Analyzing Environmental Trends using Satellite Data: Selected Cases

Environment Change Analysis Series
Analyzing Environmental Trends using Satellite Data: Selected Cases
Contents

Foreword ... i

Itaip Dam and Iguaz River: Economic Development and Forest Survival 1

- Location ... 2
- Historical Isolation ... 3
- Guair and Itaip .. 4
- Itaip and Deforestation .. 5
- Iguaz and Tourism ... 6
- Ongoing Concerns .. 7
- References ... 8

Papua (Irian Jaya): Tropical Forest and the Oil Palm Frontier .. 9

- Papua (Irian Jaya)'s Place in Indonesia .. 10
- Environmental Impacts of Development ... 10
- Ongoing Concerns ... 13
- References .. 14

Lake Chad: Sustainable Use of Water and Land in the Sahel ... 15

- Characteristics ... 16
- Causes .. 18
- Climate .. 18
- Human Use ... 18
- Ongoing Concerns ... 20
- References .. 22

Ataturk Dam and Harran Plain: Re-Engineering the Cradle of Agriculture 23

- The Physical Context ... 24
- Ecology and Biodiversity .. 24
- The Region's Peoples ... 25
- Ataturk and Harran Plain: Water Resources and Agricultural Change ... 28
- Ongoing Concerns ... 29
- References .. 30

The Sundarbans: Mangroves, Tigers and Shrimp Farms .. 31

- Location and Conditions .. 32
- Changes ... 33
- Ongoing Concerns ... 35
- References .. 36
Foreword

The world is a rapidly changing place. While this is stating the obvious, it is not always clear what the nature of these changes is. Many are the result of anthropogenic, or human, influences. Other changes may be the consequence of natural variation in the Earth’s biophysical systems. Increasingly, we are able to identify and monitor these changes from space, using satellite observing systems. Five locations around the world were studied by the United Nations Environment Programme (UNEP) through their office in Sioux Falls, South Dakota (USA) and are highlighted in this publication. These locations are: Lake Chad in West Africa; the Sundarbans along the India-Bangladesh border; Papua (Irian Jaya) in Indonesia; the Paranaean Forest near Itaip Dam and Iguazù Falls at the juncture of Argentina, Brazil and Paraguay; and the Ataturk Dam and the Harran Plain in southeastern Turkey.

Human population growth is often a major factor in environmental change. More people require more resources, with attendant environmental effects. The dramatic images of population growth and land use change near Iguazu Falls present visual evidence of this. But population growth is by no means the only factor. The internationalization of markets, resource exploitation due to a variety of reasons, and governance may play an important role. Development plans are too often designed to meet narrow, short-term objectives that may have unintended adverse consequences on the environment. There is more emphasis on promoting change than dealing with the consequences of this change. And there is often little concern for society or the environment when the emphasis is on political or technological factors.

Discussions over the past thirty years have focused on sustainable development and the need to consider the impact of our actions on human well-being. But as these images and case studies demonstrate, the unintended consequences of our actions can have dramatic effect on both humans and the natural environment. Analyzing these changes, by examining satellite data over various time periods, can provide scientific evidence and an early warning of the potential long-term consequences of our development decisions. UNEP is playing a major role in both environmental assessment and early warning, in an effort to promote actions to mitigate some of the unintended but negative impacts to people and their environment of development. This publication represents the first of a series of targeted assessments, and we look forward to your comments and reactions.

Steve Lonergan, Ph.D.
Director
Division of Early Warning and Assessment (DEWA)
United Nations Environment Programme
Brasilia, the capital of Brazil, straddles South America’s great hydrologic divide. North of this line lies the Amazon basin, the world’s largest. South of this line lies South America’s second great basin, the Paraná, which is among the world’s largest, but almost unknown outside the region. While the Amazon is only partially dammed and logged, the Paraná River is being dammed top to bottom and the Paranáense forest is almost gone.

Isolated from other rainforests by natural barriers, the Paranáense forest developed into a distinct and highly diverse ecosystem with thousands of species which live nowhere else. Now less than 10% of it remains. The Paranáense forest in Brazil, for example, is the most threatened among all the forests of the Atlantic Forest biome, and has lost 92 percent of its 1.1 million square kilometres of original forest cover (World Bank, 2003).

The causes of its deforestation are many and some are common to forests everywhere. However, this case shows how national borders can preserve natural communities and how foreign capital crossing those borders can contribute to their destruction.
In this 1973 Landsat MSS image, small-scale clearing is visible west of Ciudad del Este in Paraguay.
Color key: Green - vegetation; Blue - water; White - developed areas/agriculture.

23 Feb 1973

Location

The Paraná River together with the Paraguay and Uruguay rivers form the La Plata Basin, which is one of the five largest water systems in the world. The La Plata Basin is shared by five countries: Argentina, Bolivia, Brasil, Paraguay and Uruguay.

These satellite images center on the mouth of the Iguazú River, a tributary of the Paraná. The Iguazú flows west from the right
In this 2003 Landsat ETM image, clearing is widespread, the Itaip Dam is complete, and national park boundaries are sharply visible.

In this study area, the Paraná crosses the continent’s cultural, linguistic, administrative, and economic border between the Spanish and Portuguese regions of South America. For most of its history, this area was more a quiet buffer than a busy crossroads.

Historical Isolation

In this study, the Paraná flows south. This study focuses on the meeting point of Brazil, Argentina, and Paraguay. From the mouth of the Iguazu, Brazil is northeast, Argentina is southeast, and Paraguay is west. Just upstream are the famous Iguazu Falls, where the Iguazu dips south and narrows; national parks flank the falls on both sides of the border. At the mouth of the Iguazu is the tri-city of Foz do Iguaçu (Mouth of the Iguazu) in Brazil, Puerto Iguazu (Iguazu Port) in Argentina, and Ciudad del Este (Eastern City) in Paraguay. North of the city, since the 1970s, lies the Itaip Dam, the world’s largest hydroelectric plant.

Other much smaller reservoirs also appear in the later images amid agricultural fields and the few remaining patches of Paranaense forest.
For example, during most of the 1600s and 1700s, Jesuit missionaries organized this area into townships of armed Guaraní Indians, defending themselves against Spanish settlers in the central core of Paraguay, and against Portuguese slave traders from Brazil. Misiones, the northward finger of Argentina, is named after this defensive buffer, whose surviving mission buildings are now tourist attractions.

Upon independence, Paraguay still isolated itself from Brazil and Argentina. Paraguay's first president sealed off his country, bringing commerce almost to a halt. During the third presidency there was the calamitous War of the Triple Alliance (1864-1870), in which Paraguay suffered severe losses in terms of population and land base. Though much of its remaining land was bought by foreigners, Paraguay remained an isolated buffer state between its former enemies. It had a mixed-race population speaking Guaraní, a subsistence economy, and a very poor transportation system. Paraguay normally tilted toward Argentina, especially because its commerce owed through the Paraná and Buenos Aires (Hanratty and Meditz, 1990).

This changed in the 1940s and 1950s as Brazil's population and economy outpaced Argentina's. The same government which built Brasília also started harnessing the Paraná within its own territory, and sought to dam it along Paraguay's border as well.

