A description of the PCB waste including the quantity and concentration of PCBs, nameplate description where available
 - Identification number for the PCB waste
 - Name of carrier of PCB waste
 - Name of recipient of PCB waste
 - Date and quantity of PCBs spilled as a result of a leak or accident and clean-up procedures adopted
 - Dates and details of inspections by the competent authorities and the owner
 - The responsible fire brigades and environmental authorities shall be informed about the amount of PCB wastes in stock periodically (e.g. every 2 weeks), by providing them with a copy of the latest stock list/records.

Personnel working at the facility should be made clearly aware of and understand current PCB waste management procedures including the use of personal protection equipment and clean-up techniques.

The above inputs shall be taken as general advice and recommendation. However it is important to review them at the time of construction or upgrading of an existing storage facility together with the competent local and governmental authorities as regulations and guidance may change.
If there is neither a storage platform as previously described nor another possible interim storage building, a kind of mobile interim storage could be installed for short-term use. Depending on the quantity of the arising waste, 20’ or 40’ Box Containers with integrated drip trays as safety precaution could be an option.

It should be considered that usual Box Containers do not contain a steel ground but only wood and therefore need to be adopted.

9.3 Authorization and Control

The establishment of an interim storage facility or a central storage area is only possible after submission of an Environmental Impact Assessment study and is subject to authorization of the competent authorities.

It is further recommended that an extension of temporary storage beyond the period of 12 months shall also be subject to authorization by the competent authorities.
10. Transport

10.1 International Regulations for the Transport of Hazardous Goods

Depending on the means of transport for hazardous goods, the following regulations are applicable:

- ADR (European Agreement concerning the International Carriage of Dangerous Goods by Road)
- IMDG (International Maritime Dangerous Goods code/transport by sea)
- RID (Regulation for the international transport of hazardous goods on railways)
- IATA DGR (IATA regulations on the transport of hazardous goods/air transport)
- United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Orange Book)

It should be noted that various regulations (ADR/IMDG/RID/IATA-DGR) are substantially similar to one another. The only difference is that special packaging, labels or quantity limits are specified for the different means of transport, depending on the type of hazardous goods.

ADR

Obligations of Main Actors

Basically, the ADR distinguishes between three main actors, whose obligations are described as follows:

Exporter

- To check if the goods to be transported are classified and approved for shipment.
- To supply all necessary transport documents.
- To only use UN approved packaging that are correctly marked and labeled.

Carrier

- To make sure that all necessary documents are carried along in the vehicle.
- To check if the freight is in good condition, i.e. no visible damages like leaks or cracks.
- To make sure that the vehicle is not overloaded.
- To make sure that the placards and labels are affixed.
- To make sure that the equipment as stipulated in the written instructions for the driver are carried along in the vehicle.
- Not to transport the freight if it does not comply with the regulations.
Importer

- Not to delay the acceptance of the goods without compelling reason, and to check after the unloading if the ADR instructions concerning the import are fulfilled.
- To clean and decontaminate vehicles and containers.
- To make sure that any labels, marks and signs are no longer visible on the completely unloaded, cleaned and decontaminated container.

10.2.2 Documentation

The following documents must accompany every shipment in accordance with the ADR:

Movement document

The following data of every single good/waste must be mentioned on the movement document:

- UN number, with the letters «UN» in front of the number
- If the goods are wastes, the word «WASTE» must be written in front of the UN number
- The official designation (Polychlorinated Biphenyl) plus the technical term (PCB)
- UN class (9)
- Packaging group
- Packaging type and number of packaging
- Total quantity of each dangerous good with different UN number
- Name and address of exporter
- Name and address of importer

Container packing certificates

If dangerous goods are transported in box containers by sea, a container packing certificate must be enclosed to the movement document. Basically, the container packing certificate confirms that the goods have been packed and loaded according to paragraph 5.4.2 of the IMDG Code. The container packing certificate can be integrated in the movement document. An example is shown in Annex 12.19.

Written instructions

To be able to take actions immediately in case of an accident or an incident, the driver must be provided with transport emergency cards for each transported dangerous good briefly informing about the following:

- Designation, class and UN number
- Possible dangers that can be posed by the goods
- Necessary additional equipment
- Measures to be taken

Not only ADR regulations but also Basel Convention procedures and documents must be considered for international transports of hazardous wastes. The two regulations sometimes overlap and it is e.g. sufficient to use the Basel Convention Movement Document (see Annex 12.18.) to accompany the transport.
10.3 National Transports

National transports of PCBs and PCB wastes have to be in accordance with the national hazardous goods regulations and laws.

If necessary, national legislation to regulate criteria for the transport of hazardous wastes, such as insurance, registration and license and safety aspects, shall be developed. Also during national transport a movement document shall accompany the wastes at any time.

Picture 92: Example of possible nation tracking form

<table>
<thead>
<tr>
<th>Tracking Form</th>
<th>No. AA 123 123 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consignor</td>
<td>Contact person:</td>
</tr>
<tr>
<td>(name, address)</td>
<td>Telephone:</td>
</tr>
<tr>
<td></td>
<td>Date:</td>
</tr>
<tr>
<td>Waste</td>
<td>Waste identification code:</td>
</tr>
<tr>
<td>(designation / chemical composition of waste)</td>
<td>UN number:</td>
</tr>
<tr>
<td></td>
<td>Quantity: (kg / ltr)</td>
</tr>
<tr>
<td></td>
<td>Packaging: (Type / number)</td>
</tr>
<tr>
<td>Consignee</td>
<td>Contact person:</td>
</tr>
<tr>
<td>(name, address)</td>
<td>Telephone:</td>
</tr>
<tr>
<td></td>
<td>Quantity: (kg / ltr)</td>
</tr>
<tr>
<td></td>
<td>Method of disposal:</td>
</tr>
<tr>
<td></td>
<td>Date:</td>
</tr>
<tr>
<td>Carrier</td>
<td>Contact person:</td>
</tr>
<tr>
<td>(name, address)</td>
<td>Telephone:</td>
</tr>
<tr>
<td></td>
<td>Means of transport:</td>
</tr>
<tr>
<td></td>
<td>Date:</td>
</tr>
</tbody>
</table>

10.4 Transboundary Movement of Hazardous Waste

When exporting PCB wastes to other countries, the procedures stipulated by the Basel Convention (see chapter 1.2) have to be followed. One important condition under the Basel Convention is that a transboundary movement of hazardous wastes or other wastes can take place only upon prior written notification to the competent authorities of the States of export, import and transit, and upon consent from these authorities permitting the transboundary movement of waste.

Furthermore each shipment of hazardous waste or other waste shall be accompanied by a movement document from the point at which a transboundary movement begins to the point of disposal (see Annex 12.8).

Please contact the competent national authority for specific information:
10.5 Loading and Safety Check before Transport Takes Place

The type of packaging and transport depends on the chosen method of disposal and may vary. It should be considered that beside the national and international packaging regulations also the disposal facility might have special specifications.

No person shall handle, offer for transport or transport PCBs or devices containing PCBs, including waste, unless he is trained to do so, or is performing those activities under the direct supervision of a trained person.

10.5.1 Loading on a Truck for Local Transports

All hazardous wastes ready for transport have to be packed and labelled according to the ADR (see chapter 8.).

10.5.2 Loading of Containers for International Transport

Due to safety reasons, it must be considered that PCB containing waste should be loaded at one go. Therefore, the loading of containers is performed shortly before their transport.

The containers have to undergo an examination by an accredited Customs Office. Before the containers are loaded, it is first necessary to check their condition again. Dust and dirt on the loading surface have to be removed.

Each single drum has to be checked for safety and possible damages. The drums have to be handled carefully. The code, content, number and weight of every loaded drum have to be recorded in a Container Loading List.

For the weighing activities a calibrated mobile scale has to be used. Only units that are given free from inspection and weighing may be loaded.

There are various types of Containers which can be used for the transport of hazardous wastes:

Picture 93: Different types of containers
When wastes are transported over long distances, it is particularly important to ensure that the load cannot shift. The load can be ideally secured by optimal utilisation of space and by safety measures like tightening belts, antislip wooden boards and air bags. It is also necessary to ensure that the weight of the individual packaging in trucks or containers is evenly distributed.

Furthermore, the total gross loading weights, which vary from country to country, must be considered.

Picture 94: Movements of containers e. g. on ships to be considered

If 20’ Box Containers will be used for transportation, there is space for 36 UN approved drums in one layer. The containers shall be loaded with two layers of drums, therefore a total of 72 drums may be loaded into one container. The next picture illustrates how the drums are loaded in the container with a floor between the layers, made of plywood planks.

Picture 95: Top View of loaded 20’ box container
Picture 96: Side view of loaded 20’box container

1st layer: 36 drums
2nd layer: 36 drums
Total: 72 drums per Container

Picture 97: Loading of container
Picture 98: Lifting of containers to truck

When transporting (drained) transformers, the devices must be tightened by using sufficiently strong belts fixed to the lifting eyes. The loading is easier if open top containers are used. However, such containers must be covered by a tarpaulin to protect against the rain.
There are also special containers for the safe transport of PCB containing transformers that have not been drained (see picture above). Such units, however, are rather expensive.

10.6 Waste Transportation by Air

Air transports of UN no. 2315 and 3432 are basically possible. However, IATA regulations do generally refer to substances in their original, pure form only, and NOT to wastes.

It is therefore not appropriate and not recommended to transport Hazardous Waste wastes by air.

In the frame of a GEF financed disposal project in Eastern Europe, PCB wastes were however transported by airplane to their final destination in Western Europe. The usual proceeding according to the Basel Convention was undertaken.

If this option is seriously considered by a country, detailed investigation with all competent authorities incl. IATA, have to be made.

Furthermore, specific packing instructions have to be followed. The staff in charge of packing, loading and shipping must have attended a special training, and they must have official permission to perform this task (specific approval).
11. Pre-treatment, Treatment and Disposal

To select the most appropriate technology several rateable and non-rateable criteria have to be considered. Among “non-rateable”, or relative criteria, are included public acceptability, risk and environmental impacts, which depend on the specific geographic site location. The rateable criteria may include the applicability of the method (in accordance with its development status), BAT and BEP, already approved technologies, overall cost, resources, minimum achievable concentration, clean-up time required, reliability, maintenance, post treatment cost and ability to use soil after treatment. Furthermore, an Environmental Impact Assessment study shall be carried out to evaluate a technology.

An important requirement of a professional PCBs disposal technology is the destruction efficiency greater than 99.99%. Destruction efficiency (DE) is defined as the total mass of a chemical into a process, minus the mass of the chemical in all products, by-products and environmental releases, divided by the input mass (to give a percentage). This may differ significantly from the other common measure, destruction and removal efficiency (DRE) which only takes into account stack emissions; with no regard for other releases and residues. A process must be able to handle upsets, such as power supply failure, without danger to personnel or equipment. Handling and loading of POPs into the process must always be safe, straightforward and controlled. Equipment and controls must be simple and robust, and will preferably make use of local resources. The operating procedure must be extremely basic and virtually fail-safe. Loading and unloading, start up and shut down must all be straightforward.

The difference between technologies that only separate and/or concentrate a pollutant (e.g. solvent extractions, thermal desorption) and those which destroy the contaminant (e.g. incineration, dechlorination or biodegradation) must be considered. Those technologies that only immobilize contaminants (e.g. landfill systems, stabilization and vitrification) should also be clearly differentiated.

11.1 Technologies and Methods in General

The technologies listed below and presented more in detail in Annexes 12.3 and 12.6 cover a wide range of degree of treatment and recovery of transformer components, a factor which must be taken into account in comparing technologies. Decontamination is never completely applied to all components, and this means that a residue remains which must be incinerated. In the best case this will be just the porous parts (wood and paper) unless the solvent technique is applied for long process times, and a product finally obtained which may be sent for land filling if the residual PCB levels are legally acceptable. In other words, the total cost of treatment, including the cost of final disposal of residues, must be taken into consideration.

Table 36: Overview Pre-treatment and Non-Combustion Technologies

<table>
<thead>
<tr>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoclaving</td>
</tr>
<tr>
<td>Alkali metal reduction (e.g. dechlorination/dehalogenation processes)</td>
</tr>
<tr>
<td>Ball milling</td>
</tr>
<tr>
<td>Base catalysed decomposition</td>
</tr>
<tr>
<td>Catalytic hydrodechlorination</td>
</tr>
<tr>
<td>Gase-phase chemical reduction</td>
</tr>
<tr>
<td>Plasma Arc</td>
</tr>
<tr>
<td>Potassium tert-butoxide method</td>
</tr>
<tr>
<td>Pyrolysis / waste-to-gas conversion technology</td>
</tr>
<tr>
<td>Supercritical water oxidation</td>
</tr>
<tr>
<td>Vitrification</td>
</tr>
<tr>
<td>Bio-degradation</td>
</tr>
</tbody>
</table>

Table 37: Overview Combustion Technologies

<table>
<thead>
<tr>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-temperature incineration</td>
</tr>
<tr>
<td>Co-incineration in cement kilns</td>
</tr>
</tbody>
</table>
“POPs Technology Specification and Data Sheets” providing detailed information on various decontamination/disposal methods are currently being prepared by the Basel Convention Secretariat.

Two sets of factsheets will describe technologies recommended for the destruction or irreversible transformation of waste consisting of, containing or contaminated with POPs. These factsheets will mainly focus on the following destruction technologies:

- Autoclaving
- Alkali metal reduction
- Base catalysed decomposition
- Co-incineration in cement kilns
- Supercritical Water Oxidation
- Thermal Desorption
- Waste-to gas conversion
- Hazardous waste incineration
- Plasma arc

The latest factsheets shall be published on the website of the BRS Secretariat before the COP 2015. At the moment the provisional data sheets can be downloaded at: http://www.ihpa.info/resources/library/. For further details on the current status of the factsheets the BRS Secretariat in Geneva can be contacted: brs@brsmeas.org.

Incineration, is the most widely available and used technology for PCB destruction and remains a final solution. Because of the cost-factor of incineration and its non-availability in many countries, alternative technologies are widely used. Some of those technologies have the advantage not only of lower cost, but also of being able to treat economically much lower volumes of waste material.

Co-processing technologies, if not prohibited by national legislation, shall be implemented according to Basel Convention Technical Guidelines on the environmentally sound co-processing of hazardous wastes in cement kilns as well as the relevant national legislation and regulations.

Although oil decontamination can be achieved with technologies allowing complete destruction of PCBs, the carcass of transformers and capacitors can present problems because of the presence of a small amount of porous, organic material which are costly to treat to obtain complete decontamination.

The techniques and the procedures for the decontamination should be appropriately validated and documented, such that it is possible to predict the reduction, elimination and/or decomposition of specific undesired compounds and elements down to the concentration limit required, without potential hazards or unreasonable risk.

The decontamination activities should utilise Best Available Techniques (BAT) and Best Environmental Practices (BEP) to ensure that, throughout the residual life of equipment and insulating liquids, the quality of dielectric performances and the good functional state of the equipment is maintained. Such techniques should also ensure:

- The best operational conditions for decontamination to prevent direct and indirect damage. Prior to performing the operations, an appropriate safety plan should be prepared which evaluates risk and the appropriate corrective actions in the event of problems, failures, fires, uncontrolled spills or emissions into the environment;
- The dielectric quality and the physical and functional features of the insulating liquids in accordance with the relevant Standards and guides;
- The achievement of the objectives set by the decontamination operations, to be checked by measurement of the concentration of PCBs at the end of the decontamination and after a period of at least 3 months from the re-commissioning of the equipment, under service conditions. Transport of PCBs and equipment containing PCBs to companies performing decontamination in locations other than the site of installation of the equipment, should comply with all applicable transport and waste regulations, including the use of identification forms for waste and the waste input/output register. For trans-boundary movements, the Basel Convention applies.
Whatever technology is chosen, it has to be performed by a company which is approved for this task by the competent authorities, and the same if the PCB waste is exported, approved by the competent authority in the country concerned.

In December 2004, the United Nations Environment Programme published an updated version of the inventory of worldwide PCB Destruction Capacity. The UNEP also conducted a survey on currently available non-incineration PCB destruction technologies in 2000. Both documents can be downloaded:

http://www.chem.unep.ch/pops/pcb_activities/pcb_dest/PCB_Dest_Cap_SHORT.pdf;

Further UNEP guidance documents as well as training manuals are available from:

http://www.chem.unep.ch/Pops/pcb_activities/default.htm;
http://www.basel.int/meetings/sbc/workdoc/techdocs.html

Picture 104: UNEP training manual for Hazardous Waste Project Managers from October 2002
12. Annexes

12. 1 In-Depth Information on the Internet: Conventions and Guidance Documents

- Basel Convention
 www.basel.int

- Stockholm Convention
 www.pops.int

- PEN PCB Elimination Network
 www.pops.int/pen/

- Guidance documents on PCBs

- Rotterdam Convention
 www.pic.int

- UNEP Chemicals, many useful reports can be viewed and downloaded via this website
 www.chem.unep.ch

- GPA Global Programme of Action for the Protection of the Marine Environment from Land-based Activities, a lot of useful information
 www.gpa.unep.org

Identification of PCB containing capacitors, manual for electricians, very detailed list, Australia, 1997

Guidelines for the Identification of PCBs and Materials Containing PCBs, UNEP 1999

- GEF - Global Environment Facility
 www.gefweb.org

- UNITAR - United Nations Institute for Training & Research
 www.unitar.org

- UNIDO – United Nations Industrial Development Organization
 www.unido.org

- Recommendations on the Transport of Dangerous Goods – Model Regulations

- International Chemical Safety Cards
 http://www.cdc.gov/niosh/ipcs/icstart.html#language

- Minamata Convention

- SAICM – Strategic Approach to International Chemicals Management

- REACH – Registration, Evaluation, Authorisation and Restriction of Chemicals

Please note that many documents and publications are under revision. Therefore please check the actualities in the World Wide Web periodically.
Guidance documents for identification, management and destruction of PCB

- Destruction and decontamination technologies for PCBs and other POPs wastes under the Basel Convention. A training manual for hazardous waste project managers Secretariat of the Basel Convention
 http://archive.basel.int/meetings/sbc/workdoc/TM-B.pdf

- Guidelines for the identification of PCBs and materials containing PCBs
 UNEP Chemicals
 http://www.chem.unep.ch/Publications/pdf/GuidIdPCB.pdf

- Inventory of World-wide PCB Destruction Capacity
 UNEP Chemicals

- PCB Transformers and Capacitors - From Management to Reclassification and Disposal
 UNEP Chemicals
 http://www.chem.unep.ch/Publications/pdf/PCBtranscap.pdf

- Provisional POPs Technology Specification and Data Sheets
 Secretariat of the Basel Convention

- Selection of Persistent Organic Pollutant Disposal Technology for the Global Environment Facility
 A STAP advisory document

- Survey of Currently Available Non-Incineration PCB Destruction Technologies
 UNEP Chemicals

- Updated general technical guidelines for the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants (POPs)
 Basel Convention
 http://chm.pops.int/Portals/0/flash/popswastetrainingtool/eng/All_technical_guidelines_on_POPs_4.pdf

- Updated technical guidelines for the environmentally sound management of wastes consisting of, containing or contaminated with polychlorinated biphenyls (PCBs), polychlorinated terphenyls (PCTs) or polybrominated biphenyls (PBBs)
 Basel Convention
 http://archive.basel.int/pub/techguid/tg-PCBs.pdf

- Draft guidelines on best available techniques and provisional guidance on best environmental practices relevant to Article 5 and Annex C Stockholm Convention

Please note that many documents and publications are under revision. Therefore please check the actualities in the World Wide Web periodically.
12.2 Detection Kits and Other Instruments

Clor-N-Oil (oil samples) and Clor-N-Soil (soil samples)
This kit can test transformer oil for PCB presence. This test uses a colour charge to indicate the presence of chlorine and therefore the likely presence of PCBs. This detection kit can be obtained from the Dexsil Corporation. For more information the manufacturer may be reached at:

Dexsil Corporation
One Hamden Park Drive
Hamden, Connecticut 06517
USA
Phone: +1 203 288 3509
Fax: +1 203 248 6523
E-mail: info@dexsil.com
Internet: www.dexsil.com

L2000 PCB/Chloride Analyser (oil, soil, water and surface wipe samples)
This kit is designed to be used in the field to test for PCBs in soil, transformer oil, water, and on surfaces. The test first react the sample with a reagent that strips all chlorine from the organic molecule. Then a chloride specific electrode determines PCB concentration in the reacted sample. For more information the manufacturer may be reached at:

Dexsil Corporation
One Hamden Park Drive
Hamden, Connecticut 06517
USA
Phone: +1 203 288 3509
Fax: +1 203 248 6523
E-mail: info@dexsil.com
Internet: www.dexsil.com

DR/800 Series Colorimeters (water samples)
This is a small colorimeter that can check for PCBs (chloride) in water. It is designed for field use. For more information the manufacturer may be reached at:

Hach Company
P.O. Box 389
Loveland, Colorado 80539-0389
USA
Phone: +1 970 669 3050
Fax: +1 970 669 2932
E-mail: csays@hach.com
Internet: www.hach.com

DR/4000 UV-VIS Spectrophotometer (water samples)
This kit can perform water quality analysis. This spectrophotometer allows for both manual and sipper testing. It comes pre-programmed with 130 Hach methods of analysis but it can be programmed to perform other water quality analyses as well. For more information the manufacturer may be reached at:

Hach Company
P.O. Box 389
Loveland, Colorado 80539-0389
USA
Phone: +1 970 669 3050
Fax: +1 970 669 2932
E-mail: csays@hach.com
Internet: www.hach.com
12.3 PCB Pre-Treatment Technologies (Extract only)

Transformers are drained in a first step. The liquids will be disposed of separately. The “empty” transformer still contains approx. 3 to 10 % liquid. 10 % is related to Askarel because of the higher density. Additionally, the content of wood, paper etc. is responsible for the remaining liquid. Separate treatment is necessary for transformers. “Pure” PCB transformers cannot be cleaned economically for re-use. The same applies to all other devices that contain “pure” PCB.

Thus transformers need specific treatment. In case of Askarel transformers, solvent extraction is a possibility. Some companies put the core into an autoclave and extract PCB by solvent and vacuum. Empty carcasses are cleaned the same way. Alternatively, the transformer itself can be used as autoclave, and solvent is circulated through the empty transformer. In both cases the solvent is re-distilled, and the PCBs are exported to be incinerated. Various studies have shown that only solvent can remove Askarel from non-porous materials. The use of unchlorinated solvents would be more ecological, their low flashpoint, however, increases the inflammability risk. Therefore, chlorinated solvents like Perchlorethylene are used. Special attention must be paid to the potentially occurring emissions.

After these cleaning processes transformer coils are carefully disassembled. Porous parts still do contain PCB in the interior parts, and are packed into suitable packaging for final disposal at licensed facilities. Even after that pre-treatment by solvent, PCBs are still present the winding and between the core sheets. Therefore, core sheets and winding require additional cleaning processes in specific washing machineries using again solvent. After that procedure random samples must be taken in order to check the success of the process. If all metal parts are PCB-free they can be sold as secondary raw material.

12.4 PCB Non-Combustion Technologies

Decchlorination in general: Chemical dechlorination is based on reactions with either an organically bound alkali metal or an alkali metal oxide or hydroxide. Dechlorination processes are well developed for the treatment of liquid PCBs and PCB contaminated oil. The chlorine content is converted to inorganic salts which can be removed from the organic fraction by filtration. Reactions take place under inert atmosphere. Some companies provide mobile treatment plants, which can be used on an operating transformer in the field. There are several types of this technology available. Two suppliers of dechlorination technologies, and their processes are briefly described below:

Continuous Dehalogenation Process (CDP)

The CDP Process®, developed and patented by Sea Marconi, is a process capable of detoxifying and dehalogenating the PCBs present both in the oil and the inner parts of the transformer on-site, in continuous mode and closed circuit, with circulation of warm oil, with an efficiency of 99.9 %, in accordance with European Directive 59/96. The Decontamination Mobile Units (D5MU) used for the process designed and developed by Sea Marconi implement innovative technologies and unique environmental protection systems, to ensure safe working conditions. The D5MU are modular, thus they can operate in all logistic scenarios and thanks to specially developed ad-hoc protocols, they can also operate on energized and under load transformers.

SDMI Oil Dechlorination Process

The process developed by SD Myers (http://sdmyers.com PCB-dechlorination.html) is very specific in the scheduled wastes it is able to treat, as it is designed to treat PCB contaminated transformer oils with concentrations below 10’000 mg/kg without the need to remove the transformer or take the transformer out of service. Concentrations below 2 ppm are achievable. It involves circulating the transformer fluid through a filtration system until the residual PCB concentrations are below those required. The continued circulation of the fluid through the transformer largely flushes the PCBs from the transformer windings and other internal components. The treated oil is then suitable for continued use. Leaching from the porous parts of the transformer such as wood and paper insulation can occur and the transformer may require another treatment after some time.

A general overview of non-combustion technologies is given in the next paragraphs:
Alkali metal reduction: Alkali metal reduction involves the treatment of wastes with dispersed alkali metal. Alkali metals react with chlorine in halogenated waste to produce salts and non-halogenated waste. Typically, the process operates at atmospheric pressure and temperatures between 60°C and 180°C. Treatment can take place either in situ (e.g. PCB-contaminated transformers) or ex situ in a reaction vessel.

There are several variations of this process. Although potassium and potassium-sodium alloy have been used, metallic sodium is the most commonly used reducing agent. [Technical Guideline, Basel Convention]. Sodium- and ammonium reduction technologies are capable for any kind of contamination of PCB, but not economical at higher level. The maximum economical level of PCB varies between 2'000 to 5'000 mg/kg PCB. The technologies have been widely used in Canada, USA and Europe for treatment of PCB-contaminated transformer oil. One of the advantages is that the oil after further treatment can be reused. There are several providers of the technology around the globe. The ammonium technology is comparable to sodium technology but rather seldom and not easy to handle.

Ball milling: This is an interesting new technology where a ball mill is used with excess CaO resulting in decomposition of chlorinated compounds. Reports show high destruction efficiencies for individual chemicals. However, the method is still in development stage and there is a lack of independent emission statistics. The operating costs may be high due to the amount of CaO and electricity needed in the process.

Base catalysed decomposition (BCD): The BCD process involves treatment of wastes in the presence of a reagent mixture consisting of hydrogen-donor oil, alkali metal hydroxide and a proprietary catalyst. When the mixture is heated to above 300°C, the reagent produces highly reactive atomic hydrogen. The atomic hydrogen reacts with the waste to remove constituents that confer the toxicity to compounds. [Technical Guideline, Basel Convention].

The BCD process is limited to a certain PCB content, which however is above 10’000 ppm. BCD has been used at two commercial operations within Australia, with one still operating. Most recent experiences have been gained at one of the largest Dioxin sites in the world, the Spolana Site in Czech Republic, where tens of thousands of tons of contaminated soils and several thousands of tons of 50 % chlorine pesticides, etc. have been treated. Thanks to these experiences in Spolana, BCD units have been improved in such a way that up to 1000 t/y of high chlorine content PCBs or pesticides (50%) can now be treated in a single line.

Catalytic hydrodechlorination (CHD): CHD involves the treatment of wastes with hydrogen gas and palladium on carbon (Pd/C) catalyst dispersed in paraffin oil. Hydrogen reacts with chlorine in halogenated waste to produce hydrogen chloride (HCl) and non-halogenated waste. In the case of PCBs, biphenyl is the main product. The process operates at atmospheric pressure and temperatures between 180°C and 260°C. [Technical Guideline, Basel Convention]

In Japan the CHD technology is implemented by JESCO (Japan Environmental Safety Corporation) which is a special company wholly owned by the government, established in 2004. JESCO's mission is to construct and operate five regional facilities to treat PCBs wastes in Japan, and one of them is the CHD Osaka PCB Waste Treatment Facility. The Japanese plant can treat up to 100% PCBs and is also combined with units to clean PCB transformers: Solvent Cleansing Method and the Vacuum Heating Separation Method. An interesting option is the CHD technology implemented by Hydrodec, which has treatment facilities in Young, NSW, Australia, and Canton, Ohio, USA. They transform used oil into a high quality naphthenic based transformer oil or base oil called SUPERFINE™. The plant in Ohio, can treat low level PCB-contaminated transformer oil up to 49 ppm, (EPA permit for up to 2,000 ppm pending approval) (http://www.hydrodec.com/product-and-services/north-america/used-oil-collection-and-treatment).

In 2011, the company started a joint-venture with Kobelco Eco-Solutions. It is planned to set up the first plant in Japan during the second half of 2012.

Gas-phase chemical reduction (GPCR): The GPCR process involves the thermochemical reduction of organic compounds. At temperatures greater than 850°C and at low pressures, hydrogen reacts with
chlorinated organic compounds to yield primarily methane and hydrogen chloride. [Technical Guideline, Basel Convention]. All PCBs from Western Australia were treated by GPCR in the 2000s. No commercial facility is in operation today, the methodology is rather expensive.

Plasma Arc: The Plascon™ process uses a plasma arc with temperatures in excess of 3,000°C to pyrolyse wastes. Together with argon, wastes are injected directly into the plasma arc. The high temperature causes compounds to dissociate into their elemental ions and atoms. Recombination occurs in a cooler area of the reaction chamber, followed by a quench, resulting in the formation of simple molecules. [Technical Guideline, Basel Convention]. This technology can destroy up to the highest level of PCB with an efficiency of 99.99999%. The plasma arc technology is used regionally on a commercial basis but is rather low in capacity. Due to the extreme high temperature the disposal costs are very high. Installations are small with standard units (each unit 150kW) and can be used as mobile or as fixed plants. A PLASCON® plant can destroy pure PCBs at a rate of 35 to 40 kg/h (http://www.plascon.com.au/destruction-of-pcbs.html). In January 2011 there were 10 commercial plants operating with licenses from the Victorian and Queensland EPAs in Australia, the UK EPA, the US EPA, the Mexican EPA, and the Japanese Ministry of the Environment. 4 commercial 150 kW “in-flight” plasma arc units are operating in Australia. 2 units were installed at Nufarm Ltd (Pesticides producer).

Potassium tert-butoxide method: PCBs in insulating oils are dechlorinated by reaction with potassium tert-butoxide (t-BuOK). It reacts with chlorine in PCBs to produce salt and non-chlorinated waste. Typically, the process operates at atmospheric pressure and temperatures between 200°- 240°C. [Technical Guideline, Basel Convention]. (up to now only implemented in Japan).

Pyrolysis / waste-to-gas conversion technology: The process is a gasification pre-treatment and treatment technology for the recovery of hydrocarbon-containing waste operating at high temperatures (1300°C–2000°C) and high pressure (about 25 bar) using steam and pure oxygen in a reducing atmosphere. All hydrocarbon molecules in the waste are irreversibly cleft into small gaseous molecules such as hydrogen (H₂) and carbon monoxide (CO), methane (CH₄) and carbon dioxide (CO₂). Short-chain hydrocarbons such as ethane (C₂H₆), propane (C₃H₈) and butane (C₄H₁₀) and other compounds are produced in small amounts (< 1 vol. %). PCBs contained in the waste are effectively destroyed. The resulting raw gas is subsequently converted in a multistage process to pure synthesis gas for the production of highest-grade methanol. [Technical Guideline, Basel Convention]. There was only one plant in the world using this technology, Schwarze Pumpe, Germany, which, however, was already closed some years ago.

Supercritical water oxidation: SCWO and subcritical water oxidation treat wastes in an enclosed system using an oxidant (such as oxygen, hydrogen peroxide, nitrite, nitrate, etc.) in water at temperatures and pressures above the critical point of water (374°C and 218 atmospheres) and below subcritical conditions (370°C and 262 atmospheres). Under these conditions, organic materials become highly soluble in water and are oxidized to produce carbon dioxide, water and inorganic acids or salts. [Technical Guideline, Basel Convention]. At present the largest SCWO plant (10 000 t/y) in the world is under construction in the US for the destruction of Chemical Warfare agents (ACWA programme).

Vitrification (Geomelt): This technology has been widely applied for remediation of PCBs in soil. The process works by establishing a melt between pairs of electrodes inserted into the soil-bound waste materials. This treatment of PCB containing equipment and oil can only be recommended under certain specific conditions.

Bio-degradation: The bio-degradation is very limited in the contamination level and can be excluded for treatment of PCB-containing equipment and oil. From experience we know, however, that Bio-degradation can be considered for treatment of low-contaminated soils.
12.5 PCB Combustion Technologies

High-temperature incineration is the most common technology for destruction of waste with high PCB content in Europe and North America. Modern incinerators have an efficiency of at least 99.99999% for highest levels of PCB. In order to reach this destruction efficiency the incinerators operate at temperatures higher than 1,100 °C, with a residence time greater than 2 seconds, under conditions that assure appropriate mixing. The disposal costs are in general lower for waste with high content PCB than for the other disposal methods. In some countries public resistance against hazardous waste incineration has led to the development of different non-incineration technologies although the disposal costs may be higher for these technologies. The formation of dioxins and furans by the incineration has been one of the main concerns. If high temperature incineration is used the incinerator should meet a limit value for emission of dioxins and furans of <0.1 ng I-TEQ/Nm³ at 11% O₂. Most incinerators are large stationary facilities but in some countries e.g. Canada also small mobile incinerators are operating on a commercial basis. Their capacities are low compared to the stationary ones.

High temperature incineration is the main solution in Europe for “pure” PCB. Various incinerators guarantee extreme low emissions. The incinerators can accept all types of PCB waste that can either be pumped (liquids) or packed into drums. PCBs in drums are fed into the incinerator kiln by elevator. Liquids are usually pumped from storage tank through injectors into the kiln. Transformers have to be dismantled prior to disposal, due to their size.

Co-incineration in cement kilns: The co-incineration of PCB containing liquids is usually limited to the range of 50 to 1,000 ppm PCB in the oil. Higher levels of chlorine would have negative impact to the quality of cement. As rule of thumb, chlorine should usually be limited to 300 to 500 g/t cement clinker for a kiln without by-pass and 400 to 750 g/t for a kiln with by-pass, but the chlorine tolerance must be known in each instance. It is important that the process owner knows the chlorine tolerance of the process in question. Additionally, the co-incineration requires proper flue gas cleaning systems.

A number of tests of PCB destruction have demonstrated that the PCB can be satisfactory destructed in the kilns, but large scale use of cement kilns for destruction of PCBs has not been reported from developing countries. If cement kilns are used to incinerate wastes, the standards of the applicable regulations have to be met. One can refer to the regulation 94/67/EG of the European Council on the incineration of toxic wastes.

12.6 PCB Emerging Technologies

There are a number of emerging technologies, which are not presented in the frame of this handbook. There is a GEF supported “review of emerging, innovative technologies for the destruction and decontamination of POPs and the identification of promising technologies for the use in developing countries” available in the internet:

and
http://www.chem.unep.ch/Pops/pcb_activities/default.htm#Guidance

12.7 PCB Treatment and PCB Disposal Companies

Enterprises from all around the world are listed under the following link:

http://www.chem.unep.ch/pops/pcb_activities/questionnaire/default.htm

Please note that some websites might be archived in March 2015. Please check periodically the WWW about new publications and downloads.
12.8 Emergency Response Plan for Cold Incidents

The following table shows the measures to be taken in case of PCB incidents. For each nature of spill the order of the actions to be taken is indicated by the numbers.

<table>
<thead>
<tr>
<th>Nature of spill</th>
<th>Leakage into containment system</th>
<th>Spill on concrete and asphalt</th>
<th>Spill on soil</th>
<th>Spill into water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notify plant personnel, chemical response and competent authorities</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Inform responsible doctor and put on adequate Personal Protective Equipment (avoid personal contamination!)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Prevent people and/or vehicles from entering the contaminated areas</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>If applicable: Disconnect the concerned equipment from power Check earthing</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plug or dike all drains to sewers and ditches, use absorbents (sand, cement)</td>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Stop source: Seal leak by using appropriate materials, place drip-tray under leak</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Spill confinement: Build dikes to contain PCB in small area</td>
<td></td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cover with plastic to minimize runoff from rain</td>
<td></td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Dam area if possible, and close off to vessels in navigable water</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Confine contaminated area, Erect tent with compartments</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Use pump to transfer PCBs into drums, Soak up PCB with absorbents</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Use dredges to collect the contaminated soil / sediment</td>
<td></td>
<td></td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Repeated solvent scrub process followed by a sorbent clean-up</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take core sample to determine remaining contamination</td>
<td></td>
<td>12</td>
<td>11</td>
<td>(2.5 cm depth) (60 cm depth)</td>
</tr>
<tr>
<td>Break off contaminated concrete</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Pack wastes according to ADR and dispose as hazardous waste</td>
<td>9</td>
<td>14</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Monitor wells and other bodies of water in the vicinity for PCB contamination</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
12.9 Emergency Response Plan for Hot Incidents

The following table shows the measures to be taken in case of PCB incidents. For each nature of spill the order of the actions to be taken is indicated by the numbers.

<table>
<thead>
<tr>
<th>Nature of Incident</th>
<th>Internal failure No bursting of equipment</th>
<th>Internal failure of capacitor Bursting of equipment with spill</th>
<th>Fire in vicinity of equipment</th>
<th>Beware of highly toxic furans!</th>
<th>Beware of highly toxic furans and dioxins!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notify fire brigades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Notify plant personnel, chemical response and competent authorities</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inform responsible doctor and put on adequate Personal Protective Equipment (respiration mask!)</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevent people from entering the contaminated areas</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnect the concerned equipment from power</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase out equipment</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evacuate and close the building, cut out air circulation by plugging vents</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop source: Seal leak with appropriate materials, place drip-tray under leak</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confine contaminated area</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not protected by a heavy protective overall keep clear from danger zone, Let the specialists extinguish the fire</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erect tent with compartments</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeated solvent scrub process followed by a sorbent clean-up</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take core sample to determine penetration (2,5 cm deep)</td>
<td>10</td>
<td></td>
<td>11 (60 cm deep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take wipe samples for dioxin</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break off contaminated concrete</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use dredges to collect the contaminated soil / sediment</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack wastes according to ADR and dispose as hazardous waste</td>
<td>3</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.10 Best Working Practices

<table>
<thead>
<tr>
<th>Best Working Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>When performing light repair or maintenance work with PCB-containing equipment, the following safety precautions for the protection of the employees and the environment have to be followed:</td>
</tr>
<tr>
<td>Direct contact of PCB-contaminated materials with the skin and eyes has to be absolutely avoided by wearing gloves and safety goggles. According to the type of the work performed, protection clothing and a respiratory mask has also to be put to the workers disposal.</td>
</tr>
<tr>
<td>The working area has to be adequately ventilated.</td>
</tr>
<tr>
<td>Spills have to be prevented in every case by use of drip trays or adequate plastic tarps.</td>
</tr>
<tr>
<td>Every contact of PCBs with a flame or any other heat source over 300°C has to be absolutely avoided (risk of highly toxic dioxines and furanes).</td>
</tr>
<tr>
<td>All used tools and other working materials, which got in contact with PCBs, have to be disposed of as PCB-containing waste in a environmentally sound manner or otherwise have to be decontaminated. The only suitable materials to be decontaminated with an appropriate solvent (technical acetone) are steel, glass and ceramics.</td>
</tr>
<tr>
<td>Operations which involve decanting, rewinding of coil, etc. must only be performed by companies approved for this task by the competent authorities.</td>
</tr>
</tbody>
</table>
12.11 PCB Instructions for Workers

The below instruction card shall be regarded as an adequate example of PCB instructions for workers and emergency cases. However, the information and pictograms may change.

Polychlorierte Biphenyle
PCB are suspected of causing cancer!

Hazards for human health and the environment

Breathing in, swallowing or absorption through the skin may result in health damage. May cause irritation (respiratory tract, eyes, skin, organs of digestion). Temporary complaints (dizziness, fatigue, nausea, loss of appetite) are possible. Can cause acne, digestive disorders, liver damage, blood picture changes, mood disorders. Carcinogenic effect is suspected. PCB can affect reproductive fertility. PCB can be injurious to the unborn child. Reichert sich im Körper an! Beim Erhitzen oder Verbrennen können sehr giftige Dioxine und Furane entstehen. Hazardous to water - avoid ingress into the ground, water and sewage!

Protective measures and behaviour rules

Ensure a fresh air supply when working! In the event of vapours, work only with exhaust ventilation! Nicht mit Feuer, offenen Flammen oder heißen Metallteilen in Berührung bringen! Do not leave vessels open! Avoid splashes! Do not mix with other products or chemicals! Avoid contact with eyes, skin and clothing! Preventive skin protection necessary. Thoroughly clean hands and face after completing work and before every work break! Use skin care agents! Store street clothing separately from work clothing! Change clothing after completing work!

Hand protection: Gloves made of: fluororubber.

Breathing protection: The use of A2-F3 (braun-weiss) is recommended.

Eye protection: Full protection goggles!

Skin protection: Use grease-free skin protection ointment for all uncovered parts of the body.

Body protection: (Disposable) chemical protective suit and plastic boots. Bei Bedarf partikelidichte Schutzkleidung!

Behaviour in danger situations

Collect and dispose of with absorbent non-combustible material (e.g. kieselguhr, sand)! Evacuate the workplace if large quantities should leak! Remove only after applying personal protective equipment! Product is not combustible. In the event of a fire in the environment, cool the receptacle with sprayed water! Hazardous vapours are produced in the event of fire! Only fight larger fires using self-contained breathing equipment and suitable protective equipment!

Responsible physician or clinic:

Accident phone:

First Aid

During all First Aid assistance: protect yourself and immediately inform a doctor.

After eye contact: Rinse for 10 minutes with water or with eye-wash solution.

After skin contact: Take off soiled clothing immediately. Clean with abundant amounts of water and soap. No thinners!

After breathing in: Fresh air. Keep airways clear: remove false teeth, vomit etc. If breathing or heartbeat stops: immediately apply artificial respiration and heart massage.

After swallowing: Do not cause vomiting. If conscious, see that plenty of water is drunk a little at a time. No domestic agents.

First Aid specialist:

Proper disposal

Do not pour into the sewage or a refuse bin!

Product residues:

For disposal, collect in:
12.12 First Aid in Case of Contact with PCBs

Table 38: First Aid Measures

<table>
<thead>
<tr>
<th>Kind of Exposure</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Liquid PCB on the skin</td>
<td>➢ Use water and soap to wash thoroughly</td>
</tr>
<tr>
<td>➢ Liquid PCB in the eyes</td>
<td>➢ Rinse eyes with lukewarm jets of water for 15 minutes, always keeping eyes wide open</td>
</tr>
<tr>
<td>➢ Liquid PCB in the mouth and in the stomach</td>
<td>➢ Rinse mouth with water, do not drink anything else, see doctor immediately</td>
</tr>
<tr>
<td>➢ Highly concentrated vapors of PCB</td>
<td>➢ Take affected people outside in the open air</td>
</tr>
</tbody>
</table>

12.13 Guidelines for the Inspection of Sites and the Sampling of Transformers and Capacitors (two persons)

The Field Teams for the identification of PCB equipment comprise of three members. The inspector as official authority will monitor the process of sampling and ensure the quality of the inventory process.

<table>
<thead>
<tr>
<th>Field Team Member 1</th>
<th>Field Team Member 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlock the door/gate to the room with capacitors</td>
<td>1</td>
</tr>
<tr>
<td>Locate capacitors, read the producer’s plate</td>
<td>2 Fill in the inventory form for the capacitor and in the upper right space copy the number from the label</td>
</tr>
<tr>
<td>Read each line of the producer’s plate</td>
<td>3 Fill in the necessary data from the producer’s plate, line by line</td>
</tr>
<tr>
<td>Measure the capacitors’ dimensions</td>
<td>4 Write down the dimensions of the capacitors</td>
</tr>
<tr>
<td>Prepare the label for capacitors and affix it on a clean and accessible place on the capacitor (example: 10404)</td>
<td>5</td>
</tr>
<tr>
<td>Take picture of the capacitor</td>
<td>7</td>
</tr>
<tr>
<td>Check if there is any leakage or damage on the capacitor</td>
<td>8 Note down in the inventory form where the leakage or damage has been detected on the capacitor</td>
</tr>
<tr>
<td>Lock the room with capacitors</td>
<td>9</td>
</tr>
<tr>
<td>Unlock the door/gate to the room with transformers</td>
<td>10</td>
</tr>
<tr>
<td>Locate transformers, read the producer’s plate</td>
<td>11 Fill in the inventory form for the transformer and in the upper right space copy the number from the label</td>
</tr>
<tr>
<td>Read each line of the producer’s plate</td>
<td>12 Fill in the necessary data from the producer’s plate, line by line</td>
</tr>
<tr>
<td>Take sample of transformer oil</td>
<td>13</td>
</tr>
<tr>
<td>Affix sampling label on transformer, sampling vial, and write it on the inventory form</td>
<td>14 Check if there is any leakage or damage on the transformer</td>
</tr>
<tr>
<td>Dispose the sampling materials (pipettes, adsorbent pads, gloves) in plastic bags that will later be stored in barrels and containers for that purpose.</td>
<td>16 Note down in the inventory form where the leakage or damage has been detected on the transformer</td>
</tr>
<tr>
<td>Lock the room with transformers</td>
<td>17</td>
</tr>
</tbody>
</table>
12.14 Draft Inventory Questionnaires

There are a number of inventory questionnaire proposals, amongst them also the initial UNEP proposal from 2002, see e.g. on this site: http://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.pops.int%2Fdocuments%2Fguidance%2FPCBinvform.doc&ei=bnb1VMaJFYvnUr6xgtAK&usg=AFQjCNE8mfNujwIGZxuycEuZbNle2le99g&sig2=yuimZwcO4WVxeE39Y7ZLejQ

It is recommended that countries design their own country-tailored questionnaires, based on the UNEP recommendation respectively the BRSMEAS Guidelines and respective experiences.

Below and until page 99, there are some draft forms based on the initial UNEP Questionnaire which have been used in many countries as a basis for the PCB Assessment.

Often these forms have been used at the same time as sampling reports.

Form A:
Information about the company, site and equipment which contains / is contaminated with PCB

<table>
<thead>
<tr>
<th>№</th>
<th>Information about the company, site and equipment which contains / is contaminated with PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Name:</td>
</tr>
<tr>
<td>2</td>
<td>Address:</td>
</tr>
<tr>
<td>3</td>
<td>Address of site:</td>
</tr>
<tr>
<td>4</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td>Fax:</td>
</tr>
<tr>
<td></td>
<td>E-mail:</td>
</tr>
<tr>
<td>5</td>
<td>Name/Position of contact person:</td>
</tr>
<tr>
<td>6</td>
<td>Type of company / industry type/ production at specific site:</td>
</tr>
<tr>
<td>7</td>
<td>Public or private company?</td>
</tr>
<tr>
<td>8</td>
<td>Location: Industrial zone</td>
</tr>
<tr>
<td></td>
<td>Urban area</td>
</tr>
<tr>
<td></td>
<td>Rural area</td>
</tr>
<tr>
<td>9</td>
<td>Number of personnel: >50</td>
</tr>
<tr>
<td></td>
<td>10-50</td>
</tr>
<tr>
<td></td>
<td><10</td>
</tr>
<tr>
<td>10</td>
<td>Total number of pieces of equipment at site:</td>
</tr>
<tr>
<td></td>
<td>Transformers</td>
</tr>
<tr>
<td></td>
<td>Capacitors</td>
</tr>
<tr>
<td></td>
<td>Others</td>
</tr>
</tbody>
</table>
Form B: Information related to the potentially PCB containing equipment

Oil-filled Equipment Inventory Form

(to be filled for each piece of equipment)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Name of the equipment</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Individual Identification Number (IIN) of the equipment</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Type and trademark of the equipment</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Serial number</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Manufacturer and country of origin</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Location of equipment</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Maximum permissible power capacity</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Year of production</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Physical parameters:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total weight (kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume/weight of oil (liters or kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment (dry weight, kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions of equipment (length, width, height, m)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oil trademark</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Does the oil contain PCB?</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>How did you identify the oil as PCB-containing or PCB-free?</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Operational status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stand-by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decommissioned</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Condition of the equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any leakages detected?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the floor under equipment (concrete, soil) contaminated?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any external evidence of the equipment damage (corrosion, cracks etc.)?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage situation (e.g. open air, in a workshop etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service, maintenance and care; current repair of the equipment.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>What company provides equipment maintenance services?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type of oil used for retrofilling?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid replaced? If yes, when was the last replacement done?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What company replaced the fluid?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What was the trademark of replacement insulation fluid or oil? (Name in original language)</td>
<td></td>
</tr>
</tbody>
</table>

Name, position of person in charge and executor, signature, date

<table>
<thead>
<tr>
<th>16</th>
<th>Person in charge:</th>
<th>__________________</th>
<th>__________________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signature</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Executor:</td>
<td>__________________</td>
<td>__________________</td>
</tr>
<tr>
<td></td>
<td>Signature</td>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

Form C:
Information on wastes liable to contain PCB

<table>
<thead>
<tr>
<th></th>
<th>C Information on wastes liable to contain PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nature of the wastes (e.g., transformer oil in drums or reservoirs)</td>
</tr>
<tr>
<td>2</td>
<td>Estimated quantity</td>
</tr>
<tr>
<td>3</td>
<td>Are containers leak-proof?</td>
</tr>
<tr>
<td>4</td>
<td>Is the place of storage clearly marked to show the presence of PCB?</td>
</tr>
<tr>
<td>5</td>
<td>Have soil or buildings been contaminated by leaking PCB? (indicate magnitude of problem if possible, e.g., tonnes or cubic metres of contaminated soil)</td>
</tr>
<tr>
<td>6</td>
<td>Brief history of any previous remediation efforts, e.g., removal of PCB-containing equipment and waste PCB for disposal (when, by whom, where to, etc.)</td>
</tr>
<tr>
<td>7</td>
<td>Other relevant information (e.g., results of any sampling and analysis already undertaken)</td>
</tr>
</tbody>
</table>
| 8 | Fill in:
| | Name and surname | Signature | Date |
Preliminary Inventory Form of PCBs

General Data

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inventory record No.</td>
</tr>
<tr>
<td>2</td>
<td>Date</td>
</tr>
<tr>
<td>3</td>
<td>Inspector name</td>
</tr>
<tr>
<td>4</td>
<td>Name of establishment</td>
</tr>
<tr>
<td>5</td>
<td>Address, phone, mail, fax</td>
</tr>
<tr>
<td>6</td>
<td>Name of managing head</td>
</tr>
<tr>
<td>7</td>
<td>Position GPS</td>
</tr>
<tr>
<td>8</td>
<td>Land use classification</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
</tr>
</tbody>
</table>

Industry Classification

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other (please specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential Receptors

<table>
<thead>
<tr>
<th></th>
<th>Indicate distance (in kilometers) for each applicable receptor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>School</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
</tr>
<tr>
<td></td>
<td>Commercial Buildings</td>
</tr>
<tr>
<td></td>
<td>Storage of Flammable Material</td>
</tr>
<tr>
<td></td>
<td>Other (please specify)</td>
</tr>
</tbody>
</table>

Analysis

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Sampling No.</td>
</tr>
<tr>
<td>12</td>
<td>Date of sampling</td>
</tr>
<tr>
<td>13</td>
<td>Density test*</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>No test</td>
</tr>
<tr>
<td>14</td>
<td>Chlorine test</td>
</tr>
<tr>
<td></td>
<td>< 50 ppm</td>
</tr>
<tr>
<td></td>
<td>> 50 ppm</td>
</tr>
<tr>
<td></td>
<td>No test</td>
</tr>
<tr>
<td>15</td>
<td>Chlorine concentration ppm</td>
</tr>
<tr>
<td>16</td>
<td>PCB concentration ppm</td>
</tr>
<tr>
<td>17</td>
<td>Name of laboratory</td>
</tr>
<tr>
<td>18</td>
<td>Laboratory recognition/ accreditation number</td>
</tr>
</tbody>
</table>

*only in case of emergency
**; if applicable
Preliminary Identification of PCBs

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Serial number</td>
</tr>
<tr>
<td>20</td>
<td>Type of equipment/appliance/packing</td>
</tr>
<tr>
<td></td>
<td>• Transformer</td>
</tr>
<tr>
<td></td>
<td>• Capacitor</td>
</tr>
<tr>
<td></td>
<td>• Circuit breaker</td>
</tr>
<tr>
<td></td>
<td>• Drum containing liquid</td>
</tr>
<tr>
<td></td>
<td>• Drum containing solid</td>
</tr>
<tr>
<td></td>
<td>• Contaminated soil associated to the equipment</td>
</tr>
<tr>
<td></td>
<td>• Others, please specify</td>
</tr>
<tr>
<td></td>
<td>• In use</td>
</tr>
<tr>
<td></td>
<td>• Out of use</td>
</tr>
<tr>
<td></td>
<td>• Stand by</td>
</tr>
<tr>
<td></td>
<td>• In storage area</td>
</tr>
<tr>
<td></td>
<td>• Ready for decommissioning</td>
</tr>
<tr>
<td>22</td>
<td>Manufacturer name list no**</td>
</tr>
<tr>
<td>23</td>
<td>Dielectric name list no**</td>
</tr>
<tr>
<td>24</td>
<td>Power [KVA] [KVAR]**</td>
</tr>
<tr>
<td>25</td>
<td>Year of manufacture **</td>
</tr>
<tr>
<td>26</td>
<td>Year of installation on site **</td>
</tr>
<tr>
<td>27</td>
<td>Total weight **</td>
</tr>
<tr>
<td>28</td>
<td>Weight of dielectric oil **</td>
</tr>
<tr>
<td>29</td>
<td>Filling level **</td>
</tr>
<tr>
<td></td>
<td>• Full</td>
</tr>
<tr>
<td></td>
<td>• Half</td>
</tr>
<tr>
<td></td>
<td>• Empty</td>
</tr>
<tr>
<td>30</td>
<td>Leaking of appliance</td>
</tr>
<tr>
<td></td>
<td>• Top</td>
</tr>
<tr>
<td></td>
<td>• Middle</td>
</tr>
<tr>
<td></td>
<td>• Bottom</td>
</tr>
<tr>
<td></td>
<td>• No leaking</td>
</tr>
<tr>
<td>31</td>
<td>Corrosion on the appliance</td>
</tr>
<tr>
<td></td>
<td>• Top</td>
</tr>
<tr>
<td></td>
<td>• Middle</td>
</tr>
<tr>
<td></td>
<td>• Bottom</td>
</tr>
<tr>
<td></td>
<td>• No corrosion</td>
</tr>
<tr>
<td>32</td>
<td>Retrofilling**</td>
</tr>
<tr>
<td></td>
<td>Yes, indicate when</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>33</td>
<td>Any nearby flammable material?</td>
</tr>
</tbody>
</table>
| | If yes give the chemical or technical name Estimate distance from PCB appliance
| | No |
| | km |

Please stick here the label of the sample.

*only in case of emergency

**: if applicable
12.15. Example of a Possible Register

<table>
<thead>
<tr>
<th>Ord. No</th>
<th>Type of equipment</th>
<th>Trademark</th>
<th>IIN</th>
<th>Manufacturer</th>
<th>Year of production</th>
<th>PCB tested</th>
<th>Total Weight kg</th>
<th>Oil Weight kg</th>
<th>Location</th>
<th>Operation status</th>
<th>Condition</th>
<th>Maintenance and servicing data</th>
<th>Maintenance organization (contact info)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transformer</td>
<td>TM</td>
<td>TC-301</td>
<td>Kentau Transformer Plant</td>
<td>1995</td>
<td>PCB-Free</td>
<td>2500</td>
<td>800</td>
<td>Workshop No 1</td>
<td>In service</td>
<td>Satisfactory</td>
<td>Regular topping up</td>
<td>Iskra Ltd., Kokshetau, Abay str. 2</td>
</tr>
<tr>
<td>2</td>
<td>Transformer</td>
<td>TH</td>
<td>TH - 121</td>
<td>Chirchick Transformer plant</td>
<td>1967</td>
<td>PCB-contaminated by 486 mg/kg by L2000 & GC Verification</td>
<td>4530</td>
<td>1800</td>
<td>Transformer substation T11C-010</td>
<td>Phased out</td>
<td>There are oil leaks</td>
<td>Maintenance by Iskra Ltd/</td>
<td>Iskra Ltd., Kokshetau, Abay str. 2</td>
</tr>
<tr>
<td>3</td>
<td>Transformer</td>
<td>TON 394/22</td>
<td>THIP - 222</td>
<td>Poland</td>
<td>1976</td>
<td>PCB-containing pure PCB (nametag)</td>
<td>2800</td>
<td>1200</td>
<td>Transformer substation</td>
<td>In service</td>
<td>Satisfactory</td>
<td>Regular topping up and gasket replacement in 2004</td>
<td>Iskra Ltd., Kokshetau, Abay str. 2</td>
</tr>
<tr>
<td>4</td>
<td>Capacitor</td>
<td>KCK2-1,05-125-2Y</td>
<td>KC - 089</td>
<td>Ust-Kamenogorsk capacitor plant</td>
<td>1985</td>
<td>no testing yet</td>
<td>58</td>
<td>15</td>
<td>Capacitor substation</td>
<td>In backup</td>
<td>Burnt</td>
<td>No maintenance</td>
<td>Iskra Ltd., Kokshetau, Abay str. 2</td>
</tr>
</tbody>
</table>
12.16 PCB Equipment Monthly Maintenance Plan

<table>
<thead>
<tr>
<th>No.</th>
<th>Item for inspection</th>
<th>Compliant</th>
<th>Observation</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Inventory number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Condition of gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Reading of gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Corrosion on tanks and radiator fins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Paint finish of tank and radiator fins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PCB leakage from:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• radiator fins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• top cover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• manhole cover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• top or bottom drain spout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• high and low voltage bushings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Pressure relief valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Drain valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>High and low voltage bushings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Color of PCB oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Electrical and chemical tests to indicate the physical and electrical properties (dielectric test, power factor test, acidity test, interfacial test) (to be tested yearly)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Driers (silica gel) state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Abnormal vibration and noise</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCB Capacitors

<table>
<thead>
<tr>
<th>No.</th>
<th>Item for inspection</th>
<th>Compliant</th>
<th>Observation</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Inventory number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Corrosion on casing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Physical damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Leakage of PCB oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Melted fuses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Temperature of capacitor casing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Bulging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Bursting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Repairing and servicing operations, if any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Was PCB equipment repaired on or off-site (if off-site, state the servicing and transport company)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completed By: ________________________________
Contact Phone: ______________________________
12.17 PCB Interim Storage Facility Monthly Inspection Report

Overview: The competent authority is required to inspect the institutions’ PCB storage site on a monthly basis. This inspection is completed by a qualified individual, recorded below, and forwarded to the environmental authorities.

Place: __ **Date:** ______________________________________

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signage is posted on the exterior of the PCB storage areas and storage areas are secure and only accessible to authorized personnel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB equipment and drums of PCB material are stored in a manner that makes them accessible for inspection and that protects them from catching fire or being released.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PCB storage site is in good condition, including:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Floors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Curbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drains (if present)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weatherproof roofs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fences and walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Indoor PCB storage sites are equipped, where practical, an appropriate fire suppression system and alarm system to adequately address the quantities of PCBs stored on site.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Has the fire extinguisher been inspected within the last month? Is it in working condition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Where PCB equipment that is not in a container (other than drained PCB equipment) and contains PCB liquids, is stored on a floor of steel, concrete or any other similar durable material that is capable of absorbing any PCB liquid. The concrete floor and sides are sealed with an impervious, durable, PCB-resistant coating.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB equipment not stored in containers and contains PCB liquids is stored on a floor of steel, concrete or any other similar durable material, is dyked to contain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) for one piece of equipment or container, 125% of the volume of the PCB liquid present; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) for more than one piece of equipment or container, the greater of twice the volume of the PCB liquid in the largest piece or 25 per cent of the volume of all the PCB liquid stored.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB storage site floor drains, sumps or other openings in the floor are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) closed and sealed to prevent the release of liquids, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) connected to a closed drainage system suitable for PCB collection that terminates at a location where any spilled liquids are contained and recovered and where the spilled liquids, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) will not create a fire hazard or a risk to public health or safety.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Stacked containers of PCB material, other than drums, are used only if the containers are designed for stacking, and are stacked not more than two containers high.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Where drums containing PCB material are stacked, separate the drums from each other by pallets and, in the case of drums of PCB liquid, stack the drums not more than two drums high.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completed By: ______________________________ **Contact Phone:** ______________________________

Please retain a copy for your records and forward the original to:
12.18 Transboundary Movement and Notification Documents for Hazardous Waste

For the transboundary movement of Hazardous Waste the Proceedings according to the Basel Convention have to be followed and the appropriate forms prepared (see also chapter 1.2).

The Conference of the Parties to the Basel Convention at its eighth meeting (December 2006) adopted revised versions of the forms for the notification and movement documents, including the instructions for completing these forms. These forms can be accessed from the links below:

There are other forms available such as e.g.
http://www.pccdaman.info/pdf/Hw%20Forms/HW%20Form%20-%208.pdf

Many forms are under revision at the time and will be published soon on the appropriate websites. Please check the actualities in the WWW periodically.
12.19 Dangerous Good Declaration and Container Packing Certificate

DANGEROUS GOODS DECLARATION AND CONTAINER PACKING CERTIFICATE

This form meets the requirements of SOLAS 74, Chapter VII, Regulation 4, Marpol 73/78 Annex III, Regulation 4 and Chapter 5.4 (Documentation). Vol. 1 of IMDG Code.

<table>
<thead>
<tr>
<th>1. Shipper (Name and Address)</th>
<th>2. Page 1 of ___ pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. B/L Number:</td>
<td></td>
</tr>
<tr>
<td>4. Consignee (Name and Address)</td>
<td>5. Shipper’s Reference Number:</td>
</tr>
<tr>
<td>6. Carrier:</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPER’S DECLARATION:

I hereby declare that the contents of this consignment are fully and accurately described below by the proper shipping name, and are classified, packaged, marked and labelled/labeled and are in all respects in proper condition for transport according to the applicable international and national government regulations.

<table>
<thead>
<tr>
<th>7. Port of Loading</th>
<th>8. Vessel/Voyage</th>
<th>9. 1st Relay Port</th>
<th>10. 2nd Relay Port</th>
</tr>
</thead>
</table>

16 Dangerous Goods Details

<table>
<thead>
<tr>
<th>Proper Shipping Name</th>
<th>IMO Code</th>
<th>Sub Risk</th>
<th>UN No.</th>
<th>PG</th>
<th>FP</th>
<th>MP Y/N</th>
<th>Gross Wt. (kg)</th>
<th>Net Wt. (kg)</th>
<th>Cube (cu')</th>
<th>Package No. & Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

17. Container No.
18. Container Size & Type
19. Seal No.

20. Container Tare Wt. (kg)
21. Total Wt. (kg) (Including Container Wt.)
22. 24 hrs emergency Contact Tel No.

CONTAINER PACKING CERTIFICATE:

I hereby declare that the goods described above have been packed/loaded into the container identified above in accordance with provision 5.4.2.1 of IMDG Code.

<table>
<thead>
<tr>
<th>23. Additional Handling Information</th>
<th>24. Name of Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **DANGEROUS GOODS:**
 You must specify: proper shipping name, hazard class, UN Number, Packaging Group, Marine Pollutant (where assigned) and observe the mandatory requirements under applicable national and international governmental regulations. For the purposes of the IMDG Code see Provision 5.4.1.4 and DOT/E - CFR 172.205(a).

<table>
<thead>
<tr>
<th>25. Name/State of Declarent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

26. Place and Date
27. Signature of Declarent
12.20. Application Form for Membership in the PEN

APPLICATION FORM FOR MEMBERSHIP TO THE
PCB ELIMINATION NETWORK (PEN)

1. Personal information
 I wish to register as an: ☐ institution ☐ Individual person
 Institution
 First name Title (Mr., Ms., Mrs., Dr.)
 Family name
 Job title
 Mailing address Postal code
 City Country
 Telephone (please include international code) Mobile (please include international code)
 Fax E-mail

2. Additional information
 Please specify to which category of stakeholders you belong (please choose only one category):
 ☐ Government (ministries, agencies, environmental inspectorates, etc.)
 ☐ PCB disposal service industry (entities offering maintenance, treatment or destruction of PCB)
 ☐ PCB owner or holder (private or state enterprises holding contaminated equipment or oils)
 ☐ Regional centre for the Stockholm or Basel Convention for capacity building and the transfer of technology
 ☐ Inter-governmental organization
 ☐ Non-governmental organization
 ☐ Research institution or academia
 ☐ Other: ____________________________

 In the field below, please briefly describe your involvement with PCB.

 [Space for description]

 I am interested in the following topics of the thematic group (multiple checks possible):
 ☐ Inventory of PCB
 ☐ Maintenance, Handling, and Interim Storage of Equipment Containing PCB
 ☐ Disposal of PCB and Remediation of Contaminated Sites
 ☐ Open Applications of PCB
 ☐ Other: ____________________________

3. Declaration
 I hereby declare that I will make determined effort towards achieving environmentally sound management of PCB. I accept that all information provided can be shared publicly.
 Date: ____________________ Signature: ____________________

Please e-mail or mail the completed form to:
Secretariat of the PEN, Chemicals Branch, DTIE, UNEP
11-13 Chemin des Anémones, CH-1219 Chêne-Bougeries (GE), Switzerland
E-mail: pen@unep.ch or handelore.fouillet@unep.ch
Annex V

Guidelines for updating National Action Plans for the implementation of the LBS Protocol and its Regional Plans in the framework of SAP MED to achieve Good Environmental Status for pollution related ECAP ecological objectives
Guidelines for updating National Action Plans for the implementation of the LBS Protocol and its Regional Plans in the framework of SAP MED to achieve Good Environmental Status for pollution related ECAP ecological objectives

For environmental and economic reasons, this document is printed in a limited number. Delegates are kindly requested to bring their copies to meetings and not to request additional copies.
Table of contents

1. BACKGROUND ... 5
 1.1 THE STRATEGIC ACTION PROGRAMME TO COMBAT POLLUTION FROM LAND-BASED SOURCES 5
 1.2 THE NATIONAL ACTION PLANS .. 5
 1.3 THE 2004 GUIDELINES FOR PREPARATION OF NATIONAL ACTION PLANS 5
 1.4 RATIONALE FOR UPDATING THE NAP GUIDELINES ... 6

2. THE NAP UPDATING PROCESS .. 8

3. INSTITUTIONAL SET-UP OF THE NAP UPDATING PROCESS ... 10
 3.1 INSTITUTIONAL ARRANGEMENTS ... 10
 3.2 WORK METHODOLOGY ... 10
 3.3 INVOLVED STAKEHOLDERS; INTER-LINKAGES TO AND SYNERGY WITH OTHER RELEVANT POLICY
 FRAMEWORKS AND PROCESSES .. 11
 3.4 TIMELINE FOR COMPLETION .. 11
 3.5 APPROVAL AND ENDORSEMENT ... 11

4. METHODOLOGY FOR THE NAP UPDATING PROCESS ... 13
 4.1 ASSESSING THE NAP MIDTERM IMPLEMENTATION BENCHMARK ... 14
 4.2 Defining Quantifiable Objectives, and as Appropriate, Operational Targets 17
 4.3 IDENTIFYING GAPS/ISSUES ... 17
 4.4 PRIORITIZING ISSUES AND IDENTIFYING POTENTIAL MEASURES ... 18
 4.5 SELECTING THE PROGRAMME OF MEASURES FOR POLLUTION PREVENTION AND CONTROL 19
 4.6 DEVELOPING THE NAP IMPLEMENTATION FOLLOW-UP AND REPORTING PLAN 20
 4.7 DRAFTING THE NAP ... 21

5. OTHER TECHNICAL ASPECTS OF THE NAP UPDATING PROCESS TO BE FURTHER
 DEVELOPED IN CONSULTATION WITH THE CONTRACTING PARTIES .. 22

APPENDIX A. REQUIREMENTS OF THE ECOSYSTEM APPROACH TARGETS AND REGIONAL PLANS IN THE
 FRAMEWORK OF SAP-MED

APPENDIX B. GUIDELINES ON NATIONAL BUDGET OF POLLUTANTS (NBB)

APPENDIX C. UPDATED CRITERIA AND METHODOLOGY TO ASSESS HOTSPOTS AND SENSITIVE AREAS IN
 THE MEDITERRANEAN

APPENDIX D. ISSUES/IMPACTS MATRIX FOR SCORING ISSUES ASSOCIATED WITH IMPACTS ON HUMAN
 HEALTH AND MARINE ENVIRONMENT

APPENDIX E. LIST OF INDICATORS TO ASSESS THE LBS, DUMPING, HAZARDOUS WASTE PROTOCOLS,
 NAP AND REGIONAL PLANS IMPLEMENTATION

APPENDIX F. INFORMATION FOR DEVELOPING AND DRAFTING THE NAP

APPENDIX G. GUIDANCE ON COST-EFFECTIVENESS AND COST-BENEFIT ANALYSIS

APPENDIX H. REFERENCE INFORMATION ON TECHNICAL GUIDELINES PRODUCED BY UNEP/MAP FOR
 SELECTING MANAGEMENT OPTIONS FOR POLLUTION PREVENTION AND CONTROL
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCOBAMS</td>
<td>Agreement on the Conservation of Cetaceans in the Black Sea Mediterranean Sea and Contiguous Atlantic Area</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Techniques</td>
</tr>
<tr>
<td>BEP</td>
<td>Best Environmental Practices</td>
</tr>
<tr>
<td>BOD₅</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>ECAP</td>
<td>Ecosystem Approach</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>E-PRTR</td>
<td>The European Pollutant Release and Transfer Register</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GES</td>
<td>Good Environmental Status</td>
</tr>
<tr>
<td>GFCM</td>
<td>General Fisheries Commission for the Mediterranean</td>
</tr>
<tr>
<td>GPA</td>
<td>Global Programme of Action</td>
</tr>
<tr>
<td>H2020</td>
<td>Horizon 2020 initiative</td>
</tr>
<tr>
<td>ICZM Protocol</td>
<td>Protocol on Integrated Coastal Zone Management in the Mediterranean</td>
</tr>
<tr>
<td>LBS Protocol</td>
<td>Protocol for the Protection of the Mediterranean Sea against Pollution from Land-Based Sources and Activities</td>
</tr>
<tr>
<td>MAP</td>
<td>Mediterranean Action Plan</td>
</tr>
<tr>
<td>MEHSIP</td>
<td>Mediterranean Partnership Programme</td>
</tr>
<tr>
<td>MEAs</td>
<td>Multilateral Environmental Agreements</td>
</tr>
<tr>
<td>NAPs</td>
<td>National Actions Plans</td>
</tr>
<tr>
<td>NBB</td>
<td>National (Baseline) Budget of Pollutants</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NIPs</td>
<td>National Implementation Plans</td>
</tr>
<tr>
<td>NSC</td>
<td>National Steering Committee</td>
</tr>
<tr>
<td>PoM</td>
<td>Programme of Measures</td>
</tr>
<tr>
<td>POPs</td>
<td>Persistent Organic Pollutants</td>
</tr>
<tr>
<td>RACs</td>
<td>Regional Activity Centres</td>
</tr>
<tr>
<td>SAICM</td>
<td>Strategic Approach to International Chemicals Management</td>
</tr>
<tr>
<td>SAP BIO</td>
<td>Strategic Action Plan for the Conservation of Biological Diversity in the Mediterranean</td>
</tr>
<tr>
<td>SAP MED</td>
<td>Strategic Action Programme to combat pollution from land-based sources</td>
</tr>
<tr>
<td>SCP</td>
<td>Sustainable Consumption and Production</td>
</tr>
<tr>
<td>SEIS</td>
<td>Shared Environmental Information System</td>
</tr>
<tr>
<td>TC</td>
<td>Technical Committee</td>
</tr>
<tr>
<td>TDA</td>
<td>Transboundary diagnostic analysis</td>
</tr>
<tr>
<td>TPB</td>
<td>Toxic, Persistent and Liable to Bioaccumulate</td>
</tr>
<tr>
<td>UfM</td>
<td>Union for the Mediterranean</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater treatment plant</td>
</tr>
</tbody>
</table>
Note by the Secretariat

The formulation, for the first time in 2004-2005, of National Actions Plans for protection of the Mediterranean Sea from land-based sources marked a significant step by the Contracting Parties towards the implementation of the LBS Protocol and the Barcelona Convention and the respective Strategic Action Programme to combat pollution from land-based sources (SAP-MED).

The process for preparation of the NAPs was supported by a set of guidelines, presented as part of a regional training workshop organized in Izmit, Turkey in 2004. These documents addressed several aspects including preparation of national baseline budget of pollutants; introduction of institutional arrangements for preparation of the NAPs; promotion of public participation and development of economic instruments.

Further to COP 18 Decisions in Istanbul, Turkey in 2013, and as a follow-up to Decision IG 18/X adopted by COP 16 in Almeria, Spain in 2008, the Contracting Parties were requested to initiate the process of updating their NAPs with the view to achieve good environmental status through implementation of the LBS Protocol and Regional Plans.

In order to ensure, to the extent possible, coherence and harmonization of structures and contents of the updated NAPs, and in view of supporting the sound identification of priorities and realistic selection of national measures, and where appropriate national targets, it is recommended to put in place processes and approaches to guide all Countries in a harmonized manner. In this context, there is a need to revisit the NAP guidelines that were discussed and approved in Izmit, Turkey in 2004, and to update them taking into account new developments in particular the adoption of GES and ecological objectives 5, 9 and 10 targets related to pollution and marine litter as well as the 10 regional plans adopted in the framework of Article 15 of the LBS Protocol. The updated guidelines can be also used as an opportunity to use up-to-date principles as well as tools of policy analysis and prioritization.

The “Guidelines for Updating National Action Plans for the Implementation of the LBS Protocol and its Regional Plans in the Framework of the SAP-MED to Achieve Good Environmental Status for Pollution-Related ECAP Ecological Objectives” represents a further substantive development of the 2004-Izmit Guidelines. It attempts to reflect and capture the new spirit and dimensions stemming from the important momentum that MAP and the Region are experiencing through stronger regional governance and intensified efforts by several actors towards pollution prevention and control of the Mediterranean Sea. Specifically, the new Guidelines consider:

i) The findings of the midterm evaluation of NAP/SAP-MED implementation (2005-2012), and lessons learned, which demonstrate great successes as well as serious gaps towards achieving 2010 and 2025 SAP-MED/NAP and H2020 initiative to “de-pollute the Mediterranean by 2020”.

ii) Additional commitments of binding and non-binding measures taken by the Parties at global, regional and national levels such as the 10 LBS Protocol regional plans adopted in 2009, 2012 and 2013 by COP 16, 17 and 18, ECAP targets, new Mercury Convention, UNEP/GPA, H2020, EU-MSFD, SAICAM, New POPs under the Stockholm Convention, UNEP/MAP Barcelona Offshore Action Plan and SAP BIO update.

iii) Several ongoing policy preparation processes at national level addressing pollution prevention and control such as NIPs (Stockholm Convention), SCP Action Plans, ICZM national plans (ICZM Protocol) and enhanced national coordination for hazardous wastes and chemicals recently promoted by UNEP, as well as the process related to preparation of programmes of measures under EU directives with a particular focus on MSFD and the Water Framework Directive.

iv) The specificities of each Contracting Party to be captured in individually-tailored NAPs that meet the needs of the Party; building on existing relevant work and assessments and not in isolation of existing social, economic and environmental policies and actions. This is in particular valid for a considerable number of Contracting Parties that reached an advanced phase of formulating
programmes of measures covering all 11 ECAP ecological objectives vis-à-vis the three ecological objectives targeted by the NAPs.

The updated NAPs will constitute a powerful national marine pollution control and prevention policy tool that will promote strategic planning for sustainable development. The NAPs’ endorsement by COP 14 drew the attention of other major actors and several donor agencies. Its implementation was the main driver for establishing the Mediterranean Partnership Programme (MEHSIP), UfM/former EuroMed H2020 initiative to de-pollute the Mediterranean by 2020, and GEF UNEP/MAP Medpartnership Project. Therefore, it is of utmost importance that the updated NAPs are developed utilizing effective participatory processes, taking into consideration the recently adopted binding measures and achieving the respective good environmental targets adopted by COP 18.

The present guidelines address in an integrated manner various aspects of the NAP preparation process such as institutional, legal, technical, follow-up and reporting, investment needs, capacity building and public participation. Specific in-depth analyses are also presented in the accompanying Appendixes with a view to provide technical guidance to the Countries for identification of potential measures and formulation of a programme of measures. The Appendixes are complemented with examples, where appropriate, addressing among others:

i) Specific obligations and implementation timetables under the 10 Regional Plans and ECAP (Ecological Objectives 5, 9 and 10).
ii) Updated criteria to define hotspots and sensitive areas.
iii) Prioritization criteria of environmental issues (sectors, substances or other considerations) to be addressed in the NAP.
iv) NBB key principles; PRTR vis-à-vis NBB
v) Proposed set of indicators to follow-up and report on NAP implementation in accordance with Article 13 of the LBS Protocol.
1. Background

1.1 The Strategic Action Programme to Combat Pollution from Land-Based Sources

In 1975, the Mediterranean Countries recognized the importance of protecting the Mediterranean Sea from pollution and adopted the Mediterranean Action Plan. One year later, the Barcelona Convention was endorsed. These two instruments were expanded and strengthened in 1980 with the adoption of the LBS Protocol and its amendments in 1996. These developments led in 1997 to the adoption of the Strategic Action Programme to address Pollution from Land-Based Activities (SAP-MED) funded by GEF to support the long term implementation of the LBS Protocol. The SAP-MED identified priority target categories of polluting substances and activities to be eliminated or controlled by the Mediterranean Countries through a planned timetable of pollution prevention and control measures and interventions. It is an action-oriented initiative translating the objectives of the 1995-Global Programme of Action (GPA) of UNEP into regional specific activities. The key activities addressed in the SAP-MED are linked to urban environment and to industrial activities, targeting those responsible for the release of toxic, persistent and bio-accumulative substances into the marine environment, giving special attention to persistent organic pollutants (POPs). The reduction and phasing-out of targets are formulated to take into account the needs and specificities of the region, and as appropriate, in coherence with global and regional commitments under relevant international Conventions and Programmes.

1.2 The National Action Plans

The NAPs were prepared during 2004-2005 by all Mediterranean Countries through a participatory approach in accordance with Article 5 of the LBS Protocol and aimed at operationalizing the objectives of the SAP-MED nationally. The NAPs considered the environmental and socio-economic issues, policy and legislative frameworks, and the management, institutional and technical infrastructure available in the country. The NAPs described the policies and actions on the ground that each country intended to undertake to reduce pollution in line with SAP-MED targets. They incorporated mechanisms for information exchange, technology transfer and promotion of cleaner technology, public participation and sustainable financing. Their fundamental goal was to develop and implement concrete pollution prevention and control projects that enhance economic, technological, and social development at the local level; thus making a concrete contribution towards sustainable development. The NAPs were formally endorsed by the Contracting Parties to the Barcelona Convention in the 14th Contracting Parties’ meeting in Slovenia in 2005 (COP 14).

1.3 The 2004 Guidelines for Preparation of National Action Plans

In order to assist the Mediterranean Countries to elaborate National Action Plans that comply with SAP-MED commitments, UNEP/MAP-MED-POL programme developed in 2004 the “Guidelines for Preparation of National Action Plans for the Reduction of Pollution of the Mediterranean From Land-Based Sources”. This guidance document was presented in March 2004 in Izmit, Turkey, as part of a workshop for preparation of Sectoral Plans and National Action Plans in the framework of the SAP-MED. It comprised four guidelines:

 i) Guidelines for preparation of National Action Plans for the Reduction of Pollution of the Mediterranean from land-based sources;

 ii) Guidelines for the preparation of the baseline budget of pollutants releases for the Mediterranean region;

 iii) Public participation in the National Action Plans (NAPs) for the strategic Action programme (SAP-MED) to address pollution from land-based activities in the Mediterranean; and

 iv) Guideline for economic instruments for the preparation of the SAP-MED/NAP to address marine pollution from land-based activities in the 12 GEF eligible countries.

