UNEP Mekong River Project

SESSION 5: Science-based actions to tackle plastic wastes

Part 1: Value chain and upstream solutions

Creating inclusive circular plastics value chainsglobal coordination and local solutions.

Patrick Schröder

09 March 2023

Circular Economy team

- Leading expertise on the circular economy
- Expertise: Finance, Trade, Just Transition & SDGs, Policy and Legislation, Geopolitics and Global Developments.
- High-impact research and convening activities
- Regularly advising Governments, multilateral institutions, MNCs
- On-the-ground project work in LMICs (SWITCH to CE & SMEP)
- Strong support from Chatham House global pool of experts and convening power.

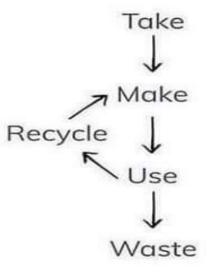
Dr Jack BarrieSenior Research
Fellow

Dr Manisha Anantharaman *Research Associate*

Johanna Tilkanen Prog. Manager

Naoki Tamaki
Visiting fellow from
JBIC

From linear to circular



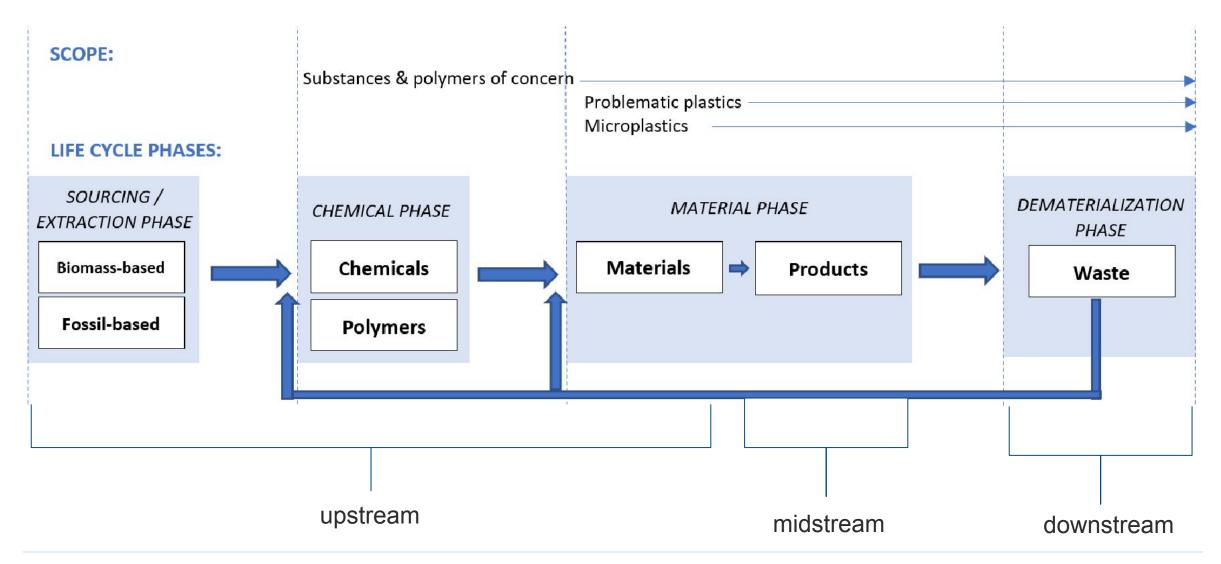
LINEAR



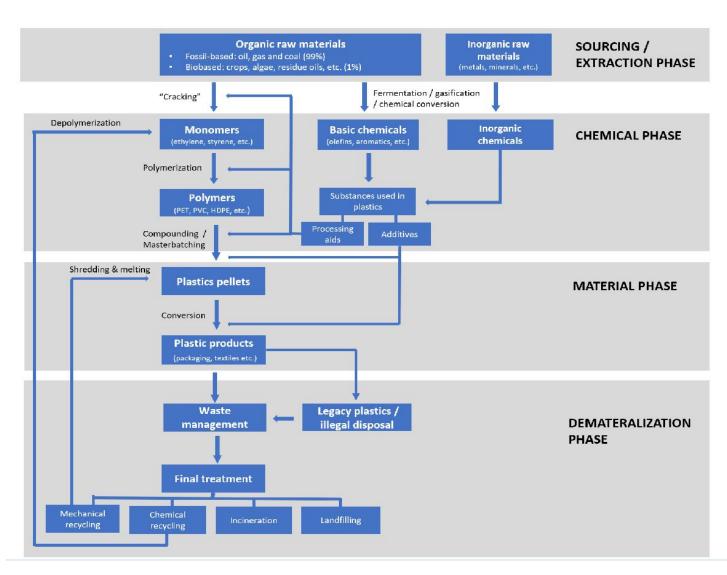
RECYCLING ECONOMY

CIRCULAR

Plastic packaging value chain


The plastic packaging value chain

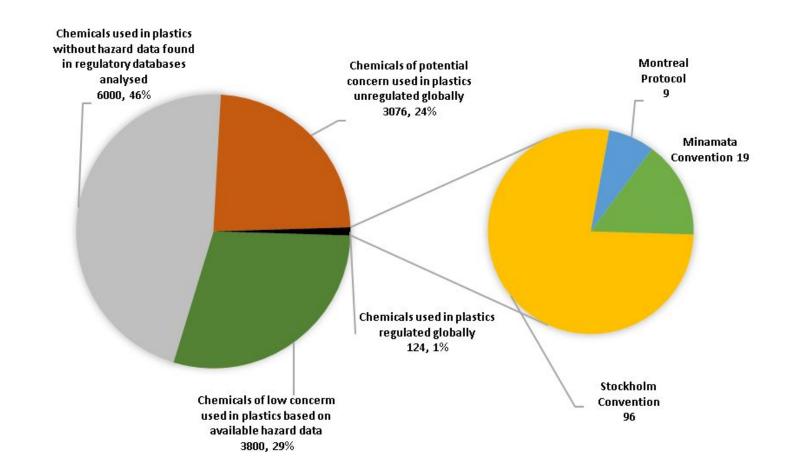
The current linear model for producing plastic packaging in a simplified diagram. In reality, the structure of the supply chain varies greatly by packaging type and application.


Upstream-midstream-downstream

Plastic life cycle and phases

Seven detailed life cycle phases of extraction, production, manufacture, consumption, waste management, final disposal, and remediation. These seven life cycle phases are further clustered into four primary phases.