Guairá and Itaipú

Brazil and Paraguay share about 175km of the Paraná River, from the Iguazu up to Guairá Falls. Guairá Falls were formed by the Paraná damming up to a width of almost 4km behind the Maracajá mountains, then breaking through and down into a tall, narrow canyon (Bonetto, 1994). Guairá had the greatest volume of any waterfalls in the world, creating a roar heard miles away, a perpetual cloud of mist, and a constant stream of tourists. Paraguay and Brazil each claimed the falls (called by Brazil the Sete Quedas or Seven Falls) since the 1870s treaty, which placed the border at the falls but did not specify a precise point.

In the early 1960s Brazil considered diverting part of the Paraná around Guairá Falls for an
all-Brazilian hydroelectric plant. Paraguay denounced the potential impact on its falls and eventually negotiated with Brazil, resulting in an agreement to dam the Paraná in an equal partnership with each country receiving half of the produced electricity. In practice, Brazil built and financed most of the dam, and Paraguay sold most of its excess electricity to Brazil at a low rate (da Rosa, 1983).

The Itaipú hydro-electric plant, with its 1,350 km² reservoir (Itaipú Binacional, 2004), was built between 1973 and 1982, near the mouth of the Iguazú, after the conclusion of complex diplomatic negotiations between Brazil and Paraguay (Souza, 2002). Almost 200m high, Guairá Falls was buried under water. Farmland and riparian ecosystems were inundated and the seasonal flow of the river was further interrupted. But such direct effects were the tip of the iceberg, dwarfed by the economic and land cover changes that Itaipú accelerated.

Itaipú and Deforestation

Since the Itaipú construction, most of the deforestation shown in these images has taken place in eastern Paraguay. This is partly due to domestic pressures. Until recent decades, Paraguay’s eastern quarter was sparsely settled; the population core was in central Paraguay. Many people there practiced shifting, subsistence agriculture as squatters on the fringes of large estates. During the 1960s, population pressure broke this system down as squatters and landowners clashed. In the so-called March to the East, thousands of rural families migrated to create farms in the forests of the Paraná basin, encouraged by the Rural Welfare Institute, a resettlement agency created in 1963.

The search for profits in international markets rapidly changed this area’s rivers and forests. In 1956, Paraguay and Brazil agreed to link central Paraguay to the Atlantic with roads, a bridge over the Paraná, and a duty-free port on the Brazilian coast, thus breaking Paraguay’s dependence on Argentina. In the 1973 satellite image, you can see this road running west from the Paraná, with the classic shbone pattern of small elds along the side roads fanning out into the forest. Many of these new elds were cotton, a traditional Paraguayan crop, but most were soybeans, which exploded from almost zero production after the international price tripled in 1973 (Hanratty and Meditz, 1990).

The Itaipú contributed to the acceleration of these changes, bringing more deforestation. Thousands of Paraguayans worked on the dam.
This boomed the national economy, doubling the previous decade’s growth and raising agricultural demand even as new lands were cleared. Much of this clearing was done by Brazilian farmers or agribusinesses who logged large areas and then either raised export crops or retailed the land to farmers, who were often Brazilians. Still more forest went to the three booming cities south of Itaip. Published deforestation statistics differ on the details of how much and when, but they agree on the trend: shrinking fast and accelerating in recent decades. One study from Landsat images indicated that in the 1990s, one third of eastern Paraguay’s remaining forest was cleared (Ibarra and Nu ez, 1998; Altstatt et al., no date).

When the dam was completed and the construction boom over, thousands of workers found it hard to return to farming, as much of the land was taken. The new farmers were mechanized and modern; they used all their land, wanted fewer workers, and tolerated no squatters. One solution for the Paraguayan situation was for Itaip jobs to be replaced, directly or indirectly, by tourism.

In Brazil, hundreds of farms were expropriated for the construction of the Itaip reservoir and the farmer families were forced to migrate (Zaar, 2000). Some of them were resettled but others did not receive any compensation.

The differences between the countries in land use changes and deforestation owe much to environmental protection initiatives and policies passed in Brazil and Argentina to protect the Paranaense forest, notwithstanding the huge area ooded for the Itaipu reservoir. Argentina created a national park (Parque Nacional Iguazú) in 1934, protecting 67,000ha (Argentina Parques Nacionales, 2004). In Brazil, the forest area was also protected by a national park (Parque Nacional do Iguaçu) created in 1939 and legally consolidated in 1981, covering 185,262ha (IBAMA, 2003). These two Parks are both World Heritage Sites (Bailby, 1995; UNEP-WCMC, 1995; UNEP-WCMC, 1997). They include over 2,000 plant species, jaguars, otters, anteaters, and hundreds of species of birds, including almost half of Argentina’s bird species. Efforts are underway to preserve forests outside these parks.

Iguazú and Tourism

The Iguazú River is not held back by a standing barrier like Guairás mountains or Itaip’s concrete; it is held up by an underlying plate of hard rock through which it eventually drops. The Iguazú Falls are famous for their breadth,
the beauty of 275 waterfalls dropping into a 3km long horseshoe canyon.

Iguazu Falls, like Itaip, is an economic development of the river’s power. The real development is not the buildings, roads and catwalks, but the parks’ services, promotion, and protection. The Landsat images show the parks’ boundaries sharpening between 1973 and 2000, as Brazilian elds recede from within the park, while Argentine elds approach the park. The parks preserve one of the last fragments of intact Paranaense forest, a wonder of living diversity.

Tourism is now a large part of the local economy. Many tourists owing out of Foz do Iguacu do not visit the falls, the forest, or Itaipu, but cross the Friendship Bridge to shop in Paraguay’s tax free zone and bargain shops (Bailby, 1995). Trade is itself a major attraction for tourists to the region.

Ongoing Concerns

Proposals to further develop the immediate falls area with flood lighting, tower restaurants, or a tourist railroad have drawn concern and criticism. Broader threats to the park include understaffing, poaching of palms, animals and sh, and a controversial road through the park which has been closed, reopened, and reclosed (Bailby, 1995).

On the heels of Itaipu, Paraguay and Argentina agreed to build the Yacyretu Dam. Politics stalled Yacyretu for decades and proposed dams at Corpus, Itatí-Itatí-Cor, and other locations have generated ongoing controversy. In 1995, the former combatants in the War of the Triple Alliance formed a four-way common market, MERCOSUR. One subsequent proposal, called Hidrovia, would transform the Paraná, Paraguay, and Uruguay rivers into a water highway carrying goods between the MERCOSUR partners. Hidrovia has already gone through several waves of controversy and revision (IRN, 2003). Whether the natural environment will fare better or worse under capitalist democracies, compared to the previous capitalist dictatorships, is still an open question.

The Paranaense Forest is an environmental asset which protects biodiversity and provides environmental services important at local, national, and global levels. The protection of this forest will require concerted efforts and joint actions by Argentina, Brazil, and Paraguay based on common objectives and a shared vision. The institutional basis for this joint action already exists in the form of the Environmental Framework Agreement of the MERCOSUR, approved by Argentina, Brazil, Paraguay, and Uruguay in 2001 (MERCOSUR, 2002).