The 2004 NAP guidelines presented a phase-by-phase approach for formulating the NAPs based on six steps:

 i) Undertaking national diagnostic analysis and baseline budget.
ii) Developing national/administrative region(s) issue/impacts matrix.
iii) Setting-up of administrative region(s) plan.
iv) Setting-up of national sectoral plans.
v) Formulating national action plans.
vi) Setting-up of the national list of priority actions for 2010.

These guidelines were instrumental in developing the 2004-2005 NAPs. Their key aspect was the methodology proposed for elaborating the NAPs based on National Diagnostic Analysis designed to identify the nature and severity of problems. They also presented a system for assessing the relative importance of different impacts on the coastal areas and marine environment based on a process for scoring environmental issues with potential adverse effects on human health and marine environment. The results of this assessment were used to help in selecting the priority issues at national and administrative region(s) levels for the final preparation of the NAP.

1.4 Rationale for Updating the NAP Guidelines

In 2008, the Contracting Parties to the Barcelona Convention adopted Decision IG 17/8 regarding NAP implementation in Almeria (Spain). This Decision, which marked ten years after the adoption of the SAP-MED and three years after endorsing the NAPs, requires Countries to “continue the implementation of NAPs endorsed in 2005 to the greatest possible extent foreseeing their revision in 2011.”

Although the aforementioned obligation constitutes the basis for updating the NAPs; however, the main reason is the further development of the Barcelona Convention system. This entails implementation of the ecosystem approach with the view to achieve Good Environmental Status as well as the adoption of new legally binding measures consisting of the regional plans adopted in the context of the implementation of Article 15 of the LBS Protocol. The updated NAPs will provide the Countries with a unique opportunity for streamlining the new commitments by taking into account the following aspects:

- Streamlining ECAP objectives and targets into the updated NAPs leading to the achievement of Good Environmental Status.¹
- Ensuring that the updated NAP includes, where appropriate, in accordance with country specificities, commitments and obligations of the regional plans and legally binding standards adopted by the Meetings of the Contracting Parties in 2009, 2012 and 2013.²
- Providing some basic principles and technical guidance for assessing existing measures vis-à-vis ECAP-GES and Regional Plans targets in the framework of SAP-MED; identification of gaps; and formulation of programme of measures and their implementation.

¹ Decision IG.20/10 “Adoption of the Strategic Framework for Marine Litter Management”.
2 Decision IG.21/3 “on the Ecosystems Approach including Adopting Definitions of Good Environmental Status (GES) and Targets”.
2 Decision IG.19/7 “Regional Plan on the Reduction of BOD₅ from Urban Wastewater”.
2 Decision IG.19/8 “Regional Plan on the Elimination of Aldrin, Dieldrine, Endrine, Heptachlor, Mirex and Toxaphene”.
2 Decision IG.19/9 “Regional Plan on the Phasing Out of DDT”.
2 Decision IG.20/8.1 “Regional Plan on the Reduction of Inputs of Mercury”.
2 Decision IG.20/8.2 “Regional Plan on the Reduction of BOD₅ in the food sector”.
2 Decision IG.20/8.3.1 “Regional Plan on the Elimination of Alpha hexachlorocyclohexane; Beta hexachlorocyclohexane; Hexabromobiphenyl; Chlordecone; Pentachlorobenzene; Tetrabromodiphenyl ether and Pentabromodiphenyl ether; Hexabromobiphenyl ether and Heptabromodiphenyl ether; Lindane; Endosulfan, Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonic fluoride”.
2 Decision IG.20/8.3.2 “Regional Plan on the Phasing out of Lindane and Endosulfan”.
2 Decision IG.20/8.3.3 “Regional Plan on the Phasing out of Perfluorooctane, Sulfonic Acid, its salts and Perfluorocotane Sulfonyl Fluoride”.
2 Decision IG.20/8.3.4 “Regional Plan on the Elimination of Alpha hexachlorocyclohexane, Beta hexachlorocyclohexane, Chlordecone, Hexabromobiphenyl, Pentachlorobenzene”.
2 Decision IG.21/7 “Regional Plan on Marine Litter Management in the Mediterranean”.
2 Decision IG.20/9 “Criteria and Standards for bathing waters quality”.
- Providing common updated criteria for assessing pollution hotspots and sensitive areas.
- Providing the main elements for follow-up and reporting on NAP implementation and its effectiveness through a restricted set of potential indicators with a view to undertake periodical assessments of NAP implementation on national and regional levels.
- Better promoting the NAP as an important sectorial policy tool fully reflected in the Parties’ development policies, at national, regional and local levels.
- Ensuring better complementarities between NAP priorities/targets and implementation under UNEP/MAP-Barcelona Convention and its Protocols with similar commitments and obligations under relevant MEAs, and as well as, where appropriate, in synergy with relevant EU Directives, with a particular focus on EU MSFD, water-related and waste directives.
- Promoting a clear structure of the NAP covering selected priority sectors of the LBS Protocol and legally binding measures implementation (i.e. policy, regulatory, pollution prevention, control and phase-out measures, hotspot elimination, pollution monitoring, pollution assessment, enforcement, effectiveness, capacity building and investment needs).
- Ensuring a sustained participatory process of relevant stakeholders and other relevant policy processes, in particular the Horizon 2020 initiative.

These aspects present new elements which can be incorporated into the process for updating the NAPs, as far as possible, and in a coherent manner by the Countries.
2. The NAP updating process

The principal objective of the NAP update is to identify and prioritize national programmes of measures to achieve Good Environmental Status with regard to pollution-related ecological objectives under ECAP. This update can also provide an opportunity for the Countries to develop a concrete NAP structure that covers a variety of policy, regulatory, institutional, pollution prevention, control and phase-out measures, investment needs, hotspot elimination, monitoring, enforcement, follow-up, reporting and NAP implementation cost. These aspects constitute a framework for the updated NAP.

The NAP updating process consists of a series of tasks, with clearly defined responsibilities to implement a well-defined work methodology, empowered by selected stakeholders, governed by special institutional arrangements to accomplish the updated NAP in a fixed timeframe, as shown in the following illustration.

The NAP updating guidelines address two key aspects in the development of the NAP guideline document:

i) The “institutional” aspects of the NAP updating process consisting of:
 − Institutional arrangements.
 − Work methodology.
 − Stakeholders involved and synergy with other relevant policy processes.
 − Timeline for completion of work.
 − Mechanism for approval and endorsement.

ii) The “methodological” aspects, or tasks and responsibilities, for undertaking the NAP updating process including:
 − Assessing the midterm implementation benchmark.
 − Defining quantifiable objectives, and where appropriate, operational targets to be achieved with a view to comply with ECAP-GES and Regional Plans targets in the framework of SAP-MED.
 − Identifying gaps and issues between the assessed midterm baseline and SAP-MED targets.
 − Updating list of hotspots, prioritizing issues and identifying potential measures.
Selecting specific and integrated pollution prevention and control measures to be addressed by the NAP on national, regional and local levels based on cross-cutting analyses, environmental impact, implementation timetable and cost effectiveness.

- Preparing a prioritized list of investment needs.
- Developing a NAP implementation follow-up and reporting plan.
- Developing a capacity building plan.
- Drafting the NAP document.

Details of the institutional and methodological aspects for accomplishing the NAP update are presented in the following sections. Countries formulating relevant integrated programmes of measures for implementation of the 11 ECAP ecological objectives may submit their integrated programmes of measures being the NAPs. In that respect, it is expected that all Mediterranean Countries will be in a position to prepare National Action Plans covering all 11 ecological objectives under the UNEP/MAP-Barcelona system in the future. In fact, the NAPs can be viewed as the first step for preparing programmes of measures by all Mediterranean Countries for pollution prevention and control in line with the ECAP ecological objectives and targets. To facilitate this aim, the Secretariat will organize consultations in the course of the NAPs updating process among all the Countries to promote exchange of information, carry out consultations, and where appropriate, to agree on common measures.
3. Institutional set-up of the NAP updating process

In order to update the NAPs, a number of institutional measures need to be established by the Country in order to successfully develop a proper NAP document that captures the critical issues of relevance. In case the institutional set-up is not developed or is not adequate in the Country, the following measures are recommended.

3.1 Institutional Arrangements

Institutional arrangements are crucial elements to ensure proper coordination and organizational development of the planned activities for updating the NAP. It is recommended to build on relevant existing processes, as appropriate, in order to avoid duplication and overlapping.

The following elements regarding the institutional arrangements for the NAP updating process are recommended:

i) A national lead agency, possibly a ministry or government agency of equivalent level, which hosts the MAP and/or MED POL Focal Point functions, would be officially assigned the “primary responsibility” for managing the NAP updating process. This agency would be given the authority to establish or activate a multi-stakeholder coordinating and stakeholder input mechanism, provide it with administrative support and ensure the integration of substantive work, as appropriate.

ii) A high level stakeholder review committee or a national steering committee (NSC). The NSC would be responsible for planning how public and stakeholder awareness should be raised, how stakeholders will be consulted, how information should be communicated and how questions and concerns should be managed. It is recommended that the MED POL focal point is assigned either the post of secretary or of co-chair of this committee.

iii) An executive unit or a technical committee (TC) responsible for managing the process and for carrying out the preparation and coordination work. The TC would be also responsible for identifying and establishing “thematic groups” to take the lead on technical issues, and for ensuring that links are made to existing programmes and initiatives that affect the implementation of the NAP.

iv) Thematic groups and experts who would be brought into the project for technical tasks identified by the TC.

3.2 Work Methodology

The recommended work methodology for updating the NAP is based on the following four steps:

i) A meeting of key Government Departments and agencies is initiated by the NAP national lead agency to establish the TC. The outcomes of this meeting would be the expected membership of the TC; an agreed strategy for stakeholder involvement; and an outline of an initial national steering committee (NSC) or equivalent body including its composition and chair.

ii) The first meeting of the TC is convened to agree on the rules for updating the NAP. Technical aims and objectives are outlined; responsibilities for areas of NAP updating are assigned; a mechanism for stakeholder involvement is agreed; establishment of the NSC is initiated; and a project outline plan is developed along with estimated resources required and key players that must be involved.

iii) Periodic briefings and meetings of the TC could be used to ensure that all members are aware of the progress being made by the thematic groups, and to review the aims and findings as they progress.

iv) The first meeting of the NSC or initiation workshop is held to brief stakeholders on the NAP and its information requirements, rationale and objectives. The project plan for NAP updating is presented. Feedback is gathered on composition of the NSC, interests and aims of stakeholders and issues that need to be addressed. Proposed project plan for the development of the NAP is
presented to the TC, finalized and communicated back to the NSC and wider stakeholder group as appropriate.

3.3 Involved Stakeholders; Inter-linkages to and Synergy with other Relevant Policy Frameworks and Processes

Many of the governmental bodies and nongovernmental organizations that had participated in the development of the initial NAP may also be involved in the NAP update process. In principle, all interested parties, including the ECAP responsible officials, should be given the opportunity to participate and to gain free access to information. The following lists some of the main groups to consider:

- **Policy makers** needed to ensure that the issues raised by the NAP are accorded appropriate priority in their sectoral policies, strategies and plans, and to seek further commitment from legislative bodies. In that respect, it is advisable to encourage politicians with responsibility for international environmental agreements to participate in the process in order to enhance coordinated implementation with other relevant international environmental agreements.

- **Government officials** needed to ensure that key staff are communicating and coordinating the necessary inputs and facilitating the implementation of actions produced by the NAPs. Consideration should be given to officials representing municipalities, environment agencies, public utilities (wastewater and solid waste), industry, agriculture and local authorities.

- **Representatives from industry and commerce** including trade associations and professional bodies. Examples include manufacturing industry, the agricultural sector, the power sector, the waste management industry, and other industrial concerns affected by potential measures to be included in the NAPs.

- **Representatives of the private sector** needed to mobilize new and additional financial resources to address priority pollution and degradation problems in partnership with public agencies.

- **Community representatives** including NGO groups representing civil society, including MAP partners, in order to ensure that their communities’ concerns are taken on board.

- **Academic and research institutions** needed to address environmental issues of highly technical nature that may require specialist knowledge.

- **Focal points of international conventions and initiatives** needed to ensure programmatic linkages, where appropriate, to focal points of the relevant MEAs and to other Protocols of the Barcelona Convention, in particular the Dumping and Hazardous Wastes Protocols. Also needed are focal points of initiatives and institutions/organizations such as the Horizon 2020 network, Union for the Mediterranean (UfM), European Environment Agency (EEA), the SEIS Project, UNEP/MAP Regional Activity Centres (RACs), FAO, GFCM, ACCOBAMs, representatives of pollution monitoring institutions, and members of ECAP correspondent group, etc.

3.4 Timeline for Completion

The Contracting Parties should transmit their updated NAPs by COP 19.

3.5 Approval and Endorsement

NAP document should be endorsed by the NSC. With the view to enhance public and decision makers’ awareness on the importance of the NAP and its added value, it is recommended to carry out the following tasks:

- Producing suitable communication and public relations materials which convey the contents, intentions and need for and benefits of the NAP for stakeholders.

- Establishing a consultation mechanism, with suitable commentary and explanation if necessary, to ensure that stakeholders within and outside Government are made aware of the NAP, and to gather feedback for assessment.

- Reviewing the feedback from the consultation process and adopting the NAP.
− Submitting the final version of the NAP for endorsement by the relevant national authorities (government ministers, heads of agencies, etc).
− Publishing the official version of the NAP in on the MAP and Environmental Ministry/Agency websites.
− Submitting the NAP to the Secretariat and to the Meeting of the Contracting Parties for endorsement.
4. Methodology for the NAP updating process

The following flow chart recommends the process tasks, principal steps and key issues to be considered in the NAP updating process.

Process tasks for updating the NAP

What are the operational objectives/targets which set the goal that the Country aims to achieve?

What are the gaps and issues that prevent the Country from meeting its operational objectives/targets? And which have the highest priority?

What potential pollution reduction measures should be included in the NAP to meet ECAP-GES and Regional Plans targets?

What should be included in the NAP?

What happens after drafting the NAP?

Principal steps to be followed in the NAP updating process

1. **Assess the NAP midterm implementation benchmark**
 - Describe existing midterm baseline and implemented measures
 - Describe future trends in pressure and impacts according to existing measures and current policies

2. **Define quantifiable objectives & operational targets**
 - Refer to ECAP-GES and regional plans targets in the framework of SAP-MED

3. **Identify gaps/Issues**
 - Identify gaps between existing midterm baseline and quantifiable objectives/operational targets. Gaps maybe legal, policy, economic and/or technical in nature
 - Assess ability of existing measures to bridge the gaps.

4. **Prioritizing issues and identifying potential measures**
 - Prioritize issues based on impacts on human health and marine environment.
 - Assess need for new measures based on review of ECAP-GES and Regional Plans targets in the framework of SAP-MED against current environmental status defined in the midterm baseline
 - Elaborate a prioritized list of potential measures

5. **Select programme of pollution reduction measures**
 - To be selected from the prioritized list of potential measures
 - Selection criteria include priority number, ability to integrate with other NAP measures and policies, implementation cost, impact on marine environment, cost effectiveness/benefit, timetable for implementation, and technical feasibility.

6. **Developing NAP follow-up and reporting plan**
 - Plan based on a set of indicators derived directly from the NAPs quantifiable objectives

7. **Drafting the NAP to be followed by the following institutional measures**
 - Evaluate the overall sustainability of the programme of measures (PoM) with a focus on cumulative impact on the wider environment and transboundary impacts.
 - Present PoM for public consultation and amend accordingly.
 - Obtain national endorsement.
 - Monitor and report implementation of the NAP/PoM.

Preparing a prioritized list of investment needs
- Prepare priority projects fiches for top 10-15 investment measures

Developing capacity building plan
- Plan for assigning responsibilities, resources and budgets required for training and capacity-building needs for the tasks to be undertaken for implementation of the NAP
The recommended NAP updating methodology consists of the following steps:

1. Assess the state of play of existing measures and the current status of marine and coastal pollution, referred to as the NAP midterm baseline.
2. This is followed by the performance of a gap analysis to evaluate the need for implementing additional actions to fill the gap between existing measures and status of the marine pollution with reference to the defined ECAP–GES and regional plan targets in the framework of the SAP-MED.
3. Gap analysis would lead to prioritization of issues and identification of potential new measures, as appropriate.
4. The potential prioritized measures are assessed for their technical feasibility and analyzed in an integrated manner taking into account their resulting impacts on the marine environment, implementation cost, cost effectiveness/benefit, duration for implementation with the view to develop an integrated programme of measures for inclusion in the NAP.

A practical example illustrating the process for developing pollution prevention and control measures for marine litter, including a description of the quantifiable targets, midterm baseline, gaps and the selected measures to be included in the NAP, is presented in Appendix F.

Details of the recommended methodology for the NAP updating process are presented in the following sections.

4.1 Assessing the NAP Midterm Implementation Benchmark

The midterm baseline captures the outcomes of actions taken by the Contracting Parties in the framework of SAP-MED/NAP implementation since the initiation of this process in 2004-2005 until 2013. There is a need for the Contracting Parties to evaluate the effectiveness of these actions and existing measures vis-à-vis the long-term provisions of the SAP-MED; the legally binding provisions of the 10 Regional Plans and their timetables for implementation standards, and the GES targets of ECAP Ecological Objective 5 on eutrophication, Objective 9 on contaminants and Objective 10 on marine litter. Furthermore, there is a need to describe future trends in pressures and impacts according to the present national budget of pollutants (NBB), existing policies and measures, and their effect on the current status of the identified hotspots.

Proposed tasks and responsibilities for the thematic groups

It is expected that the main effort for assessing the midterm baseline would be the responsibility of the thematic groups. The technical committee (TC) would form these groups. However, the participation of key stakeholders in the process would be essential for obtaining reliable results. It is therefore important for the TC to identify those groups and individuals and to ensure their involvement. The following table proposes the formation of eight thematic groups to be established as appropriate in line with the specificities of each Country, and illustrates their contribution to addressing the SAP-MED sectors/pollutants.

3 The term “Midterm” is introduced as the Countries are presently half way, time wise, towards the SAP-MED targets set for the year 2025 since the adoption of the NAPs in 2005.
4 UNEP(DEPI)/MED ID.21/9. Decision IG.21/3 on the Ecosystems Approach including adopting definitions of Good Environmental Status (GES) and targets.
Members of the thematic groups may consist of legal, policy and technical experts in their fields (wastewater, solid waste and air pollution in urban or industrial setting), in addition to marine environment experts. For the agricultural thematic group, technical experts should be qualified in best environmental practices in agriculture.

Regarding the marine environment monitoring group, it may be composed of monitoring experts from the other seven groups. It is highly recommended that members of the group coordinate with the experts of the correspondence monitoring group under ECAP. The monitoring group applies an integrated approach to examine the monitoring issue vis-à-vis the sectoral approach used by the other groups. The marine environment monitoring group should fully take into account the ongoing work for preparation of the integrated monitoring programme based on the agreed ecosystem approach indicators on eutrophication, contaminants and marine litter. The monitoring group also follows-up and reports on NAP implementation prior to presentation to the NSC for final approval.
Each thematic group describes the midterm baseline in terms of aspects related to existing legal, policy, and technical measures, in addition to the state of marine and coastal pollution as described below:

i) **Legal Measures** (national laws and regulations) that support:
- Implementation of measures for the prevention and control of priority substances.
- Implementation of measures provided for in the 10 Regional Plans.
- Ecosystem approach targets, monitoring requirements and any related measures.
- Phasing out inputs of substances included in Annex (I) of the LBS Protocol from land-based sources.
- Authorization and regulation of point source discharges.
- Establishment of inspection system to assess compliance.
- Application of sanctions in event of non-compliance.
- Established legal and institutional structures that support:
 - Monitoring and inspection of the inputs of the priority pollutants to the Mediterranean environment.
 - Authorization and regulation of discharges of wastewater and air emissions from industrial and urban installations.
 - Public participation in decision-making processes.
 - Public access to information.
 - Reporting of measures taken and results achieved.

ii) **Economic Measures**
- Use of incentive policy tools such as economic and financial instruments in support and combination with traditional pollution control and command tools.

iii) **Policy Measures** (National and regional policy frameworks) consisting of:
- Strategies and action plans addressing treatment and disposal of municipal sewage; reduction, recycling and composting of urban solid waste; control of levels of air pollutants in cities; reduction of point source discharges and air emissions from industrial installations; disposal of hazardous wastes; safeguarding the ecosystem and maintaining the integrity and biological diversity of species and habitats.
- Strategies that promote sustainable development, ICZM and integration of environmental protection into national development policies.
- National strategies that promote:
 - Raising public environmental awareness and supporting educational activities.
 - Capacity building to improve the scientific base, environmental policy formulation, professional human resources, institutional capacity and capability.

iv) **Technical measures**
- Pollution prevention, control and phase-out schemes regarding releases of SAP- MED priority substances and groups of pollutants; BAT, BEP, SCP, etc. In that respect, the National Budget (NBB) reports for 2008 and 2013 (latter in progress), which include data on pollution loads for priority substances, should be evaluated in relation to:
 - The extent to which a comprehensive inventory of the existing pollution sources in each river basin/administrative region in the coastal zone has been performed;
 - Classification of pollution sources into sectors according to Annex (I) of the LBS protocol;
 - Identification of the potential pollution sources (point versus diffuse sources) of each pollutant targeted by the SAP;
 - Quantification/estimation of the emissions/releases on the basis of the river basin/administrative region approach; and,

Guidelines on the preparation of 2013 national budget of pollutants (NBB) are presented in Appendix B.
Use of PRTR for reporting purposes.

Status of hotspots and sensitive areas:
- The Contracting Parties had recognized in 2003 the list of pollution hotspots and sensitive areas in the Mediterranean. They were listed in the NAPs as priority areas for which interventions should be targeted.
- There is a need for assessing the hotspots and sensitive areas against the updated criteria included in Appendix C which fully take into account GES targets.

The thematic groups are strongly recommended to refer to the midterm evaluation of SAP-MED/NAP implementation report; country profiles and fact sheets completed by UNEP/MAP MED POL with contribution from the Contracting Parties; the national country and regional reports prepared by the UfM with regards to the investment portfolio of NAP implementation; national state of the environment reports prepared during the period 2003-2013; Mediterranean state of environment reports for 2009, 2011 and 2012; ECAP sub-regional reports on pollution prepared by UNEP/MAP MEDPOL in 2010-2011; the initial integrated assessment report elaborated under ECAP in 2011; the joint report EEA-UNEP/MAP on the progress of H2020; In addition to the UNEP/MAP transboundary analysis report and hotspot reports, information on pollutants’ releases and trends can be found in the initial assessment, GES and targets reports prepared in the framework of the EU Marine Strategy Directive by the respective EU member countries, as well as through EPRTR.

4.2 Defining Quantifiable Objectives, and as appropriate, Operational Targets

In line with the NAP midterm baseline assessment, the Contracting Parties need to establish a set of “quantifiable objectives” and as appropriate “operational targets” for land-based sources. The aim is to achieve the ECAP–GES and Regional Plans targets in the framework of the SAP-MED. In this regard, it is noted that the SAP-MED objectives are defined based on the TDA 2003 baseline.

A comprehensive list of key commitments and obligations stipulated in the ECAP–GES and regional plans targets in the framework of the SAP-MED has been compiled in Appendix A for indicative purposes and with the view to facilitate the work of the Parties (i.e. the thematic groups) when elaborating their specific quantifiable objectives and where appropriate operational targets. These requirements are classified according to policy frameworks, legal/institutional structures and pollution prevention and control measures. For each of these three headings, commitments and obligations are highlighted based on SAP-MED sector/substance, along with deadlines for achievement. In referring to these requirements, it is possible for each thematic group to define the specific quantifiable objectives and operational targets needed for the NAP updating process.

4.3 Identifying Gaps/Issues

A gap analysis is performed to define the gaps between the existing baseline, which reflects the current situation, and the desired targets that constitute the aim. This process is referred to as “baseline mapping”.

Based on the list of quantifiable objectives, and where appropriate operational targets, and with reference to the elaborated midterm baseline, the thematic groups would investigate and assess the gaps between the midterm baseline and the requirements of the binding measures. This analysis would focus on:

i) Description of the gaps and issues at the policy/legal/regulatory levels, in addition to other pollution prevention and control measures and monitoring/reporting aspects.

5 UNEP(DEPI)/MED WG.393 inf.3. Midterm Evaluation of SAP/NAP Implementation.
6 UNEP(DEPI)/MED WG.393 inf.4. Final Report on Update Priority Investment Projects for Protecting the Mediterranean Sea from pollution.
7 With an extrapolation up to 2025 and population and economic growth.
ii) Description of information gaps and issues for optimal monitoring required under the ecosystem approach for Objective 5 regarding eutrophication, Objective 9 dealing with contaminants, and Objective 10 on marine litter and other LBS Protocol requirements.

iii) Assessment of hotspots based on the updated criteria included in Appendix C with the aim to reclassify hotspots as appropriate whereby each newly classified hotspot is an issue on its own that needs to be addressed in the updated NAP.

Hence, the outcome of the gap analysis is a list of issues of legal, policy or technical nature. Since it is not possible to address all issues at the same time in the NAP, some sort of prioritization to rank from most to least important is required. Prioritization of issues and identification of potential measures derived from the gap analysis is presented in the next step.

4.4 Prioritizing Issues and Identifying Potential Measures

In this step, a systematic methodology for ranking issues and hotspots, which were identified through the gap analysis and for identifying potential measures, is presented. In principle, each sector/substance has its own gaps or issues, which may be legal, policy or technical in nature. Different administrative region(s)/river basins will have different issues for the same sector/substance. The degree of importance of each issue will depend on its impact and the significance of that impact on aspects such as human health and the marine environment. For the purpose of ranking issues, the criteria of the 2004 NAP Guidelines are proposed in Appendix D for indicative purposes. An issue/impact matrix can be utilized in order to make the preliminary assessment of the relative importance of the different impacts on the coastal areas including marine environment. The derived issues are scored in the matrix according to their relevance to the national environmental priorities taking into consideration the legally binding measures, the ECAP GES targets, the SAP targets and the requirements of the regional plans. The thematic groups are encouraged to agree on the weights assigned to different sector/substances with a view to ensure consistency is assessing the required impacts.

Following the prioritization process, potential measures are identified/prioritized. These measures and their programme consist of possible actions for the management of land-based activities in order to meet commitments under the ECAP-GES and Regional Plans targets in the framework of SAP-MED. The measures may take several modes of action such as technical, legislative/regulatory, economic and policy-driven. Actions that may indirectly and only over long timeframes affect environmental status, such as research activities, should be considered as supplementary and contributing to specific measure implementation.

The TC coordinates with the thematic groups for identifying appropriate programme of measures to be included in the NAP. The TC also coordinates between all actors for common intervention areas such as policy and legal issues, monitoring, enforcement and reporting. In developing the management options, the TC should focus on the SAP-MED sectoral programmes, namely:

ii) Municipal solid waste and marine litter.
iii) Air pollution.
iv) Toxic, Persistent and Liable to Bioaccumulate (TPB).
v) Heavy metals.
vi) Organohalogen compounds.
vii) Radioactive substances.
viii) Industrial wastewater treatment including food industry.
ix) Agricultural activities including livestock and farming.
x) Hazardous wastes.

The prioritized lists of potential measures are first developed on the regional level. These are collected by the TC and combined into a single list, for each region/river basin, and for all SAP sectors/substances. The

8 This Appendix may be adjusted following the update of the list of priority contaminants in the Mediterranean.
regional lists are subsequently combined by the TC into a single national priority list of potential measures for all sectors/substances.

4.5 Selecting the Programme of Measures for Pollution Prevention and Control

The key objective of this phase is to select the programme of measures for pollution prevention and control from the single combined national priority list of potential measures. The purpose of this exercise is to identify the specific and integrated measures to be included in the NAP. This is accomplished by conducting cross-cutting analyses for the potential measures of national priority. Measures need to be evaluated based on their ability to integrate with other NAP measures and policies, implementation cost, impact on marine environment, cost-effectiveness/benefit, timetable for implementation, and technical feasibility. Some of these measures will require investment projects; implementation of BAT and BEP, SCP tools; others will need updates of legal instruments, institutional structures, policy frameworks, a major revision in a national sectoral strategy, some specific actions in hotspots, improved monitoring and enforcement legislation and institutional arrangements, or even new strategies for public participation and reporting. Guidance on cost-effectiveness and cost-benefit analysis is presented in Appendix G. Reference information on selecting management options that can be found in the technical guidelines produced by UNEP/MAP are listed in Appendix H.

The following factors should be considered when selecting the appropriate pollution prevention, control and phase-out and elimination measures:

i) Details of the principal requirements under the ECAP-GES and Regional Plans targets in the framework of SAP-MED. These constitute a time-tabled list of actions that should be addressed in the NAP. These requirements (tabulated in Appendix A) should be examined on a case-by-case basis. Some of these actions have past deadlines and should have been accomplished in the initial NAP. Others do not have a fixed date (as per the SAP-MED); hence the Country has some freedom in specifying a suitable deadline. Actions may be policy, legal, institutional or technical in nature. Some require substantive investment and need additional preparatory work in order to develop its investment portfolio.

ii) Links should be made, when appropriate, to relevant national initiatives to eliminate duplication or conflict and maximize efficiency (e.g. chemicals management, waste management and disposal, pollution prevention and control, sustainable development, etc.).

iii) Improved complementarities should be achieved between NAP implementation under the Barcelona Convention with similar commitments and obligations under other relevant MEAs.

iv) The administrative requirements for implementation of NAP actions should be considered. For actions requiring institutional and regulatory strengthening measures, it is recommended to address mechanisms for adoption into local law, and responsibilities for implementation. Therefore, it is proposed to develop a detailed “road map” to show what measures will be required, what actors are needed and what resources are necessary. The roles and responsibilities of key players should be detailed, along with a mechanism for implementation. The role and inputs required of international organizations and financial and technical resources required should also be detailed.

v) A sustained participatory process of relevant stakeholders should be ensured.

In order to facilitate the implementation of critical measures that require significant investments, Countries are recommended to refer to the UfM study on midterm evaluation of the implementation of the investment portfolio of NAP. The study contains recommendations regarding potential investment needs in the Mediterranean Countries to comply with Regional Plans obligations and targets and as appropriate with SAP MED 2025 targets. For that purpose, Countries are recommended to (i) update the list of projects identified in the UfM study with the main information attached to each of them (i.e. location, state of progress and funding, capacity and estimation of pollutants loads or costs) and (ii) develop projects’ fiches for the top 10 to 15 priority national investment projects. Each fiche should include:

i) Project rationale.

ii) Clear de-pollution objectives.

iii) Investment needs.
iv) Potential internal/external financial resources for implementation.
v) Link to national public investment policy.
vi) Identification of key partners (including private sector).

It is also strongly recommended that roundtable or partnership meetings with representatives from key sectors and financial institutions be convened in order to involve them as stakeholders from the outset and promote the investment process. It is the responsibility of the NSC to undertake this task. The Secretariat will collaborate with relevant partners to provide the necessary support to Countries for the selection of priority investment needs and projects’ fiches development based on common and environmental sound criteria. UfM has developed a number of criteria in cooperation with UNEP/MAP that require further analysis and finalization. These will be provided to the Countries for consideration at a later stage following discussion and agreement by the MEDPOL FPs.

It has to be noted that the existing Horizon 2020 Initiative is entering into a new phase 2015-2020 which will provide funding for capacity building, technical assistance and investments to support the implementation of the NAPs. Every effort should be made at national and regional levels to maximize the effectiveness of funding for the implementation of the NAPs.

In addition, it is recommended that Countries (i.e. technical committees) formulate a plan that assigns responsibilities, resources and budgets required for implementation of the NAP programme of measures. The plan should be presented and approved by the NSC.

It is recommended that the capacity building plan addresses the following issues:

i) Formation of task teams composed, whenever possible, of existing specialized institutions and agencies already appointed by relevant ministries to perform specific tasks. Representatives of academia and various other sectors may also be involved.

ii) Identification of priority areas where current capacity and capability need to be strengthened to implement the NAP. Priorities based on the need to meet obligations and country-priority issues would be highlighted.

iii) Timetable for implementation of training plan summarizing the principal targets contained in the training strategy, outlining specific targets, milestones and performance and outcome indicators to allow progress to be reviewed and monitored.

iv) Cost for implementation including projected costs of training measures. Incremental costs for measures would be identified and potential sources of funding for both incremental costs and baseline costs would be noted.

4.6 Developing the NAP Implementation Follow-up and Reporting Plan

The purpose of the NAP follow-up and reporting plan is to track performance of NAP implementation; to inform stakeholders and the Secretariat on work progress and achievements made; assess effectiveness of measures taken including capacity building and technical assistance activities/plans; and propose corrective measures as appropriate.

The Secretariat will assess the information provided by the Countries on NAP implementation to identify progress made and difficulties related to NAP implementation, and to tailor country-driven assistance to overcome challenges. In addition, the Secretariat will undertake regional synopsis for contributing to the preparation of the State of the Mediterranean Environment Report.

The outcome of the NAP follow-up and reporting plan is a set of time-bound performance indicators derived from: (i) ECAP pollution monitoring indicators in accordance with Article 12 of the Convention, Article 8 of the LBS Protocol, and (ii) the sources and management actions taken. It is recommended to streamline the regional plan indicators with NAP indicators to the extent possible.

It is the responsibility of the monitoring thematic group to develop the appropriate plan needed to follow-up performance of NAP implementation. This is achieved by means of follow up indicators whereby each
indicator provides a measure of the level of performance of the corresponding objective. The follow-up and reporting plan consists of:

i) Details on type of information and data that need to be collected for each indicator (indicator fact sheet).

ii) Frequency for collecting the relevant information and data that can assist in evaluating performance of NAP implementation.

iii) Responsibility for collecting and analyzing collected information and data.

iv) Responsibility for reporting the findings on the indicators.

v) The Parties to whom the results of the indicators should be provided, with specific details on:
 - Public access to NAP implementation indicators.
 - National information system established or updated based on the SEIS principles.

The monitoring group derives the indicators from approved targets, and incorporates the state indicators already developed for the ECAP operational objectives. The monitoring group provides guidance for each indicator regarding:

i) The required data and information;

ii) Where this information can be found; and

iii) Responsibility for data collection and analysis.

The monitoring group obtains approval of the TC and the NSC for the follow-up and reporting plan. The monitoring group coordinates with the Lead Agency for approval of the guidance notes for collection and analysis of information needed for the indicators. The monitoring group also coordinates with the Lead Agency for the development of the reporting mechanism on work progress and achievements made.

A list of indicators to be used for LBS, Dumping, HW Protocols, RPs and NAP implementation follow-up and reporting to the Secretariat is included in Appendix E. The Lead Agency is delegated with the responsibility for information collection and data analysis. The reporting frequency is yearly with a midterm evaluation in 2020 and final evaluation in 2025.

4.7 Drafting the NAP

The objective of this step is to produce a draft NAP document which is ready for distribution and discussion with relevant stakeholders. The TC is responsible for drafting the NAP document and for coordinating with the NSC for review and approval. The TC could draw on assistance from consultants, external experts and organizations if necessary.

The following points need to be considered during the drafting of the NAP document:

i) The NAP should be presented as a policy tool at national, regional and local levels, fully reflected in the national policy documents.

ii) The NAP should be developed as a solid communication tool for reach out to government officials and the public.

iii) It is useful to present a clear structure of the NAP covering all aspects of implementation of the LBS protocol (i.e. policy, regulatory, pollution prevention, control and phase-out measures, hotspot elimination, monitoring, assessment and enforcement), and regionally legally binding measures to achieve Good Environmental Status.

iv) A logical framework matrix may be useful to show clearly what steps must be taken to implement a proposed option, and what actions and resources are needed to make them possible. The log frame, illustrated in Appendix F, should address the following points:
 - Quantifiable objective/operational target and timetable for implementation.
 - SAP- MED area(s) where reduction will take place linked to the ECAP objectives and targets, and the relevant Regional Plan/Standards.
 - Measure/activity cost.
 - Leading institution and other stakeholders/partners and institutions involved.
The reduction tracking method/monitoring (NBB, PRTR, and marine pollution monitoring).
- Capacity building needs.
- Indicators to measure performance.
- Monitoring tracking method.
- Risks and assumptions.

v) A NAP document may include the following main topics:
- Summary of achievements made in the initial NAP and challenges facing implementation of the updated NAP.
- Assessment of the midterm implementation benchmark.
- Quantifiable objectives or national targets.
- Gaps analysis and identification and prioritization of issues. \(^9\)
- Priority measures/programmes of measures for the National Action Plan and timetable for implementation of measures.
- Capacity building and technical assistance plan.
- NAP implementation financial sustainability plan.
- NAP implementation follow-up and reporting system plan.
- Public information, awareness raising and education plan.
- Revised list of hotspots and sensitive areas.
- List of investment needs with analysis of coherence between them and ECAP, regional plans and, as appropriate, SAP targets, and with 10 to 15 summary project fiches on priority investment measures.

Appendix F contains detailed outline and guidance information for drafting the updated NAP.

5. Other technical aspects of the NAP updating process to be further developed in consultation with the Contracting Parties

Updating of some of the technical aspects of the NAPs will require further elaboration in consultation with all Contracting Parties. These include:

1. Criteria proposed for prioritizing sectors, substances and other environmental considerations.
2. Considerations for future regional plans in the framework of art. 15 of the LBS Protocol.
3. UfM developed a number of criteria in cooperation with UNEP/MAP with regards to project prioritization. \(^8\) Such criteria require further analysis and finalization by the Contracting Parties.

\(^{9}\) In case of past legally binding targets not met, more detailed actions to get in conformity will be described.
APPENDIX A. Requirements of the Ecosystem Approach targets and Regional Plans in the framework of SAP-MED

This Appendix includes a list of the requirements and obligations to be fulfilled by the Contracting Parties for implementation of their National Action Plans (NAPs).

These requirements were derived from the following measures:

a) Strategic Action Programme (SAP-MED), 1997.
b) Decision IG.19/7 “Regional Plan on the Reduction of BODs from Urban Wastewater”.
c) Decision IG.19/8 “Regional Plan on the Elimination of Aldrin, Chlordane, Dieldrin, Endrin, Heptachlor, Mirex and Toxaphene”.
d) Decision IG.19/9 “Regional Plan on the Phasing Out of DDT”.
e) Decision IG.20/8.1 “Regional Plan on the Reduction of Inputs of Mercury”.
f) Decision IG.20/8.2 “Regional Plan on the Reduction of BOD5 in the food sector”.
g) Decision IG.20/8.3.1 “Regional Plan on the Elimination of Alpha hexachlorocyclohexane; Beta hexachlorocyclohexane; Hexabromobiphenyl; Chlordecone; Pentachlorobenzene; Tetrabromodiphenyl ether and Pentabromodiphenyl ether; Hexabromodiphenyl ether and Heptabromodiphenyl ether; Lindane; Endosulfan, Perfluorooctane sulfonic acid, its salts and perfluorooactane sulfonyl fluoride”.
h) Decision IG.20/8.3.2 “Regional Plan on the Phasing out of Lindane and Endosulfan”.
i) Decision IG.20/8.3.3 “Regional Plan on the Phasing out of Perfluorooctane, Sulfonic Acid, its salts and Perfluorocotane Sulfonyl Fluoride”.
j) Decision IG.20/8.3.4 “Regional Plan on the Elimination of Alpha hexachlorocyclohexane, Beta hexachlorocyclohexane, Chlordecone, Hexabromobiphenyl, Pentachlorobenzene”.
k) Decision IG.20/9 “Criteria and Standards for bathing waters quality”.
l) Decision IG.20/10 “Adoption of the Strategic Framework for Marine Litter Management”.
m) Decision IG.21/3 on the Ecosystems Approach including Adopting Definitions of Good Environmental Status (GES) and Targets.
n) Decision IG.21/7 “Regional Plan on Marine Litter Management in the Mediterranean”.

The requirements are categorized into three groups:

a) Policy framework.
b) Legal instruments and institutional arrangements.
c) Pollution prevention and control measures.

For each of these groups, the requirements are further classified into the following SAP-MED sectors, along with its origin in [brackets]:

a) Urban environment
b) Industrial development
c) Physical alterations and destruction of habitats
d) Monitoring and inspection
e) Capacity building
f) Public participation
g) Reporting.
<table>
<thead>
<tr>
<th>Sector</th>
<th>Substance</th>
<th>Policy Requirements of ECAP and Regional Plans Targets in the framework of the SAP-MED</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Environment</td>
<td>Municipal Wastewater Treatment</td>
<td>Promotion of separate collection of rain waters and municipal wastewaters [SAP-MED Requirement]</td>
<td>Not specified(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promotion of reuse of treated effluents for the conservation of water resources [SAP-MED Requirement]</td>
<td>Not specified(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit concentrations of key nutrients in the marine environment to levels which are not conducive to eutrophication(^2) [ECAP Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prevention of direct and indirect effects of nutrient over-enrichment in the marine environment [ECAP Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensuring that water quality in bathing waters and other recreational areas does not undermine human health(^3) [Regional Plan Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td>Solid Waste</td>
<td></td>
<td>Minimization of impacts related to properties and quantities of marine litter in the marine and coastal environments(^4) [Regional Plan Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control of impacts of litter on marine life to the maximum extent practicable(^5) [Regional Plan Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction of fraction of plastic packaging waste that goes to landfill or incineration [Regional Plan Requirement]</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensuring adequate urban sewer systems, WWTP and waste management systems to prevent run-off and riverine inputs of Marine Litter [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application of cost effective measures to prevent any marine littering from dredging activities [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urban solid waste management is based on reduction at source with the following waste hierarchy: prevention, re-use, recycling, recovery, and environmentally sound disposal [SAP-MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td>Air Pollution</td>
<td></td>
<td>Promotion of traffic management that prioritize the use of public transport [SAP-MED Requirement]</td>
<td>Not specified(^1)</td>
</tr>
</tbody>
</table>

\(^1\) Deadline is not specified in the SAP.
\(^2\) Concentrations based on local hydrological, chemical and morphological characteristics of the un-impacted marine region.
\(^3\) Based on concentrations of intestinal enterococci.
\(^4\) Measured based on trends in amounts of litter in the water column, including micro-plastics, and on seafloor.
\(^5\) Measured based on trends in the amount of litter ingested by or entangling marine organisms, especially mammals, marine birds and turtles.
<table>
<thead>
<tr>
<th>Sector Substance</th>
<th>Policy Requirements of ECAP and Regional Plans Targets in the framework of the SAP-MED (continued)</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Development POPs, Heavy Metals (Hg, Cd, Pb), Organometallic Compounds</td>
<td>Application of BAT and BEPs for environmentally sound management of POPs [Regional Plan Requirement]</td>
<td>Deadline passed<sup>6</sup></td>
</tr>
<tr>
<td></td>
<td>Concentration of priority<sup>7</sup> contaminants in biota, sediment or water is kept within acceptable limits [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Minimization of effects of released contaminants to the marine environment such as not to give rise to acute pollution events [ECAP Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Prevention of acute pollution events and minimization of their impacts [ECAP Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td>Physical Alterations and Destruction of Habitats</td>
<td>Safeguard of the ecosystem function and maintenance of the integrity and biological diversity of species and habitats [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
<tr>
<td>Capacity Building</td>
<td>Support, promotion and facilitation of programmes of assistance in pollution control and reduction in the area of scientific, technical and human resources [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Support, promotion and facilitation of capacities to apply, develop and manage access of cleaner production technologies as well as Best Available Techniques (BAT) and Best Environmental Practices (BEP) [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
<tr>
<td>Public Participation</td>
<td>Facilitation of public access to scientific knowledge and activities for protection and management of the environment [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Mobilization, participation and involvement of major actors concerned in protection and management of the environment (local and provincial communities, economic and social groups, consumers, etc.) [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Enhancement of public awareness and education of pollution, and involvement of various stakeholders with regard to marine litter management including activities related to prevention and promotion of sustainable consumption and production [Regional Plan Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Seek direct cooperation with other Contracting Parties, with assistance of the MEDPOL or competent international and regional organizations, to address trans-boundary marine litter cases [Regional Plan Requirement]</td>
<td>As appropriate</td>
</tr>
<tr>
<td></td>
<td>Provision of information to the public about bathing water quality and implemented management measures [Regional Plan Requirement]</td>
<td>2016</td>
</tr>
<tr>
<td>Reporting</td>
<td>Application of a unified reporting system for implementing the provisions of the Barcelona Convention, the Protocols, the SAP-MED, the Regional Plans and ECAP objectives [SAP-MED Requirement]</td>
<td>Not specified<sup>1</sup></td>
</tr>
</tbody>
</table>

⁶ Deadline specified in the binding measure precedes the date of this document.

⁷ Priority contaminants as listed under the Barcelona Convention and LBS Protocol.
<table>
<thead>
<tr>
<th>Sector Substance</th>
<th>Legal Requirements of the Regional Plans in the framework of the SAP- MED</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Environment</td>
<td>Adopt emission limit values (ELV) for BOD5 in urban wastewater after treatment in accordance with the requirements of the “regional guideline on the reduction of BOD5 from urban waste water” [Regional Plan Requirement]</td>
<td>2015 or 2019 8</td>
</tr>
<tr>
<td>Municipal Wastewater Treatment</td>
<td>Enforce the adopted ELVs by monitoring discharges from municipal wastewater treatment plants into the environment [Regional Plan Requirement]</td>
<td>2015 or 2019 8</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>Adopt preventive measures to minimize inputs of plastic in the marine environment [Regional Plan Requirement]</td>
<td>2017</td>
</tr>
<tr>
<td></td>
<td>Enforce measures to combat illegal dumping including littering on beaches and illegal sewage disposal in coastal zones and rivers [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
<tr>
<td>Air Pollution</td>
<td>Improve processes for inspection and maintenance of vehicles and renovation of the oldest vehicles [SAP- MED Requirement]</td>
<td>Not specified 1</td>
</tr>
<tr>
<td>Industrial Development</td>
<td>Prohibit and/or take legal and administrative measures necessary to eliminate the production and use, import and export of POPs and their wastes [Regional Plan Requirement]</td>
<td>Deadline passed 6</td>
</tr>
<tr>
<td>POPs, Heavy Metals (Hg, Cd, Pb), Organometallic Compounds</td>
<td>Prohibit the installation of new Chlor alkali plants using mercury cells and vinyl chloride monomer production plants using mercury as a catalyst [Regional Plan Requirement]</td>
<td>Deadline passed 6</td>
</tr>
<tr>
<td></td>
<td>Adopt National ELVs for mercury emissions based on values included in the “regional plan on the reduction of inputs of mercury” from other than Chlor Alkali industry 10 [Regional Plan Requirement]</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Cease releases of mercury from the activity of Chlor alkali plants [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
</tbody>
</table>

8 Depending on national circumstances and respective capacities.
10 Chemical industries using mercury catalysts, batteries industry, non-ferrous metal industry, waste treatment, incineration plants.
<table>
<thead>
<tr>
<th>Sector Substance</th>
<th>Legal Requirements of the Regional Plans in the framework of the SAP- MED (continued)</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring and Inspection</td>
<td>Establish a monitoring programme of the inputs of priority pollutants identified in the SAP- MED and of the quality of the marine environment [SAP- MED Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Establish systems of inspection to ensure compliance with conditions laid down in the authorizations and regulations [SAP- MED Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Establish a permanent river water quality/quantity register [SAP- MED Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Monitor releases of mercury into water, air and soil in order to verify compliance with the requirements [Regional Plan Requirement]</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>Monitor discharges from municipal wastewater treatment plants and take necessary measures to enforce national regulations [Regional Plan Requirement]</td>
<td>2015 or 2019 ⁸</td>
</tr>
<tr>
<td></td>
<td>Monitor bathing water quality¹¹ [Regional Plan Requirement]</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>Design National Monitoring Programme on Marine Litter [Regional Plan Requirement]</td>
<td>2017</td>
</tr>
<tr>
<td>Public Participation</td>
<td>Provide to the public access to information available on the state of the environment of the Mediterranean and its evolution, and of the measures taken to improve it [SAP- MED Requirement]</td>
<td>Not specified¹</td>
</tr>
<tr>
<td></td>
<td>Collect information on the state of treatment and disposal of liquid and solid wastes [SAP- MED Requirement]</td>
<td>Not specified¹</td>
</tr>
<tr>
<td></td>
<td>Prepare bathing water profiles or beach profiles¹² [Regional Plan Requirement]</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>Establish Regional Data Bank on Marine Litter [Regional Plan Requirement]</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>Publish a report on the State and Evolution of the Mediterranean Environment [SAP- MED Requirement]</td>
<td>On regular intervals</td>
</tr>
<tr>
<td></td>
<td>Report on the implementation of the measures on the reduction of BOD5 from urban waste water and on their effectiveness [Regional Plan Requirement]</td>
<td>On a biannual basis</td>
</tr>
<tr>
<td></td>
<td>Report on the implementation of the National Marine Litter Monitoring Programme [Regional Plan Requirement]</td>
<td>On a biannual basis</td>
</tr>
</tbody>
</table>

¹¹ Classify findings as “excellent”, “good”, “sufficient” or “poor quality”, with each classification linked to bacteriological quality.

¹² Profiles consist of information about physical, geographical and hydrological characteristics of a bathing water and use to assess sources of pollution, dispersion routes, risks of contamination and negative impacts in order to implement appropriate mitigation measures.
<table>
<thead>
<tr>
<th>Sector Substance</th>
<th>Pollution Reduction Measures under the Regional Plans in the framework of the SAP- MED and ECAP</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal Wastewater Treatment</td>
<td>Coastal cities and urban agglomerations of more than 100,000 inhabitants are connected to a sewer system [SAP- MED Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Ensure that all agglomerations of more than 2000 inhabitants collect and treat their urban wastewater before discharging them into the environment¹³ [Regional Plan Requirement]</td>
<td>2015 or 2019 ⁸</td>
</tr>
<tr>
<td></td>
<td>Take necessary measures to establish adequate urban sewer and wastewater treatment plants that prevent run-off and riverine inputs of litter [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
<tr>
<td>Urban Environment</td>
<td>Establish environmentally suitable and economically feasible systems of collection and disposal of urban solid waste in cities of more than 100,000 inhabitants [SAP- MED Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>Implement programmes on regular removal and sound disposal of accumulations/hotspots of marine litter [Regional Plan Requirement]</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Implement adequate waste reducing/reusing/recycling measures in order to reduce the fraction of plastic packaging waste that goes to landfill or incineration without energy recovery [Regional Plan Requirement]</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Close to the extent possible existing illegal solid waste dump sites [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
<tr>
<td>Air Pollution</td>
<td>Promote the introduction of buses using gaseous fuel or other alternative forms of energy instead of diesel oil [SAP- MED Requirement]</td>
<td>Not specified¹</td>
</tr>
<tr>
<td></td>
<td>Pursue increased regional and domestic natural gas development projects in order to substitute high sulfur fuel oil with natural gas and natural gas conversion for urban proximities [SAP- MED Requirement]</td>
<td>Not specified¹</td>
</tr>
<tr>
<td>Industrial Development</td>
<td>Identify stock piles consisting of or containing POPs [Regional Plan Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Phase out inputs of the 9 pesticides and PCBs and reduce inputs of unwanted contaminants: hexachlorobenzene, dioxins and furans [Regional Plan Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Phase out to the fullest possible extent discharges, emissions and losses of organomercuric compounds and reduce those of organolead and organotin compounds [SAP- MED Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Identify existing sites which have been historically contaminated with mercury [Regional Plan Requirement]</td>
<td>Deadline passed⁶</td>
</tr>
<tr>
<td></td>
<td>Apply environmentally sound management measures to sites which have been historically contaminated with mercury [Regional Plan Requirement]</td>
<td>2015</td>
</tr>
</tbody>
</table>

¹³ Secondary treatment shall be applied for discharges from urban wastewater treatment plants. Primary treatment shall be applied for discharges from marine outfalls.
<table>
<thead>
<tr>
<th>Sector Substance</th>
<th>Pollution Reduction Measures of the Regional Plans in the framework of the SAP- MED and ECAP (continued)</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Development (continued)</td>
<td>Achieve environmentally sound management of metallic mercury from the decommissioned plants [Regional Plan Requirement]</td>
<td>To be achieved following decommission</td>
</tr>
<tr>
<td>POPs, Heavy Metals, Organometallic Compounds (continued)</td>
<td>Progressively reduce total releases of mercury (to air, water and to products) from existing Chloralkali plants until their final cessation [Regional Plan Requirement]</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>Take appropriate measures to isolate and contain mercury containing wastes [Regional Plan Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Phase out inputs of PAHs [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Phase out discharges and emissions and losses of mercury, cadmium and lead [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td>Other heavy metals</td>
<td>Eliminate to the fullest possible extent pollution of the Mediterranean Sea caused by discharges, emissions and losses of zinc, copper and chrome [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td>Organohalogen Compounds</td>
<td>Eliminate to the fullest possible extent pollution caused by discharges, emissions and losses of organohalogen compounds [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td>Nutrients and suspended solids</td>
<td>Eliminate to the fullest possible extent inputs of radioactive substances [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td>Radiactive substances</td>
<td>Reduce nutrient inputs, from agriculture and aquaculture practices into areas where these inputs are likely to cause pollution [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td></td>
<td>Dispose all wastewater from industrial installations which are sources of BOD, nutrients and suspended solids [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
<tr>
<td>Hazardous wastes</td>
<td>Dispose all hazardous wastes in a safe and environmentally sound manner [SAP- MED Requirement]</td>
<td>2025</td>
</tr>
</tbody>
</table>

14 Other heavy metals include Zinc, Copper, chromium.
15 Halogenated aliphatic and aromatic hydrocarbons, Chlorinated phenolic compounds and organohalogenated pesticides.
16 These include industrial wastewater and agriculture.
17 These include obsolete chemicals, luboil and batteries.
<table>
<thead>
<tr>
<th>Sector Substance</th>
<th>Pollution Reduction Measures of the Regional Plans in the framework of the SAP- MED and ECAP (continued)</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Alterations and Destruction of Habitats</td>
<td>Restore marine and coastal habitats that have been adversely affected by anthropogenic activities [SAP- MED Requirement]</td>
<td>Not specified¹</td>
</tr>
<tr>
<td></td>
<td>Remove existing accumulated litter from Specially Protected Areas of Mediterranean Importance (SPAMI) and litter impacting endangered species¹⁸ [Regional Plan Requirement]</td>
<td>2019</td>
</tr>
<tr>
<td>Public Participation</td>
<td>Explore and implement National Marine Litter Clean up Campaigns; participate in International Coastal Cleanup Campaigns and Programmes; apply “Adopt-a-Beach” or similar practices; and apply “Fishing for Litter” practices [Regional Plan Requirement]</td>
<td>2019</td>
</tr>
</tbody>
</table>

¹⁸ Endangered species listed in Annexes II and III of the SPA and Biodiversity Protocol.
APPENDIX B. Guidelines on National Budget of Pollutants (NBB)

Table of Contents

1. INTRODUCTION ... 2
2. OBJECT AND SCOPE OF THE NBB UPDATED GUIDELINES ... 2
3. NBB CALCULATION ... 3
 3.1. DETERMINING THE ADMINISTRATIVE REGION/S ... 4
 3.2. MAPPING THE EMISSION SOURCES WITHIN THE BASIN .. 5
 3.3. PREPARING THE NBB DATABASE .. 5
 3.3.1. Industrial activities ... 5
 3.3.2. Atmospheric emissions from transport .. 8
 3.3.3. Information concerning streams flowing into the Mediterranean 8
 3.3.4. Information concerning unregulated landfills ... 8
 3.3.5. Information concerning domestic wastewater discharge .. 9
 3.4. ESTIMATING AIR POLLUTANTS THAT ARE DEPOSITED INTO THE MEDITERRANEAN 9
 3.5. CONSOLIDATING THE NBB DATABASE .. 10
4. MED POL INFO SYSTEM ... 11
 4.1. INTRODUCTION .. 11
 4.2. SYSTEM OVERVIEW .. 11
 4.3. USER PROFILES AND ROLES .. 12
 4.4. NBB DATABASE DESCRIPTION .. 13
 4.5. REPORTING DATA FLOW ... 15
 4.5.1. H2020 indicators .. 17
 4.6. GUI – SYSTEM FUNCTIONALITIES/MODULES ... 17
 4.6.1. Import process design .. 17
5. NBB AND E-PRTR HARMONIZATION ... 19
6. REFERENCES .. 21
1. Introduction

In the framework of the operational strategy for the implementation of the Strategic Action Programme (SAP-MED), adopted by the 12th Meeting of the Contracting Parties to the Barcelona Convention (Monaco, November 2001), the Mediterranean countries should prepare a National Budget (NBB) of emissions/releases for the SAP-MED targeted pollutants covering all the substantial Land Based Sources. The assessment of pollutants’ loads constitute an important tool for both identifying and prioritizing issues to be addressed in the NAPs and evaluating the level of achievement of SAP MED targets through the implementation of the NAPs. In this context, the Countries prepared their first NBB in 2003 followed by the second in 2008 based on 2003 agreed NBB guidelines.

In view of NAP update as mandated by COP 18, Istanbul Turkey, 2013, the Secretariat developed the Guidelines for updating NAPs that comprised a number of technical annexes including one annex containing the updated NBB guidelines.

The updated NBB guidelines presented in this Appendix B take into account comments made during the meetings of MED POL FP in March and December 2014 including proposals to ensure the NBB harmonisation with PRTR. The guidelines contain four principal sections addressing:

a) NBB object and scope
b) NBB calculation
c) NBB InfoSystem
d) NBB and PRTR harmonization

2. Object and scope of the NBB updated guidelines

These guidelines have been prepared in order to assist the countries in the estimation of Baseline Budget (NBB) for the SAP MED targeted pollutants. They are designed to be applicable to all countries.

They include the methodological principles for the gathering of data and information concerning the loads of pollutants discharged in the Mediterranean by land based sources in case no monitoring of inputs in the marine environment is in place. It also includes a detailed description of the steps that should be followed for the calculation of the total loads discharged by the various land based sources of pollution, either from PRTR data or discharge permits or on the basis of Emission Factors.

The scope of the loads of pollutants is:

- Liquid loads discharge by industrial activities, municipal wastewater, effluents from wastewater treatment plants, leachates from landfills, pollution loads from coastal streams and runoff.
- Atmospheric emissions – point source emissions and major area sources.

As for sector categories and pollutants, SAP MED covers the following categories of substances based on Annex I.C of the LBS Protocol and selected as priorities. They both cover urban environment and industrial development, radioactive substances and hazardous waste have been removed for not being within NBB scope:
Table 1. SAP MED sectors, categories and substances.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Category</th>
<th>Substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban environment</td>
<td>Municipal wastewater, Municipal solid waste, Air pollutants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toxic, Persistent and Liable to Bioaccumulate (TPB)</td>
<td>Aldrine, DDT, Dieldrine, Endrine, Chlordane, Heptachlor, Mirex, Toxaphene, Hexachlorobenzene, PCB/PCT, PCDD/PCDF, PAH, Mercury, Cadmium, Lead, Organometallic compounds</td>
</tr>
<tr>
<td>Industrial development</td>
<td>Other heavy metals</td>
<td>Zinc, Copper, Chrome</td>
</tr>
<tr>
<td></td>
<td>Organohalogen compounds</td>
<td>Chlorinated solvents, Chlorinated paraffins, Chlorobenzenes, Polychlorinated naphtalenes (PCNs), Polybrominated diphenyl ethers and polybrominated biphenyls, Chlorophenols, Lindane, Chlorophenoxy acids</td>
</tr>
<tr>
<td></td>
<td>Nutrients and suspended solids</td>
<td>BOD₃, Nutrients, Suspended solids</td>
</tr>
</tbody>
</table>

As a minimum, NBB should cover all the pollutants evaluated as priority substances agreed by MEDPOL Focal points at their meeting held in Aix en Provence, France in November 2009 and listed in Annex II of Decision IG.21/3. Currently, this list is in the update process.

Sector categories (30) are established in Annex I.A of the LBS Protocol. Thus a number of subsectors (up to 97) are defined for each sector.

3. NBB calculation

The approach to 2013 NBB includes the following primary stages:
1. Determine the areas from which liquid and air emissions may reach the Mediterranean.
2. Map all emission sources in the area of interest.
3. Gather emission data for all emissions sources.
4. Assess the portion of total emissions that eventually reach the Mediterranean.
5. Consolidate data and avoid redundancy where duplicates occur.

3.1. Determining the administrative region/s

The first step for estimating the NBB is to identify the administrative region/s in which the land-based sources of pollution affecting the Mediterranean Sea are located, that is, the identification of the administrative region/s that best fits the basin area. This should be done for liquid and air emissions separately.

(a) Basin Area for liquid emissions

In this area, liquid emissions discharged by various sources have the potential to eventually be deposited in the Mediterranean, either by direct disposal of wastewater into the sea, or indirectly by runoff and wastewater disposal in streams reaching the Mediterranean.

The main contributors of liquid emissions are industrial activities, urban sewage and wastewater, runoff, and agricultural activities.

The determination of the basin area will be made with respect to the following routes of marine of emission:

- Direct marine discharge by point sources.
- Discharge to coastal streams by point sources.
- Runoff (into coastal streams).
- Direct Runoff (to seawater).

The determination of the area of influence has to be made individually for every territory or region. Generally, the boundaries set by the drainage basin can be used to determine the area of influence. In case this basin is too vast, it can be divided into sub basins according to the geographical characteristics while considering the potential reduction in pollutant loads along the route (e.g. according to degradation, adsorption etc.).

As an alternative to assessing the total runoff pollutant loads, it can also be assumed that all runoff drain goes to stream channels. Based on this assumption, pollutant loads can be assessed by sampling the pollutant loads downstream prior to the intersection with the sea.

(b) Air Basin for Atmospheric Emissions

The determination of the area from which atmospheric emissions have the potential to be carried and deposited into the Mediterranean is based on climatic and geographical analysis for each basin. The air basin will be determined for every territory or region with respect to the following:

- Proximity to the Mediterranean coast.
• Characteristic wind regime (significant portion of time in which the wind blows with a seaward component).

3.2. Mapping the emission sources within the basin

Accurate information on liquid and atmospheric sources of pollution and related activities should be mapped within their suitable basin. The general categories of emission sources are:

• Industrial activities,
• Transportation sources,
• Stream heads,
• Waste water treatment plants,
• Landfill runoffs,
• Any other category.

Once sources of pollution are determined, they should be classified according to the corresponding sector (Annex I.A of the LBS Protocol) and subsector.

3.3. Preparing the NBB database

After identifying all emission sources in the basin, a database containing emission data from all sources has to be established. Accurate, local data should be preferred wherever possible. After the available information was examined and verified, information gaps should be identified and completed if possible.

The following are the principle data sets required for a complete estimation of all pollutant loads reaching the Mediterranean Sea:

• Information concerning all industrial activities in the relevant area – liquid and atmospheric emission loads.
• Information concerning atmospheric emissions from vehicles.
• Information concerning all streams that flow into the Mediterranean – specific pollutant loads/concentration, flow volume.
• Information concerning unregulated landfills - leachate loads, runoff, and pollutant permeation to groundwater bodies that are linked to the Mediterranean water.
• Information concerning domestic wastewater discharge – direct marine discharge, collection and treatment, and effluent quality in the WWTP outlet when disposed to streams/sea.

Recommended data sources for each category are described in the next sections:

3.3.1. Industrial activities

The recommended data sources are prioritized according to the following order of precedence:
(a) **Using PRTR data**

PRTR reported data constitutes a good database for liquid and atmospheric emissions which is based upon actual installation-level data on production, energy and resource consumption, emission reduction, etc. This data usually undergoes quality control and is generally the best source of overall emission estimation.

Concerning E-PRTR initiative in particular, Mediterranean countries are required to address some gaps in order to convert E-PRTR into NBB data. The following table shows main differences between NBB and E-PRTR approaches:

Table 2. Comparison between NBB and E-PRTR.

<table>
<thead>
<tr>
<th>Issue</th>
<th>NBB</th>
<th>E-PRTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical scope</td>
<td>Administrative regions located in drainage basins that outflow into the Mediterranean.</td>
<td>All regions and river basin districts</td>
</tr>
<tr>
<td>Source type</td>
<td>Point sources (industry and urban centers).</td>
<td>Industrial facilities and diffuse sourcesι.</td>
</tr>
<tr>
<td>Scope of point sources</td>
<td>All point sources irrespective of their capacity.</td>
<td>Only if the facility exceeds the following thresholds: a) falls under at least one of the 65 E-PRTR economic activities listed in Annex I of the E-PRTR Regulation and exceeds at least one of the E-PRTR capacity thresholds b) transfers waste off-site which exceed specific thresholds set out in Article 5 of the Regulation c) releases pollutants which exceed specific thresholds specified for each media - air, water and land - in Annex II of the E-PRTR Regulation</td>
</tr>
<tr>
<td>Media</td>
<td>Water and air</td>
<td>Amounts of pollutant releases to air, water and land as well as off-site transfers of waste and of pollutants in waste water</td>
</tr>
<tr>
<td>Emission scope</td>
<td>Direct emissions to drainage basins or into the sea.</td>
<td>Direct emissions and indirect emissions (going to an external treatment plant).</td>
</tr>
<tr>
<td>Sector categories</td>
<td>1) Sectors according to LBS Protocol 30 categories 2) Subsectors: 97 categories</td>
<td>1) Annex I of the E-PRTR Regulation: 9 sector categories 2) NACE Main Economic Activity 65 categories</td>
</tr>
</tbody>
</table>
| Groups of pollutants | • Hydrocarbons
 • Metals and compounds
 • Nutrients, SS and BOD/TOC
 • Organohalogen
 • Other atmospheric pollutants | • Greenhouse gases
 • Other gases
 • Heavy metals
 • Pesticides
 • Chlorinated organic substances
 • Other organic substances
 • Inorganic substances |

ι The E-PRTR Regulation (Article 8) requires the Commission, assisted by the European Environment Agency, to include in the E-PRTR information on releases from diffuse sources, where such information exists and has already been reported by Member States.
To address such gaps and in view of NBB and E-PRTR harmonization, some conceptual and technical adjustments are proposed within these guidelines, which are described in section 5.

(b) Direct measurements

Where a PRTR program is not implemented or available PRTR data need to be complemented with additional sources/installations, the elementary database should be composed using the next best information source available, which is installation-specific data on direct measurements.

This calculation usually provides the most reliable and exact results, assuming that the equipment complies with common standards, is fit for use, calibrated for the correct emission rate, is suitable for the emission that is measured and if the sampling is performed at the proper frequency.

Direct measurement includes:

- Calculation of emissions into the air from sampling results:
 - By creating an emission factor,
 - By activity hours.
- Calculation of emissions into the air from continuous monitoring data.
- Calculation of releases and transfers to effluents from sampling data.

(c) Indirect monitoring

Indirect monitoring is based on a connection between the characteristics of the industrial process and the emissions.

This method may be applied in a process in which the emissions depend directly on the conditions of the process for which the measurement is performed. Releases and transfers to effluents from industrial processes are usually a function of process characteristics, such as temperature, pressure or acidity; and therefore constitute a candidate for calculating the quantity using indirect monitoring.
data. In any case indirect monitoring is used to verify the connection between the monitored parameter and the emission.

(d) Discharge permits

If no reporting data from the industrial installation is available, the assessment of pollutant loads can be made according to the discharge loads approved in the permit.

(e) Emission factors

Industrial activities for which previous emission data/information are not available, pollutant loads can be evaluated using emission factors. Emission factors are numbers that may be multiplied by a rate of activity or rate of production of any installation (such as energy generation, water consumption, fuel consumption).

The UNEP/MAP report on industrial emission factors (UNEP/MAP, 2014b) includes a set of emission factors for liquid and atmospheric emission from the majority of industrial activities.

3.3.2. Atmospheric emissions from transport

Assessing the emission loads from transportation activities is typically complex and requires the use of modeling. Because of the inherent complexity of the models, previous analysis of the transportation sector is preferable. If no such analysis is available, calculation could be done using the overall fuel consumption and available emission factors as described in UNEP/MAP report on industrial emission factors (UNEP/MAP, 2014b).

3.3.3. Information concerning streams flowing into the Mediterranean

The coastal streams that flow into the Mediterranean act as an output for both area source emissions such as agricultural and urban runoff, and point source emissions such as industrial activities with direct discharge to the streams. The assessment of pollutant loads from these sources can be done by sampling as far downstream as possible, and multiplying the average pollutant concentration by the average flow volume. In order to avoid redundancy, data from stream sampling and point source emissions should be prioritized (see section 3.5 for database consolidation).

3.3.4. Information concerning unregulated landfills

Unregulated landfills are a source of leachate, polluted runoff, and possible groundwater pollution that can potentially reach the Mediterranean. Additionally, landfills in close proximity to the coast can be a source of solid waste washing to the sea. Site specific evaluation of the landfill infrastructure should be done in order to assess the pollution loads.
3.3.5. Information concerning domestic wastewater discharge

Information should be gathered concerning the amounts of domestic wastewater directly discharged to the Mediterranean and to the coastal streams. Pollutant concentration and flow volumes should be monitored and assessed for the determination of the final loads of pollutants discharged to the Mediterranean.

3.4. Estimating air pollutants that are deposited into the Mediterranean

The assessment of the liquid loads deposited into the Mediterranean from most land based sources is usually derived directly from the discharged loads.

Nevertheless, air pollutants released to the atmosphere by various sources will only be partly deposited into the Mediterranean. Air pollution facilitates a major source of seawater pollution (heavy metals, acids, etc.) and should be carefully assessed due to its inherently complex variety of mechanisms for marine deposition. The effect of air pollution on seawater quality arises from dry and wet deposition processes occurring naturally in the atmosphere. The mechanisms of deposition vary for different kinds of particles and gases. In order to take into account all the different types of pollutants and mechanisms of deposition, very complex models should be used. Since this information is complicated to acquire and some of it is still being researched, a simplified assessment should be carried out.

The basic assumption for the evaluation is that all substances carried towards the sea by wind will eventually reach the seawater. This assumption may be too strict, but it is simple to calculate and represents a good basic evaluation of the maximum, potential pollutant loads reaching the Mediterranean.

Under this basal assumption, the amount of pollutants deposited into the Mediterranean is mainly dependent on wind direction. Air pollution will be carried and deposited onto the sea surface only with an adequate wind component and sufficient wind speed depending on the location of the source. The evaluation is based on a sea/land factor which is multiplied by the pollutant load of all sources according to their location.

The determination of sea/land factors includes several steps:

1. Partitioning the air basin for atmospheric emissions into several zones. Each zone should contain wind data (wind rose) from a single source (e.g. meteorological station) or an area-wide average.
2. Determining a minimal wind speed for areas that are not adjacent to the coastline (around 1 m/s). Every fraction of the wind rose below the minimal wind speed will not be considered as wind blowing to the Mediterranean. This is mostly true for particles settling and not for gases, but will be used for the general evaluation.
3. Determining a sea/land factor for every zone according to the fraction of time the wind blows towards the Mediterranean at a minimal speed. (e.g. if the wind blows towards the sea for half of the year, then only half of the atmospheric emissions from that zone will be deposited into the Mediterranean).
4. Allocating a sea/land factor to every emission source according to the zones defined in step 1 or according to the closest wind data source. This can be done easily using a GIS software.
5. Multiplying all emission loads by their allocated sea/land factor.
3.5. Consolidating the NBB database

After all available data has been collected, it has to be summarized to obtain the final pollutant loads. The following flow-chart (Figure 1) schematically illustrated the process of data processing and classification required to achieve a comprehensive assessment of the pollutant loads discharged into the Mediterranean. Orange boxes indicate the data processing activities, and the green boxes indicate the classification criteria's of the source categories.

Figure 1: Flow chart of data processing and classification for the assessment of the pollutant loads discharged into the Mediterranean.
4. MED POL Info System on NBB

4.1. Introduction

In this section, the system design of the NBB-Info System, in the following the “system”, is briefly described. The “NBB Info System” is a networked information system that is intended to provide an overall support to NBB reporting and related assessment. The system provides tools for managing, sharing and preserving data and information for MEDPOL users and partners.

4.2. System overview

Interaction between the system and users can be described by functionality blocks, where implemented technologies are interconnected basing the focus on the logical functionalities they refer to. The logical view of the system is described in Figure 2.

The system main components are:
- a storage layer, which manages data semantics, storage and retrieval;
- an application server and GIS layer;
- a dedicated MED POL Web application.

The system components are displayed in Figure 3.
4.3. User profiles and roles

Each user of MED POL Info system is given a definite role, which defines the amount of information/data and the kind of actions they are allowed to access. Role permissions can be modified as needed.

The user profiles are:

- System administrator: Unrestricted user management; user and data management; report creation;
- Data Definer: Unrestricted data access, editing, management, querying and distribution; some report management;
- Data Provider: data access, editing and querying restricted to user’s own country data;
- Data validator: data access and querying restricted to the user's own country data; some report management;
- Anonymous: Data access and querying restricted to public data.

Any user will be given a user name and a password. System administrator and Data Definer are reserved to MED POL members. Data Provider is reserved to each specific country user to manage drafts of new data and searching/analysing of submitted data. Data Validator is reserved to the National Focal Point for each country; this profile is responsible of official submission of new data.
Anonymous is the profile reserved for not logged users.

4.4. NBB Database description

NBB data are stored into the NBB database. The structure of NBB database is shown in ¡Error! No se encuentra el origen de la referencia.. The Database has several users access points, according to the different roles in the data reporting. The main entities corresponding to the different data types which can be managed by the database are:

- reports (table report),
- facilities (table company),
- value of the pollutant (table budget baseline).

The hierarchical structure is the following:

The report is the envelope which encases all the data of a single country. It contains several measures of pollutants, organized in the region where the measures has been performed. Each measure can be associated to a facility

Among the attributes of a specific measure, there are:

- pollutant (table pollutant),
- unit of measure (table unit),
- the hierarchical term sector- subsector-process (tables sector, sub sector, process),
- the region (table region).

The geographical features of the NBB is at moment limited to the geometry of the region, which is included in the system in order to provide geographical queries (in the upload of PRTR values, the system performs a determination of the region from the geo coordinates of the PRTR facility).
Figure 3: Structure of the NBB database.
4.5. Reporting data flow

The reporting activity is the main target of the NBB Info System. The data flow is sketched in Figure 4. It is organized in the following main activities:

- initial creation of an empty report in a draft state by the MED POL staff/Data Validator (National Focal Point),
- entry of the facilities by the Data Provider,
- filling and editing of the report and change of state to official submission (performed by Data Provider and Data Validator). It is implemented an intermediate final state for the report in order to facilitate the management of the report among the Data Provider and Data Validator. Once the Data Provider has completed the data entry in the draft state, he can change the state of the report from draft to final. In this state the report is managed only by the Data Validator (usually the National Focal Point) in charge for the validation of the data entered. If the Data Validator needs to change/modify the data and needs the support from the Data Provider can revert the state of the report to Draft too allow the Data Provider to access to the Report and starting a new session of data entry,
- Report workflow managing which include 4 states (draft, final, officially submitted and archived) and allows to manage the data flow among Data Provider, Data Validator and Data Definer/MED POL staff.
- Data validated are always stored into the database, but at the same time linked to the corresponding report (which contains them from a logical point of view) and to its state.
- The sections of query and statistical analysis, available in specific sections of the system, refer always to the data stored into the database and belonging to the report officially submitted and archived.
Figure 4: Data flow in the NBB IS Intranet.
4.5.1. H2020 indicators

H2020 indicators are visualized in the public section of the system. The public section has the same structure of the other sections, but it can be accessed by the anonymous users without password. H2020 indicators are organised in national folders and data can be downloaded as csv files.

The public section will include the link to the EEA webpage with the H2020 indicators. Similarly, the EEA webpage will host a link to the corresponding public page of the MED POL Info System.

4.6. GUI – System Functionalities/Modules

“NBB-IS System” GUI is designed to give quick access to most of the system functionalities and modules. Figure 6 shows a schematic illustration of the GUI typical areas (the figure refers to the Sources Data page).

Area 1 contains links to the system main sections ('navigation tabs') and the path to the current position inside the system. Area 2 is the system header, the same all over the system. Area 3 is the system 'navigation box', that is the main tool to move through the web pages of the system. Area 4 represents the content area of the current page: its content depends of the context. At last, area 5 displays personal user information/links, if login procedure was done, else the link to the login page.

4.6.1. Import process design

(a) Importing from PRTR XML file

The system accounts for the data upload from the MED POL PRTR and EPRTR XML files.

However, since the two systems are quite different and not fully interoperable, the implementation is still on-going. The system upload a subset of PRTR data which can be fitted in the data specifications of the NBB. In order to allow the upload of the data, we are performing a mapping between the data dictionaries of the system, which is still in the process.

Mapping has been performed for:

- Sectors,
- subset of subsectors,
- subset of pollutants.
Figure 5: GUI of the NBB-IS Intranet: main elements.
5. **NBB and E-PRTR harmonization**

The conceptual and technical adjustments for harmonization between NBB and E-PRTR are summarized as follows:

1. To select/filter only regions and river basin districts located in drainage basins that outflow into the Mediterranean.
2. To omit records regarding indirect emissions (going to an external treatment plant).
3. To compare the sector and subsectors dictionaries under NBB and under PRTR in order to identify the corresponding loads source categories and to identify not fully matching sectors/subsectors or sectors/subsectors under NBB which are not included under PRTR. Consequently:
 - dictionary entries not corresponding to any coded item in any list should be left in the NBB dictionaries;
 - the sector dictionaries are the union of the PRTR and NBB sector dictionaries;
 - for a specific sector the subsectors dictionaries are the union of the PRTR and NBB subsectors dictionaries;
4. To gather all emission data from industrial facilities regardless of specific capacity thresholds set by Annex I of E-PRTR Regulation or, alternatively, ensure that data collected are representative of the total discharges from such sector/subsector at national level, i.e.:
 - For NBB reporting purposes, it is recommended neither to adopt E-PRTR capacity thresholds nor to set national capacity thresholds.
 - If national capacity thresholds are set, to ensure that emissions gathered from each industrial sector/subsector in the country are representative of the total sector/subsector emissions in the country, i.e. they are at least 80% of the total emissions per sector/subsector. It is then up to each country to set such national capacity thresholds.
5. To compare the pollutant dictionaries under NBB and under PRTR in order to identify the corresponding loads of pollutants and to identify not matching pollutants.
 - dictionary entries not corresponding to any coded item in any list should be left in the NBB dictionaries;
 - the pollutant dictionaries in the NBB are the union of the PRTR and NBB pollutant dictionaries.
6. To gather all emission data from industrial facilities regardless of specific pollutant thresholds set by Annex II of E-PRTR Regulation or, alternatively, ensure that data collected are representative of the total discharges from such pollutants at national level, i.e.:
 - For NBB reporting purposes it is recommended neither to adopt E-PRTR pollutant thresholds nor to set national pollutant thresholds.
 - If national pollutant thresholds are set, to ensure that pollutant emissions gathered in the country are representative of the total pollutant emissions in the country, i.e. they are at least 80% of the total emissions per pollutant. It is then up to each country to set such specific pollutant thresholds.
7. In order to assure the coherency among NBB data and PRTR it is proposed to use in the NBB the same codification of the method of estimation of emissions used in the PRTR. For the sectors which do not allow the PRTR coding it is proposed to add a text field where the operator can draft the estimation method used.

8. The system should allow the prefilling of a new NBB report. This is thought to facilitate the reporting process for the following years since the operator will be able to readily check the values in the old report and update them in the new report, without retyping all from the beginning.

9. PRTR data can be massively uploaded from an XML into the database. However, since PRTR data provide only a portion of the NBB data, the solution envisaged is to allow 2 different types of prefilling:
 - prefilling of every data, using the old NBB data. In this case the Data Provider can recover all the NBB data and then update them to create the new NBB report.
 - prefilling of the old PRTR data. In this case the Data Provider can recover only the PRTR portion of the NBB data and then update only the integration to the PRTR data in order to create the new NBB data.