Upstream stakeholders

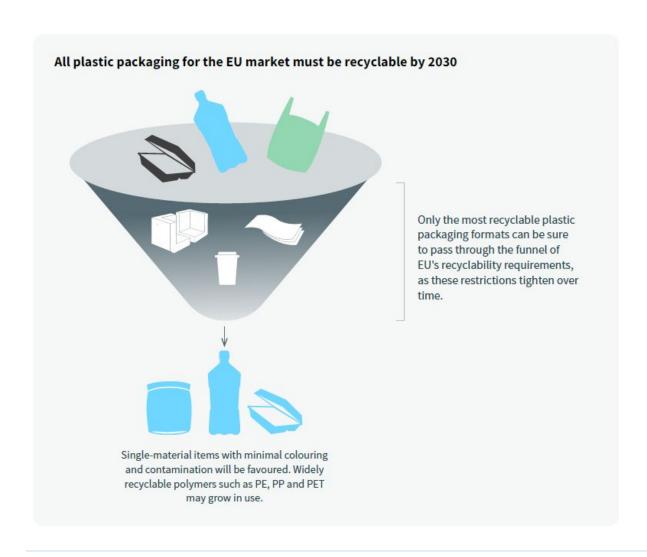

Life cycle phase	Value chain phase	Actors
Sourcing/ extraction phase	 Extraction of raw materials Organic raw materials (hydrocarbons): Fossil raw materials from oil drilling, fracking and mining: crude oil, natural gas and coal Bio-based raw material: land-based crops, aquatic algae or seaweed, waste and residue oils, etc. 	Oil & gas industry (fossil fuels are extracted from wellheads or drill pads and then transported by pipeline or rail to refineries and processing plants) Bio-based raw materials producers
	 B) Inorganic raw materials Many chemicals used in plastics are prepared from inorganic compounds, including fillers (mica, talc, calcium carbonate, etc.), reinforcements (glass fibers, etc.), and pigments. 	Mining and smelting industry (inorganic materials)
Chemical phase	 2. Production Step 1: Building block production Refining crude oil, natural gas and coal (or bio-based raw materials) through a "cracking"/ "gasification" process and subsequent reactions to produce initial building blocks (e.g., ethylene, styrene, vinyl chloride, etc.) 	Refiners: Petrochemical refineries Biorefineries
	Step 2: Chemical processing A) Polymer production Includes <200,000 polymers B) Production of commodity and speciality chemicals Includes up to 13,000 additives, managers, processing side used for plactice, as well as NIAS	 Polymer and chemical producers: Chemical manufacturers (including polymer manufacturers)
Material phase	 Includes up to 13,000 additives, monomers, processing aids used for plastics, as well as NIAS Manufacturing Step 1: Manufacturing of materials (e.g., compounding) Consists of preparing plastic formulations by mixing and/or blending polymers and additives to achieve the desired characteristics 	Compounders / masterbatchers: Companies specialized in this field Polymer producers and manufacturers also undertake this work
	 Step 2: Manufacturing of intermediates and final products Intermediate moulding, spinning, drawing and cutting Manufacturing and remanufacturing of final products 	Product producers / brand owners:
,	,	

Chemicals in plastics production

Up to 13,000 chemicals have been used in plastics as monomers, additives, processing aids and non-intentionally added substances (NIAS), from which 3,200 are identified as chemicals of potential concern based on existing hazard types.

For 6,000 chemicals used in plastics, no hazard data was found in regulatory databases analyzed, thus many of them could also be chemicals of potential concern.

Midstream opportunities – design rules for plastics



- 1. Increase Value in PET Recycling (e.g. use transparent and uncoloured PET)
- 2. Remove Problematic Elements from Packaging (e.g. no PVC, EPS, oxo-degradeables)
- 3. Eliminate Excess Headspace (e.g, set maximum target)
- 4. Reduce Plastic Overwraps
- 5. Increase Recycling Value for PET Thermoformed Packaging
- 6. Increase Recycling Value in Flexible Consumer Packaging
- 7. Increase Recycling Value in Rigid HDPE and PP (e.g. use minimal printing)
- 8. Reduce Virgin Plastic Use in Business-to-Business Plastic Packaging
- 9. Use On-Pack Recycling Instructions

Material phase: policies to shift design for recyclability

EU legislation on Packaging and Packaging Waste

New proposal published 30 Nov 2022

All packaging to be fully recyclable: Designed for Recycling by 2030 and 'Recycled at Scale' by 2035.

By 2029 countries must create deposit return schemes for metal and single-use plastic beverage containers.

Harmonised eco-modulated EPR fees in every Member State based on packaging recyclability credentials and recycled content.

Minimum recycled content targets for plastic packaging for 2030 and 2040.

New EU standardization for plastic products

Structure

Nork programme

EUROPEAN STANDARDIZATION

GET INVOLVED

AREAS OF WORK

NEWS AND EVENTS

EN | FR | DE

CEN/TC 249 Subcommittees and Working Groups

Morking group	Title			
CEN/TC 249/WG 11	Plastics recycling			
CEN/TC 249/WG 13	Wood Plastics Composites (WPC)			
CEN/TC 249/WG 16	Welding of thermoplastics			
CEN/TC 2/9/WG 21	Profiles for windows and doors			
CEN/TC 249/WG 24	Environmental aspects			
CENTILL SPINE 25	Static thermoplastic tanks for above ground storage of fuel			
CEN/TC 249/WG 26	Agricultural plastic products - Design-for-recycling, use, removal, collection and recycling			
CEN/TC 249/WG 4	Decorative laminated sheets based on thermosetting resins			
CEN/TC 249/WG 5	Thermoplastic profiles for building applications			
CEN/TC 249/WG 7	Thermoplastic films for use in agriculture			
CEN/TC 249/WG 9	Bio-based and biodegradable plastics			