The need to generate income and promote development, partially through international markets, rapidly changed this area’s natural systems. The damming of the rivers for hydroelectricity had enormous ecological, economic, and social impacts on the region and its people. The exception is the lower Iguazu, which underwent a milder development process focusing on the promotion of tourism.

The satellite images capture the changing landscape. A wide-view image from 2003 shows how political borders still strongly affect development; Brazil and eastern Paraguay contrast sharply with the Misiones nger of Argentina where many conservation measures now focus. The story of the Itaipu clearly shows that development can take different paths and that countries can achieve economic development with a lower cost to the environment and greater social benefits for the local people.
References

Papua (Irian Jaya) stands out among Indonesia’s provinces. It contains the highest point in Indonesia, at 5,000m above sea level. It is the largest province, covering the western half of New Guinea, the world’s second-largest island at almost four times Britain’s area. It has the most forest slated for logging, more than a quarter of the national total (Casson, 2000). It is the easternmost province, almost 3,000km from Jakarta, and until recently one of the least populated. It was among the last to be surrendered by the Netherlands, not finalized as an Indonesian province until 1969. Papua (Irian Jaya) has until recently escaped the large scale development that has decimated the forests of Sumatra, Borneo, Java and other more western islands. The Papua (Irian Jaya) frontier is experiencing increased transmigration from the eastern islands, increased deforestation, and increased introduction of monoculture oil palm plantations. Management of the forests is complicated by competing requirements of indigenous Irians populations that has created a strong separatist movement (Jakarta Post, 2003).
Papua’s (Irian Jaya’s) Place in Indonesia

Indonesia is the old Dutch East Indies. Japan broke European colonialism here as it did in much of Asia by occupying the region in the Second World War. After the war, the Dutch tried unsuccessfully to reclaim their colonies, the one exception being what was then called West New Guinea, where they maintained control even after Indonesian independence. When this issue brought the Netherlands and Indonesia to war, the United Nations brokered a deal in which it administered the province briefly, handed it over to Indonesia in 1963, and oversaw a 1969 plebiscite for the Irians to decide whether to stay in Indonesia. This plebiscite was not a mass vote but a unanimous affirmation by about one thousand local leaders; it has been characterized variously as a traditional consensus-building process, or as a show for international opinion controlled by Jakarta.

Meanwhile, a complicated military coup had taken place in 1965-1966. The new regime was anticommmunist, friendly to western nations, and eager to industrialize Indonesia’s economy using outside investment. The military, long involved in civilian affairs, participated in many new development projects, as did the president’s family (Frederick and Worden, 1993). Many of these investment schemes would affect the new province now called Papua (Irian Jaya).

Environmental Impacts of Development

Petroleum led Indonesia’s industrialization, and Papua’s (Irian Jaya’s) market economy is now dominated by minerals as well, from oil in western Papua (Irian Jaya) to copper from the giant Freeport mine in the center. But these industries are not labor-intensive, and do not directly involve or enrich the majority of the population (Mathews, 1999). Though the area mined will continue to increase, mining tends to have a local rather than a wide-spread effect on land cover.

Transmigration, an official policy since Dutch colonial days, increased after 1965. Under this program, the central government moved more than a million families from overpopulated Java to new villages in the sparsely-populated outer islands, including Papua (Irian Jaya). The six-to-seven million sponsored migrants may have been accompanied by twice that many spontaneous migrants. Transmigration aimed to improve the economic well-being of migrants, to ease population pressure in sending regions, to secure national boundaries, and to provide a workforce for labor-intensive industries in places like Papua (Irian Jaya) with many natural resources (Frederick and Worden, 1993).

One of these labor-intensive industries is certainly logging. Indonesia remains three-quarters forested, including perhaps a tenth of the world’s remaining primary tropical forest. Under the Indonesian constitution, the government owns all natural, or primary, forest and can sell or lease it in long-term leases known as concessions. Some concession holders are foreign companies, but most are controlled by Indonesians in part or full, often with ties to the government. In recent decades, the government has pushed for exports of processed wood products, rather than raw logs. Therefore, Papua’s (Irian Jaya’s) greatest export, besides copper, is plywood and other forms of constructed board (Baker, 1994; Mathews, 1999).

Instead of growing back into secondary forest, these logged primary forests are now often planted to oil palms (Wakker, 1999). This African tree grows bunches of fruit which produce plentiful
Oil. It was initially used as a colorful, flavorful cooking oil, later in inedibles like soap, and only recently refined so as to be a bland, colorless food additive (Kiple and Ornelas, 2000). Oil palms were found to thrive in the wet, pestless heat of equatorial Asia, and today Malaysia and Indonesia have about 50% and 30% of world market share respectively, with Indonesia's share rising (Casson, 2000). Modern oil palm varieties are carefully bred, require high inputs such as fertilizer, and are always labor-intensive. The international market for their oil has ballooned since the 1960s.

The satellite images on the next two pages show Indonesia's extreme frontier, not far from the border of Papua New Guinea. The tropical forest, inhabited by humans for thousands of years, is just starting to experience industrial-scale clearing. Oil and gas exploration are one cause, but the largest factor is logging. Rather than let the forest regrow, companies often plant the cleared lands to African oil palms, for greater, faster profits in the international market for edible fats. Indigenous residents often lose their lands to immigrants from central Indonesia, often sponsored by the government, who farm, process timber, or work the labor-intensive palms. Papua (Irian Jaya) is at a moment of sudden, fundamental transformation.

The satellite images demonstrate how transmigration, logging, and oil palms have affected Papua (Irian Jaya). The 1990 image shows jagged roads as the only breaks in the forest cover. The 2000 image shows (through popcorn clouds) a rectangle of cleared forest with roads gridded every 1,000 by 250 meters. It also shows a new road heading west to the river settlement of Asiki, which has been transformed.
for indigenous residents, compliance with applicable laws, sustainable practices, and preservation of primary forest. Non-complying plantations would be ineligible for financing for three or five years, depending on the bank (Rabobank, 2001; WRM, 2001).

Clearly, social and environmental issues in Papua (Irian Jaya) are tightly linked. Transmigrants come for natural resources. Indigenous Irians, who are physically and ethnically distinct from the transmigrants, sometimes resent transmigration as a deliberate Javanization or Asianization of their province, in which the benefits of development go to outsiders. Logging inevitably clashes with the interests of indigenous forest dwellers, whose tending of trees and hunting of wild game create a weaker legal claim to land than does farming. Oil palm plantations, by replacing forest with monocrop farms, make these conflicts long-term challenges.

Ongoing Concerns

In January 2001, a faction of the Free Papua Movement kidnapped 16 workers, including Koreans and 5,000 Indonesians, processing trees into plywood and other manufactured board. By 2002, the plantation of about 15,000 ha was almost all cleared, and about half had been replanted with oil palms (Korindo Group, 2003).

Later in 2001, three of the Netherlands largest banks, citing input from environmental organizations, released new criteria for their financing of Indonesian oil palm plantations. These criteria combined social and environmental concerns, including respect for indigenous residents, compliance with applicable laws, sustainable practices, and preservation of primary forest. Non-complying plantations would be ineligible for financing for three or five years, depending on the bank (Rabobank, 2001; WRM, 2001).