Moreover, the system allows adding data with the same attributes (sector, subsector, pollutant, region etc.) and only at the submission will perform the aggregation. In such a way, it is possible to integrate (adding simply a new record) data upload corresponding to a partial load.
6. References

[3] 'Web Based NBB reporting system specification requirements', UNEP(DEC)/MED WG.393/3, 4 March 2014.

[5] Reporting formats for data import in the main MED POL database are described in the same document.

[8] NBB User Manual (draft)

[9] UNEP/MAP, 2014a. Introduction to pollutant release and transfer register (PRTR) and guidelines for reporting (UNEP(DEPI)/MED WG.399/3).

Appendix C. Updated criteria and methodology to assess hotspots and sensitive areas in the Mediterranean

Table of contents

1. INTRODUCTION ...3

2. UPDATED CRITERIA AND METHODOLOGY TO ASSESS HOT SPOTS AND SENSITIVE AREAS IN THE MEDITERRANEAN ..4

 2.1. STEP 1: SCREENING FOR THE LISTING OF POTENTIAL POLLUTION HOT SPOTS AND SENSITIVE AREAS .. 4

 2.2. STEP 2: ASSESSING POTENTIAL HOT SPOTS AND SENSITIVE AREAS BASED ON UPDATED CRITERIA ... 5

 2.2.1. Categorization for hotspots and sensitive areas .. 5

 2.2.2. Criteria for evaluation of hot spots/sensitive areas ... 6

3. GUIDANCE ON THE IMPLEMENTATION OF EVALUATION CRITERIA AND TEST EXAMPLE .. 18

 3.1. SCREENING/COMPILATION OF A LIST OF POTENTIAL HOT SPOTS ... 18

 3.2. ASSIGNING THE CATEGORY SCORES FOR EACH SITE .. 18

4. REFERENCES ..21
Index of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screening criteria proposed for establishing a list of potential hot spots sites.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Categories, multipliers and scores.</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Ranking criteria for population category.</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Ranking criteria for wastewater collection and treatment category.</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Ranking criteria for drinking water quality category.</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Ranking criteria for bathing water quality category.</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Ranking criteria for Organic Matter category.</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Ranking criteria for nutrients and biological status category.</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Ranking criteria for Contaminants category.</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Ranking criteria for Marine Litter category.</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Ranking criteria for recreation and ecosystem services category.</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>Ranking criteria for transboundary effects category.</td>
<td>17</td>
</tr>
</tbody>
</table>
1. Introduction

The 18th meeting of the Contracting parties to the Barcelona Convention (COP 18), held in Istanbul, Turkey in December 2013, requested the Contracting parties to update the National Action Plans adopted between 2003-2005 in the framework of Article 5 of the LBS Protocol of the Barcelona Convention. With the view to support countries in following a harmonized methodology to update the NAPs, the Secretariat developed NAP update Guidelines.

The meeting of the MEDPOL FP held on 26-28 March 2014 (Athens, Greece) reviewed and endorsed the main body of the Guidelines for Updating National Action Plans (NAPs): “Guidelines for updating National Action Plans for the implementation of the LBS Protocol and its Regional Plans in the framework of SAP MED to achieve Good Environmental Status for pollution-related ECAP ecological objectives” (UNEP(DEPI)MED WG.394/10). The Secretariat was asked to particularly continue the work for finalization of the technical annexes of NAP update Guidelines including one annex on the updated criteria on hotspots and sensitive areas assessment.

The main purpose of updating the criteria for the evaluation of national hotspots and sensitive areas is to address additional developments and updated legal and technical standards to meet ECAP GES targets and the legally binding commitments under the Regional Plans (Article 15 of the LBS Protocol). The preparation of updated criteria took into account comments received from Israel, France and UfM Secretariat and benefited from experiences of other international frameworks on hotspots identification and assessment such as World Bank (WB), Union for the Mediterranean (UfM) and Regional Seas Conventions and Action Plans (RSC).

The meeting of MED POL FP held on 18 – 19 December 2014 in Barcelona reviewed and endorsed the criteria as presented in sections 2 and 3 of this Annex 4, Appendix C.
2. Updated criteria and methodology to assess hot spots and sensitive areas in the Mediterranean

The main purpose of updating hot spot and sensitive area assessment criteria is to take into account the GES targets adopted by COP 18 as well as the commitments under the Regional Plans of the LBS Protocol adopted by COP 17, 18 and 19. This ensures a better balance among health, environmental and socio-economic aspects as well as pressures and related state/impact on marine and coastal environment.

The Contracting Parties may build on comparable processes including pressures and impact analysis and environmental status assessment. In other cases, the methodology for evaluation of the hot spots and sensitive areas in the Mediterranean region based on updated assessment criteria comprises the two following main steps:

Step 1: Screening for the listing of potential pollution hot spots and sensitive areas.
Step 2: Assessing potential hot spots and sensitive areas based on updated criteria.

2.1. STEP 1: Screening for the listing of potential pollution hot spots and sensitive areas

An initial list of potential hot spots needs to be prepared to be evaluated with the proposed criteria in section 2.2. Table 1 describes general criteria for the sites which should be included in the potential list of hot spots. A nation-wide list of sites has to be assembled for each screening criteria, leading to a final list in which all sites answer the description of at least one of the screening criteria. The list will be based on:

a) Knowledge of the emission loads, ambient pollutant concentrations, emission trends, development programs, etc.

b) Where pollution data is missing, the list will also include sites for which there is a reason to assume some type of unmonitored environmental pressure is present.

Table 1. Screening criteria proposed for establishing a list of potential hot spots sites.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
<th>Environmental Pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densely populated areas</td>
<td>Large population centres, popular touristic areas or densely populated coastal areas without adequate wastewater treatment (municipal pollution hot spot site)</td>
<td>Wastewater, organic matter, marine litter and solid waste</td>
</tr>
<tr>
<td>Coastal industry</td>
<td>Sites with large untreated wastewater outlets in the sea</td>
<td>Wastewater, contaminants, organic matter</td>
</tr>
<tr>
<td>Big ports</td>
<td>Intense maritime transport routes and ports</td>
<td>Wastewater, solid waste, contaminants, hazardous waste</td>
</tr>
<tr>
<td>Criteria</td>
<td>Description</td>
<td>Environmental Pressures</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Landfills and dump sites</td>
<td>Non sanitary landfills and dump sites located in proximity of the coastline or at sea</td>
<td>Marine litter and solid waste, Contaminants</td>
</tr>
<tr>
<td>Oil/gas exploration and exploitation, and mining sites</td>
<td>Oil/gas exploration and exploitations and mining activities in proximity of the coastline or at the sea</td>
<td>Contaminants</td>
</tr>
<tr>
<td>Big aquaculture areas</td>
<td>Areas with intensive fish and shellfish farming</td>
<td>Nutrients, pharmaceutical products</td>
</tr>
<tr>
<td>Large river discharges</td>
<td>Large river discharges, carrying along a) solid waste, b) urban wastewater, c) industrial wastewater, d) agricultural run-offs</td>
<td>Nutrients, solid waste, wastewaters</td>
</tr>
<tr>
<td>Intensive agriculture areas</td>
<td>Sea waters receiving substantial agricultural run-offs from the intensively cultivated coastal agriculture areas</td>
<td>Nutrients, contaminants</td>
</tr>
<tr>
<td>Historical pollution sites</td>
<td>Sites where pollution occurred in the past, but the risk to the environment is still present</td>
<td>Accumulated nutrients, contaminants, solid waste</td>
</tr>
</tbody>
</table>

Generally, in order to facilitate the work of the Countries in listing and screening potential pollution hot spots and sensitive areas, the use of the criteria defined in “Negligible Effects” for each of the subcategories is recommended as described in step 2 of the methodology.

With the view to address all pollution related hot spot including marine and land areas it is recommended to include also potential sea based sources in the list, e.g. oil offshore activities, ports.

2.2. **STEP 2: Assessing potential hot spots and sensitive areas based on updated criteria**

2.2.1. **Categorization for hotspots and sensitive areas**

In 2003 UNEP/MAP evaluation, all hot spots were grouped into five categories, according to the magnitude of impacts and pressures. The five categories A, B, C, D, and E covered a range from extreme (category A) to insignificant effect (category E).

The updated methodology sets only four categories: A, B, C and D based on the resulting score for the assessment of pressures and the state of the environment (impacts).

- Priority hot spot (A),
- Hot spot (B),
• Potential hot spot / sensitive area (C),
• No hotspot (D).

The latter category is for the purpose of assessing the cases where a hot spot is eliminated.

Hotspots Definition:

(a) **Point sources** on the coast of the Mediterranean Sea which potentially **affect** human health, ecosystems, biodiversity, sustainability or economy in a significant manner. They are the **main points where high levels of pollution loads** originating from domestic or industrial sources are being **discharged**;

(b) Defined **coastal areas** where the **coastal marine environment is subject to pollution** from one or more point or diffused sources on the coast of the Mediterranean which potentially **affect** human health in a significant manner, ecosystems, biodiversity, sustainability or economy.

2.2.2. Criteria for evaluation of hot spots/sensitive areas

The criteria categories are built based on categories and criteria established in 2003. The major changes have been made regarding:

- the organisation of categories and criteria has been approached from four different points of view: public health, environmental status, economics and transboundary effects,
- the inclusion of specific criteria regarding GES,
- the inclusion of alternative sub criteria for each category,
- the multipliers for balancing the importance of categories.

Thus, the criteria categories for 2014 evaluation are:

<table>
<thead>
<tr>
<th>PUBLIC HEALTH</th>
<th>ENVIRONMENTAL STATUS and PRESSURES</th>
<th>ECONOMICS</th>
<th>TRANSBOUNDARY EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Organic matter</td>
<td>Economic activities (and ecosystem services underpinning them) Investment</td>
<td></td>
</tr>
<tr>
<td>Wastewater treatment</td>
<td>Nutrients and biological status</td>
<td></td>
<td>Transboundary effects.</td>
</tr>
<tr>
<td>Drinking water quality</td>
<td>Contaminants Marine litter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathing water quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rationale and description of particular adjustments made in 2014 with respect to 2003 for each category are described below:

(a) **Public health**

Public health category is composed of four subcategories: population, wastewater treatment, drinking water quality and bathing water quality. The category aims to measure the potential effect of hot spots on public health. In 2003, criteria on public health was based on discharges of BOD and hazardous substances, while drinking water quality was a separate category. In the updated methodology, the size of potential population affected and the characteristics/effectiveness of wastewater collection and treatment system are the main considered criteria, in line with WB methodology (WB, 2011).
Drinking water quality (a separate category in 2003) has been included, with some minor adjustments, as a subcategory of public health in the proposed updated methodology. Bathing water quality has been introduced as a new subcategory in proposed updated methodology, in line with Decision IG.20/9.

(b) **Environmental Status and Pressures:**

It contains four subcategories on organic matter (BOD), nutrients (P, N), contaminants and marine litter. Different alternatives have been developed to score each category: trends in discharges to the sea (pressure) or compliance with GES targets or other related thresholds.

In 2003 evaluation, indicators on substance discharges were not defined as categories but particularly considered to rank the effects on aquatic life (discharges reducing O\textsubscript{2} content, heavy metals and oil), recreation (oil) or other beneficial uses (solid waste).

(c) **Economics**

It assesses the effects of the potential hot spot on tourism, aquaculture/fisheries and other recreational activities as well as the level of investment needed to provide for environmentally sound solutions for potential hot spots. As seen from the description of the environmental status category, in 2003 recreation category was ranked based on the level of oil discharges. Particular sub criteria on tourism and aquaculture and fisheries have been introduced in proposed updated methodology in line with WB methodology.

(d) **Trans-boundary effects**

With regards to transboundary effects the methodology considers location of the pollution area, the nature of pollutants as well as the distance from the border.

Based on the above criteria, the following multipliers per category are presented in the following table.

Table 2. Categories, multipliers and scores.

<table>
<thead>
<tr>
<th>Category</th>
<th>Multiplier</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Population</td>
<td>4</td>
<td>1-4</td>
</tr>
<tr>
<td>2) Wastewater treatment</td>
<td>4</td>
<td>1-4</td>
</tr>
<tr>
<td>3) Drinking water quality</td>
<td>4</td>
<td>1-4</td>
</tr>
<tr>
<td>4) Bathing water quality</td>
<td>4</td>
<td>1-4</td>
</tr>
<tr>
<td>SCORE</td>
<td></td>
<td>16-64</td>
</tr>
<tr>
<td>Environmental Status and Pressures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Organic matter</td>
<td>3</td>
<td>1-4</td>
</tr>
<tr>
<td>6) Nutrients and biological status</td>
<td>3</td>
<td>1-4</td>
</tr>
<tr>
<td>7) Contaminants</td>
<td>3</td>
<td>1-4</td>
</tr>
<tr>
<td>8) Marine litter</td>
<td>3</td>
<td>1-4</td>
</tr>
</tbody>
</table>
Each potential hot spot is expressed within the following categories: A, B, C or D according to the range where the calculated total score falls:

<table>
<thead>
<tr>
<th>Category</th>
<th>Weighted Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority hot spot (A)</td>
<td>132 – 107</td>
</tr>
<tr>
<td>Hot spot (B)</td>
<td>106 – 82</td>
</tr>
<tr>
<td>Potential hot spot / Sensitive area (C)</td>
<td>81 – 58</td>
</tr>
<tr>
<td>No hotspot (D)</td>
<td>57 - 33</td>
</tr>
</tbody>
</table>

The following sections explain the criteria for ranking the effects/risks in each category:

2.2.2.1. Criteria on “PUBLIC HEALTH”

1) Criteria on population affected by the potential hot spot have been based on the size and distance. Only one of the alternatives (a) or (b) needs to be met for assigning the related score. If different alternatives and different scores are possible, the precautionary principle should be applied and the worst scenario chosen:

<table>
<thead>
<tr>
<th>POPULATION¹</th>
<th>(a) Population size within a radius of 10 km is > 100,000 inhabitants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>severe effects (4)</td>
<td>(a) Population size within a radius of 10 km is between 10,000 -100,000 inhabitants and/or</td>
</tr>
<tr>
<td>moderate effects (3)</td>
<td>(b) Population size is > 100,000 inhabitants within a radius of 20 km.</td>
</tr>
<tr>
<td>slight effects (2)</td>
<td>(a) Population size within a radius of 10 km is between 2,000 -10,000 inhabitants and/or</td>
</tr>
<tr>
<td></td>
<td>(b) Population size is between 10,000 -100,000 inhabitants within a</td>
</tr>
</tbody>
</table>

¹ It is recommended to also consider population during tourist seasons.
2) Criteria on wastewater treatment have been based on the following definitions extracted from the Regional Plan on the reduction of BOD₅ from urban waste water in the framework of the implementation of Article 15 of the LBS Protocol (Decision IG 19/7):

- **Urban wastewater** means wastewater of the mixture of domestic waste water with industrial waste water pre-treated or not and/or run-off rain water;
- **Domestic wastewater** means wastewater from residential settlements and services which originates predominantly from the human metabolism and from household activities;
- **Collecting system** means a system of conduits which collects and conducts urban waste water;
- **Wastewater Treatment Plant WWTP** means systems used to treat urban wastewater using physical, chemical and/or biological techniques;
- **Agglomeration** means an area where the population of more than 2,000 inhabitants and/or economic activities are sufficiently concentrated for urban waste water to be collected and conducted to an urban waste water treatment plant or to a final discharge point;
- **Population-equivalent (p.e.)** means the organic biodegradable load having a five-day biochemical demand (BOD₅) of 60 g of oxygen per day;
- **Primary treatment** means treatment of urban waste water by a physical and/or chemical process involving settlement of suspended solids, or other processes in which the BOD₅ of the incoming waste water is reduced by at least 20% before discharge and the total suspended solids of the incoming waste water are reduced by at least 50%;
- **Secondary treatment** means treatment of urban wastewater by a process generally involving biological treatment with a secondary settlement or other process so that the treatment results in a minimum reduction of the initial load of 70-90% of BOD₅.

In addition, according to the World Bank Group², tertiary treatment is considered as any additional treatment beyond secondary. Tertiary treatment can remove more than 99 percent of all the impurities from sewage, producing an effluent of almost drinking-water quality. Disinfection, typically with chlorine, can be the final step before discharge of the effluent. However, there is some concern about chlorine residuals in the effluent.

The following tables describes the criteria for ranking the category, only one of the alternatives (a), (b) or (c) needs to be met for assigning the related score. If different alternatives and different scores are possible, the precautionary principle should be applied and the worst scenario chosen:

Table 4. Ranking criteria for wastewater collection and treatment category.

WASTEWATER COLLECTION AND TREATMENT

The effects of wastewater collection and treatment on public health have:

| Severe effects (4) | (a) Urban wastewater (agglomeration more than 10,000 PE) no collected or treated or primary treated only.
(b) Significant loads of industrial hazardous substances are discharged to municipal collecting system without treatment. |
|-------------------|--|
| Moderate effects (3) | (a) Urban wastewater (agglomerations more than 2,000 PE) no collected or treated or primary treated only. The sewer network has big leakages and the wastewater treatment plant overflows frequently and/or.
(b) Industrial loads of hazardous substances are discharged to municipal collecting system without treatment. |
| Slight effects (2) | (a) Urban wastewater (agglomerations less than 2,000 PE) no collected or treated or primary treated only.
(b) Urban wastewater is collected and treated:
I. biological (secondary) treatment for collected wastewater and/or
II. the sewer network has small leakages and the wastewater treatment plant hardly overflows and/or
(c) Insignificant industrial loads of hazardous substances are discharged to the WWTP. |
| Negligible effects (1) | (a) >99% of population connected to sewerage and/or
(b) Advanced (tertiary) treatment or any additional treatment beyond secondary, e.g. disinfection for collected wastewater. |

3) Qualitative criteria on the potential risk for land based industrial or urban solid waste disposal, industrial or urban wastewater discharge or other land based sources (e.g. run off from agriculture, farms or spills) to contaminate water sources (either groundwater or surface waters such as rivers and reservoirs) for drinking water have been defined:

Table 5. Ranking criteria for drinking water quality category.

<table>
<thead>
<tr>
<th>Drinking Water Quality</th>
<th>The quality of drinking water has effects on public health:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe effects (4)</td>
<td>Any industrial or urban wastewater, or solid waste or agricultural run off reaching a drinking water source without treatment.</td>
</tr>
<tr>
<td>Moderate effects (3)</td>
<td>Any industrial or urban wastewater, or solid waste or agricultural run off reaching drinking water sources which are filtered but not disinfected before storage and distribution.</td>
</tr>
<tr>
<td>Slight effects (2)</td>
<td>Any industrial or urban wastewater, or solid waste or agricultural run off reaching drinking water sources which are properly filtered and disinfected before storage and distribution.</td>
</tr>
</tbody>
</table>

3 According to Decision IG 19/7, the Parties shall ensure that all agglomerations (>2,000 PE) collect and treat their urban waste waters before discharging them into the environment. The conditions are set in Annex I.
DRINKING WATER QUALITY
The quality of drinking water has effects on public health:

| Negligible effects (1) | No discharges/run offs affecting the water sources. |

4) Categories on bathing water quality have been based on Decision IG.20/9 regarding Criteria and Standards for bathing waters quality in the framework of the implementation of Article 7 of the LBS Protocol, however, this category is also covered by other categories, e.g. contaminants. The following requirements should be met for sampling and analysis:

- Minimum sampling frequency: at least one per month and not less than four in a bathing period including an initial one prior to the start of the bathing period.
- For classification purposes at least 12 sample results are needed spread over 3-4 bathing seasons.
- Reference method of analysis: ISO 7899-2 based on membrane filtration technique or any other approved technique.

Table 6. Ranking criteria for bathing water quality category.

<table>
<thead>
<tr>
<th>BATHING WATER QUALITY</th>
<th>The quality of bathing water is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor (4)</td>
<td>(a) Percentage of intestinal enterococci concentration measurements (90th percentile intestinal enterococci/100 mL) is above 185 cfu/100 mL and/or (b) No monitoring data.</td>
</tr>
<tr>
<td>Sufficient (3)</td>
<td>(a) Percentage of intestinal enterococci concentration measurements (90th percentile intestinal enterococci/100 mL) is less than or equal to 185 cfu/100 mL</td>
</tr>
<tr>
<td>Good (2)</td>
<td>(a) Percentage of intestinal enterococci concentration measurements (95th percentile intestinal enterococci/100 mL) is between 101-200 cfu/100 mL</td>
</tr>
<tr>
<td>Excellent (1)</td>
<td>(a) Percentage of intestinal enterococci concentration measurements (95th percentile intestinal enterococci/100 mL) is below 100 cfu/100 mL</td>
</tr>
</tbody>
</table>

2.2.2.2. Criteria on “ENVIRONMENTAL STATUS and PRESSURES”

5) For the evaluation of the organic matter, releases of BOD₅ into the Mediterranean Sea (in kg/year) need to be calculated or estimated.

The following table describes the criteria for ranking the effects/risks, only one of the alternatives (a), (b) or (c) needs to be met for assigning the related score. If different alternatives and different

4 The values presented in Table 6 be checked by the experts.
scores are possible, the precautionary principle should be applied and the worst scenario chosen. If no data are available, the category will be ranked as moderate effects (3).

Table 7. Ranking criteria for Organic Matter category.

<table>
<thead>
<tr>
<th>ORGANIC MATTER</th>
<th>Human introduction of BOD₅ in the marine environment has:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe effects (4)</td>
<td>(a) Significant increase of inputs of BOD₅ into seawater from previous year(s) and/or significant deviation from the RP/national ELV for point sources and/or (b) Significant deviation from GES target and/or national/regional/sub-regional thresholds/EQS.</td>
</tr>
<tr>
<td>Moderate effects (3)</td>
<td>(a) Increase of inputs of BOD₅ into seawater from previous year(s) and/or deviation from ELV from point sources and/or (b) Deviation from GES target and/or national/regional/sub-regional thresholds/EQS and/or (c) No data available.</td>
</tr>
<tr>
<td>Slight effects (2)</td>
<td>(a) Increased inputs of BOD₅ into seawater and/or deviation from RP/national ELV but meeting GES targets and/or national/regional/sub-regional thresholds.</td>
</tr>
<tr>
<td>Negligible effects (1)</td>
<td>(a) Decrease of inputs of BOD₅ into seawater and meeting GES targets and/or national/regional/sub-regional thresholds.</td>
</tr>
</tbody>
</table>

6) For the evaluation of the nutrients enrichment and biological status, either releases of Total P and/or Total N into the hot spot area (in kg/year) or their concentration in water column (mg/l) need to be calculated or estimated.

The following table describes the criteria for ranking the effects/risks, only one of the alternatives (a), (b), (c) or (d) needs to be met for assigning the related score. If different alternatives and different scores are possible, the precautionary principle should be applied and the worst scenario chosen. If no data are available, the category will be ranked as moderate effects (3).

Table 8. Ranking criteria for nutrients and biological status category.

<table>
<thead>
<tr>
<th>NUTRIENTS and BIOLOGICAL STATUS</th>
<th>Human introduction of nutrients in the marine environment has:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe effects (4)</td>
<td>(a) Significant increase of inputs of Total N and/or Total P into seawater from previous year(s) and/or (b) Significant decrease of dissolved oxygen and/or increase of chlorophyll concentrations in water column and/or (c) Significant deviation from GES target and/or national/regional/sub-regional thresholds/EQS and, where appropriate, biological status</td>
</tr>
</tbody>
</table>

5 Reference nutrients concentrations according to the local hydrological, chemical and morphological characteristics of the un-impacted marine region.
NUTRIENTS and BIOLOGICAL STATUS

Human introduction of nutrients in the marine environment has:

| Moderate effects (3) | (a) Increase of inputs of Total N and/or Total P into seawater from previous year(s) and/or
| | (b) Decrease of dissolved oxygen and/or increase of chlorophyll concentrations in water column and/or
| | (c) Deviation from GES target5 and/or national/ regional/sub-regional thresholds/EQS and/or
| | (d) No data available, including biological status.

| Slight effects (2) | (a) Increased inputs of Total N and/or Total P into seawater but meeting GES targets5 and/or national/ regional/sub-regional thresholds/EQS and/or
| | (b) Decreased concentrations of dissolved oxygen and/or increased concentration of chlorophyll in water column but meeting GES targets5 and/or national/ regional/sub-regional thresholds/EQS and/or good biological status.

| Negligible effects (1) | (a) Decrease of inputs of Total N and/or Total P into seawater and meeting GES targets5 and/or national/ regional/sub-regional thresholds/EQS and/or
| | (b) Increased concentrations of dissolved oxygen and/or decreased concentrations of chlorophyll in water column and meeting GES targets5 and/or national/ regional/sub-regional thresholds/EQS and/or good biological status.

7) For the evaluation of contaminants (including pollution from industries), either releases of hazardous substances into the hot spot area (in kg/year) or their concentration in water, biota or sediment need to be calculated or estimated.

The contaminants to be evaluated should consider SAP substances, pollutants covered by NBB 2008/2013 as well as the priority hazardous substances agreed by MEDPOL Focal points at their meeting held in Aix en Provence, France in November 2009 and listed in Annex II of Decision IG.21/3. A minimum common list of substances is the following:

- Metals and related compounds:
 - Chromium
 - Cadmium
 - Lead
 - Mercury
 - Organic tin compounds
 - Organic mercury compounds
 - Organic lead compounds

- Organohalogen compounds:
 - Polychlorinated Biphenyls (PCBs)
 - Polychlorinated dibenzodioxins (PCDDs)
 - Polychlorinated dibenzofurans (PCDFs)
• Organohalogenated pesticides/biocides:
 o Endosulphan
 o Hexachlorocyclohexane
 o Hexachlorobenzene

• Other organic compounds:
 o Diethylhexylphthalate (DEHP)
 o Phenolic compounds
 o Brominated flame retardants
 o Petroleum hydrocarbons, oils & greases
 o Polycyclic aromatic hydrocarbons
 o Short Chain Chlorinated Parafins

While considering this list for the purpose of assessing the inputs to marine environment as appropriate, with regards to monitoring, the Contracting Parties should include as a minimum only substances which are part of the integrated and coordinated monitoring programme either at national or regional level.

Each potential hot spot or sensitive area should be assessed regarding the most representative priority substance/s.

The following table describes the criteria for ranking the effects/risks, only one of the alternatives (a), (b), (c) or (d) needs to be met for assigning the related score. If different alternatives and different scores regarding the considered contaminants are possible, the precautionary principle should be applied and the worst scenario chosen. If no data are available, the category will be ranked as moderate effects (3).

Table 9. Ranking criteria for Contaminants category.

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Severe effects (4)</th>
<th>Moderate effects (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminants are introduced or were previously introduced at levels giving rise to:</td>
<td>(a) Significant increase of inputs of contaminants into marine environment compared to previous year(s) and/or in the occurrences of acute pollution events and/or</td>
<td>(a) Increase of inputs of contaminants into marine environment compared to previous year(s) and/or</td>
</tr>
<tr>
<td></td>
<td>(b) Significant increase of contaminants concentrations in sediment and biota and/or in frequency of cases of seafood samples above regulatory limits for contaminants and/or</td>
<td>(b) Increase of contaminants concentrations in sediment and biota and/or in frequency of cases of seafood samples above regulatory limits for contaminants and/or</td>
</tr>
<tr>
<td></td>
<td>(c) Significant deviation from GES target and/or national/regional/sub-regional thresholds/EQS (e.g. regional ELV on Hg⁶).</td>
<td>(c) Deviation from GES target and/or national/regional/sub-regional thresholds/EQS (e.g. regional ELV on Hg) and/or</td>
</tr>
</tbody>
</table>

⁶ 50 µg/l by 2015 and 5 µg/l by 2019 (Decision IG 20/8.1).
Contaminants are introduced or were previously introduced at levels giving rise to:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) No data available.</td>
<td></td>
</tr>
<tr>
<td>Slight effects (2)</td>
<td>(a) Increased inputs of contaminants into marine environment but meeting GES targets and/or national/regional/sub-regional thresholds/EQS (e.g. regional ELV on Hg) and/or (b) Increased concentrations of contaminants in sediment and biota but meeting GES targets and/or national/regional/sub-regional thresholds/EQS (e.g. regional ELV on Hg).</td>
</tr>
<tr>
<td>Negligible effects (1)</td>
<td>(a) Decrease of inputs of hazardous substances into marine environment and meeting GES targets and/or national/regional/sub-regional thresholds/EQS (e.g. regional ELV on Hg) and/or (b) Decreased concentrations of contaminants in sediment and biota and meeting GES targets and/or national/regional/sub-regional thresholds/EQS (e.g. regional ELV on Hg).</td>
</tr>
</tbody>
</table>

8) **Marine litter** category addresses the effects of any solid materials discarded, disposed of or abandoned in the marine and coastal environment; solid waste from industrial sources is not addressed under this category.

The area to which this category applies is the area defined both in the Regional Plan on marine litter (Decision IG.21/7) and in Art. 3 of the LBS Protocol paragraphs (a), (c), and (d)\(^7\).

The following table describes the criteria for ranking the effects/risks, only one of the alternatives (a), (b) or (c) needs to be met for assigning the related score. If different scores are possible, the precautionary principle should be applied and the worst scenario chosen.

Table 10. Ranking criteria for Marine Litter category.

<table>
<thead>
<tr>
<th>MARINE LITTER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe effects (4)</td>
<td>(a) Significant increase of number of areas with accumulated marine litter at sea and in the land part of the coastal zone up to 1 km close to the river mouth or run-off drainage system and/or (b) Significant increase of the amount of litter washed ashore and/or deposited on coastlines and/or (c) Illegal dump sites and/or non-sanitary landfills located in the coastal area or river basin area.</td>
</tr>
</tbody>
</table>

\(^7\) Article 3 of the LBS Protocol: (a) The Mediterranean Sea Area as defined in article 1 of the Convention; (c) Waters on the landward side of the baselines from which the breadth of the territorial sea is measured and extending, in the case of watercourses, up to the freshwater limit; (d) Brackish waters, coastal salt waters including marshes and coastal lagoons, and ground waters communicating with the Mediterranean Sea.
MARINE LITTER

Properties and quantities of marine litter affect the coastal and marine environment:

Moderate effects (3)
- (a) Increase of number of areas with accumulated marine litter at sea and in the land part of the coastal zone up to 1 km close to the river mouth or run-off drainage system and/or
- (b) Increase of the amount of litter washed ashore and/or deposited on coastlines and/or
- (c) Illegal dump sites and/or non-sanitary landfills in the river basin area.

Slight effects (2)
- (a) Maintained number of areas with accumulated marine litter at sea and in the land part of the coastal zone up to 1 km close to the river mouth or run-off drainage system and/or
- (b) Maintained trends in the amounts of litter washed ashore and/or deposited on coastlines and/or

Negligible effects (1)
- (a) Decreased trends in number of areas with accumulated marine litter at sea and in the land part of the coastal zone up to 1 km close to the river mouth or run-off drainage system and/or
- (b) Decreased trends in the amounts of litter washed ashore and/or deposited on coastlines and/or
- (c) No illegal dump sites and/or non-sanitary landfills.

2.2.2.3. Criteria on “ECONOMICS”

9) The following table describes the criteria for ranking the effects/risks on economic activities (and ecosystem services underpinning them), only one of the alternatives (a), (b) or (c) needs to be met for assigning the related score. If different alternatives and different scores are possible, the precautionary principle should be applied and the worst scenario chosen.

Table 11. Ranking criteria for recreation and ecosystem services category.

<table>
<thead>
<tr>
<th>Economic Activities and Underpinning Ecosystem Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe effects (4)</td>
</tr>
<tr>
<td>(a) Area with a significant decrease in tourism and other recreational activities and/or it is a very important tourist area (>200,000 tourists annually) and/or</td>
</tr>
<tr>
<td>(b) Severe effects on aquaculture or fisheries and/or close to a very important aquaculture and fisheries area (including spawning sites) and/or</td>
</tr>
<tr>
<td>(c) Severe effects on provision of ecosystem services.</td>
</tr>
<tr>
<td>Moderate effects (3)</td>
</tr>
<tr>
<td>(a) Area with a decrease in tourism and other recreational activities and/or it is an important tourist area (100,000 - 200,000 tourists annually) and/or</td>
</tr>
<tr>
<td>(b) Moderate effects on aquaculture or fisheries and/or close to an important aquaculture and fisheries area and/or</td>
</tr>
<tr>
<td>(c) Moderate effects on provision of ecosystem services.</td>
</tr>
<tr>
<td>Slight effects (2)</td>
</tr>
<tr>
<td>(a) Tourism and other recreational activities are maintained and/or it is a</td>
</tr>
</tbody>
</table>

8 Further work is ongoing in the framework of ECAP regarding ecosystem services.
Once the hot spots are categorised it is recommended to collect the necessary information regarding the investment and related costs required for their elimination.

2.2.2.4. **Criteria on “TRANSBOUNDARY EFFECTS”**

10) The following table describes the criteria for ranking the effects/risks on transboundary effects.

Table 12. Ranking criteria for transboundary effects category.

<table>
<thead>
<tr>
<th>TRANSBOUNDARY EFFECTS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>severe effects (4)</td>
<td>Downstream area close to the borders discharging to the Mediterranean sea significant amounts of substances which are toxic, persistent and liable to bioaccumulate and/or marine litter.</td>
</tr>
<tr>
<td>moderate effects (3)</td>
<td>Downstream area close to the borders discharging to the Mediterranean sea</td>
</tr>
<tr>
<td></td>
<td>(a) Moderate amounts of substances which are toxic, persistent and liable to bioaccumulate and/or marine litter.</td>
</tr>
<tr>
<td></td>
<td>(b) Significant amounts of nutrients and/or organic matter.</td>
</tr>
<tr>
<td>slight effects (2)</td>
<td>Area close to the borders discharging to the Mediterranean sea</td>
</tr>
<tr>
<td></td>
<td>(a) Negligible amounts of substances which are toxic, persistent and liable to bioaccumulate and/or marine litter.</td>
</tr>
<tr>
<td></td>
<td>(b) Moderate amounts of nutrients and/or organic matter.</td>
</tr>
<tr>
<td>negligible effects (1)</td>
<td>Area far from the border with no direct/indirect effect.</td>
</tr>
</tbody>
</table>

9 Secretariat to clarify further
3. Guidance on the implementation of evaluation criteria and test example

3.1. Screening/compilation of a list of potential hot spots

For the initial list of potential sites, nation-wide data should be gathered from the following sources:

a) PRTR (Pollutant Release and Transfer Register) data.
b) Seawater, sediment and aquatic life monitoring data.
c) Factory or industry emission permits.
d) Information from local authorities (amounts of marine litter, bathing water quality, local emission sources, etc.).

3.2. Assigning the category scores for each site

Determining the score for each category is notably dependent on local quality standards and on expert judgement. The evaluation can be performed according to the following principles:

(a) *Population*

This category refers to the size of the affected population and its distance from the potential hotspot. A geographic analysis has to be made to determine the nature of the secondary effects, the dispersion of polluting substances and the density of the population in terms of both permanent and temporary residents.

If different alternatives and different scores are possible, the precautionary principle should be applied and the worst scenario chosen.

(b) *Wastewater Treatment*

The following data can be used to aid the assessment of the wastewater treatment criteria:

(a) Evidence of marine discharge of raw sewage, or minimally treated wastewater.
(b) The frequency of overflows and leaks in the last years and the amount of wastewater discharged in these events will be evaluated in order to decide on the significance of the impact.
(c) Examination of the pollution load from industrial sources obtained and untreated in WWTP (such as heavy metals). Will be determined by the concentration multi-year trends of pollutants leaving the WWTP.

(c) *Drinking Water*

The purpose of this category is to further prioritize sites that also pollute drinking water sources beside the Mediterranean seawater. For this category, local standards will be reviewed along with the general quality of the polluted water body to assess the impact of the potential hot spot.
(d) **Bathing Water Quality**

This category refers to frequent health risk in the bathing water and not one-time events. The number of events or instances of high pathogens in the water has to be assessed to determine the final score. For example – “severe effect” for beaches with constant high health risk, “moderate effect” for repeated to isolated events, and “slight effects” for occasional events of high pollution.

The following requirements should be met for sampling and analysis:

- (b) Minimum sampling frequency: at least one per month and not less than four in a bathing period including an initial one prior to the start of the bathing period.
- (c) For classification purposes at least 12 sample results are needed spread over 3-4 bathing seasons.
- (d) Reference method of analysis: ISO 7899-2 based on membrane filtration technique or any other approved technique.

(e) **Organic Matter**

Organic matter emission is first compared to GES standards, either local or regional. When these are no available standards, the emission can be rated according to comparable orders of magnitude.

(f) **Nutrients and biological status**

Nutrients emission and seawater concentrations are first compared to available GES standards, either local or regional. When no specific values or other targets are available, the emission can be assessed by referring to all available data to determine the severity of the pollution.

Nutrients concentration are also affected by the characteristics of the location of discharge – for example, nutrients discharged in a partially enclosed bay are more prone to accumulate and spur eutrophication than nutrients discharged in open waters. For the final ranking, both local and regional chlorophyll concentration have to be considered, along with the magnitude of emission and its location and the distribution exists in the estuary.

The biological status can also be considered based on national standards, practices and monitoring data.

(g) **Contaminants**

Contaminants concentrations and emissions should be considered in the context of the types of emission sources in and around the potential hot-spots. When no knowledge of current concentration and loads is available, the evaluation will be based on a worst-scenario basis.

(h) **Marine Litter**

Marine litter category is based on local accounts. And refers to frequent and concentration of marine litter in the water and not one-time events. The number of events or instances of high concentration of marine litter has to be assessed to determine the final score. For example – “severe effect” for beaches with constant high marine litter problem or close to emission source of waste,
“moderate effect” for repeated to isolated events, and “slight effects” for occasional events of high pollution.

(i) Economic activities and Underpinning Ecosystem Services

The severity of the damage to local and regional economic activities (and ecosystem services underpinning them) can be assessed by relating to either recent trends in activity level or to nearby coastal area with similar characteristics.

(j) Transboundary effect

The factors to be considered in assessing transboundary effects are related to the distance from the border of the pollution area including downstream or upstream location, as well as the nature and discharge loads of the pollutants. It has to be noted that different categories of pollutants should be examined such as heavy metals, organic pollutants, nutrients and marine litter.
4. References

[2] Decision IG.21/3 on the Ecosystems Approach including adopting definitions of Good Environmental Status (GES) and targets.

[4] Decision IG 19/7 on the Regional Plan on the reduction of BOD5 from urban wastewater in the framework of the implementation of Article 15 of the LBS Protocol.

[5] COMMISSION DECISION of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters.

[15] UNEP/MAP, 2014. Introduction to pollutant release and transfer register (PRTR) and guidelines for reporting (UNEP(DEPI)/MED WG.399/3).

APPENDIX D. Issues/impacts matrix for scoring issues associated with impacts on human health and marine environment*

Index of tables

Table 1. Issues/impacts matrix for scoring issues associated with impacts on human health and marine environment…… …. 2

* The table included in this Appendix is taken from the NAP Guidelines approved in 2004. The Secretariat is reviewing the list of contaminants and will present proposed changes to this table, as appropriate, at the next MED POL FP meeting in June 2015.
Table 1: Issues/impacts matrix for scoring issues associated with impacts on human health and marine environment.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Score 0 = No concern</th>
<th>Score 1 = Slight concern</th>
<th>Score 2 = moderate concern</th>
<th>Score 3 = major concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace Metals</td>
<td>- No evidence of production or product contamination</td>
<td>- Evidence of limited production</td>
<td>- Historical production evident and production for local use ongoing</td>
<td>- Major production of chemical for local and export use</td>
</tr>
<tr>
<td></td>
<td>- No evidence of air emissions</td>
<td>- Presence of small sources with possible emissions (e.g. small incineration plants)</td>
<td>- Present as contaminant in other chemical production</td>
<td>- Chemical evident as contaminant in large scale production of other chemicals</td>
</tr>
<tr>
<td></td>
<td>- No evidence of emissions from solid residues</td>
<td>- Some limited evidence of releases but on a small scale invoking local concerns</td>
<td>- Presence of major combustion related sources e.g. large municipal or industrial incinerators</td>
<td>- Known emission of chemical from large scale</td>
</tr>
<tr>
<td></td>
<td>- No evidence of chemical stockpiled</td>
<td>- Some use of the chemical in small areas</td>
<td>- Evidence of stockpiles of the chemical</td>
<td>- Evidence of leakage from major stockpiles of the chemical poorly packaged</td>
</tr>
<tr>
<td></td>
<td>- No evidence of chemical being contaminant in production of other chemicals</td>
<td>- Some limited evidence of releases according to national standards</td>
<td>- Use of chemical in agriculture or industry sub-regionally</td>
<td>- Large-scale use of the chemical throughout the region</td>
</tr>
<tr>
<td></td>
<td>- No evidence of use of the chemical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No evidence of release from liquid effluent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Evidence of limited production</td>
<td>- Historical production evident and production for local use ongoing</td>
<td>- Presence as contaminant in other chemical production</td>
<td>- Major production of chemical for local and export use</td>
</tr>
<tr>
<td></td>
<td>- Presence of small sources with possible emissions (e.g. small incineration plants)</td>
<td>- Present as contaminant in other chemical production</td>
<td>- Presence of major combustion related sources e.g. large municipal or industrial incinerators</td>
<td>- Chemical evident as contaminant in large scale production of other chemicals</td>
</tr>
<tr>
<td></td>
<td>- Some limited evidence of releases but on a small scale invoking local concerns</td>
<td>- Presence of major combustion related sources e.g. large municipal or industrial incinerators</td>
<td>- Evidence of stockpiles of the chemical</td>
<td>- Known emission of chemical from large scale</td>
</tr>
<tr>
<td></td>
<td>- Some use of the chemical in small areas</td>
<td>- Some limited evidence of releases according to national standards</td>
<td>- Use of chemical in agriculture or industry sub-regionally</td>
<td>- Evidence of leakage from major stockpiles of the chemical poorly packaged</td>
</tr>
<tr>
<td></td>
<td>- Some limited evidence of releases according to national standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No known or historical levels of chemical contaminant in the environment except background levels of naturally occurring substances</td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Chemical contaminants are found in the environment marginally above threshold limits defined for the country or region</td>
<td>- Large-scale use of the chemical throughout the region</td>
</tr>
<tr>
<td></td>
<td>- No available data to quantify evidence of the chemical found in fish, wildlife animal or human tissue</td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Chemical contaminants are found in the environment marginally above threshold limits defined for the country or region</td>
<td>- Large-scale use of the chemical throughout the region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region</td>
<td>- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region</td>
</tr>
<tr>
<td>Issue</td>
<td>Score 0 = No concern</td>
<td>Score 1 = Slight concern</td>
<td>Score 2 = moderate concern</td>
<td>Score 3 = major concern</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Organohalogens | - No evidence of production or product contamination
- No evidence of air emissions
- No evidence of emissions from solid residues
- No evidence of chemical stockpiled
- No evidence of chemical being contaminant in production of other chemicals
- No evidence of use of the chemical
- No evidence of release from liquid effluent | - Evidence of limited production
- Presence of small sources with possible emissions (e.g. small incineration plants or bleached kraft/pulp mills using chlorine)
- Some limited evidence of releases but on a small scale invoking local concerns
- Some use of the chemical in small areas
- Some limited evidence of releases in compliance with national standards | - Historical production evident and production for local use ongoing
- Present as contaminant in other chemical production
- Presence of major combustion related sources e.g. large municipal or industrial incinerators or large bleached kraft pulp mills
- Evidence of stockpiles of the chemical
- Use of chemical in agriculture or industry | - Major production of chemical for local and export use
- Chemical evident as contaminant in large scale production of other chemicals
- Known emission of chemical from large scale incinerators or chlorine bleaching of pulp or other related combustion facilities
- Evidence of leakage from major stockpiles of the chemical poorly packaged
- Large-scale use of the chemical throughout the Region |

| - No known or historical levels of chemical contaminant in the environment except background levels of naturally occurring substances
- No available data to quantify evidence of the chemical found in fish, wildlife animal or human tissue | - Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region
- Chemical contaminants are detectable from fish, wildlife, foodstuff or human samples but below threshold limits established for the country or region | - Chemical contaminants are found in the environment marginally above threshold limits defined for the country or region
- Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country or region | - Chemical contaminant is analysed repeatedly well above threshold limits in the environment defined for the country or region
- Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold established for the country or region |
<table>
<thead>
<tr>
<th>Issue</th>
<th>Score 0 = No concern</th>
<th>Score 1 = Slight concern</th>
<th>Score 2 = moderate concern</th>
<th>Score 3 = major concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD from industrial sources</td>
<td>- No evidence of releases from solid residues</td>
<td>- Presence of small sources from small size industries</td>
<td>- Historical releases of BOD from medium size industry</td>
<td>- BOD releases are evident as contaminant in large scale industries</td>
</tr>
<tr>
<td></td>
<td>- Evidence of BOD levels in Rivers in compliance with national standards</td>
<td>- Some limited evidence of releases but on a small scale invoking local concerns</td>
<td>- Evidence of periodical high BOD levels in coastal rivers</td>
<td>- Known releases of BOD from large scale industries</td>
</tr>
<tr>
<td></td>
<td>- Evidence of releases of all liquid industrial effluents in compliance with the national standards</td>
<td></td>
<td></td>
<td>- Evidence of leakage from major municipal solid waste landfills</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Evidence of leakage from major industrial solid waste landfills</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No known or historical levels of BOD in water bodies except background levels of naturally occurring substances</td>
<td>- BOD levels are detectable in water bodies but below threshold limits defined for the country or region</td>
<td>- BOD levels are found in water bodies marginally above threshold limits defined for the country or region</td>
<td>- BOD levels are analysed repeatedly well above threshold limits in water bodies</td>
</tr>
<tr>
<td></td>
<td>- No evidence of any eutrophication cases</td>
<td></td>
<td>- Historical few harmful effects for marine and rivers wildlife associated with high BOD Levels</td>
<td>- Evidence of repeated harmful effects for marine and rivers wildlife associated with high BOD levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td>- No evidence of production or product contamination</td>
<td>- Evidence of limited production</td>
<td>- Historical production evident and production for local use ongoing. Present as contaminant in other chemical production</td>
<td>- Major production of chemical for local and export use</td>
</tr>
<tr>
<td></td>
<td>- No evidence of air emissions</td>
<td>- Presence of small sources with possible emissions (e.g. small incineration plants or bleached kraft/pulp mills using chlorine);</td>
<td>- Presence of major combustion related sources</td>
<td>- Chemical evident as contaminant in large scale production of other chemicals</td>
</tr>
<tr>
<td></td>
<td>- No evidence of emissions from solid residues</td>
<td>- Some limited evidence of releases but on a small scale invoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No evidence of chemical stockpiled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue</td>
<td>Score 0 = No concern</td>
<td>Score 1 = Slight concern</td>
<td>Score 2 = moderate concern</td>
<td>Score 3 = major concern</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Solid waste | – Evidence of convenient solid waste management system in the region
– No noticeable interference with the recreational use of beaches due to litter
– No reported entanglement of | – Evidence of temporary failure of the solid waste management system
– Some evidence of marine derived litter on beaches
– Occasional recovery of solid waste through trawling activities | – No evidence of solid waste landfill
– Widespread litter on beaches giving rise to public concern regarding recreational use of beaches
– High frequency of benthic | – No evidence of solid waste management system
– Incidence of litter on beaches sufficient to deter the public from recreational activities |
<p>| | | | | |
| | | | | |</p>
<table>
<thead>
<tr>
<th>Issue</th>
<th>Score 0 = No concern</th>
<th>Score 1 = Slight concern</th>
<th>Score 2 = moderate concern</th>
<th>Score 3 = major concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batteries and chemicals associated to its manufacturing</td>
<td>– No evidence of production</td>
<td>– Evidence of limited production</td>
<td>– Historical production evident and production for local use ongoing</td>
<td>– Major production of batteries for local & export use</td>
</tr>
<tr>
<td></td>
<td>– No evidence of air emissions</td>
<td>– Presence of small sources with possible emissions (e.g. small incineration plants and landfills)</td>
<td>– Presence of major combustion related sources e.g. large municipal or industrial incinerators</td>
<td>– Chemicals from Batteries production are evident as contaminant in large scale production</td>
</tr>
<tr>
<td></td>
<td>– No evidence of emissions from solid residues</td>
<td>– Some limited evidence of releases but on a small scale invoking local concerns</td>
<td>– Evidence of stockpiles of batteries</td>
<td>– Evidence of leakage from major stockpiles</td>
</tr>
<tr>
<td></td>
<td>– No evidence of batteries stockpiled</td>
<td>– Presence of small stockpiles</td>
<td>– Evidence of medium scale recycling (80%)</td>
<td>– Large-scale use of batteries throughout the region</td>
</tr>
<tr>
<td></td>
<td>– No evidence of release from liquid effluent</td>
<td>– Evidence of extensive recycling (100%) of Batteries</td>
<td>– Evidence of small scale recycling (50%) of batteries</td>
<td>– Evidence of no recycling of batteries</td>
</tr>
<tr>
<td></td>
<td>– Evidence of extensive recycling (100%) of Batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– No known or historical levels of chemical contaminant in the environment except background levels of naturally occurring substances</td>
<td>– Chemical contaminants are detectable in the environment but below threshold limits defined for the country or region</td>
<td>– Chemical contaminants are found in the environment marginally above threshold limits defined for the country or region</td>
<td>– Chemical contaminant is analysed repeatedly well above threshold limits in the environment country or region</td>
</tr>
<tr>
<td></td>
<td>– No available data to quantify evidence of the chemical found in fish, wildlife, foodstuff or human tissue</td>
<td>– Chemical contaminants are detectable from fish, wildlife, foodstuff or human samples but below threshold limits established for the country or region</td>
<td>– Limited data available to support chemical existing within fish, wildlife, foodstuff or human tissue at</td>
<td>– Known contamination of fish, wildlife, foodstuff or humans at levels far exceeding the threshold</td>
</tr>
<tr>
<td>Issue</td>
<td>Score 0 = No concern</td>
<td>Score 1 = Slight concern</td>
<td>Score 2 = Moderate concern</td>
<td>Score 3 = Major concern</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Lub Oil | - No evidence of production
- No evidence of air emissions
- No evidence of emissions from solid residues
- No evidence of lub oil stockpiled
- No evidence of release from liquid effluent
- Evidence of full recycling of lub oil | - Evidence of limited production
- Presence of small sources with possible emissions (e.g. small incineration plants and landfills)
- Some limited evidence of releases but on a small scale invoking local concerns
- Presence of small stockpiles
- Evidence of medium scale recycling of lub oil | - Historical production evident and production for local use ongoing
- Presence of major combustion related sources e.g. large municipal or industrial incinerators
- Evidence of stockpiles of lub oil
- Evidence of limited recycling of lub oil | - Major production of lub oil for local and export use
- Chemicals from Batteries production are evident as contaminant in large scale production
- Evidence of leakage from major stockpiles of the chemical poorly packaged
- Large-scale use of lub oil throughout the region
- Evidence of no recycling of lub oil |
| Lub Oil | - No known or historical levels of chemical contaminants from lub oil in the except background levels of naturally occurring substances
- No available data to quantify evidence of the chemicals originated from lub oil found in fish, wildlife animal or human tissue | - Chemical contaminants from lub oil are detectable in the environment threshold limits defined for the country or region
- Chemical contaminants originated from lub oil are detectable from fish, wildlife, foodstuff or human samples but below threshold limits established for the country or region | - Chemical contaminants from lub oil are found in the environment marginally above threshold limits defined for the country or region
- Limited data available to support chemicals originated from lub oil existing within fish, wildlife, foodstuff or human tissue at marginal levels above threshold standards for the country | - Chemical contaminants from lub oil are analysed repeatedly well above threshold limits in the environment defined for the country or region
- Known contamination of fish, wildlife, foodstuff or humans by chemical originated from lub oil at levels far exceeding the threshold established for the country |
<table>
<thead>
<tr>
<th>Issue</th>
<th>Score 0 = No concern</th>
<th>Score 1 = Slight concern</th>
<th>Score 2 = moderate concern</th>
<th>Score 3 = major concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>All issues</td>
<td>- No evidence of violation of Bilateral environmental agreements</td>
<td>- Potential transboundary impacts</td>
<td>- Increase of GHG emissions</td>
<td>- Evidence of violation of regional and global environmental agreements</td>
</tr>
<tr>
<td></td>
<td>- No evidence of violation of regional and global environmental agreement</td>
<td></td>
<td></td>
<td>- Potential bilateral conflict</td>
</tr>
</tbody>
</table>
APPENDIX E. List of indicators to assess the LBS, Dumping, Hazardous waste Protocols, NAP and Regional Plans implementation

Table of contents

1. INTRODUCTION .. 2

2. INDICATORS TO ASSESS THE IMPLEMENTATION OF THE LBS, DUMPING AND HAZARDOUS WASTE PROTOCOLS, LBS REGIONAL PLANS AND NAPS.. 3

3. SELECTION AND PRIORITIZATION METHODOLOGY OF INDICATORS PRESENTED IN NAP UPDATE DRAFT GUIDELINES ... 7
1. Introduction

The UNEP/MAP programme of work 2014-2015 adopted by the eighteenth meeting of the Contracting parties (COP 18), 3-6 December 2013, Istanbul, Turkey, mandated the Secretariat to update the MAP reporting system with the view to make it more user friendly, further strengthen its indicator-based dimension as well as complete it with the reporting requirements of the Regional Plans adopted under Article 15 of the LBS Protocol.

COP 18 also requested the contracting parties to update their National Action Plans (NAPs) that were endorsed by COP 14, Portoroz, Slovenia, 2005, in accordance with Article 5 of the LBS Protocol of the Barcelona Convention.

With the view to deliver the above tasks, the Secretariat developed the draft Guidelines for updating the NAPs, including an annex on “NAP follow-up and reporting indicators”. The Annex provided a comprehensive list of indicators of relevance for the follow-up of NAPs implementation. The listed indicators were indicators already in use and/or in process of negotiation within and/or outside MAP system, consistent with regional and international reporting requirements relevant to MAP. This document was presented at the MED POL Focal Points (FP) meeting on 26-28 March 2014 in Athens, Greece.

The MED POL FP asked the Secretariat to:

- continue its work and conduct an in-depth analysis of the reporting requirements of the LBS, Dumping and Hazardous waste Protocols as well as of the Regional Plans adopted in the framework of the LBS Protocol and recommend a list of ranked indicators for assessing their implementation.
- streamline the Protocols and Regional Plans indicators with the NAP follow up and reporting indicators.

With the view to propose the list of potential ranked indicators that fit the reporting requirements of the LBS, Dumping and HW protocols, the Regional Plans and the NAPs the Secretariat carried out a two-step analysis:

The first step included a prioritization exercise of the list of indicators presented at the March 2014 MED POL FP meeting, based on UNEP/MAP Plan Bleu and EEA experience with indicators and presented in section three of this Appendix. In addition, the Secretariat used the opportunity of the workshop on PRTR held in the framework of SEIS Project, in Ankara, Turkey, in June 2014 to review again and carry out a second scoring exercise with participation and contribution of several country experts.

In the second step, **indicators receiving more than 50% of the total scores were** further analyzed and complemented by the Secretariat with other potential indicators based on the in-depth and concrete legal and policy analysis of the relevant provisions of the Barcelona Convention and Protocols. This list was submitted at the MED POL FP meeting held on 18 – 19 December 2014 in Barcelona for its consideration. After a careful review the meeting agreed on the list presented in section 2 of this Annex IV, Appendix E while pointing out the importance of identifying this list of common indicators for the Mediterranean and requesting the Secretariat to work further on assessing the level of maturity for each indicator, for consideration at the forthcoming meetings of the MED POL Focal Points, and as appropriate by other MAP bodies.
2. Indicators to assess the implementation of the LBS, Dumping and Hazardous Waste Protocols, LBS Regional Plans and NAPs

In case of LBS&Regional Plans&NAPs implementation, the indicators should respond to questions related to pollution reduction and prevention trends in the Mediterranean region and the improvement of marine and coastal environment (to achieve the relevant ECAP GES targets) through the implementation of the LBS Protocol, its Regional Plans, Dumping as well as the Hazardous Waste Protocols of the Barcelona Convention as well as the NAPs.

The indicators are organized according to the following structure:

- SAP MED/NAP sectors (based on Annex I of the LBS Protocol).
- Relevant legal and policy questions (from the Protocols and Regional Plans).
- Title of the candidate indicators per each sector and the related codes.
- Units.
- Link to other initiatives and policy/legal frameworks (to be further completed).
- Type.
- Indicator description.
- Information on data sets and sources (to be further completed).
- Reference to the mandatory related obligations under the Barcelona Convention and related Protocols as well as the Regional Plans.
- Total scoring per each candidate indicator (from both steps of the prioritization analysis).

For ease of reference, the legal and policy questions raised per each NAP/SAP sector are presented below together with the title of the candidate indicators as well as related ECAP indicator.

I. Urban development

a) WASTEWATER (NAP/LBS and RP on BOD from WWTP)

Are the agglomerations (areas with a population of more than 2,000 inhabitants and/or economic activities sufficiently concentrated) collecting and treating their urban waste waters before discharging them directly or indirectly into the Mediterranean Sea?

- WW01. Share of population with access to an improved sanitation system (total, urban, rural).
- WW02. Wastewater collected (in population equivalent).
- WW03. Wastewater treated (in population equivalent).

Do collecting systems consider the best technical knowledge notably regarding: (a) the volume and characteristics of urban waste water; (b) the maintenance of piping system for the prevention of leaks; (c) the maintenance of pumping and boosting equipment; and (d) the separation of storm water pipes from collection pipes of WWTP, when applicable?

- WW04. Share of the treated wastewater according to the type of treatment (primary, secondary, tertiary) and, where relevant, share of wastewater reused after treatment.
- WW05. Total loads of BOD5, Total nitrogen, Total phosphorus discharged to the Mediterranean Sea from urban wastewater treatment.

Are the coastal and marine environment and health protected from the adverse effects of the urban wastewater direct and or indirect discharges, in particular regarding adverse effects on the oxygen content of the coastal and marine environment and eutrophication phenomena?

ECAP common indicator 7/[WW06]. Concentration of key nutrients in the water column.

ECAP common indicator 8/[WW07]. Chlorophyll A concentration in the water column.

b) BATHING WATER QUALITY (Decision IG 20/9)

Is the quality of bathing waters in the Mediterranean countries being improved?

- BW01. Share of bathing water categories: A (Excellent quality), B (Good quality), C (Sufficient) and D (Poor quality) with respect to total number of assessed bathing waters.

- ECAP Common Indicator 15/[IND04] “Percentage of intestinal enterococci concentration measurements within established standards”

c) MUNICIPAL SOLID WASTE AND MARINE LITTER (NAP/LBS and RP on Marine Litter management)

Is marine litter pollution in the Mediterranean being prevented and reduced to the minimum?

ECAP Common Indicator 16/[MW01] Trends in the amount of litter washed ashore and/or deposited on coastlines, including analysis of its composition, spatial distribution and, where possible, source.

[ECAP Common Indicator 17/[MW02] Trends in the amount of litter in the water column including microplastics and on the seafloor.

[ECAP Common Indicator 18/[MW03], Trends in the amount of litter ingested by or entangling marine organisms focusing on selected mammals, marine birds and turtles.] (trial basis)

Is the municipal solid waste management based on the waste hierarchy (prevention, preparing for re-use, recycling, other recovery, e.g. energy recovery and environmentally sound disposal) as a priority order in waste prevention and management legislation and policy?

- MW04. Municipal waste generation per capita.
- MW05. Share of recycled, composted, incinerated, treated in waste-to-energy facilities or landfilled municipal waste with respect to collected amount.

- MW06. Share of generated municipal waste per waste composition category: paper/paperboard, textiles, plastics, glass, metals, other inorganic material, organic material.

- MW07. Number of illegal dumpsites at coastal area that have been closed/remediated over the past 10 years.

Are prevention measures related to: (a) Extended Producer Responsibility, (b) Sustainable Procurement Policies, (c) Voluntary agreements with retailers and supermarkets, (d) Fiscal and economic instruments, (e) Deposits, Return and Restoration System and, (f) Procedures and manufacturing methodologies with plastic industry, being explored and implemented to the extent possible in order to reduce the fraction of plastic packaging waste that goes to landfill or incineration without energy recovery?

- [MW0X. Share of (supermarkets) applying deposit, return and restoration system for plastic beverage bottles.]\(^1\)

- MW08. Annual consumption of plastic bags at national level per capita.

- MW09. Share of producers, manufacturer brand owners and first importers responsible for the entire life-cycle of the product with measures prioritizing the eco-design of the product and the hierarchy of waste management.

d) **Urban AIR POLLUTION (NAP/LBS Protocol Annex III)**

Is air quality in coastal Mediterranean cities being improved in the Mediterranean?

Indicators already agreed under other relevant multilateral international agreements and EEA as appropriate and relevant assessment described in a concise manner

II. **INDUSTRIAL DEVELOPMENT** (Barcelona Convention Article 8, LBS Articles 1 and 5, Annex III, Regional Plans (Mercury, POPs, BOD from food sector, NAPs, Dumping Protocol and Hazardous Waste Protocol)

a) **INDUSTRIAL POLLUTION**

Are the emissions/pollution inputs from industrial land based sources and activities being eliminated, or phased out in the hydrological basin of the Mediterranean?

- **ECAP Common Indicator 11/[IND01]** Concentration of key harmful contaminants measured in the relevant matrix (biota, sediment, seawater).

- **ECAP Common Indicator 12/[IND02]** Level of pollution effects of key contaminants where a cause and effect relationship has been established.\(^2\)

\(^1\) Indicator to be considered in the future

\(^2\) It is recommended to consider streamlining of these two indicators (IND01 and IND 02) in the future.
- **ECAP Common Indicator 14 ([IND03])** Actual levels of contaminants that have been detected and number of contaminants which have exceeded maximum regulatory levels in commonly consumed seafood.

- **IND004. National loads of pollutants from point sources:**
 (a) SO$_2$, NO$_x$, NH$_3$, VOC, hydrocarbons, CO, CH$_4$, TPS, PM10, PM2.5, POPs, heavy metals;
 (b) PAH, VOC, PCDD/PCDF, Hexachlorobenzene, Cadmium, Chromium, Lead and Mercury which are directly or indirectly discharged to the Mediterranean Sea;
 (c) Total loads of BODs, Total nitrogen, Total phosphorus discharged to the Mediterranean Sea.

- **IND005. Number of substances covered by national standards (ELV) for point source discharges into water or air.**

- **IND006. Share of contaminated sites with toxic, persistent and liable to accumulate substances in the coastal area which have been closed/remediated including spills from industrial accidents.**

- **IND007. Share of companies within Annex I of the LBS Protocol applying cleaner production, BAT and/or BEP.**

b) **HOT SPOTS**

Is the state of the national hot spots in the Mediterranean periodically monitored and hot spots eliminated?

- **HS01. Share of hot spots and sensitive areas covered by monitoring, projects/investments and/or eliminated.**

(c) **DUMPING**

Are the quantities of the materials dumped in the sea and their impact monitored and reported to the Secretariat in accordance with Articles 10, 11 and 12 of the Dumping Protocol?

- **D001. Annual quantities of materials dumped per category.**

- **D002. Share of number of permits issued by national competent authorities providing for strict monitoring programmes of marine environment from dumping activities.**

- **[D003. Number of permits for industrial waste].**

d) **HAZARDOUS WASTE**

Is the amount of HW generated being reduced and disposed in an environmental sound manner in the Mediterranean?
- [HW01. Amount of hazardous waste generated by Y categories.]

- HW02. Amount of hazardous waste environmentally soundly managed or exported by Y categories and by disposal/recovery operation (D - disposal, R - recovery, as well as treated in waste to energy facilities).

- HW03. Number of illegal HW trafficking cases\(^3\).

Note on the Regional Plans on the POPs

With regards to POPs Regional Plan and Stockholm Convention provisions, since the timeframe for the reporting period have already passed, related information and indicators will correspond to the reports periodically submitted by the Mediterranean countries to the Secretariat of the SC.

3. Selection and prioritization methodology of indicators presented in NAP update draft Guidelines

The list of indicators included in Annex E of NAP update guidelines (Document UNEP (DEPI) MED WG.394/4) is built based on the relevant:

- a) MAP effectiveness indicators adopted in COP 16
- b) MAP reporting system indicators adopted by COP 15
- c) MSSD indicators, 2005
- d) Indicators with regards to other relevant policy frameworks, mainly Horizon 2020 Initiative and IWRM (Integrated Water Resources Management)
- e) Indicators agreed in the framework of relevant MEA.

In general, official indicators are selected based on a thematic approach as it facilitates the connection with the target and legal and political processes, while providing a clear message to policy makers.

The above mentioned indicator list consisted of a spreadsheet with all the potential indicators with fields for Indicator code, Indicator title, Units, SAP/NBB sector, Link to ECAP/Regional plans targets, Link to other policy frameworks, Type of indicator (D = Driving force, P = Pressure, S = State, I = Impact, R = Response), Description, Data source, Criteria and Total.

The selection criteria used for the Sustainable Development Indicators of the United Nations Commission on Sustainable Development (UN-CSD) are:

- Conceptually well founded.
- Understandable (clear, simple and unambiguous).
- Based on data that is readily available or available at a reasonable cost, adequately documented, of good quality and updated at regular intervals.
- Within the capacities of the governments to implement, given logistics, time, technical and other constraints.

The Secretariat used the methodology developed by UNEP/MAP Plan Bleu-RAC consisting of the following criteria:

\(^3\) Pending study reservation to ensure that are fully in line with Basel Convention.
The scoring used for each criteria is described below:

1. **Mandatory nature**: Non Mandatory=0; Overall objective (Mandatory but not legally binding)=1; Legally binding=2
 - Legally binding indicators can be those related to requirements or measures established by the Barcelona Convention, Protocols, Regional plans adopted in the framework of Article 15 of the LBS Protocol.
 - Overall objective: those indicators that track the achievement of a related objective/target, e.g. from non legally binding regional plans or SAP MED, ECAP indicators or MAP effectiveness indicators that have been adopted or approved by COP but are not strictly legally binding by themselves.
 - Non mandatory indicators but smart and useful for assessment purposes.

2. **Relevance**: It is disaggregated into the following five single criterions:

 a) **Meaningful**: it measures the degree to which the indicators meet its intended purpose in coverage, content and detail.
 - Not meaningful=0; More or less meaningful=1; Highly meaningful=2
 - Highly meaningful: the indicator seems intuitively reasonable and it adequately reflects the objectives/targets or phenomenon which are intended to measure and is appropriate to the needs of the user or purpose.
 - Partially meaningful: the indicator is related with objectives/targets or phenomenon which is intended to measure but it does not fully reflect them.
 - Not meaningful: the indicators not related with the objectives/targets or it is not appropriate to the needs of the user or purpose.

 b) **Applicable** to different scales: it measures the ability to be disaggregated/broken down into areas of particular interest, such as regional areas.
 - Applicable to a single scale=0; Applicable only to some scales=1; Applicable to different scales.
 - Applicable to different scales: primarily national in scope but able to be disaggregated/broken down into areas of interest, e.g. regional areas. Allow international comparison as it is consistent with those used in international indicators programmes.
 - Applicable only to some scales: limited ability to be disaggregated/broken down into areas of interest, e.g. regional areas.
 - Applicable to a single scale: only able to be expressed in a single scale.

 c) **Conceptually sound**: it measures the degree to which the information precisely describes the objective/target or phenomena it was designed to measure. The indicator should be specific, aligned
with the objectives/targets or phenomenon of interest and not with other non-related objective/target or phenomenon.

Not conceptually sound=0; More or less conceptually sound=1; Highly conceptually sound=2

- Highly conceptually sound: the indicator measurement is methodologically sound and fits conceptually for the purpose to which it is being applied. It is specific and fully aligned with the objectives/targets and not with other non-related objective/target or phenomenon.
- More or less conceptually sound: the indicator measurement is more or less methodologically sound and partially fits for the purpose to which it is being applied. It is moderately specific and partially aligned with the objectives/targets, it can be aligned with other non-related objective/target or phenomenon.
- Not conceptually sound: the indicator measurement is not methodologically sound and does not fit conceptually for the purpose to which it is being applied. It is unspecific and not aligned with the objectives/targets.

d) Responsive to change/sensitivity: it relates to how significantly an indicator varies according to changes in the objectives/targets or phenomenon.

Not responsive to change=0; More or less responsive to change=1; Highly responsive to change=2

- Highly responsive to change: the indicators respond relatively quickly and noticeably to changes, but not show false movements.
- More or less responsive to change: the indicators respond moderately slowly and noticeably to changes, and can show false movements sometimes.
- Not responsive to change: the indicators respond slowly to changes and show false movements frequently.

e) Useful to decision makers: the usefulness of indicators to decision makers is related directly to the ability to track trends over time with regards the objectives/targets or phenomenon which is intended to measure.

- Highly useful to decision makers: the indicator is related directly to the ability to track trends over time with regards the objectives/targets or phenomenon which are intended to measure.
- More or less useful to decision makers: the indicator is more or less related to the ability to track trends over time with regards the objectives/targets or phenomenon which are intended to measure.
- Not useful to decision makers: the indicator is not able to track trends over time with regards the objectives/targets or phenomenon which is intended to measure.

c) Measurable. It is disaggregated into the following two criterions:

a) Based on data readily available: it relates to the degree to which data produced are up to date, published frequently and delivered to schedule.

b) Data needs to be collected and reported regularly and frequently. There should also be minimal time lag between the collection and reporting of data, to ensure that indicators are reporting current rather than historical information.
Not available=0; Potentially available=1; Fully available=2

- Fully available: data is directly collected and reported regularly and frequently. There is a minimal time lag between the collection and reporting of data.

- Potentially available: data is not directly collected or reported regularly and frequently. Changes in regular surveys; arrangements with data ‘owner’; improved handling of raw data; or shorter release time are needed.

- Not available: data is not available.

d) **Cost-effective**: it measures whether data are routinely collected either by national statistical services or through international processes.

Not available=0; Potentially available=1; Fully available=2

- Fully cost-effective: data are already collected routinely either by national statistical services or through international processes.

- Potentially cost-effective: data are not routinely collected but minor efforts need to be made for data collection and reporting.

- Not cost-effective: data are not routinely collected and costly efforts need to be made for data collection and reporting.

d) **Understandable**: it measures whether the indicator is intelligible and easily interpreted. Indicators should be sufficiently simple to be interpreted in practice and be intuitive in the sense that it is obvious what the indicator is measuring.

Not understandable=0; More or less understandable=1; Fully understandable=2

- Fully understandable: the indicator is intelligible and easily interpreted.

- More or less understandable: the indicator is more or less intelligible and interpreted with difficulties.

- Not understandable: the indicator is unintelligible and hardly interpreted.

For each indicator, a total score was deducted from 0 to 18, with a score of 18 meaning that the indicator perfectly meets all the criteria.
APPENDIX F. Information for Developing and Drafting the NAP

Example illustrating the process for developing pollution prevention and control measures regarding marine litter starting from defining quantifiable objectives and elaboration of midterm baseline conditions, to identification of gaps, ending with the selection of required measures to be included in the NAP.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP Requirement for solid waste</td>
<td>By the year 2025 at latest, to base urban solid waste management on reduction at source, separate collection, recycling, composting and environmentally sound disposal.</td>
</tr>
<tr>
<td>Requirement of the Marine Litter Regional Plan</td>
<td>Reduction of fraction of plastic packaging waste that goes to landfill or incineration without energy recovery by 2019.</td>
</tr>
<tr>
<td>Relevant ECAP state targets adopted in Decision 21.3</td>
<td>Decreasing trend in the number of/amount of marine litter (items) deposited on the coast.</td>
</tr>
<tr>
<td></td>
<td>Decreasing trend in the number/amount of marine litter items in the water surface and the seafloor.</td>
</tr>
<tr>
<td></td>
<td>Decreasing trend in the cases of entanglement or/and a decreasing trend in the stomach content of the sentinel species.</td>
</tr>
<tr>
<td>Potential quantifiable objectives and operational targets</td>
<td>(a) To reduce 20% fraction of plastic packaging waste that goes to landfills or incinerators without energy recovery by 2019.</td>
</tr>
<tr>
<td></td>
<td>(b) To ensure that the fraction of plastic packaging waste that goes to landfill or incinerators without energy recovering decreases at a yearly rate of 5% till 2019.</td>
</tr>
<tr>
<td>NAP Mid term Baseline conditions</td>
<td>- No existing quantifiable target</td>
</tr>
<tr>
<td></td>
<td>- Plans for the construction and management of landfills and incinerators in coastal areas</td>
</tr>
<tr>
<td></td>
<td>- Policies that hold industries’ liable to damages caused to the marine environment by plastic packaging missing</td>
</tr>
<tr>
<td></td>
<td>- Policies that promote reduction of the amount of plastic used in packaging products or in the service sector do not address required aspects</td>
</tr>
<tr>
<td></td>
<td>- Policies that promote the development of management schemes for plastic packaging waste not yet developed</td>
</tr>
<tr>
<td></td>
<td>- Existing reports publicizing data and information on trends of marine litter in coastal areas and coastal waters</td>
</tr>
<tr>
<td>Gaps/Issues</td>
<td>- Lack of national/regional laws that address measures for reducing marine litter along the coastline</td>
</tr>
<tr>
<td></td>
<td>- Lack of investment measures for the construction and management of landfills and incinerators in coastal areas</td>
</tr>
<tr>
<td></td>
<td>- Lack of policies that hold industries’ liable to damages caused to the marine environment by plastic packaging</td>
</tr>
<tr>
<td></td>
<td>- Weak policies that promote reduction of the amount of plastic used in packaging products or in the service industry</td>
</tr>
<tr>
<td></td>
<td>- Lack of funding and competencies to carry out monitoring activities for generation and disposal of plastic waste</td>
</tr>
</tbody>
</table>
| | - Ineffective public awareness campaigns that address the risk
<table>
<thead>
<tr>
<th>Potential measures for consideration in the NAPs to meet SAP/RP and GES targets</th>
<th>(a) Legal measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▪ Update industrial solid waste management law to integrate marine litter and plastic recycling</td>
</tr>
<tr>
<td></td>
<td>▪ Develop regulation regarding monitoring system for marine litter</td>
</tr>
<tr>
<td></td>
<td>▪ Enforce public access to data and information on pollutants discharges to the environment including marine litter</td>
</tr>
<tr>
<td></td>
<td>▪ Enforce the implementation of management schemes for plastic packaging waste</td>
</tr>
<tr>
<td>(b) Technical measures</td>
<td>▪ Construct and operate two landfills for coastal waste disposal</td>
</tr>
<tr>
<td></td>
<td>▪ Establish municipal solid waste collection and segregation centre</td>
</tr>
<tr>
<td>(c) Policy-driven measures</td>
<td>▪ Sign voluntary agreements with the Plastic industry to implement EPR</td>
</tr>
<tr>
<td></td>
<td>▪ Sign a voluntary agreement with supermarkets to reduce single use bags by 50%</td>
</tr>
<tr>
<td></td>
<td>▪ Support three public awareness campaigns every year to address the risk caused to human health and the marine environment by marine litter with special emphasis on the role of plastics and microplastics</td>
</tr>
</tbody>
</table>

caused to human health and the environment as a result of marine litter entanglement or/and the stomach content of the sentinel species

- Restricted public access to existing reports publicizing data and information on trends of marine litter in coastal areas and coastal waters
Logical framework for implementation of selected measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Operational Target</th>
<th>Implementation Timetable</th>
<th>Link to SAP/ECAP EO target/RP</th>
<th>Geographical scale</th>
<th>Cost</th>
<th>Capacity Building Needs</th>
<th>Leading institution</th>
<th>Partners</th>
<th>Risks and Assumptions</th>
<th>Monitoring tracking method</th>
<th>Monitoring indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Detailed outline and guidance information for drafting the updated NAP

Following is a proposed table of contents for the updated NAP document with additional explanation on what each section should focus on:

i) Preface

ii) Executive summary

iii) Introduction
 - Background on the national SAP-MED/NAP process.
 - Overview of achievements made in the 2004 NAP and challenges facing implementation of the updated NAP.

iv) NAP updating process
 - Institutional arrangements.
 - Work methodology.
 - Involved stakeholders and public consultation.

v) Development of the midterm implementation benchmark
 - Data and information on the baseline situation for each of the following sectors, categorized into policy framework, legal requirements and pollution prevention and control measures:
 - Municipal wastewater
 - Municipal solid waste and marine litter
 - Urban air pollution
 - Industrial aqueous effluents
 - Industrial air pollution
 - Hazardous wastes
 - Agricultural activities
 - Legal and institutional aspects of monitoring, enforcement, reporting, capacity building and public participation

vi) Defining quantifiable objectives
 - List of the adopted quantifiable objectives or targets based on the requirements derived from the SAP-MED, the Regional Plans and the ECAP targets (Annex A). The list of quantifiable objectives is presented in line with the following SAP-MED priority sectors and substances:
 - Urban municipal wastewater
 - Urban Solid waste
 - Air pollution in urban areas
 - Persistent organic pollutants (POPs)
 - Heavy metals and organo-metallic compounds (Hg, Cd, Pb, Zn, Cu, Cr)
 - Organohalogen compounds (halogenated aliphatic and aromatic hydrocarbons, Chlorinated phenolic compounds and organohalogenated pesticides)
 - Radioactive substances
 - Nutrients and suspended solids from industrial development
 - Hazardous wastes (obsolete chemicals, lubeoil and batteries)
 - Monitoring
 - Capacity building
 - Public participation
 - Reporting

vii) Gaps analysis and identification of issues
 - Results of the gap analysis between the midterm baseline and the proposed targets or quantifiable objectives. Gaps to be presented as a list of issues, whereby each is categorized in line with the SAP-MED priority sectors and substances included in section (vi).
viii) Prioritization of issues and identification of potential measures
 - Prioritized list of identified issues on a regional level in accordance with the methodology of assessment from the issue/impacts matrix (Annex C). The list is produced for each of the SAP-MED priority sectors and substances included in section (vi).

ix) Selection of programme of pollution prevention and control measures
 - Selected options to address each of the identified issues for the management of land-based sources of pollution contributing to the pollution of the Mediterranean Sea. Actions/measures to be categorized according to policy and legal measures and technical measures, with emphasis on these requiring significant investments for implementation.

x) Preparation of a Prioritized List of Investment Projects
 - Top 10 to 12 priority actions/measures which require significant investments are approached as priority national projects. For each of these projects, investments portfolios (IP) and project fiches are prepared.

xi) Monitoring plan for NAP implementation
 - Information on the institutional arrangements, resources and competencies that the Country will employ to undertake the process for monitoring NAP implementation in order to fulfill the unified list of 21 MED POL indicators included in Annex E.

xii) Capacity building plan for NAP implementation
 - Formulation of a plan that assigns responsibilities, resources and budgets required for training and capacity-building needs for the tasks to be undertaken for implementation of the NAP.

xiii) Arrangements for public information, awareness raising and education
 - Arrangements to be introduced to ensure that information is disseminated to the public and to explain how awareness raising and educational campaigns will be organized and implemented.
Appendix G. Guidance on cost-effectiveness and cost-benefit analysis

Table of Contents

INTRODUCTION .. 2
1 SECTION I: DEFINITIONS OF THE KEY TERMS AND CONCEPTS .. 3
2 SECTION II: HOW DOES THE ECONOMIC ANALYSIS FIT IN THE NAP UPDATE PROCESS? 5
 2.1 TASKS UNDER THE SPECIFIC NAP STEPS .. 6
3 SECTION III: COST-EFFECTIVENESS AND COST-BENEFIT ANALYSIS OF MEASURES/ PROGRAMMES OF MEASURES .. 12
 3.1 COST-EFFECTIVENESS ANALYSIS .. 12
 3.2 COST-BENEFIT ANALYSIS ... 14
 3.3 ASSESSMENT OF COSTS, VALUATION AND TEMPORAL ASPECTS IN CEA AND CBA 15
 3.3.1 Costing of measures .. 15
 3.3.2 Valuation of non-market goods and services ... 16
 3.3.3 Discounting .. 19
 3.4 CEA, CBA OR ALTERNATIVE TOOLS? ... 19
 3.5 DATA LIMITATIONS, COMPLEXITIES AND UNCERTAINTIES .. 21
4 USEFUL REPORTS .. 23
5 LIST OF REFERENCES .. 24
6 FURTHER INFORMATION ON COST-EFFECTIVENESS AND COST-BENEFIT ANALYSIS 26
 COST-EFFECTIVENESS .. 26
 COST-BENEFIT ANALYSIS ... 27
Introduction

Following the commitment of the Contracting Parties to the Barcelona Convention to update the National Action Plans (NAPs) adopted under Article 5 of the LBS Protocol of the Convention and endorsement of the NAP update Guidelines1 at the MED POL Focal Points meeting held in Athens in March 2014, the Secretariat proceeded with the work on finalization of the technical annexes to the Guidelines including a first draft of the guidance on the use of cost-effectiveness and cost-benefit analysis for selection of the programme of pollution prevention and reduction measures. The draft guidance on cost-effectiveness was reviewed by the by the MED POL FO meeting held on 18 – 19 December 2014 in Barcelona, and the changes recommended by the meeting are integrated in this Annex 4, Appendix G.