Chatham House | The Royal Institute of International Affairs

Plastic recycling standards – currently 24 under drafting and/or approval stages

work programme

Published Standams

EUROPEAN STANDARDIZATION

GET INVOLVED

AREAS OF WORK

NEWS AND EVENTS

EN FR DE

CEN/TC 249/WG 11 Work programme

Project reference	Status	Initial Date	Current Stage	Next Stage	Forecasted voting date
prEN 15342 rev (WI=00249A5X) Plastics - Recycled Plastics - Characterization of polystyrene (PS) recyclates	Under Drafting	2023-02-03	2023-02-03	2023-06-02	2024-11-15
prEN 15344 rev (WI=00249A5Z) Plastics - Recycled plastics - Characterization of Polyethylene (PE) recyclates	Under Drafting	2023-02-03	2023-02-03	2023-06-02	2024-11-15
prEN 15345 rev (WI=00249A60) Plastics - Recycled Plastics - Characterisation of Polypropylene (PP) recyclates	Under Drafting	2023-02-03	2023-02-03	2023-06-02	2024-11-15
prEN 15346 (WI=00249A45) Plastics - Recycled plastics - Characterization of poly(vinyl chloride) (PVC) recyclates	Under Approval	2021-06-29	2022-08-25	2024-01-11	2024-01-11
prEN 15347 (WI=00249A44) Plastics - Recycled plastics - Characterisation of sorted plastics wastes	Under Approval	2021-06-08	2022-06-09	2023-12-21	2023-12-21
prEN 15348 (WI=00249A42) Plastics - Recycled plastics - Characterization of poly(ethylene terephthalate) (PET) recyclates	Under Approval	2021-03-12	2022-06-09	2023-09-23	2023-09-23

SWITCH to Circular Economy at a glance

Aim

A just transition to an inclusive, climate neutral and circular economy

Funded by

European Union and Finland

Value chains

Textile & Garments
Plastic packaging
ICT & Electronics

Duration

2021-2025

Total budget

€20,870,000;

approx. €5M for BD

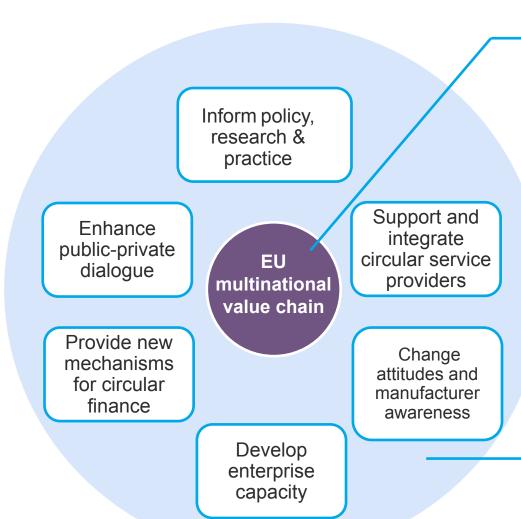
Implementing organization

United Nations
Industrial
Development

Organization (UNIDO)

In collaboration with

Chatham House
Circle Economy
European Investment
Bank



Pilot projects are the pivot point

Pilot project

(designed and led by applicants, bearing in mind SWITCH aims)

Designed and implemented in parallel

SWITCH2CE Programme

(actions focused on improving enabling environment, designed and led by SWITCH partners*, bearing in mind pilot aims)

SWITCH2CE Publication: The EU's Circular Economy transition for plastics and textiles

- Summarises EU circular economy policies for plastics and textiles sectors.
- Analyses the impacts of CE policies on trading partners and emerging markets.
- Recommendations for policy and industry to use the circular economy transition for their competitive advantage.

Available also in French and Bengali: www.switchtocircular.eu/publications

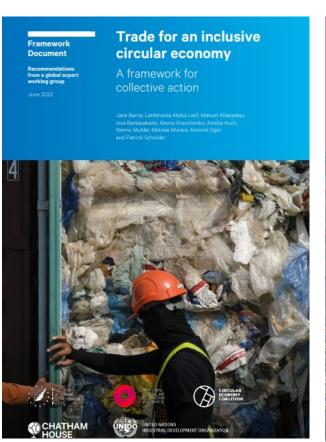
Building Transformative alliances

international trade in

realizing an inclusive

circular economy

Research Paper


Patrick Schröder

Energy, Environment and Resources Programme | April 2020

Promoting a Just Transition to an Inclusive Circular Economy

SI CHATHAM

The role of

Just Transition

Trade and SDGs

Thank you for your attention! pschroeder@chathamhouse.org