Clearly, social and environmental issues in Papua (Irian Jaya) are tightly linked. Transmigrants come for natural resources. Indigenous Irians, who are physically and ethnically distinct from the transmigrants, sometimes resent transmigration as a deliberate Javanization or Asianization of their province, in which the benefits of development go to outsiders. Logging inevitably clashes with the interests of indigenous forest dwellers, whose tending of trees and hunting of wild game create a weaker legal claim to land than does farming. Oil palm plantations, by replacing forest with monocrop farms, make these conflicts long-term challenges.
References

In the Sahelian transition zone between the Sahara Desert and the tropical rainforest lies Lake Chad and its drainage basin. In the 1960s Lake Chad was the sixth largest lake in the world, but in the past 35 years the lake’s area has shrunk by 95%. Causes of lake level fluctuation involve complex interactions among climate change, seasonal variability, changing human uses of water and the lake’s shallowness. Under the climatic conditions of the past several thousand years, Lake Chad has balanced between being a shallow lake and a deep wetland. Recent studies suggest that Lake Chad is in danger of becoming a casualty of decreased precipitation and increased water loss from irrigation. Since water shortage spurs more irrigation attempts, these two factors interact to accelerate Lake Chad’s decline. With continued climate change and increasing human population, the water level may continue to drop. Development in the Basin must take into account this fragile and highly variable ecosystem or we may witness the death of Lake Chad and the further degradation of livelihoods that depend on it.
Characteristics

Lake Chad is extremely shallow. Seen from space, the lake can be recognized as a wetland with open water in two basins, divided by ancient sand dunes, which act as a swamp belt. Located at the southern edge of the Sahara desert, where temperatures can reach 40°C, the existence of Lake Chad seems like a fascinating enigma. Even in normal periods, Lake Chad’s maximum depth was no more than 5-8m (Schneider et al., 1985). As a result of the lake’s shallowness, fluctuations in volume result in substantial changes to surface area. The lakebed itself is not at, but lies on an ancient bed of fossilized sand dunes, many of which surface as islands when lake levels fall (Sikes, 2003). Submerged dunes form hidden anchorages for floating vegetation, which cover vast spaces of the lake.

The lake is given life from the wet south by runoff from one very large river and several smaller, intermittently owing rivers. About 95% of Lake Chad’s water comes from the Chari-Logone River, entering the lake from the southeast, with its sources in the humid uplands of the Central African Republic. The Komadugu-Yobe River, which owns from Nigeria in the south, enters the lake in the northwest and historically has contributed about 5% of Lake Chad’s water. The Yedseram and the Ngadda Rivers ow toward Lake Chad from northern Nigeria and Cameroon. Prior to entering Lake Chad, the Yedseram joins the Ngadda to form an 80km² swamp with no de nable watercourse to the lake.

The water is surprisingly fresh for a closed system, making the lake a valuable resource. As the second largest wetland in Africa after the Okavango, Lake Chad hosts biodiversity of global significance (Nami, 2002). The lake’s unique mix of terrestrial and aquatic habitats forms a sanctuary for ora and fauna within the greater semi-arid Sahelian savanna. The wetlands of Lake Chad were home to many large mammal species such as gazelle, pataas monkey, hyena, cheetah, wild dog, otter, African elephant and hippopotamus. These species have been hunted to the point where some species no longer exist and others have severely reduced populations. The replacement of these large mammals with cattle has effectively degraded the wetlands ecosystem. Crocodiles and hippopotamus were particularly important agents for maintaining a healthy wetlands ecosystem (Mockrin and Thieme, 2001).

Within the lake itself, major wetland plant communities are (1) floating sudd communities, (2) permanent reed swamps, and (3) seasonal herbaceous swamps (Verhoeve and De Wulf, 2001). Grasslands dominate in areas that ood

The within year lake level variation for Lake Chad is as great as the between year variation. The May-Oct rains, with up to 50% falling in August, reach Lake Chad by Oct-Nov. The Chari-Logone river systems rst fill the south basin. If the rain fall is suf cient as it was in 2002, then water from the south basin will breach the barrier between the basins along the west shore, as can be seen in the Nov-Dec 2002 image.
with Acacia woodlands growing interspersed with the grasslands. Dryland woodlands in sandy soils further from the lake include baobabs, desert date palms, African myrrh and Indian jujube (Mockrin and Thieme, 2001).

Lake Chad’s level has varied greatly. Over 55,000 years ago Paleo-Chad formed a freshwater inland sea covering 1.95 million km². Lake levels decreased until, between 5,000 to 2,500 years ago, the lake assumed its current level with periodic oscillations. By 1908 lake levels were so low that the lake resembled a vast swamp with small northern and southern pools (Sikes, 2003). During the 1950s, water increased continuously, joining the southern and northern pools.

In 1963 the lake covered an area of approximately 22,902 km². Thereafter, water levels again decreased. In October 1972 the lake covered 16,884 km², a decrease of 5,018 km² since 1963. The most dramatic reduction occurred during a 15-year period between 1972 and 1987 when the lake area decreased from

Four countries share Lake Chad’s shores: Chad, Nigeria, Niger and Cameroon.
16,884km² to 1,746km². Between the mid 1970s and the present, the seasonal cycles of the very shallow lake have become more extreme. Since 1974, the lake minimums have been consistently lower than any previous measured low. Between the mid 1980s and the mid 1990s, the north basin rarely held water at all. However, since the mid 1990s the lake levels have started to rise in response to increased rainfall. (FEWS, 2003).

Causes

The complex interaction between climate and human causes drives lake level fluctuation. Interest is focused on the rapid decline since 1963. Recent modelling studies attempt to quantify the interplay of climate variability and water use. In summary, climate variability sets the parameters within which humans must operate. As the human impact on the local landscape becomes more severe, humans are in danger of changing these parameters through mismanagement of the water resource.

Climate

The climate near Lake Chad is hot and dry with highly variable annual average rainfall, ranging from a recorded high of 565mm in 1954 to a low of 94mm in 1984 (Olivry et al., 1996). However, lake level relies little on local precipitation with the Chari-Logone sources receiving average rainfall of up to 1600mm. Precipitation in the basin varies geographically, with much more in the south than north. Rainfall also varies seasonally with about 90% of it falling from June to September (USGS, 2001). During the dry season, low humidity and high winds increase evaporation rates from the lake. Although evaporation is generally very high, salinity is not an issue since the heavier saline water leaves the lake through souses in the lake oor. Water loss through the lake bed accounts for about 8% of the water out ow from the lake (Hughes and Hughes, 1992).

During the past 35 years, the climate around Lake Chad has changed. In the late 1960s the western Sahel appears to have undergone an abrupt hydro-climatic transition from a wetter to a drier rainfall state. In the mid-1960s, rainfall became intermittent, culminating in drought from 1972/1974 and 1983-1984. In the mid 1990s, rainfall again increased with several years of high rainfall occurring up to the present, but there are still no assurances that the drought is over. The size of the geographical region affected by this climactic change and the duration of this phenomenon is without precedent in hydro-climatic chronicles. Some authors speculated a climate rupture (Carbonnel and Hubert, 1985 in Nami, 2002).