The principal objective of the NAP update is to identify and prioritize national programme of measures to achieve Good Environmental Status (GES) with regard to pollution-related ecological objectives under the ecosystem approach (ECAP) in the framework of the LBS Protocol and the Regional Plans adopted in line with Article 15 of the LBS Protocol.

In preparing this first draft of the proposed guidance document, the work of the Secretariat was based in particular on the large number of reports and extensive experience gained in this field in the framework of the EU Marine Strategy Framework Directive (EU MSFD) implementation. Moreover, the draft guidance document is strongly rooted in the previous work carried out under the UNEP/MAP system. This especially refers to the Plan Bleu’s technical reports on economic and social analysis of the uses of coastal and marine waters in the Mediterranean and on application of different tools and approaches (e.g. cost-benefit analysis, cost of degradation) to economic analysis, as well as to the UNEP/MAP Background paper on Marine Litter Regional Plan. A number of publications discussing methodological issues and practical application of different economic analysis tools that might be particularly useful to NAP update teams are provided in chapter 4 of this document.

The overall goal of the guidance document is to assist the NAP update thematic groups, stakeholders and experts to perform cost-effectiveness (CEA) and/ or cost-benefit (CBA) assessments (or, alternatively, multi-criteria analysis) in prioritizing and selecting the NAP measures/ programmes of measures to achieve GES for pollution related ecological objectives and meet Regional Plans targets. More specifically, the document aims to contribute to:

- sound analysis to underpin the NAP update process and facilitate decision making by providing attainable levels of information (quantitative and/ or qualitative) on effectiveness, costs and benefits of proposed NAP measures;
- overcoming of data gaps and other constraints;
- consistency in the approaches and outcomes of the NAP update in different Contracting Parties (by e.g. providing definitions, advices and guidance on various aspects and components of CEA and CBA) while allowing for specificities in different countries to be taken into account;
- dissemination of knowledge acquired and lessons learnt through the application of these (CEA and CBA) methodologies in related process, in particular through the work of the UNEP/ MAP Plan Bleu and in the EU MSFD implementation;

1 Guidelines for Updating National Action Plans for the Implementation of the LBS Protocol and its Regional Plans in the Framework of the SAP-MED to Achieve Good Environmental Status for Pollution-Related ECAP Ecological Objectives
• capacity building in the NAP update countries.

The guidance document has three main sections. Section one proposes a number of definitions of terms related to socio-economic analysis. Section two describes at which stages of the NAP update process it is needed to compile, organise and analyse different socio-economic data. Finally, section three provides details on the possible ways of assessing cost-effectiveness, costs and benefits of NAP measures/programme of measures, discussing particularly important and challenging aspects of the analysis, choices that need to be made and ways to address expected data gaps.

1 Section I: Definitions of the key terms and concepts

For the purpose of this guidance document and the NAP update economic analysis, the following definitions/terms are used:

Use of marine waters: Any human activity using or influencing the marine space and/or ecosystem goods and services provided by marine waters.

Ecosystem services: Goods and services – benefits – that the ecosystem provides to human beings.

Degradation: Reduction in the provision of ecosystem services compared to another state.

Cost of degradation/socio-economic losses: Foregone welfare, reflecting the reduction in the value of the ecosystem services provided compared to another state.

Socio-economic analysis: A socio-economic analysis aims to identify the impact on human welfare of a given policy. This includes economic as well as social aspects, and may include consideration of the distribution of these impacts across stakeholders. In light of this definition, an explicit distinction between „economic“ and „social“ analysis is not necessary.

Drivers: Factors (economic sectors and policy instruments) inducing the pressures (e.g. agriculture, fishing, subsidies, regulation).

Pressures: Forces that generate changes in the state of the ecosystem and thereby the provision of its services (e.g. nutrient load, salinity, fishing effort, oil spills, invasive species).

Impacts: Impacts are the consequences for human welfare caused by the drivers and pressures affecting the state of the marine environment.

DPSIR framework: a theoretical framework used for systemically analysing environmental problems on the one hand and identifying measures on the other hand. The DPSIR framework starts with a description of the Driving forces that cause environmental Pressures. These Pressures cause a change in

3 The NAP update process primarily uses the term ‘economic’ analysis, however the intention was not to exclude social aspects but rather to simplify the process and used terminology (whereas it is understood that social issues are a constituent part of the analysis).
the State of the environment. This may have Impacts on human wellbeing. If these Impacts are unwanted, policy-makers will Respond by taking actions aimed at the Driving forces to reduce their Pressures.

The Driving forces are the activities, and the social factors driving these activities, that use the marine waters, either directly or indirectly, and consequently impact the marine environment. The use of marine waters puts Pressure on the marine environment in various ways. The pressures degrade the State of the environment, which Impact upon human health and the value of ecosystem goods and services. Society can decide to Respond by acting on the Driving forces, Pressures, State as well as the Impact of the problem by implementing measures and incentives (i.e. policy instruments).

Specific examples of what is in general understood under each element in the DPSIR sequence are provided below.

<table>
<thead>
<tr>
<th>Driving forces</th>
<th>Pressures</th>
<th>State (of marine waters and ecosystems)</th>
<th>Impacts</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-economic activities (uses of marine waters) i.e. economic sectors such as tourism, industries, shipping, fisheries</td>
<td>Emissions/ pollution loads, extractions, disturbances</td>
<td>E.g. deteriorating bathing water quality, raised concentrations of contaminants, declining fish stocks, etc.</td>
<td>E.g. loss of recreation value, negative impacts on human health, reduced revenues from fishing etc.</td>
<td>Policies and measures aiming to reduce pressures and impacts (e.g. pollution standards, fishing quotas) and to reach set objectives (such as GES)</td>
</tr>
</tbody>
</table>

Use value: The use value captures the direct link between ecosystem services and human welfare.

- Direct use value includes the profits from direct use of marine environment (“economic” value) and wider benefits that are more difficult to measure, since they are not captured by market interactions, for example recreational activities such as swimming, fishing, scuba diving etc., as well as the importance to local coastal communities of maintaining their marine heritage (“social” value).
- Indirect use value includes the benefits we derive from the environment’s provision of ecosystem services such as waste decomposition or carbon sequestration.

Non-use value: The non-use value describes, for example, the importance people attach to knowing that a healthy sea surrounds them and that this resource may be passed on to future generations.

Valuation: A set of steps/methods performed in order to determine Total Economic Value (use and non-use values) of ecosystem goods and services that do not have a market price. Valuation can be applied to assess the overall value of ecosystem services or to assess economic value of changes in ecosystem services.

Costs: Costs of measures differ depending on their type. In case of technical measures, additional costs of introducing new measures mainly consist of direct investment and operational costs. The costs associated with the policy instruments and their implementation are indirect costs and they include:

4 Definitions of the different types of measures are provided in the main body of the Guidelines.
• Administrative costs for the regulator: research, information and meeting costs, enactment and lobbying costs, design and implementation costs and administration, monitoring and prosecution costs. Most of these costs are costs of labour time for researchers, court staff, legislators, government staff etc.

• Compliance costs for the regulated: investment in abatement equipment or additional costs related to changed behaviour, administrative costs e.g. costs of applying for permits, monitoring costs;

• External costs: environmental and resource costs.

Benefits: The benefits from measures can be described by identifying use and non-use values. The use values can be separated into direct use values such as fishery production and recreation and indirect use values such as values of environmental functions or the effects on living conditions. Non-use values capture the less tangible values derived from the implementation of the measures (for example the values of preserving certain ecosystems for future generations).

Once identified, expected benefits (both environmental and socio-economic ones) associated with implementation of measures can be either fully monetised or (in cases large uncertainties are involved) given for illustrative purposes only. The monetization and/ or description of benefits normally requires to carry out a literature review of available studies in the area of the proposed policy and verify whether economic estimates can be adopted in that context. There are areas where economic benefits are easier to ascertain (for example financial savings associated with the proposal or recreational and tourism benefits) whereas for others it might be more challenging due to many scientific and economic uncertainties (e.g. ecosystem services valuation, health effects, etc.). It is good practice to explain at minimum in qualitative term what are the benefits associated with the measure in question.

Cost-effectiveness analysis (CEA): A decision support method which relates the costs of alternative ways of producing the same or similar outcomes to a measure of those resulting outcomes.

Cost-benefit analysis (CBA): A decision support method which aims to compare all relevant benefits and costs (in monetary terms) of an alternative (project, policy or programme), including impacts on environmental goods and services.

Multi-criteria analysis (MCA): A decision support method that can be used to evaluate and compare different alternatives according to their performance with regard to a selected set of evaluation criteria.

2 Section II: How does the economic analysis fit in the NAP update process?

The steps in the NAP update process have been recommended in the main body of the Guidelines (UNEP(DEPI)MED WG.393/10). Economic analysis, that is the compilation of data necessary to perform them and the very application of cost-effectiveness and cost-benefit assessments, will need to be carried out throughout the entire process, whereas the following NAP phases are particularly important:

• Step 1: assessment of the NAP midterm implementation benchmark;
• Step 4: prioritizing issues and identifying potential measures (based on inter alia socio-economic losses);
• Step 5: selection of the programme of pollution reduction measures (based on criteria that will include costs and benefits from their implementation, among others).
The role of the economic analysis and specific tasks that will need to be undertaken in each NAP update step are described below. The steps for which economic assessments are of major significance are paid special attention and elaborated in more detail. The economic analysis should be undertaken by the appropriate specialists in the NAP update teams and tightly linked to the other analytical segments, drawing from them, supporting them and/or serving as a basis for their development.

The Contracting Parties may build on other policy processes where similar economic analysis methods and approaches have been used to support their NAP update processes to ensure coherence and effectiveness.

2.1 Tasks under the specific NAP steps

Step 1: Assessment of the NAP midterm implementation benchmark

Within the first step in the NAP update, measures implemented since the first NAP was adopted need to be described and the current baseline established. Following the establishment of midterm implementation benchmark, future trends in pressures and impacts also need to be described assuming the existing policies and measures.

In conducting this part of the analysis, the NAP update teams should also compile information on economic sectors and activities affecting marine environment and analyse them in a way as to establish what are the main uses of marine environment having in mind their significance in socio-economic and in terms of their environmental impacts. Two important tasks at this phase of the economic analysis are to: 1) identify and describe different uses of marine environment with related pressures and impacts; and 2) assess direct and indirect benefits from different uses. For both, description of current conditions and projection of trends is needed.

1. **Identifying and describing different uses of marine environment; identifying and describing pressures from these uses and related impacts.** The key questions that need to be answered are: what are the different human activities and their impacts on the coastal and marine environment? To the extent possible, all information should be quantified. Data on pressures and impacts should be acquired from thematic experts and consultants working on the analysis of policies, NBB preparation and other pollution related aspects of the assessment of NAP midterm implementation benchmark. Additional sources (such as national and regional statistics, analytical reports and studies) will be needed to compile information on specific socio-economic topics.

At this stage the following information is recommended to be taken over from the baseline description, amended as appropriate and organised in order to enable further steps in economic analysis:

- number and size of settlements,
- quantities of treated and untreated municipal wastewater discharged into the sea/tributaries; municipal waste and principal disposal methods;
- number, size and type of industries having an impact on marine environment,
- quantities and type of industrial waste and wastewater generated (the disposal of which affects marine environment);
- extent of agricultural activities in the coastal area,
- fishing (e.g. size of the fishing fleet, total catches etc.) and aquaculture activities (areas used for aquaculture, production, etc.).
• tourism data accompanied with pressures and impacts from tourism;
• number and type of ports and related pressures;
• use of marine waters for energy generation, if any; etc.

In addition to the description of existing conditions, a projection of pressures and impacts under the assumed continuation of existing policies and measures need to be made. The role of the economic analysis will be to provide a projection of expected changes in the uses of marine environment to allow for estimation of pressures and impacts. UNEP/ MAP Plan Bleu’s report on economic and social analysis of the uses of marine waters in the Mediterranean (2014a) can be used as a good example of how to structure and organize socio-economic data. The report is also relevant for the assessment of benefits (described in the following paragraphs).

2. Making an inventory of, and to the extent possible assessing direct and indirect benefits of different uses of marine environment. This entails collection of data on e.g. revenues, turnover, gross value added, employment, direct and indirect contribution to GDP, etc. from different economic activities. In cases when adequately disaggregated (e.g. gross value added from coastal industries; employment in coastal agriculture etc.) and quantified data will not be readily available, the NAP update teams/ consultants should make an effort to come up with closest possible approximations and/ or qualitative description of benefits with the overall aim to have a clear picture of the magnitude and significance of different economic sectors.

In addition to standard economic measures of benefits (such as figures on employment, revenues, etc.), it will be also necessary to consider less conventional measures of benefits provided by marine environment (such as goods and services provided by ecosystems). Since these do not necessarily have market value, there will be a need to carry out their valuation using some of the established techniques (discussed in more detail in section III of this document) or to rely on valuation studies, if existent, that have already assessed benefits provided by respective marine ecosystems. A growing number of such studies is available in different countries and they can serve as a valuable source to overcome data gaps and/ or avoid time and resource demanding assessments being carried within NAP update. In this phase of NAP update assessment, it will be necessary to identify and describe direct and indirect benefits and compile existing information from various sources, while as the valuation itself, when necessary and opted for, will be carried out at later stages of the analysis (e.g. for estimation of socio-economic losses and selection of measures under steps 4 and 5 of the NAP update).

In carrying out the two tasks (describing the human activities affecting the marine environment and the benefits deriving from it), it is recommended that the economic expert/s in NAP update teams follow the approach to determination of geographic scope applied in the NBB preparation and use the related data

5 The indicators that are most commonly used to assess socio-economic benefits/ use values from different sectors are value added, production value, income and employment.

6 The available guidance on MSFD implementation (e.g. WG ESA, 2010) highlights the importance of adequate definition of spatial, sectoral and temporal aspects. First of all, there is a need to define the size of the ecosystem, that is, to define the relevant borders of the ecosystem subject to the analysis. In the analysis one must also determine what economic sectors should be included in order to address the consequences of the problem as well as the policy responses. To include all sectors impacting on or being affected by the marine ecosystem services or all sectors affected by measures /policy instruments might not be practically possible or even justified. For practical reasons, focus might have to be restricted to capture the main sectors connected to the problem either as drivers or as those economic sectors affected by the impacts. The temporal aspect means addressing the following two questions: i) what are the dynamics of the system? and ii) how do drivers, pressures, and states change over time? The temporal
from identification and classification of pollution sources (with related emissions). Due to the complexity of marine environment and expected lack of (disaggregated) data, the teams performing the analysis are likely to face difficulties particularly in their efforts to link certain impacts to relevant pressures and sources. Useful advices on the challenging task of establishing causal relationship between the state of ecosystems and economic activities can be found, amongst others, in the UNEP/MAP Plan Blue’s report on setting the scope for assessment of costs of degradation.

Discussion of future trends in pressures and impacts, as well as discussion of effects these may have on the benefits from different uses of marine environment, in the first step of the NAP analysis will need to include information such as what pollution loads are expected over time if there is no change in current policies and measures and what will be the related impacts. Examples of the questions that need to be answered through integration of the economic and other segments of the analysis (if possible in a quantified manner) include:

- will the existing industries (as well as tourism, population, agriculture, etc.) grow or decline and to what extent/ at what pace;
- what will it mean in terms of quantities of the main pollutants reaching marine waters, direct or indirect uses of marine ecosystems;
- what impacts will it have on the state of marine ecosystems; and
- what will be the resulting impacts (gains or losses) for human wellbeing.

These projections will not be an exclusive or even predominant responsibility of the economic expert/s in the NAP update teams, however it is very important that close cooperation and coordination with experts working on pollution reduction is ensured and that all available data and knowledge are mobilized to arrive at the best possible projection of trends.

This is pivotal for determination of gaps (difference between baseline and set objectives), which make a starting point for identification of potential (new) measures that are needed to bridge the gaps. Omissions and mistakes in one phase of the analysis are likely to be carried over into the next one, thus affecting (in a negative way) accuracy and usefulness of the overall assessment. When quantification of future pressures and impacts (as well as of expected changes in benefits) will not be possible, qualitative assessments should be made to give as detailed as possible picture of the likely developments in human activities affecting marine environment over time.

Step 2: Definition of quantifiable objectives and operational targets

The definition of objectives and targets will primarily rely on the commitments stemming from the ECAP-GES and Regional Plans in the framework of SAP-MED as well as on the national priorities. Nevertheless, it is important to consider socio-economic conditions and have in mind possible specific concerns when setting up the environmental targets. A good baseline description of economic sectors (uses of marine waters) and related benefits, with projection of trends (resulting from the 2 economic analysis tasks performed in the NAP update step 1) will be of a great use for objectives and targets setting.

The scale of the socio-economic and environmental impacts of concern can be addressed through scenarios analysis. Understanding the dynamics of the ecosystem is vital in order to make scenarios as well as identify the appropriate policy responses.
Step 3: Identification of gaps/ issues

Identification of gaps between midterm baseline and set objectives/ targets and assessment of the ability of existing measures to bridge the gap will also entail analysis of economic factors (including financial and/or fiscal ones) and issues that prevent achievement of desired objectives. For example, barriers relating to wastewater management that are found in many countries are low levels of water tariffs, which slows down development of wastewater collection and treatment systems. Similarly, uptake of cleaner technologies in coastal industries is frequently hindered by the fact that there are no instruments (such as tax alleviations, pollution charges) to incentivise or dis-incentivise their introduction.

Step 4: Prioritization of issues and identification of potential measures

Prioritisation of issues and identification of measures is another step in the NAP update process where economic analysis will play a very important role, as one of the envisaged criteria for prioritisation of issues are socio-economic losses that will ensue if the set objectives are not met and if there is deterioration in the state of marine environment. The role of economic analysis at this stage of the NAP update is to provide as precise as possible data on the extent of losses that can be expected if appropriate measures are not introduced to close the gap between baseline and GES targets.

The main task under this step is to describe in qualitative and, if possible, in quantitative terms the costs that are expected to occur if the status of marine waters and ecosystems deteriorates. According to the UNEP/ MAP Plan Blue’s report (2014 b), to cost of degradation corresponds to a loss of welfare and can be assessed in different ways, e.g. through a foregone benefit, a loss of profits, the increase in production costs or rise of mitigation costs. The main challenges highlighted in the report include definition of the reference against which the degradation will be assessed, establishment of causal relationships and assigning a monetary value on impacts that result from environmental change.

Various approaches – ecosystem, thematic and cost-based approach – to estimating the costs of degradation have been developed and used, mainly in the context of the EU MSFD implementation (the main elements of the three approaches are presented in table 2-1). Experiences are also gained in non-EU countries, for example as a part of the Regional Governance and Knowledge Generation (ReGoKo) project⁷, and should be utilised to the greatest possible extent in the NAP update process.

Each of these approaches employs different valuation methods including qualitative, quantitative and monetary valuation. The assessments can be qualitative and quantitative in the sense that they can provide evidence of the types of ecosystem services that might be lost and the extent of that loss, without monetisation (e.g. assessment of a decline in fish stocks without assigning a value to the change).

Monetary valuation is a way of capturing people’s valuation of the ecosystem services and is applied for services that are not traded and priced in any market. To be able to compute the economic value of environmental change influencing non-market ecosystem services, special valuation methods have been developed. Valuation methods fall broadly into two main categories: economic and non-economic. Each valuation technique has its advantages and disadvantages. Market data, cost-based data (including use of abatement costs) and the “production function approach” can elicit monetary values that have a strong foundation in robust data, but these methods cannot derive values that are not traded in any market.

⁷ Under the project, UNEP/MAP Plan Bleu supports activities on strengthening the knowledge base on the socio-economic importance of maritime activities in the Mediterranean basin and on the cost of degradation of the marine environment at national level. This initiative includes the development of socio-economic assessments of key maritime activities and of ecosystem service losses for selected Mediterranean countries.
Choice modelling and contingent valuation can capture more of the total economic value of an ecosystem service (particularly non-use values), but the theoretical foundation for these analyses has been questioned. A summary table of the pros and cons of various valuation techniques is provided in the section III, preceded with a more detailed explanation of different valuation methods.

Step 5: Selection of a programme of pollution reduction measures

Selection of a programme of pollution reduction measures is a crucial step in the NAP update where NAP teams will propose a set of the most needed and effective measures from the list of prioritised potential measures. The criteria of selection will include priority rank, ability to integrate with other measures, impact on marine environment, technical feasibility, implementation timetable as well as costs of implementation and cost-effectiveness/cost-benefit ratios (or net present values). This is therefore the NAP update stage where CEA/CBA will be used (to the applicable/practicable extent). More details on why, how and when to apply CEA/CBA (or use alternative tolls) are provided in Section III of this document.

Step 6: Development of NAP follow-up and reporting plan

A set of indicators that will be included in the NAP and the plan on how to follow-up and report on NAP implementation will also need to include data/indicators from the economic analysis the countries will deem appropriate for monitoring and eventual updating of programme of measures. It is suggested that the NAP follow up plan includes recommendations on the main research needs and adjustments in the information and statistical systems to allow for better assessment of the effectiveness and sustainability of NAP measures.

Step 7: Drafting the NAP

The final step in the NAP update includes evaluation of the overall sustainability of the programme of measures and consultations, thus offering an opportunity to check rigorousness and consistency of the economic analysis once again. In the consultation phase in particular, principles and methods used in the economic analysis should be explained and results checked with a wide range of stakeholders. Any comments and suggestions regarding the estimation of costs and benefits (how realistic are they, have any significant omissions been made etc.) should be considered ad integrated to the greatest possible extent in the final version of the NAP in a concise manner. The results of the economic analysis will help decision makers to include in the final NAP an effective and sustainable set of measures to achieve ECAP GES and Regional Plans targets in the framework of SAP-MED.
Key issues

<table>
<thead>
<tr>
<th>Ways of addressing the costs</th>
<th>The ecosystem services approach</th>
<th>The thematic approach</th>
<th>The cost-based approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The cost of degradation is defined as the difference in values of ecosystem services provided in two different situations: the Good Environmental Status (GES) and a “Business as Usual” (BAU) Scenario.</td>
<td>The cost of degradation is analysed through costs, expenses and losses of benefits incurred by degradation themes arising from current environmental situation compared to a reference status characterized by GES achievement.</td>
<td>The cost of degradation is analysed through current quantified spending for preventing further degradation in comparison to the current situation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Communicate at an early stage on the potential lost benefits if an environmental policy is not implemented. Benefits of implementing the policy could also later on be compared with the costs of implementing it.</td>
<td>Assess current cost of degradation and compare them with a GES situation (extra-costs). Get an overview of current socio-economic impacts of environmental degradation. Provide a knowledge base to assess costs and benefits of future measures.</td>
<td>Get a quantified overview of current socio-economic impacts of environmental degradation. Inform on the financing structure for more appropriate decisions regarding who should bear future costs.</td>
</tr>
<tr>
<td>Main steps (as defined by WG ESA)</td>
<td>1. Define GES using the qualitative descriptors listed in the MSFD. 2. Assess the environmental status in a Business As Usual (BAU) scenario. 3. Describe in qualitative and, if possible, quantitative terms the difference between the GES and the environmental status in the BAU scenario, i.e. the degradation of the marine environment. 4. Describe the consequences to human well-being of degradation of the marine environment, either qualitatively, quantitatively or in monetary terms.</td>
<td>1. Define degradation themes, e.g. marine litter, chemical compounds etc.; 2. Define a reference condition, for example a condition where targets for good environmental status are achieved; 3. Describe in qualitative and, if possible, quantitative terms the difference between the reference condition and the present environmental status, i.e. the degradation of the marine environment, for all the degradation themes; 4. Describe the consequences to human well-being of degradation of the marine environment, either qualitatively, quantitatively or in monetary terms.</td>
<td>1. Identify all current legislation that is intended to improve the marine environment; 2. Assess the costs of this legislation to the public and private sectors; 3. Assess the proportion of this legislation that can be justified on the basis of its effect on the marine environment (as opposed to health or on-shore environmental effects); 4. Add together costs that are attributable to protecting the marine environment from all the different legislation you have assessed.</td>
</tr>
<tr>
<td>Example of costs considered</td>
<td>If more fish were available in the sea, fishing quotas could be increased and fishermen could make X € more profits. Non-use values could also be increased.</td>
<td>Today X € are spent to mitigate the negative effects of water pollution on aquaculture.</td>
<td>Today X € are spent for less environmentally damaging anti-fouling materials and other technical measures built into ships to comply with the International Oil Pollution Compensation (IOPC) Fund.</td>
</tr>
</tbody>
</table>
3 Section III: Cost-effectiveness and cost-benefit analysis of measures/programmes of measures

The aim of this section is to:

• provide brief explanation of the tools and outline their possible uses;
• recommend practical steps in potential application of the CEA/CBA in the NAP update process and suggest alternative approaches in case full scale economic assessments will not be doable; and
• provide more information on methodologies and particularly challenging aspects of conducting the CEA/CBA and point out possible ways for overcoming the challenges.

More detailed formation on the CEA and CBA (with references to different sources) can be found in chapter 6 of this document.

3.1 Cost-effectiveness analysis

The cost-effectiveness analysis has been widely applied in evaluating different policy options and specific measures/projects and an extensive literature on both the theoretical underpinnings of the concept and on the practical experiences and pros and cons of its applications is available.

CEA is an analysis of the costs of alternative individual and/or sets or programmes of measures designed to meet a well specified/quantified objective. It is often interpreted as a tool that helps find the least-cost solution for meeting a prescribed target (for example, how to attain a set level of nitrogen in coastal waters at least costs). The cost-effectiveness is calculated by dividing the annualised costs of the assessed measures/sets of measures by a quantified physical effect. Marginal costs of different assessed options can, for example, be defined as the increase in total abatement costs when pollution loads are decreased by 1 ton or 1 kilogram per year. As long as marginal costs are not equal, it is possible to obtain the same level of pollution reduction at lower costs by shifting emission reduction from high cost to lower cost measures. CEA is normally used when it is difficult or impossible to express benefits from different measures in monetary terms.

In the steps 1 – 4 of the NAP update process, baseline will be defined, specific environmental objectives/operational targets (e.g. reduction in nutrient inputs, bringing concentrations of contaminants below the levels giving rise to pollution effects, etc.) will be determined and potential measures to bridge the gaps between the baseline and target situations identified. Provided that the data is available and the national NAP teams deem it appropriate (within the step 5 of the NAP update), it is recommended to conduct a CEA for specific measures/sets of measures by carrying out the following tasks:

1. Assess the effectiveness of these measures in reaching the environmental objective;
2. Assess the costs of these measures;
3. Rank measures in terms of increasing unit costs;
4. Assess the least cost way to reach the environmental objective/target.

In case sufficient data will not be available for monetary expression of costs of all measures, the experiences with the implementation of the EU MSFD show that the use of qualitative and semi-
quantitative approaches is also possible and can give valuable results. Examples of several possible approaches are summarised in points a) to d) below.

a) **Collecting opinion of experts, civil servants and scientists** (through workshop and interviews) on the contribution of each measure to the GES indicators. This approach is useful in situations when physical effects of potential measures can be identified but not quantified. An illustration referring to marine litter is presented below.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional fishing for litter</td>
<td>Negative effect: decreased seafloor integrity</td>
</tr>
<tr>
<td>Additional beach cleaning on non-bathing beaches (once a year)</td>
<td>Less litter on the beach</td>
</tr>
<tr>
<td>Adding individually recognisable markers to fishing nets and wires</td>
<td>Reduce illegal or improper spill of nets (the first source of litter on the beach)</td>
</tr>
</tbody>
</table>

b) **A scoring system** can be applied to classify:

- expected reduction of different pressures for each measure, and
- the relation (and importance) of each pressure for each individual target (and indicator)

as low, moderate, high or very high, based on the set of pre-determined criteria. Multiplying the expected reduction in pressure with the importance of a pressure for a certain target gives the on-site effect for a certain measure (displayed on a scale 1 to 5). The pressures are then scored according to their geographic dimension using the same classes (low to very high). Multiplying the on-site effect and scale of the effect gives the overall effectiveness of the measure. The effectiveness scores are then compared with costs scores in a matrix form to allow for conclusion on the overall cost-effectiveness of measures. This approach is particularly useful to overcome the knowledge gaps regarding driver-effect-pressure relations.

c) **Environmental effectiveness of measures can be evaluated and classified** (as strong, potentially strong, or uncertain) and compared with categories of implementation costs (low, moderate and high). Based on such an analysis, four levels of cost-effectiveness can be defined:

- cost-effective measures,
- moderate cost-effective measures,
- low cost-effective measures, and
- non cost-effective measure.

d) **A ‘scale’ (‘+++’ to ‘---’) system** can be used to assess costs and effectiveness (and possibly other criteria including benefits, feasibility, etc.) of NAP measures when monetized assessments will not be possible.

It is recommended that NAP update teams consider using the approach of evaluating and comparing effectiveness and costs (example c) to categorise measures in terms of their overall cost-effectiveness. The advantage of the approach is its simplicity. On the other hand, its application leaves a large room for arbitrary assessments and efforts should be made in the NAP update process to reduce subjectivity (by e.g. conducting the assessment in a workshop setting and reaching an agreement of various stakeholders on the assigned categories, or by defining detailed criteria on how to evaluate effectiveness).
3.2 Cost-benefit analysis

CBA is a method for comparing policy measures against the baseline situation in terms of their advantages (benefits) and disadvantages (costs). This essentially involves estimating all of the negative and positive economic, social and environmental impacts. CBA can be done at various levels, depending on data availability. It can be either a full CBA when the most significant part of both costs and benefits can be monetised, or a partial CBA in cases when quantification/monetisation will only be possible for a part of the costs and benefits. The results of this analysis can be interpreted as a benefit to cost (B-C) ratio (total benefits divided by total costs) where a ratio larger than one indicates that the policy measure is beneficial, or as a net present value (NPV - the present value of the net benefits) where a positive NPV indicates a welfare improvement.

When conducting a full CBA in the NAP update process will be deemed appropriate, the following steps are recommended (adapted from Turner et al, 2010):

1. Definition of the details of each measure/ set of measures subject to the analysis, including the ‘do nothing’ option (i.e. projection of trends in pressures and impacts without analysed intervention/s).
2. Determining the spatial and temporal scales of the analysis (i.e. over what population is it appropriate to sum the costs and benefits and over what time period do the costs and benefits arise?).
3. Identification of the costs and benefits and their monetary values. Monetary value may be based on the market value of a good or service or on its replacement cost (if that can be calculated), or, in the case of some environmental goods and services, by use of various valuation techniques. To enable valid comparisons, all monetary values must refer to a common point in time – the base year – to give ‘present’ values. A standard discount rate is applied so that costs and benefits of measures with varying time scales can be compared (some considerations to support the choice of discount rate are provided in sub-section 3.3.3).
4. Compare the economic efficiency of various options through comparison of their benefit-cost ratios or net present values.

If the resources would permit it, it is also recommended to carry out a sensitivity analysis to assess the impact (on the benefit cost ratio and/ or net present value) of changes in the values of central parameters, e.g. the value of costs and benefits or the discount rate. By examining the impact that increasing costs (or reduced benefits) may have on the net present value, the breakeven point can be determined whereby the assessed option would be no longer justifiable.

It is preferred that the costs and benefits are expressed in monetary terms, but this is not a requirement to call an analysis a cost-benefit analysis. In cases full monetisation will not be possible, a qualitative description of costs and benefits could be performed instead to meet the needs of the NAP update and aid the decision making process.

Specific examples of the application of cost-benefit analyses are available from the UNEP/MAP Plan Bleu’s (2014c) and Arcadis (2014) reports. The Plan Bleu’s report is particularly valuable as it describes in detail concrete steps and methods that need to be applied at each CBA stage with an illustration for a project-level analysis (example of CBA for an afforestation project is provided). A limited number of examples from applying CBA in the framework of the EU MSFD implementation is also available.
3.3 Assessment of costs, valuation and temporal aspects in CEA and CBA

Three very important and challenging aspects in conducting CEA and/or CBA are related to techniques and approaches used to assess the costs of measures, include values for non-market goods and services and to allow for comparison of costs and benefits that occur at different times. The following sub-sections provide more information and the main guidance points for each of these.

3.3.1 Costing of measures

The main question to be answered in costing of potential NAP measures (as an input for CEA/ CBA or criteria for prioritisation of measures) is how much the implementation of the given measure costs the society (in terms of public and private costs). To answer this question, nature of the given measure needs to be determined and its breakdown into basic components and/ or inputs needed for implementation provided. Different types of measures require different types of input to be implemented, and these inputs are fundamental for costing i.e. for estimation of costs.

- **Technical measures:** some benchmarks or indicators usually exist for concrete interventions with tangible results (covering investment and operational costs). For example, feasibility studies may have been carried out for WWTP in a given region of the country and unit costs per population equivalent can be derived and used for similar projects/ measures. Alternatively, some international costing methods could be applied\(^8\), while for example using Purchasing Power Parities to adjust the costs to national circumstances. Waste management strategies can be also a useful source of information for the assessment of costs as they may include information on e.g. number of improper waste disposal sites in the coastal region the remediation of which is needed and a number of landfills to be constructed with estimation of costs. Other national plans may be a useful source of information on costs and contain e.g. information on number of industries in which technological changes are needed to address contaminants, scale of investments needed and similar. UNEP MAP Background document on marine litter regional plan (2013) and indicative costs provided therein on e.g. clean-up costs (per km of coast cleaned, per person to control litter, costs associated with fishing gear retrieval etc.) could be used for the assessment of costs of marine litter management measures.

- **Legislative measures** – the time needed to draft the laws and administer them are the main cost elements for this type of measures. Private costs (i.e. costs to entities to which the regulation applies) can be assessed by translating legal provisions into specific requirements needed to comply with the law and by estimating their costs.

- **Policy instruments** – tax breaks to stimulate introduction of cleaner technologies will have a clear cost for the national (regional and/ or local) budgets in terms of public revenues foregone. In addition to that, some indirect costs will incur relating to additional work of civil servants needed to administer the scheme. Introduction of economic instruments (e.g. pollution taxes and/ or charges, deposit-refund systems and similar) will also have a distinct cost linked to administration and enforcement (work of relevant tax and other public services, perhaps environmental funds, to collect the revenues, costs of monitoring the discharges, work of inspectorates to enforce the regulation etc.).

\(^8\) UfM report *Update priority investment projects for protecting the Mediterranean Sea from pollution: evaluation of NAP investment portfolio – regional analysis*, for example, assessed investment costs of priority wastewater projects by using cost functions developed by COWI under FEASIBLE model whereas an adjustment (reduction) of 80% was applied for Southern Mediterranean countries.
• **Capacity building and awareness raising** measures can be costed by e.g. determining how many people need to undergo training courses, take part in study visits and similar. Public campaigns costs can be assessed by breaking down the measures into type of communication materials, media time, work of specialized consultants etc.

A more difficult part of the analysis will be estimation of costs/ losses that would be incurred to the economy and society if the degradation is allowed (due to continuation of current measures and policies or under ‘no measures’ assumption) since these estimates include both use (direct and indirect) and non-use values.

As regards the benefits, the main questions are: How to quantify benefits? Is it always possible? How to provide for monetary expression of certain benefits that are expected to be generated by identified measures? How do we value achievement of good ecological status yet make sure the estimates are not arbitrary? Answers to some of these questions can be found through the use of techniques and approaches that are not always straightforward, are somewhat sensitive and frequently disputed (such as valuation of non-market goods and services and discounting – briefly discussed in the following sub-sections).

3.3.2 Valuation of non-market goods and services

Costs of positive and negative changes in an ecosystem as well as benefits from implementing certain measures can be captured through valuation of ecosystem services and products. The UNEP/ MAP Plan Bleu report (2014c) is a useful source of information on valuation as it presents the basic concepts and describes selected valuation methods (market price, cost based, hedonic pricing, travel cost as well as stated preferences and other methods).

In order to understand the value of an ecosystem it is necessary to characterise and quantify the relationships between ecosystems and the provision of ecosystem services, and to identify the ways in which these impact on human welfare. Contributions to human welfare i.e. benefits from ecosystem services can be translated into economic value using economic valuation techniques. To arrive at economic value of changes in ecosystem services, the following steps are recommended (based on Defra, 2007):

1. Establish the environmental baseline;
2. Identify and provide qualitative assessment of the potential impacts of measures on ecosystem services;
3. Quantify the impacts of measures on specific ecosystem services;
4. Assess the effects on human welfare;
5. Value the changes in ecosystem services.

Valuation is the last stage of an often detailed assessment of the impacts on ecosystem services arising from a given measure/ set of measures or policies. As already mentioned, there are two types of valuation methods: economic, which is consistent with use in a cost-benefit analysis context, and non-economic (deliberative and participatory methods). The concept of total economic value (TEV) consisting from use and non-use values with different sub-categories is presented in figure 3-1 as it is important for understanding and comparing different valuation methods.

9 For example, how much will BOD$_5$ emissions be reduced if certain measure is implemented and what benefit will it generate for the marine ecosystems and society.
Economic valuation methods attempt to elicit public preferences for changes in the state of the environment in monetary terms. The main types of economic valuation methods available are Revealed Preference and Stated Preference methods.

Revealed Preference (RP) methods rely on data regarding individuals’ preferences for a marketable good which includes environmental attributes. These techniques rely on actual markets. Specific techniques falling into this group are: market prices, averting behaviour, hedonic pricing, travel cost method, and random utility modelling. Market prices and averting behaviour can also be classified under pricing techniques.\(^\text{10}\)

Stated Preference (SP) methods use carefully structured questionnaires to elicit individuals’ preferences for a given change in a natural resource or environmental attribute. In principle, SP methods can be applied in a wide range of contexts and are the only methods that can estimate non-use values which can be a significant component of overall TEV for some natural resources. Contingent valuation and choice modelling are the main SP techniques used.

An indicative applicability of these methods in the context of specific categories of ecosystem services is presented in the table 3-1 which at the same time provides information on benefits and limitations of different approaches.

\(^{10}\) Pricing approaches use observed market prices either as direct measures of economic value of an ecosystem service (e.g. market prices, averting expenditure, damage costs avoided) or as a proxy for the value (referred to as cost-based approaches). Cost-based approaches to valuing environmental goods and services consider the costs that arise in relation to the provision of environmental goods and services, which may be directly observed from markets such as: opportunity cost; cost of alternatives, and replacement costs. However, as these methods are based on costs, they do not strictly measure utility (and are therefore not included under the TEV framework), that is, they are non-demand curve methods and need to be used with care.
Table 3-1: Choice of valuation methods, Defra, 2007

<table>
<thead>
<tr>
<th>Valuation method</th>
<th>Element of TEV captured</th>
<th>Ecosystem service(s) valued</th>
<th>Benefits of approach</th>
<th>Limitations of approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market prices</td>
<td>Direct and indirect use</td>
<td>Those that contribute to marketed products e.g. timber, fish, genetic information</td>
<td>Market data readily available and robust</td>
<td>Limited to those ecosystem services for which a market exists</td>
</tr>
<tr>
<td>Cost-based approaches</td>
<td>Direct and indirect use</td>
<td>Depends on the existence of relevant markets for the ecosystem service in question. Examples include man-made defences being used as proxy for wetlands storm protection; expenditure on water filtration as proxy for value of water pollution damages</td>
<td>Market data readily available and robust</td>
<td>Can potentially overestimate actual value</td>
</tr>
<tr>
<td>Production function approach</td>
<td>Indirect use</td>
<td>Environmental services that serve as input to market products e.g. effects of air or water quality on agricultural production and forestry output</td>
<td>Market data readily available and robust</td>
<td>Data-intensive and data on changes in services and the impact on production often missing</td>
</tr>
<tr>
<td>Hedonic pricing</td>
<td>Direct and indirect use</td>
<td>Ecosystem services that contribute to air quality, visual amenity, landscape, quiet i.e. attributes that can be appreciated by potential buyers</td>
<td>Based on market data, so relatively robust figures</td>
<td>Very data-intensive and limited mainly to services related to property</td>
</tr>
<tr>
<td>Travel cost</td>
<td>Direct and indirect use</td>
<td>All ecosystems services that contribute to recreational activities</td>
<td>Based on observed behaviour</td>
<td>Generally limited to recreational benefits. Difficulties arise when trips are made to multiple destinations,</td>
</tr>
<tr>
<td>Random utility</td>
<td>Direct and indirect use</td>
<td>All ecosystems services that contribute to recreational activities</td>
<td>Based on observed behaviour</td>
<td>Limited to use values</td>
</tr>
<tr>
<td>Contingent valuation</td>
<td>Use and non-use</td>
<td>All ecosystem services</td>
<td>Able to capture use and non-use values</td>
<td>Bias in responses, resource-intensive method, hypothetical nature of the market</td>
</tr>
<tr>
<td>Choice modelling</td>
<td>Use and non-use</td>
<td>All ecosystem services</td>
<td>Able to capture use and non-use values</td>
<td>Similar to contingent valuation above</td>
</tr>
</tbody>
</table>

Non-economic valuation – deliberative or participatory – approaches\(^\text{11}\) tend to explore how opinions are formed or preferences expressed in units other than money. The decision on the choice of valuation methods does not need to be eliminatory (economic or non-economic). Instead (depending on the context) a combination of the two can be applied.

\(^{11}\) Include qualitative semi-structured surveys, group deliberative discussions (such as focus groups or deliberative forums), citizens' juries, health-based approaches (such as quality-adjusted life years or health-year equivalents) and others.
3.3.3 Discounting

Discounting is a method used to value at the same date economic flows and stocks which have originated in different points in time. Discount rate is the rate used for discounting future values to the present. In cost-benefit analysis, there is a distinction between a private and a social rate of discount. A private rate of discount reflects the time preference of private consumers; a social rate is based on the government’s view, which can be more long-sighted as it attempts, in most cases, to take into account the welfare of future generations (WATECO, 2003).

The discount rate used may have a significant impact on the outcome of the analysis, as it affects the value of future costs and benefits. Since benefits usually occur quite some time after measures are taken the temporal weight of these, given by the discount rate, will have a significant effect on the benefit side in a cost-benefit analysis. Since present values of future benefits becomes less the further ahead in the future they occur, assuming a positive discount rate, a hyperbolic discount rate is used in some cases. A hyperbolic discount rate implies a discount rate that is decreasing between different time periods (an example used by WG ESA in their 2010 Guidance document is provided in the table below).

<table>
<thead>
<tr>
<th>Time horizon</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 years</td>
<td>3 %</td>
</tr>
<tr>
<td>10-30 years</td>
<td>2 %</td>
</tr>
<tr>
<td>30-75 years</td>
<td>1 %</td>
</tr>
<tr>
<td>> 75 years</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

By using a hyperbolic discount rate the benefits occurring far into the future are given a relatively larger weight, than if a constant discount rate had been used. This might be justified by the fact that uncertainty increases as the impacts of projects occur further into the future.

Since any level of discount rate used will be questioned, a sensitivity analysis with regard to the discount is recommended to be applied in any assessment. It is also recommended to provide an explanation on the motivation behind the specific choice of discount rate.

3.4 CEA, CBA or alternative tools?

When evaluating different policy options, measures or projects, the economic analysis normally looks at two questions: i) is a given objective worth achieving, and ii) if yes, what is the most cost-effective way of achieving it. Cost-benefit analysis is used to address the first question while the second one can be answered by applying the cost-effectiveness analysis.

Another way of making the choice of using the CEA or CBA is to look at the nature of the question that is being analysed. If the task is meeting some environmental standard, complying with a law or achieving a target, then CEA is the appropriate course of action. If the question is one of choosing between a number of different possible policy or project options which do not involve compliance with standards or targets, then CBA is the most appropriate assessment tool.

Further questions to be considered in determining whether to undertake a CEA are:
- Have functional relationships between measures, pressures and impacts been described?
- Is the socio-economic data collected in the first step of the NAP update sufficient to allow a cost-effectiveness assessment?
- What are the gaps in information and what actions are needed to fill the gap?
While as CEA can help to prioritise measures, its limitation is that the estimation of costs for the application of this tool does not consider the full socio-economic and environmental impacts. The effectiveness assessment is based on the contribution of a measure to a specific target and not the full range of benefits. Another important limitation of CEA is to do with the assessment of the effectiveness of combination of measures.

CBA can provide a very useful and reliable input into the decision-making system, provided that it is carried out fully and impartially. However, translating all the costs and benefits of a project, policy or management scenario into monetary terms can be impractical or it may not give useful results. It should be remembered that CBA only provides an aid to decision making and that the option providing highest benefit per unit cost may not be the most appropriate on other grounds. In these situations multi-criteria analysis (MCA) can provide an alternative as it permits the inclusion of non-monetary criteria into the assessment and explicitly allows for stakeholder deliberations and dialogue.

Multi-criteria analysis (MCA) is a decision support method that can be used to evaluate different alternatives (e.g. different policy options) according to their performance against a selected set of evaluation criteria. These performances are presented in a so called performance matrix, or consequence table. MCA applies cost-benefit thinking to cases where it is necessary to deal with impacts that are a mixture of qualitative, quantitative and monetary data and where are varying degrees of certainty.

The main steps of MCA, as recommended in the UNEP/MAP Plan Bleu’s report (2014 c), are:

Step 1: Establish the aims of the MCA, the decision makers and other stakeholders
Before starting the MCA, it is crucial to clearly define the objective of the MCA (why it is done) and to define who should be involved in the MCA process (e.g. decision makers and other stakeholders).

Step 2: Identify alternatives
After the objectives and the stakeholders are identified, the alternatives (e.g. alternative management approaches, measures or similar) to be evaluated should be listed.

Step 3: Define the criteria (and the corresponding objectives) that reflect the relevant consequences of each option
Defining the criteria is a crucial part of the MCA. The selected criteria should reflect all the important characteristics of the evaluated alternatives.

Step 4: Describe the performance of each alternative against the criteria in the performance matrix and determine the score matrix (scoring)
Before the scoring can be performed, all evaluated alternatives should be described, with regards to the selected criteria. These descriptions should be done in a neutral and objective way, not to influence the evaluation process.

Step 5: Assign weights to each of the criteria to reflect their relative importance (weighting).
This step introduces the relative importance of the criteria, and thus adds another dimension to the evaluation process. The users involved in a MCA may not only differ in their judgment of the performance on criteria, but also in the relative importance they attach to different criteria).
Step 6: Combine the weights and scores for each of the options to derive overall values.

Step 7: Analyse the results
Based on the obtained results, recommendations can be made regarding which alternative would be the best (overall) or which performs best on a single criterion.

The following strengths and weaknesses of multi-criteria analysis have been identified:

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enables taking into account impacts that are not easily given monetary values.</td>
<td>• No built-in standard value, as it applies values (criteria and weights) specific to the evaluated option.</td>
</tr>
<tr>
<td>• Facilitates stakeholder involvement.</td>
<td>• Comparisons between studies with different valuation criteria and weights are very limited.</td>
</tr>
<tr>
<td>• Makes the appraisal and decision-making process more transparent.</td>
<td>• Requires well developed participation processes and strongly depends on stakeholder willingness to participate.</td>
</tr>
</tbody>
</table>

In case the countries will choose to apply MCA to support selection of the programme of measures, the analysis itself will be conducted in the step 5 of the NAP update. Some elements of the MCA will however need to be determined in earlier NAP phases (e.g. alternatives to be assessed will in fact be determined in the NAP step 4 when potential measures will be identified).

3.5 Data limitations, complexities and uncertainties

Complexities of marine environment\(^{12}\) pose numerous difficulties for assessing the cause-effect relationships between pressures, impacts, state and related socio-economic losses or gains. This in turn makes the assessment of effectiveness and benefits of different measures more complicated. In a cost-effectiveness analysis, for example, effectiveness can be either assessed by looking at a pressure (tons of emissions reduced) or an impact (avoided damage or improvements in environmental quality). Which of the two is applicable depends on how the objectives (which the assessed measures are set to achieve) are defined. In practice, most assessments tend to focus on pressures, since they are less challenging to measure and since the causality between measures and effects is easier to establish.

Lack of data and uncertainties due to complexity of marine environment, insufficient monitoring and information systems in many of the countries that will perform NAP update as well as other factors are expected to affect significantly economic analysis and possible application of CEA and CBA. Nevertheless, these limitations should not be used as a justification not to conduct the analysis and every effort should be made to apply the logic and elements of cost-effectiveness and cost-benefit assessments in determining programmes of pollution reduction measures and to utilise to the greatest possible extent potential of these tools.

Available studies and reviews show that carrying out full scale CBA and monetising all the costs and benefits is a significant challenge but at the same they provide examples of good practices in overcoming such challenges. These can provide ideas and point out to useful practices for the development of the NAP economic analysis.

\(^{12}\) Including for example the following facts: the seas are an open access resource; there are transboundary effects and mixing/accumulation of pollutants and impacts; there are gaps in scientific knowledge on the dynamics of marine ecosystems and their reaction to external stresses; and similar.
To address data gaps, the NAP update teams need to make sure that all the useful sources of information are identified in the beginning of the process including in particular any information on non-economic uses of marine waters, non-use values, correlations between drivers, pressures and state/impacts. Available data should be used in the best possible way and a pragmatic approach should be employed, while setting the basis for more comprehensive analyses in the future. Usage of a mix of quantitative and qualitative data and expert judgments is strongly encouraged in all the cases when full quantification will not be possible.

The following simple recommendations drawn from the existing experiences with similar types of the analysis can be useful:

- Start preparations early;
- Identify all relevant national sources and studies; identify comparable regional/international sources and examples;
- Know (agree upon) what role will the economic analysis have in the decision making process;
- Assess available data and decide on appropriate tools to be used;
- Organise data in the manner that will allow consequent steps in the analysis (e.g. develop a database of measures with uniform data on costs and effects of measures);
- Identify any areas where new assessments/data collection is necessary having in mind time and resource limitations;
- Try to keep the analysis simple, focusing on the main pressures and impacts;
- When quantification is not possible, use qualitative approaches;
- Identify research needs and adjustments in the monitoring and statistical systems for the future.

It is also strongly recommended to the NAP update teams to note down any gaps in knowledge, lack of data, and uncertainties that will be faced in the process, to explain clearly assumptions and approximations made, and to discuss possible effects all of these may have on the deployed methodologies and obtained results.
4 Useful reports

European Commission DG ENV (2010). WG ESA: Economic and social analysis for the Initial assessment for the marine strategy framework directive: a guidance document [Provides a comprehensive overview of issues relevant for the EU MSFD Implementation most of which are highly significant for the NAP update too. The most relevant topics covered include economic and social analysis of the use of marine waters; cost of degradation; and valuation methods]

Plan Bleu (2014a), Economic and social analysis of the uses of the coastal and marine waters in the Mediterranean, Characterization and impacts of the Fisheries, Aquaculture, Tourism and recreational activities, Maritime transport and Offshore extraction of oil and gas sectors, Technical Report, Plan Bleu, Valbonne, available from: www.planbleu.org [Report prepared in the context of implementation of the MAP Ecosystem Approach Initiative EcAp; it analyzes fisheries, aquaculture, tourism and recreational activities, maritime transport and offshore exploitation of oil and gas at the scale of the Mediterranean basin as well as at a sub-regional level. Production and socioeconomic indicators are presented for each sector]

Plan Bleu, ACTeon (2014b), Scoping study for the assessment of the costs of degradation of the Mediterranean marine ecosystems, Technical Report, Plan Bleu, Valbonne [Discusses the relevance of different assessment methods that can be applied for assessing the costs imposed on society by the current state of degradation of the Mediterranean marine & coastal ecosystems]

Plan Blue, EFIMED and CTFC (2014c) Methods and tools for socio-economic assessment of goods and services provided by Mediterranean forest ecosystems, Technical Report, Plan Bleu, Valbonne [Provides useful information on the theory behind valuation methods, cost-benefit and multi criteria analysis together with concrete examples on the application of these tools and methodologies]

Arcadis (2014), Background document summarising experiences with respect to economic analysis to support member states with the development of their programme of measures for the Marine Strategy Framework Directive [Prepared in the framework of WG ESA activities, contains discussion of the concepts and practices from different Member States (including ongoing work) on the role and approach of economic analysis in the EU MSFD PoM development]

5 List of references

8. Joint Research Centre of the European Commission (2013). Research needs with regard to the socio-economic analysis under the Marine Strategy Framework Directive; Report from the workshop held in October 2013 under STAGES (Science and Technology Advancing Governance of Good Environmental Status) project

14. UNEP/ MAP (2013), Background Document on Marine Litter Regional Plan Measures and Indicative Cost Estimation of Measures Implementation (UNEP(DEPI)/MED WG.387/Inf.13)
6 Further information on cost-effectiveness and cost-benefit analysis

Cost-effectiveness

<table>
<thead>
<tr>
<th>Elaboration of the concept and possible application</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA is used to establish the “least cost solution” to achieve a certain predetermined output. A CEA is an analysis of the costs of alternative individual and/or sets or programmes of measures designed to meet well specified objective (quantified in physical terms). It can be used to identify the highest level of a physical benefit given available resources (e.g. delivering the maximum reduction in risk exposure subject to a budget constraint), as well as the least-cost method of reaching a prescribed target (e.g. a given concentration level of nitrogen in coastal waters at least costs). CEA is used when measurement of benefits in monetary terms is difficult, or in any other case when any attempt to make a precise monetary measurement of benefits would be redundant due lack of scientific evidence and/or open to considerable dispute, or where associated uncertainties are high. In the case of multiple objectives a more sophisticated weighted CEA is required, which gives weights to objectives to measure their priority scale. In a CEA, the focus lies in first instance on the direct costs, i.e. the cost of investment and operation associated with the implementation of measures. However if the measure is a policy instrument, an estimation would be necessary of the indirect costs as well. Typically a CEA mainly looks into the financial compliance costs; sometimes a rough estimation of (part of) the administrative costs is made but external costs are rarely known and usually not used. The purpose of a cost-effectiveness analysis is to find out how predetermined targets, e.g. threshold values for nutrients or other pollutant loads in a catchment/coastal waters can be achieved at least cost. Theoretically speaking, the least cost allocation of pollution abatement strategies is found if the marginal costs of the proposed measures are equal. The marginal costs of these abatement measures can for example be defined as the increase in total abatement costs when pollution loads are decreased by 1 ton or 1 kilogram per year. As long as marginal costs are not equal, it is theoretically possible to obtain the same level of pollution reduction at lower costs by shifting emission reduction from high cost measures to lower cost measures. A cost-effectiveness analysis seeks to find the best alternative activity, process, or intervention that minimises resource use to achieve a desired result. An ex-ante CEA is performed when the objectives of the public policy have been identified and an analyst or an agency has to find the least cost-option of achieving these objectives. The cost-effectiveness of a policy option is calculated by dividing the annualised costs of the option by a quantified measure of the physical effect, such as animal or plant species recovered.</td>
<td>Arcadis report, 2014</td>
</tr>
<tr>
<td>Turner et al, 2010</td>
<td></td>
</tr>
<tr>
<td>Goerlach et al, 2006</td>
<td></td>
</tr>
</tbody>
</table>

13 The direct cost is the cost of investment and operation associated with the implementation of measures. Indirect costs are costs associated with the policy instruments and their implementation and the policy’s impact on other environmental targets and on other sectors in the economy.
Tons of emissions of a given pollutant reduced, kilometres of river length restored, and so on. In this context, the effects of a policy can be both reduced pressures (for example, the least-cost option to reduce CO$_2$ emissions), or avoided impacts (for example, the cheapest way to keep global warming below 2°C), where the latter is usually more difficult to assess. Different options that achieve/ have achieved the same effect are then compared based on their cost. CEA, therefore, does not ask, nor attempts to answer, the question whether the policy is justified, in the sense that its benefits to society will exceed its costs to society. CEA is sometimes used as a second-best option when a full-blown CBA would be desirable, but many effects cannot be captured in monetary form.

An analysis of the costs of alternative programmes designed to meet a single objective. The programme which costs less will be the most effective.

Cost-benefit analysis

<table>
<thead>
<tr>
<th>Elaboration of the concept and possible application</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBA is a method for comparing policy measures against the baseline situation in terms of their advantages (benefits) and disadvantages (costs). This essentially involves estimating all of the negative and positive economic, social and environmental impacts, including items for which the market does not provide an observable measure of value, accruing to all affected societal parties. According to the EC Impact Assessment Guidelines, a CBA can be done at various levels, depending on data availability. It can be either a full CBA when the most significant part of both costs and benefits can be monetised utilising economic values derived through various economic techniques (e.g. market, revealed and stated preference-based methods); or a partial CBA in cases where only a part of the costs and benefits can be quantified and/or monetised.</td>
<td>Arcadis report, 2014</td>
</tr>
<tr>
<td>CBA is a means of project or policy appraisal. It involves identifying and measuring, in monetary terms, as many of the costs and benefits as possible that relate to a particular project or course of action. This helps to determine whether the project or policy will produce a net gain or loss in economic welfare for society as a whole. As a rule, a project (or policy option) is deemed to be efficient if total benefits exceed total costs.</td>
<td>Turner et al, 2010</td>
</tr>
<tr>
<td>A CBA compares the costs and benefits in monetary terms. The results of this analysis can be interpreted as a benefit to cost (B-C) ratio, i.e. total benefits divided by total costs, where a ratio larger than one indicates that the policy measure is economically beneficial, or as a net present value (NPV), that is the present value of the net benefits where a positive NPV indicates a welfare improvement. Strictly speaking, only those costs and benefits are included in a CBA that can be quantified in monetary terms. However, it will hardly ever be possible to monetise all impacts all the time: those impacts that cannot be monetised are often left out of the analysis. Non-monetised impacts, if considered relevant, can nonetheless be included in a qualitative discussion accompanying the discussion of the CBA results.</td>
<td></td>
</tr>
<tr>
<td>Cost-benefit analysis (CBA) is a technique for the assessment of the relative desirability of competing alternatives (events, project, management or policy measures). The assessment involves the comparison of the current (base case) situation to one or more alternatives considering the differences between the base case and the alternatives. For example, to evaluate the impact of the application of thinning on the output of forest goods and services in a particular forest, the base case (without thinning) would be compared to the</td>
<td>UNEP/MAP Plan Bleu, 2014c</td>
</tr>
</tbody>
</table>
alternative scenario (with thinning). The analysis would focus on the differences in costs and benefits, in the situations with and without the management measure. The CBA compares the costs and benefits measured in monetary terms.

The cost-benefit analysis can be conducted from different perspectives. Private CBA considers only those costs and benefits from the analysed alternative, which are imposed onto or accrue to a private agent (e.g. individual or firm). Thus, it also considers transfer payments (e.g., subsidies, taxes), which the private agent receives or pays to the administration. This type of CBA is also often called financial appraisal. Social CBA in turn attempts to assess the overall impact of an alternative on the welfare of the society as a whole.

CBA is carried out in order to compare the economic efficiency implications of alternative actions. The benefits from an action are contrasted with the associated costs (including the opportunity costs) within a common analytical framework. To allow comparison of these costs and benefits measured in widely differing units, a common denominator is used: money. This is where most problems usually start since some resources, especially environmental resources, are difficult to evaluate in monetary terms. Many of the goods and services provided by ecosystems, such as amenity, clean air, biodiversity sustenance, are not traded on a market, hence, no market price is available which reflects their economic value. Such prices need to be estimated instead through the use of valuation studies, for example eliciting people’s willingness to pay for a particular environmental good. By comparing costs and benefits in monetary terms, a CBA provides an assessment of whether a policy option (or a project) is worth implementing (that is whether the benefits outweigh the costs).

The evaluation of an investment project with a long-term perspective from the viewpoint of the economy as a whole by comparing the effects of undertaking the project with not doing so.

<table>
<thead>
<tr>
<th>CBA is carried out in order to compare the economic efficiency implications of alternative actions. The benefits from an action are contrasted with the associated costs (including the opportunity costs) within a common analytical framework. To allow comparison of these costs and benefits measured in widely differing units, a common denominator is used: money. This is where most problems usually start since some resources, especially environmental resources, are difficult to evaluate in monetary terms. Many of the goods and services provided by ecosystems, such as amenity, clean air, biodiversity sustenance, are not traded on a market, hence, no market price is available which reflects their economic value. Such prices need to be estimated instead through the use of valuation studies, for example eliciting people’s willingness to pay for a particular environmental good. By comparing costs and benefits in monetary terms, a CBA provides an assessment of whether a policy option (or a project) is worth implementing (that is whether the benefits outweigh the costs).</th>
<th>Goerlach et al, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>The evaluation of an investment project with a long-term perspective from the viewpoint of the economy as a whole by comparing the effects of undertaking the project with not doing so.</td>
<td>WATECO, 2003</td>
</tr>
</tbody>
</table>
APPENDIX H. Reference information on technical guidelines produced by UNEP/MAP for selecting management options for pollution prevention and control

UNEP/MAP/MED POL/WHO: Municipal wastewater treatment plants in Mediterranean coastal cities – Inventory of treatment plants in cities of between 2,000 and 10,000 inhabitants. MAP Technical Reports Series No. 169, UNEP/MAP, Athens, 2008.

UNEP/MAP/RAC/CP: Guidelines for the application of Best Available Techniques (BATs), Best Environmental Practices (BEPs) and Cleaner Technologies (CTs) in industries of the Mediterranean countries. UNEP/MAP: Athens, 2004. (English, French).

UNEP/MAP/RAC/CP: Guidelines for the application of Best Environmental Practices (BEPs) for the rational use of fertilisers and the reduction of nutrient loss from agriculture for the Mediterranean region. UNEP/MAP: Athens, 2004. (English, French, Arabic).
UNEP/DEPI/MED WG.404/7
Annex IV, Appendix H
Page 2

UNEP/MAP/MED POL: Riverine transport of water, sediments and pollutants to the Mediterranean Sea. UNEP/MAP: Athens, 2003. (English)

UNEP/MAP/MED POL: Guidelines for the management of fish waste or organic materials resulting from the processing of fish and other marine organisms. UNEP/MAP: Athens, 2002. (English, French, Spanish & Arabic)

UNEP/MAP: Atmospheric Transport and Deposition of Pollutants into the Mediterranean Sea: Final Reports on Research Projects. UNEP/MAP: Athens, 2001. (English)

UNEP/MAP/WHO: Remedial Actions for Pollution Mitigation and Rehabilitation in Cases of Non-compliance with Established Criteria. UNEP/MAP: Athens, 2001. (English)

UNEP/MAP/WMO: Atmospheric Input of Persistent Organic Pollutants to the Mediterranean Sea. UNEP/MAP: Athens, 2001. (English)

UNEP/MAP/FAO: Baseline studies and monitoring of DDT, PCBs and other chlorinated hydrocarbons in marine organisms (MED POL III). UNEP/MAP: Athens, 1986 (Parts in English, French or Spanish only).

UNEP/MAP/FAO: Baseline studies and monitoring of metals, particularly mercury and cadmium, in marine organisms (MED POL II). UNEP/MAP: Athens, 1986 (Parts in English, French or Spanish only).

UNEP/MAP/IOC/WMO: Baseline studies and monitoring of oil and petroleum hydrocarbons in marine waters. UNEP/MAP: Athens, 1986 (Parts in English, French or Spanish only).
Report of the Meeting of the Focal Points of the Priority Actions Programme Regional Activity Centre (PAP/RAC), Split, 14 May 2015
Meeting of the MAP Focal Points

Athens, Greece, 13-16 October 2015

Agenda item 5.11: Draft Decision on the Mid-Term Evaluation of the Action Plan for ICZM

Report of the PAP/RAC National Focal Points
REPORT
of the Meeting of PAP/RAC National Focal Points (NFPs)
(Split, Croatia, 14 May 2015)
REPORT
of the Meeting of PAP/RAC National Focal Points (NFPs)
(Split, Croatia, 14 May 2015)

Venue, participation and objectives

1. The PAP/RAC National Focal Points (NFPs) meeting was organised at the PAP/RAC premises in Split, Croatia, on 14 May 2015. The meeting was attended by representatives of the following Contracting Parties: Albania, Algeria, Bosnia and Herzegovina, Croatia, Cyprus, the European Union, France, Greece, Israel, Lebanon, Morocco, Montenegro, Slovenia, Spain and Turkey. In addition, several invited experts as well as the PAP/RAC representatives attended the meeting. A complete List of participants is attached as Annex I to this Report.

2. The objective of the meeting was to present and discuss the status of implementation of PAP/RAC activities, including the Mid-term evaluation of the Action Plan for the implementation of the ICZM Protocol (2012-2019) and the Assessment of CAMP projects, the Reporting Format on the ICZM Protocol, the proposal of the PAP/RAC workplan for 2016-2017 within the 6-year strategic planning of UNEP/MAP, and the proposal of PAP/RAC-related decisions to be submitted to COP 19. In addition, two pilot projects were presented and discussed, namely: a pilot project on Marine Spatial Planning (MSP) in the Mediterranean and the EcAp pilot project: Candidate common indicator on “Land-use change” in the Adriatic.

Opening of the Meeting and adoption of the Provisional agenda

3. Ms. Željka Škaričić, PAP/RAC Director, welcomed the participants raising hopes that the meeting would be as successful as the MedPartnership meeting organised two days earlier and which most of the Focal Points attended as well. She informed the participants that PAP/RAC would chair the meeting and lead through the agenda since it would be mostly PAP/RAC making all the presentations and the meeting would be dealing with the issues that PAP/RAC has been working on together with the Contracting Parties. She introduced the Provisional agenda of the Meeting, which was unanimously accepted. The Agenda is attached as Annex II.

Agenda item 1: Presentation of the status of implementation of PAP/RAC activities

Mid-term evaluation of the Action Plan for the implementation of the ICZM Protocol (2012-2019)

4. Ms. Škaričić presented the first item of the Agenda, namely, the Mid-term evaluation of the Action Plan for the implementation of the ICZM Protocol (2012-2019) the preparation of which was requested by the Action Plan itself. The document was built upon (i) the overview of achievements in the period 2012-2015, (ii) the evaluation of the 6-year UNEP/MAP programme, and (iii) the CAMP projects assessment. A short overview of the main results structured according to the three objectives of the Action Plan was presented, including concrete achievements, a detailed evaluation grid and the structure of the finances. In the funding structure of PAP/RAC-led activities during the first four years of the Action Plan implementation, a high level of external funding was noticed. Ms. Škaričić highlighted the efforts undertaken to focus the activities, in spite of the lack of internal resources, on actions in line with the ones foreseen in the Action Plan. During that period the different evaluation processes confirmed that for the countries the implementation of ICZM was still understood as a key activity in the
UNEP/MAP mandate. She stressed the following key issues, asking the NFPs to consider them as the leading themes for the discussion: (i) Ratification is a priority; (ii) CAMPs and other projects to implement the ICZM Protocol continue to be the PAP/RAC core activity; (iii) A need for national ICZM strategies; (iv) The role of ICZM within the Mediterranean Strategy for Sustainable Development (MSSD), the EcAp process and the Regional Adaptation Framework to Climate Change; and v) Governance.

5. In conclusion, Ms. Škaričić briefly presented the main findings of the external evaluations, namely, the evaluation of UNEP/MAP five-year programme of work and the assessment of CAMP projects implemented since the last assessment in 2001. The floor was then given to Mr. Christophe Le Visage who, together with Mr. Martin Le Tissier, had prepared the assessment of the CAMPs for Algeria, Cyprus, Lebanon, Malta, Montenegro, Morocco, Slovenia and Spain.

Ms. Škaričić’s presentation is available here.

Assessment of CAMP projects

6. Mr. Le Visage presented the final draft version of the CAMP projects assessment with particular reference to the previous assessment. He recalled the context of this new evaluation, explained the objectives and the approach applied, specifying the work done in terms of documentary researches and field consultations with the CAMP key actors.

7. He presented the assessment grid developed explaining the main idea leading the evaluation, i.e., to “measure” the impacts of each CAMP project at different scales - from the project level to the national and regional levels. He gave an overview of the main findings at each level and concluded with a list of recommendations to feed the discussion with the NFPs. These recommendations, as well as the issues for the discussion, can be summarised as follows: (i) Continue the CAMP programme (i.e., start a new cycle of CAMPs); (ii) Strengthen a link between the CAMP projects and policies and plans (i.e., at the project level - to embed projects into local policies/plans; at the national level - to carry out CAMPs as pilot and not as “standalone” projects; to include not only the ministries of environment, but other ministries as well); (iii) Improve sustainability of CAMP projects (i.e., strategy implementation, funding, governance); (iv) Develop actions in the marine part of the coastal zone (i.e., linking ICZM and MSP); and (v) Make CAMP the flagship programme for implementation of ICZM in the Mediterranean (e.g., by promoting a CAMP Network and proposing a CAMP label).

The presentation of Mr. Le Visage is available here.

Agenda item 2: Discussion

8. The presentations were followed by a lively discussion. Most of the participants who took part in the discussion congratulated PAP/RAC on its work and showed active interest in its activities. They pointed out that there were concrete results. There was talk of the ICZM Protocol ratification and some NFPs announced imminent ratification, some explained the problems they encountered, such as changes in administration, while others, who had already ratified it, explained at which point they were in its inclusion or transposition into the national legislation and practice. A question was raised as to the reporting on the Protocol implementation, i.e., whether it would be compiled by the UNEP/MAP system and when it would be operational (see more under Agenda item 5).

9. The need for capacity building for the Protocol implementation was particularly stressed. Regarding the implementation of the ICZM Protocol and PAP/RAC’s role in assisting the
countries, it was pointed out that PAP/RAC could offer assistance even if the Protocol had not been officially ratified. Thanks were also extended for training opportunities. A suggestion was made that the next run of the MedOpen virtual training course be open for more countries since the current one was only for GEF-eligible ones.

10. ICZM was yet again pointed out as an excellent tool for achieving sustainability, and its stronger linking with MSP was highly recommended. To that end, it was suggested that the new generation of CAMP projects be extended to the marine part (i.e., to include marine spatial planning) and be more operational (planning and policy oriented). Generally, CAMP has been praised as an excellent activity which still had a positive impact. Other suggestions were made for future CAMP projects, such as to become transboundary and to involve more other UNEP/MAP components, as well as to, perhaps, deal with issues of broader regional interest so that the experience can be shared with other regions facing similar problems. It was also suggested that those should be flagship projects for the implementation of the ICZM Protocol. A follow-up should also be secured by defining goals and finding means for implementing the ICZM tools. One of its virtues is its high integrative role. Integration was pointed out as a key issue as it is, in most cases, lacking both horizontally and vertically. Even within the UNEP/MAP system itself integration and co-operation should be improved. As one possibility for improving the participation of all levels of society, the Mediterranean Coast Day was mentioned.

11. To increase visibility as well as to economise on funds, it was suggested that PAP/RAC and UNEP/MAP try and recognise suitable macro-regional processes and local initiative worth joining. Networking, through CAMPs, MSP, etc. was mentioned as a good opportunity to discuss problems which are common to various countries/areas. Given the lack of funds, such networking could work through a special section on the PAP/RAC website, fora or alike. As very important, the work on the indicators within the Action Plan was pointed out, as well as good links established with EcAp. Although there is a large amount of documents and knowledge at international and national levels (various EU Directives and UNEP/MAP Protocols, for example), a lot of activities need to be performed at the local level, where CAMP projects are a great opportunity. Given the financial situation at MTF, the importance of external funding was highly stressed, and PAP/RAC was commended for being very successful at that.

Agenda item 3: Marine Spatial Planning in the Mediterranean: presentation of the pilot project implemented by Greece

12. Ms. Athena Mourmouris, PAP/RAC NFP for Greece and representative of the Ministry of Environment, Mr. Elias T. Beriatos and Ms. Marilena Papageorgiou, both from the University of Thessaly, Greece, presented the ongoing pilot project “Paving the road to marine spatial planning in the Mediterranean”. They introduced the project’s main objective, i.e., to facilitate the implementation of the ICZM Protocol, in particular with regard to its provisions on the marine part of the coastal zone, by developing and testing methodological tools that will hopefully serve as a guide to all CPs in order to formulate or further strengthen their own national MSP systems. The presenters gave a brief overview of the project, introducing the Ionian islands as a project area, the local and national actors involved and events organised. The need for concrete methodologies and tools to implement MSP was highlighted, while the integration of MSP into ICZM was characterised as a particularly challenging task, in the aim to ensure that they both contribute to sustainable development. The need for alternative approaches was also identified, especially when considering proper governance schemes. A list of methodologies and tools tested within the project was presented. A lack of experience in integration of EcAp in the MSP process was particularly pointed out.
13. Finally, the Greek partners proposed the draft recommendations, so as to steer interest and open the discussion. Also, a questionnaire was distributed to be fulfilled by the participants in order to collect some basic information about MSP in their countries.

The presentation on MSP is available [here](#).

Agenda item 4: Discussion

14. Following the presentation, the participants informed about some other national MSP experiences that could be useful for the further implementation of the pilot project, as well as the overall implementation of MSP in the Mediterranean. In particular, the MSP projects being carried out in Israel and Cyprus (in collaboration with the Greek government) were highlighted. In addition, experiences with MSP in Morocco, Spain and France (on two islands) were also shared. In particular, the ADRIPLAN – a project on MSP in the Adriatic and the Ionian eco-regions, was pointed out as an example and a need for sharing the lessons learned of two projects was raised.

15. Generally, the participants agreed on the usefulness of the methodology applied within the pilot project. As regards utilisation of vulnerability assessment, it remains to be further explored and tested if a rapid assessment would be preferable for indicating vulnerable areas where further data would be collected. Further, it was stressed that in order to ensure a better efficiency of the tool implementation, links between UNEP/MAP and the EU process should be strengthened, as well as those with ICZM.

16. A good example of the Baltic Sea GIS atlas was mentioned, as well as the idea to request UNEP/MAP for further assistance in raising funds for the preparation of the overall GIS platform.

17. Based on the issues raised, further clarifications were given by the Greek partners on the following issues:
 - Utilisation of good data for MSP is important; it is also important to use a longer time series, maybe covering a period of even 30 years, incorporating different seasons;
 - Geographical coverage is a technical issue; in case of the Greek MSP, the determined coverage is, for the overall simplicity, the territorial sea; according to the EU MSP Directive, it could include the Exclusive Economic Zone (EEZ);
 - Integration between different initiatives is important for the overall benefit; interconnections with the ADRIPLAN project exist as some of the partners in both projects are the same;
 - Legislation on spatial planning in Greece was amended in such a way so that the authorities competent for land and marine spatial planning are the same (at the moment);
 - Project area includes two Protected Areas;
 - There are limitations as regards efficiency of the available open tools for the 3D mapping;
 - Project area includes two Protected Areas;
 - Further work is needed for the assessment of land-sea interactions.

18. In conclusion, the participants welcomed the first findings of the MSP pilot project led by PAP/RAC and the Greek partners. They raised hopes for further developments that could ultimately lead to a decision on MSP to be submitted to COP19.
19. Finally, the participants were asked to fill in a questionnaire being of importance for the project. It was pointed out that the questionnaire would be available in French as well.

Agenda item 5: Reporting format on the ICZM Protocol

20. Ms. Škaričić reminded the participants of the importance of the Protocol reporting format. The legal and institutional part of the reporting format was adopted by the previous COP while the next COP is supposed to adopt the second, operational part. She said that during the consultation process on the operational part in 2015 only three countries had provided their answers, i.e. Croatia, Montenegro and Spain. It was therefore concluded that the proposed reporting format was satisfactory to the needs of the CPs and the Protocol.

21. In conclusion, the participants supported the operational part of the reporting format on the ICZM Protocol, which will be presented for adoption by COP19.

Agenda item 6: EcAp pilot project

Introduction

22. The ecosystem approach (EcAp) pilot project was introduced by Mr. Marko Prem, PAP/RAC Deputy Director, who presented the context of the EcAp process in UNEP/MAP and reminded the participants of the current status of its implementation. In particular, he focused on the cluster related to “coast and hydrography” to which PAP/RAC provides technical assistance. This cluster involves two coastal (terrestrial) indicators (EO8) and the one on hydrography (EO7).

23. He then highlighted the objectives of this session with regard to the EcAp pilot project, as follows: to present the work done within the pilot project in the Adriatic region in the context of the EcAp-Med project that is substantially co-financed by the EU; to justify the need for the re-introduction of the Candidate common indicator on “Land-use change” in the list of EcAp common indicators; and to recommend to the Correspondence on Monitoring Group (CORMON) meeting whether this indicator should be included in the list of common indicators or not. He stressed that this was an important indicator due to the requirements of the ecosystem approach on the land part of the coastal zone by the ICZM Protocol, as well as because the data collected for this indicator could serve reporting obligations on the state and evolution of coastal zones, too.

Mr. Prem’s Introduction to the EcAp presentation is available [here](#).

Candidate common indicator on “Land-use change” in the Adriatic

24. The candidate common indicator on “Land-use change” was presented by Mr. J. Fons Esteve from the Autonomous University of Barcelona as a consultant to PAP/RAC for this pilot project. In the first part of his presentation, the theoretical background was presented and in particular the elements important for the definition of the analytical units within the coastal zone, the relation between the land-use changes and preservation of ecosystems and landscapes, the definition of the good environmental status (GES), data sources and classes of land uses, and the methods for the measurement of changes, i.e., parameters that can be considered.

25. The second part of the presentation was devoted to the results of the pilot project in the Adriatic region, including the status for the years 2000 and 2006, as well as trends/changes
between these periods. The focus was set on the land take within the analytical units of 300 metres, 1 km and 10 km belts within the coastal zones, as defined by the ICZM Protocol. Some consideration was given also to elevation due to complex and diverse geomorphology of the coastal zones in the region.

26. The consultant summarised by concluding that the indicator was a very useful one for determining potential impacts on ecosystems/biodiversity; that the method was rather simple and would be further detailed out in the Monitoring guidelines; and that the land-use change indicator could serve the countries to better define GES and measures to achieve it, as the indicator is a good proxy to identify the degree of impact. Among the open issues the suitability of analytical areas/belts was mentioned and availability of information/data to cover the whole Mediterranean region. With regard to the latter, a suggestion was made to establish a cooperation with the European Space Agency (ESA) and the European Environment Agency (EEA) and to benefit from the EU Neighbourhood instruments.

Mr. Fons Esteve’s presentation is available here.

Agenda item 7: Discussion

27. The presentation was welcomed as it gave a good insight into this indicator and was a good analysis of various aspects, therefore providing lots of inputs for the discussion. The participants’ comments and suggestions can be summarised around the following two elements: a) Definition of the coastal zone and of the analysis units; and b) Interpretation of the results and definition of measures.

28. With regard to a) Definition of the analysis units and the definition of the coastal zone, the participants firmly stated that the coastal zone, as defined by the ICZM Protocol, should be the basic unit for the indicator. The analysis units issue raised much more uncertainties. Although the proposed belts (300 m, 1 and 10 km) are based on the experiences from elsewhere (EEA, Pegaso and Medina projects), the majority agreed with the 300 m as this strip is related to the coastal setback and can provide information on the type of urbanisation along the coast; however, according to the participants, deeper inland we go the definition of the analysis units should be left to the countries to decide upon. The reason is in the interpretation of the results that have a strong socio-economic, historic and cultural dimensions in addition to specific geomorphological and geographical conditions in each country. Since the management and related measures to achieve GES incorporate all those dimensions of sustainable development and impacts on the coastal ecosystems, biodiversity and landscapes depend on the results of such an analysis, i.e., the indicator itself, it should be left to the countries to decide. Similarly, the elevation criteria should be more flexible to incorporate and reflect the ecosystems in their homogeneity as much as possible, and these differ within the Adriatic and Mediterranean region in particular. The 300 m elevation, as proposed in the report, could under some other circumstances be risen to 600 m, as it is the case in Greece, for instance.

29. With regard to b) Interpretation of the results and definition of measures, although the indicator is a simple tool to show trends in land-use changes for interpretation purposes, additional criteria should be taken into account (see point a), i.e., due to strong socio-economic, historic and cultural dimensions, in addition to specific geomorphological and geographical conditions, the interpretation should be left to the countries.

30. The participants concluded that this indicator was a very good tool to detect changes. They acknowledged its usefulness as a strong and appropriate tool to make those changes
visible on the maps. It is a simplified way to recognise significant processes and trends in coastal areas. However, it requires further development in particular with regard to the interpretation of results and to build-in the flexibility to reflect countries' local specificities and conditions for the management purposes. Therefore, the countries should define the coastal strip and distances for the analysis to reflect the management needs of human activities.

31. The meeting recommended to the CORMON group not to abolish the candidate common indicator but to continue working on it, taking into account the proposals of the PAP/RAC NPFs, as reported here. The indicator is too important for the analysis of processes in coastal areas and, as it is a simple tool, it should be promoted and developed so as to allow countries to propose adequate measures to achieve GES (to be specified by the countries themselves taking local specificities into consideration) and, consequently, to bring more objectivity into reporting on the state and evolution of their coastal zones.

Agenda item 8: Workplan for 2016-2017 within the six-year strategic planning of UNEP/MAP

32. Ms. Škaričić introduced the main elements to be included in the workplan for 2016-2017 within the 6-year strategic programme of UNEP/MAP. As the latter is still under development and discussion by the MAP NPFs, further details at this point could not be presented, and in particular with regard to budget. She elaborated six components relative to: 1) Land- and Sea-based Pollution; 2) Biodiversity and Ecosystems; 3) Climate Change; 4) Natural Resources; 5) Governance; and 6) Mediterranean Environment under Review

Ms. Škaričić’s presentation is available here.

33. As an introduction to the discussion, the example of Montenegro to continue immediately with the CAMP activities and to extend them to the marine part of the coastal area was presented, pointing out that the endorsement letter for a proposed GEF project by the Montenegrin Minister had already been received. Also, contacts have been established with the ministries in Bosnia and Herzegovina and Albania – the two GEF eligible countries, whose endorsement letters are expected to be received soon. Based on these letters, a concept note, which actually has been cleared by GEF, will be further developed. Ms. Škaričić expressed hope that PAP/RAC would be able to raise these funds in the months to come.

34. In conclusion, Ms. Škaričić invited the NPFs to share and express their needs and priorities in which PAP/RAC could provide assistance, as well as to inform about the funding and/or co-funding possibilities, so that the Centre could propose a programme of work for the next biennium that would better reflect the needs of the countries.

Agenda item 9: Discussion

35. The presentation was followed by a very constructive discussion during which the NPFs expressed their support to PAP/RAC efforts in the implementation of its future activities. Also, they welcomed the PAP/RAC’s readiness to provide technical assistance to countries in realising their country-specific priorities in spite of scarce funding sources. With that regard, a need was raised to apply an integrated approach to specific issues reflecting the shared needs of the countries, such as beach management (in Montenegro), blue/green infrastructure (for example, benefiting from the DG-Env and DG-Mare reflecting since recently the twin logic of the Blue and Green Growth agendas), etc. However, it was recommended to have in mind that
these priorities should have some interest for the region as well so that the others could benefit from countries’ experiences and eventually use the opportunity for their replicability.

36. Taking into account the limited funding possibilities within the UNEP/MAP, a need for co-ordination and synergies in obtaining the external funding was noted. It was recommended to associate PAP/RAC in implementing the ICZM Protocol and its Action Plan to national and sub-regional initiatives (for example, the Adriatic-Ionian macro strategy) and co-ordinate the ICZM Protocol implementation with other international protocols.

37. As for the PAP/RAC contribution to the UNEP/MAP Mid-term strategy and the procedure of its adoption, it was explained that the strategy would be submitted for discussion to the forthcoming MAP NFPS meeting as the first instance for its endorsement. Also, the Mid-term strategy was qualified as a result of joint efforts of all the RACs and MAP Co-ordinating Unit, which was a good step forward. The ICZM was characterized as the most appropriate tool for achieving the objectives set by MSP and EcAp. It has been introduced in the draft MSSD (under revision) with the aim of providing an adequate regional framework for its implementation on the ground and for streamlining the ICZM approach to other sectoral policies, as well as to all processes being developed in the frame of the Barcelona system.

Agenda item 10: PAP/RAC-related decisions to be submitted to COP19

38. The participants commented in detail and endorsed the proposal related to the decisions to be submitted for endorsement first by the MAP FPs and later for the adoption by COP19.

Agenda item 11: Conclusions and recommendations

39. The conclusions and recommendations of the meeting as prepared by PAP/RAC, reviewed and agreed by the participants, are attached as Annex III to this Report.

Agenda item 12: Closure

40. Prior to the closure of the meeting, the participants expressed their satisfaction with the meeting which went in a very positive and friendly atmosphere. Ms. Škaričić thanked them for their valuable and constructive comments, the interpreters for the excellent work done and the PAP/RAC staff for a good organisation of the meeting and its commitment. She also raised hopes that the meeting itself, which was organised following strict rules for greening the event (for example, a conference room with natural lightning, hotels at a walking distance from the meeting room, tap water served instead of bottled water, a minimum of printed materials available – instead, an on-line meeting information and materials available to participants prior, during and after the meeting, etc.) would contribute to the improvement of the Mediterranean environment and living conditions in the area. The PAP/RAC report on Greening the event and CO2 footprint calculation is attached as Annex IV to this report.

41. Ms. Škaričić declared the meeting closed at 18:00 hours.
ANNEX I

List of participants / Liste des participants

<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>Position and Organization</th>
<th>Address</th>
<th>Tel/Fax</th>
<th>E-mail</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBANIA / ALBANIE</td>
<td>Ms. Borana ANTONI</td>
<td>Expert in the SEA, EIA, Industrial Pollution, Environmental Standards Unit</td>
<td>Ministry of Environment, Forest and Water Administration Rruga e Durresit, No. 27 Tirana</td>
<td>++ 355 4 22256113</td>
<td>Borana.Antoni@moe.gov.al</td>
<td>www.moe.gov.al</td>
</tr>
<tr>
<td>ALGERIA / ALGERIE</td>
<td>M. Raouf HADJ AISSA</td>
<td>Ministre de l’Aménagement du Territoire et de l’Environnement</td>
<td>1, rue des Quatre Canons 16000 Alger</td>
<td>++ 213 21</td>
<td>hadjaissa_raouf@yahoo.fr</td>
<td>www.mate.gov.dz</td>
</tr>
<tr>
<td>BOSNIA AND HERZEGOVINA / BOSNIE ET HERZEGOVINE</td>
<td>Mr. Tarik KUPUSOVIC</td>
<td>National Co-ordinator for MAP Hydro Engineering Institute</td>
<td>Stjepana Tomica 1 71000 Sarajevo</td>
<td>++ 387 33 207949</td>
<td>tarik.kupusovic@heis.ba</td>
<td>www.heis.com.ba/</td>
</tr>
<tr>
<td>CROATIA / CROATIE</td>
<td>Mr. Ivan RADIC</td>
<td>Senior Advisor Department for the Protection of Sea Directorate for Climate-related Activities, Sustainable Development and Protection of Soil, Air and Sea Ministry of Environment and Nature Protection</td>
<td>Radnička cesta 80 (Zagrebtower) 10000 Zagreb</td>
<td>++ 385 1 3717242</td>
<td>ivan.radic@mzoip.hr</td>
<td>www.mzoip.hr</td>
</tr>
<tr>
<td>CYPRUS / CHYPRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Ms. Joanna CONSTANTINIDOU**
| Environment Officer
| Department of Environment
| Ministry of Agriculture, Rural Development and Environment
| 20-22 October 28th Avenue
| 2414 Engomi
| Nicosia | **Tel:** ++ 357 22 408920
| **Fax:** ++ 357 22 774945
| **E-mail:** jconstantinidou@environment.moa.gov.cy
| www.moa.gov.cy |
| **EUROPEAN COMMISSION / COMMISSION EUROPEENNE**
| **Ms. Marijana MANCE**
| Policy Officer
| UNEP/MAP FP
| Mediterranean Sea
| European Commission
| Directorate-General for Environment
| Unit C2: Marine Environment and Water
| Industry Avenue de Baulieu 5, office BU 9 04/110
| B-1049 Brussels
| Belgium | **Tel:** ++ 32 2 2982011
| **E-mail:** marijana.mance@ec.europa.eu |
| **FRANCE / FRANCE**
| **M. Fabrice BERNARD**
| Délégué Europa International
| Conservatoire de l'Espace Littoral et des Rivages Lacustres
| Bastide Beaumanoir
| 3, rue Marcel Arnaud
| 13100 Aix en Provence | **Tel:** ++ 33 4 42912835
| **E-mail:** F.Bernard@conservatoire-du-littoral.fr
| **GREECE / GRECE**
| **Ms. Athena MOURMOURIS**
| Honorary Director General for the Environment
| Ministry of Productive Reconstruction, Environment and Energy
| Akti Moutsopoulou 25
| 18534 Piraeus | **Tel:** ++ 30 6974581325
| **Fax:** ++ 30 210 4111318
| **E-mail:** athenamour@yahoo.co.uk |
| **ISRAEL / ISRAEL**
| **Ms. Maayan HAIM**
| Coastal Environment Engineer
| Ministry of Environmental Protection
| 15a Pal-Yam Street
| P.O.Box 811
| Haifa 31007 | **Tel.:** ++ 972 4 8633513
| **Fax:** ++ 972 4 8633150
| **E-mail:** MaayanH@sviva.gov.il
<p>| www.sviva.gov.il |</p>
<table>
<thead>
<tr>
<th>Country</th>
<th>Contact Person</th>
<th>Title/Position</th>
<th>Address</th>
<th>Telephone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebanon</td>
<td>Mr. Georges AKL</td>
<td>Civil Engineer Head of Service of Natural Resources Ministry of Environment</td>
<td>Centre Lazarieh 8 etage block A 4 P.O. Box 11 2727 Beirut</td>
<td>Tel.: ++ 961 1 976555 ext 453</td>
<td>Fax: ++ 961 1 976534</td>
<td>E-mail: G.Akl@moe.gov.lb</td>
<td>www.moe.gov.lb/</td>
</tr>
<tr>
<td>Morocco</td>
<td>M. Hafid EL OUALJA</td>
<td>Direction de la Surveillance et de la Prévention des Risques Ministère Délégué auprès du Ministre de l'Énergie, des Mines, de l'Eau et de l'Environnement, chargé de l'Environnement 9, Avenue Al Araar, Secteur 16, Hay Riad Rabat</td>
<td>Tel: ++ 212 5 37 576646 / 570656 Fax: ++ 212 5 37576645 E-mail: h.oualja@gmail.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td>Ms. Aleksandra IVANOVIC</td>
<td>Advisor Public Enterprise for Coastal Zone Management of Montenegro</td>
<td>Ul. Popa Jola Zeca bb 85310 Budva</td>
<td>Tel: ++ 382 33 452709 or 402060 Fax: ++ 382 33 452685 E-mail: aleksandra.ivanovic@morskodobro.com www.morskodobro.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>Mr. Mitja BRICELJ</td>
<td>Secretary Ministry of Environment and Spatial Planning Directorate for Water and Investments / Water Management Division 47 Dunajska cesta SI – 1000 Ljubljana</td>
<td>Tel: ++ 386 1 4787477 Fax: ++ 386 1 4787425 E-mail: mitja.bricelj@gov.si www.mko.gov.si/en/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Mr. Jordi GALOFRE SAUMELL</td>
<td>Jefe del Servicio de Costas en Tarragona Dirección General de Sostenibilidad de la Costa y del Mar Ministerio de Medio Ambiente y Medio Rural y Marino Plaza Imperial Tarraco, 4 43005 Tarragona</td>
<td>Tel: ++ 34 977 216469 Fax: ++ 34 977 230563 E-mail: Jgalofre@magrama.es www.marm.es</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TURKEY / TURQUIE

Mr. Emrah SÖYLEMEZ
Head of Section
Ministry of Environment and Urbanisation
Directorate General of Spatial Planning
Coastal Areas Department
Söğütözü Mah. 2179. Sokak No: 5
Çankaya/Ankara
Tel: ++ 90 312 285 7173 / 2376
Fax: ++ 90 312 2874923
E-mail: emrahs@csb.gov.tr
emrah.soylemez@csb.gov.tr

Ms. Branka BARIC
Programme Officer
Tel: ++ 385 21 340477
E-mail: branka.baric@paprac.org

Ms. Marina MARKOVIC
Programme Officer
Tel: ++ 385 21 340476
E-mail: marina.markovic@paprac.org

Mr. Sylvain PETIT
Programme Officer
Tel: ++ 385 21 340474
E-mail: sylvain.petit@paprac.org

Ms. Daria POVH SKUGOR
Programme Officer
Tel: ++ 385 21 340478
E-mail: daria.povh@paprac.org

Mr. Marko PREM
Deputy Director
Tel: ++ 385 21 340475
E-mail: marko.prem@paprac.org

Mr. Neven STIPICA
Programme Officer
Tel: ++ 385 21 340479
E-mail: neven.stipica@paprac.org

Ms. Zeljka SKARICIC
Director
Tel: ++ 385 21 340471
E-mail: zeljka.skaricic@paprac.org

Priority Actions Programme Regional Activity Centre (PAP/RAC)
Kraj. Sv. Ivana 11
21000 Split
Tel: ++ 385 21 340470
Fax: ++ 385 21 340490
www.pap-thecoastcentre.org

PAP/RAC Consultants:

Ms. Veronique EVERS
E-mail: veronique.evers@gmail.com

Mr. Ivan SEKOVSKI
E-mail: ivansekovski@googlemail.com
MAP FOCAL POINTS / POINTS FOCAUX DU PAM

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Charles-Henri de BARSAC</td>
<td>Ministère de l’écologie, du développement durable et de l’énergie</td>
<td>Tel/Fax : ++ 33 1 40817613 E-mail : Charles-Henri.De-Barsac@developpement-durable.gouv.fr www.developpement-durable.gouv.fr</td>
</tr>
<tr>
<td>Ms. Jelena KNEZEVIC</td>
<td>Adviser to the Minister Ministry of Sustainable Development and Tourism</td>
<td>Tel : ++ 382 20 446225 Fax : ++ 382 20 446215 E-mail : jelena.knezevic@mrt.gov.me</td>
</tr>
</tbody>
</table>

INVITED EXPERTS / EXPERTS INVITES

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms. Daniela ADDIS</td>
<td>CAMP Italy National Co-ordinator Piazzale Flaminio 9 Rome ITALY</td>
<td>Tel: ++ 33 3 5003493 Fax: ++ 33 3 5003493 E-mail: addis@camp-italy.org</td>
</tr>
<tr>
<td>Mr. Elias T. BERIATOS</td>
<td>Professor, Director of Planning Laboratory University of Thessaly (UTH) Pedion Areos 38334 Volos GREECE</td>
<td>Tel: ++ 30 2421074449 Fax: ++ 30 2421074397 E-mail: beriatos@prd.uth.gr / beriatos@otenet.gr</td>
</tr>
<tr>
<td>Ms. Françoise BRETON</td>
<td>Department of Geography Universitat Autònoma de Barcelona (UAB) 08193 Bellaterra (Barcelona) Catalunya SPAIN</td>
<td>Tel: ++ 34 93 5813549 E-mail: francoise.breton@uab.cat</td>
</tr>
<tr>
<td>Mr. Jaume FONS-ESTEVE</td>
<td>Senior Researcher Department of Geography – Edifici B Autonomous University of Barcelona 08193 Bellaterra (Barcelona) SPAIN</td>
<td>Tel: ++ 34 680 808342 Fax: ++ 34 93 5813518 E-mail: jaume.fons@uab.cat</td>
</tr>
<tr>
<td>Ms. Marilena PAPAGEORGIOU</td>
<td>Department of Planning and Regional Development University of Thessaly (UTH) Pedion Areos 38334 Volos GREECE</td>
<td>Tel: ++ 30 2421074493 E-mail: mpapageorgiou95@hotmail.com</td>
</tr>
</tbody>
</table>
| **Mr. Christophe Le VISAGE**
Expert
Strategies Mer et Littoral
20 rue Louis Guilloux
Thorigne Fouillard
FRANCE | **Tel:** ++ 33 6 66474350
Fax: ++ 33 299624818
E-mail: christophe.le.visage@gmail.com |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPRETERS / INTERPRETES</td>
<td></td>
</tr>
</tbody>
</table>
| **Ms. Nicole PERRIER**
VOX PLURALiS
184, avenue de Gairaut
06100 Nice
FRANCE | **Tel:** ++ 33 4 93525900
Mobile: ++ 33 6 14181494
E-mail: contact@voxpluralis.com |
| **Ms. Catherine JOURDA**
FRANCE | |
ANNEX II

Agenda

9:00 – 11:00
Presentation of the status of implementation of PAP/RAC activities:

– Assessment of CAMP projects (Mr. Christophe Le Visage).

Discussion.

11:30 – 12:30
Marine Spatial Planning (MSP) in the Mediterranean: presentation of the pilot project implemented by Greece and discussion (Mr. Elias T. Beriatos, Ms. Marilena Papageorgiou and Ms. Athena Mourmouris).

12:30 – 13:00
Reporting format on the ICZM Protocol: discussion and recommendations (Ms. Željka Škaričić).

14:30 – 16:00
EcAp pilot project:

– Introduction (Mr. M. Prem).

– Candidate common indicator on “Land-use change” in the Adriatic (Mr. Jaume Fons Esteve).

Discussion.

16:30 – 18:00
Workplan for 2016-2017 within the 6-year strategic planning of MAP (Ms. Željka Škaričić).

PAP/RAC-related decisions to be submitted to COP19 (Ms. Željka Škaričić).

Conclusions and recommendations

18:00
Closure.
ANNEX III

Conclusions and recommendations

Following the presentation of and the discussion on all the Agenda items, the participants of the meeting:

1. Acknowledging the achievements made so far in the implementation of the ICZM Action Plan, endorse the Mid-term evaluation report and recommend it for submission to MAP NFPs meeting as an information document;

2. Informing on the status of ratification of the ICZM Protocol, confirm their dedication to support the process of ratification in their countries with the view to comply to the relevant objective of the Action Plan;

3. Confirming the importance of CAMP projects for the implementation of ICZM in the Mediterranean region, endorse the findings of the CAMP Assessment, leaving the opportunity to provide written comments and amendments by 15 June 2015;

4. Welcome the first findings of the MSP pilot project led by PAP/RAC and Greek partners and look to further developments that could ultimately lead to a decision on MSP as an integral part of ICZM to be submitted to COP19;

5. Support the operational part of the Reporting format on the ICZM Protocol, to be submitted for adoption by COP19;

6. Welcome the work done so far on the Common candidate indicator on “Land-use change” as a good tool to show processes and trends; however, at this point it cannot be used for management purposes.

Regarding the future activities on the implementation of the ICZM Action Plan, the participants make the following recommendations:

1. To develop a new cycle of CAMP projects that will take into account the recommendations of the Assessment, especially with regard to embedding the projects into national policy frameworks, extending to marine part of the coastal zone and to making of them a privileged space of integration of all UNEP/MAP components’ work.

2. (To support at the MAP NFPs meeting the proposal expressed by Bosnia and Herzegovina regarding a CAMP project for its coastal area)¹.

3. To support CAMP projects as a means for ICZM implementation, focusing in particular on the transfer of knowledge and sharing of experience, for instance, through a toolbox for replication in other areas and situations. In this regard, an official network of CAMPs and other ICZM projects should be established.

4. To apply an integrated approach to specific issues that reflect the shared needs of the countries, such as beach management, blue/green infrastructure, etc.

5. To associate PAP/RAC, in its role of the implementer of the ICZM Protocol and Action Plan, to national and sub-regional initiatives, such as the preparation of national ICZM strategies and macro-regional strategies (for ex. the Adriatic-Ionian strategy) and to co-ordinate the ICZM Protocol implementation with other international protocols or legislation affecting some of the Mediterranean countries in order to be effective, and to provide facilitation in development of ICZM policies in other regions when/if required.

¹ Pending confirmation by the participant from Bosnia and Herzegovina.
6. To work together on strengthening the ICZM role within the MSSD so as to provide an adequate regional framework for its implementation on the ground and to streamline the ICZM approach and principles to other sectoral policies.

7. To continue the work initiated on MSP in the specific Mediterranean conditions at regional and national levels, paying particular attention to land-sea interactions and seeking for the integration of terrestrial and marine planning within the ICZM. In this regard, and based on the results of the MSP pilot project and other similar activities, a decision on MSP could be proposed to MAP NFPs and COP19 for adoption.

8. To suggest to the CORMON group to continue developing the method for measuring the Common candidate indicator on “Land-use change”, as one of the tools for indicating the trends, taking into account the proposals made by the PAP/RAC NFPs meeting.
ANNEX IV

Greening the event and CO2 footprint calculation

GHG calculations obtained using MYCLIMATE CO2 footprint calculator

Required inputs:
- Participants: 34 participants
- Duration: 1 day
- Country: Croatia
- Event area: 72 m²
- 2 arrivals by car with average distance of 245 km + 345 km (1,180 km in both directions)
- 16 short distance flights with no business class
- 6 medium distance flights with no business class
- Exact power consumption of the event: Conference room hourly consumption: 3 KW per hour. Total consumption for the event: 21 kWh. No green energy to our knowledge
- Food: no food served except 2 kg of cookies for two coffee breaks
- Consumption of drinks: tap water in glass jars, 3 litres of soft drinks and 3 litres of coffee
- Accommodation: 25 overnights in two 4-star hotels, and three overnights in a 3-star hotel
- Printed material: 4 kilos of which ½ kg recycled paper
- A small promotion stand

⇒ Total CO2 emission: 11,947 tons (351,382 tons per person)
⇒ No baseline to compare
⇒ No carbon offsetting option agreed - How to integrate these expenses and have them certified by auditors?

Positive aspects of the meeting:
1. On-line information about the meeting, i.e., Greening the event available to participants prior, during and after the meeting
2. No long distance flights
3. Hotel accommodation and the meeting venue within the walking distance (a 5-min. walk max)
4. Appropriate room size; natural lightning
5. Glass water jars with tap water and glasses provided to participants
6. No plastics at all (jars, glasses, reusable coffee cups and sugar spoons, sugar in reusable bowls)
7. Documents uploaded onto the meeting web site
8. Agenda of the meeting hung at the conference room door (with the exception of draft recommendations and conclusions distributed to participants on both side printed sheets of paper (34 pieces of A4 size paper sheets; paper also offered to those who wanted to

2 Later on, on the occasion of the MAP June Greening Task Force Skype meeting, a comparison was made with the calculations presented for the SCP/RAC Focal Point Meeting held in June 2015 with CO2 emissions from a 2-day event with 35 participants at 29.064 tons.

3 CO2 offsetting costs offered by MYCLIMATE for this event would be: 326,55 € (9.605 € per person). A PAP/RAC representative proposed to the MAP Greening TF members to consider planting of trees as one of possible offsetting options.
make notes – a few of them used them including the PAP/RAC staff in charge of preparing notes of the meeting)

9. Participants asked prior to the meeting (on the meeting web site) whether they would need to be provided with a printed copy during the meeting. No one responded.

10. A greening questionnaire available on-line – a weak feedback received from participants (only a few responded); however, those who responded evaluated the greening efforts as very useful and successful. To obtain a stronger feedback from participants in future, the dissemination of a questionnaire hard copy to be filled-in during the meeting (instead of filling-in and submitting the on-line questionnaire after the meeting) might be considered.

In conclusion,

➤ A paperless meeting would be a big challenge
➤ The issue of offsetting was included in the MAP Greening Task Force agenda to be discussed at their June and July Skype meetings.
REPORT
OF THE ELEVENTH MEETING OF THE FOCAL POINTS OF THE
REGIONAL MARINE POLLUTION EMERGENCY RESPONSE CENTRE
FOR THE MEDITERRANEAN SEA (REMPEC)

Malta, 15–17 June 2015
INTRODUCTION

1 The Eleventh Meeting of the Focal Points of the Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) was held in Attard, Malta, from 15 to 17 June 2015, pursuant to the decision of the Eighteenth Ordinary Meeting of the Contracting Parties to the Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean ("the Barcelona Convention") and its Protocols which agreed that a meeting of the Focal Points of REMPEC be organised during the 2014/2015 biennium (UNEP(DEPI)/MED IG.21/9, Istanbul, Turkey, 3-6 December 2013).

2 The principal objectives of the Meeting were:
 .1 to examine the implementation of the programme of work of REMPEC since the last Meeting of the Focal Points of REMPEC; and
 .2 to discuss and agree upon the Revised Draft Regional Strategy for Prevention of and Response to Marine Pollution from Ships (2016-2021) ("the Revised Draft Regional Strategy (2016-2021)") as well as the proposed programme of work of REMPEC for the biennium 2016/2017, prior to their submission for approval by the next Meeting of the Focal Points of the Mediterranean Action Plan (MAP) of the United Nations Environment Programme (UNEP), also referred to as UNEP/MAP, scheduled in October 2015, and for adoption by the Nineteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, to be tentatively convened in February 2016 in Greece.

3 The Meeting held a joint session with the meeting of MED POL Focal Points on 17 June 2015 with a view to reviewing the draft Mediterranean Offshore Action Plan in the framework of the Protocol for the Protection of the Mediterranean Sea against Pollution Resulting from Exploration and Exploitation of the Continental Shelf and the Seabed and its Subsoil ("the Offshore Protocol") (UNEP(DEPI)/MED WG.417/5/Corr.1) as well as the main elements of a draft Integrated Monitoring and Assessment Programme with regard to the Ecological Objectives (EOs) of the pollution and litter cluster (EO 5 – Eutrophication, EO 9 – Contaminants, and EO 10 – Marine Litter) within the framework of the Ecosystem Approach (EcAp) (UNEP(DEPI)/MED WG.417/6). The outcome of the discussions held during the joint session was reflected in the report of the Meeting of MED POL Focal Points, as contained in document UNEP(DEPI)/MED WG.417/17.

4 All REMPEC Governmental Focal Points were invited to nominate jointly and in consultation with all national authorities concerned their representatives in the Meeting. The participation of observers representing the oil, chemical, port and shipping industries in national delegations was strongly encouraged. The invitation to attend the Meeting was also extended to the Organisations of the United Nations (UN), other inter-governmental organisations, MAP Partners/non-governmental organisations, other regional organisations, as well as to the international professional organisations and associations whose activities are relevant for the work of REMPEC.

5 The Meeting was attended by delegations from the following Contracting Parties to the Barcelona Convention:

 ALBANIA LEBANON
 ALGERIA LIBYA
 CROATIA MALTA
 CYPRUS MONTENEGRO
 EGYPT MOROCCO
 EUROPEAN UNION SLOVENIA
 GREECE SPAIN
 ISRAEL SYRIAN ARAB REPUBLIC
 ITALY TUNISIA

by representatives from the following UN organisations:

- INTERNATIONAL MARITIME ORGANIZATION (IMO)
- UNITED NATIONS ENVIRONMENT PROGRAMME / MEDITERRANEAN ACTION PLAN (UNEP/MAP)
by a representative from the following inter-governmental organisation:

- INTERNATIONAL OIL POLLUTION COMPENSATION FUNDS (IOPC FUNDS)

by representatives from the following MAP Partners/non-governmental organisations:

- INTERNATIONAL OCEAN INSTITUTE (IOI)
- IPIECA – THE GLOBAL OIL AND GAS INDUSTRY ASSOCIATION FOR ENVIRONMENTAL AND SOCIAL ISSUES
- MEDITERRANEAN OPERATIONAL NETWORK FOR THE GLOBAL OCEAN OBSERVING SYSTEM (MONGOOS)

by representatives from other regional organisations:

- MEDITERRANEAN OIL INDUSTRY GROUP (MOIG)
- PARLIAMENTARY ASSEMBLY OF THE MEDITERRANEAN (PAM)

by representatives from other organisations:

- CENTRE OF DOCUMENTATION, RESEARCH AND EXPERIMENTATION ON ACCIDENTAL WATER POLLUTION (CEDRE)
- INTERNATIONAL TANKER OWNERS POLLUTION FEDERATION LIMITED (ITOPF)

A complete list of participants appears in Annex I to the present report.

AGENDA ITEM 1: OPENING OF THE MEETING

The Meeting was opened by the Head of Office of REMPEC on Monday, 15 June 2015 at 09:00 hours. Mr Gonzalez welcomed the participants to the Eleventh Meeting of the Focal Points of REMPEC. He highlighted that next year would mark the 40th Anniversary of REMPEC and recalled the extension of the Centre’s mandate since its establishment, including responsibilities on prevention of marine pollution from ships and on offshore oil and gas exploitation, following the entry into force of the Offshore Protocol. He also underpinned the integrated approach of the Centre’s activities within the MAP System. The Head of Office stressed that, despite the ongoing restructuring of the Centre, REMPEC would be delivering the expected results for the current biennium. He concluded by expressing his appreciation to the Contracting Parties, the Government of Malta as host country, and other partners.

The Honourable Mr Joseph Mizzi, Minister for Transport and Infrastructure of Malta, welcomed the participants in the Meeting and conveyed his profound gratitude to the Centre for its dedication and to UNEP/MAP, the International Maritime Organization (IMO), the Focal Points of REMPEC and representatives from the oil industry and other organisations. Referring to the celebrations of the 40th Anniversary of REMPEC next year, the Minister highlighted the importance of the Centre in bringing together all nations bordering the Mediterranean Sea under one forum and with one clear objective, to save and protect the Mediterranean Sea. The Honourable Mr Mizzi acknowledged the vision and foresight that our predecessors had at the time when the MAP was first launched, which left a legacy to be re-instated, kept and reinforced. The Minister highlighted that the Government of Malta would continue to engage and play the mediating role in order to bring together all stakeholders and decision-makers. The Minister concluded by stressing on the required collective effort and commitment of the Contracting Parties, international and regional organisations as well as the industry to protect the Mediterranean environment.

Mr Habib El-Habr, Deputy Coordinator of MAP, welcomed the participants in the Meeting on behalf of the MAP Coordinator. He acknowledged the involvement of REMPEC in the preparation of the draft UNEP/MAP’s Integrated Six-Year Programme of Work for the period 2016 to 2021 (“the draft UNEP/MAP’s Mid-Term Strategy”), which integrated the Revised Draft Regional Strategy (2016-2021). He recalled the recent launch of the 40th Anniversary of MAP with the theme “Together for a sustainable Mediterranean” and highlighted the upcoming 40th Anniversary of REMPEC. He underlined the paramount importance of optimising knowledge, expertise and financial resources available in the Mediterranean coastal States and within the European Union (EU) to ensure a cooperative approach at a national, sub-regional or regional level. He expressed UNEP/MAP’s
gratitude to the Government of Malta for its continuous support to REMPEC in its activities since its inception.

10 Mr Dandu Pughiuc, Senior Deputy Director, Marine Environment Division, IMO, welcomed all participants on behalf of the Secretary-General of the IMO who extended his appreciation to UNEP for the long and outstanding cooperation, to the Contracting Parties to the Barcelona Convention for their support to REMPEC and also acknowledged the continuing support of the Centre’s host country – the Government of Malta. He highlighted that, through MAP and the creation of the Centre, countries in the Mediterranean illustrated their commitment towards the protection of the marine environment. He acknowledged the tremendous efforts made by the Mediterranean countries in ratifying and implementing some of the IMO’s conventions, which have contributed to a steady decrease in marine pollution from ships, and stressed on the need to continue these efforts. Whilst reiterating IMO’s commitment to support the Centre, the representative of the IMO reminded the Meeting that the implementation of the Regional Strategy (2016-2021) depended on the collective effort and commitment of the Contracting Parties, international and regional organisations as well as the industry. He underpinned that constructive solutions had been identified to reduce the financial burden by re-locating a former REMPEC staff to the IMO Headquarters. Mr Pughiuc concluded by underlining that the goodwill as well as the proactive and responsible participation of representatives from the Contracting Parties would guarantee success in preserving our planet for future generations.

11 Ambassador Sergio Piazzi, Secretary-General of the Parliamentary Assembly of the Mediterranean (PAM) explained the role of PAM, established in 2006, and recalled parliamentary discussions at the Mediterranean level aimed at assessing the Mediterranean response capacity to face major offshore incidents as well as his personal involvement in coordinating the UN operations following the 2006 incident in Lebanon. He stressed the need to keep the readiness of REMPEC at the highest possible level and concurred with the importance to strengthen cooperation in the Mediterranean region. Considering the risk of pollution due to the ongoing conflict in the Syrian Arab Republic and Libya, he encouraged the organisation of an exercise with a view to testing the response capacity in the region. He concluded by recalling the successful negotiations between the UN and the EU with regard to the division of responsibilities in the activation, coordination, mobilisation of resources and response to man-made and industrial emergencies at the global level, emphasising the UN leading role in responding to emergency situations. He wished the participants a successful meeting.

AGENDA ITEM 2: ORGANISATION OF THE MEETING

2.1 Rules of Procedure

12 The Meeting decided to apply, mutatis mutandis, the rules of procedure for Meetings and Conferences of the Contracting Parties to the Convention for the Protection of the Mediterranean Sea against Pollution and its related Protocols (UNEP/IG.43/6, Annex XI) to its deliberations.

2.2 Election of Officers

13 Following informal consultations held with the Contracting Parties to the Barcelona Convention, the Head of Office of REMPEC proposed Lebanon as Chair, Italy as Vice-Chair and Montenegro as Rapporteur. The Meeting unanimously decided to elect the following officers of the Meeting:

- Mr Abdel Hafiz EL KAISSI (Lebanon) Chairperson
- Dr Roberto GIANGRECO (Italy) Vice-Chairperson
- Mr Nexhat KAPIDANI (Montenegro) Rapporteur

2.3 Working Languages

14 The working languages of the Meeting were English and French. Simultaneous English/French/English interpretation was provided during the Meeting. All working documents were available in both official languages of the Centre. However, information documents were available in their original language only, except when the document was submitted in both languages.
AGENDA ITEM 3: ADOPTION OF THE AGENDA

15 The Chairperson thanked the Meeting for supporting his election and proposed that the Provisional Agenda, contained in document REMPEC/WG.37/3/1, be adopted.

16 The Meeting adopted the Agenda reproduced in Annex II to the present report. The list of documents is presented in Annex III thereto.

AGENDA ITEM 4: PROGRESS REPORT ON REMPEC’S ACTIVITIES SINCE THE 10TH MEETING OF THE FOCAL POINTS OF REMPEC

17 At the invitation of the Chairperson, the Head of Office of REMPEC introduced document REMPEC/WG.37/4 containing an outline of the activities carried out by the Centre since the last Meeting of the Focal Points of REMPEC convened in Malta in May 2011.

18 The Head of Office presented the part of the document related to the Report on Institutional Developments and the Report on Administrative and Other Related Issues.

19 The Meeting took note that, during the period under review, Morocco and Israel ratified the Protocol Concerning Co-operation in Preventing Pollution from Ships and, in Cases of Emergency, Combating Pollution of the Mediterranean Sea (“the 2002 Prevention and Emergency Protocol”), on 26 April 2011 and 10 September 2014, respectively and that, following the ratification by the Syrian Arab Republic on 22 February 2011, the Offshore Protocol entered into force on 24 March 2011. The Meeting also noted that the EU ratified the Offshore Protocol on 29 March 2013.

20 The Meeting was informed that there were fourteen (14) Contracting Parties to the Barcelona Convention which had, up to now, ratified or acceded to the 2002 Prevention and Emergency Protocol, whereas eight (8) Contracting Parties to the Barcelona Convention were only Parties to the Protocol Concerning Co-operation in Combating Pollution of the Mediterranean Sea by Oil and other Harmful Substances in Cases of Emergency (“the 1976 Emergency Protocol”), and that seven (7) Contracting Parties to the Barcelona Convention had ratified the Offshore Protocol.

21 The Head of Office highlighted some developments related to MAP and pertaining to the field of activities which fell under the mandate of the Centre, as per the decisions adopted by the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, which was held in Istanbul, Turkey, from 3 to 6 December 2013. In particular, he mentioned the preparation of the draft UNEP/MAP’s Mid-Term Strategy as a follow-up to the adoption of the Five-Year Programme of Work in 2009, the revision of the Mediterranean Strategy for Sustainable Development (MSSD) adopted in 2005, which envisaged the drafting of the MSSD (2016-2025) (MSSD 2.0), the further implementation of the EcAp roadmap in the Mediterranean region as well as the revision of the Regional Strategy for Prevention of and Response to Marine Pollution from Ships (2005-2015) (“the 2005 Regional Strategy”).

22 The Meeting noted that the Revised Draft Regional Strategy (2016-2021) was integrated in the draft UNEP/MAP’s Mid-Term Strategy, taking into account developments related to MSSD 2.0 and EcAp in which the Secretariat had been involved.

23 The Head of Office evoked the restructuring process undergone by REMPEC following the decision of the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols. The Meeting praised the services rendered by Mr Frédéric Hébert (former Director) and expressed its appreciation for his valuable work and contribution, and thanked Mrs Francesca Borg (former Clerk/Secretary) and Mr Mario Bonello (former Technical Assistant/Logistics) whose contracts with the Centre were terminated at the end of June 2014 as well as Mr Jonathan Pace (then Senior Programme Officer) who was relocated to the IMO Headquarters in London as from 1 February 2015. The Meeting was also informed of the recruitment of Mr Franck Lauwers who joined REMPEC as Programme Officer (Prevention) on 9 March 2015 as well as that of a new Programme Officer (OPRC) which was ongoing and should be completed by summer 2015.

24 The Head of Office expressed his appreciation to countries and entities which had been supporting the Centre’s activities either by seconding staff, providing technical support or voluntary
funding. In this respect, the Meeting noted that the IMO would soon be launching the Associate Professional Officer (APO) programme, which would include a position at REMPEC.

25 The Head of Office urged the Contracting Parties to keep the Centre updated of any changes in the designation of the various REMPEC Focal Points as soon as they were appointed to ensure that the channelling of information to REMPEC Focal Points was kept and the deadlines for events organised by the Centre were strictly followed in order to avoid unnecessary expenses.

26 The Programme Officer (Prevention) presented the part of the document related to the Report on the Implementation of Activities with regard to prevention of and monitoring of marine pollution from ships.

27 The Meeting took note of the information provided on maritime administrations’ capacity building and prevention of maritime accidents as well as the related activities carried out within the framework of the EU-funded MEDA Regional Project “Euromed Cooperation on Maritime Safety and Prevention of Pollution from Ships – SAFEMED II” (MED 2007/147-568) implemented by REMPEC.

28 The Meeting also noted the assistance provided by the Centre to Mediterranean coastal States to prepare for the entry into force of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 (BWM Convention).

29 Turning to the implementation of international marine environment protection conventions, particularly the International Convention for the Prevention of Pollution from Ships (MARPOL), the Meeting further took note of the fact that, whilst REMPEC’s efforts focused on the issue of illicit ship pollution discharges, other activities had been carried out with regard to Port Reception Facilities, Ship Energy Efficiency and Technology Transfer as well as Anti-Fouling Systems (AFS).

30 The Head of Office presented the part of the document related to the Report on the Implementation of Activities with regard to preparedness for and response to marine pollution, and the Offshore Protocol.

31 The Meeting was informed about activities carried out by the Centre in order to promote efficient response systems including the development of tools for oil spill risk assessment, the development and maintenance of national contingency planning, the support of regional cooperation, the organisation of capacity building activities, the participation in national and sub-regional oil spill response exercises, and the upgrade of the Regional Information System (RIS).

32 The Meeting noted that eighteen (18) out of twenty-one (21) Mediterranean coastal States had adopted a national contingency plan. It also took note of the progress made in the development or revision of national contingency plans as well as the efforts made to ensure that all Mediterranean coastal States had a system in place.

33 The Head of Office stressed the importance of sub-regional cooperation through the adoption and implementation of the sub-regional agreements on preparedness for and response to accidental marine pollution in force in the Mediterranean.

34 Turning to the Memoranda of Understanding (MoUs) signed between REMPEC and organisations which had been providing emergency technical support and forming part of the Mediterranean Assistance Unit (MAU), a delegation acknowledged the work carried out by the MAU in relation to the MORNING GLORY. Whilst referring to the immediate activation of the MAU following the breach of a pipeline in Eilat, Israel, some delegations expressed their appreciation for the readiness of the MAU and for the quality of the technical assistance provided through the MAU. These delegations highlighted that such support was a demonstration of the crucial role of REMPEC in case of emergency and thanked the institutions composing the MAU for their continued cooperation.

35 The Meeting took note of the work carried out by MAP with the support of REMPEC on the establishment of an ad hoc working group and its progress in the preparation of the draft Mediterranean Offshore Action Plan in the framework of the Offshore Protocol with a view to facilitating its effective implementation, which would be further discussed during the joint session to be held with the meeting of MED POL Focal Points on 17 June 2015.
36 A delegation welcomed the stability of REMPEC and requested the organisation every two years of the Meeting of the Focal Points of REMPEC.

37 The Meeting thanked REMPEC staff for the work accomplished since the last Meeting of the Focal Points of REMPEC and took note of the information contained in document REMPEC/WG.37/4.

AGENDA ITEM 5: DEVELOPMENTS WITHIN MAP RELATED TO THE OBJECTIVES AND FUNCTIONS OF REMPEC

38 The Deputy Coordinator of MAP, Mr Habib El-Habr, emphasised the importance of the Meeting in view of the next Meeting of the MAP Focal Points scheduled for October 2015 and the Nineteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, to be tentatively convened in February 2016 in Greece.

39 The Deputy Coordinator of MAP thanked REMPEC for its excellent work and mentioned the important role that the Centre had been playing as well as its support to MAP’s activities.

40 Mr El Habr highlighted the fact that the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, which was held in Istanbul, Turkey, from 3 to 6 December 2013, requested the MAP Secretariat to prepare, inter alia, MSSD.2.0, a draft UNEP/MAP’s Mid-Term Strategy, a Sustainable Consumption and Production (SCP) Action Plan and roadmap for its implementation, as well as a Regional Climate Change Adaptation Framework (RCCAF).

41 He underpinned the contribution of all MAP Components to the preparation of the draft UNEP/MAP’s Mid-Term Strategy and noted that the proposed programme of work of REMPEC for the biennium 2016/2017 contributed to all original thematic priorities, namely land and sea-based pollution, biodiversity and ecosystems, climate change, natural resources, governance, and Mediterranean environment under review. He informed the Meeting that, following the review of the draft UNEP/MAP’s Mid-Term Strategy by the Meeting of the MAP Focal Points, which was held in Athens, Greece from 19 to 21 May 2015, the MAP Secretariat was requested to review the structure based on three main priorities (i.e. land and sea-based pollution; biodiversity and ecosystems; and land and sea interactions and processes). The Meeting of the MAP Focal Points further agreed that Integrated Coastal Zone Management, SCP and Climate Change should be considered as overarching themes for the MAP System with a view to achieving Good Environmental Status (GES) and sustainable development.

42 He informed the Meeting about the successful conclusion of the Sixteenth Meeting of the Mediterranean Commission on Sustainable Development (MCSD), which was convened in Marrakesh, Morocco from 9 to 11 June 2015. The main result of the meeting was the endorsement of the draft revised MSSD 2.0. The meeting further recommended the submission of the RCCAF and the SCP Action Plan for the Mediterranean to the Meeting of the MAP Focal Points for endorsement and to the Nineteenth Meeting of the Contracting Parties to the Barcelona Convention and its Protocols for adoption.

43 The Deputy Coordinator of MAP also noted the positive developments related to the implementation of the EcAp in the Mediterranean which was mainly funded by the EU. He explained that, resulting from several discussions held at various meetings, an integrated monitoring programme was developed within the framework of the said EcAp.

44 Finally, the Deputy Coordinator of MAP stated that UNEP/MAP launched its 40th Anniversary during the Meeting of the MAP Focal Points convened in May 2015. As part of the celebrations, he referred to the workshop organised within the framework of the European Maritime Day 2015, which was held in Athens from 28 to 29 May 2015, and informed the Meeting that some national events would be organised throughout this year.
AGENDA ITEM 6: DEVELOPMENTS WITHIN IMO RELATED TO THE OBJECTIVES AND FUNCTIONS OF REMPEC

Mr Dandu Pugiuc, Senior Deputy Director, Marine Environment Division, IMO, introduced document REMPEC/WG.37/6/1 providing a summary of the latest developments at the level of the IMO in the fields of prevention of, preparedness for and response to marine pollution from ships. He addressed the recent activities of the IMO and provided the Meeting with a summary of the main decisions emanating from the IMO Marine Environment Protection Committee (MEPC) sixty-fifth session (MEPC 65), sixty-sixth session (MEPC 66) and sixty-seventh session (MEPC 67). In particular, the Senior Deputy Director referred to the newly established Sub-Committee on Pollution Prevention and Response (PPR), the adoption of guidelines on the safe operation of oil pollution combating equipment and on international offers of assistance in response to a marine oil pollution incident, the plan of action for the development of Part III and Part IV of the guidelines for the use of dispersants for combating oil pollution at sea, following the adoption of Part I and II of the said guidelines and the status of various other guidelines. Mr Pugiuc further mentioned the revision of MARPOL Annexes I, III and VI and invited all parties concerned to support and promote the eminent entry into force of the BWM Convention. The representative of the IMO, then presented the ongoing work on ship recycling, the development of a data collection system for fuel consumption by ships as well as the promotion of technical cooperation and transfer of technology as a basis for enhancing energy efficiency of shipping. He finally highlighted the four thematic priorities relating to the protection of the marine environment for inclusion in the Integrated Technical Cooperation Program (ITCP) covering the 2016/2017 biennium, and welcomed their inclusion in the Revised Draft Regional Strategy (2016-2021).

Mr Thomas Liebert, Head, External Relations and Conference Department of the International Oil Pollution Compensation Funds (IOPC Funds), presented information on the latest developments within the international regime on liability and compensation for oil pollution damage. Particular reference was made to the dissolution of the International Oil Pollution Compensation Fund, 1971 (the “1971 Fund”) on 31 December 2014, which paved the way for the ever-growing International Oil Pollution Compensation Fund, 1992 (the “1992 Fund”) which was currently dealing with thirteen (13) incidents. As a result of the dissolution of the 1971 Fund, the IOPC Funds reimbursed contributors and made a donation to the World Maritime University (Sweden), the International Maritime Law Institute (Malta) and the International Maritime Safety, Security and Environment Agency (Italy). Mr Liebert recalled that hundred and fourteen (114) States and thirty-one (31) States were Parties to the International Convention on the Establishment of an International Fund for Compensation for Oil Pollution Damage, 1992 (the “1992 Fund Convention”) and to its Protocol of 2003 (the “Supplementary Fund Protocol”) respectively. The representative of the IOPC Funds was pleased to note that seventeen (17) Mediterranean coastal States were Parties to the 1992 Fund Convention, whilst nine (9) were Parties to the Supplementary Fund Protocol. He also referred to the development of guidelines for States and claimants as well as outlined the tasks carried out by the 1992 Fund Secretariat to set up the International Hazardous and Noxious Substances Fund (the “HNS Fund”) and to provide assistance to the IMO and States to support the entry into force of Protocol of 2010 of the International Convention on Liability and Compensation for Damage in Connection with the Carriage of Hazardous and Noxious Substances by Sea, 1996 (the “2010 HNS Protocol”). In his presentation, Mr Liebert informed the Meeting of the recent initiatives by the IOPC Funds including the launch of the current IOPC Funds’ website, the development of which was inspired by REMPEC’s website, and the organisation of training courses. The representative of the IOPC Funds highlighted the current work on the definition of ship. He invited the Mediterranean coastal States to ensure that the correct implementation of the International Convention on Civil Liability for Oil Pollution Damage, 1992 (“the 1992 Liability Convention”) was in place for the proper functioning of the international compensation regime established by these Conventions in their respective countries. Mr Liebert concluded that, with regard to ship-source oil pollution damage and, in particular with regard to the implementation of the IOPC instruments, the Director of the IOPC Funds was looking forward to further engagement with REMPEC in the future.

Mr Philip Ruck, Manager of the Oil Spill Working Group (OSWG) at IPIECA – The global oil and gas industry association for environmental and social issues, introduced document REMPEC/WG.37/6/3 which provided information on the possible support of IPIECA towards strengthening the cooperation between IPIECA, the IMO and REMPEC in the Mediterranean region. Mr Ruck informed the Meeting of the work and the activities carried out under the umbrella of the Global Initiative (GI) programme which was jointly led by the IMO and IPIECA, with strong participation from the International Tanker Owners Pollution Federation Limited (ITOPF), Oil Spill
Response Limited (OSRL) as well as the leveraged contributions of the industry members themselves. Referring to future potential collaboration with REMPEC and the IMO, the representative of IPIECA highlighted that there were a number of obvious potential synergies, and referred particularly to Specific Objectives 1, 20 and 22 of the Revised Draft Regional Strategy (2016-2021) and the objectives of the GI programme. He then presented the proposed future key priorities with respect to activities related to Oil Pollution Preparedness, Response and Co-operation (OPRC) in the Mediterranean referred to in paragraph 13 of document REMPEC.WG.37/6/3. Mr Ruck highlighted that the OSWG would be available to support the Centre with collaborative activities and that IPIECA members looked forward to sharing their technical expertise and delivering training in future activities of REMPEC. Following agreement upon the proposed programme of work of REMPEC for the biennium 2016/2017 to be discussed under Agenda Item 15, Mr Ruck concluded that IPIECA would be in a better position to define the exact nature of its involvement in the activities to be carried out by REMPEC during the period 2016-2017.

The Meeting took note of the information provided by the representatives of the IMO, the IOPC Funds and IPIECA.

AGENDA ITEM 7: ACTIVITIES RELATED TO SHIPS’ BALLAST WATER MANAGEMENT AND INVASIVE SPECIES

Under this agenda item, the Secretariat presented document REMPEC/WG.37/7 containing information on activities related to ships’ ballast water management (BWM) and invasive species.

The Programme Officer (Prevention) recalled that REMPEC had been identified by the IMO as the Regional Coordinating Organisation (RCO) to lead the implementation of the Project entitled “Building Partnerships to Assist Developing Countries to Reduce the Transfer of Harmful Aquatic Organisms in Ships’ Ballast Water”, also referred to as the “GloBallast Partnerships” (GBP) Project, in the Mediterranean region.

The Meeting took note of the activities carried out at the global level, especially the development of training courses and guidance documents related to ships’ BWM and invasive species in support of the Project implementation.

The Meeting also noted that, during the reporting period, REMPEC had participated in a number of activities within the framework of inter-regional cooperation, working closely with the Baltic Marine Environment Protection Commission (Helsinki Commission or HELCOM), the Commission of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Commission) as well as the Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden (PERSGA).

The Meeting was informed that the Centre organised the Consolidation and Implementation Training Course on the BWM Convention in Malta, from 8 to 9 May 2012, aimed at enhancing the institutional capacities on BWM in the Mediterranean region, which was supported by the EU, through SAFEMED II implemented by REMPEC, in close cooperation with the IMO through the GBP.

Turning to the Mediterranean Strategy on Ships’ Ballast Water Management, which was presented in the Appendix to the document under review, Mr Lauwers recalled that this was adopted together with the “General Guidance on the Voluntary Application of the D1 Ballast Water Exchange Standard by Vessels Operating between the Mediterranean Sea and the North-East Atlantic and/or the Baltic Sea”, at the Seventeenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, which was convened in Paris, France, from 8 to 10 February 2012.

The Programme Officer (Prevention) further recalled that, whilst the Strategy was composed of eight (8) Strategic Priorities as well as of an Action Plan and Workplan/Timetable for its implementation, which covered the years 2011-2015, the Action Plan identified eight (8) main measures to be taken at regional, sub-regional or national level in accordance with the Strategic Priorities. He highlighted that, despite the fact that a number of measures had already been implemented, others had been initiated but had not been implemented yet or had not been initiated, commonly facing budget issues. Besides, Mr Lauwers indicated that the number of Parties to the BWM Convention had reached to date forty-four (44), representing 32.86 per cent of the world merchant shipping tonnage and stressed that, since the Convention would enter into force twelve (12)
months after ratification by thirty (30) States, representing thirty-five (35) per cent of world merchant shipping tonnage, it was likely that it would enter into force during the 2015/2016 biennium.

56 The Programme Officer (Prevention) then drew the attention of the Meeting to Strategic Priority 7 of the Mediterranean Strategy on Ships’ Ballast Water Management, which referred to the need of periodic review of the Strategy and its Action Plan, to take into account emerging issues, outcome of R&D activities and experience gained from its operation and implementation.

57 The Meeting also took note that, following the adoption of the Mediterranean Strategy on Ships’ Ballast Water Management, the Centre continued to assist Mediterranean coastal States, within the framework of the GBP and also with financial support from SAFEMED II implemented by REMPEC and the ITCP, to adhere to the Strategy.

58 In this respect, the Meeting noted that, during the reporting period, both Lead Partnering Countries (LPCs) of the GBP in the Mediterranean region, namely Croatia and Turkey, prepared a National Ballast Water Status Assessment, an Economic Impact Assessment of the implementation of the BWM Convention and a National Ballast Water Management Strategy (NBWMS). The Meeting was also informed that three additional Mediterranean coastal States acceded to the BWM Convention, as follows: Montenegro (November 2011), Lebanon (December 2011) and Turkey (October 2014). The meeting further noted that, since the last Meeting of the Focal Points of REMPEC, five National Training Courses / Awareness Raising Seminars on Ships’ BWM were organised by the Centre and supported by the GBP, as follows: Tunisia (June 2012), Israel (October 2012), Algeria (October 2013) and Morocco (October 2012 and November 2014).

59 The representative from Morocco expressed her appreciation to REMPEC, the IMO and Turkey for the assistance provided during the National Seminar on BWM held in Morocco in 2014, showed interest in the organisation of a third national seminar with regard to the implementation of the BWM Convention and asked for further support from REMPEC and the Contracting Parties to the Barcelona Convention.

60 Taking into consideration the proposals of the Secretariat, the Meeting agreed that:

.1 a meeting is convened with the purpose of reviewing and evaluating the ongoing relevance of the Mediterranean Strategy on Ships’ Ballast Water Management, and overall effectiveness of activities carried out under its Action Plan, amongst others;

.2 Contracting Parties continue implementing the said Strategy, including its Action Plan, irrespective of its original Timetable, with the assistance of REMPEC which plays an essential role in the coordination of the implementation of the Action Plan and also in its role as RCO for the implementation of the GBP in the Mediterranean region in collaboration with RAC/SPA;

.3 the Contracting Parties’ efforts in the process of ratifying the BWM Convention are coordinated with the implementation of the Mediterranean Strategy on Ships’ Ballast Water Management; and

.4 during the biennium 2016/2017, REMPEC focuses its work in the field of BWM and invasive species on:

- the implementation of the agreed activities of the GBP in the Mediterranean region in line with the Mediterranean Strategy on Ships’ Ballast Water Management, including its Action Plan and Timetable;

- national activities with a view to further promoting the ratification and implementation of the BWM Convention in the Mediterranean region; and

- the organisation of National Training Courses / Awareness Raising Seminars on Ships’ BWM and the provision of assistance to interested Contracting Parties in preparing NBWMS.
AGENDA ITEM 8: MEDITERRANEAN NETWORK OF LAW ENFORCEMENT OFFICIALS RELATING TO MARPOL WITHIN THE FRAMEWORK OF THE BARCELONA CONVENTION AND RELATED ACTIVITIES

61 Whilst presenting document REMPEC/WG.37/8, the Secretariat stressed that the issue of illegal discharges from ships in violation of the regulations laid down in MARPOL Annex I was addressed in the 2005 Regional Strategy, especially Specific Objectives 6 and 7 thereof.

62 The Programme Officer (Prevention) recalled that, as a means to reach the aims of Specific Objective 7 of the 2005 Regional Strategy and, based on the achievements of similar networks in other Regional Seas such as the North Sea Network of Investigators and Prosecutors (NSN) and the Network of Prosecutors on Environmental Crime in the Baltic Sea Region (ENPRO), the Centre continued to focus its efforts on enhancing the knowledge of legal personnel, prosecutors and magistrates as well as facilitating judicial cooperation and the establishment of possible common procedures in the Mediterranean region.

63 In this respect, the Meeting was informed that the Third Plenary Meeting of the Network of Legal Prosecutors and Investigators against Marine Pollution in the Mediterranean, which was organised by the World Bank, through the Center for Mediterranean Integration (CMI), and the French Ministry of Justice, was held in Marseille, France, from 16 to 17 June 2011.

64 The Meeting noted that a Meeting on the Establishment of a Network of Law Enforcement Officials relating to MARPOL in the Mediterranean Sea was organised in Palma de Mallorca, Spain from 25 to 26 June 2013, by REMPEC together with Plan Bleu, as implementing Agency of the Regional – Governance and Knowledge generation (ReGoKo) Project funded by the Global Environment Facility (GEF), and with the financial support of the Government of France.

65 The Meeting also took note that the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, which was convened in Istanbul, Turkey from 3 to 6 December 2013, decided to establish the Mediterranean Network of Law Enforcement Officials relating to MARPOL within the framework of the Barcelona Convention (MENELAS) and approved its Terms of Reference (ToRs), as presented in the Appendix to the document under review. The Meeting further noted that REMPEC was requested to act as the Secretariat of this network and to report on its activities to the Contracting Parties at each of their Ordinary Meetings, and that the MAP Secretariat, in collaboration with REMPEC, was requested to further exploit possible synergies with the European Maritime Safety Agency (EMSA) within the framework of this decision.

66 Turning to activities related to illicit ship pollution discharges in the Mediterranean, Mr Lauwers indicated that a Coordinated Aerial Surveillance Operation for illicit ship pollution discharges (OSCAR-MED 2013) in the Western Mediterranean was organised in Palma de Mallorca, Spain from 24 to 26 June 2013, in cooperation with the Spanish Maritime Safety Agency (SASEMAR) and with the financial support of the Government of France and the RAMOGE Agreement. He stressed that, during the operation, five air patrol aircraft from Algeria, France, Italy, Morocco and Spain operated twelve (12) flights (a total of forty-four (44) flying hours) to detect marine pollution from ships in a designated area of the Western Mediterranean and that, in total, some seven hundred (700) vessels were monitored during the operation and three (3) oil slicks were detected.

67 The Meeting also noted that REMPEC participated in a Working Group, facilitated by EMSA, on Drafting EU Guidelines for Combating Illegal Discharges in the Marine Environment, which met five times between December 2011 and June 2013, and which led to the development of the publication entitled “Addressing Illegal Discharges in the Marine Environment” intended to support authorities involved in the enforcement chain addressing illegal pollution.

68 The Meeting was made aware that the MENELAS’ information system would be an internet based tool comprising a public area where general information would be made available to the public in order to raise awareness on the problem of illicit discharges from ships at sea, and a restricted area used for participating members only, where any request for assistance could be posted. Mr Lauwers mentioned that, as part of the ReGoKo Project, the Project Steering Committee decided to implement a specific activity aimed at developing and maintaining a MENELAS’ website, which started in March 2015 and was being implemented in close coordination with REMPEC and Plan Bleu.
The Programme Officer (Prevention) recalled that, pursuant to the decision of the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, the Contracting Parties agreed to organise a MENELAS’ meeting during the 2014/2015 biennium and that the Centre intended to organise this meeting towards the end of September 2015, possibly together with a coordinated aerial surveillance operation for illicit ship pollution discharges. The Meeting took note that one of the key issues to be discussed during the said meeting would be cooperation between Mediterranean coastal States within the framework of MENELAS as well as that between the network and other international organisations, including, but not necessarily limited to, EMSA and the networks established within the Regional Seas framework such as the NSN and ENPRO.

The Head of Office of REMPEC informed the Meeting that, although France could not participate in this meeting, it had sent some comments to the Secretariat, which stressed that the issue of illegal discharges from ships was of high priority for France, which invited Contracting Parties to organise regular surveillance operations and which highlighted that, following the Meeting of the NSN, which was held in Amsterdam, the Netherlands, from 27 to 28 May 2015, the NSN was very supportive to assist MENELAS in the Mediterranean region.

Taking into consideration the proposals of the Secretariat, the Meeting agreed that, during the biennium 2016/2017, the Centre focuses its work in the field of illicit ship pollution discharges in the Mediterranean on the implementation of Specific Objectives 7 and 8 of the Regional Strategy (2016-2021), which lay down measures aimed not only at improving the follow-up of pollution events as well as the monitoring and the surveillance of illicit discharges but also at improving the level of enforcement and the prosecution of discharge offenders.

AGENDA ITEM 9 PROJECT PROPOSAL ON PREPAREDNESS FOR AND RESPONSE TO ACCIDENTAL MARINE POLLUTION (OIL AND HNS)

At the invitation of the Chairperson, the Head of Office of REMPEC introduced document REMPEC/WG.37/9.

The Meeting was informed that, with a view to assisting the Contracting Parties in the implementation of the 1976 Emergency Protocol and the 2002 Prevention and Emergency Protocol, the Centre had managed to mobilise various sources of funding, including the Trust Fund for the Protection of the Mediterranean Sea against Pollution (MTF), the IMO’s ITCP and several EU funding mechanisms as well as voluntary contributions from Contracting Parties, since the last Meeting of Focal Points of REMPEC.

The Meeting considered the information provided by the Secretariat on the project proposals on preparedness for and response to accidental marine pollution (oil and Hazardous and Noxious Substances – HNS) namely the Marine Oil & HNS Pollution Cooperation in the Western Mediterranean Region Project (West MOPoCo Project) and the Marine Oil & HNS Pollution Exercise in the Western Mediterranean Region Project (West MOPoEx Project).

The Meeting acknowledged that such projects would assist Contracting Parties in implementing Specific Objectives 16, 17, 19, 20 and 22 of the Regional Strategy (2016-2021) to be adopted by the Nineteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, to be tentatively convened in February 2016 in Greece. Morocco welcomed the proposals, in particular the peer review which would contribute to the revision of its national contingency plan and requested the technical support of REMPEC during the revision process.

The Meeting considered the main factors which led the Secretariat to propose the submission of the project proposals and the proposed list of beneficiary countries. It took note of the main objectives and reviewed the brief description of the projects as detailed in the Annex to the document under review.

The importance of the involvement of the Mediterranean coastal States in the preparation of the proposed projects and their implementation was noted by the Meeting.

Following some questions from the floor on the possible involvement of other non-governmental entities, the Secretariat and the representative of the EU confirmed that any legal entity, including Non-Governmental Organisations (NGOs) could be involved in the project proposals.
representative of the Mediterranean Operational Network for the Global Ocean Observing System (MONGOOS) offered to participate and contribute to the project proposal in particular in the field of oil spill forecasting modelling for the exercise.

79 Some delegations raised concerns with regard to their capacity to provide financial contribution to the project due to administrative limitations. The representatives of the IMO, the EU and the Secretariat clarified the nature of the possible national contribution, which could include the time of national officers involved in the implementation of the projects. The representative of IPIECA expressed his appreciation on the proposed proposals, which he considered extremely useful tools for the region, and informed the Meeting that he would explore with IPIECA members the potential involvement of the oil industry.

80 In view of the required consultation and authorisation, the Meeting was not in a position to endorse the proposals of the Secretariat. However, whilst expressing its high interest on the proposals, the Meeting asked the Secretariat to officially request the proposed beneficiary countries to confirm their possible involvement as partner of the proposed projects. One delegation also requested the Secretariat to provide, within the official communication, an estimation of the level of contribution to be mobilised by each country in addition to EU funding.

81 The representative of the EU thanked the Centre for these two proposals but raised concerns regarding their timing, whilst highlighting that the opening of the call on prevention and preparedness could be advanced to January 2016. She also underlined that EMSA’s participation had to be looked into as the Agency could not be considered as a partner or a beneficiary. **The Meeting agreed** to integrate, in the project proposal, the Host Nation Support within the context of the revision of the Mediterranean Principles and Guidelines on cooperation, as well as the possible use of the Common Emergency Communication and Information System (CECIS) and other regional tools made available by REMPEC.

82 A delegation questioned the reason for not reflecting the project proposal in the proposed programme of work of REMPEC for the biennium 2016/2017. The Secretariat clarified that it was not included since the Contracting Parties did not confirm their interest. The Meeting was informed that, whilst the funding was not guaranteed and therefore that the proposed activities may not be implemented, these activities would be integrated in the proposed programme of work of REMPEC for the biennium 2016/2017 after the Meeting.

83 The Meeting noted that the call for proposals 2016 for prevention and preparedness projects in the field of civil protection and marine pollution as well as that for EU Civil Protection Mechanism (UCPM) exercises would require an early preparation of the related proposals by the concerned beneficiary countries, with the support of the Secretariat.

AGENDA ITEM 10: DATA SHARING, MONITORING AND REPORTING

84 The Meeting considered document REMPEC/WG.37/10 which provided information on the current challenges and opportunities related to data sharing, monitoring and reporting.

85 The Meeting took note of the information available through the Centre’s website and, in particular, the REMPEC’s Country Profiles. The Meeting was informed that the information available in the Country Profiles section was exclusively updated by the Contracting Parties to the Barcelona Convention, hence the need for the Focal Points of REMPEC to ensure that the information therein was kept up-to-date.

86 The Meeting acknowledged that the recommendations of the Regional Workshop on Oil Spill Risk Assessment in the Mediterranean Sea (“MEDEXPOL 2011”), which was held in Barcelona, Spain from 29 November to 1 December 2011, were successfully implemented in the Mediterranean Integrated Geographical Information System on Marine Pollution Risk Assessment and Response (MEDGIS-MAR) and in the integrated multi-model oil spill prediction service, one of the products of the EU-Funded Mediterranean Decision Support System for Marine Safety (MEDESS-4MS) Project.

87 Following the presentation of the Secretariat on the collection of the data gathered through the Mediterranean Technical Working Group (MTWG) (i.e. response means, marine incidents, oil and gas offshore installations, oil handling facilities) and through Plan Bleu, the Regional Activity Centre for Specially Protected Areas (SPA/RAC) and Eni S.p.A (socio-economic, environmental and coastal
morphology maps), which was integrated in MEDGIS-MAR and after a demonstration of MEDGIS-MAR and the MEDESS-4MS User Interface, the Meeting congratulated REMPEC on the excellent work carried out.

While transparency was expressed as the way forward, no consensus was reached regarding the visualisation rights of the data obtained from the MTWG, and some delegations expressed the need for internal consultation within their respective national authorities. Hence, the Meeting requested the Secretariat to send an official letter requesting each Mediterranean coastal State to confirm its position with regard to the data visualisation rights and to provide them with their respective credentials to access the platform. The Meeting further noted that all other information available through MEDGIS-MAR was publically available.

The representative of MONGOOS, which supported the scientific aspect of the MEDESS-4MS Project, thanked REMPEC for its collaboration and participation in the Project, and highlighted the uniqueness of the tool. He also stated that, despite the system being functional, a Med Capitalisation project to ensure the sustainability was being considered by some of the partners of the MEDESS-4MS Project.

With regard to CECIS, the representative of the EU clarified that the tool was now open for the use of Contracting Parties to the Barcelona Convention and REMPEC and proposed to organise a training course to familiarise the Mediterranean coastal States with the system, which would also enable the escalation of the regional assistance to a multi-regional assistance.

Further to the information provided on REMPEC’s Country Profiles and MEDGIS-MAR, the Meeting agreed:

1. to endorse MEDGIS-MAR;
2. to remove from REMPEC’s Country Profiles the sections on Risk assessment and Resources once MEDGIS-MAR is made operational;
3. to discontinue the database on alerts and accidents in the Mediterranean Sea, which would be replaced by MEDGIS-MAR; and
4. to encourage all Contracting Parties to report all accidents causing or likely to cause pollution of the sea by oil and other harmful substances.

Addressing the issue of monitoring of illicit discharges from ships and, whilst acknowledging that POLREP and the related procedures had been in place to report accidental pollutions, the Meeting questioned the Secretariat’s proposal to initiate discussions on the possible development of a common reporting format and the related reporting procedures for illicit discharges in the Mediterranean region during the forthcoming MENELAS’ meeting to be convened in September 2015, based on existing practices in other regions. Several delegations recommended that POLREP should be used to report both accidental pollution and illicit discharges as well as requested the Secretariat to further discuss the issue at the above-mentioned meeting avoiding duplications and additional burden through a new format.

Taking into account the information provided by the Secretariat on the Barcelona Convention Reporting System (BCRS), the Meeting noted the information given in the Annex to the document under review, which compared the information requested under REMPEC’s Country Profiles and that under the current BCRS, and noted that the Reporting Format for the Barcelona Convention and its Protocols would be revised with a view to making it more operational and simple. In this respect, it encouraged the Focal Points of REMPEC to contribute to this revision through their respective MAP Focal Points.

The Meeting noted that the main elements of a draft Integrated Monitoring and Assessment Programme with regard to the Ecological Objectives (EOs) of the pollution and litter cluster (EO 5 – Eutrophication, EO 9 – Contaminants, and EO 10 – Marine Litter) within the framework of the EcAp were presented in document UNEP(DEPI)/MED WG.417/6, which would be further discussed during the joint session to be held with the meeting of MED POL Focal Points on 17 June 2015.

The meeting recognised the importance that all existing reporting procedures were taken into account within the context of the development of the Integrated Monitoring and Assessment Programme.
Programme, and encouraged the Focal Points of REMPEC to contribute to the development and implementation of the said Programme through their respective MED POL Focal Points as well as MAP Focal Points.

The Chairperson highlighted that the subject of data sharing, monitoring and reporting was an issue which was time consuming and, for certain countries, involved multiple reporting processes as detailed in the document under review, leading to duplication and frustrating situations, and thus considered that the proposal provided a way forward to initiate discussions at regional level with a view to alleviating reporting obligations and consequently reducing the related costs and time allocated to these tasks.

Further to the consideration of the various elements presented, the Meeting requested the Secretariat to prepare a proposal on data sharing, monitoring and reporting, including the revision of REMPEC’s Country Profiles, to be submitted in 2017 at the Twelfth Meeting of the Focal Points of REMPEC for consideration, with a view to facilitating the reporting obligations of the Contracting Parties, taking into consideration information contained in REMPEC’s Country Profiles, MEDGIS-MAR, developments within the framework of MENELAS, and the revision of the Reporting Format for the Barcelona Convention and its Protocols as well as the Integrated Monitoring and Assessment Programme.

The Meeting further agreed to explore the possible interconnection between the current REMPEC reporting system (i.e. Country Profiles and MEDGIS-MAR) with CECIS and to report to the Twelfth Meeting of the Focal Points of REMPEC to be convened in 2017.

AGENDA ITEM 11: REVISION OF THE REGIONAL STRATEGY FOR PREVENTION OF AND RESPONSE TO MARINE POLLUTION FROM SHIPS

Whilst presenting both documents REMPEC/WG.37/11/1 and REMPEC/WG.37/11/2, the Secretariat provided an outline of the process leading to the preparation of the Revised Draft Regional Strategy (2016-2021). It was recalled that, with a view to facilitating the implementation of the 2002 Prevention and Emergency Protocol, the 2005 Regional Strategy had been adopted by the Fourteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, which was held in Portorož, Slovenia, from 8 to 11 November 2005, and included a set of 21 objectives to be implemented by 2015.

The Meeting noted that, as part of the revision process of the 2005 Regional Strategy, a draft Regional Strategy for Prevention of and Response to Marine Pollution from Ships (2016-2021) had been submitted to the Meeting of National Experts on the Revision of the Regional Strategy for Prevention of and Response to Marine Pollution from Ships, which was convened in Malta, from 11 to 12 March 2015. The Meeting was informed that, following discussions, the said meeting agreed upon a Revised Draft Regional Strategy (2016-2021) to be considered by the present Meeting.

The Meeting took note of the fact that, upon its agreement on the Revised Draft Regional Strategy (2016-2021), amended as necessary, the said document would be submitted to the Meeting of the MAP Focal Points scheduled for October 2015 prior to its adoption by the Nineteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, to be tentatively held in February 2016 in Greece. The Meeting appreciated that the final version would also be integrated in the UNEP/MAP’s Mid-Term Strategy to be adopted by the same meeting.

The Meeting agreed upon the following minor revisions proposed by the Secretariat:

1. to delete page i entitled “Background” of the Revised Draft Regional Strategy (2016-2021), since the background could not be construed as being an integral part of the Regional Strategy (2016-2021);

2. to delete the brackets and the text within brackets, namely “[Revised Draft]” throughout the text of the Revised Draft Regional Strategy (2016-2021); and

3. to delete the reference to “other marine vehicles and structures” throughout the document, in particular in Annex III to the Revised Draft Regional Strategy (2016-2021).
The Meeting noted that, following the deletion of Specific Objective 15 of the 2005 Regional Strategy by the Meeting of National Experts on the Revision of the Regional Strategy for Prevention of and Response to Marine Pollution from Ships, the reference to “oil handling facilities” had been deleted in the Revised Draft Regional Strategy (2016-2021). Considering that the International Convention on Oil Pollution Preparedness, Response and Co-operation, 1990 referred to ships, offshore units, sea ports and oil handling facilities, the Meeting agreed to add a reference to “sea ports and oil handling facilities” in sub-paragraphs a) and d) under Specific Objective 22.

The representative of the EU referred to Specific Objective 7 and explained that the use of the CleanSeaNet services could only be provided following the signature of the Conditions of Use. He informed the Meeting that seven (7) SAFEMED III beneficiary countries were considering the use of the services and that this was made possible thanks to the allocated budget under SAFEMED III. Considering the contractual and legal requirements related to the use of CleanSeaNet services, he proposed to amend paragraph f) as follows:

“to explore the continuation of the CleanSeaNet services offered by EMSA available to all Contracting Parties to the Barcelona Convention that are not Member States of the EU, currently through the SAFEMED III Project, until 2021 and beyond”.

Referring to Specific Objective 18 paragraph g), the representative of the EU clarified that EMSA was not participating in any scientific project and that the reference was thus not relevant and requested the Secretariat to delete the said reference. Moving on to Specific Objective 22 paragraph f), he requested to delete the reference to EMSA and to the UCPM since, at the EU level, they did not have the mandate to provide assistance in the preparation or revision of national contingency plans. The representative of the EU also requested the addition of a new paragraph e) – “to consider the use of the CECIS Marine Pollution in order to enhance coordination of requests and offers of international assistance”, under Specific Objective 21, taking into account that CECIS had been opened to third countries and regional agreements. The Meeting agreed with the said proposals.

Considering the proposed amendments in Annex II – “List of Relevant International Conventions and European Union Legislation” to the Revised Draft Regional Strategy (2016-2021) put forward by the EU, as detailed in paragraph 12.3 of document REMPEC/WG.37/11/1, the Meeting agreed with the Secretariat’s proposal provided that the reference to the EU Sulphur Directive (2012/33/EU) be deleted since it was considered that the latter was already covered by the proposed text referring to “Directive 1999/32/EC, as amended”.

The representative of Egypt stated that, although in principle, his government agreed on the majority of Specific Objectives, it expressed serious concerns on certain issues and proposed a series of amendments to the Revised Draft Regional Strategy (2016-2021). Further to the dissemination of hard copies of the proposed amendments put forward by the representative of Egypt to the Meeting, reproduced in Annex IV to the present report, the Meeting discussed the first proposal relating to the addition of a preamble. The Meeting agreed:

.1 with the addition, in the said preamble, of the first sub-proposal “Nothing in this Strategy shall prejudice the principles of Sovereignty of the States, principles of Freedom, rights of Navigation, and principles of Innocent Passage in the Territorial Sea”

.2 with the amended text “In case of any contradiction between the Strategy and national or international legislations, the latter shall prevail” concerning the second sub-proposal; and

.3 to merge the third and fourth sub-proposals as follows: “For specific topics addressing national issues, the Secretariat should seek the authorisation of the concerned country prior to its publication”.

After much deliberation on the second proposed amendment by Egypt related to the inclusion of a section on definitions in the Revised Draft Regional Strategy (2016-2021), the Meeting decided not to prolong further the already lengthy discussion and, consequently, noted the reservation put forward by Egypt on the Revised Draft Regional Strategy (2016-2021).
Following this discussion, the Meeting eventually agreed upon the Revised Draft Regional Strategy (2016-2021), as amended, with the addition of the agreed preamble, bearing in mind the reservation made by Egypt on the said document. The Meeting requested the Secretariat to submit the Revised Draft Regional Strategy (2016-2021), as amended, together with a note on the reservation made by Egypt, to the next Meeting of MAP Focal Points scheduled in October 2015, for further discussion, prior to its adoption by the Nineteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, to be tentatively convened in February 2016 in Greece.

AGENDA ITEM 12: COOPERATION BETWEEN REMPEC AND THE EUROPEAN COMMISSION AS WELL AS THE EUROPEAN MARITIME SAFETY AGENCY

The Secretariat introduced document REMPEC/WG.37/12 relating to cooperation between REMPEC and the European Commission as well as EMSA.

The Meeting took note of the mandates and objectives of REMPEC, the UCPM and EMSA, whilst particular emphasis was given to relevant EU legislations, in particular Decision No 1313/2013/EU relating to the establishment of the UCPM and Regulation (EC) No 1406/2002 on the establishment of EMSA, as amended by Regulation (EU) No 100/2013, considering the interaction between the UCPM, EMSA, regional agreements and international organisations.

The Meeting was informed of the conclusions of the Rosersberg Initiative launched by the Advisory Group on Environmental Emergencies (AGEE) established by UNEP and the UN Office for the Coordination of Humanitarian Affairs (OCHA), as well as the integration of the cooperation with the UCPM and EMSA within the Revised Draft Regional Strategy (2016-2021).

The Meeting noted that the Workshop on Regional Response Capacity and Coordination for Major Oil Spill in the Mediterranean Sea (“MEDEXPOL 2013”), which was held in Athens, Greece, from 10 to 12 December 2013, recommended inter alia the identification of duplication/overlapping/gaps between the European and regional levels as well as the improvement of the cooperation arrangements and synergies between the European and regional mechanisms.

The Meeting was made aware of the recommendations of the Meeting of National Experts on the Revision of the Regional Strategy for Prevention of and Response to Marine Pollution from Ships, which was convened in Malta from 11 to 12 March 2015, to ensure an effective coordination between the Mediterranean regional assistance, the IMO support as well as the European response and assistance mechanism, and to establish clear procedures, conditions and synergies within the review of the series of Principles and Guidelines on various aspects related to cooperation during an oil spill incident developed by REMPEC since 1987.

Considering this rationale, the Meeting took note of the relevance of a strengthened cooperation in the Mediterranean region in the field of preparedness for and response to marine pollution.

The Meeting further noted the past and current cooperation between REMPEC and the European Commission as well as EMSA, in particular the cooperation within the framework of the SAFEMED Projects, the Inter-Secretariat Meetings held annually between regional agreements, the European Commission and EMSA, the implementation of the programme of work of the MTWG and the EMSA Consultative Technical Group for Marine Pollution Preparedness and Response (CTG MPPR).

The Meeting was informed about the existing Memorandum of Understanding (MoU) between the IMO and UNEP defining the areas of mutual interest and cooperation relating to Pollution Incident Preparedness, Response and Cooperation, and noted the current developments concerning the review of the MoU between the IMO and the Joint UNEP/OCHA Environment Unit (JEU). The Meeting further took note of the existing arrangement between OCHA and the European Commission as referred to in Commission Decision 2005/160/EC.