Human Use

During the 1960s, human demand for water resources near Lake Chad grew rapidly. In 1960, an estimated 13 million people lived within the catchment area. By 1990, the population had doubled to 26 million (UNEP, 1999). Pressure on water resources increases with increasing population density in the largely agricultural economy of the basin (Nami, 2002).

Agriculture is the main activity in 60% of the Lake Chad basin. Between 1983 and 1994, irrigation quadrupled (World Bank, 2002). At present, approximately 135,000 hectares of land are irrigated in the Lake Chad basin. The most extensive irrigation projects, totally over 100,000 hectares, have been developed in Nigeria, where the Southern Chad Irrigation Project alone had
the goal of irrigating 67,000ha of land with an average cropping intensity of 130%, and resettling about 55,000 families onto the irrigated land (Sikes, 2003). Unfortunately, since the droughts of the early 1970s the water level of Lake Chad has not been high enough to reach the intake canals of the irrigation system (Sarch and Birkett, 2000).

In addition to irrigation, dams have influenced rivers that feed Lake Chad. In the Kano and Hadejia basins, there are believed to be about 23 earth dams. The Komadugu-Yobe River system provides an example of the impact of human diversion. The upper basin used to contribute approximately 7km³/yr to Lake Chad. Today, the bulk of this water is impounded in reservoirs within Kano province of Northern Nigeria, so that the system only provides 0.45 km³/yr. The likelihood of any sustained increase in water discharge down the Komadugu-Yobe is slim, since the demand for water for irrigation in the densely populated upper basin near Kano will not decrease.

Although the contribution from the Komadugu-Yobe drainage system was only 10% of the total contribution to Lake Chad, once the lake divided into a north and south basin its loss to the north basin became critical. The situation is critical in the north basin as good pastures for livestock become harder to find (Sikes, 2003). The loss of water behind dams is further compounded by the increase in irrigation from wells and bore holes since the 1960s resulting in lower ground water (Sikes, 2003).

Research by Oyebande (2001) suggests that the impact of the change in the flow regime is caused by the dam construction in the upper Komadugu-Yobe river system. He suggests that the river course of the Komadugu-Yobe was heavily influenced by the spring flooding prior to the construction of the dams, and that the levelling out of the flow would result in less water reaching downstream provinces and Lake Chad even if the flow volume was increased.

Input from the Chari-Logone river system that was once approximately 37.8km³/yr decreased in the 1980s and 1990s (Olivry et al., 1996). Human consumptive uses are currently estimated at less than 5% of the basin yield [by Olivry] for the period 1953-1977 and were not thought to impact the Chari-Logone river system, except during times of low precipitation. Thus at this time, lower input is typically due to lower rainfall (Olivry et al., 1996).
Using an integrated biosphere model, run with and then without extraction for irrigation, Coe and Foley (2001) conclude that during the last 35 years, water level fluctuations in Lake Chad were caused by both climate variability and water use. Since the 1970s, with marked population increases in the area, human activities have begun to play a significant role in lake decline. Human activities act in concert with climate variability to accelerate the decrease in lake levels. The onset of dry climatic conditions in the early 1970s induced people to dramatically increase irrigation activity, thereby almost doubling water loss from Lake Chad (Coe and Foley, 2001). The balance between lake and wetland has always been precarious, as inputs balance loss to groundwater and to evaporation. The increased irrigation, which would be modest for many river systems, is very critical in a carefully balanced climatic-ecological system such as Lake Chad's.

Traditionally, fishing and farming near Lake Chad have followed the rise and fall of the lake both seasonally and through the years. During dry seasons and dry years farmers move to the very rich soils of the newly exposed lake bottoms, and then fish during the floods (Sarch and Birkett, 2000). The cost to export surplus crops has also increased as cheap water transportation across the open lake is increasingly replaced by shipping via road or maintained canals. The introduction of irrigation and the movement of people to the lake, who only know the lake in its present state, shifts the perspective from water use to water management. In fact, a danger exists that if the water were to rise to 1960 levels, the longtime inhabitants of the basin may no longer be able to retreat from rising waters, as the land behind them may become increasingly exploited for irrigated agriculture as the water once again becomes available for irrigation.

Ongoing Concerns

As Lake Chad continues to shrink, its future as Africa's second largest wetland is uncertain. Plants that require water, or are adapted to changing water levels, are increasingly disadvantaged compared to plants that have adapted to water stress. Since little freshwater enters the north basin from the Komadugu-Yobe, the basin can quickly become saline if it is isolated for many years (Dumont, 1992). As productive perennial grasslands are replaced by annual grasses, biodiversity declines (Verhoeye and De Wulf, 2001). Declines in vegetation associated with lake ecosystems may result in increased erosion and ultimately in desertification. Anthropogenic emissions of greenhouse gases are altering world climate. The IPCC predicts reduced rainfall and run-off, and increased desertification, in the Sahelian belt near Lake Chad (IPCC, 2001).

The biodiversity of fish and birds in the Lake Chad ecoregion is also threatened. The drying up of water basins and ponds both directly and indirectly increases fish mortality. The Alestes naremoze, a fish species which once made up...
approximately 80 per cent of the sheries catch, is now rare due to the disappearance of natural spawning beds. The life history of birds is also impacted as the lake shrinks. Lake Chad is an important resting place for migratory species crossing the Sahara, such as the European white stork. Without the unique refuge offered by this watering hole, migrations may be impossible to complete.

Diminishing water resources and continued ecosystem decline will also have severe health and economic impacts for human populations around Lake Chad. The northern states of Nigeria and Cameroon are among the poorest states in these two countries (World Bank, 1995a and 1995b). Sarch and Birkett (2000) report an annual sh catch in the Lake Chad basin between 1986 and 1989 of 56,000 tons, compared to an annual catch of 243,000 tons between 1970 and 1977. As sh decline, cultural loss may occur along with economic loss. The islands and swamps of Lake Chad are home to the Yedina, a unique ethnic group that is heavily dependent on shing (Sikes, 2003). Around the lake itself, domestic plant and animal production may become untenable due to increasing soil erosion and desertification. In the lower Yobe, dunes and layers of sand are already invading date palm plantations (Nami, 2002).

The drought has created a shortage of fresh drinking water, lower flows in the rivers have reduced their ability to assimilate wastes leading to an increase in diseases linked to poor sanitation, and irrigation related diseases, such as schistomiasis, have been introduced. Cases of meningitis, diarrhoea, cholera, and typhoid fever are already common throughout the basin (UNEP, 2004).

The future of Lake Chad looks bleak. With a high population growth rate, pressure on water resources in the Lake Chad basin will continue. While in the past Lake Chad has been able to rebound from low to high water levels, climate change and human water use may now act in concert against recovery.

The story is certainly not complete. Rainfall has again returned to the region, but for how long is unknown. As irrigated agriculture is developed along with the water structures, such as dams and levees, needed to support irrigated agriculture, how do these developments affect the environment and the livelihood of the inhabitants of the basin? The Lake Chad ecosystem requires a highly adaptive social and economic structure in which the nations sharing the basin work together to manage the resources of this unique ecosystem. Population growth and economic development that does not take into account the highly variable nature of the ecosystem could, in the end, doom the system.
References

The Atatürk Dam, the Sanliurfa Tunnel which connects the Atatürk reservoir to the Harran Plain, and other hydrologic projects have significantly changed the social, economic and environmental realities of southeast Turkey. In 1992, the Atatürk Dam was completed on the Euphrates (Fırat) River in southeastern Turkey. The Atatürk Dam and its reservoir are key components of the very ambitious Southeastern Anatolian Project (GAP) that has the dual objectives of electric power production and the conversion of dryland agriculture regions to irrigated agriculture.