Following a proposal by a delegation with regard to the possible participation of representatives of the MTWG to attend the CTG MPPR meetings, the representative of the EU welcomed the suggestion which would benefit the CTG MPPR, and recalled that REMPEC was
invited to all CTG MPPR meetings and could envisage the participation of a representative of the MTWG, as part of the Centre’s delegation.

The representative of the EU specified that the development undertaken by the MTWG was of interest for the CTG MPPR and highlighted that the Inter-Secretariat Meetings had no decision-making power. Following his proposed amendments and, on the basis of the proposed way forward in the Mediterranean region in the field of preparedness for and response to marine pollution put forward by the Secretariat, the Meeting agreed:

1. to strengthen the possible synergies between the MTWG and the CTG MPPR by amending the 2007 Guidelines for the MTWG, as proposed in Annex II to document REMPEC/WG.37/14/1, and by requesting the CTG MPPR meetings to note any relevant MTWG developments;

2. to explore possible synergies on future joint activities or projects in order to benefit from a stronger cooperation on topics of common interest, and to propose possible synergies to the various technical groups of the regional agreements and the CTG MPPR, within the framework of the Inter-Secretariat Meetings;

3. to organise working-level exchanges between, on the one hand, the Mediterranean coastal States and, on the other hand, relevant entities such as the IMO, UNEP together with representatives from UNEP/MAP, OCHA and REMPEC, the European Commission as well as EMSA, to discuss cooperation arrangements and synergies between the European and regional mechanisms, in view of the organisation of a high-level meeting; and

4. to initiate discussions, in consultation with the IMO and UNEP/MAP, to define, as soon as possible, the most appropriate way to cooperate and support the implementation of the Regional Strategy (2016-2021).

AGENDA ITEM 13: REMPEC’S 40TH ANNIVERSARY

The Meeting considered document REMPEC/WG.37/13 which provided a brief history of the Centre, its achievements and milestones undertaken within the framework of its mandate as well as information on the proposed activities to celebrate the 40th Anniversary of REMPEC in 2016.

In an effort to provide historical perspective, the Head of Office of REMPEC presented the evolution of the legal framework and the context in which the Centre was set out, from the adoption of the first Action Plan within the framework of the Regional Seas Programme of UNEP by the Mediterranean in 1974, namely the Mediterranean Action Plan (MAP) of 1975, to the adoption of the Convention for the Protection of the Mediterranean Sea Against Pollution ("the Barcelona Convention of 1976") which was adopted together with two specific Protocols, including the 1976 Emergency Protocol, as well as their amendments through time.

The Head of Office recalled that the Centre was originally established as the Regional Oil Combating Centre (ROCC) on 11 December 1976, before its name was changed to the “Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea” (REMPEC) in 1989. He also stated that its mandate had been extended over the years.

The Head of Office referred to the adoption of the resolution on the “Regional Strategy on prevention of pollution of the marine environment by ships” by the Tenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols convened in Tunis, Tunisia, from 18 to 21 November 1997, and which, in turn, paved the way for the amendment of the 1976 Emergency Protocol. He indicated that the resulting 2002 Prevention and Emergency Protocol, which entered into force on 17 March 2004, covered prevention of, preparedness for and response to marine pollution from sea-based sources.

With a view to illustrating REMPEC’s achievements over the past forty (40) years, the Head of Office provided statistical figures and examples of successful undertakings.

The Secretariat proposed that, in preparation for the 40th Anniversary of REMPEC to be launched on 11 December 2016 with the theme “Cooperation in the Mediterranean to prevent and
combat marine pollution”, work be initiated in early 2016 and that this occasion be marked throughout the year 2017 up until the closing of the Twentieth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols in order to enhance REMPEC’s visibility, build new partnerships and mobilise resources.

In view of the above, the Secretariat specifically proposed to mobilise voluntary contributions and resources, revamp REMPEC’s website, create a specific logo and tagline, produce brochures and other visual material as well as organise opening and closing events, preferably combining them with other regional events scheduled in the MAP Programme of Work.

The Secretariat also proposed to Contracting Parties and partners to take part in commemorating the 40th Anniversary of REMPEC by organising events at their national level.

The Meeting agreed to the proposals put forward by the Secretariat.

AGENDA ITEM 14: MEDITERRANEAN TECHNICAL WORKING GROUP (MTWG)

The Chairperson invited the Secretariat to introduce both documents pertaining to Agenda Item 14 concerning the MTWG, namely document REMPEC/WG.37/14/1 relating to the progress made by the MTWG since the last Meeting of the Focal Points of REMPEC and document REMPEC/WG.37/14/2 regarding the proposal related to future possible work of the MTWG.

The Meeting was informed that the main milestones achieved covered aspects of cooperation between the regional forum (MTWG) and the international forum (IMO’s OPRC-HNS Technical Group), the completion and launch of the Maritime Integrated Decision Support Information System on Transport of Chemical Substances (MIDSIS-TROCS), the development of a Regional Risk Assessment Methodology including the revision of the existing inventory of response means through the MEDESS-4MS Project, as well as the update of the RIS reference system and content. The Meeting further noted that these achievements fulfilled the tasks which had been included in the programme of work of the MTWG for the biennium 2012/2013 by the last Meeting of the Focal Points of REMPEC.

On the basis of the above-mentioned considerations, the Meeting agreed with the proposals made by the Secretariat in document REMPEC/WG.37/14/1, pertaining to:

.1 the review of MIDSIS-TROCS version 3.0;
.2 assisting the Centre in maintaining updated information on HNS incidents by providing reports on HNS response following incidents; and
.3 encouraging OPRC Focal Points to use the MEDESS-4MS and MEDGIS-MAR User Interface as well as to update MEDGIS-MAR with relevant national data, including the national inventory of response means, in view of the development or improvement of their respective risk assessments.

The Meeting considered the amended 2015 version of the Guidelines for the MTWG, reproduced in Annex II to document REMPEC/WG.37/14/1, which was prepared in accordance with Article 4 of the amended 2007 version of the said Guidelines. Taking into consideration the discussion under Agenda Item 12, the Meeting endorsed the amended 2015 version of the Guidelines for the MTWG.

Whilst noting that the proposals put forward resulted from a consultation with the MTWG contact points in charge of reviewing the RIS, the Meeting considered the proposals related to the future possible work of the MTWG contained in document REMPEC/WG.37/14/2 following the introduction by the Secretariat on the rationale behind each proposal.

With the exception of the preparation of a technical document concerning the latest developments in the field of response to chemical spills, the Meeting agreed to include in the programme of work of the MTWG for the biennium 2016/2017, the following tasks:

.1 to update the Guidelines on Risk of gaseous releases resulting from marine incidents; and
to carry out a complete review of the Principles and Guidelines on cooperation and mutual assistance, including:

- “Guidelines for Co-Operation in Combating Marine Oil Pollution in the Mediterranean, 1987”;

- “Principles and guidelines concerning cooperation and mutual assistance, 1991”;

- “Guidelines concerning the Exchange of Liaison Officers between the Contracting Parties in case of Response Operations involving Several States, 1995”; and

- “Guidelines concerning Arrangements which might be made with a view to ensuring, in case of an accident, liaison between the Governmental Authorities and other Interested Parties, 1995”.

The Secretariat thanked the Contracting Parties for their support to the MTWG activities and especially for appointing appropriate national entities and/or officials as MTWG contact points. The Secretariat also extended its gratitude to the IMO OPRC-HNS Technical Group and other partners for their contribution in the implementation of the programme of work of the MTWG, in particular for the preparation of Guidelines on Oil Spill Waste Management, MIDSIS-TROCS, and for pushing forward a regionally identified need at international level leading to the development of operational guidelines on sunken and submerged oil assessment and removal techniques.

AGENDA ITEM 15: PROPOSED PROGRAMME OF WORK OF REMPEC FOR BIENNIAL 2016/2017

At the invitation of the Chairperson, the Head of Office of REMPEC introduced document REMPEC/WG.37/15 containing in its Annex the proposed programme of work of REMPEC for the biennium 2016/2017 as well as document REMPEC/WG.37/15/Corr.1, and explained the rationale used to prepare it.

The Meeting noted that the proposed programme of work of the Centre was prepared within the context of the Draft Strategic Framework of the UNEP/MAP’s Integrated Six-Year Programme of Work for the period 2016 to 2021 (“the draft Strategic Framework”) (REMPEC/WG.37/INF.3), which was discussed and amended in the meantime by the Meeting of the MAP Focal Points held in Athens, Greece from 19 to 21 May 2015. In this context, since the structure and numbering of the draft Strategic Framework would be modified with a view to reflecting the outcome of the discussions of the said meeting, the Meeting decided to only focus on the technical aspects related to the activities listed in the proposed programme of work of the Centre.

The Meeting took note of the fact that the MAP budget for the biennium 2016/2017, including the budget for the implementation of the programme of work of REMPEC, would be discussed at the next Meeting of the MAP Focal Points scheduled for October 2015.

Referring to the intervention made by the representative of the EU, it was clarified that the meaning of “partners” referred to potential partners. The Meeting agreed that references to EMSA as well as the European Commission would be removed from the Annex to the document under review since the EU was a Contracting Party to the Barcelona Convention.

At the request of the Meeting, the Secretariat presented activity by activity whilst indicating the related Specific Objectives of the Revised Draft Regional Strategy (2016-2021) and the corresponding level of priority for each activity in the proposed programme of work.

With reference to activity 1.3.1.1 relating to the preparation of specific guidelines to determine the application of charges at reasonable costs for the use of port reception facilities or, where appropriate, the application of a No-Special-Fee System, concerns were raised over the different regulatory systems from one country to another. On this aspect, the representative of the EU reminded the Meeting that the EU legislation had a fixed and variable fee. Besides, given the fact that reference to marine litter was lacking, it was proposed that the Secretariat would clarify the said
activity by stating the link with the Regional Plan on Marine Litter Management in the Mediterranean. Finally, the Meeting endorsed the proposal related to the inclusion of an asterisk referring to the fact that EU Member States were bound by relevant EU legislation (Directive 2000/59/EC).

142 Upon a proposal from the representative of the EU, the Meeting agreed that the reference to training on CECIS be reflected under activity 1.6.1.2.

143 With regard to activity 4.1.5.1, the Meeting took note of the comment made by the representative of the EU, which highlighted that the Operational Guidelines ('OG') on Places of Refuge had been finalised and would be shared with REMPEC.

144 Taking note of the comments made by various delegations, the Meeting endorsed the proposed activities, as amended, and requested the Secretariat to:

.1 make the necessary amendments in the proposed programme of work of the Centre for the biennium 2016/2017 with a view to reflecting the new structure and numbering of the revised draft Strategic Framework once prepared by the MAP Secretariat;

.2 circulate the revised programme of work of the Centre for the biennium 2016/2017 as soon as possible to the Focal Points of REMPEC for their information; and

.3 integrate the revised programme of work of the Centre into the MAP Programme of Work for the biennium 2016/2017 to be submitted for approval by the next Meeting of the Focal Points scheduled for October 2015 prior to its submission for adoption by the Nineteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols, to be tentatively convened in February 2016 in Greece.

AGENDA ITEM 16: OTHER BUSINESS

145 The Chairperson referred to document REMPEC/WG.37/INF.5 submitted by the Sea Alarm foundation (a member of the MAU). He asked the Meeting to take note of the information provided in this document summarising recent developments in international oiled wildlife preparedness and response since the Sea Alarm foundation could not participate in the Meeting.

146 The representative of the EU noted that, since the time document REMPEC/WG.37/INF 4, which presented the UCPM and its tools available for the Contracting Parties of the Barcelona Convention, was published, there had been a minor change in the information contained therein, in that the UCPM currently had thirty-three (33) Participating States: twenty-eight (28) EU Member States, Iceland, Norway, the former Yugoslav Republic of Macedonia, Montenegro and Serbia. She also indicated that Turkey had signed the agreement for the country's official participation in the UCPM, which was awaiting national ratification.

AGENDA ITEM 17: ADOPTION OF THE REPORT OF THE MEETING

147 The Meeting adopted the present report together with its annexes.

AGENDA ITEM 18: CLOSURE OF THE MEETING

148 Before closing the Meeting, the Chairperson thanked the delegations for their active participation, expressed deep appreciation to the Secretariat for the efforts made and showed gratitude to the interpreters for their excellent work.

149 The Head of Office of REMPEC thanked the Chairperson, Mr El Kaissi, for efficiently steering the discussions and all delegations for their constructive debate.

150 The Deputy Coordinator of MAP thanked all Contracting Parties and MAP Partners stressing that their presence showed commitment to the Barcelona Convention and its Protocols. He also expressed thanks to the Chairperson and to the Secretariat.

151 The Chairperson closed the Meeting at 17:30 hours on Wednesday, 17 June 2015.
ANNEX(E) I

LIST OF PARTICIPANTS / LISTE DES PARTICIPANTS

CONTRACTING PARTIES / PARTIES CONTRACTANTES

ALBANIA / ALBANIE

Mr Arduen KARAGJOZI
Director
Directory of Excellence
Technical Secretariat of National Water Council
Bulevardi Deshmoret e Kombit
Tirana 1001
Tel No: +355 69 24 733 80
Mobile: +355 69 24 733 80
E-mail: Arduen.Karagjozi@stkku.gov.al

Mr Redi BADUNI
Director
Ministry of Environment
Rruga e Durrësit Nr. 27
Tirana 1001
Tel No: +355 67 204 22 59
E-mail: redi.baduni@moe.gov.al

ALGERIA / ALGERIE

M Hassene HELLAL
Chargé de Bureau
Ministère des affaires étrangères
Promontoire des Annassers
Kouba, Alger 16000
Tél: +213 21 50 45 45
Portable: +213 699 30 33 49
Fax No: +213 21 50 43 22
E-mail: hassene80@gmail.com

M Mohamed Redouane CHAKOUR
Chef d’Etudes
Direction de la marine marchande et des Ports
Ministère des transports
1, Chemin Ibn-Badis El Mouiz (ex Poirson)
El Biar
16000 Alger
Tél: +213 21 92 98 81
Portable: +213 559 76 9057
Fax No: +213 21 92 98 81
E-mail: chakour23@hotmail.com
CROATIA / CROATIE

Captain Darko GLAZAR
Harbour Master
Ministry of Maritime Affairs, Transport and Infrastructure
Safety of Navigation, Marine Environment and Inland Waters Protection Authority
Senjsko pristanište 3
51000 Rijeka

Tel No: +385 51 214 113
Mobile: +385 99 211 247
Fax No: +385 51 211 660
E-mail: darko.glazar@pomorstvo.hr

Mr Mario STIPETIĆ
Head of Sector
Ministry of Environment and Nature Protection
Radnička cesta 80
10000 Zagreb

Tel No: +385 1 37 17 204
Mobile: +385 98 304 255
Fax No: +385 1 37 17 135
E-mail: Mario.Stipetic@mzoip.hr

CYPRUS / CHYPRE

Mr Ioannis EFSTRATIOU
Senior Marine Surveyor
Department of Merchant Shipping
Kylinis Street
CY4007 Mesa Geitonia
Limassol

Tel No: +357 25 848 100
Mobile: +357 99 69 26 22
Fax No: +357 25 848 200
E-mail: jefstratiou@dms.mcw.gov.cy

Mr Marinos IOANNOU
Head of Naval Service – Pollution Controller
Department of Fisheries and Marine Research
Voukourestiou Kai Theodoktou Corner, 2nd Floor
P.O. Box 51305
CY3505 – Limassol

Tel No: +357 25 817 312
Mobile: +357 99 48 96 51
Fax No: +357 25 305 543
E-mail: maioannou@dfmr.moa.gov.cy
EGYPT / EGYPTE

Mr Mohamed Mohamed Said HANAFY
Director of International Conference Division
Maritime Transport Sector
Ministry of Transport
4, Ptolemy Street
Alexandria, Post Box 21414

Tel No: +20 3 48 43 631
Mobile +20 100 3307 630
Fax No: +20 3 484 20 96
E-mail: mohamedhanafie@yahoo.com

Mr Ahmed Kasem Kasem SHETA
General Manager of Environmental Crisis Management
NOSCP-NC
Egyptian Environmental Affairs Agency (EEAA)
30 Misr Helwan El Zayrae Road
Maadi Cairo
P.O. Box 11728

Tel No: +20 2 25 25 64 91
+20 2 25 25 64 92
Mobile: +20 100 3824 600
Fax No +20 2 2525 64 94
E-mail: ahmed_sheta@hotmail.com

EUROPEAN UNION / UNION EUROPÉENNE

Ms Asta MACKEVICIUTE
DG ECHO B - Directorate General for Humanitarian and Civil Protection Operations
A5 - Civil Protection Policy
European Commission - OFFICE: L 86 7 /021
1049 Brussels, BELGIUM

Tel No: +32 2 29 52 899
Mobile: +32 484 90 9922
Fax No +32 2 29 51458
E-mail: Asta.MACKEVICIUTE@ec.europa.eu

Mr Leendert BAL
Head of Department Operations
European Maritime Safety Agency (EMSA)
Praca Europa 4
Lisbon 1249-206
PORTUGAL

Tel No: +351 211 209 244
Mobile: +351 911 089 117
Fax No: +351 211 209 483
E-mail: Leendert.Bal@emsa.europa.eu
GREECE / GRECE

Lieutenant H.C.G. Konstantinos MANGIDAS
Introducer of the Prevention & Combating Incidents & Contingency Planning
Implementation Department
Marine Environment Protection Directorate
Ministry of Economy, Infrastructure, Marine and Tourism
Akti Vasileiadi – Gate E1-E2 (inside port)
GR 18510 Piraeus

Tel No: +30 213 13 71 351
Mobile: +30 69 77 21 73 11
Fax No: +30 210 422 04 40
E-mail: maggidaskostas@yahoo.gr

ISRAEL / ISRAEL

Mr Ran AMIR
Director, Marine and Coastal Environment Division
Ministry of Environmental Protection
15a Pal-Yam St
Haifa 31007

Tel No: +972 4 863 35 00
Mobile: +972 50 623 30 50
Fax No: +972 4 863 35 20
E-mail: rani@sviva.gov.il

Captain Meir Youssef ATIA
Principal Examiner – Deck Department
Ministry of Transport
15a Pal-Yam St
Haifa 31007

Tel No: +972 4 863 20 82
Mobile: +972 50 621 21 60
Fax No: +972 4 863 21 18
E-mail: atiam@mot.gov.il

ITALY / ITALIE

Dr Roberto GIANGRECO
Officer
Ministry of Environment, Territory and Sea
Via Cristoforo Colombo, 44
Rome 00147

Tel No: +39 06 57 22 84 06
Mobile: +39 347 331 31 91
Fax No: +39 06 57 22 84 24
E-mail: giangreco.roberto@minambiente.it
ITALY / ITALIE (cont.)

LCDR (ITCG) Gabriele PESCHIULLI
Marine Environment Department
2nd Office Assigned
Ministry of Environment, Land and Sea Protection
Via Cristoforo Colombo, 44
00147 Rome

Tel No: +39 06 57 22 56 39
Mobile: +39 339 399 1114
Fax No: +39 06 57 22 56 79
E-mail: Peschiulli.Gabriele@minambiente.it

LEBANON / LIBAN

Mr Abdel Hafiz EL KAISSI
Director General of Land and Maritime Transport
Ministry of Public Works and Transport
Directorate General of Land and Maritime Transport
Georges Picot Street
Beirut 20206301

Tel No: +961 1 371 644
Mobile: +961 3 312 385
Fax no: +961 1 371 647
E-mail: ministry@transportation.gov.lb

Ms Ilham Mansour Mansour EL KHBBAZ
Chief of Maritime Transport Division
Ministry of Public Works and Transport
Directorate General of Land and Maritime Transport
Georges Picot Street
Beirut 20206301

Tel No: +961 1 372 762
Mobile: +961 3 930 858
Fax No: +961 1 371 647
E-mail: ministry@transportation.gov.lb

LIBYA / LIBYE

Dr Bashir Ahmed ELMEDHEM
HSE Manager
National Oil Corporation (NOC Libya)
Bashir Sadawi Street
Tripoli Libya

Tel No: +218 21 444 75 01
Mobile: +218 21 444 75 01
E-mail: belmedhem@noc.ly
MALTA / MALTE

Mr Joseph CALLUS
Permanent Secretary
Ministry of Transport and Infrastructure
Blk B, Triq Francesco Buonamici
Floriana

Tel No: +356 2292 72 08
Mobile: +356 7909 33 52
E-mail: joseph.callus@gov.mt

Captain Richard GABRIELE
Head, Pollution and Incident Response
Transport Malta
Ports & yachting Directorate
Malta Transport Centre
Marsa MRS 1917

Tel No: +356 22 91 44 20
Mobile: +356 9949 4312
Fax No: +356 22 91 44 29
E-mail: richard.gabriele@transport.gov.mt

Dr Gordon CUTAJAR
Assistant Registrar of Ships
Merchant Shipping Directorate
Transport Malta
Marsa MRS 1917

Tel No: +356 21 25 03 60
Fax No: +356 21 24 14 60
E-mail: gordon.cutajar@transport.gov.mt

Ms Charlotte BONAVIA
Officer (Multilateral Affairs)
Malta Environment & Planning Authority (MEPA)
Hexagon House, Spencer Hill
Marsa P.O. Box 200

Tel No: +356 2290 7330
E-mail: charlotte.bonavia@mepa.org.mt
MONTENEGRO / MONTENEGRO

Captain Predrag RATKOVIĆ
Head of Sector for the Prevention of Sea Pollution from Sea-Going Objects
National "On-Scene" Commander in Case of Oil Pollution
Maritime Safety Department
Marsala Tita no, 7
Bar 85000

Tel No: +382 30 313 240
Mobile: +382 69 632 930
Fax No: +382 30 313 274
E-mail: predrag.ratkovic@pomorstvo.me

Mr Nexhat KAPIDANI
Deputy Director
Maritime Safety Department
Marsala Tita no. 7
Bar 85000

Tel No: +382 30 313 240
Mobile: +382 69 035 958
Fax No: +382 30 313 274
E-mail: nexhat.kapidani@pomorstvo.me

MOROCCO / MAROC

Mme Fatima HAKIMY
Chef de Service de la prévention et de la lutte contre la pollution marine
Ministère de l’équipement et du transport et de la logistique
Direction de la marine marchande
Boulevard Félix Houphouet Boigny
20000 Casablanca

Tél : +212 529 028 602
Portable: +212 664 69 71 35
+212 05 29 02 86 17
Fax No: +212 5 22 27 33 40
E-mail: berbermarocaine@hotmail.com

Mme Naoual ZOUBAIR
Chef de Service
Ministère délégué chargé de l'Environnement
9 Avenue Al Araar, Secteur 16
Hay Raid, Rabat

Tél: +212 537 57 06 01
Portable: +212 662 10 81 54
Fax No: +212 537 57 66 45
E-mail: n_zoubair@yahoo.fr
SLOVENIA / SLOVENIE

Captain Primož BAJEC
Head of Department for Maritime Traffic, Monitoring and SAR
Slovenian Maritime Administration
Maritime Rescue Co-ordination Centre
Ukmarjev trg 2
SI-6000 Koper
Tel No: +386 5 6632 100
Mobile: +386 41 768 336
Fax No: +386 5 6632 102
E-mail: primoz.bajec1@gov.si

Mr Jadran KLINEC
Director
Slovenian Maritime Administration
Ukmarjev trg 2
6000 Koper
Tel No: +386 5 663 21 00
Mobile: +386 41 671 577
Fax No: +386 5 663 21 02
E-mail: jadran.klinec@gov.si

SPAIN / ESPAGNE

Mr Pablo PEDROSA REY
Head Pollution Response Unit
Directorate General of Merchant Marine
Ruiz de Alarcon, Madrid 28071
Tel No: +34 915 979 098
Mobile: +34 6460 85 207
Fax No: +34 915 979 235
E-mail: ppedrosa@fomento.es

Mr José Manuel GONZÁLEZ CORBAL
Jefe de Sección Técnica
Secretaría de Estado de Medio Ambiente
Dirección General de Sostenibilidad de la Costa y del Mar
Servicio Provincial de Costas de Granada
Camino de Ronda, 83,
1ª Planta – 18071 Granada
Tel No: +34 958 541 752
Fax No: +34 958 535 638
E-mail : jmgcorbal@magrama.es
SYRIAN ARAB REPUBLIC / RÉPUBLIQUE ARABE SYRIENNE

Eng Fathia MOHAMMAD
Head of Environmental Emergency and Risk Assessment Department
Ministry of State for Environmental Affairs
Yousef Alazma Square
P.O, Box 3773
Damascus

Tel No: +963 11 239 63 91; 231 63 71
Mobile: +963 93 229 14 50
Fax No: +963 11 231 78 56
E-mail: fat_jrooh@hotmail.com
fat_mgd@yahoo.com

TUNISIA / TUNISIE

M Moncef FRAJ
Directeur des Ports Maritime de Commerce
Ministère du Transport
Rue Elborgine Montplaisir
1073 Tunis

Tél: +216 71 906 412
Portable: +216 98 90 20 13
Fax No: +216 71 903 905
E-mail: monceffrey@yahoo.fr

M Samir KHEDHIRA
Sous-Directeur de la pollution marine
Agence nationale de protection de l'environnement (ANPE)
Centre Urbain Nord
15 rue 7051 cité Essalem
2080 Tunis

Tél: +216 71 233 600
Portable: +216 9797 5288
Fax No: +216 71 232 811
E-mail: samirkhedhira@yahoo.fr
ORGANISATIONS OF THE UNITED NATIONS / AGENCES DES NATIONS UNIES

INTERNATIONAL MARITIME ORGANIZATION (IMO) / ORGANISATION MARITIME INTERNATIONALE (OMI)

Mr Danu PUGHUIC
Senior Deputy Director
Marine Environment Division
International Maritime Organization (IMO)
4 Albert Embankment
London SE1 7SR
UNITED KINGDOM

Tel No: +44 207 587 3247
Mobile: +44 791 505 9083
Fax No: +44 207 587 32 10
E-mail: dpughuic@imo.org

UNEP / CO-ORDINATING UNIT FOR THE MEDITERRANEAN ACTION PLAN (MAP) / PNUE / UNITE DE COORDINATION DU PLAN D'ACTION POUR LA MEDITERRANEE (PAM)

Mr Habib EL HABR
Deputy Coordinator
UNEP/MAP
48, Vassileos Konstantinou Avenue
11635 Athens
GREECE

Tel No: +30 210 72 731 26
Mobile: +30 69 488 346 12
Fax No: +30 210 725 31 96
Email: habib.elhabr@uneppmap.gr
INTER-GOVERNMENTAL ORGANISATIONS / ORGANISATIONS INTERGOUVERNEMENTALES

INTERNATIONAL OIL POLLUTION COMPENSATION FUNDS (IOPC FUNDS) / FONDS INTERNATIONALS D’INDEMNISATION POUR LES DOMMAGES DUS A LA POLLUTION PAR LES HYDROCARBURES (FIPOL)

Mr Thomas LIEBERT
Head, External Relations and Conference Department
IOPC Funds
Portland House
Bressenden Place
London SW1E 5PN
UNITED KINGDOM

Tel No: +44 207 59 27 100
Mobile: +44 75 407 12349
Fax No: +44 207 59 27 111
E-mail: Thomas_Liebert@iopcfunds.org

MEDITERRANEAN ACTION PLAN PARTNERS / NON-GOVERNMENTAL ORGANISATIONS / PARTENAIRES DU PLAN D’ACTION POUR LA MEDITERRANEE / ORGANISATIONS NON-GOUVERNEMENTALES

INTERNATIONAL OCEAN INSTITUTE (IOI)

Ms Antonella VASSALLO
Managing Director
International Ocean Institute (IOI) Headquarters
University of Malta
P.O Box 3
Msida MSD 2080

Tel No: +356 21 346 529 / 8
Fax No: +356 21 346 502
E-mail: antonella.vassallo@ioihq.org.mt
ioihq@ioihq.org.mt

IPIECA – THE GLOBAL OIL AND GAS INDUSTRY ASSOCIATION FOR ENVIRONMENTAL AND SOCIAL ISSUES

Mr Philip RUCK
Manager – Oil Spill Working Group
IPIECA
5th Floor
209-215 Blackfriars Road
London
SE1 8NL
UNITED KINGDOM

Tel No: +44 207 633 23 74
Mobile: +44 777 533 76 94
Fax No: +44 207 633 2389
E-mail: philip.ruck@ipieca.org
Mr Nicolas HAZLETT-BEARD
Manager
IPIECA-OSRL
Lower William Street
Southampton SO14 5QE
UNITED KINGDOM

Tel No: +44 2280 331 551
Mobile: +44 77 956 48 662
Fax No: +44 2380 331 792
E-mail: nhbeard@oilspillresponse.com

MEDITERRANEAN OCEANOGRAPHY NETWORK FOR GLOBAL OCEAN OBSERVING SYSTEM (MONGOOS)

Dr Giovanni COPPINI
MONGOOS Co-Chair
Research Division Director
CMCC
Via Augusto Imperatore, 16
73100 Lecce
ITALY

Tel No: +39 0832 67 1041
Mobile: +39 3921 385 7919
E-mail: giovanni.coppini@cmcc.it

OTHER REGIONAL ORGANISATIONS / AUTRES ORGANISATIONS REGIONALES

MEDITERRANEAN OIL INDUSTRY GROUP (MOIG) / GROUPE MEDITERRANEEN DE L’INDUSTRIE PETROLIERE (MOIG)

Mr Houcine MEJRI
Director
Mediterranean Oil Industry Group (MOIG)
Avenue Slimen Ben Slimen Immeuble SEREPT
El Manar 2092 Tuni-
TUNISIA

Tél +216 71 888 439
Portable: +216 55 005 200
Fax No: +216 71 888 439
E-mail: houcine.mejri@moig.org.tn
PARLIAMENTARY ASSEMBLY OF THE MEDITERRANEAN / ASSEMBLEE PARLEMENTAIRE DE LA MEDITERRANEE

H.E. Dr. Sergio PIAZZI
Secretary General
Parliamentary Assembly of the Mediterranean
Palazzo Spinola
St. Julians, STJ 3207
Malta

Tel No: +356 22484200
Mobile: +356 79352828
Fax No: +356 22484215
E-mail: sg@pam.int

OTHER ORGANISATIONS / AUTRES ORGANISATIONS

CENTRE OF DOCUMENTATION, RESEARCH AND EXPERIMENTATION ON ACCIDENTAL WATER POLLUTION (CEDRE) / CENTRE DE DOCUMENTATION, DE RECHERCHE ET D'EXPERIMENTATIONS/ SUR LES POLLUTIONS ACCIDENTELLES DES EAUX (CEDRE)

Mr Xavier Paul Louis KREMER
Mediterranean Correspondent - Assistance Agreements
CEDRE
715 rue Alain Colas
CS 41836
29218 Brest Cedex 2

Tél: +33 2 98 33 10 10
Portable: +33 6 89 19 14 74
Fax No: +33 2 98 44 91 38
E-mail: xavier.kremer@cedre.fr

INTERNATIONAL TANKER OWNERS POLLUTION FEDERATION LIMITED (ITOPF)

Dr Franck LARUELLE
Technical Team Manager
ITOPF
1 Oliver's Yard 55 City Road
London EC1Y 1HQ
UNITED KINGDOM

Tel No: +44 20 7 566 6999
Mobile: +4477 3673 1593
E-mail: FranckLaruelle@ITOPF.COM
CONFERENCE INTERPRETERS / INTERPRETES DE LA CONFERENCE

ESTA LINGUA LIMITED

Ms Carmen DE GAETANO
Ms Marie WAGNER

Esta Lingua Ltd
Business Studio, Block 2
Ċensu Scerri Street
Tigné, Sliema SLM 3064
Malta

Tel No: +356 2133 5330
Email: info@estalingua.com
ANNEX II

AGENDA

1. Opening of the Meeting
2. Organization of the Meeting
3. Adoption of the Agenda
4. Progress Report on REMPEC’s activities since the 10th Meeting of the Focal Points of REMPEC
5. Developments within MAP related to the objectives and functions of REMPEC
6. Developments within IMO related to the objectives and functions of REMPEC
7. Activities related to ships’ ballast water management and invasive species
8. Mediterranean Network of Law Enforcement Officials relating to MARPOL within the framework of the Barcelona Convention, and related activities
9. Project proposal on preparedness for and response to accidental marine pollution (oil and HNS)
10. Data sharing, monitoring and reporting
11. Revision of the Regional Strategy for Prevention of and Response to Marine Pollution from Ships
12. Cooperation between REMPEC and the European Commission as well as the European Maritime Safety Agency
13. REMPEC’s 40th Anniversary
14. Mediterranean Technical Working Group (MTWG)
15. Proposed programme of work of REMPEC for biennium 2016/2017
16. Other business
17. Adoption of the report of the Meeting
18. Closure of the Meeting
ANNEX III
LIST OF DOCUMENTS

WORKING DOCUMENTS

REMPEC/WG.37/3/1 Provisional agenda.
REMPEC/WG.37/3/2 Annotated provisional agenda.
REMPEC/WG.37/3/3 Draft timetable.
REMPEC/WG.37/4 Progress report on REMPEC's activities since the 10th Meeting of the Focal Points of REMPEC.
REMPEC/WG.37/5 No document was presented under agenda item 5.
REMPEC/WG.37/6/1 Developments within IMO related to the objectives and functions of REMPEC. (Submitted by IMO)
REMPEC/WG.37/6/2 Latest developments in the field of compensation for ship-source pollution damage. (Submitted by IOPC Funds)
REMPEC/WG.37/6/3 Potential oil & gas industry collaboration with REMPEC through IPIECA. (Submitted by IPIECA)
REMPEC/WG.37/7 Activities related to ships’ ballast water management and invasive species.
REMPEC/WG.37/8 Mediterranean Network of Law Enforcement Officials relating MARPOL within the framework of the Barcelona Convention and related activities.
REMPEC/WG.37/9 Project proposal on preparedness for and response to accidental marine pollution (oil and HNS).
REMPEC/WG.37/10 Data sharing, monitoring and reporting.
REMPEC/WG.37/11/1 Revision of the Regional Strategy for Prevention of and Response to Marine Pollution from Ships.
REMPEC/WG.37/12 Cooperation between REMPEC and the European Commission as well as the European Maritime Safety Agency.
REMPEC/WG.37/13 REMPEC’s 40th Anniversary.
REMPEC/WG.37/14/1 Progress made by the Mediterranean Technical Working Group (MTWG) since the 10th Meeting of the Focal Points of REMPEC.
REMPEC/WG.37/14/2 Proposal related to future possible work of the Mediterranean Technical Working Group (MTWG).
INFORMATION DOCUMENTS

REMPEC/WG.37/INF.1 List of documents.
REMPEC/WG.37/J/1 Provisional list of participants.
REMPEC/WG.37/INF.2 List of participants.
REMPEC/WG.37/INF.3 UNEP/MAP Mid-Term Strategy 2016-2021: Draft Strategic Framework.
REMPEC/WG.37/INF.4 European Union Civil Protection Mechanism. (Submitted by the European Commission) (English Only)
REMPEC/WG.37/INF.5 International developments in oiled wildlife preparedness and response (Submitted by Sea Alarm). (English Only)

Joint Session MEDPOL and REMPEC Focal Points

Malta, 17 June 2015

WORKING DOCUMENTS

UNEP(DEPI)/MED WG.417/6 Main elements of the Integrated Monitoring and Assessment Programme related to Ecological Objectives 5, 9, 10.
ANNEX IV

PROPOSED AMENDMENTS
PUT FORWARD BY THE
REPRESENTATIVE OF EGYPT
Mr. Chairman and Distinguished Delegates,

Good Morning,

Please allow me to express our appreciation to IMO, REMPEC, UNEP and EMSA for their efforts for the protection of Marine Environment in the Mediterranean Sea.

The Egyptian Government agrees in principle on the majority of the objectives of the draft regional strategy for prevention of and response to Marine pollution from ships.

The maritime environment constitutes one of Egypt's great interests and she cooperates effectively with Mediterranean States in order to comply with the provisions of international conventions related to the protection of maritime environment. Egypt has also acceded to most of international conventions and seeks, as a developing country, to efficiently apply the provisions of international conventions.

Egypt has very serious concerns about some of the objectives in addition to the implementation goals of this draft strategy in its current form as follows:

1. Egypt would like to add a necessary preamble to be inserted at the beginning of this draft stating that:
 - "Nothing in this strategy shall prejudice the principles of Sovereignty of the States, principles of Freedom, rights of Navigation, and principles of the Innocent Passage in the Territorial Sea.
 - Any reports concerning findings of the Strategy implementation in a certain Contacting Party shall be strictly confidential and shall be submitted to the concerned party for revision and comments prior to issue.
 - The release of the above-mentioned reports to the public or the Contracting Parties shall be subject to authorization of the State concerned.

2. Egypt would like also to add definitions part to the Strategy Draft to clarify concretely certain terms mentioned in the draft strategy such as "Aerial Surveillance", "Over-Fly the Waters " and any other terms where necessary.
3. Egypt would like to edit some texts in the Draft Strategy as follows:
 - **Item 4.1- paragraph a) – page 10:**
 The text "to ratify and implement"
 To be replaced by "to take necessary action to ratify and implement."
 - **Item 4.1- paragraph b):**
 The text "to ratify and implement"
 To be replaced by "to take necessary action to ratify and implement."
 - **Item 4.7 Paragraph a) line 4: page 20**
 The text "If the Parties so agree" to be added after "jurisdiction of the Contracting Parties".
 - **Item 1- Implementation Goals, "Annex I" Page 1:Paragraph a):**
 The text " All the Mediterranean States, to have ratified"
 To be replaced with " All the Mediterranean States, to have taken all the necessary actions to ratify............"
 - **Item 14- Implementation Goals, "Annex I" Page 3:**
 Paragraph a), line 2:
 The text " relevant EU Legislation and Guidelines........"
 To be replaced by:" Relevant EU Guidelines......."
 - **As for item 4.7, Item 7- Implementation Goals, concerning the application of Aerial Surveillance and Over-Fly the Waters ", Egypt believes that such systems should be postponed until they are completely considered from the concerned authorities in Egypt.**

4. As for item 15: **to examine the possibility of the designation of the Mediterranean Sea or parts thereof as SOX Emission Control Area under MARPOL, Annex VI**, Egypt requests the establishment of a technical committee of experts from the European Union and South Mediterranean states to carry out a technical and economic feasibility study to (item 15) in order to examine the possibility of application.
 The reasons for this request are summarized below:
 - Some South Mediterranean states need investments in the oil refining sector in order to provide low sulfur fuel for ships.
 - Some south Mediterranean states (if not most of them) need investments to modernize their ship fleet to comply with the application of the provisions of Annex VI of MARPOL.
 - The designation of the Mediterranean region or parts thereof as an ECA or/and SECA without updating the fleet of ships in the South Mediterranean countries would adversely affect the shipping industry in developing countries in the region and this in turn will aggravate the problem of employment of maritime labor
in these countries in addition to the negative impacts on international competitiveness of export and import goods of developing countries, which in turn will constrain their development in international shipping, trade and economy.

- A basic fundamental shortcoming of designating ECA or SECA region in the Mediterranean Sea or parts thereof is trying to put heavy burdens on developing countries that are least responsible for global warming and consequent climate change

- Many of the South Mediterranean countries did not accede to Annex VI of MARPOL as the accession to such Annex requires several legislative procedures and a feasibility study, then the issuance of national legislation to enforce the provisions of Annex VI of MARPOL, as well as to provide the necessary infrastructure and capacity building for the implementation. Therefore, Egypt asks to exert more efforts in order to provide the necessary resources to support those countries to accede to Annex VI to enable the effective application of its provisions and this is before the designation of the Mediterranean region as an area of control of the sulfur oxides emissions.

We would also like to point out that nothing in this strategy should in any way affect any of the rules and regulations of the Suez Canal Authority and in case of any contradictions between the strategy and the terms of the Constantinople convention for the year 1888 concerning the Suez Canal, the latter shall prevail.

Last but not least, I think you share my opinion that the adoption of the current draft strategy calls for the widest possible cooperation by all countries and their participation in an effective and appropriate international response, in accordance with their common but differential responsibilities and respective capabilities and their social and economic conditions and any future regulatory regime must be so designated that international shipping is not capped and thus causes severe disruption to global trade and development.

Finally, we hope these comments will be taken into consideration in the draft strategy and we would like to incorporate this statement in the report of this meeting.

Thank you Mr. Chairman
Conclusions of the Meeting of the Focal Points of the Sustainable Consumption Production Regional Activity Center (SCP/RAC), Madrid, 1-3 June 2015
Meeting of the MAP Focal Points

Athens, Greece, 13-16 October 2015

Agenda item 5.14: Draft Decision on Regional Action Plan on Sustainable Consumption and Production

Conclusions of Ordinary meeting of SCP/RAC National Focal Points
Conclusions of the 10th Ordinary Meeting of the SCP/RAC National Focal Points

1-3 June 2015, Madrid (Spain)

The SCP/RAC National Focal Points (hereinafter SCP/RAC NFPs):

Concerning the SCP Action Plan

Acknowledge that the SCP Action Plan collects the recommendations and amendments made by the SCP/RAC NFP as regards to its structure and contents and recommend submitting it to the Ordinary Meeting of the MAP NFP.

Concerning the Roadmap for the implementation of the AP

Welcome this first Draft of the Roadmap, support the proposed structure and contents and acknowledge that the roadmap is very comprehensive and will lead to the implementation of the SCP Action Plan; yet, they propose several modifications that need to be incorporated in the 2nd draft of the document.

Request that the Roadmap establishes the necessary mechanisms to ensure that the regional activities included in the Roadmap and the SCP national planning processes are aligned between each other.

Request that the Roadmap further reflects its contribution to the SCP 10-YFP and that the linkages with the MAP Midterm strategy 2016-2021 and the objectives of the ICZM and the Ecosystem approach in the Mediterranean (EcAp) are strengthened.

Recommend that the innovation component is strengthened in the activities of the Roadmap, both at the technological (e.g. water efficiency, waste management and biomass technologies) and financial levels.

Suggest reviewing the activities identified in the roadmap in order to ensure that their scope remains regional, and that repetitions and overlapping is avoided for the sake of clarity and efficiency in the use of financial and human resources.

Suggest strengthening the mention to Life Cycle Approach in Operational Objective one from the Food, Agriculture and Fisheries section.

Suggest harmonizing the progress indicators including the benchmarks so that their formulation follows a common and simple structure

Concerning the implementation of the Action Plan and its Roadmap:

Acknowledge that the establishment of enabling mechanisms is crucial for the application of the AP and the implementation of its Roadmap. Therefore they recommend the identification and proposal of the modus operandi of an informal task force of implementation facilitators with the mission of engaging key stakeholders from governments, businesses, financial agents, civil society and academia to participate actively and support the implementation of the actions and activities identified in the AP and roadmap. The “SCP task force” shall ensure the coherence and alignment between the activities developed under the roadmap at the regional level and SCP national processes. The “SCP task force” will also provide SCP/RAC with the necessary support to properly take on the technical direction of the SCP AP implementation.
Acknowledge the need of establishing a Technical Working Group on SCP indicators and hence the NFP recommend submitting the proposal for establishing such working group to the Meeting of MAP NFP. The work of this group will be based on existing indicators.

Consider that the function of the Steering Committee proposed in the third draft of the SCP Action Plan for the Mediterranean as a mechanism to follow up of the effectiveness of actions carried out within its framework, should be taken over by the SCP/RAC National Focal Points as it corresponds to their joint responsibility.

Request SCP/RAC to provide, by the 19th June, the second draft of the Roadmap integrating the comments and amendments formulated during the Meeting in Madrid for the final review by the SCP/RAC NFP. Final comments or amendments on the second draft shall be sent to SCP/RAC by 9th July. Comments will be integrated in a final version that will be sent for the UNEP/MAP Clearance before its submission to the MAP NFP.

Concerning the SCP/RAC’s activities developed in the biennium 2014-2015 and the centre’s proposal for new actions for 2016-2017

The NFP express their acknowledgement to the valuable work and results achieved by SCP/RAC in the development of its activities under the MAP PoW 2014-2015 and congratulate the center for its efforts to raise further funds both to strengthen actions according to countries priorities and to extend actions relevant to the next MAP PoW to countries for which no funding was included in the current PoW. In that sense the NFP reaffirm their commitment to support the center’s actions in their countries and its work in raising new funding sources to develop its mandate to promote SCP in the Mediterranean countries.

Request SCP/RAC to include whenever possible the UN official language of the countries in the development of the centre’s activities.

Request the SCP/RAC to provide by the end of June the NFP with the first draft of the Work Plan 2016-2017 for their feedback and comments before approval by the MAP NFP Meeting.
Report of the Meeting of Focal Points for Specially Protected Areas Regional Activity Center (SPA/RAC), Athens, 25-29 May 2015
Twelfth Meeting of Focal Points for Specially Protected Areas

Athens, Greece, 25-29 May 2015

Agenda item 15: Adoption of the meeting report

Report of the Twelfth Meeting of Focal Points for Specially Protected Areas
Note:
The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of RAC/SPA and UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries.
Annexes:

Annex I List of participants
Annex II Agenda of the meeting
Annex III Recommendations of the 5th Mediterranean Conference on Marine Turtles
Annex IV Draft Updated Action Plan for the Conservation of Cetaceans in the Mediterranean Sea
Annex V Recommendations of the 2nd Symposium on the Conservation of Marine and Coastal Birds
Annex VI Recommendations of the 5th Mediterranean Symposium on Marine Vegetation
Annex VII Recommendations of the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea
Annex VIII Draft Updated Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea
Annex IX Recommendations of the 1st Mediterranean Symposium on the Conservation of Dark Habitats
Annex X Draft Programme of Work for Reference Lists of Habitat types in the Mediterranean
Annex XI Draft Updated Action Plan concerning Species Introductions and Invasive Species in the Mediterranean Sea
Annex XII Preliminary list of projects proposed by the Secretariat for addressing SAP BIO funding needs
Annex XIII Executive Summary of the Karaburun Sazan Marine Park proposed for inclusion in the List of Specially Protected Areas of Mediterranean Importance (SPAMI List)
Annex XIV Recommendations by the 12th Meeting of the Focal Points for SPAs concerning the future development of the activities on MAPs in ABNJ and the expected new project on this issue
Report of the Twelfth Meeting of Focal Points for Specially Protected Areas
(Athens, 25-29 May 2015)

Introduction

1. In accordance with the Decision of the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and its Protocols, related to the MAP Programme of Work and Budget for the 2014-2015 biennium (Decision IG.21/17), the Thematic Focal Points Meetings under MAP should be held in 2015.

2. The Meeting of the RAC/SPA Focal Points is one of these meetings; it was held in Athens from 25 to 29 May 2015, at the NOVOTEL Hotel (4 Michail Voda Str., 104 39 Athens, Greece).

Participation

3. All the Focal Points for SPAs had been invited to attend the meeting or to designate their representatives. The following Contracting Parties were represented at the meeting: Albania, Bosnia and Herzegovina, Croatia, Cyprus, Egypt, France, Greece, Israel, Italy, Lebanon, Libya, Monaco, Morocco, Montenegro, Slovenia, Spain, Tunisia and Turkey.

4. The following institutions and organizations were represented by observers: ACCOBAMS, GEF, IUCN-Med, CWS, Foundation Prince Albert II of Monaco, GIZ, Mohammed V University, Greenpeace International, MEDASSET, HCMR, MedPAN, Mohamed VI Foundation for Environmental Protection, OCEANA, WWF Greece and WWF-MedPO.

5. RAC/SPA acted as the Secretariat for the meeting.

6. The list of participants is attached as Annex I to the present report.

Agenda item 1 Opening of the meeting

7. The meeting was opened on Monday, 25 May 2015, at 9.30 a.m. by the representatives of the host country, the Coordinating Unit of the Mediterranean Action Plan (UNEP/MAP) and the Regional Activity Centre for Specially Protected Areas (UNEP/MAP-RAC/SPA).
8. Mr. Khalil ATTIA, Director of RAC/SPA, welcomed the participants and thanked the Greek authorities for hosting the meeting. He emphasized that RAC/SPA was celebrating in 2015 its 30th anniversary and that the first meeting of Focal Points of RAC/SPA had been held in Athens 25 years previously. Mediterranean biodiversity was facing major challenges and the coming years would be crucial at many levels. The impact of climate change on the region and its environment was steadily increasing and high priority should be given to the achievement of regional and global objectives, such as those linked to Aichi targets and the development of MPAs in the open sea, including deep seas. Close collaboration with partner organizations would help to achieve those objectives and to avoid overlapping and duplication. All these relevant issues would be tackled in the UNEP/MAP Mid-Term Strategy for the period 2016-2021.

9. Mr. Gaetano Leone, Coordinator of UNEP/MAP, said that biodiversity protection was one of the main mandates of the MAP system. RAC/SPA had developed its activities over the last decade in accordance with the general orientations of the Strategic Action Programme for the Conservation of Biological Diversity in the Mediterranean Region (SAP BIO). Participants in the meeting would be informed about the progress made to date towards the implementation of the Ecosystem Approach and about achievements to date under SAP BIO. They would also have the opportunity to discuss fund-raising options for the implementation National Action Plans and other SAP BIO activities during a roundtable to be attended by representatives of funding agencies, donors and partner organizations.

10. Mr. Yiannis Tsironis, Greek Alternate Minister for Reconstruction of Production, Environment and Energy, welcomed the participants. Highlighting the paramount importance of the conservation of biodiversity, he warned that increasing pressure from many sources on marine and coastal biodiversity was liable to hamper sustainable development. Such complex threats called for a response by the public and private sectors, the implementation of national and regional actions, and commitment on the part of all countries and stakeholders. The current period was crucial for many Mediterranean countries that were faced with a range of economic, social and political issues. Greece, which was gifted in terms of its marine and coastal biodiversity, believed that its future should be built on integrated management, conservation, and sustainable and equitable use of land, water and living resources. The Mediterranean Action Plan and the Barcelona Convention and its Protocols had a catalytic role to play in that regard.

11. The participants viewed a short film celebrating the 30th anniversary of RAC/SPA.
Agenda item 2 - Rules of procedure

12. The internal rules adopted for meetings and conferences of the Contracting Parties to the Convention for the Protection of the Mediterranean Sea against Pollution and its Related Protocols (UNEP/IG.43/6, Annex XI) apply mutatis mutandis to the present meeting.

Agenda item 3 - Election of officers

13. On the recommendation of the Secretariat, the meeting unanimously elected the following officers:

Chairperson: Ms. Eleni TRYFON (Greece)
Vice-Chairpersons: Ms. Lara SAMAHA (Lebanon)
Ms. Saba GUELLOUZ (Tunisia)
Rapporteur: Mr. Leonardo TUNESI (Italy)

Agenda item 4 - Adoption of the agenda and organization of work

14. The Secretariat introduced the provisional agenda distributed as document UNEP(DEPI)/MED WG.408/1 Rev.1 and the annotated version in document UNEP(DEPI)/MED WG.408/2 Rev.1.

15. After reviewing the two documents, the meeting approved the Agenda and the proposed timetable. The Agenda of the Meeting appears as Annex 1 to this report.

Agenda item 5 - Status of implementation of the Protocol concerning Specially Protected Areas and Biological Diversity in the Mediterranean

16. The Secretariat introduced document UNEP(DEPI)/MED WG.408/3, Synthetic Note on the status of implementation of the Protocol concerning Specially Protected Areas and Biological Diversity in the Mediterranean (SPA/BD Protocol), which constitutes a brief synthesis of the information provided by the Contracting Parties about the implementation of the SPA/BD Protocol, in particular through the online reporting system of the Barcelona Convention and its Protocols. The synthesis covers mainly the reporting period from January 2012 to December 2013. However, with a view to providing an overview of progress made so far in implementing the SPA/BD Protocol, information from previous reporting periods was also considered. The Secretariat indicated that eleven Parties had submitted their reports (official submission or final draft) and that seven national reports were available as working drafts.

17. The Secretariat informed the meeting that the SPA/BD Protocol had entered into force on 19 December 1999, that 18 Contracting Parties to the Barcelona Convention were also Parties to the SPA/BD Protocol and that 4 were Parties to the SPA Protocol of 1982.
18. It was evident that, from the entry into force of the SPA/BD Protocol, most Mediterranean countries had strengthened their action in relation to the conservation of marine and coastal natural sites, the preservation of endangered or threatened species, and the tackling of threats to Mediterranean biodiversity.

19. With regard to the conservation of marine and coastal natural sites, the Secretariat indicated that:

(i) most of the Mediterranean countries had compiled lists of natural sites of conservation interest;

(ii) some Mediterranean countries had issued new regulations aimed at improving the process for protected area planning and management;

(iii) the Mediterranean MPAs still suffered from weaknesses in their management, particularly because of the lack of management plans and financial resources;

(iv) regional projects coordinated by RAC/SPA and its partner organizations were providing assistance in that context;

(v) the overall number of SPAMIs had increased, with inclusion of one SPA in the SPAMI list over the reporting period;

(vi) while significant emphasis had been placed on the establishment of MPAs in open sea areas in the Mediterranean, the Pelagos Sanctuary was still the only Mediterranean MPA that covered zones located in ABNJ;

(vii) consultation processes were under way among concerned countries to prepare for the establishment of open sea MPAs in the Alboran Sea, the Sicily Channel and the Adriatic Sea. The processes benefited from the work done in the Mediterranean for the identification of EBSAs (Ecologically or Biologically Significant Areas).

20. With regard to the preservation of endangered or threatened species, the Secretariat said that the information provided by the Parties in the online reporting system set for the Barcelona Convention and its Protocols, showed that most of the Mediterranean countries had: (i) established, or were establishing, national lists of endangered or threatened species; and (ii) enacted appropriate regulations protecting those species. The information about the actual enforcement of the regulations was, however, vague and could not be used to draw conclusions regarding their efficiency.

21. With regard to action plans for endangered species and habitats, the Secretariat indicated that:

i. For monk seals, a series of measures had been taken for the species, in particular: (i) granting of protection status for the species; (ii) establishment of MPAs covering important habitats; and
(iii) compilation of an inventory of breeding caves and other habitats of importance for the species. The Secretariat stated that Greece and Turkey, which were the countries with the largest monk seal populations in the Mediterranean, had developed national or local action plans for the species.

ii. For marine turtles, the measures taken related mainly to the protection and management of nesting beaches. The species remained poorly protected at sea since many turtle-critical habitats did not benefit from appropriate conservation measures, particularly feeding and breeding zones, migration routes, etc.

iii. For cetaceans, as most Mediterranean countries were Parties to the ACCOBAMS Agreement, common obligations under the Action Plan were fulfilled through the implementation of ACCOBAMS. The Secretariat noted that National Action Plans for the conservation of cetaceans had been developed in many countries and that the measures taken for cetacean conservation related mainly to the monitoring of strandings and to public awareness-raising.

iv. For cartilaginous fish species, the actions most commonly reported by countries involved the organization of awareness raising campaigns targeting fishermen and the development of information and awareness-raising material targeting recreational fishermen, divers and other groups of sea users.

v. For bird species, the reports of all Parties mentioned that bird species were protected by law and that protected areas had been established to conserve bird species populations and their habitats, particularly in the context of other conservation instruments, such as EU Directives and the AEWA Agreement.

vi. For the introduction of species and invasive species in the Mediterranean Sea, most of the Parties mentioned that they had enacted legislation to control the introduction of marine species or had incorporated the pertinent provisions of relevant international agreements in their domestic regulations. Most of the activities undertaken in the region concerning non-indigenous species were undertaken by regional organizations and by some scientists acting on their personal initiative.

22. The Secretariat stated that bilateral cooperation among Parties in relation to the implementation of the SPA/BD Protocol was very limited, particularly in the Southern Mediterranean region, and that the main limiting factors were the lack of financial resources and the lack of technical and scientific capacity.

Agenda item 6 Species conservation

23. Making reference to the relevant sections of document UNEP(DEPI)/MED WG.408/4 Rev.1, the Secretariat informed the meeting about progress made in the implementation of the Action Plan. The representative of Croatia suggested that one should not be too ambitious with respect to the recovery of monk seals in new areas, since Croatia has zero individual monk seals.

6.2 **Action Plan for the Conservation of Mediterranean Marine Turtles**

24. The Secretariat informed the meeting about progress made in the implementation of the Action Plan, making reference to the relevant sections of document UNEP(DEPI)/MED WG.408/4 Rev.1, and invited the meeting to take note, in particular, of the recommendations of the 5th Mediterranean Conference on Marine Turtles held in Dalaman (Turkey) from 19 to 23 April 2015 (Annex III to this report).

25. The representative of France informed the meeting about the detailed activities undertaken in her country for the implementation of the Action Plan. She added, in particular, that a natural outdoor rehabilitation centre had been developed and inaugurated at La Grande Motte in spring 2014 and that about 30 new observers from the Network of French Mediterranean Marine Turtles (RTMMF) had been trained to handle/examine stranded or accidentally captured marine turtles and to transport wounded marine turtles to the rescue centres.

26. The representative of Italy informed the meeting that his country had established a system, covering the entire national coast, for the conservation of marine turtles. In this context a Guideline had been issued for the recovery, rescue, foster care and management of sea turtles and for their rehabilitation and handling for scientific purposes. The documents available in Italian, could be disseminated for widespread use by scientists and other turtle specialists.

27. The representatives of Croatia, Slovenia and Tunisia provided further information regarding work undertaken for marine turtles in their countries.

28. The representative of Turkey highlighted the results of the 5th Mediterranean Conference on Marine Turtles, which had been organized back to back with the 35th Annual Symposium on Sea Turtle Biology and Conservation.

29. The representative of the Cyprus Wildlife Society (CWS) informed the meeting that CWS had organized training courses since 1989, in cooperation with RAC/SPA, on the conservation of marine turtles and that it had run them every year until 2010. Since then the practical, hands-on courses continued to be organized each year in cooperation with the Council of Europe (Bern Convention). He
expressed the willingness of CWS to continue cooperating with RAC/SPA on this and any other related issue.

30. The president of MEDASSET informed the meeting that the NGO had been working for thirty-six years on the conservation of marine turtles and expressed its willingness, as a partner to the Action Plan, to further collaborate with RAC/SPA, in particular by offering its expertise and scientific assistance for follow-up to the Action Plan implementation.

31. The Secretariat welcomed the collaboration and assistance offer by MEDASSET.

6.3 Action Plan for the Conservation of Cetaceans in the Mediterranean Sea

32. After briefing the meeting on activities related to cetaceans, the Secretariat introduced document UNEP(DEPI)/MED WG.408/8 containing elements for the amendment of the Action Plan and invited the meeting to review the proposed elements with a view to their submission to the Contracting Parties for adoption.

33. The representative of the Secretariat of ACCOBAMS congratulated RAC/SPA on the work it had carried out during the last two years for the conservation of cetaceans in accordance with its function as the ACCOBAMS Sub-Regional Coordination Unit, and for its contribution to the implementation of ACCOBAMS in the Mediterranean.

34. She said that the proposed elements for the amendment of the Action Plan were fully consistent with the provisions of ACCOBAMS and, in particular, with its Conservation Plan (Annex 2 to the Agreement) and the priorities adopted by the Contracting Parties to ACCOBAMS.

35. She informed the meeting about the main action undertaken within the framework of ACCOBAMS and proposed to RAC/SPA, in line with its function as the ACCOBAMS Sub-Regional Coordination Unit, the holding of a joint side event at the next meeting of the Contracting Parties to the Barcelona Convention with a view to highlighting the excellent coordination between the two organizations.

36. The representative of France provided detailed information on the activities undertaken in her country for the implementation of the Action Plan. She welcomed the work accomplished and the proposed action plan. She also mentioned the creation of the ACCOBAMS label “High Quality Whale Watching” developed initially in the Pelagos Sanctuary, which facilitated the mitigation of the negative impact of whale-watching. It should be also applied in the other Parties to ACCOBAMS.

37. The representative of IUCN-Med stressed that coordination and cooperation under the Action Plans concerning different species was essential among all partners and indicated that IUCN was
conducting Red List assessments (at the global, regional or national level) of the status of species (threatened, vulnerable, etc.) that could serve as the basis for discussions concerning the amendment of Annex II to the SPA/BD Protocol (List of endangered or threatened species).

38. The representative of Italy informed the meeting that his country was conducting Red List assessments on all marine vertebrates (except for Osteichtyes), and of corals, which were published by the national IUCN committee. Furthermore, the representative of Croatia presented the regional project NETCET, implemented in Croatia, Montenegro, Albania and Slovenia, which concerned the networking of protection of cetaceans and marine turtles.

39. The meeting proposed some amendments to the elements contained in document UNEP(DEPI)/MED WG.408/8 and invited RAC/SPA to submit the revised version (Annex IV to this report) for adoption by the Contracting Parties.

6.4 Action Plan for the Conservation of Bird Species listed in Annex II of the Protocol concerning Specially Protected Areas and Biological Diversity in the Mediterranean

40. The Secretariat informed the meeting about progress made in the implementation of the Action Plan, making reference to the relevant sections of document UNEP(DEPI)/MED WG.408/4 Rev.1, and highlighted the recommendations of the 2nd Symposium on the conservation of marine and coastal birds in the Mediterranean held in Hammamet (Tunisia) from 20 to 22 February 2015 (Annex V).

41. In response to a suggestion made by the representative of Israel, the Secretariat indicated that it would liaise with the Secretariat of the AEWA Agreement with a view to establishing collaboration bounds.

42. The representative of France provided detailed information regarding activities undertaken for the conservation of marine and coastal birds in her country. She emphasized in that context that several Natura 2000 sites had been designated on the Mediterranean coast of France, chiefly for the conservation of seabirds.
6.5 Action Plan for the Conservation of Cartilaginous Fish (Chondrichthyans) in the Mediterranean Sea

43. The Secretariat briefly presented the activities undertaken in connection with the implementation of this Action Plan, in particular desktop analysis concerning fishing activities in the Adriatic Sea and the Sicily Channel/Tunisian Plateau.

44. The representative of France stated that the Red Book of chondrichthyans on the French coasts had been published in January 2014 and that the SELPAL Programme had permitted the collection of data concerning the ecology of incidentally captured shark species and concerning seabirds and marine turtles. She added that a bibliographic synthesis of spatio-temporal management measures related to elasmobranchs was being finalized by the AAMP.

45. Several delegations provided information on the elaboration of lists of protected species of elasmobranchs in their respective countries.

46. The Secretariat informed the meeting that the funds allocated by the MTF in 2014-2015 for the regional Action Plans on threatened species (Mediterranean Monk Seal, Cetaceans, Marine Turtles, Cartilaginous Fish and Seabirds) were limited and insufficient to finance the implementation of all the planned activities adopted within their implementation calendars. However, the activities under other projects being developed by RAC/SPA (MedMPAnet and MedOpenSeas) permitted the compilation of updated information for some subregions regarding cetaceans, marine turtles, cartilaginous fish and seabirds.

Agenda item 7 Ecosystems conservation

47. The Secretariat presented, for each Action Plan included under this agenda item, a summary of the activities carried out, referring to the relevant sections of documents UNEP(DEPI)/MED WG.408/4 Rev.1 and UNEP(DEPI)/MED WG.408/Inf.6.

7.1 Action Plan for the Conservation of Marine Vegetation in the Mediterranean Sea

48. The Secretariat presented the activities carried out within the framework of the implementation of the Action Plan for the Conservation of Marine Vegetation in the Mediterranean Sea. It said that key habitats such as seagrass meadows were taken into account in ecological characterizations carried out under the MedMPAnet project and the new MedKeyHabitats project. It also reported that the RAC/SPA, in collaboration with the Institute of the Republic of Slovenia for Nature Conservation, had organized the 5th Mediterranean Symposium on Marine Vegetation. In that connection, it thanked the Slovenian authorities for their efforts to ensure the success of the event. Lastly, it informed the meeting that the 6th Mediterranean Symposium on Marine Vegetation could be organized jointly with the 5th Mediterranean
Seagrass Workshop in 2018. It then invited the meeting to take note of the recommendations of the 5th Mediterranean Symposium on Marine Vegetation (Annex VI to this report).

49. The representative of France informed the meeting about the activities undertaken in her country and mentioned that in 2010 France had launched a large marine biocenosis mapping programme (CARTHAM) at the national level and had supported several Posidonia monitoring networks, particularly in the context of the implementation of EU Directives (Habitats, Water and Marine Strategy).

50. The representative of Egypt requested the assistance of RAC/SPA in mapping the marine vegetation in his country.

51. Under this agenda item, the Secretariat also reviewed progress in activities under the Project "Mapping of Mediterranean Key Marine Habitats in the Mediterranean and Promoting their Conservation through the Establishment of Specially Protected Areas of Mediterranean Importance (SPAMI)" (MedKeyHabitats Project). It provided an overview of activities implemented since the project was launched in December 2013 as well as activities planned for the period 2015-2016.

52. The representative of Libya congratulated RAC/SPA on its excellent work under the MedKeyHabitats Project and commended the involvement of Libyan experts in the Project capacity-building programme.

53. The representative of Tunisia congratulated the Secretariat on its excellent work under the MedKeyHabitats Project, including the organization of training in the Kuriat Islands (Tunisia), which had also benefited managers of Marine Protected Areas. She also welcomed collaboration with the Project team in mapping key habitats and setting up monitoring networks in the Marine Protected Area of Cap Negro/Sidi Mechreg (Tunisia).

54. The representative of Montenegro commended the work accomplished and thanked RAC/SPA for the assistance provided to her country through the MedKeyHabitats Project, particularly in connection with the mapping of key marine habitats by side-scan sonar for two pilot sites in Montenegro. She underscored the importance of mapping and data acquisition, which were priority biodiversity conservation activities in Montenegro, adding that the consultative approach adopted under the Project and coordination with countries to meet those priorities constituted the best means of maximizing the impact of the activities.
7.2 Action Plan for the Conservation of the Coralligenous and Other Calcareous Bio-concretions in the Mediterranean Sea

55. The Secretariat presented the activities carried out within the framework of the implementation of the Action Plan for the Coralligenous and other Calcareous Bio-concretions in the Mediterranean. It added that such habitats were taken into account in the ecological characterizations conducted as part of the MedMPAnet Project and the new MedKeyHabitats Project. It also reported that the RAC/SPA, in collaboration with the Institute of the Republic of Slovenia for Nature Conservation, had organized the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions. It thanked the Slovenian authorities for their efforts to ensure the success of the event. Lastly, the Secretariat informed the meeting that the 3rd Symposium could be organized in conjunction with the 2nd Symposium on Dark Habitats in Croatia in 2018. It then invited the meeting to take note of the recommendations of the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions (Annex VII to this report).

56. The Secretariat presented the Draft Updated Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea submitted in document UNEP(DEPI)/MED WG.408/9 and explained that, acting on the Contracting Parties’ mandate, RAC/SPA had taken into account the ongoing EcAp process and its Draft Monitoring and Assessment Programme in launching the updating of the Action Plan.

57. The representative of IUCN-Med again stressed the need for cooperation and coordination on topics such as coralligenous species and habitats, since other partners were involved in different activities, in particular the IUCN Red List for Anthozoans in the Mediterranean involving 25 regional experts, which had been conducted in 2014. Further stages developed by RAC/SPA could benefit from that work and activate and develop the existing network of experts. In addition, it was important to note that the European Commission was currently developing a project to revise the EUNIS system on marine habitats, taking into account biogeographic areas (one being the Mediterranean). The representative of Italy stressed the importance of ensuring that RAC/SPA took steps to update the current list of Mediterranean benthic habitats, since the new list would be used by the new EUNIS system.

58. The representative of Spain informed the meeting that a draft scientific proposal to include 10 Anthozoan species in Annex II to the SPA/BD had been developed. The proposal was expected to be ready for the next SPA Focal Point meeting.

59. The representative of Slovenia informed the meeting about the TRECORALA project, “TREzze e CORalligeno dell’ALto Adriatico” and suggested that the results of the project should be taken on board.
60. The representative of France informed the meeting about the national project for the cartography of marine biocenoses (CARTHAM), which had permitted the surface area to be covered by coralligenous assemblages. She also stated that France was monitoring coralligenous assemblages under the Water Framework Directive and that the programme was called RECOR. An indicator (known as the COR index) had been elaborated. France was currently engaged in continuous mapping of marine habitats on its Mediterranean coast.

61. The representative of OCEANA supported the proposal made by the other representatives and stressed that numerous species listed in Annex II to the SPA/BD Protocol still lacked protective status at the national level. The available data confirmed their vulnerability and fragility.

62. The Secretariat welcomed the IUCN-Med offer and drew attention to the procedure for amending Annexes II and III, stressing that the Secretariat was not authorized, without an explicit mandate, to submit proposals for amendments to the next meetings of SPA Focal Points.

63. The meeting took note of the recommendations of the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions (Annex VII to this report) and invited RAC/SPA to submit the Draft Updated Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea (Annex VIII to this report) for adoption by the Contracting Parties.

7.3 Action Plan for the Conservation of Habitats and Species Associated with Seamounts, Underwater Caves and Canyons, Aphotic Hard Beds and Chemo-synthetic Phenomena in the Mediterranean Sea (Dark Habitats Action Plan)

64. The Secretariat presented the activities carried out within the framework of the implementation of the Dark Habitats Action Plan. It emphasized that such habitats were covered by the new MedKeyHabitats Project. It added that the RAC/SPA, in collaboration with the Slovenian Institute for Nature Conservation, had organized the 1st Mediterranean Symposium on the Conservation of Dark Habitats. Furthermore, it informed the meeting that the second symposium could be organized jointly with the 3rd Mediterranean Symposium on Coralligenous and other Bio-concretions in Croatia in 2018. The Secretariat invited the participants to take note of the recommendations of the 1st Mediterranean Symposium on the Conservation of Dark Habitats and to consider the application it had received from Oceana for the status of Action Plan Partner.

65. The representative of France presented the relevant activities undertaken in her country, in particular oceanographic canyon head exploration campaigns carried out between 2008 and 2010: MedSeaCan/CorSeaCan. The network of Natura 2000 sites should eventually be extended in the light of the results of the campaigns. Several seamounts had been identified in the PACA region and Corsica.
Furthermore, underwater caves had been identified in Corsica in the context of a study funded by DREAL and under the CARTHAM project.

66. The representative of Italy informed the meeting that his country had launched a programme to protect deep hard-bottom habitats beyond the 12 nautical miles of the eastern basin, where Italy had established an ecological protection zone covering both the Tyrrhenian Sea and the Ligurian Sea. As part of that initiative, 24 sites covering approximately 4,000 km² had been identified and could be protected within the next two years.

67. The meeting took note of the recommendations of the 1st Mediterranean Symposium on the Conservation of Dark Habitats (Annex IX) and approved the Secretariat’s proposal to accept the application of Oceana to become an Action Plan Partner.

7.4 Activities for the elaboration of national inventories of natural sites of conservation interest

68. The Secretariat reviewed the activities undertaken to develop national inventories of natural sites of conservation interest, namely the elaboration of the reference list of marine habitat types for the selection of sites to be included in national inventories of natural sites of conservation interest, and of the related Standard Data Form (SDF) and Interpretation Manual. Those tools would be used in the “Project on Mapping of Key Marine Habitats of the Mediterranean and Promoting their Conservation through the Establishment of Specially Protected Areas of Mediterranean Importance (SPAMIs)” (MedKeyHabitats Project).

69. The Secretariat introduced document UNEP (DEPI)/MED WG.408/10 Rev.1, which proposed a Draft Programme of Work for reference lists of habitat types in the Mediterranean.

70. The delegate of Italy supported the Draft Programme of Work, stressing its importance for the updating of the Mediterranean list of habitats and for the European information system on nature (EUNIS).

71. The meeting approved the Draft Programme of Work for reference lists of habitat types in the Mediterranean (Annex X to this report) and invited RAC/SPA to submit it for adoption by the Contracting Parties.

7.5 Action Plan concerning Species Introductions and Invasive Species in the Mediterranean Sea

72. The Secretariat presented the activities carried out within the implementation framework of the Action Plan, in particular the updating of the MAMIAS database to make it more operational and
ergonomic but also to support the EcAp Integrated Monitoring and Assessment Programme under EO 2 (non-indigenous species).

73. The Secretariat then presented the proposed amendments to the Action Plan concerning Species Introductions and Invasive Species in the Mediterranean Sea, specifying that the amendments were required to ensure the updating of the implementation calendar and its harmonization with the EcAp process.

74. The representative of IUCN-Med presented the activities conducted with respect to invasive species (the most threatening ones) in the Mediterranean, more specifically in and around MPAs, with a view to providing information and warnings to MPAs (managers, researchers and technicians) and developing a strategy for Mediterranean MPAs. The MedMIS platform functioned at different levels, permitting the individual recording of sightings and interconnection with other existing local and regional platforms. An advisory group of scientists had worked and would continue to work closely with IUCN to define a blacklist of important invasive species to be taken into account in the monitoring of MPAs. The list would be regularly updated. Data would be included, following verification, in a public database. Other activities on invasive species, undertaken in collaboration with other organizations, dealt with research on the ecological and socio-economic impact of their presence and development in the region. Cooperation on all these topics with all partners was strongly recommended and IUCN-Med was willing to engage in joint actions.

75. The representative of France welcomed the proposed amendments to the Action Plan, which were in line with the recommendations made at the national level. She referred to the activities undertaken in her country as part of the Strategic Framework Directive for the marine environment. She stated in that connection that the Marine Mammal Action Plan (MMAP) and the implementation of the EU Regulation concerning Invasive Alien Species (IAS) constituted the French contribution to the regional Action Plan. She stressed the importance of coordination regarding such issues with other regional secretariats, such as the HELCOM and OSPAR conventions, as well as with the CORMON group on integrated monitoring and, in particular, with the Biodiversity Working Group (EcAp). She said that France supported the MedMIS platform, which should be deployed to harmonize data at the Mediterranean level.

76. The Secretariat thanked IUCN-Med for its offer of collaboration and noted that, given the various existing areas of collaboration between RAC/SPA and IUCN-Med, it would be very easy to enhance such collaboration and to use the available tools, particularly for MPAs.
77. It also indicated that the Secretariat had taken note of the activities carried out in the different countries as well as the recommendation by France to forge links with other relevant conventions and with the CORMON work under the EcAp.

78. With regard to terminology, the Secretariat took note of the different opinions and said that the issue would be taken into account in future work on the subject, including work by the EcAp monitoring groups.

79. The meeting approved the Draft Updated Action Plan concerning Species Introductions and Invasive Species in the Mediterranean Sea with some modifications. However, the representative of Cyprus expressed a reservation concerning the use of the term non-indigenous species. The Updated Action Plan, as approved by the meeting, appears as Annex XI to this report.

Agenda item 8 Implementation of the Ecosystem Approach to the management of human activities that may affect the Mediterranean marine and coastal environment in the framework of the Mediterranean Action Plan (MAP)/Barcelona Convention (EcAp)

8.1 Achievement of Good Environmental Status (GES)

80. The representative of the UNEP/MAP Secretariat presented the state of play of the EcAp process, highlighting the overall aim of the process, namely to achieve Good Environmental Status (GES) for the Mediterranean Sea and its coast.

81. She provided information on the key achievements of the EcAp process to date and on the two key streams on which work was currently focusing, i.e. on the development of an Integrated Monitoring and Assessment Programme (UNEP(DEPI)/MED WG.408/6) and on the development of a Gap Analysis of existing measures under the Barcelona Convention that were of relevance to the achievement or maintenance of good environmental status of the Mediterranean Sea, in line with the Ecosystem Approach (UNEP(DEPI)/MED 408/5).

82. With regard to the draft Gap Analysis (UNEP(DEPI)/MED WG.408/5), she highlighted the key initial findings, such as the need for further strengthening of the implementation of existing measures pertaining to biodiversity and non-indigenous species (NIS).

83. The Focal Points for SPAs agreed to send written comments on the draft Gap Analysis within the next three weeks (by 20 June 2015).
8.2 Draft Integrated Monitoring and Assessment Programme

84. With regard to the main elements of the draft Integrated Monitoring and Assessment Programme, she presented the process leading to proposed Annex IV to document UNEP(DEPI)/MED WG.408/6, which contained the proposed Minimum List of habitats and species, and invited the participants to review the proposed list with a view to its adoption.

85. RAC/SPA informed the meeting about its contribution to the Ecosystem Approach (EcAp) process through participation in monitoring cluster meetings, GES and targets meetings, and integrated consultation meetings, and providing technical input to the process as well to other meetings of relevance to the Marine Strategy Framework Directive (MSFD) organized at the European level.

86. RAC/SPA had facilitated the launching of a regional monitoring system by preparing a guidance document on monitoring for Ecological Objective (EO) 1, and had contributed to the survey to assess marine environment monitoring activities in Mediterranean countries in the biodiversity area.

87. With regard to issues related to fisheries, the Secretariat emphasized that RAC/SPA was working in close collaboration with GFCM. The collaboration would be reinforced through the establishment of a joint strategy not only with GFCM but also with the secretariats of ACCOBAMS, IUCN-Med and MedPAN in order to promote joint efforts for the conservation of Mediterranean biodiversity and resources.

88. The representative of the ACCOBAMS Secretariat thanked RAC/SPA and the UNEP/MAP Secretariat in general for the collaboration that had been established for the preparation of the Draft Integrated Monitoring and Assessment Programme and, in particular, for the preparation of elements pertaining to the monitoring of cetaceans for Ecological Objective 1 “Biodiversity”, and the preparation of the strategy for monitoring underwater noise for the whole of the Mediterranean basin in the framework of Ecological Objective 11 “Energy, including underwater noise”.

89. She also introduced the “ACCOBAMS Survey Initiative” (UNEP(DEPI)/MED WG.408/Inf.4) aimed at establishing an integrated and coordinated monitoring programme for cetaceans at the regional level. She highlighted that the results of the initiative were expected to provide useful information about the cetacean populations in the Mediterranean and a significant contribution to the EcAp process.

90. Introducing document UNEP(DEPI)/MED WG.408/Inf.27, the representative of the ACCOBAMS Secretariat stated that the document had been prepared at the RAC/SPA level by the Chair of the ACCOBAMS Scientific Committee. As the document would be submitted for adoption by the next Meeting of Parties to ACCOBAMS, she stressed that it would be essential for the final version of
the document to take into account the comments made at the meetings of the two organizations – in order to ensure that there would be just one document.

91. MEDASSET welcomed the work undertaken by the UNEP/MAP Secretariat and RAC/SPA in relation to document UNEP(DEPI)/MED WG.408/6. In line with the recommendation of the Integrated CORMON Meeting (30 March - 1 April 2015), and in collaboration with RAC/SPA, MEDASSET had reviewed the document with respect to sea turtle monitoring in relation to common indicators 3-5 included in Ecological Objective 1 - Biodiversity. In addition, MEDASSET had assisted RAC/SPA in integrating the comments of the Mediterranean members of the IUCN Marine Turtle Specialist Group (MTSG) into the document.

92. MEDASSET suggested that a RAC/SPA sea turtle monitoring guide/manual would be a more appropriate means of presenting detailed information to the Contracting Parties, managers and researchers who would implement the monitoring programme. MEDASSET, by presenting the review, confirmed its willingness to collaborate with the UNEP/MAP system for the implementation of the Ecosystem Approach in the Mediterranean.

93. The Focal Points for SPAs welcomed the draft Minimum List of habitats and species and agreed that written comments or suggestions for modification could be sent to the Secretariat by 20 June 2015 at the latest. France entered a scrutiny reservation due to the late submission of documents.

Agenda item 9
The Strategic Action Programme for the Conservation of Biological Diversity in the Mediterranean Region (SAP BIO) Strategic Goals and Priority Actions

94. The Secretariat presented general background information on the history of SAP BIO, including past efforts to achieve funding for key priority issues. Three projects had provided sound funding for SAP BIO activities until the current year (MedMPAnet, MedOpenSeas and MedKeyHabitats). The Secretariat also provided information on the assessment of SAP BIO implementation that had taken place in 2013. Based on that assessment, the Contracting Parties had agreed on a set of strategic goals and priority actions for the period 2014-2020 and had requested the Secretariat to investigate options for ensuring appropriate financial support for the implementation of SAP BIO at the national and regional levels (see Decision IG.20/4).