In 1975, the first two of a series of major dams on the upper Euphrates, the Kebar in Turkey and the Tabaqah in Syria, were built on the Euphrates River, allowing its flow to be controlled for the first time (Beaumont, 1998). The primary motivations for these first dams were flood control and hydroelectric power for industry. More dams followed, and control of the river became more complete with each one. The extreme swings from spring floods to nearly dry summers have been replaced by a nearly steady water flow.
Land use changes and utilization of water resources have been incremental in Upper Mesopotamia for centuries, if not millennia. But with the flow of the Euphrates controlled, agriculture, economics, and water resource management have undergone dramatic changes. The dams interrupt the natural flow of the river, submerge historical sites, disrupt the livelihoods of people living in the region, and raise issues regarding control of water resources. The hopes and plans are that the long-term benefits will outweigh the social and environmental costs.

The Physical Context

The Euphrates River begins in the highlands northeast of the Anti-Taurus Mountains in Turkey. This region is tectonically very active, with major fault zones running throughout the Anti-Taurus Mountains. This raises concerns regarding the safety of large dams. The Tigris-Euphrates Basin has a Mediterranean climate: mild, wet winters and long, hot, dry summers. The region is known for extreme temperatures, from —35°C to over 38°C in the north, and from —9°C to over 47°C in the south. Annual rainfall is 600mm in the highlands, dropping to 116mm along the Euphrates River in Syria. Snow covers the highlands for over 120 days per year, but the Harran Plain for only 7 to 10 days per year. Most of the precipitation falls in the mountains and highlands in winter and spring, and is released during the spring snowmelt.

The porous limestone underlying the Euphrates basin absorbs significant portions of the snow and rain runoff into the groundwater and releases it gradually over a six-month period. As a result, ground water is an important source of water in southeastern Turkey and northern Syria. Among the perennial streams in the Euphrates basin is the Balikh River, originating at springs in the limestone uplands south of the Anti-Taurus Mountains, and owing into the Euphrates in Syria. The diversion of water for irrigation has in recent times made these rivers intermittent. However, in the case of the Balikh, irrigation runoff has actually increased the flow.

Ecology and Biodiversity

The natural ecosystem is dominated by dryland shrubs and grasses. Oak woodlands can be found at higher elevations and riparian woodlands can be found along the streams. Wetlands and agricultural fields create an important area of bird diversity along the migratory route from northern Asia to the Upper Rift Valley in Africa (Zeydanli, 2001). More importantly, the landforms and Mediterranean climate in southwest Asia forms an area of mega-diversity of important food, pasture, and medicinal species (Jaradat, 1998).

Diamond (1997) presents a clear discussion of the domestication of plants and animals throughout the world, and the characteristics that make this region critically important. In essence, the Mediterranean climate promoted the evolution of many critical grass and legume annuals, and the extreme variation in climate due to landform allowed these grasses and legumes to mature at different times during the growing season and to survive high local variability in temperature and rainfall from one year to the next. The wet winters and dry summers promoted the evolution of large fruits and seeds that could survive the dry season. These traits proved to be invaluable for feeding settled human populations.

Protecting the biodiversity of our foods genetic ancestors is critical to the long-term
viability of their genetic strains. Bioengineering and mass distribution of commercial seed stocks can significantly increase yield and provide resistance to specific threats. However, they also compete with wild relatives and with old cultivars, which provide the biodiversity necessary to survive global climate changes and new crop and animal diseases that may evolve (Tan, 1996).

This region's early development of civilization was due to the incredibly rich biodiversity of plants and animals from which many of our existing food products derive. Old cultivars developed in the region and their wild relatives have adapted to survive the wide ranges of daily and annual weather conditions that exist throughout the region and continue to provide valuable alternate seed stocks. New crops relying on irrigation and introduced varieties of existing crops compete with and reduce the diversity of the locally evolved old cultivars.

In this climate, most dryland agriculture relies on springtime harvest of crops planted in the fall. The southern part of this region is too hot and dry for dryland agriculture (de Brichambaut and Wall n, 1968). If irrigation water is available, then crops are planted in the spring for a fall harvest.

The Region's Peoples

With these favorable climates, grains, and animals, the Tigris-Euphrates basin developed the very earliest human civilizations. Great civilizations flourished here: the Hittite, Assyrian, Medes, Babylonian, Persian, Hellenistic, Roman, Arab, and Ottoman. The Euphrates, with its unreliable flow, has never been a major transportation route. Major cities grew where trade routes crossed the river, rather than at its ports. Sanliurfa and Harran on the Harran Plain lie where trade routes connect Mesopotamia Asia to Asia Minor and the Mediterranean.

The road from the Harran Plain to Asia Minor crossed the Euphrates at Samosata and the road to Damascus and the Mediterranean crossed the Euphrates at Zeugma (Kennedy, 1998; Ward, 1990). Both of these ancient cities have now disappeared beneath the surfaces of reservoirs.

The present countries in the Tigris-Euphrates Basin resulted from political maneuverings following the breakup of the Ottoman Empire after the First World War. During much of recorded history the region has been dominated by ethnically mixed societies. The partition of the Ottoman Empire into small states split a large multiethnic state into small multiethnic states. More importantly, ethnic groups that were once largely contained within one state became split among many states. In southeastern Turkey the major ethnic groups are the Turks, Arabs and Kurds.

Development in Upper Mesopotamia has been driven by the availability of water for irrigation and energy, and fertile soils. All countries in the basin seek to increase agricultural and energy production, and to reduce flooding and poverty. By effectively utilizing water resources the governments in the region hope to radically improve the standard of living, and in the process
lessen competition for resources among ethnic groups within each country.

But the nationalistic competition for resources should be moderated to ensure a fair share of resources for each country. The 1966 Helsinki Rules provide guidance for allocating water resources in an equitable and reasonable manner among countries sharing a drainage basin. Allocation of the waters of the basin should be a function of (1) precipitation, (2) historic use, (3) effective use, and (4) control. Precipitation is a simple measure of water wealth. Historic use is a function of a largely symbolic ancestral use and the very real needs of existing populations. Effective use is a function of climate and landform, and should consider cost versus benefit of future developments. Control in the simplest form should ensure that
existing populations are not unduly compromised, but in the nationalistic sense too often can be reduced to a struggle for power (Akmansoy, 1996).

Southeastern and eastern Turkey are among the country’s more impoverished regions. The region has significant out-migration, partly from conflicts and unrest in the region, but much of it from lack of economic opportunities and high population growth. Unemployment is around 20 percent in the cities and is especially high among the unskilled (Aksit et al., 1996). Strong tribal structures still exist with southeastern Turkey, which compete with the national government for authority. These tribal structures can inhibit agricultural, social and economic change (Nestor, 1995). Increased economic opportunities provided by electricity for industry and water for irrigation should slow out-migration and create jobs.
Atatürk and Harran Plain: Water Resources and Agricultural Change

Construction of the Atatürk Dam started in 1981 and was completed in 1992. The flow of the Euphrates River was partially interrupted for one month in January 1990, during the filling of the reservoir, causing heightened tension with Syria and Iraq (Kaya 1998). The two Sanliurfa Tunnels, 7.62m in diameter and 26.4km long, are the longest irrigation tunnels in the world. The tunnels first delivered water in April 1995. One of the tunnels empties into the irrigation canals delivering water throughout the Harran Plain. The second tunnel empties into a canal that carries the water further east to the Mardin-Ceylanpinar plains.

Comparing the 1987 and 2002 images, the most noticeable changes created by the dam are the Atatürk Reservoir and the intensively cultivated Harran Plain. To the north and east of Lake Atatürk, irrigated agriculture is replacing traditional dryland agricultural methods. With the shift in agricultural methods comes a change in the predominant crops, from wheat, barley, pistachios, and caparis, to more water-intensive crops such as cotton, corn, and soybeans.

In the May 1987 image, most agricultural fields were nearly ready for harvest. Certain fields were left fallow while others had dryland agricultural crops. Crops in these fields appear bright red, indicating the high reactivity of near-infrared light. By 2002, the Harran Plain had been largely converted to irrigated summer crops and no longer had crops ready for harvest in the spring.

Agricultural statistics show that by 1998, the regions surrounding the Atatürk Dam produced significantly more agricultural output. According to government officials, the region produced 41.6% of the country’s cotton needs, and approximately 12% of the country’s grains and vegetable requirements. Cotton, a popular cash crop, has had the largest increase in overall productivity since the introduction of the dam. The conversion to growing cotton for the export market links the fate of the farmer to the market’s long-term stability (Aksit and Akay, 1997).

Turkey’s plan is not to increase the area under cultivation, but by irrigating, change from dryland crops such as wheat and barley to water-demanding crops such as cotton and corn, and to reduce the amount of time that a field must lie fallow (Beaumont, 1996). Cropping patterns have changed from one crop every two years to potentially multiple crops every year.

The cities and provinces containing Atatürk and the Harran Plain have grown in population. According to official statistics, from 1990 to 2000 the population of Sanliurfa grew 33%, from 276,528 to 383,870. In the same years Adiyaman grew 58%, from 100,045 to 178,538. The provinces of Sanliurfa and Adiyaman grew 36% and 20% respectively, compared to the national average of 18%.

Agricultural areas downstream depend on fresh water from the Euphrates and from spring-fed streams. Increased irrigation upstream raises concerns about increased soil salinization. Agricultural runoff from the Harran Plain, high in salt content, drains through Syria to the Euphrates...
by way of the Balikh River. It is estimated that the flow of the Balikh may be 3.5 times as great as before the diversion of water to the Harran Plain. The runoff from irrigation will contain significant amounts of pesticides, herbicides and nutrients, whose effects on downstream water quality are yet to be determined (Beaumont, 1998). Most of the irrigation projects have low efficiency, with wide use of flood irrigation, but education should bring higher efficiency (Bayazit and Avci, 1997), which in turn should result in less salinization and contamination of the ground and surface water (Kolars and Mitchell, 1991).

There is not enough water in the Atatürk reservoir to both operate the turbines at full capacity and meet the need for irrigation water (Beaumont, 1998). In the future this will require consideration of tradeoffs between irrigated land and power production. These tradeoffs will become difficult with the shift to a cash-crop economy, and could easily result in decisions pitting electric power requirements in western Turkey against agricultural requirements in eastern Turkey. It could also require more-efficient irrigation or a return to dryland farming. As in most of the world, access to water is considered a right and the amount a user is charged does not cover the cost of delivering water (Beaumont, 1998).

The method of charging for water resources may need to change as the resource becomes fully utilized, and a long-term costing structure needs to acknowledge water's value to the natural environment, and the long-term cost of losing cultural treasures.

There are seasonal tradeoffs as well. The need for electricity production is greatest in winter, so the maximum discharge down the Euphrates may shift from spring to winter, when it is least needed for downstream agriculture. Effective downstream storage structures would then become critical for irrigation (Beaumont, 1998). Changing the discharge patterns completely changes the downstream riparian and marshland ecosystems. These ecosystems have evolved to rely on the large variation inherent on a wild river, with spring floods followed by low water. The ecological impacts of changing the discharge regime can not be overestimated. These may be considered acceptable consequences, but they are nonetheless consequences of controlling the river.

Ongoing Concerns

This part of Turkey in many ways has been left behind, as early development efforts focused on western Turkey. The per-capita gross national product of southeastern Turkey is less than half the national average (Bayazit and Avci, 1977). The Atatürk Reservoir is only part of the huge Southeastern Anatolia Project designed to reduce dependence on imported sources of energy, to increase agricultural production, and to develop southeastern Turkey. Thorough planning and implementation is needed to ensure that all peoples in the region benefit and that damage to cultural and ecological resources are minimized.
References

The Sundarbans
Mangroves, Tigers and Shrimp Farms

The Sundarbans, a tide-washed mangrove forest in India and Bangladesh inhospitable to human settlement, has survived the pressures of exploitation including shing, logging, poaching and recently shrimp farming from the impoverished human population crowded directly around it. What remains to be seen is whether it can be saved from hydrologic changes including river diversion and sea-level rise caused by people far away.
Location and Conditions

The Sundarbans (also known as the Sunderbans or Sunderbunds) is one of the largest mangrove forests in the world, about 10,000km². It lies along the Indian Ocean, about 60% in southwestern Bangladesh and 40% in India.

This forest is drenched in water from three sides. First, it stands on the delta of the Ganges River, broken into strips by its many distributaries. These rivers bring fresh water as well as silt, which gives the mangroves nutrients and new soil to colonize, but can also fill channels and smother plants. Second, the Sundarbans is flooded twice daily by ocean tides, whose saltwater the mangroves also need. The funnel-shaped coast focuses ocean energy on Bangladesh, which is mostly within 10m of sea level, so the Sundarbans help protect inland areas from disastrous cyclones. Third, the Sundarbans receives about 250cm of rain annually. Most of this is during the monsoon season, followed by a dry winter (Heitzman and Worden, 1988).

The Sundarbans is richly populated with plants and animals, including a number threatened with extinction. Its name is likely derived from forest of Sundari, one of the 60 species of mangroves which grow here (Ghosh, 2003). Mangroves thrive in the tidal zone where they alternate between wet and dry, saltwater and freshwater. The mangroves character is in their roots: a broad, shallow fan which buttresses the trunk against tidal forces. These prop roots are in the air at low tide and breathe for the tree. Mangrove roots also build and hold the land together and are habitat for marine life, while their branches are for bird life. Their roots can also absorb a considerable amount of pollutants.

The marquee animal species here is clearly the man-eating Bengal tiger. Though they do not systematically prey on humans and rarely eat them when killed, these tigers do kill people, and defend their habitat byscaring people away (Chaudhuri, 2002). Other animals here include estuarine crocodiles, spotted deer, dolphins, marine turtles, monkeys, clawless otters, and Indian pythons. Species formerly living here included the one-horned Indian rhino, the Javan rhino, and a species of river dolphin (UNEP-WCMC, 1987a and 1987b).