95. The Secretariat informed the meeting about the implementation of Decision IG.20/4, which provided for the preparation of project portfolios addressing the updated SAP BIO Priority Actions, including (i) national pilot projects targeting national priorities in the framework of SAP BIO and (ii) regional projects to support countries in areas of regional interest, and the establishment of contacts with donor institutions.
96. It further presented a portfolio of 11 project concepts related to the Strategic Goals and Priority Actions of SAP BIO, and the participants were invited to express their views and provide contributions regarding the proposals.

97. The representative of Greece provided a detailed description of a project on Marine Spatial Planning designed to facilitate implementation of the provisions of the ICZM Protocol concerning MSP and emphasized that the project promoters were open to inputs and synergies from countries, RACs and NGOs.

98. Several Focal Points expressed support for the activities being undertaken by RAC/SPA regarding SAP BIO, noting that it was fulfilling the needs expressed by countries at the previous Focal Point meeting. In this regard, the representative of Lebanon expressed her country’s interest in being part of projects 2, 3, 6, 7, 8, 9 and 11 listed in Annex XII.

99. The representative of Italy stressed the importance of providing a general introduction to the project proposals that clearly explain the rationale underlying them in light of the Aichi targets, the EcAp process and the Mid-Term Strategy. He also stressed the importance of involving countries through the Focal Points when the proposal directly concerned them.

100. The representative of Greece suggested linking the project just presented with the RAC/SPA project concept on connectivity and MSP.

101. The representative of Egypt expressed his interest in obtaining support for the development of a National Action Plan for Marine Turtles, and MEDASSET mentioned that it would be willing to provide technical support for the Plan. The Secretariat took note of both interventions.

102. The representative of Montenegro suggested extending the portfolio of projects to encompass a wider range of sensitive species and habitats linked to future monitoring within the EcAp and creating a project that would focus on the revision and updating of SAP BIO National Action Plans to take account of monitoring actions needed for the Ecosystem Approach.

103. The representative of Slovenia acknowledged the existence of projects supporting Action Plans implementation and suggested including a project to support the Action Plan on Coralligenous and other Calcareous Bio-concretions. Furthermore, current projects such as AdriaPlan and MedTrends could support future MSP activities.

104. The representative of Croatia suggested that one should not be too ambitious with respect to the recovery of monk seals in new areas in the short term, since the only known female in her country had recently died; while the representatives of Greece and Cyprus expressed their countries’ interest in
enlarging the project on conservation of the Mediterranean monk seal to include the Eastern Mediterranean monk seal populations.

105. The Deputy Coordinator of UNEP/MAP, noting the interest expressed by the Focal Points in the proposed project concepts, thanked the Focal Points for their contributions and the RAC/SPA for the work being undertaken.

106. After further exchanges of views with the Parties on the projects, RAC/SPA informed the meeting that it had taken note of their opinions and suggestions. The preliminary list of projects proposed by the Secretariat for addressing SAP BIO funding needs, taking into account the proposals by participants, appears in Annex XII to this report.

Agenda item 10
Marine and Coastal Protected Areas, including in the open seas and deep seas

10.1 List of Specially Protected Areas of Mediterranean Importance (SPAMI List)

10.1.1 Ordinary Periodic Revision of the SPAMI List

107. The Secretariat provided the meeting with a brief reminder of the Procedure for the revision of the areas included in the SPAMI List, as adopted by the Contracting Parties in 2008, and introduced the Ordinary Periodic Review of SPAMIs undertaken during the current biennium, the results of which were presented in document UNEP(DEPI)/MED WG.408/12.

108. The 2014-2015 periodic reviews concerned the following 22 SPAMIs:

- Bouches de Bonifacio Nature Reserve (France);
- Port-Cros National Park (France);
- Pelagos Sanctuary for the Conservation of Marine Mammals (France, Italy, Monaco);
- Marine Protected Area and Nature Reserve of Torre Guaceto (Italy);
- Marine Protected Area of Capo Caccia-Isola Piana (Italy);
- Marine Protected Area of Tavolara-Punta Coda Cavallo (Italy);
- Miramare Marine Protected Area (Italy);
- Plemmirio Marine Protected Area (Italy);
- Punta Campanella Marine Protected Area (Italy);
- Al-Hoceima National Park (Morocco);
- Alboran Island (Spain);
- Archipelago of Cabrera National Park (Spain);
- Cabo de Gata-Nijar Natural Park (Spain);
- Cap de Creus Natural Park (Spain);
- Columbretes Islands (Spain);
- Mar Menor and Oriental Mediterranean zone of the Region of Murcia coast (Spain);
- Maro-Cerro Gordo Cliffs (Spain);
- Medes Islands (Spain);
- Sea Bottom of the Levante of Almeria (Spain);
- Kneiss Islands (Tunisia);
- La Galite Archipelago (Tunisia); and
- Zembra and Zembretta National Park (Tunisia).

109. The Secretariat also highlighted the most recurrent recommendations addressed to RAC/SPA within the periodic evaluation reports, which consisted in: (i) further promoting networking among SPAMIs, and (ii) revising the Review Format based on the experience gained from the SPAMI evaluations undertaken so far.

110. Given the urgency of the latter recommendation, the meeting agreed to elaborate a new Ordinary Review Format with a view to submitting it for adoption by the next meeting of the Contracting Parties (COP 19). In this context, RAC/SPA shall prepare a first draft and take advantage of the forthcoming SPAMI Conference (9-12 June 2015) in order to consult with the attending Focal Points, before circulating the draft Ordinary Review Format for further comments and finalization in time for submission to the forthcoming meeting of MAP Focal Points (mid-October 2015).

111. The Chairwomen of MedPAN expressed the willingness of her organization to support the improvement of networking among SPAMIs.

112. The meeting approved the results of the ordinary review of the twenty-two SPAMIs and recommended that RAC/SPA proceed, during the next biennium, with a follow-up and monitoring of the implementation of the recommendations addressed to the SPAMI managing authorities as part of the ordinary review reports.

113. The Secretariat informed the meeting that the 2017 ordinary review round would concern the SPAMIs included in the SPAMI List in 2005.

10.1.2 Inclusion of areas in the SPAMI List
114. The Secretariat outlined the SPAMI objectives and the procedure for inclusion in the SPAMI List and informed the meeting that it had received only one new request for inclusion in the SPAMI List, from Albania concerning Karaburun Sazan Marine Park. The proposal had been elaborated with the support of the MedKeyHabitats Project.

115. In accordance with the procedures laid down in the SPA/BD Protocol, the Albanian draft proposal had been transmitted for examination to the Focal Points for the SPAs (UNEP(DEPI)/MED WG.408/13).

116. The Albanian representative presented the Karaburun Sazan Marine Park by providing a general description of the area, presenting an overview of the habitats and the species of interest and describing the management plan of the protected area. She indicated that a management committee had been set up to coordinate management activities.

117. The meeting agreed to submit the Albanian proposal to the Parties to the Barcelona Convention for inclusion in the SPAMI List. The executive summary of the Presentation Report appears as Annex XIII to this report.

10.2 Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea, including the High Sea

10.2.1 Activities for the identification and creation of SPAMIs in the open seas, including the deep seas

118. The Secretariat presented the results achieved to date through the project aimed at supporting the identification and creation of SPAMIs in areas embracing the open seas, including the deep seas, which had been implemented in three consecutive phases and would end in September 2015.

119. It provided a general description of the project, with an overview of outputs achieved since its launching. RAC/SPA had been compiling data and publishing thematic biodiversity reports and related legal documents on open sea areas since 2008. A Geographic Information System was being developed since 2010.

120. The continuation at regional level of surveying efforts for areas of value for the creation of SPAMIs in the open seas provided significant visibility to key regional inputs to the international negotiations on Ecologically or Biologically Significant Marine Areas (EBSAs). Reference was made to the related adoption of Mediterranean EBSAs at the 12th Conference of the Parties (COP 12) to the Convention on Biological Diversity (CBD) in Pyeongchang, Republic of Korea (October 2014).
121. A draft EBSA description had already been presented to the Extraordinary Meeting of SPA Focal Points in 2010 and an agreement had been reached on 12 priority conservation areas within those potential EBSAs. COP 10 of the Convention on Biological Diversity had initiated a workshop process to describe EBSAs in different regions of the world’s oceans in October 2011. RAC/SPA and others had compiled additional data for the Mediterranean from 2011 to 2014. A review of Draft Mediterranean EBSAs had been undertaken during a joint UNEP/MAP-CBD workshop, with IUCN-Med collaboration, in April 2014 in Malaga, Spain, where 17 EBSAs had been defined. CBD COP 12 had agreed to include 15 of the Mediterranean EBSAs in the EBSA repository in October 2014. This formal international recognition of the ecological and biological importance of the Mediterranean areas concerned sent strong signals to decision-makers concerning their priority value for marine spatial management and supported work under the Barcelona Convention on marine conservation.

122. A clear point was made on what did and did not constitute an EBSA: it had been scrutinized by experts for its selection and its listing had been adopted by the CBD COP. An EBSA was not a marine protected area because it had no legal status or a management plan. It was rather a tool for identifying sites requiring better management by diverse means.

123. The current phase of the project focused on two axes: support (i) for building a framework with countries and competent organizations to facilitate the joint establishment of SPAMIs in open seas, including deep seas; and (ii) for improving the state of knowledge regarding open-sea and deep-sea ecosystems and their uses.

124. The Secretariat provided brief information on the work and consultation processes undertaken in different subregions (Alboran Sea, Adriatic Sea and the Sicily Channel/Tunisian Plateau) with the participation of the relevant Parties. In this context, the Secretariat commended the support provided by Italy, including funding, for the meetings held for the Sicily Channel/Tunisian Plateau (Sciacca, Italy, 13-14 April 2015) and the Adriatic Sea (Trieste, Italy, 22-23 April 2015).

125. Other activities were also supported by the project, such as the elaboration of a common strategy in the Mediterranean regarding spatial management measures to be agreed with relevant regional bodies. Its key elements were depicted in document UNEP(DEPI)/MED WG.408/17 entitled “Draft elements for a Common strategy among RAC/SPA, GFCM, ACCOBAMS and IUCN-Med, with collaboration of MedPAN”.

126. The representatives of IUCN-Med and MedPAN, stressing that their organizations were involved in the joint strategy, expressed their willingness to participate and to contribute to this interesting coordination and synergy initiative.
127. With regard to the preparation of the Joint Strategy of RAC/SPA, GFCM, ACCOBAMS and IUCN-Med in collaboration with MedPAN (document UNEP(DEPI)/MED WG.408/17), the representative of ACCOBAMS thanked RAC/SPA for the initiative, which would support joint efforts and help to strengthen synergies in the actions and work programmes of ACCOBAMS, GFCM, RAC/SPA and IUCN-Med at a time when cooperation between those organizations continued to grow.

128. Responding to a question by a Focal Point, the Secretariat clarified that countries were expected to take note of the activity, which aimed to improve coordination among the related key regional organizations acting in common areas in the Mediterranean region.

129. The representative of Italy commented on the relevance of the project proposal on open seas and reminded the meeting that the EBSA process for the Mediterranean followed a route initiated by the Barcelona Convention. He also drew attention to the differences between MPAs and other measures of marine environment conservation, and to the fact that there were a number of legal instruments permitting conservation in open seas which did not necessarily involve the establishment of a network of protected areas. He stressed the importance of the full involvement of countries in the project and reinforcement of project management through a mechanism for consultation of States.

130. The representative of Tunisia said that her country was available to participate in a consultation process with respect to the establishment of SPAMIs in open seas. Tunisia was not ready for the time being to have a position on the issue.

131. The representative of ACCOBAMS congratulated RAC/SPA and the Parties to the Barcelona Convention on the work accomplished for the definition of EBSAs in the Mediterranean and on their adoption at the 12th meeting of the Conference of the Parties (COP 12) to the Convention on Biological Diversity (CBD). She pointed out that most of the areas included critical habitats for cetaceans and that their recognition as EBSAs was fully in line with the provisions of ACCOBAMS for the conservation of habitats. In that context, the meeting welcomed the proposal of the ACCOBAMS Secretariat representative to include documents UNEP(DEPI)/MED WG.408/Inf.11, UNEP(DEPI)/MED WG.408/Inf.15, UNEP(DEPI)/MED WG.408/Inf.19 and UNEP(DEPI)/MED WG.408/Inf.20 among the information documents for the next meeting of the Scientific Committee of ACCOBAMS to be held in October 2015.

132. The representative of Slovenia supported the continuation of the Adriatic process, not only for the declaration of SPAMIs but also for any kind of conservation process. 2020 was around the corner and there was an urgent need for action. It was important to be more active, in order to cope with the ongoing development of strategies and plans in other sectors such as maritime traffic, port infrastructure or hydrocarbons.
133. The meeting agreed to establish an informal working group to elaborate guidelines for the possible future continuation of the MedOpenSeas Project (following possible new financial support) on the basis of experience relating to the Adriatic Sea and the Sicily Channel/Tunisian Plateau. The following countries and organizations joined the working group co-chaired by the representatives of Italy and Tunisia: Croatia, Cyprus, Greece, Slovenia, ACCOBAMS, IUCN-Med and MedPAN.

134. The output of the working group, as reviewed and approved by the meeting, appears as Annex XIV to this report.

135. The representative of France expressed a reservation regarding the outcomes of the working group and informed the meeting that she would consult with the relevant authorities of her country before providing possible written comments on the issue.

136. The representative of Spain emphasized that the outcome of the working group was very general in terms of its approach to the Mediterranean EBSAs already identified. Nevertheless, it could be interpreted as being applicable to only three of the Mediterranean areas mentioned in the introductory part of the document. Spain would therefore prefer the document to be more clear and explicit, stating that its scope embraced the entire Mediterranean and omitting any mention of specific areas. She added that EBSA work was an obligation under the Convention of Biological Diversity and the role of Mediterranean Action Plan was to facilitate that work. Spain had some doubts about the establishment of management measures for EBSAs under MAP while the CBD was still considering the steps to be taken after their identification. She concluded that her delegation could not approve the document in its present form without a detailed analysis of its implications in respect of obligations under the CBD and MAP. Spain would continue considering the matter for the time being without committing itself to its final approval.

10.2.2 Activities for the development of a Mediterranean Marine and Coastal Protected Areas (MPAs) network through the boosting of MPAs creation and management

137. The Secretariat informed the meeting about the status of activities relating to the Regional Project for the Development of a Mediterranean Marine and Coastal Protected Areas (MPAs) Network through the Boosting of MPA Creation and Management, the “MedMPAnet Project”, implemented under the umbrella of the Strategic Partnership for the Large Marine Ecosystem of the Mediterranean (MedPartnership).

138. It provided a brief presentation of the general framework and objectives of the Project, as well as an overview of the activities implemented since the launching of the Project in April 2010, focusing mainly on achievements related to: (i) the identification and planning of new MPAs in order to expand
the regional network and enhance its ecological representativeness; and (ii) capacity-building, communication and awareness-raising activities aimed at improving MPA management.

139. Following the Secretariat’s presentation, the representatives of the countries participating in the Project (Albania, Croatia, Egypt, Lebanon, Libya, Morocco, Montenegro and Tunisia) took the floor to provide supplementary information on the activities undertaken in their respective countries. They thanked RAC/SPA in that connection for the support it had provided for activities they had undertaken in the context of their national biodiversity conservation priorities.

140. Several country representatives commended the quality of the work accomplished under the Project and the relevance of the participatory and collaborative approach, particularly the involvement of representatives of civil society and of national and local NGOs in the process of developing coastal management plans for Project pilot sites. They also stressed the importance for the implementation of Project activities of existing collaboration, partnerships and synergies at both the national and regional level.

141. The representative of Morocco highlighted the relevance of the approach adopted in developing the management plan for Cap des Trois Fourches and suggested that a similar approach should be adopted in developing the management plan for the Djebel Moussa Site of Biological and Ecological Interest.

142. The representative of Egypt expressed his country’s interest in completing the current assessment of the socio-economic framework of the Marine Protected Area of Sallum Bay. He requested RAC/SPA technical assistance with a view to carrying the process forward so that the management plan for the MPA in question could be elaborated.

143. While commending the quality of the capacity-building activities conducted under the MedMPAnet Project, several country representatives urged RAC/SPA to continue providing technical assistance for capacity development and capacity-building (on-job training, workshops, regional and national training sessions, etc.).

10.2.3 Evaluation of the Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea, including the High Sea

144. The Secretariat briefly presented the evaluation of the Regional Working Programme for the Coastal and Marine Protected Areas, including in the open seas and deep seas, adopted by the Contracting Parties in 2009. The evaluation report provided an overview of relevant initiatives at the international, regional or sub-regional levels and the status of activities implementation at the national level during the last five years (2010-2014). It emphasized that the main conclusions that emerged from
this evaluation were: (i) the significant role played by international and regional organizations in catalysing activities at country level, and (ii) the imbalanced geographical distribution of the Mediterranean MPAs and the need to improve their effectiveness and management.

10.2.4. Roadmap - Towards a comprehensive, ecologically representative, effectively connected and efficiently managed network of Mediterranean Marine Protected Areas by 2020

145. The Secretariat presented the Draft Roadmap for a comprehensive coherent network of well-managed MPAs to achieve Aichi Target 11 in the Mediterranean (document UNEP(DEPI)/MED WG.408/14), as requested by the Eighteenth Ordinary Meeting of the Contracting Parties to the Barcelona Convention (Decision IG.21/5).

146. Following comments by the participants and the debate on this agenda item, the meeting agreed on the following conclusions and next steps for the roadmap on Aichi Targets:

(i) As requested by the Eighteenth Ordinary Meeting of the Contracting Parties, the Roadmap should focus on providing guidance to the Mediterranean countries about steps that will help to achieve Aichi Target 11.

(ii) All activities to be undertaken by RAC/SPA in relation to the Roadmap should be fully in line with the orientations of the UNEP/MAP Mid-term Strategy for the period 2016-2021 and the biennium Programme of Work being developed by UNEP/MAP.

(iii) The Roadmap should be fully harmonized with the EcAp process of the Barcelona Convention, regarding the Ecological Objectives of particular relevance for biodiversity.

(iv) Taking into account the above points and the comments on and proposals concerning the Roadmap text made during this Twelfth Meeting of Focal Points, RAC/SPA will pursue, during the next two months, its consultation on the Roadmap with the Focal Points for SPAs and with the other MAP Components with a view to preparing a revised version of the Roadmap to be submitted, not later than the end of August 2015, as a document of the forthcoming MAP Focal Points meeting scheduled for mid-October 2015.

Agenda item 11 Roundtable on funding of SAP BIO priority projects/activities

147. The RAC/SPA Director opened the session and thanked the representatives of donor organizations attending the roundtable for their interest (GEF, EC (by video conference), Prince Albert II of Monaco Foundation, Foundation Mohammed VI for Environmental Protection, GIZ Algeria Office).
148. The RAC/SPA Director communicated messages from the following donors who had expressed interest but were unable to attend the roundtable because they were otherwise engaged:

- LifeWeb Initiative had expressed its interest in RAC/SPA activities;
- CEPF had asked to be kept informed of the outcomes of the roundtable and wished to provide input for future events;
- MAVA Foundation had also asked to be kept informed of the outcomes of the roundtable and wished to provide input for future events;
- FFEM confirmed its interest in supporting the initiative;
- Total Foundation had found it to be an interesting initiative and wished to be kept informed of the outcomes of the roundtable;
- UfM was ready to support projects of regional interest.

149. The Director said that the purpose of the roundtable was to discuss the issue of fund-raising for the portfolio of projects and for other actions included in the SAP BIO at the national and regional level, and to enhance regional coordination and cooperation with a view to improving the effectiveness and efficiency of SAP BIO implementation. The roundtable aimed to give participants (countries, partners, etc.) the opportunity to be consulted and to have a face-to-face discussion on the financing of biodiversity conservation in the Mediterranean. This first roundtable could be followed by further ones in the future in order to conduct wide-ranging consultations with countries, partners, observers etc.

150. Pursuant to Decision IG.20/4, the Secretariat had prepared a first proposal with a list of project concepts for discussion (with a short description) to be implemented in 2016-2021.

151. The roundtable was organized as follows:

i. Presentation by RAC/SPA on the process launched in accordance with Decision IG.20/4 of the Contracting Parties, which requested the Secretariat to investigate options for ensuring appropriate financial support for the implementation of SAP BIO at the national and regional levels. The presentation included the portfolio of project concepts prepared in that context.

ii. Presentations by representatives of donor organizations, agencies and donors attending the roundtable about their principal domain of interest and their views regarding the project concepts in relation to their strategies, priorities and experiences in supporting projects in the Mediterranean.

iii. Debates.

152. The Secretariat updated participants on the history of the SAP BIO in order to bring everyone to the same level of knowledge for informed discussion. It recalled the first funding efforts and stressed
the priorities that had been addressed: (a) declaration of new MPAs; and (b) assistance to countries. It also briefed on the SAP BIO evaluation and analysis and its national and regional priorities and presented the 11 short concept project proposals, explaining that some of them were complementary to existing UNEP/MAP activities.

153. The representative of Italy welcomed the presence of so many donors. A number of interesting projects had been presented, but he stressed the importance of having an underlying strategy linking projects to the objectives and priorities identified by countries. It was also necessary to link project proposals with other processes such as the EcAp and to establish a formal consultation process with National Focal Points. He requested that National Focal Points should be able to amend the text and the list of partners proposed for the projects.

154. The representative of Cyprus supported the comment made by the representative of Italy and stressed the importance of involving the Eastern Mediterranean in the proposed project for monk seal conservation. She also said that her country might wish to collaborate more closely with ACCOBAMS, particularly with respect to highly mobile species, which were becoming a priority at the EU level.

155. The representative of Croatia highlighted that countries needed more time to prepare for discussions with donors, prior to the National Focal Points meeting.

156. The representative of Montenegro recommended holding consultations with National Focal Points and counting on those consultations to finalize the projects.

157. The representative of Slovenia agreed with the representative of Italy and he reiterated the interest of the Adriatic countries in the initiatives regarding the 11 project ideas.

158. The representative of Tunisia thanked RAC/SPA for organizing the roundtable during an NFP meeting, probably for the first time. She affirmed Tunisia’s support for the project proposals, which were of interest to her country.

159. The RAC/SPA Director emphasized that the aim of the roundtable was to discuss and identify what was of interest and linked to the strategy and to further explore what could be done in relation to biodiversity. It would take time to fully identify the projects, since this was just the beginning. The Centre would later work in linkage with the mid-term assessments. The results of the discussions would feed the six-year mid-term programme 2016-2021. The roundtable was the first step towards gathering everyone’s ideas. There was no intention to include or exclude any countries. That was not the spirit of the roundtable. The Centre was waiting for countries to convey their intentions.

160. The UNEP/MAP Deputy Coordinator reassured the countries that the projects were not yet ready for donors; they were project ideas. The UNEP/MAP Focal Points meeting the previous week had
given directions for the future Mid-Term strategy. That strategy would provide the framework for such projects. The meeting had also provided an opportunity to discuss countries’ priorities.

161. The RAC/SPA Director thanked delegates for expressing their opinions and advice frankly and transparently. He hoped that the Centre’s intention had been clarified. The Secretariat was committed to continuing its work on the ideas and to developing them further, taking countries’ comments and advice into account. There would be consultations on the relevant steps with all Contracting Parties through RAC/SPA Focal Points.

162. The Chairperson said that not many RAC/SPA National Focal Points were sufficiently familiar with the UNEP/MAP Mid-term Strategy. She therefore suggested that the Secretariat should provide them with the requisite information. The UNEP/MAP Deputy Coordinator explained the UNEP/MAP Mid-term Strategy and clarified that it was still being elaborated and that biodiversity was one of the pillars.

Agenda item 12 30th Anniversary of RAC/SPA (1985-2015)

163. The Director of RAC/SPA thanked all those who had shared their memories of the early years of RAC/SPA, especially during the cocktail organized by the Centre to celebrate its 30th anniversary on the first day of the meeting. He introduced the PowerPoint presentation of the Centre’s historic background and said that the interviews conducted during the meeting would be incorporated in it later on. He then announced that the Secretariat would present the broad lines of the communication strategy. The strategy was designed to enhance the visibility not only of the Centre but also of the RAC/SPA Focal Points and partners.

164. The Secretariat also presented a brief review of the 30 years of RAC/SPA’s existence, highlighting certain key events in the Centre’s history.

165. The Secretariat then presented the broad lines of the draft communication strategy presented in document UNEP(DEPI)/MED WG.408/15. The main points are as follows:

- a summary of the diagnosis;
- action to be taken to enhance the Centre’s visibility;
- the major lines of communication;
- financial needs and human resources;
- management of the communication function, with the creation of a communication unit and a data committee.
166. The representative of Slovenia said that the communication strategy was of great importance for the Centre and that he supported the initiative. He added that the contents of the document should have been included in the programme of work.

167. The representative of Montenegro said that the Centre’s visibility should be enhanced and recommended preserving the logo. She agreed that the components of the communication strategy for RAC/SPA should have been included in the programme of work.

168. Mr. Mostafa Fouda, Resource Person – Secretariat, said that the RAC/SPA communication strategy should be consistent with regional conventions (Barcelona Convention) and international treaties (CBD, Ramsar, CMS, CITES). He added that the perception, attitudes and knowledge of the target public (decision-makers and “ordinary people”) should also be examined and that the Secretariat should prepare a questionnaire during the current year and a second one in three or four years’ time to assess progress made during the period as a whole. He further suggested publishing a book, in addition to the PowerPoint presentation and the animation film on the 30th anniversary of RAC/SPA, which could provide an overview of lessons learned and the prospects for the next 30 years.

169. The representative of IUCN suggested integrating partners and involving countries that wished to work with RAC/SPA in the communication unit.

Agenda item 13 Programme of Work of RAC/SPA for the period 2016-2017

170. The Director provided background information on the Programme of Work (PoW) and stated that the last MAP Focal Points meeting held the previous week had discussed and modified the Mid-Term Strategy (MTS) and the overall strategic framework in order to take into account the EcAp objectives and indicators. He stressed that there had been insufficient time to take into account the changes made by the MAP Focal Points in the PoW prepared for the current meeting. He proposed that the priorities of the main activities should be discussed. A revised version of the PoW would be prepared and forwarded within one month after the comments received by email from the SPA Focal Points had been taken into account. It would be submitted to the next meeting of MAP Focal Points scheduled for mid-October 2015.

171. In response to a request from the Chairperson of the meeting, the Deputy Coordinator made a brief statement on the preparation of the Mid-Term Strategy. He said that the structure of the MTS had been reviewed by the last MAP Focal Point Meeting. Therefore, the PoWs prepared by the various RACs and the Coordination Unit based on the initial draft of the MTS had not been in line with the Parties’ request. The proposal of the UNEP/MAP Secretariat was to work on the new structure of the MST for the next three weeks and to return it to the MAP Focal Points for their reaction. Meanwhile, the RACs and the Coordination Unit would work in parallel to readjust the PoW accordingly.
172. The representative of Slovenia supported the proposed PoW and emphasized the huge number of activities that were planned compared with the available financial and human resources. He also proposed that the PoW should focus to a greater extent on the implementation of the adopted regional Action Plans for the Conservation of Threatened Species and Habitats.

173. The representative of Spain supported the Secretariat’s proposal with a view to ensuring consistency with the EcAp process and the MTS.

174. The representative of Greece said that the Contracting Parties and Partners should be mentioned in the PoW. The Director stressed that the PoW was not complete at the present stage. He indicated that the proposed PoW was a first draft meant to be shared with the SPA Focal Points for a preliminary review.

175. The representative of Croatia stressed the need to take into account the review of the roadmap scheduled for the coming two months.

176. The IUCN-Med representative proposed expanding the activity aimed at revising the reference list of marine habitat types for the Mediterranean region to take into account not only dark assemblages but other habitats and species. The proposal was supported by the representative of Oceana.

177. Several partner organizations expressed their willingness to contribute in the elaboration of the PoW.

Agenda item 14 Any other matters

178. Under this agenda item, the representative of Tunisia invited RAC/SPA to develop a regional project concerning assistance to countries in developing alternative funding mechanisms for marine and coastal protected areas.

179. The Secretariat took note of the request and promised to incorporate it in its future projects concerning marine protected areas.

180. Several delegates took the floor to request clarifications regarding the post of Scientific Director of RAC/SPA. In this context, the Director of RAC/SPA and the Deputy Coordinator of UNEP/MAP, while stressing the importance of the post for the proper functioning of RAC/SPA, stated that the final decision on the matter would be taken at the level of the Contracting Parties and that the availability of the necessary budgetary funds was a factor to be taken into account. To that end, RAC/SPA would propose reconsidering the post in its draft budget for the 2016-2017 biennium.

Agenda item 15 Adoption of the meeting report
181. The Meeting reviewed the draft report prepared by the Secretariat, modified it and adopted the present report.

Agenda item 16 Closure of the meeting

182. After the customary exchange of courtesies, the Meeting was closed on Friday, 29 May 2015, at 1 p.m.
Annexes

Annex I List of participants
Annex II Agenda of the meeting
Annex III Recommendations of the 5th Mediterranean Conference on Marine Turtles
Annex IV Draft Updated Action Plan for the Conservation of Cetaceans in the Mediterranean Sea
Annex V Recommendations of the 2nd Symposium on the Conservation of Marine and Coastal Birds
Annex VI Recommendations of the 5th Mediterranean Symposium on Marine Vegetation
Annex VII Recommendations of the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea
Annex VIII Draft Updated Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea
Annex IX Recommendations of the 1st Mediterranean Symposium on the Conservation of Dark Habitats
Annex X Draft Programme of Work for Reference Lists of Habitat types in the Mediterranean
Annex XI Draft Updated Action Plan concerning Species Introductions and Invasive Species in the Mediterranean Sea
Annex XII Preliminary list of projects proposed by the Secretariat for addressing SAP BIO funding needs
Annex XIII Executive Summary of the Karaburun Sazan Marine Park proposed for inclusion in the List of Specially Protected Areas of Mediterranean Importance (SPAMI List)
Annex XIV Recommendations by the 12th Meeting of the Focal Points for SPAs concerning the future development of the activities on MAPs in ABNJ and the expected new project on this issue
Annex I

List of Participants
List of Participants / Liste des Participants

REPRESENTATIVES OF CONTRACTING PARTIES
REPRESENTANTS DES PARTIES CONTRACTANTES

ALBANIA / ALBANIE

Ms. Irma BALLA
Expert in legal environmental issues
Ministry of Environment, Forest and Water Administration
Rruga e Durresit N° 27
Tirana, Albania
Tel: +355 4 227 0624
Fax: +355 4 227 0624
E-mail: irmaballa@hotmail.com

BOSNIA & HERZEGOVINA / BOSNIE-HERZEGOVINE

Ms. Vildana GOKOVIC
Hydro-Engineering Institute Sarajevo (HEIS)
Ministry of Physical Planning and Environment
Stjepana Tomića 1
71000 Sarajevo, Bosnia and Herzegovina
Tel: +387 33 207 949
Fax: +387 33 212 466/7
E-mail: vildana.gokovic@heis.ba

CROATIA / CROATIE

Ms. Ana KOBAŠLIĆ
Head of Service
Nature Protection Directorate
Service for Strategic Affairs in Nature Protection
Ministry of Environmental and Nature Protection
Radnicka cesta 80
10 000 Zagreb, Croatia
Tel: +385 1 48 66 125
Fax: +385 1 48 66 100
E-mail: ana.kobaslic@mzoip.hr

Ms. Katja JELIC
Head of the Sea Section
Department for wild and Domesticated Taxa and Habitats
State Institute for Nature Protection
Radnicka cesta 80/7, 10 000 Zagreb, Croatia
Tel: +385 1 55 02 977
Fax: +385 1 55 02 901
E-mail: katja.jelic@dzzp.hr

CYPRUS / CHYPRE

Ms. Melina MARKOU
Fisheries and Marine Research Officer
Department of Fisheries and Marine Research
Ministry of Agriculture, Natural Resources and Environment
101 Vithleem Street, 1416 Nicosia, Cyprus
Tel: +357-22807841
Fax: +357-22775955
E-mail: mmarcou@dfmr.moa.gov.cy

EGYPT / EGYpte

Mr. Mohamed Said ABDELWARITH
Marine Environment Researcher
Egyptian Environmental Affairs Agency (EEAA)
30 Misr Helwan Zyrae, Maadi
Cairo, Egypt
Tel: +20 225 487 91
Fax: +20 225 280 93
Mobile: +2 0 100 77 57 864
E-mail: mohamed7j@hotmail.com

EUROPEAN UNION (EU) / UNION EUROPÉENNE (UE)
(Via video-conference)

Anna KARASSZON
Project Officer
Marine Environment and Water Industry Unit
DG Environment
European Commission
Avenue de Baulieu 5, Brussels/Belgium
Tel: +32 2 296 1451
E-mail: anna.karasszon@ec.europa.eu

FRANCE / FRANCE

Ms. Maud CASIER
Coordinatrice internationale
Ministère français de l'Environnement (MEDDE) / Direction de l'eau et de la biodiversité (DGALN/DEB)
French Ministry of Environment / Water, Marine & Biodiversity Directorate
Coordination internationale / International Coordination (CI)
Bureau 05 / 56 - Tour Séquoia
92055 Paris La Défense, France
Tel: +33 1 40818606
E-mail: maud.casier@developpement-durable.gouv.
GREECE / GRECE

H. E. Mr. Yiannis TSIRONIS
Alternate Minister of Reconstruction of Production, Environment & Energy

Ms. Rebeca BATMANOGLOU
Director of the Directorate of Biodiversity Protection, Soil and Waste Management

Mr. Odysseas GOGOUSOS
Head of Biodiversity and Protected Areas Department

Ms. Maria PEPPA
Head of International Affairs Department and MAP Focal Point
E-mail: m.peppa@prv.ypeka.gr

Ms. Eleni TRYFON
Scientific expert
Protected Areas Department
Directorate of Biodiversity, Soil and Waste Management, Biodiversity and General Directorate of Environmental Policy
Ministry of Reconstruction of Production, Environment & Energy, 147 Patission Str 112 51 Athens, Greece
Tel: +30 210 8642276
Fax: +30 210 8623020
E-mail: e.tryfon@prv.ypeka.gr

Ms. Athena MOURMOURIS
Honorary Director General for the Environment
Ministry of Environment
Akti Moutsopoulou 25
18534 Piraeus, Greece
Tel: +30 697 458 1325
Fax: +30 210 411 1318
E-mail: athenamour@yahoo.co.uk

Mr. Michael STELLAKATOS LOVERDOS
Assistant Legal Adviser/Ministry of Foreign Affairs
10, Zalokosta Street, 106 71 Athens
Tel: +30 210 368 3647
E-mail: mstelak@mfa.gr

Mr. Illias MAVROEIDIS
Scientific expert
Department of European & International Environment Affairs
Directorate of International and European Activities
Ministry of Reconstruction of Production, Environment & Energy
15, Amaliados str 115 23 Athens, Greece
Tel: +30 210 6426531
Fax: +30 210 6434470
E-mail: i.mavroidis@prv.ypeka.gr

ISRAEL / ISRAËL

Mr. Simon C. NEMTZOV
Coordinator for International Treaties
Israel Nature and Parks Authority
3 Am Ve’Olamo Street
Jerusalem 95463, Israel
Tel: +972-58-5063118
Fax: +972-2-5006281
E-mail: simon@npa.org.il

ITALY / ITALIE

Mr. Leonardo TUNESI
Research Executive
Head of the 3rd Department CRA 15 “Marine Habitats and Biodiversity Protection”
ISPRA – High Institute for Environmental Protection and Research
Via Vitaliano Brancati, 60 - 00144 Rome, Italy
Tel: +39 06 50074 776
Fax: +39 06 50074955
Mobile: +39 334 6243333
E-mail: leonardo.tunesi@isprambiente.it

Mr. Oliviero MONTANARO
Head of Unit VI "Marine and Coastal Environment Protection"
Italian Ministry of Environment, Land and Sea
Via C. Colombo 44 - 00147 Rome
Tel: +39.06.57228487
Fax: +39.06.5722.8424
Mob: +39 3293810308
E-mail: montanaro.oliviero@minambiente.it

LEBANON / LIBAN

Ms. Lara SAMAH
Head of Department of Ecosystems
Directorate General of Environment
Ministry of Environment
Lazarich Center, 8th Floor, Block A-4 New P.O. Box: 11/2727, Beirut, Lebanon
Tel: +961 371 17 127
Fax: +961 119 76 535
E-mail: lsamaha@moe.gov.lb
LIBYA / LIBYE

Mr. Elmaki Ayad ELAGIL
Director of Nature Conservation Department
Environment General Authority (EGA) - Libya
Al-Gheran, Janzour, Tripoli
P.O. BOX 83618, Tripoli, Libya
Tel: +218 21 4873 764 (1119)
Fax: +218 21 4872 160
Mobile: +218 92 6508268
E-mail: makeagalee@yahoo.com

SPAIN / ESPAGNE

Ms. Elena ALCALDE CONSUEGRA
Technician on Marine Protected Areas
Division for the Protection of the Sea
General Directorate for Sustainability of the Coast
and the Sea
Ministry of Agriculture, Food and Environment
Pl. San Juan de la Cruz
s/n. Madrid, Despacho: A-207, Spain
Tel.: +34 91 597 67 98
Fax: +34 91 597 59 24
E-mail: econsuegra@magrama.es

MONACO / MONACO

Mr. Ludovic AQUILINA
Direction de L'environnement
3, Avenue de Fontvieille
MC 98000, Monaco
Tel: +377 98 98 19 65
Fax: +377 92 05 28 91
E-mail: luaquilina@gouv.mc

Ms. Guadalupe PINA
Consultant
Tragsatec S.A
Calle de Julian Camarillo 6B
28037 Madrid, Spain
Tel: 913 225 043
Fax: 913 322 60 05
E-mail: gpm@tragsa.es

MOROCCO / MAROC

Mr. Abdennadi ABARKACH
Division des Parcs et Réserves Naturelles
Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification
3, rue Harun Arrachid
Rabat - Agdal, Maroc
Tel: +212 5 37 67 27 70
Fax: +212 537 67 26 28
E-mail: abdennadi@yahoo.fr

TUNISIA / TUNISIE

Ms. Saba GUELLOUZ
Chargée de la Direction de la Gestion des Ecosystèmes Littoraux
Agence de Protection d’Aménagement du Littoral (APAL)
2 rue Mohammed Rachid Ridha
1002 Tunis-Belvédère, Tunisie
Tel: +216 71 908 566
Fax: +216 71 908 460
Mobile: +216 99 250 497
E-mail: s.guellouz@apal.nat.tn

MONTENEGRO / MONTENEGRO

Ms. Milena BATAKOVIĆ
Advisor for Biodiversity and SPA/BD Focal Point
Department for Monitoring, Analyses and Reporting
Environmental Protection Agency of Montenegro
IV Proleterske no. 19 81000 Podgorica,
Montenegro
Tel: +38220446-506
Fax: +382 20 446 215 / 587
Mobile: +38267225504
E-mail: milena.batakovic@epa.org.me

TURKEY / TURQUIE

Mr. Güner ERGÜN
Branch Director
Ministry of Environment and Urbanisation
Directorate General of the Protection of Natural Assets
Mustafa Kemal Mahallesi Eskisehir Devlet Yolu
(Dumlupmar Bulvari) 9 Km.
Cankaya / Ankara, Turkey
Tel: +90 312 222 1234 / 400
Fax: +90 312 222 26 61
E-mail: gnerergn@yahoo.com

SLOVENIA / SLOVENIE

Mr. Robert TURK
Head Regional Unit Piran
Institute of the Republic of Slovenia for Nature Conservation
TRG Etbina Kristina 1, 6310 Izola, Slovenia
Tel: +386 5 6710 901
Fax: +386 5 6710 905
E-mail: robert.turk@zrsvn.si
REPRESENTATIVES OF OTHER INTERGOVERNMENTAL ORGANIZATIONS
REPRÉSENTANTS D'AUTRES ORGANISATIONS INTERGOUVERNEMENTALES

ACCOBAMS – Agreement on the Conservation of Cetaceans of the Black Sea, Mediterranean Sea and Contiguous Atlantic Area / Accord sur la conservation des cétacés de la mer Noire, de la Méditerranée et de la zone Atlantique adjacente

Ms. Célia LE RAVALLEC
Project Officer
Jardin de l’UNESCO, Terrasses de Fontvieille
98000 Monaco
Tel: +377 9898 4074
Fax: +377 9898 4208
E-mail: cleravallec@accobams.net

IUCN-Med – IUCN Centre for Mediterranean Cooperation / UICN-Med – Centre pour la Coopération Méditerranéenne de l’IUCN

Mr. Alain JEUDY DE GRISSAC
Marine Conservation Programme Manager
UICN Centro de Cooperación del Mediterráneo
Parque Tecnológico de Andalucía
C. / Marie Curie, 22
29590 Campanillas (Málag), Spain
Tel: +34 952 028 430 Ext. 304
Mobile: +34 693 813 972
E-mail: alain.jeudy@iucn.org

GEF – Global Environment Facility / FEM – Fonds Mondial de l’Environnement

Ms. Nicole GLINEUR
GEF Programme Manager
Natural Resources Division
GEF Secretariat
1818 H Street, NW
MSN P4-400 Washington D.C. 20433, USA
Tel: +1 202 473 25132
Mobile: +1 202 243 82 36
E-mail: nglineur@thegef.org

Ms. Maria Del Mar OTERO VILLANUEVA
Project officer
UICN Centro de Cooperación del Mediterráneo
Parque Tecnológico de Andalucía
C. / Marie Curie, 22
29590 Campanillas (Málaga), Spain
Tel: +34 952 028430
Fax: +34 952 028145
E-mail: mariadelmar.otero@iucn.org

CWS – Cyprus Wildlife Society / Société Chypriote pour la Vie sauvage

Mr. Andreas DEMETROPOULOS
President CWS
P.O Box 24281, Nicosia 1703, Cyprus
Tel: +357 994 28 508 / +357 223 50 316
Fax: +357 22 354 089
E-mail: andrecws@logos.cy.net

Ms. Myroula HADJICHRISTOPHOROU
Hon Secretary, CWS
P.O Box 24281, Nicosia 1703, Cyprus
Tel: 357 994 28 508 / 357 223 50 316
Fax: 357 22 354 089
E-mail: andrecws@logos.cy.net

Foundation Prince Albert II of Monaco / Fondation Prince Albert II de Monaco

Mr. Raphaël CUVELIER
Coordonnateur
Villa Girasole
16, Boulevard de Suisse
98000 Monaco
Tél : +377 98.98.44.44
Fax : +377 98.98.44.45
E-mail: rcuvelier@fpa2.mc
GIZ – Deutsche Gesellschaft für Internationale Zusammenarbeit / Coopération internationale allemande

Mr. Rolf DIETMAR
Directeur de programme
Programme “Gouvernance environnementale et biodiversité”GIZ en Algérie
39, rue Mohammed Khoudi El-Biar 16606 Alger,
Tel: +213 (0) 21 92 09 88/89
Fax: +213 (0) 21 92 09 90
Mobile: +213 (0) 560000096 / 661690051 (Alger)
Mobile: +49-15224680568 (D)
E-mail: rolf.dietmar@giz.de

Greenpeace International

Ms. Sofia TSENIKLI
Marine Policy Advisor
Greenpeace International,
Ottho Heldringstraat 5
1066 AZ Amsterdam, Netherlands
E-mail: sofia.tsenikli@greenpeace.org

HCMR – Hellenic Centre for Marine Research / Centre Hellénique de Recherche Marine

Mr. Panayotis PANAYOTIDIS
Research Director
Marine Biological Resources Institute
46,7 Km Athens-Sounion road
Anavissos GR-19013, Greece
Tel: +30 210 9832184
Fax: +30 210 9886337
E-mail: ppanag@ath.hcmr.gr

Ms. Argyro ZENETOS
Research Director
Marine Biological Resources Institute
PO Box 712, Mayro Lithari, Anavissos GR 19013,
Greece
Tel: +30 210 9856701
E-mail: zenetos@hcmr.gr

Mohammed VI Foundation for Environmental Protection / Fondation Mohammed VI pour la Protection de l’Environnement

Ms. Najia FATINE
Programme Officer / Chargée de Programmes
Km 3.2 Route de Zaërs, Avenue Mohammed VI,
Rue El Madani Ibn Houssaini, B.P. 5679, Rabat,
Maroc
Tel: +212 (0)5 37 65 88 44 (Lignes groupées)
Fax: +212 05 37 65 55 31
Mobile: +212 (0)6 62 16 12 29
E-mail: n.fatine@fm6e.org

Mohammed V University - Morocco / Université Mohammed V - Maroc

Mr. Hocein BAZAIRI
Enseignant-Chercheur (Océanographie Biologique)
Laboratoire de Zoologie et Biologie Générale
Département de Biologie - Faculté des Sciences
4 Avenue Ibn Battouta
B.P. 1014 RP., Rabat, Maroc
Tel/Fax: +212 (0)6 37 77 54 61
Mobile: +212 (0)6 37 58 37 65
E-mail: hoceinbazairi@yahoo.fr; bazairi@fsr.ac.ma

MEDASSET – Mediterranean Association to Save the Sea Turtles / Association méditerranéenne pour sauver les tortues marines

Ms. Lily VENIZELOS
President
MEDASSET
1c Licavitou St.
106 72 Athens, Greece
Tel: +30 210 361 3572
Fax: +30 210 361 35 72
E-mail: lilyvenizelos@medasset.org

Ms. Liza BOURA
Programmes Officer
MEDASSET
1c Licavitou St.
106 72 Athens, Greece
Tel: +30 210 361 3572
Fax: +30 210 361 35 72
E-mail: medasset@medasset.org

MedPAN – Network of Marine Protected Areas Managers in the Mediterranean / Réseau des Gestionnaires d’Aires Marines Protégées en Méditerranée

Ms. Purificacio CANALS
President MedPAN
48, rue Saint-Suffren
13006 Marseille, France
Tel: +33 6 457 33 383
Fax: +33 491 48 77 14
E-mail: pcanals@tinet.org

Ms. Chloé WEBSTER
Scientific Officer
MedPAN
48, rue Saint-Suffren
13006 Marseille, France
Tel: +33 4 91 58 09 62
Fax: +33 4 91 48 77 14
Mobile: +33 6 78 73 32 34
E-mail: chloe.webster@medpan.org
OCEANA

Ms. Helena ALVAREZ
Leganitos 47, 6ª
28013 Madrid, Spain
Tel: +34 911.440.880
Fax: +34 911.440.890
E-mail: halvarez@oceana.org

WWF Greece / WWF Grèce

Mr. Spyros KOTOMATAS
Coordinator, CYCLADES Life Project
WWF Greece
Lempbesi 21
Athens GR-11721, Greece
Tel: +30.210.3314893 (ext. 113)
Fax: +30.210.3247578
E-mail: s.kotomatas@wwf.gr

WWF-MedPO – WWF Mediterranean Programme Office / Bureau du Programme méditerranéen du WWF

Mr. Giuseppe DI CARLO
Director
WWF - Mediterranean Marine Initiative
Via Po 25/C
Rome 00198, Italy
Tel: +393472972613
E-mail: gdicarlo@wwfmedpo.org
UNEP(MAP) – United Nations Environment Programme / Coordinating Unit for the Mediterranean Action Plan - Barcelona Convention Secretariat

PNUE(PAM) – Programme de Nations Unies pour l’environnement / Unité de Coordination pour le Plan d’Action pour la Méditerranée - Secrétariat de la Convention de Barcelone

Vassileos Konstantinou 48
Athens 11635, Greece
Fax: +30 210 7253196

Mr. Gaetano LEONE
Coordinator
Tel: +30 210 7273101
E-mail: gaetano.leone@unepmap.gr

Mr. Habib N. EL-HABR
Deputy Coordinator
Tel: +30 210 7273126
Mobile: +30 694 8834612
E-mail: habib.elhabr@unepmap.gr

Ms. Tatjana HEMA
Programme Officer
Mediterranean Pollution Assessment and Control Programme (MED POL)
Tel: +30 210 7273115
Mobile: +30 694 5935318
E-mail: tatjana.hema@unepmap.gr

Ms. Gyorgyi GURBAN
Ecosystem Approach Project Manager
Tel: +30 210 7273105
E-mail: gyorgyi.gurban@unepmap.gr

Mr. Lorenzo GALBIATI
MedPartnership and Climate Variability Project Manager
Tel: +30 210 7273106
E-mail: lorenzo.galbiati@unepmap.gr

Ms. Virginie HART
Mediterranean Marine and Coastal Expert
Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem (MedPartnership)
Tel: +30 210 7273122
Mobile: +30 695 7500671
E-mail: virginie.hart@unepmap.gr

Ms Katerina KATAMPELISI
EcAp Intern
E-mail: intern.ecap@unepmap.gr
SECRETARIAT / SECRÉTARIAT

RAC/SPA – Regional Activity Centre for Specially Protected Areas
CAR/ASP – Centre d’Activités Régionales pour les Aires Spécialement Protégées

Boulevard du Leader Yasser Arafat
B.P. 337, 1080 Tunis Cedex, Tunisia
Fax: (+216) 71 206 490
E-mail: car-asp@rac-spa.org

Mr. Khalil ATTIA
Director
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: director@rac-spa.org

Ms. Naziha BEN MOUSSA
Administrative Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: naziha.benmoussa@rac-spa.org

Mr. Daniel CEBRÍÁN MENCHERO
SAP BIO Programme Officer
Tel: (+216) 71 947 162 / 71 947 506
E-mail: daniel.cebrian@rac-spa.org

Ms. Intiniène KEFI
Finance Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: intimen.kefi@rac-spa.org

Ms. Souha EL ASMI
Specially Protected Areas | MedMPAnet Project Programme Officer
Tel: (+216) 71 947 162 / 71 947 506
E-mail: souha.asmi@rac-spa.org

Ms. Souad BEN AOUICHA
Scientific Unit Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: souad.benaouicha@rac-spa.org

Mr. Atef LIMAM
MedMPAnet Project Programme Officer
Tel: (+216) 71 947 162 / 71 947 506
E-mail: atef.limam@rac-spa.org

Mr. Habiba MAKHLOUF
Director Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: car-asp@rac-spa.org

Ms. Dorra MAAOUI
MedMPAnet Project Communication & Capacity-Building Assistant
Tel: (+216) 71 947 162 / 71 947 506
E-mail: dorra.maaoui@rac-spa.org

Ms. Souad BEN AOUICHA
Scientific Unit Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: souad.benaouicha@rac-spa.org

Mr. Mostafa FOUDA
Ressource Person
E-mail: foudamos@link.tn

Mr. Atef OUERGHI
Data and Ecosystem Conservation | MedKeyHabitats Project Programme Officer
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: atef.ouerghi@rac-spa.org

Ms. Purificació CANALS
RAC/SPA Consultant
E-mail: pcanals@tinet.org

Mr. Chedly RAIS
RAC/SPA Consultant
E-mail: chedly.rais@gmail.com

Mr. Yassine Ramzi SGHAIER
MedKeyHabitats Project Technical Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: yassineramzi.sghaier@rac-spa.org

Ms. Vasilis GEROVASILEIOU
RAC/SPA Consultant
E-mail: bill_ger@yahoo.com

Ms. Lobna BEN NAKHLA
Species Conservation Programme Officer
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: lobna.bennakhla@rac-spa.org

Mr. Joaquim GARRABOU
RAC/SPA Consultant
E-mail: garrabou@icm.csic.es

Ms. Habiba MAKHLOUF
Director Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: car-asp@rac-spa.org

Mr. Dhia GUEZGUEZ
Programme Officer
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: dhia.guezguez@rac-spa.org

Ms. Souad BEN AOUICHA
Scientific Unit Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: souad.benaouicha@rac-spa.org

Ms. Habiba MAKHLOUF
Director Assistant
Tel: (+216) 71 206 649 / 71 206 485 / 71 206 851
E-mail: car-asp@rac-spa.org

Mr. Stelios KATSANEVAKIS
RAC/SPA Consultant
E-mail: skatsan@hcmr.gr
Annex II
Agenda of the meeting
Agenda of the meeting

<table>
<thead>
<tr>
<th>Agenda item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Opening of the meeting</td>
</tr>
<tr>
<td>2</td>
<td>Rules of procedure</td>
</tr>
<tr>
<td>3</td>
<td>Election of officers</td>
</tr>
<tr>
<td>4</td>
<td>Adoption of the agenda and organization of work</td>
</tr>
<tr>
<td>5</td>
<td>Status of implementation of the Protocol concerning Specially Protected Areas and Biological Diversity in the Mediterranean</td>
</tr>
<tr>
<td>6</td>
<td>Species conservation</td>
</tr>
<tr>
<td>6.1</td>
<td>Action Plan for the Management of the Mediterranean Monk Seal & Regional Strategy for the Conservation of Mediterranean Monk Seal</td>
</tr>
<tr>
<td>6.2</td>
<td>Action Plan for the Conservation of Mediterranean Marine Turtles</td>
</tr>
<tr>
<td>6.3</td>
<td>Action Plan for the Conservation of Cetaceans in the Mediterranean Sea</td>
</tr>
<tr>
<td>6.4</td>
<td>Action Plan for the Conservation of Bird Species listed in Annex II of the Protocol concerning specially protected areas and biological diversity in the Mediterranean</td>
</tr>
<tr>
<td>6.5</td>
<td>Action Plan for the Conservation of Cartilaginous Fishes (Chondrichthyans) in the Mediterranean Sea</td>
</tr>
<tr>
<td>7</td>
<td>Ecosystems conservation</td>
</tr>
<tr>
<td>7.1</td>
<td>Action Plan for the Conservation of Marine Vegetation in the Mediterranean Sea</td>
</tr>
<tr>
<td>7.2</td>
<td>Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea</td>
</tr>
<tr>
<td>7.4</td>
<td>Activities for the elaboration of national inventories of natural sites of conservation interest</td>
</tr>
<tr>
<td>7.5</td>
<td>Action Plan concerning Species Introductions and Invasive Species in the Mediterranean Sea</td>
</tr>
</tbody>
</table>
Agenda item 8

Implementation of the Ecosystem Approach to the management of human activities that may affect the Mediterranean marine and coastal environment in the framework of the Mediterranean Action Plan (MAP)/Barcelona Convention (EcAp)

8.1. Achievement of Good Environmental Status (GES)

8.2. Draft Integrated Monitoring and Assessment Programme

Agenda item 9

The Strategic Action Programme for the Conservation of Biological Diversity in the Mediterranean region (SAP BIO) Strategic Goals and Priority Actions

Agenda item 10

Marine and Coastal Protected Areas, including in the open seas and deep seas

10.1. List of Specially Protected Areas of Mediterranean Importance (SPAMI List)

10.1.1. Ordinary Periodic Review of the SPAMI List

10.1.2. Inclusion of areas in the SPAMI List

10.2. Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea including the High Sea

10.2.1. Activities for the identification and creation of SPAMIs in the open seas, including the deep seas

10.2.2. Activities for the development of a Mediterranean Marine and Coastal Protected Areas (MPAs) network through the boosting of MPAs creation and management

10.2.3. Evaluation of the Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea including the High Sea

10.2.4. Roadmap - Towards a comprehensive, ecologically representative, effectively connected and efficiently managed network of Mediterranean Marine Protected Areas by 2020

Agenda item 11

Roundtable on the funding of the SAP BIO priority projects/activities

Agenda item 12

Agenda item 13

Programme of Work of RAC/SPA for the period 2016-2017

Agenda item 14

Any other matters

Agenda item 15

Adoption of the meeting report

Agenda item 16

Closure of the meeting
Annex III

Recommendations from the 5th Mediterranean Conference on Marine Turtles
Recommendations from the 5th Mediterranean Conference on Marine Turtles

The 5th Mediterranean Conference, held in Dalaman, Turkey, from April 19th to April 23rd, focused on the current knowledge about the demography of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) nesting in the Mediterranean. The communications presented at the conference and the ensuing discussion lead to the creation of demography working group, responsible for the development of a research agenda aiming to create a demographic model that assists managers to predict the future trends of the populations of loggerhead and green turtles nesting in the Mediterranean. The members of the demography working group and their tasks are detailed below.

Members of the demography working group

<table>
<thead>
<tr>
<th>Name</th>
<th>Task 1</th>
<th>Task 2</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broderick, Annette</td>
<td>nesting parameters</td>
<td>adult satellite tracking</td>
<td>A.C.Broderick@exeter.ac.uk</td>
</tr>
<tr>
<td>Camiñas, Juan Antonio</td>
<td>bycatch and post-release mortality</td>
<td></td>
<td>juanantonio.caminas@ma.ieo.es</td>
</tr>
<tr>
<td>Cardona, Luis</td>
<td>chair</td>
<td>juvenile isoscape</td>
<td>luis.cardona@ub.edu</td>
</tr>
<tr>
<td>Casale, Paolo</td>
<td>sex ratio at foraging grounds</td>
<td></td>
<td>paolo.casale1@gmail.com</td>
</tr>
<tr>
<td>Godley, Brendan</td>
<td>adult isoscape</td>
<td></td>
<td>b.j.godley@exeter.ac.uk</td>
</tr>
<tr>
<td>Hochscheid, Sandra</td>
<td>juvenile satellite tracking</td>
<td></td>
<td>sandra.hochscheid@szn.it</td>
</tr>
<tr>
<td>Kaska, Yakup</td>
<td>primary sex ratio</td>
<td></td>
<td>caretta@pau.edu.tr</td>
</tr>
<tr>
<td>Lazar, Bojan</td>
<td>juvenile satellite tracking</td>
<td></td>
<td>bojan.lazar@upr.si</td>
</tr>
<tr>
<td>Miaud, Claude</td>
<td>skeletochronology</td>
<td></td>
<td>Claude.MIAUD@cefe.cnrs.fr</td>
</tr>
<tr>
<td>Mifsud, Carmen</td>
<td>size of stranded turtles</td>
<td></td>
<td>Carmen.Mifsud@mepa.org.mt</td>
</tr>
<tr>
<td>Tomás, Jesús</td>
<td>aerial surveys</td>
<td></td>
<td>Jesus.Tomas@uv.es</td>
</tr>
</tbody>
</table>

Antonio Mazaris (amazaris@bio.auth.gr) offered his assistance for modeling if needed.
The task of the demography working group will start in May 2015, but the following provisional recommendations emerged from the Conference:

1. Collect the following information on a regular basis at nesting beaches and foraging grounds
 a. Nest counts
 b. Clutch size
 c. Emergency rate
 d. Primary sex ratio
 e. Clutch frequency
 f. Remigration interval
 g. Size of nesting females
 h. Proportion of neophytes
 i. Turtle abundance at foraging grounds through aerial surveys*.
 j. Size of stranded turtles

* Contact ACCOBAMS to explore synergies for aerial surveys.

2. Focus research efforts on the following issues:
 a. Remigration interval, number of clutches per female, female nest fidelity and primary sex ratio at Libya, Dalyan, Dalaman, Western Greece and Crete, central and eastern Turkey and Cyprus.
 b. Annual survival rate of females at Libya, Dalyan, Dalaman, Western Greece and Crete, central and eastern Turkey and Cyprus.
 c. Satellite tracking of adults nesting at Libya, Dalyan, Dalaman, central and eastern Turkey and Cyprus (here loggerheads only) to identify their foraging grounds. No more tracking effort is needed for loggerheads nesting in western Greece or Crete or for greens nesting in Cyprus.
 d. Create an isoscape of the Mediterranean Sea to identify the foraging area of nesting females.
 e. Assess the abundance of turtles in the Alboran Sea, Algerian Basin, the southern Ionian Sea, the Aegean Sea and the Levantine Sea through aerial surveys combined with satellite tracking of juveniles in the Aegean Sea and the Levantine Sea. Recent aerial surveys have been conducted elsewhere and suitable satellite tracking data already exist except for the Ionian Sea.
 f. Update bycatch figures at the Adriatic Sea, Aegean Sea, Levantine Sea, Northern Ionian Sea, Southern Ionian Sea and channel of Sicily, Tyrrenhenian Sea, Liguro-Provenzal basin, Balearic Sea, Alboran Sea and the Algerian basin.
 g. Assess the post-release mortality rate of long-line bycaught turtles at the Northern Ionian Sea and the Southern Ionian Sea and channel of Sicily and the post-release mortality rate of bottom-trawl bycaught turtles at the Adriatic Sea, the southern Ionian Sea and channel of Sicily and Balearic Sea.
h. Assess the age at first maturity of turtles foraging at the Aegean Sea, Levantine Sea, Southern Ionian Sea and channel of Sicily, Tyrrhenian Sea, Liguro-Provenzal basin, Balearic Sea, Alboran Sea and the Algerian basin.

i. Assess the size of the turtles stranding at the Aegean Sea, Levantine Sea, Southern Ionian Sea and channel of Sicily, Tyrrhenian Sea, Liguro-Provenzal basin, Balearic Sea, Alboran Sea and the Algerian basin and assess their origin through genetic marker.

3. Create a database that allows managers fast and easy access to available information about sea turtles in order to allow them to take timely decisions. MEDPAN may assist in the creation of such a database.
Annex IV

Draft Updated Action Plan for the conservation of Cetaceans in the Mediterranean Sea
FOREWORD

The Action Plan for the conservation of cetaceans in the Mediterranean Sea was adopted by the Contracting Parties to the Barcelona Convention in 1991. It aims at ensuring the recovery of cetacean populations in the Mediterranean. The Action Plan was prepared using the information available about the cetacean populations and the threats hanging over them as known in 1991. However, aware that many important aspects of cetacean biology, behaviour, range and habitats in the Mediterranean were poorly known, the contracting Parties agreed that the Action Plan should be amended where necessary.

The objective of the amendments proposed in this document is to revise the list of “Additional Points for the Implementation of the Action Plan” (Appendix to the Action Plan, adopted by the Focal Points for SPAs in October 1992). The revised Appendix proposed hereinafter aims at providing new orientations for the Action Plan that are in line with the evolving regional context regarding cetacean conservation and with the new challenges and priorities as identified by the most recent scientific knowledge. Given the strong linkages between the Action Plan and the implementation of ACCOBAMS\(^1\) in the Mediterranean, RAC/SPA collaborated closely with the Secretariat of ACCOBAMS in elaborating the revised Appendix.

\(^{1}\) Agreement on the Conservation of Cetaceans in the Black Sea Mediterranean Sea and Contiguous Atlantic Area, concluded under the auspices of the Bonn Convention on the Conservation of Migratory Species of Wild Animals (CMS)
ACTION PLAN FOR THE CONSERVATION OF CETACEANS IN THE MEDITERRANEAN SEA

Amended Appendix:
Additional Points for the Implementation of the Action Plan for the period 2016-2020

Taking into account (i) the work done at national level for the conservation of cetacean species in the Mediterranean since the adoption of the Action Plan in 1991, (ii) the progress made so far in the implementation of the provisions of ACCOBAMS in the region and (iii) the available knowledge about the status of the Mediterranean cetacean populations, the Contracting Parties to the Barcelona Convention are invited to orient their action regarding the implementation of the Action Plan towards the following priorities during the period 2016-2020.

Legal and institutional measures
- To ratify the ACCOBAMS Agreement, if they have not already done so, and to implement its Resolutions and Recommendations of relevance for the Mediterranean Sea. As agreed during the 14th Ordinary Meeting of the Contracting Parties to the Barcelona Convention (Portoroz, Slovenia, November 2005), the common obligations relating to cetaceans under the SPA/BD Protocol are fulfilled by the implementation of ACCOBAMS. In this context, close cooperation at the national level between the SPA/RAC National Focal Points and the ACCOBAMS Focal Points is highly recommended.
- To ensure that cetaceans are covered, at national level, by appropriate regulation measures providing for the elimination of deliberate killing and for the mitigation of the adverse impacts from their interactions with human activities, in particular in relation to:
 - bycatch and depredation in fishing gears,
 - seismic surveys and other marine noise generating activities,
 - harassment by leisure boating and scientific activities and
 - collisions with ships (ship strikes)
- Ensure, through regulation or other appropriate approaches, that whale-watching activity is environmentally sound and sustainably conducted, using, as appropriate, high quality certification systems for whale-watching.
- Where relevant for cetacean conservation, to support the use of the compliance mechanisms set for the Barcelona Convention and the ACCOBAMS Agreement, in particular by encouraging the notification of non-compliance and of non-follow-up cases.
- RAC/SPA should pursue its collaboration with the Secretariat of ACCOBAMS, by facilitating the implementation of the Annex 2 (Conservation Plan) of ACCOBAMS, in particular in fulfilling its function of the Regional Coordination Unit for the Mediterranean of the ACCOBAMS Agreement.

Improving the knowledge about cetacean populations
- Considering the urgent need of obtaining reliable estimates of cetacean populations and data about their distribution, a special effort should be done in the period 2016-2020 to undertake the comprehensive survey of abundance and distribution of cetaceans being planned by ACCOBAMS (ACCOBAMS Survey initiative). Their contribution (funding, equipment, vessels, planes, etc.) and the involvement of their scientists in all the survey phases (planning,
field work and data analysis) being a key factor for the success of the Survey, the Contracting Parties should facilitate and support the Survey Initiative and liaise closely with RAC/SPA to ensure that the data collected by the Survey serve also as baseline data for the Good Environmental Status concerning cetacean species as defined by the contracting Parties under the Ecological Objective 1 of the EcAp process.

Reducing cetacean-fisheries interactions
- To assess the cetacean bycatch and depredation in their fisheries and adopt mitigation measures taking into account the requirements for cetacean conservation and the need for the development of sustainable and responsible fishing activities. In this context, the Contracting Parties are invited to conform to the recommendations from ACCOBAMS and GFCM on this issue.
- RAC/SPA should strengthen its collaboration with the Secretariats of ACCOBAMS and GFCM to provide assistance to the Mediterranean countries in mitigating the impacts of the interactions occurring between cetacean species and fishing activities, through investigating innovative and environmentally sound mitigation measures and by disseminating information on relevant best practices and successful initiatives.

Mitigating the impact of underwater noise
- Pursue the development and the implementation of a basin-wide strategy for underwater noise monitoring in the Mediterranean, as proposed by the ACCOBAMS/ASCOBANS/CMS Joint Noise working group, under the Ecological Objective 11 of the EcAp process.
- Development of acoustic mapping using standardised methodologies to build a comprehensive picture of the spatial and temporal distribution of anthropogenic noise sources. Mapping effort should be deployed in the noise hotspot areas identified in the Mediterranean by ACCOBAMS, taking into account the available knowledge regarding the distribution of cetacean species, including areas that are affected at different levels of noise.
- Promote awareness of the anthropogenic noise impacts on cetaceans, targeting in particular decision makers, key players in the industry organisations and the stockholders in the shipping sectors.
- Considering the increasing number of seismic surveys in the Mediterranean Sea, RAC/SPA should liaise closely with the Secretariat of ACCOBAMS, the national authorities of the Mediterranean countries and relevant companies to promote the collection and dissemination of cetacean data from MMOs (Marine Mammal Observers) during seismic surveys.

Habitat conservation
- In addition to implementing the provisions of the relevant international and regional agreements related to combatting pollution and eliminating sources of degradation of the marine environment (IMO regulations, relevant Protocols of the Barcelona Convention, Convention on Biological Diversity, etc.), each Contracting Party should establish a list of marine areas under its jurisdiction identified as of special importance for cetaceans, using as appropriate the tools developed at regional and international levels for inventorying sites of conservation interest, in particular the list of areas of special importance for cetaceans in the ACCOBAMS area.
- The areas of special importance for cetaceans should be granted a protection status that ensures the long term preservation of the species and the sustainable management of human activities having impacts on cetaceans.
Annex V: Recommendations of 2nd Symposium on the Conservation of Marine and Coastal Birds in the Mediterranean
Recommendations of 2nd Symposium on the Conservation of Marine and Coastal Birds in the Mediterranean

The participants from 14 Mediterranean countries attending the 2nd Symposium on the Conservation of Marine and Coastal Birds in the Mediterranean, organized by RAC-SPA (Mediterranean Action Plan), Medmaravis and Les Amis des Oiseaux (BirdLife partner in Tunisia), under the auspices of Conservatoire du Littoral (France) and Tour du Valat Biological Station,

1. being aware of the rapidly deteriorating ecological conditions, in some Mediterranean regions, of various marine and coastal bird species and their habitats which are threatened by unsustainable coastal development, overfishing, bycatch (= accidental mortality of seabirds caused by fishing gear), invasive predators, lack of effective management in protected areas such as Specially Protected Areas, human disturbance in breeding colonies, illegal hunting and pollution from several sources,

Urge the Barcelona Convention Secretariat to call up on its Contracting Parties including the European Union:

- to devote special attention to the study and conservation of the Critically endangered Balearic Shearwater *Puffinus mauretanicus*, which is experiencing a sharp decline which may lead to its extinction in a few decades, and to extend and implement the EU Action Plan for the conservation of the species in all relevant countries including those in North Africa;

- to conduct population studies on the Yelkouan Shearwater *Puffinus yelkouan*, and more particularly its movements through the bottlenecks of the Bosphorus and Dardanelles;

- to launch research projects and an effective conservation plan for the populations of Audouin’s Gull *Larus audouinii* which are at present decreasing in most of the species’ range, particularly in the central and eastern Mediterranean;

- to aid census programmes of seabird populations which need to be carried out simultaneously with a common protocol in all countries holding key breeding populations, especially in countries lacking census data;

- to encourage the continuation of long-term monitoring in a number of key and representative colonies and to aid the launching of new long-term monitoring programmes in countries lacking such surveys;
 - to encourage the continuation of long-term assessments of seabird distribution patterns at sea, by boat surveys and GPS tracking, and to aid the launching of new surveys in countries lacking such data, as well as in international waters, which would serve as a platform of cooperation among neighbouring Mediterranean countries;
 - to promote, for species whose breeding habits (i.e. nocturnal attendance, nesting in crevices and caves in small islets and sea cliffs) make difficult to come out with accurate population estimates, the establishment of a set of key colonies of reference where detailed monitoring of nests is conducted, in order to properly estimate demographic parameters (breeding success, survival, recruitment, rate of sabbaticals, etc.) that ultimately will allow to assess population trends;
 - to assist in the establishment of research programmes related to seabird bycatch, particularly of shearwaters on longlines, tuna fish decoys, illegal driftnets and other potentially impacting fishing techniques, as well as to work out and implement effective mitigation measures to reduce bycatch mortality of seabirds and seek coordination with existing Mediterranean initiatives such as GFCM/35/2011/3 recommendation on reporting and reducing seabird bycatch;
- to enforce existing EU regulations (e.g. 1143/2014 of 22 Oct. 2014) which address the issue of the eradication of invading predators threatening breeding populations of seabirds, to implement adequate management measures in order to control such a threat, and to establish similar regulations in non-EU Mediterranean countries;
- to launch census surveys on coastal species, particularly on the dwindling populations and habitats of Kentish Plover *Charadrius alexandrinus* and Greater Sand Plover *Charadrius leschenaulti*, listed in Annex 2 of the Barcelona Convention;

2. realising that various coastal habitats are being degraded rapidly by development in the Mediterranean region, due to the lack of adequate protection, the contracting parties of the Barcelona Convention are urged:
- to provide adequate legal protection and an effective conservation management plan to all marine and coastal Important Bird Areas (IBAs) throughout the Mediterranean, whether or not they are designated as a Specially Protected Area of Mediterranean Importance (SPAMI);
- to accelerate the approval of management plans for the already existing marine and coastal protected areas, particularly where draft plans have been properly elaborated, including successful participatory processes such as occurring in the Balearic Islands;
- to introduce a Diploma award system, similar to the European Diploma for Protected Areas used by the Council of Europe, to honour outstandingly managed SPAMIs;

3. considering the acute need for efficient long-term conservation measures in coastal habitats and hotspots threatened by unsustainable coastal development, the contracting parties are urgently requested:
- to stop all further deterioration and afford an effective long lasting conservation status of key salt marsh sites holding internationally important populations (breeding, wintering or migrating) of coastal bird species listed in Annex 2 of the Barcelona Convention, such as found in the Gediz delta and in the Ulcinj salt pans;
- to provide effective protection to the three breeding sites in the Mediterranean of the Lesser-crested Tern *Sterna bengalensis*, which are threatened by coastal development and human disturbance, partly due to lack of public awareness;
- to launch an in-depth survey of the conservation status and priorities of the very few tidal wetlands existing in the Mediterranean, concentrated around the Gulf of Gabès (from Sfax to Zuwara) and in the northern Adriatic (from Ravenna to Trieste), bearing in mind that functional alterations of these fragile and irreplaceable ecosystems may lead to consequences affecting huge numbers of coastal and wetland bird species, many of which are threatened;

4. realising that various offshore oil and gas drilling platforms are being initiated in the Mediterranean Sea, especially in the North-Western part of the Mediterranean and in the Adriatic, without appropriate analyses of the ecological impacts on marine wildlife and seabirds, the participants of the Hammamet 2015 Symposium urge the governments concerned to carry out in-depth and impartial Environmental Impact Assessments of these projects including:
- the assessment of all operational impacts of drilling activities, as well as those likely to occur by accident, on the marine ecosystems, particularly on seabirds;
- the assessment of potential risk of oil pollution at sea endangering the vulnerable marine and coastal ecosystems;
- the identification of compulsory compensation measures in case of occurrence of such impacts;
- the recruitment of ornithologists and marine biologists of vast Mediterranean experience, in the assessment processes, as well as making full use of the existing literature and databases existing at national and international levels;

5. the participants of the 2015 Hammamet Seabird symposium would like to thank the Regional Activity Centre for Special Protected Areas (RAC-SPA) for organising this successful symposium and would
like to extend a vote of thanks to the Tunisian association Les Amis des Oiseaux, BirdLife partner in Tunisia, for its invaluable help in the organisation, its warm welcome and hospitality enjoyed by all participants.
Annex VI

Recommendations of the 5th Mediterranean Symposium on Marine Vegetation
Recommendations of the 5th Mediterranean Symposium on Marine Vegetation
Portoroz, Slovenia, 27-28 October 2014

Scientific interest in the Action Plan

Generally speaking, there has been increased interest in the knowledge of marine plant species and growing scientific attendance, plus greater geographical diversity, at the ‘Marine Vegetation’ Symposium.

Most of the papers (81%) concern marine magnoliophytes, particularly Posidonia meadows (59%), though there is growing interest in other marine magnoliophytes (19%), particularly the Fucales, notably the Cystoseira genus.

In the papers, the major role played by Marine Protected Areas in conserving marine plants was highlighted, but the continuation of illegal trawling practices constitutes a significant danger to plant formations, especially Posidonia meadows.

Recommendations

Much has been done regarding the knowledge and monitoring of plant formations, and new data is now available even though there is still a lack of balance between the countries of the north-western Mediterranean and those of the southern shore and the eastern basin. Efforts here must be kept up; particularly the need to integrate this data to adapt the existing protocols to the specific features of these sub-regions (defining reference conditions, oligotrophy of water, etc.)

→Pursue and amplify the procedure initiated by RAC/SPA within the framework of the MedPosidonia and MedKeyHabitats programmes, with particular attention paid to the eastern basin and the southern shore of the Mediterranean.

The scientific community highlighted the general regression of Fucales (e.g. Cystoseira forests, gulfweeds) even though putting the Cystoseira genus on Annex II of the SPA/BD Protocol has been a significant advance. As well as taking into account such regulatory aspects, it is necessary to enhance national capacities to get a Mediterranean-scale overall vision

→Mobilise all the actors as to the interest of these formations (distribution, dynamics) and the need to identify the origin of the regressions observed, in order to suggest concrete steps likely to solve this problem (e.g. being taken into account in the context of impact studies)

Regulations that are indispensable for conserving vegetation exist in almost all the countries. However, the difficulties encountered in enforcing these persist, particularly because of illegal fishing activities. A special effort must be made to make the Focal Points aware of this, for this lacuna is responsible for significant regressions

→Draw up an updated assessment of the direct and indirect regulatory measures (regulating human-origin activities that affect these formations) that aim at protecting and conserving the species in the Action Plan on the Conservation of Mediterranean Marine Vegetation, working alongside the General Fisheries Commission for the Mediterranean

Guidelines for mapping and monitoring are an interesting element but there is still a need for simpler, more robust and non-destructive tools to assess the conservation state of marine plants. Similarly, synergy of actors (scientists, managers) and the widest possible provision of the available data would certainly enable the means to be optimized. The need to have long-term monitoring (chronological
series) was recalled; it remains an indispensable precondition for better grasping the changes that have been observed.

→ Make exchange of data possible, especially under the aegis of RAC/SPA, by improving the functionality of the current internet site.
Annex VII

Recommendations of the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions in the Mediterranean
Recommendations of the 2nd Mediterranean Symposium on Coralligenous and other Calcareous Bio-concretions in the Mediterranean
Portoroz, Slovenia, 29-30 October 2014

In the light of the work presented at this Symposium, we should stress the strides made in knowledge of these formations since the first, Tabarka, Symposium in 2009. The strong participation of the Mediterranean scientific community, and the quality and number of the papers, confirm the interest of these meetings.

The main concerns are both the acquisition of new knowledge about the species or the distribution of these formations, and the means of understanding their good ecological state and how to conserve them more efficiently.

The introductory session presented the CIGESMED Programme, which, based on the coralligenous, aims at identifying indicators for assessing and monitoring the good ecological state of the coastal waters of the Mediterranean. One specific feature of the project is the geographical area that it addresses (the western and eastern basins).

Session 1 aimed to give an appraisal on the progress that has been made in the knowledge of coralligenous formations.

The discussions particularly addressed the standardization of methods for data comparison. The diversity of approaches and tools is a result of the multiple objectives pursued. Recourse to several complementary tools was often noted, and a predominance of non-destructive methods (photographs, videos, ROV, acoustic detection methods) was recorded.

There is an obvious need to have the same type of data in order to compare it over several scales and biogeographical areas. What is important is to make sure that the data is reproducible, reliable, and representative, given that the aim is always to best adapt the sampling effort to these parameters. It is also interesting to be able to keep the raw data in order to re-study it, given that one of the limiting factors is often the qualification of the operator. Some participants recalled the need to have user-friendly tools for monitoring these formations.

Session 2 addressed the impact of global change.

The work presented showed marked differences in terms of the vulnerability of the structuring species of the coralligenous (Cladocora caespitosa, Corallium rubrum, Paramuricea clavata) and stressed the risks of significant changes (disappearance or appearance of new species), things which are likely to restrict these formations’ capacity for recruitment and restoration. Future development of the work could consist of better identifying the share of environmental change, specifically linked to climate change, in degrading other environmental factors.

Session 3 was devoted to the mapping and monitoring of coralligenous habitats.

Discussions stressed the great diversity of these formations and the complexity of the coralligenous and other bioconstructions, and the chance offered to the scientific community to discuss and propose new facies for integration within the Barcelona Convention’s Habitats List. These lists can later be taken into consideration in the context of the European Commission’s normative approaches.

The impact of fishing activities on coralligenous populations was mentioned by several participants; they argued that it is difficult, even within the MPAs, to find formations that are unharmed by any form of fishery (traditional, recreational or commercial).

Session 4 concerned genetic studies of key species of the coralligenous.

Genetics seems to be an innovative tool that can perhaps respond more efficaciously to the requirements of the identification of sites, adapted to the conservation of coralligenous formations and to the
prediction of impacts linked to climate change. In the light of these techniques’ potential, it was suggested that they be extended to other species and other parts of the Mediterranean.

During the discussion that followed, the interest of multidisciplinary approaches was mentioned with particular attention to the geomorphologic aspects that are important elements in the structuring of the coralligenous. As well as lists of characteristic species of the coralligenous formations, it would be useful to record the features of the habitat sampled.

Session 5 has concerned management of coralligenous habitats and other bio concretions.

This session revealed that anthropogenic pressures on coralligenous habitats are apt to affect the deepest sites. Although many economic actors (e.g. divers, fishermen, coral divers) seem to be aware of the conservation issues in these habitats, it appears necessary to better evaluate and quantify the pressures exerted in standardized approach that can be comparable on a large scale.

The discussion allowed to highlight the importance of shared and open information systems, where data on the ecological status and pressures would be accessible, standardized and therefore comparable. Although some broadcast platforms exist, an effort could be made in terms of availability and reliability. It was recalled that despite the emergence of new indicators to compare the ecological status or the pressures on these habitats, evaluation is often based, for lack of sufficient resources, solely on expert opinion. In the same way, several participants highlighted the dramatic lack of mapping data on these habitats for the Southern and Eastern Mediterranean.

The round table on updating the list of species to be taken into consideration in the context of mapping and monitoring habitats aroused the interest of participants in this type of approach. However, no consensus emerged as to the amendments to be made to the current list. In this respect, the participants suggest setting up, under the aegis of RAC/SPA, theme-based working groups (list of typical species, genetics, mapping, state of conservation etc.). The aim would be using themes to group efforts (synthesis of current knowledge, standardizing work methods, etc.), and sharing information to propose in fine conclusions likely to give better management and conservation of the coralligenous and other Mediterranean bioconstructions.

The round table on protecting coralligenous habitats based on scientific knowledge and the present legislative context recalled that European laws ban trawling over the coralligenous, rhodolith beds and marl. The absence of an official map of the distribution of these beds acts as a brake on implementing the regulations. It is thus necessary that already available information be handed to the competent bodies. The interest in making the public aware of the importance of these formations was recalled. An assessment of the ecosystem services rendered by these formations would also help their economic value to be highlighted.

In the light of all these considerations, the participants advise:

- encouraging the states to elaborate their National Action Plans for the protection of the coralligenous and other bioconstructions and start implementing these as soon as possible
- urging the states to validate existing maps so that these may be taken into consideration in the context of implementing regulations on commercial fisheries
- suggesting that RAC/SPA:
 - Set up collaborative tools to help scientists to exchange data and share their experience
 - Help countries start awareness campaigns on the interest of protecting coralligenous habitats and training and capacity-building sessions
 - Start addressing the assessment of ecosystem services rendered.
Annex VIII

Draft Updated Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea
Draft Updated Action Plan for the Conservation of the Coralligenous and other Calcareous Bio-concretions in the Mediterranean Sea

I. Current situation of coralligenous assemblages

I.1. Current knowledge

1. At present there is a general knowledge on the distribution, species composition and functioning of coralligenous assemblages and other calcareous bio-concretions. However, and despite the efforts conducted since the adoption in 2008 of the Action Plan for Coralligenous and other Calcareous Bioconstructions, in the Mediterranean, there are essential questions that need to be addressed to guarantee the conservation of these emblematic Mediterranean habitats (see specific sections).

2. Probably the number and quality of presentations during the 2nd Mediterranean Symposium on the Conservation of coralligenous and other calcareous bio-concretions (Portorož Eslovenia 29-30 October 2014) are the best example on the interest of Mediterranean scientific/managers community to improve the knowledge on these assemblages (Proceedings 2nd MSC&CBC 2014).

3. Despite of this, it was also noted that (i) most actions regarded individual- national- based efforts (ii) the lack of structures for coordination in an efficient way regional and/or pan-Mediterranean research actions. There was a general consensus at the Symposium to establish a series of Working Groups to coordinate the human and resources in order to provide the needed general view on the coralligenous/maërl assemblages these gaps.

I.2. Distribution

4. Coralligenous buildups and maërl beds are common all around the Mediterranean coasts, even in the easternmost coasts (Giakoumi et al. 2013, Martin et al. 2014). The coralligenous habitats are abundant in the Adriatic, Agean and Thyrrhenian Seas as well as in the Algero-Provençal Basin. The coralligenous is less abundant in the Levantine Sea and Tunisian Plateau/Gulf of Sidra (Marin et al. 2014). Overall, data available cover approximately 30% of the Mediterranean coasts while for the remaining 70% no information was found (Martin et al. 2014). Regarding the depth distribution, most information concern the 10 to 50 m depth less information exists for the deeper range of distribution of coralligenous 50-200 m depth. Besides these large-scale assessments on distribution, at local scale some progress cartographical data have been acquired in some areas specially in marine protected areas (e.g. Réserve Naturelle de Scandola, Parc National de Zembra, Area Marina Protetta di Tavolara Punta Coda Cavallo, Zakynthos Marine Protected Area). Overall, we lack of a complete and precise distribution information on coralligenous and other calcareous bioconstructions habitats.

5. The main constrains to the provide a global view on the distribution of coralligenous and other calcareous habitats are the (a) their intrinsic heterogenous distribution related with the spatial patterns of the geophysical and oceanographic conditions allowing their development, and 2) the technical and financial constraints of mapping field operations resulting in an unbalanced mapping efforts across the Mediterranean.

6. Geographical as well as depth distributional data are essential in order to know the real extent of these assemblages in the Mediterranean Sea as well as to implement appropriate management measures to guarantee their conservation.

I.3. Composition

7. Coralligenous concretions are the result of the building activities of algal and animal builders and the physical as well as biological eroding processes. The final result is a very complex structure composed of several microhabitats. Environmental factors (i.e., light, water movement and sedimentation rates) can vary by orders of magnitude in parts of the same concretion situated very close to each other. This great
environmental heterogeneity allows several different assemblages to coexist in a reduced space. Assemblages situated in open waters (from horizontal to almost vertical surfaces) can be easily distinguished from those situated in overhangs and cavities.

8. Algae usually dominate in horizontal to sub-horizontal surfaces although their abundance decreases with decreasing irradiance. Two main algal communities have been distinguished in the western Mediterranean: an assemblage dominated by *Halimeda tuna* and *Mesophyllum alternans* (*Lithophyllum-Halimedetum tunae*), thriving in relatively high light levels, and an assemblage dominated by encrusting corallines (*Lithophyllum frondosum*, *L. cabiochae*, *Neogoniolithon mamillosum*) and *Peyssonnelia rosamarina* (*Rodriguezelletum strafforelloi*), and receiving low light levels.

9. Animal assemblages can greatly differ according to light levels reaching the coralligenous outcrop but also in relation to current intensity, sedimentation rates and geographical areas. In the richest, relatively more eutrophic zones, with rather constant and low water temperature, gorgonians usually dominate the community, but they are completely absent or rare in the more oligotrophic or low-current areas with rather high or seasonally variable temperature, being replaced by sponges, bryozoans or ascidians.

10. Maërl beds are also very diverse. Even if corallines are the main constituents (*Spongites fruticulosus*, *Lithothamnion corallioides*, *Phymatolithon calcareum*, *Lithothamnion valens*, *Lithothamnion minervae*, *Lithothamnion racemus*, *Lithophyllum frondosum*, and others), *Peyssonnelia* species (mainly *Peyssonnelia rosa-marina*) can also be very important. The cover of erect algae depends on each particular site, displaying several facies (*Osmundaria volubilis*, *Phyllophora crispa*, *Kallymeniales*, *Laminaria rodriguezii*).

11. The group of experts in Tabarka suggested using the Reference List of Habitat types appearing in the Standard Data-entry Form (SDF) for National Inventories when looking for the composition of coralligenous assemblages. In 2011 a list of species to be considered in the inventory and/or monitoring of coralligenous communities was provided by UNEP-RAC/SPA (2011)². The species were arranged in the following categories:

- Algal builders
- Animal builders
- Agglomerative’ animals
- Bioeroders
- Species of particular importance (particularly abundant, sensitive, architecturally important or economically valuable)
- Invasive species

12. The characterization of coralligenous based on the above-mentioned categories list can greatly help in our understanding on the coralligenous patterns across the Mediterranean. Since different regions and areas within regions are characterized by different composition, the assessment considering the proposed morpho-functional categories can provide an interesting comparative basis towards a general view on Mediterranean coralligenous assemblages. This approach besides the composition data would provide a functional perspective which greatly facilitate the development of indicators for the monitoring of the Good Environmental Status (GES) within the Marine Strategy Framework Directive and “COP18 EcAp Decision” (see Legislation and regulation section).

13. The suggestion when describing the composition of the coralligenous assemblages or the maërl beds would be to provide quantitative or semi-quantitative estimate on the abundance of typical/indicator species. Different visual and photographic methods as well as the combination of both have been proposed to obtain abundance estimates. For instance, the adoption of Braun-Blanquet (1979) methodology for marine assemblages characterization (Cebrian & Ballesteros, 2004). Through these assessments besides composition data, the abundance estimates of species found in the considered categories would provide insights in the ecological/conservation status of assemblages. For instance, the presence of invasive species (either alien or not normally occurring in the habitat) are often considered very good indicators of poor conservation status.

² Proposal of standard methods for inventorying and monitoring coralligenous and rhodoliths populations UNEP-MAP-RAC/SPA (2011)
14. For maërl beds assemblages the same approach could be addressed although the current knowledge need to be improved to better define the categories and composition lists. In maërl beds, description is also possible naming the main maërl species and erect algae, as well as the main macroinvertebrates.

II. Data collection and inventories

II.1. Specific inventories

15. As mentioned the coralligenous habitat includes several assemblages due to its great heterogeneity. There is a small scale heterogeneity in environmental factors throughout the coralligenous outcrops that determine different micro-habitats containing different species. In the surface of coralligenous outcrops, coralline algae usually dominate, together with a variable amount of erect algae and of suspension-feeders. Holes and cavities within the coralligenous structure sustain complex communities without algae and dominated by suspension-feeders. Small crevices and interstices are inhabited by a diverse endofauna, while many vagile species swarm everywhere, thriving also in the small patches of sediment retained by the framework. Large fishes (e.g. *Epinephelus marginatus*, *Scorpaena scrofa*, *Phycis phycis*) and decapods (e.g. *Palinurus elephas*, *Homarus gammarus*) dwell in the coralligenous assemblages. One of the consequences of this great environmental heterogeneity is the presence of a high biodiversity and a wide array of organisms in each coralligenous outcrops.

16. Maërl beds are considerably less complex than coralligenous outcrops although they have some epiflora and epifauna that are more related to plants and animals usually found in rocky substrata, but also they harbour typically invertebrates from sedimentary bottoms.

17. A considerable amount of research has been done on the biodiversity hosted by coralligenous outcrops. Ballesteros (2006) estimates a preliminary account of up to 1666 species at the scale of the Mediterranean Sea. However these estimates are far from providing us a general view of biodiversity dwelling in the coralligenous assemblages. There are at least two levels of information which should be considered i) in fine detailed taxonomic studies specially in less studied groups and ii) comprehensive biodiversity surveys in targeted geographical areas. This information would be complemented by the determination of typical/indicator species of coralligenous in different areas/regions across the Mediterranean (see Point 1.3. Composition).

18. Overall with this information we could improve the estimates on the total number of species associated to the coralligenous and analyze geographical variability biodiversity patterns considering different spatial scales. The same approach should be adopted for maërl beds.

19. Methods. For data collection several methodologies have been used in sampling rocky benthic systems and maërl beds (e.g. Bianchi et al., 2004, Kipson et al. 2011, Cechi et al. 2010, Gatti et al. 2015) and all of them present advantages and disadvantages. Moreover, suitability of each sampling method depends on the purposes of the study and on the taxonomic group considered.

20. As no sampling methodology can be universally applied, a general recommendation when making the assessments on species composition is to take into account the following considerations:

- Use quantitative or semi-quantitative surveys instead of qualitative surveys wherever possible.
- Clearly state the sampling and quantification methodology, including the period of the year, in order that it could be repeated in the future by independent teams for further comparison of data.
- Samples have to be geographically positioned in the most accurate way.
- Sampling has to be representative. Therefore, sampling areas should be larger than minimal sampling areas. It has to be noted that different taxonomic groups must be sampled using completely different representative areas.
- Use photographic surveys to help in the identification of species

II.2. Sites of particular interest

21. Since the coralligenous and maërl assemblage in general thrive in deep waters, it is difficult to have an appropriate coverage of all the entire distribution range of the assemblage. Thus, it is recommended that inventories and monitoring be performed in selected sites of particular interest. The sites selection should be based in the most accurate previous information on the distribution, extension and ecological features and conservation status of coralligenous and maërl assemblages.
22. Amongst the criteria to be used in this selection, it is recommended the following ones:
 • Existence of previous information on coralligenous assemblages or maërl beds at the site or, if there is no available information at all, sea bottom geomorphological features suitable for the development of coralligenous frameworks and/or rhodolits.
 • Representatively of the coralligenous assemblages/maërl beds at a wide geographical area, whenever it is possible, according to present knowledge.
 • Existence of control and/or management of anthropic activities at the site. In this sense, marine protected areas are suitable places to be selected.
 • Especially healthy coralligenous and maërl assemblages are worth to be selected in order to assess the reference conditions.
 • Coralligenous communities and maërl beds under the effects of direct or indirect anthropogenic disturbances are worth to be selected in order to assess the impact conditions.

III. Monitoring activities

23. Even if coralligenous/maërl assemblages are characterized by very slow dynamics (Garrabou et al., 2002, Teixidó et al. 2011), at least in the absence of punctual catastrophic disturbances (Teixidó et al. 2013), develop monitoring activities is of great interest to track their conservation status and detect changes associated to press and punctual human related disturbances as well as due to natural processes.

24. Monitoring is necessary to understand the processes behind long-term dynamics in the assemblages and is a central element for the implementation and evaluation of efficient management plans. Besides the monitoring activities on coralligenous assemblages are required for the implementation of European Marine Strategy Framework Directive (MSFD 2008/56/EC) and the Convention of Barcelona Decision³ (see Legislation and regulation section) seeking to maintain the Good Environmental Status of assemblages.

III.1. Types of monitoring

25. The basic scheme of surveillance includes periodic monitoring of reference parameters (indicators) informing about the conservation status of coralligenous / maërl assemblages. The monitoring should be designed to be as simple as possible. Neither standard methods have been proposed nor environmental or ecological quality indexes have been established yet for the coralligenous assemblages.

26. Due the heterogeneity and habitat complexity monitoring should be conducted by a combination of methods to gather habitat, species and degree of impacts data.

27. Monitoring parameters should provide information on:
 Structural and functional parameters of assemblages:
 • Species/Categories composition/abundance (semi- or quantitative data)
 • Indicators on the degree of complexity of coralligenous habitats
 • Indicators on coralligenous functioning: bioeroders and bioconstructors
 • Qualitative, semi- and quantitative indicators on the impacts of different disturbances on coralligenous communities (e.g. presence of fishing nets, invasive species, high diving pressure)
 Environmental parameters
 -Temperature, sedimentation

³ Decision IG.21/3 on the Ecosystems Approach including adopting definitions of Good Environmental Status (GES) and targets
III.2. Monitoring methods

III.2.1. General Considerations for sampling strategies for monitoring schemes

28. Bearing in mind the depth distribution of coralligenous / maerl assemblages monitoring methods have to be adapted to limited bottom working time by scuba divers (due to long decompression times and limitation of diver performance in deep waters; Tetzaff & Thorsen, 2005; Germonpre, 2006) and the limitation of the use of Remote Operate Vehicles (ROVs) beyond the operational depth of scuba divers (0-40m).

III.2.2. Spatial scales

29. The high scale heterogeneity of coralligenous outcrops which implies a large sampling area to be representative (Ballesteros, 2006). At present, some studies have determined the minimum sampling areas in some assemblages (Kipson et al. 2011), similar approaches should be carried out in other coralligenous morpho-types. In general, in order to gather relevant data on the different indicators in each monitoring site the total sampling area (including different replication strategies) should cover about 5 to 30 m² (Deter et al. 2012, Garrabou et al. 2014, Gatti et al. 2015).

30. At each site, determine a specific depth range were the monitoring will be carried out (e.g. 30-35 m), in order to avoid the potential effect of depth in the outcome of the surveys. Within the depth range selected, in order to limit the effects of local heterogeneity on the outcome of the surveys, determine when possible, with the help of remarkable seascape marks, the specific monitoring area (e.g. it should be an area of several 100 m²) of each sampling site. Eventually some marks can be fixed to help the sample in the same monitoring area. Finally, in each targeted geographic areas several sites should be monitored in order to better infer the conservation trends of assemblages.

31. When selecting monitoring sites one should keep in mind the existence of previous information on the extension and ecological quality of the coralligenous habitat. During selection process, it is recommended to consider the following questions:

• Is there previous information available on coralligenous assemblages at the site or, if there is no available information at all, are the sea bottom geomorphological features suitable for the development of coralligenous frameworks?
• According to the present knowledge, are considered coralligenous assemblages representative for a wider geographical area?
• Are considered coralligenous assemblages especially healthy to be able to serve as reference points?
• Are considered coralligenous assemblages under some clearly recognizable direct or indirect anthropogenic disturbance that would allow the assessment of the impact of these disturbances?

III.2.3. Temporal scales

32. The low dynamic of coralligenous assemblages (Garrabou et al., 2002, Casas et al. 2015) allows to set the sampling periodicity between 3-5 years for monitoring purposes. Regarding the period of monitoring, the ideal period is late summer (late August to early October). At that time water transparency and temperature allow better performances on data gathering and photosampling. In addition, if any mass mortality occurred during summer it can be observed in this period.

III.2.4. Sampling techniques

33. During the last years different approaches have been adopted for the assessment of conservation status of coralligenous assemblages using visual and/or photographic surveys (e.g. Cormaci et al., 2004, Kipson et al. 2011, Deter et al. 2012, Garrabou et al. 2014, Gatti et al. 2015). The sampling approaches developed are based in non-destructive methods aiming to furnish rapid quantitative and semi-quantitative assessments of different parameters.

34. The basic parameters assessed by photographic sampling and visual census are abundance (e.g. coverage, density) of species found in the assemblages and estimations on the degree of impact of different key
processes (e.g. mortality events, bioerosion, fishing) related with the conservation of coralligenous assemblages.

35. Monitoring of environmental parameters is also needed if we want to relate changes in the coralligenous/maërl assemblages with disturbances related to hydrographic conditions. The most important variables to be monitored are: water temperature, sedimentation rates, nutrient concentration in seawater, particulate organic matter and water transparency.

36. Different initiatives (this Action Plan and EU directives) are focused in the development of indicators about the conservation and good environmental status of coralligenous. Through the monitoring activities presented we could obtain useful indicators (See Annex). These indicators are intended to inform decision makers and stakeholders and to support conservation and management planning (including MPAs network design) to guarantee the conservation of the coralligenous habitat.

37. Standardized protocols for the characterization of coralligenous/maërl assemblages needs to be developed. The main goal of this Action would be to do a comparative evaluation of the tools and sampling designs to be applied for the characterization of coralligenous habitats (e.g. in terms of species diversity (α, β, Y), structural complexity and main ecological processes) and to assess the level of impact of human pressures.

38. Indices and/or intercalibration initiatives to determine conservation environmental status of coralligenous should be developed to analyze the available indices developed to determine the Good Environmental Status of coralligenous to provide a common framework to compare the status of coralligenous across the Mediterranean.

IV. Research activities

IV.1. Taxonomy

39. Coralligenous/maërl assemblages probably are two of the most important hot-spots of species diversity in the Mediterranean, together with Posidonia oceanica meadows (Ballesteros, 2006; BIOMAERL team, 2003). In comparison to the large amount of literature devoted to the study of Posidonia oceanica meadows, studies devoted to strengthen the knowledge of coralligenous/maërl biodiversity are scarce. Therefore, due to the rich fauna, high heterogeneity at all scales, and complex structure of coralligenous/maërl assemblages, together with the paucity of studies dealing with coralligenous/maërl biodiversity, it can be assumed that at least coralligenous assemblages harbour more species than any other Mediterranean community. The check-list proposed in the second chapter of this Action plan should cover all the species found to date in coralligenous/maërl communities. However research in taxonomy is also needed as a large amount of taxonomic groups absolutely lack not only of a comprehensive study but almost any study dealing with species which can be found in coralligenous outcrops or maërl beds. The use of genetic tools can help in resolving taxonomic "problems" and discovering cryptic species (e.g. Dailianis et al. 2014).

40. Taking into account the current knowledge of biodiversity in coralligenous/maërl communities (Ballesteros, 2006), the following taxonomic groups need an important investment in research:

- Copepods
- Cumaceans
- Isopods
- Molluscs
- Mysids
- Nematods
- Nemertans
- Ostracods
- Phyllocarids
- Polychaeta
- Pycnogonids
- Tanaidaceans
41. Further research in other groups is also acknowledged, as it will surely provide new reports of species for coralligenous outcrops and maërl beds.

IV.2. Long term evolution

42. To understand long-term dynamics of coralligenous assemblages in some selected areas sentinel/reference sites should be setup. Processes taking place in coralligenous communities in absence of disturbances usually display slow dynamics – i.e. decades – (Garrabou *et al.*, 2002). Population dynamics of outstanding and key species show low growth rates and low population dynamics (e.g. Coma *et al.* 1998, Teixidó *et al.* 2011). Therefore, even if some of the patterns and processes that have been described so far occur in short time periods (e.g. mortality events; Cerrano *et al.*, 2000; Garrabou *et al.*, 2009), evolution of coralligenous can only be understood from a long-term perspective. Maërl beds are even less known as there are no comprehensive revisions in this subject regarding Mediterranean rhodolits.

43. Sentinel/reference sites are recommended to be visited once a year to obtain a robust temporal series. Even if seasonality in coralligenous/maërl communities is not as important as it is in shallower environments (Ballesteros, 2006, Garrabou *et al.* 2002), the monitoring is recommended to be always performed at the same period of the year in order to facilitate comparisons between years and sites.

44. These sites should be selected according to (1) their representativeness at a large geographical scale, (2) their accessibility and (3) the logistical facilities that may contribute to guarantee and facilitate the monitoring operations. We recommend the setup of sentinel/reference sites in fully protected zones within Marine Protected Areas. MPAs offer excellent facilities for long-term studies and are optimum conditions to approach to the “pristine” functioning of coralligenous assemblages. This precious information would serve as reference for guiding the adoption of conservation and management goals at different international and national levels.

IV.3. Functioning

45. Special care is to be taken for the study of the functioning of particular associations and species. Specifically, long-lived plants and animals that usually are the engineering species of the coralligenous or the most abundant calcareous algae in maërl beds, need a detailed knowledge of their growth, demographic patterns, vulnerability to disturbances and recovery capacities.

46. Research actions to fill the gaps of current knowledge should focus on (a) Bioconcretion dynamics (building and erosion processes); (b) Population dynamics of typical/indicator species; (c) Establish response of key/typical species to different stressors

V. Conservation activities

V.1. Major Threats

47. Major threats affecting coralligenous/maërl communities roughly coincide with threats affecting Mediterranean marine biodiversity and are listed in the Strategic Action Program for the Conservation of Biological Diversity (SAP BIO). However, due to its special habitat and features, not all the threats listed in the SAP BIO affect coralligenous/maërl communities, but some of them are specially relevant. It follows a brief description of the main threats.

V.1.1. Trawling

48. Trawling is probably the most destructive impact currently affecting coralligenous communities. Trawling is also completely destructive in maërl beds, being the main cause of maërl disappearance in large Mediterranean areas. The action of trawling gear over coralligenous/maërl assemblages leads to the
death of most engineering, dominant and builder species, completely changing the environmental conditions of the coralligenous microhabitats and from the maërl environment. As most of these species are particularly long-lived, have low recruitment and complex demographic patterns, destruction of the coralligenous/maërl structure is critical as their recovery will probably take several decades or even centuries. Trawling has also a great impact on target species that, although not as vulnerable as most suspension feeders, they also suffer from this indiscriminate method of fishing.

49. Finally, even the performance of trawling close to coralligenous outcrops or maërl beds affects negatively to algal growth and suspension-feeding due to an increase in turbidity and sedimentation.

V.1.2. Artisanal and recreational fishing

50. Both traditional and recreational fishing also have an effect on coralligenous communities, although they mainly affect the target species. Fishing leads to a significant decrease in mean specific number of fish species, producing changes in the community composition. Certain fishes, mainly elasmobranchs, are severely decimated by artisanal fishing practices when fishing pressure is outstanding. This is the case, for example, of several small sharks such as Scyliorhinus stellaris, Mustelus spp. or Squalus spp. In several places, other species such as groupers and lobsters (e.g. Epinephelus marginatus and Palinurus elephas) need the implementation of adequate fishery management. Besides, fishing activities can degrade habitat complexity due the breakage and mortality of fragile macrobenthic species during contact with fishing lines and nets (Bavestrello et al. 2000). The consequent erosion of complexity results from the reduction in the abundance and/or size of large gorgonian and other erect species (e.g. Axinella spp., Hornera frondiculata) (Tunesi et al., 1991). The reduction of complexity could infer further biodiversity loss, however the extent of this impact and the associated mechanisms are still poorly understood (Cerrano et al. 2010).

51. Special care has to be taken with the commercial exploitation of red coral (Corallium rubrum), whose stocks have strongly declined in most areas. Adequate management of this extremely valuable and long-lived species is necessary.

V.1.3. Anchoring

52. Anchoring has a very severe impact in coralligenous concretions, as most of the engineering organisms are very fragile and are easily detached or broken by anchors and chains. Coralligenous concretions of frequently visited sites by recreational fishing or diving activities are degraded by the destructive potential of anchors.

V.1.4. Invasive species

53. Currently, at least three algal species are threatening coralligenous/maërl communities in the Western Mediterranean: Womersleyella setacea, Acrothamnion preissii, Caulerpa racemosa v. cylindracea and Caulerpa taxifolia (e.g. Cebrian et al. 2012, De Caralt & Cebrian 2013, Cebrian & Rodríguez-Prieto 2012). All of them are only invasive in relatively shallow water coralligenous outcrops and maërl beds (until 60 m), where irradiance levels are sufficient to permit their growth. However, they are especially dangerous, because they completely cover the basal stratum of encrusting corallines and increase sedimentation rates which lead to a total shut down of coralligenous growth or the survival of rhodoliths. Most studies have been carried in the Western Mediterranean. There is an absolute lack of knowledge on the effects that lessepsian species have on coralligenous/maërl communities in the Eastern Mediterranean.

V.1.5. Global warming

54. Anomalous high water temperatures were concomitant with large scale mortalities of several suspension feeders (mainly sponges and anthozoans) growing in coralligenous assemblages (Cerrano et al., 2000; Garrabou et al. 2009). Thus, it is expected that under the current trend of global warming (Somot et al. 2008), coralligenous assemblages will be affected by new mortality events during next decades specially in areas where coralligenous assemblages are situated above the summer level of the thermocline.

V.1.6. Waste water discharges
55. Waste waters profoundly affect the structure of coralligenous communities by inhibiting coralline algal growth, increasing bioerosion rates, decreasing species richness and densities of the largest individuals of the epifauna, eliminating some taxonomical groups and increasing the abundance of highly tolerant species (Hong, 1980, 1982; Cormaci et al., 1985; Ballesteros, 2006). Although no information is available on the impact of eutrophication in Mediterranean maërl beds, the effects must be similar to those reported for coralligenous concretions.

V.1.7. Aquaculture

56. Although there are no studies on the impact of aquaculture facilities situated over or at the proximity of coralligenous outcrops, nor maërl beds, their effects should match those produced by waste water dumping.

V.1.8. Changes in land use and coastal infrastructure construction and urbanization

57. Most anthropogenic changes in coastal areas or at their vicinity involve an increase in water turbidity and/or sediment removal that affect coralligenous/maërl communities.

V.1.9. Recreational activities (excluding fishing)

58. Uncontrolled or over-frequentation of divers in coralligenous communities has been described to produce an important effect over certain large or fragile suspension feeders inhabiting coralligenous communities (Sala et al., 1996; Garrabou et al., 1998; Coma et al., 2004; Linares et al. 2012).

V.1.10. Mucilaginous and filamentous algal aggregates

59. Blooms of mucilaginous and filamentous algal aggregates can cause severe damage over erect suspension feeders (mainly gorgonians). These blooms are still not well understood but they are apparently caused by eutrophication (Giuliani et al. 2005, Danovaro et al. 2009).

V.2. Legislation and regulations

60. Coralligenous/maërl assemblages should be granted legal protection at the same level as *Posidonia oceanica* meadows. A first step would be the inclusion of coralligenous concretions and maërl beds as a priority natural habitat type in the EU Habitats Directive (92/43/EEC), which would enable EEC countries to undertake surveillance of the conservation status of coralligenous/maërl assemblages and also to set an ecological network of areas of conservation (LICs/ZECs) hosting coralligenous/maërl assemblages, which would ensure their conservation or restoration at a favorable conservation status. Although *Phymatolithon calcareum* and *Lithothamnion corallioides* are present in the Annex V of the Habitats Directive and as such they should be provided by management measures in case of exploitation (which is never the case in the Mediterranean), there is no specific protection for maërl beds. Similar actions should be encouraged in non-EEC countries through the existing tools of the Barcelona Convention.

61. Regarding again European countries, recently (21 December 2006), it was published a Council Regulation (EC) No 1967/2006 concerning management measures for the sustainable exploitation of fishery resources in the Mediterranean Sea, amending Regulation (EEC) No 2847/93 and repealing Regulation (EC) No 1626/94 which states that “Fishing trawl nets, dredges, shore seines or similar nets above coralligenous habitats and maërl beds shall be prohibited” (Article 4.2) and that this prohibition “shall apply to all Natura 2000 sites, all special protected areas and all specially protected areas of Mediterranean interest (SPAMI) which have been designated for the purpose of the conservation of these habitats under either Directive 92/43/EEC or Decision 1999/800/EEC” (Article 4.4).

62. In 2008 the European Union adopted the Marine Strategy Framework Directive (MSFD 2008/56/EC) which requires to maintain European marine waters in “Good Environmental Status” (GES). The MSFD included 11 descriptors for the assessment of GES among them the Sea-floor Integrity is defined as “Sea-floor integrity is at a level that ensures that the structure and functions of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected.” (Rice et al. 2012). This descriptor directly concerns biogenic structures such as the Mediterranean coralligenous and different initiatives are
underway to determine the GES of coralligenous habitats (e.g. Gatti et al. 2015). The monitoring of different indicators (such as those indicated in this document and other proposed by other authors) should allow determining reference conditions at regional scales and the proposal of a quantitative index to evaluate the GES in each area. The final aim of MSFD is to guide management and conservation actions for maintaining and when necessary recover the good environmental of waters.

63. In line with the MSFD, the contracting parties to the Barcelona Convention set targets for achieving GES of the Mediterranean Sea and its coastal zone by 2020. In achieving these targets it has been recognized the importance to apply the ecosystem approach (EcAp) to the management of human activities that may affect the Mediterranean marine and coastal environment for the promotion of sustainable development (UEP/MAP 2007). In addition, through Decision IG 21/3 (the so-called “COP 18 EcAp Decision”) the contracting Parties agreed to design an Integrated Monitoring and Assessment Program for the next meeting of the contracting parties (COP19) and mandated the Secretariat to carry out an assessment of the state of the Mediterranean environment in 2017 which necessarily will include the coralligenous/maërl habitats (UNEP/MAP, 2013).

V.3. Creation of Marine Protected Areas

64. Within the Convention on Biological Diversity (CBD) countries have committed to protect by 2020 “10% of coastal and marine areas, especially areas of particular importance for biodiversity and ecosystem services, are conserved through effectively and equitably managed, ecologically representative and well connected systems of protected areas and the effective area-based conservation measures” (Target 11 of the Aichi Strategic Plan for Biodiversity 2020) and the Roadmap for a comprehensive coherent network of well managed MPAs to achieve Aichi Target 11 in the Mediterranean. Overall, only about 1% of Mediterranean coastal waters susceptible to harbor coralligenous/maërl assemblages are protected.

65. Most present Mediterranean MPAs are devoted to protect Posidonia oceanica meadows and other shallow water assemblages, in such a way that the percentage of coralligenous/maërl habitat currently protected in the Mediterranean is extremely low. Thus, it is necessary to protect representative coralligenous/maërl assemblages by applying the protection and management measures recommended by Articles 6 and 7 of the SPA/BD protocol. In fact, Marine Protected Areass (MPAs) have to be established taking into account the seascape diversity and trying to include places with several relevant assemblages, as has been already applied in the creation and zonation of some MPAs (Villa et al., 2002; Di Nora et al., 2007).

66. Countries have to identify and cartography as soon as possible sea bottoms covered by coralligenous outcrops and maërl beds in order to design a network of MPAs that enables the protection of coralligenous/maërl assemblages.

67. Those Mediterranean MPAs, which contain coralligenous/maërl assemblages and for which management and monitoring plans have not yet been developed and implemented, must develop and implement such plans as soon as possible.

V.4. National plans

68. To ensure more efficiency in the measures envisaged in the implementation of this Action Plan, Mediterranean countries are invited to establish national plans for the conservation of Coralligenous and other calcareous bio-concretions. Each national plan should take into account the concerned country’s, or even areas’, specific features. It must suggest appropriate legislative measures, particularly for the environmental impact assessment of coastal infrastructure (building works, pipelines out to sea, and deposits of material from dredging) and to control activities which could affect coralligenous/maërl assemblages. The national plan shall be based on the available scientific data and will include programmes for (i) collection and regular updating of data, (ii) training and refresher courses for specialists, (iii) awareness-raising and education for the general public, actors and decision-makers and (iv) the conservation of coralligenous/maërl assemblages of importance for the Mediterranean marine environment. The national plans must be brought to the attention of all concerned actors and, when possible, coordinated with the relevant national plans (e.g. emergency plan to deal with pollution).
VI. Coordination of this Action plan with other tools and initiatives

69. The Standard Data Form (SDF), developed by RAC/SPA, can be used to identify potentially good sites for the establishment of MPAs devoted to protect coralligenous/maërl assemblages. Besides the analysis of current data on the distribution of coralligenous assemblages along with information derived from distribution modelling tools can help guiding cost-effective future surveys and monitoring efforts towards the development of basin-wide marine protected areas network for coralligenous/maërl assemblages (Martin et al. 2014).

70. However the SDF is not appropriate to be used in the monitoring of coralligenous/maërl assemblages since it has been designed for the inventory of sites and habitats but not for an accurate assessment of multi-species population densities and their evolution. Annex B (habitat types) from the SDF should be slightly modified in the point IV.3.1 (Coralligenous biocenosis), according to current knowledge. Species appearing in Annex C should be slightly enlarged in order to include several engineering coralligenous species according to the adopted criteria for amendments of the Annexes (II & III) of the Protocol SPA-BD.

71. MPAs classified as SPAMIs and containing coralligenous/maërl assemblages inside their protected areas should develop management and protection plans to ensure their conservation.

VII. REGIONAL COORDINATION STRUCTURE

72. Regional coordination of the implementing of the present Action Plan will be guaranteed by the Mediterranean Action Plan's (MAP) secretariat through the Regional Activity Centre for Specially Protected Areas. The main functions of the coordinating structure shall consist in:
 • collecting, validating and circulating data at Mediterranean level;
 • promoting the drawing up of inventories of species, coralligenous/maërl assemblages of importance for the Mediterranean marine environment;
 • promoting trans-boundary cooperation;
 • promoting and supporting the setting up of coralligenous/maërl assemblages monitoring networks;
 • preparation of reports on progress in the implementation of the Action Plan, to be submitted to the meeting of national focal points for SPAs and to meetings of the Contracting Parties;
 • organizing meetings of experts on specific subjects relating to coralligenous/maërl assemblages and training sessions.

73. Complementary work done by other international organizations, and aiming at the same objectives, shall be encouraged, promoting coordination and avoiding possible duplication of efforts.

VIII. PARTICIPATION IN THE IMPLEMENTATION

74. Implementing the present Action Plan is the province of the national authorities of the Contracting Parties. The concerned international organizations and/or NGOs, laboratories and any organization or body are invited to join in the work necessary for implementing the present Action Plan. At their ordinary meetings, the Contracting Parties may, at the suggestion of the meeting of National Focal Points for SPAs, grant the status of "Action Plan Associate" to any organization or laboratory which so requests and which carries out, or supports (financially or otherwise) the carrying out of concrete actions (conservation, research, etc.) likely to facilitate the implementation of the present Action Plan, taking into account the priorities contained therein.

75. The coordination structure shall set up a mechanism for regular dialogue between the participating organizations and, where necessary, organize meetings to this effect. Dialogue should be made mainly by mail, including E-mail.
Annex: Implementation Timetable

<table>
<thead>
<tr>
<th>Action</th>
<th>Deadline</th>
<th>to be implemented by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Build and publish the database of scientists and research institutions working on the coralligenous assemblages and maërl beds.</td>
<td>2016</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>2. Guidelines for the assessment of environmental impact on coralligenous/maërl assemblages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Development of Working Groups on coralligenous assemblages and maërl beds.</td>
<td>2016</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>4. Build-up a coralligenous/maërl assemblages distribution on line database</td>
<td>2018</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>5. Improve habitat modeling methods could provide new predictive models on coralligenous distribution and guide cost-effective field surveys for data acquisition</td>
<td>2017</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>6. Characterization of coralligenous habitats at regional scale</td>
<td>2018</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>7. Build-up a Check-list / Reference species list for the coralligenous assemblages</td>
<td>2016</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>8. Development of standardized protocols for the characterization of coralligenous /maërl assemblages.</td>
<td>2017</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>9. Development of indices and/or intercalibration initiatives to determine conservation environmental status of coralligenous</td>
<td>2017</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>10. Set a network of sentinel sites on coralligenous across the Mediterranean</td>
<td>2020</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>11. Promote research programs on coralligenous assemblages and maërl beds</td>
<td>2016</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>12. Develop and implement legislation initiatives for the conservation of coralligenous assemblages</td>
<td>Ongoing</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>13. Coordinate the design of an Integrated Monitoring and Assessment Program for the assessment of the state coralligenous/maërl assemblages in view to be included the assessment of the state of the Mediterranean</td>
<td>2016</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>14. Promote the declaration of marine protected areas to preserve coralligenous assemblages in coastal and offshore areas</td>
<td>2018</td>
<td>RAC/SPA-Contracting Parties</td>
</tr>
<tr>
<td>15. Build-up a coordination platform on different initiatives devoted to the coralligenous/maërl assemblages</td>
<td>2017</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>16. Organize a Symposium on coralligenous assemblages and maërl beds every 3 years</td>
<td>2018</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>17. Preparation of a communication plan to raise the awareness on the importance of coralligenous assemblages and maërl beds for the conservation of Mediterranean biodiversity</td>
<td>2017</td>
<td>RAC/SPA</td>
</tr>
</tbody>
</table>

IV. References

Hong, J.S. 1980. *Étude faunistique d'un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale* (Golfe de Fos). Thèse de Doctorat. Université d’Aix- Marseille II.

Annex IX

Recommendations of the 1st Mediterranean Symposium on Dark Habitats
Recommendations of the 1st Mediterranean Symposium on Dark Habitats
Portoroz, Slovenia, 31 October 2014

The first 2 sessions were devoted to deep habitats, largely focussing on canyons, rocky banks and escarpments. A lot of attention was given to describing the spatial distribution of biodiversity mostly from the western Mediterranean basin. The data gathered has already helped some countries to revise their typology of assemblages. It was clear to all that this initiative should be transferred to other Mediterranean countries, in agreement with international initiatives currently undertaken.

The main impact documented by participants was the accumulation of marine litter, most particularly lost fishing gear and plastics. The participation of stakeholders and decision-makers to deep exploration seems a good idea to increase awareness about the damage caused by such human activities. Outreach / educative actions targeted towards the general public and especially towards recreational and professional fishermen could enhance environmental awareness.

Many efforts were made to georeference data and feed interactive databases. This effort should be supported in the long term. Environmental (e.g. temperature, currents, etc.) data are missing from the depth range where most these studies were carried out (50-500 m). MPAs beyond national jurisdiction are still too few to ensure poorly resilient deep-sea communities can persist in the future.

The session on caves gathered contributions from different parts of the Med. Many efforts were made on gathering existing information on the distribution of caves, our degree of knowledge and how to evaluate the ecological quality status, through their functional components. It was stressed that they are a significant reservoir of biodiversity and that they too are poorly resilient. However, although within the reach of recreational divers, human impact on caves other than global warming and pollution is believed to still be marginal. Possible impacts would have to be evaluated. Meanwhile we need to improve our basic knowledge on connectivity among cave populations, their biodiversity and functioning of their communities.
Annex X

Draft Programme of work for Reference Lists of Habitat Types in the Mediterranean
Draft Programme of work for Reference Lists of Habitat Types in the Mediterranean

It is recommended that RAC/SPA direct its action over the coming two-year period towards the following activities:

- Evaluation of national inventories of natural sites of conservation interest;
- Further assistance to countries for the use of the SDF and to strengthen their capacity to map, monitor and assess the marine habitats status within the framework of EcAp;
- Updating of the reference list of marine and coastal natural habitat types;
- Ensure further harmonisation of the reference list of marine and coastal natural habitat types with other similar tools, such as the ones related to Natura 2000 and EUNIS;
- Further developing MedGIS and working in close collaboration with the Focal Points for SPAs to feed data into it and GIS-Based mapping of marine key habitats (\textit{Posidonia} meadows and coralligenous) by 2017;
- Enhancing partnership with the actors in the region concerned by the collection and circulation of pertinent information for the conservation marine key habitats.
Annex XI

DRAFT UPDATE OF THE ACTION PLAN CONCERNING SPECIES INTRODUCTIONS AND INVASIVE SPECIES IN THE MEDITERRANEAN SEA
DRAFT UPDATE OF THE ACTION PLAN CONCERNING SPECIES INTRODUCTIONS AND INVASIVE SPECIES IN THE MEDITERRANEAN SEA

INTRODUCTION

1. In 1975, 16 Mediterranean countries and the European Community adopted the Mediterranean Action Plan (MAP), the first-ever Regional Seas Programme under UNEP’s umbrella. In 1976 these Parties adopted the Convention for the Protection of the Mediterranean Sea Against Pollution (Barcelona Convention). Seven Protocols addressing specific aspects of Mediterranean environmental conservation complete the MAP legal framework.

2. In 1995, the Action Plan for the Protection of the Marine Environment and the Sustainable Development of the Coastal Areas of the Mediterranean (MAP Phase II) was adopted by the Contracting Parties to replace the Mediterranean Action Plan of 1975. At the same time, the Contracting Parties adopted an amended version of the Barcelona Convention of 1976, renamed Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean.

3. Currently, MAP has been adopted by 21 countries bordering the Mediterranean Sea, and the European Union. The 22 Contracting Parties to the Barcelona Convention give priority to the conservation of the marine environment and to the components of its biological diversity. This has been confirmed on several occasions, particularly by the adopting (Barcelona, 1995) of the new Protocol concerning specially protected areas and biological diversity in the Mediterranean (SPA Protocol) and of its Annexes.

4. The SPA Protocol invites the Contracting Parties to take “all appropriate measures to regulate the intentional or non-intentional introduction of non-indigenous or genetically modified species into the wild and prohibit those that may have harmful impacts on the ecosystems, habitats or species” (Article 13.1).

5. For established alien species, the SPA Protocol stipulates that “the Parties shall endeavour to implement all possible measures to eradicate species that have already been introduced when, after scientific assessment, it appears that such species cause or are likely to cause damage to ecosystems, habitats or species” (Article 13.2).

6. The Convention on Biological Diversity calls on in its Article 8 (h) each Contracting Party, as far as possible and as appropriate “to prevent the introduction of, control or eradicate those alien species which threaten ecosystems, habitats or species”. In the tenth meeting of the Conference of the Parties, held from 18 to 29 October 2010, in Nagoya, Aichi Prefecture, Japan, a revised and updated Strategic Plan for Biodiversity, including the Aichi Biodiversity Targets, for the 2011-2020 period, was adopted. According to Aichi Target 9, “By 2020, invasive alien species and pathways are identified and prioritized, priority species are controlled or eradicated, and measures are in place to manage pathways to prevent their introduction and establishment.”

7. Aichi Target 9 is reflected in Target 5 of the EU Biodiversity Strategy (European Commission COM/2011/244). Furthermore, the new EU Regulation (No 1143/2014) on the prevention and management of the introduction and spread of invasive alien species is a dedicated instrument to mitigate the impacts of biological invasions in Europe. The European Commission, European countries, and their relevant authorities will have, under the new EU legislative instrument, obligations and commitments in respect to invasive alien species (IAS). These include prioritising pathways for prevention, identifying

4Synonym of ‘non-indigenous’. The term alien is adopted herein as it is the term currently mostly used by the scientific community and recent legislation (e.g. the new EU Regulation No 1143/2014 on the prevention and management of the introduction and spread of invasive alien species)
the most harmful species for responses (list of species of EU concern), enforcing effective early warning and rapid response mechanisms for the IAS of EU concern, eradicating such species at an early stage of invasion, and taking management measures for IAS that are widely spread. In addition, the EU Marine Strategy Framework Directive (2008/56/EC) recognises alien marine species as a major threat to European biodiversity and ecosystem health, requiring Member States to consider them when developing strategies so that all European Seas reach Good Environmental Status by 2020. The European Alien Species Information Network (EASIN) was launched in 2012 by the European Commission to facilitate the exploration of existing alien species information and to assist the implementation of the new Regulation and the other EU policies on biological invasions.

8. The trend of new introductions of alien species in the Mediterranean has been increasing. About 1000 marine alien species have been reported in the Mediterranean Sea up to now, of which more than half are considered established. Many of these species have become invasive with serious negative impacts on biodiversity, human health, and ecosystem services.

9. There are many routes and mechanisms by which new alien species arrive in the Mediterranean Sea. Identification and assessment of the pathways of introduction is essential for predicting future trends of new introductions, identifying management options to mitigate invasions and to prevent new introductions, and communicating related risks and costs to policy makers and high level administration. More than half of the marine alien species in the Mediterranean were probably unintentionally introduced through the Suez Canal. Shipping (by means of ballast waters and hull fouling) is the second most important pathway, followed by aquaculture and trade in live marine organisms (e.g. aquarium trade, fishing bait). The same vectors and some additional ones (e.g. fishing activities) may facilitate secondary introductions within and outside the Mediterranean.

10. In the Mediterranean Sea, despite the variability in monitoring and reporting effort among countries and the gaps in our knowledge of alien species distribution, there is an enormous amount of information scattered in various databases, institutional repositories, and the literature. By harmonizing and integrating information that has often been collected based on different protocols and is distributed in various sources, the needed knowledge basis to assess the distribution and status of marine alien species can be built.

11. Elaborating and implementing action plans to confront the threats to biological diversity is an effective way of guiding, coordinating and stepping up the efforts made by the Mediterranean countries to safeguard the region’s natural heritage. The invasive alien species are seen as being among the main threats to marine biodiversity in the Mediterranean. The adopted Ecosystem Approach (EcA) to management of human activities with a view to conserve natural marine heritage and protecting vital ecosystem services recognises that to achieve good environmental status “non-indigenous species introduced by human activities are at levels that do not adversely alter the ecosystem”. It is imperative to take immediate steps to prevent the introduction of alien species, control the spread of those already

9http://easin.jrc.ec.europa.eu/

7 The 15th Meeting of the Contracting Parties to the Barcelona Convention (COP15) decided (through Decision IG.17/5) to progressively apply the ecosystem approach (EcA) to the management of human activities that may affect the Mediterranean marine and coastal environment for the promotion of sustainable development. The 17th Meeting of the Contracting Parties to the Barcelona Convention (COP17) confirmed the importance given to the EcA in the Mediterranean, and agreed (through Decision IG.20/4) on an overall vision and goals for EcA, on 11 ecological objectives, operational objectives and indicators for the Mediterranean, adopted the timeline for implementing the ecosystem approach until 2019 and established a six-year cyclic review process of its implementation, with the next EcA cycle to cover 2016-2021.

At the 18th Meeting of the Contracting Parties to the Barcelona Convention (COP18), targets for achieving Good Environmental Status of the Mediterranean Sea and its coastal zone by 2020 were adopted. In addition, through Decision IG. 21/3 (the so called “COP18 EcA Decision”), the Contracting Parties agreed to design an Integrated Monitoring and Assessment Programme by the next Meeting of the Contracting Parties (COP19), and mandated the Secretariat to carry out an assessment of the state of the Mediterranean environment in 2017.
introduced and endeavour to mitigate the damage they cause to the marine ecosystem. The present Action Plan is being elaborated on the basis of the existing regional and international policies on invasive species data available; it will be adapted and updated, if necessary, to reflect the latest policies and new data available.

12. The actions advocated by the present Action Plan are to be carried out over a five year period, starting from when the Action Plan is adopted by the Contracting Parties. At the end of this period, RAC/SPA will prepare a report on the progress so far made in implementing the advocated actions, and will submit this to the National Focal Points for SPAs, who will make follow-up suggestions to the Parties.

13. Considering the world-wide scope of the issue of alien species introduction, it is important that the implementation of the present Action Plan be done in consultation and collaboration with the initiatives undertaken in this field in other regions and/or by other international organisations.

A. OBJECTIVES OF THE ACTION PLAN

14. The main objective of the present Action Plan is to promote the development of coordinated efforts and management measures throughout the Mediterranean region in order to prevent, monitor, and control marine biological invasions and their impacts on biodiversity, human health, and ecosystem services, particularly by:

1. strengthening the capacity of the Mediterranean countries to deal with the issue of alien species, within the framework of the EcAp;
2. supporting a regional information network for the efficient exploitation of alien species data and to support the regional policies on biological invasions;
3. further developing MAMIAS, an online platform for the collection, exploitation, and dissemination of information on marine biological invasions in the Mediterranean Sea to support relevant regional and international policies;
4. strengthening the institutional and legislative frameworks at the level of the countries of the region;
5. conducting baseline studies and establishing monitoring programmes, within the framework of the EcAp Integrated Monitoring and Assessment Programme, to collect reliable and pertinent scientific data that can be used for decision-making where necessary;
6. setting up mechanisms for cooperation and the exchange of information among the Mediterranean countries;
7. Elaborating guidelines and any other technical documentation.

B. PRIORITIES

B.1 At national level

15. Considering the lack of the data and knowledge necessary for impact and risk assessments, horizon scanning, and the implementation of management actions for prevention, control and eradication, priority at national level should be given to:

1. encouraging all necessary actions (e.g. research work, data collection, monitoring, national impact assessments, horizon scanning etc.) aimed at improving the available knowledge;
2. conducting baseline studies and establishing monitoring programmes to collect reliable and pertinent data on the distribution of alien species in the territorial waters;
3. coordinating the actions that are necessary for the regular provision of essential information for the national and Mediterranean-wide reference lists of alien species;
4. supporting, through the provision of essential information, the ‘Marine Mediterranean Invasive Alien Species’ (MAMIAS) database and online platform, which will include Mediterranean-wide national lists of alien species, including information on their taxonomic classification, ecology, biology, habitats, and impacts on biodiversity, human health, and ecosystem services;

5. encouraging the implementation of scientifically-backed regionally-harmonised measures of prevention and control in particular for the high risk pathways of Non Indigenous Species (NIS);

6. developing training and raising awareness programmes on risks, legal issues, best practices, and management actions for prevention and mitigation of impacts.

B.2 At regional level

16. Considering the breadth and complexity of the issue of alien species introduction, the large amount of relevant information that remains scattered in various databases and repositories, and the need for harmonization and integration of alien-species data, priority at regional level should be given to:

1. coordinating, supporting, and updating the ‘Marine Mediterranean Invasive Alien Species’ (MAMIAS) database and online platform;

2. creating an active network of partners within the framework of MAMIAS for the continuous updating of the database and the early warning in case of new records of invasive species;

3. linking MAMIAS to other international networks, such as the European Alien Species Information Network (EASIN), increasing its visibility and use for the support of international policies on the management of alien invasive species;

4. elaborating and adopting at regional level guidelines intended to assist the relevant national authorities;

5. assisting national authorities to organise training on taxonomical issues, identification of target species, monitoring methods and reporting, and management practices;

6. coordinating the actions taken by neighbouring Parties to prevent and control the introduction of alien species;

7. supporting cooperation at international level.

C. ACTIONS REQUIRED TO ATTAIN THE OBJECTIVES OF THE ACTION PLAN

C.1 At national level

C.1.1. Data collection

17. The Contracting Parties are invited to assess the situation as regards the introduction of marine species and compile the available information to prepare updated national reports. The need to address the operational objectives 2.1, 2.2 and 2.3 for the implementation of the agreed EcA should be reflected in the national reports. To this end, Contracting Parties will be assisted by RAC/SPA, if necessary. The national reports will particularly deal with:
• inventorying the alien marine species reported in the national territory, and providing the relevant documentation available;
• trends in abundance, temporal occurrence and spatial distribution in the wild of alien species, particularly invasive alien species, notably in risk areas, in relation to the main vectors and pathways of spreading of such species;
• ratio between invasive alien species and native species in some well-studied taxonomic groups (e.g. fish, macroalgae, molluscs) that may provide a measure of change in species composition;
• impacts of alien species on biodiversity, human health, and ecosystem services at national level;
• steps taken at national level to prevent and control the introduction of marine species
• the national institutional framework that governs the controlling of species introduction
• horizon scanning to identify future threats from invasive species
• participation at pertinent international initiatives, including joining international agreements and bilateral cooperation.

18. The Parties are requested to design and implement programmes for data collection, monitoring and assessment, within the framework of the EcAp Integrated Monitoring and Assessment Programme, particularly of:
• the presence of alien marine species, the pathways of their introduction, and the state of their population trends, including those used in aquaculture;
• the ratio between alien and native species in some well-studied taxonomic groups (e.g. fish, macroalgae, molluscs) to provide a measure of change in species composition;
• the impact of alien species on biodiversity, human health and ecosystem services, including both negative and positive impacts.

C.1.2. Supporting MAMIAS

19. Considering the need of a comprehensive and continuously updated information system to support coordinated efforts and management measures throughout the Mediterranean region in order to prevent, control and monitor marine biological invasions and their impacts on biodiversity, human health and ecosystem services, the Parties are requested to conduct a baseline study, reporting in particular:
• an inventory of all alien species in their territorial waters;
• for each species: the year of first record, the pathway of introduction (together with the level of certainty in assessing the pathway: direct evidence, most likely, possible), and the state of the population;
• georeferenced records of alien species presence and the date of each record;
• studies on the impact of the alien species at national level;
• any relevant documentation.

The baseline study should be submitted to RAC/SPA to feed MAMIAS. Reporting should follow the forms provided by RAC/SPA.

20. The baseline study should be updated annually based on the outputs of the national monitoring programmes (paragraph 18) and any new information should be submitted to RAC/SPA and made available to MAMIAS.

C.1.3. Legislation

21. Those Contracting Parties which have not yet enacted national legislation for controlling the introduction of marine species must do so as quickly as possible. All the Contracting Parties are strongly recommended to take the necessary steps to express in their national laws the provisions of the pertinent

8 UNEP(DEPI)/MED WG.411/3
international treaties, especially the IMO Convention on the management of ballast waters, and guidelines and codes adopted on the subject within the context of international organisations\(^9\).

C.1.4. Institutional framework

22. A mechanism should be set up, if possible at the level of each country, to promote and coordinate the following actions:

- compiling an inventory of introduced species and assessing their pathways of introduction;
- cooperating with RAC/SPA and supporting regional initiatives, in particular supporting and updating MAMIAS;
- establishing a directory of relevant specialists and organisations;
- setting up a group of experts who will be responsible for assessing all relevant issues; regarding introduction, spatial distribution, pathways of introduction, and impacts of alien species, and analysing risks and possible consequences, in close consultation with the other Parties and relevant International Organisations
- developing relevant training programmes;
- strengthening and where necessary setting up systems to control the intentional import and export of alien marine species;
- developing and implementing risk-assessment techniques;
- promoting relevant scientific research;
- cooperating with the concerned authorities in neighbouring states regarding the detection of introduced species and risk assessment;
- participating in international initiatives on invasive species;
- promoting citizen science initiatives to support the monitoring of invasive species;
- developing programmes to raise the awareness of the general public and target groups, including decision-makers, concerning the risks associated with species introduction;

C.1.5. National Plans

23. To ensure more efficiency in the measures envisaged in the implementation of this Action Plan, Mediterranean countries are invited to establish National Plans to prevent the introduction of new alien marine species by controlling their pathways, and to mitigate their negative impact. Each National Plan, taking into account the concerned country's specific features, must suggest appropriate institutional and legislative measures. The National Plan shall be based on the available scientific data and will include programmes for (i) the collection and regular updating of data, especially for the support of EcA (ii) the highest possible dissemination of data and relevant information, especially within the framework of MAMIAS (ii) training and refresher courses for specialists, (iii) awareness-raising and education for the general public, actors and decision-makers and (iv) coordination and collaboration with other states. The

\(^9\)Many organisations have elaborated codes, guidelines or other tools providing technical and legal recommendations for the better control of species introductions and mitigation of their negative impacts. Those tools which are most pertinent for the Mediterranean region are:
- Guiding principles for the prevention, introduction and mitigation of impacts of alien species (elaborated within the framework of the Convention on Biological Diversity)
- Recommendation no. 57 on the Introduction of Organisms belonging to Non-Native Species into the Environment (adopted within the framework of the Bern Convention)
- The IUCN Guidelines for the prevention of biodiversity loss caused by alien invasive species
- The Code of Practice on the Introductions and Transfers of Marine Organisms (developed by the International Council for the Exploration of the Sea)
- Guidelines for preventing the introduction of unwanted aquatic organisms and pathogens from ships’ ballast water and sediment discharges (adopted within the framework of the IMO)
- The precautionary approach concerning the introduction of species (developed by the FAO).
national plans must be brought to the attention of all concerned actors and, when possible, coordinated on a regional basis.

C.2 At regional level

C.2.1. Development of the MAMIAS platform

24. Considering that sufficient high quality information on alien species ecology, distribution, pathways of introduction, impacts, and effective management strategies is a prerequisite for the efficient prevention, early detection, rapid response, and management of biological invasions, a regional mechanism for collecting, harmonizing, and integrating information on alien species should be set up as part of the present Action Plan. The MAMIAS online platform will be at the core of this mechanism, and will be further developed to include:

- a comprehensive basin-wide database on all alien species with information on their taxonomic classification, establishment success, year of first introduction in the Mediterranean, years of first record in each Mediterranean country, pathways of both primary and secondary introductions, impacts on biodiversity, human health, and ecosystem services, links to factsheets and other databases with relevant information;
- for the most invasive and high-impact species, factsheets with details on their biology and ecology, diagnostic characters and field identification signs, native range, distribution maps in the Mediterranean and globally, history of its introduction, population trends, impacts on biodiversity, human health, and ecosystem services, relevant links, and existing management measures for control or eradication;
- a user-friendly web site with online tools and web services for searching the database and extracting data;
- online mapping tools providing distribution maps of alien species in the Mediterranean Sea and possibilities to extract spatial data;
- an early warning system to issue notifications to the Parties, when there is an early new detection of invasive and high-impact species;
- online tools to produce statistics and indicators, such as trends in new introductions by pathway and trends in spatial distribution, especially to support the application of EcAp; these tools should be capable to assist the estimation of the common indicator 6 of the EcAp Integrated Monitoring and Assessment Programme\(^\text{10}\).

25. Considering that to effective support international and regional policies and scientific research on biological invasions, and to efficiently use the already accumulated knowledge, there is a need for standardization, harmonization and integration of existing information systems, it is recommended that RAC/SPA will establish collaborations and close links between MAMIAS and other international information systems and organizations. An indicative list of collaborators includes:

- EASIN (European Alien Species Information Network) which is the official platform of the European Commission aiming to facilitate the exploration of existing alien species information in Europe and to assist the implementation of the European policies on biological invasions;
- the GIASI Partnership Gateway, assisting partners of the CBD to implement Article 8(h) and Target 9 of the Aichi Biodiversity Targets;
- IUCN-ISSG (Invasive Species Specialist Group of the International Union for Conservation of Nature) aiming to reduce the threat to natural ecosystems and native species by increasing awareness of invasive alien species, and of ways to prevent, control or eradicate them;

\(^{10}\)Trends in abundance, temporal occurrence and spatial distribution of non-indigenous species, particularly invasive, non-indigenous species, notably in risk areas (EO2, in relation to the main vectors and pathways of spreading of such species) [UNEP(DEPI)/MED WG.411/3]
WORMS (World Register of Marine Species) and WRIMS (World Register of Introduced Marine Species), which provide an authoritative and comprehensive list of names of marine organisms and relevant taxonomic information.

C.2.2. Training
26. To support the implementation of the present Action Plan, a regional training session should be organised in collaboration with the concerned international organisations. In particular, it will deal with the main following themes:

- Methods and protocols for impact and risk assessments, and horizon scanning regarding new introductions of alien species;
- Management measures for prevention, control and eradication of invasive alien species;
- Taxonomic issues and identification of alien species;
- Monitoring methods and protocols for marine alien species.

C.2.3. Public education and awareness
27. With a view to promoting the Mediterranean countries’ national programmes for raising the awareness of the general public and target groups, including decision-makers, about the risks associated with introducing alien marine species into the Mediterranean and with bad practices that assist the secondary spread of already established alien species, it is recommended that RAC/SPA, in collaboration with the relevant national authorities and international organisations, prepare brochures, posters and other educational and awareness materials. These will be made available to the National Focal Points for SPAs, to be circulated in their respective countries.

D. REGIONAL COORDINATION
28. Regional coordination of the implementation of the present Action Plan will be guaranteed by the Mediterranean Action Plan’s (MAP) Secretariat through the Regional Activity Centre for Specially Protected Areas. The main functions of the coordinating structure shall consist in:

- taking in hand the implementation of those actions required at regional level to attain the present Action Plan’s objectives (Section C.2 above);
- insofar as its means permit, assisting the Contracting Parties in implementing the actions required at national level to attain the present Action Plan’s objectives (Section C.1 above);
- regularly reporting to the National Focal Points for SPAs about the implementation of the present Action Plan, and preparing the report mentioned in paragraph 12 above;
- collaborating with the concerned organisations and endeavouring to ensure that the Mediterranean region is involved in the pertinent international and/or regional initiatives;
- promoting exchanges among Mediterranean specialists.

E. PARTICIPATION IN THE IMPLEMENTATION
29. Implementing the present Action Plan is the province of the national authorities of the Contracting Parties. The concerned international organisations and/or NGOs, laboratories and any organisation or body are invited to join in the work necessary for implementing the Action Plan. At their ordinary meetings, the Contracting Parties may, at the suggestion of the meeting of National Focal Points for SPAs, grant the status of “Action Plan Associate” to any organization or laboratory which so requests and which carries out, or supports (financially or otherwise) the carrying out of concrete actions (conservation, research, etc.) likely to facilitate the implementation of the present Action Plan, taking into account the priorities contained therein.

In addition to collaborating and coordinating with the Secretariats of the relevant Conventions, RAC/SPA should invite IMO and FAO/GFCM to join and contribute to the implementation of the
present Action Plan. It will set up a mechanism for regular dialogue between the participating organisations and, where necessary, organise meetings to this effect.
ANNEX: IMPLEMENTATION TIMETABLE

<table>
<thead>
<tr>
<th>Action</th>
<th>Deadline</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preparation of national reports (paragraph 17)</td>
<td>2015</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>2. Set up a mechanism to promote and coordinate the actions listed in paragraph 22</td>
<td>2015</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>3. Launch MAMIAS (paragraph 24)</td>
<td>2015</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>4. Preparation of forms for reporting to MAMIAS (as provisioned in paragraph 19)</td>
<td>2015</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>5. Baseline study with information for MAMIAS (paragraph 19)</td>
<td>2016</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>6. Develop programmes for data collection and monitoring (paragraph 18)</td>
<td>2016</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>7. Launch the procedures for enacting or strengthening national legislation governing the control of alien species introduction (paragraph 21)</td>
<td>2016</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>8. Establish/update a directory of relevant specialists and organisations (paragraph 22)</td>
<td>2016</td>
<td>RAC/SPA, Contracting Parties</td>
</tr>
<tr>
<td>9. Develop programmes to raise the awareness of the general public and target groups, including decision-makers, concerning the risks associated with species introduction (paragraph 22)</td>
<td>2016</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>10. Develop online tools and web services for searching the database and extracting data (paragraph 24)</td>
<td>2016</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>11. Annual updates of national data for MAMIAS (paragraph 20)</td>
<td>2017-2019 (annually)</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>12. Develop and implement risk-assessment techniques (paragraph 22)</td>
<td>2017</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>13. Develop online mapping tools (paragraph 24)</td>
<td>2017</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>14. Organise the regional training session (paragraph 26)</td>
<td>2017</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>15. Elaborate the National Plans (paragraph 23)</td>
<td>2018</td>
<td>Contracting Parties</td>
</tr>
<tr>
<td>16. Develop an early warning system in the framework of MAMIAS (paragraph 24)</td>
<td>2018</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>17. Establish collaborations and links between MAMIAS and other international systems and organizations (paragraph 25)</td>
<td>2018</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18. Preparation of material for public education and awareness (paragraph 27)</td>
<td>2019</td>
<td>RAC/SPA, Contracting Parties</td>
</tr>
<tr>
<td>19. Develop online tools in MAMIAS for statistics and indicators, especially to support EcAp (paragraph 24)</td>
<td>2019</td>
<td>RAC/SPA</td>
</tr>
<tr>
<td>20. Organise a symposium every 3 years</td>
<td>From 2015</td>
<td>RAC/SPA</td>
</tr>
</tbody>
</table>
Annex XII

Preliminary list of projects proposed by the Secretariat for addressing SAP BIO funding needs
Preliminary list of projects proposed by the Secretariat for addressing SAP BIO funding needs

1. Monitoring of biodiversity indicators in a Mediterranean sub region (Western, Central, Eastern or Adriatic), including climate change, and including in SPAMIs
2. Rehabilitation and valorisation of Mediterranean coastal wetlands for biodiversity conservation and the socio-economic benefit of local communities
3. Initiative to support the implementation of the Dark Habitat Action Plan
4. Pilot project to shape governance models in open-sea priority areas for conservation in the Mediterranean (Alboran and Adriatic)
5. Ecological Connectivity: a tool for maritime spatial planning in the Mediterranean
6. Supporting country actions for capacity building on MPAs management
7. Supporting Countries for valorisation of MPAs: a new approach for the conservation of the marine environment and the development of eco-tourism
8. Supporting South and East Mediterranean countries in the establishment and management of MPAs
9. Marine Alien species assessing program in South and Easter Mediterranean and the Adriatic Sea (support the implementation of the Action Plan concerning species introduction and invasive species in the Mediterranean Sea)
10. Conservation of the Mediterranean Monk Seal in the Central Mediterranean, including the Adriatic
Annex XIII

Executive Summary of the Karaburun Sazan Marine Park proposed for inclusion in the List of Specially Protected Areas of Mediterranean Importance (SPAMI List)
Executive Summary of the Karaburun Sazan Marine Park proposed for inclusion in the List of Specially Protected Areas of Mediterranean Importance (SPAMI List)

During the biennial period 2013-2014 and prior to the Twelfth meeting of Focal Points for SPAs, only Albania has submitted to the RAC/SPA Secretariat a proposal for inclusion in the SPAMI List. It is the National Marine Park «KARABURUN SAZAN».

The executive summary of the Presentation report of the National Marine Park «KARABURUN SAZAN» proposed for inclusion in the SPAMI List is presented here after, whereas the full Presentation report is annexed in its original version (English).

Executive Summary (National Marine Park «KARABURUN SAZAN»)

The National Park of the marine natural ecosystem near Karaburuni Peninsula and Sazani Island has been proclaimed on 28 April 2010 by the Council of Ministers, upon the proposal of the Minister of Environment, Forestry and Water Administration. The total area of the Karaburun Sazan National Marine Park (NMP) is 12,570.82 ha, with a marine area near Karaburuni having 9,848.95 ha and a marine area near Sazani Island having 2,721.87 ha. The borders of the NMP have been defined by the above-mentioned Decision on Proclamation. The National Marine Park “Karaburun Sazan” is located in southern Albania, on the north and western shore of the Karaburun Peninsula and around the Sazani Island, at the southern end of the Adriatic and northern border of the Ionian Sea. Its territory is under the administration of Vlora municipality, part of the Vlora Region.

Karaburuni Peninsula is the most evident site of Mediterranean quality. The mediolittoral environment is characterized by coralligenous formations sometimes over a meter large built by the coralligenous alga Lithophyllum lichenoides, a protected species, which is exceptional geomorphologically, biologically and from a touristic point of view, as it may be extremely spectacular. The Island of Sazani (16 km long and 3-5 km wide), in front of Vlora and north of Karaburuni Peninsula, has an ellipsoid form oriented NNWSSE and culminates at 345 m with Gryka e Djalit hill.

The Karaburun-Sazan National Marine Park is designed to provide a pragmatic approach aiming at establishing equilibrium between sustainable economic development and natural resource conservation ensuring long term protection and maintenance of biological diversity, while providing at the same time a sustainable flow of natural products and services to support coastal communities’ development. The main objectives of its designation are:

- To protect and maintain the biological diversity and other natural values of the area in the long term.
- To promote sound management practices for sustainable production purposes.
- To protect the natural resources from being alienated for other land-use purposes that would be detrimental to the area's biological diversity.
- To contribute to the regional and national development.

This entire rocky coast presents exceptional scenic quality especially when visiting caves, canyons and small bays by boat, e.g., Shpella e Haxhi Alisë and Duk Gjoni caves (Pergent, 2002; Qiriazi and Sala, 2006; Tilot and Jeudy de Grissac, 1994). The underwater landscape is also of exceptional quality with cliffs, submarine caves and associated fauna and flora, and in some places archaeological remains (Tilot and Jeudy de Grissac, 1994; Upton, 2006). This area is certainly the best and most impressive part of the Albanian coast for the development of nautical activities such as scuba diving, which is not well developed in Albania.
Marine habitat types identified in NMP Karaburun-Sazan until 2014 include:

- Biocenosis of the lower mediolittoral rocks,
- Biocenosis of mediolittoral caves,
- Biocenosis of the Posidonia oceanica meadows (=Association with Posidonia oceanica),
- Biocenosis of infralittoral algae,
- Coralligenous biocenosis, and
- Biocenosis of semi-dark caves.

The most important and sensitive species and biocenosis in the area Karaburuni Peninsula – Sazani Island are:

- Red coral (Corallium rubrum),
- Date mussel (Lithophaga lithophaga),
- Dusky grouper (Epinephelus marginatus),
- Starfish (Ophidiaster ophidianus),
- Coralligenous biocenosis,
- Biocenosis of Posidonia oceanica meadows,
- Biocenosis dominated by Lithophyllum byssoides (Lithophyllum byssoides rims),
- Biocenosis of infralittoral algae – Cystoseira communities.
- Monk seal (Monachus monachus),
- Short-beaked common dolphin (Delphinus delphis), and
- Loggerhead turtle (Caretta caretta).

Some important crustaceans like the lobster (Homarus gammarus), the crawfish (Palinurus elephas), the greater locust lobster (Scyllarides latus), and the spiny spider crab (Maja squinado) live in this area. These species are listed in the Annex III of the Barcelona Convention, as species whose exploitation is regulated. Ophidiaster ophidianus, a sea star of international concern, is a characteristic echinoderm of precoralligenous biocenosis in this area. Noteworthy fish species of Karaburuni waters, included in the Annex III of the Barcelona Convention are: the dusky grouper (Epinephelus marginatus), the Atlantic bluefin tuna (Thunnus thynnus) and the swordfish (Xiphias gladius). (Beqiraj et al., 2010). A number of studies related to marine protected areas have been conducted in Albania. However, a lot of fundamental research for the area is still lacking. Consequently, the Management Plan is also proposing activities related to scientific research and subsequent monitoring of key marine species and habitats. This research should be targeted towards management objectives of the MPA, which have been identified through the process of MP development.

There are no villages or permanent settlements in the NMP Karaburun-Sazan. The nearest local community is in Orikum Municipality, in the south-eastern part of the MPA, including Orikumi as the main centre and the villages of Dukati, Tragjasi and Radhima. In 2011 the population of the Orikumi Municipality was estimated at 11,954, in 3,964 households (average 3 members per household, which is a decline from 2001 when average size of a household was 4 members) (Puka, 2012). The population density in the Municipality of Orikum is low, with an average of 30 inhabitants per square kilometre. The key employment sectors in the surrounding area are: tourism (tourism related businesses as hotels, bars and restaurants, construction), fishing, state/public sector (education, health, social services, local administration), agriculture and livestock rearing. Private sector provides 90% of the employment. Agriculture and farming activities are not considered to be the main source of income for most of the resident population because of the difficulties of access to markets. There are illegal fishing activities in the rocky areas of both sides of Karaburuni Peninsula and sometimes in the western side of Sazani Island. Due to the lack of road access, tourist pressure in Sazani Island and Karaburuni Peninsula, especially in its western side, has been relatively low. The most frequented activities in this part, often associated with damages of habitats, are diving and spear gun fishing.

The access to Karaburuni and Sazani is provided by boat only, but it has not been practiced very much,
because suitable beaches are far away from Vlora and Orikumi. Beaches in the western side of Karaburuni (Bristani, Dafina, Grama), despite being clean, quiet and very attractive, are very little frequented, due to the lack of road access.

The following threats to the values have been identified:
- Degradation of Posidonia meadows.
- Degradation of coralligenous communities.
- Decreased fish stocks and harvesting of marine invertebrates.
- Degradation of geological formations.
- Pollution.
- Invasive species.

It is expected that tourism would be one of the most important uses of the MPA because of its natural and cultural resources. Littering discharges, pollution, construction and overuse (overcrowded beaches) are linked to negative effects of the tourist activities. Impacts associated with the activities that tourists undertake during a visit, such as swimming, sailing, snorkelling and scuba diving can be a chronic source of disturbance to marine organisms and could result in localized physical destruction of seagrasses, algae or coralligenous formations, even under low levels of use. Divers, tourists, and boaters can damage or steal archaeological assets, as well as artefacts from the shipwrecks, and they can also anchor on these sites, which cause their destruction. The increasing tourist demand for marine fish in Vlora area has caused the recent increase in aquaculture production. Lack of control over both legal and illegal activities will deteriorate the status of important natural values including seagrass meadows, coralligenous communities and/or fish stocks.

National Marine Park Karaburun Sazan is the first and for the moment the only marine protected area in Albania. As such it has a particular importance for educational and awareness raising activities related to marine environments as well as wise use of marine resources. The Management plan for the MPA has foreseen the establishment of several underwater trails that can be used for educational purposes on marine biodiversity, geology as well as historical values.

The potential use conflicts in the site could be between tourism and fisheries. While in the surrounding area transport, energy and growing urban pressure on the coastline will compete with the development of sustainable tourism. The legal text protecting the area does not provide for any zoning. The legal text protecting the area assigns the legal authority for the management of the area to the existing administration of the National Park Llogara. The authority responsible for the Management of the NMP Karaburun Sazan is the Directorate Regional of Forest Service in Vlora through its protected area section. Municipality of Orikum is also supporting the management, particularly through law enforcement and tourism management.

The management authority (Directorate Regional of Forest Service) has no means for protecting the area. The PA section in the Directorate Regional of Forest Service has only 3 people that are responsible for managing all protected areas in the region. The PA section has no vehicles, has limited equipment (especially field and monitoring equipment) and has limited (almost no) funds to cover operational costs. There is no staff dedicated to the site. UNDP/GEF project is for some years supporting the engagement of four rangers from Orikumi Municipality and Fishermen Management Organization. These persons are carrying out surveillance tasks in the area and report to the management authority.

Recently (February 2015), the government has established the National Agency for Protected Areas (NAPA) which will take over the management of protected areas in the country. The NAPA will have regional offices where key experts will be and a number of rangers for each protected area. Management Committee of the Marine National Park Karaburun-Sazan was established in 2012. The committee is responsible for the management and protection of the area, including implementation of the management plan. Law enforcement is shared between several institutions including State Environment and Forest Inspectorate, Fishing Inspectorate, State and Border Police, etc.
The management plan for the National Marine Park Karaburun Sazan has been developed in 2014 by WWF and INCA with the financial support of UNDP/GEF. The management plan is under review/approval process in the Ministry of Environment (to be approved by June 2015). The Management Plan has been developed through participatory approach, including four stakeholder workshops, meetings, questionnaires, etc., taking into account opinions and needs of local communities, local and regional governments, as well as central government. The state budget covers only the basic staff. UNDP/GEF project is supporting protection staff (rangers) as well as other important activities including development of the management plan and information measures and training. Total estimated funding necessary for the implementation of the NMP Karaburun-Sazan Management Plan for a 10 year-period amounts to EUR 678,000, including human resources and management activities. The Management Committee will ensure funding for the implementation of the Management Plan from the following funding sources: State Budget; Self-financing; Assistance from international organizations; Donations and sponsorships.
Annex XIV

Recommendations by the 12th Meeting of the Focal Points for SPAs concerning the future development of the activities on MAPs in ABNJ and the expected new project on this issue
Recommendations by the 12th Meeting of the Focal Points for SPAs concerning the future development of the activities on MPAs in ABNJ and the expected new project on this issue

POINTS OF RATIONALE

Achievement of the Aichi target 11 by 2020 through the implementation of the SPA/BD Protocol.

Suggestion to the NFP Technical meeting plenary of the SPA/BD Protocol for guidance of the RAC/SPA on the PoW and new projects on MPAs in Areas Beyond National Jurisdiction.

Consideration on the (three) areas already identified: Alboran Sea, Sicily Channel, Adriatic-Ionian Sea.

ELEMENTS FOR RECOMMENDATIONS OF THE MEETING TO RAC/SPA

1. EBSAs, as stemming from the Malaga meeting and included in the CBD repository, are considered as a common scientific basis to promote Area-Based Conservation Measures (ABCMs), including MPAs (as stated in Aichi Target 11) and a scientific tool, contributing to the development of a sound network of Mediterranean SPAMIs. It is pointed out though that so far there is no commitment or obligation for States to take concrete measures of establishing MPAs or ABCMs. (CBD Dec. XII/22) on the basis of these EBSAs.

2. EBSAs are still rather general as regards their scientific assessment, and different from each other in terms of description and content. Therefore, they need further scientific evaluation and assessment, though they already give a good indication of the location of significant areas. To facilitate setting out priorities in the context of the Barcelona Convention, and to progress toward the achievement of the Aichi Target 11 by 2020, it would be useful to identify specific hotspots, within (some) EBSAs, applying scientific, environmental methodologies and criteria (focusing on important and fragile ecosystems, habitats and species) that deserve urgent conservation and protection (restoration) where appropriate, in close cooperation with relevant international organizations.

3. Hotspots should be identified and addressed in a comprehensive scientific manner, ensuring their environmental wholeness (entity? coherence?), irrespective of legal or institutional borders that will be considered at an appropriate stage.
4. Human pressures and threats, impacts on the marine environment and the status in each hotspot, should be identified and assessed (also in relation to ECAP EO/OO/indicators, within the ECAP monitoring programme), in particular by using marine spatial planning, as much as possible, and taking into consideration the cumulative pressures and impacts on the same marine areas (hotspots).

5. Appropriate means, tools and processes, based on the already existing international and national legal frame (as appropriate for marine waters under NJ and high seas respectively) should be identified to address each specific pressure and threat assessed in each hotspot. Possible gaps of legal or institutional nature should be identified and reported to the Parties for consideration by the Barcelona Convention, as appropriate, on how to better overcome them. To this end, specific and focused cooperation with relevant international and regional conventions and agreements should be investigated.

6. Inclusion of related Adriatic-Ionian Sea activities in the implementation of the third pillar of the European Union Strategy for the Adriatic and Ionian Region (EUSAIR) could facilitate overcoming such gaps in this macro-region.

Furthermore, and in order to increase effectiveness and integration, when preparing the next steps the Secretariat is invited to ensure that there will be:

- full involvement of (all) relevant countries, through appropriate consultation process, in the preparation of the project and in its discussion with donor/s;
- participation of (all) relevant countries so wishing and, as appropriate, relevant international organizations in the Steering Committee to overlook on the project's implementation;
- transparent and competitive process to identify the team project, in consultation with (all) relevant countries;
- SMART objectives for the project, with adaptive capacity to changing implementation needs;
- clarity of objectives, content and timetable for each one of the projects to be included in the work programme for the next biennium.