People have long moved deeper into the transitional area north of the forest; one study estimated that 5,000km² of mangrove have been cleared in the last two centuries (Ghosh, 2003). These agricultural areas produce rice, shrimp, sugarcane, and betel nuts. While the Sundarbans itself is essentially unpopulated, 35,000 people are estimated to work there in any given year, including 25,000 in shing, 5,000 in timber and 1,500 in honey collection (UNEP-WCMC, 1987a and 1987b). These resources are very valuable for the area's impoverished population. Annual per-capita GDP in Bangladesh (as a whole, in
1999) was $370, and the population is very rural, crowded, and only 54% literate (World Bank, 2000).

This forest has both economic and ecological significance. In the 1870s, it was designated as forest reserve; in the 1970s portions were made wildlife sanctuaries; in the 1980s the Indian side was recognized as a National Park and a World Heritage Site; and in the 1990s the Bangladesh side was likewise recognized as another World Heritage Site (UNEP-WCMC, 1987a and 1987b). People press in on the parks' borders, but this preservation appears to be a success story. As these satellite images show, rapid deforestation and habitat loss are not an issue here as they are in many developing areas. The tiger population, for example, is by different accounts either growing or holding even, as is their major prey species of deer and boar. But the Sundarbans is in a precarious position, subject to many dangers which are easily apparent, even if their present and future effects are still unclear.

Changes

Population pressure threatens to increase whatever illegal poaching occurs now, the amount of which is debated. Bangladesh’s population, already crowded at about 130 million, is projected by the World Bank to rise to 218 million by 2050. The mangroves themselves are the subject of most attention, especially as they support the rest of the ecosystem. The Sundarbans is the largest forest in the country, and especially prominent in the almost deforested, but densely settled, delta. Wood serves as the main home fuel on both sides of the border, and mangroves also serve as utility poles, pulp for the paper industry, and even as thatch for roofs (Heitzman and Worden, 1989). There are also reports of tiger poaching, though at

One of the many sea inlets into the Sunderbans that, with a mixture of salt and fresh water, mangroves thrive in. Photo courtesy of Institute of Water Modeling.
least some of the tiger deaths are certainly from surprise run-ins with villagers on the forest’s edge, or with workers in the forest itself. These protected areas are certainly open to poaching, but the amount of poaching is unclear.

Shrimp farming has clearly expanded rapidly. Outside capital from the World Bank, the Asian Development Bank, and others funded this enterprise starting in the 1980s as a way to generate more income for local farmers (Heitzman and Worden, 1989). The growth in shrimp ponds can be seen in the 1999/2000 satellite image, accounting for much of the blue areas north of the Sundarbans.

One recent analysis of satellite images estimated there were about 1,500km² of shrimp farms in the area by 2002, up from zero in 1977 (Hossain, 2003). Shrimp farms affect water quality and naturally compete with mangroves for the same spaces, but low-tech, low-capital methods have caused additional problems as well. The Sundarbans is the main nursery for shrimp in the region, and people collect shrimp eggs by dragging nets along its riverbanks; this catches some shrimp eggs, but also many eggs and seeds of other species, disrupting the food chain. It also kills mangrove seedlings, interfering with forest regeneration (Chattopadhyay, 2002).

Global warming threatens to unbalance the Sundarbans’ water forces from two directions. Air temperature has been measured as rising 0.02°C per year, and most computer models predict more rain for this area in the future. Some models also predict this rainfall will be even more concentrated in the monsoon season, leaving a drier winter. More serious for this at and crowded land is the threat of sea level rise, currently measured at 3.24mm per year. The problem is not a steadily creeping waterline, but changes in a dynamic energy system, which already bring periodic catastrophes. Lands erode, banks collapse, and siltation is affected. Various studies have already found 85km² over 20 years and 200km² of land lost over 70 years. Scientists from Jadavpur University have projected nearly 500,000 people will be homeless from coastal erosion in this area by 2020 (Chattopadhyay, 2002; Mukhopadhyay, 2003; World Bank, 2000).

River diversion, in contrast, is already allowing less water to reach the Sundarbans, and it couples with sea level rise to increase salinity. Some of this is natural; deltas are dynamic, and this area’s underlying geology has been tilting...
slightly eastward in recent centuries, leading the Ganges water into its more eastern distributaries. This has cut freshwater ow to the western Sundarbans, to the extent that Indian ofcials are acting to stem the loss of the Sundari trees for which the forest is named (Siddiqui, 2003). Since the 1970s, arti cial diversion has accelerated this problem. Siltation in the Hugli River (west of the Sundarbans) was interfering with shipping in Calcutta (visible in the northwest of the satellite images), so the Indian government built the Farakka Barrage, or dam, to divert part of the Ganges into the Hugli. The delta was left with less fresh water and more saltwater intrusion from the sea during the dry season. The dam went into operation in 1975 over objections from Bangladesh, including a protest to the United Nations. Binational negotiations led to an agreement in 1977 to share dry-season water, but Farakka has remained a contentious issue (Beach et al, 2000). India has proposed much larger diversion plans, to link rivers in both Bangladesh and India with giant canals which dwarf the scale of Farakka. Because India lies upstream and surrounds Bangladesh, India controls the freshwater owing into Bangladesh. Impoundment of wet -season water can mitigate dry-season water shortages, but Bangladesh is too at for ef fective reservoirs leaving them dependent on upstream states (Heitzman and Worden, 1989). Bangladesh and India continue negotiating their shared water resources.

Ongoing Concerns

For the Sundarbans, more analysis of the forest as an ecological unit, rather than by legal divisions, may create a clearer picture of its condition. There is an unusual amount of factual confusion and contradiction for this area. Tourism will likely play an increasing role for the Sundarbans and for the Bengal tiger, encouraging local residents away from poaching and toward pro ts from preservation. On the other hand, one of the proposed solutions for the Port of Calcutta is to create a new shipping channel through the Sundarbans, and the natural channels already carry increasing concentrations of industrial wastes. The Sundarbans has been a conservation success; many factors will determine whether this success will continue.
References

An analysis of recent and historical satellite imagery collected over the past forty years was carried out for Lake Chad in West Africa, the Sundarbans along the India-Bangladesh border, Papua in Indonesia, the Paranaense Forest around Itaipú Dam and Iguazú Falls at the juncture of Argentina, Brazil and Paraguay, and the Atatürk Dam and the Harran Plain in southeastern Turkey to provide scientific evidence of environmental change taking place in these ecologically significant regions of the world.

While it can be difficult to pinpoint exact causes of change to the environment, the report documents environmental impacts of development, tourism, globalisation, human uses, engineering, climate change and a host of other factors. An analysis of change can provide warnings of potential long-term consequences and suggest what the environment may be in the future. UNEP plays a major role in both environmental assessment and early warning in an effort to promote actions to mitigate some of the unintended consequences to people and their environment.

For further information

Division of Early Warning and Assessment
United Nations Environment Programme
P.O. Box 30552, Nairobi 00100, Kenya
Tel: (+254) 20 624028 Fax: (+254) 20 623943 Email: dewa.director@unep.org
Web: www.unep.org