

Marine Assessments:

Sharing Results and Experience in a Global Indicator-based Assessment of International Marine Waters

L. Talaue McManus, Sherry Heileman, J. Barbieri

United Nations Educational. Scientific and Hydrological Cultural Organization

International

Programme

United Nations Educational, Scientific and · Oceanographic Cultural Organization . Commission

Outline

- 1. Goals of TWAP
- 2. Marine indicators with relevance to RSP and SDG
- 3. Result highlights
- 4. Web-based resource: <u>http://onesharedocean.org/data</u>
- 5. Input data and data sources

Lead Organizations

United Nations In Educational, Scientific and F Cultural Organization F

AOUIFERS

LAKE BASINS

RIVER BASINS

ECOSYSTEMS

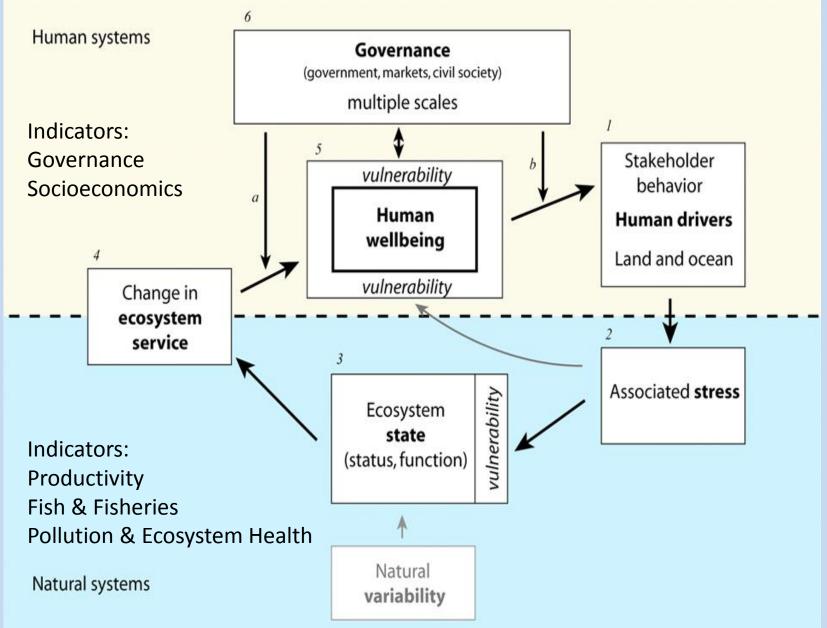
OPEN OCEA

ational, Scientific and Cultural Organization

Implementing Agency

TWAP Full Size Project (2013-15): Global Indicator-Based Assessment

- Conduct first global assessment to assist GEF and other donors to improve the setting of funding priorities;
- Formalize partnerships with key institutions aimed at incorporating transboundary considerations into regular assessment programs, & resulting in periodic assessments of transboundary water systems


Global Indicator-based Transboundary Waters Assessment Programme								
	← Comparative within a water system ← Themati							
Elements	Transboundary Aquifers:	Transboundary Lakes Basins & Reservoirs	Transboundary River Basins	Large Marine Ecosystems	The Open Ocean			
Spatial coverage, 2010, 2030, 2050	166 aquifers 43 groundwater systems in SIDS	200 lakes/ reservoirs	276 river basins	66 LMEs, of which 55 are transboundary	Global Open Ocean			
Biophysical indicators		Ner Anter Cher Here						
Socioeconomic Indicators (e.g.)	Water demand by economic sector	Water stress	Access to water Access to sanitation	Fisneries revenues Tourism revenues	Vulnerability to sea level rise			
Governance architecture/ arrangement (e.g.)	For Water Quantity	For Water Distribution	For Habitat Destruction	For Fisheries	For Biodiversity			
Data & Information Management	(next slide)							

Assessment of LMEs

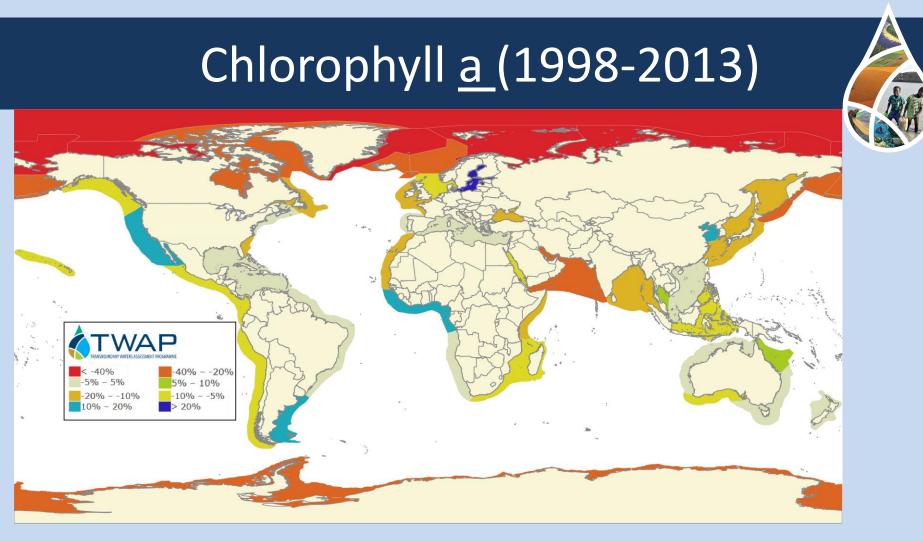
Conceptual framework

Questions for the assessment

- What are the current trends (& projections) in LME state?
- Which LMEs are at highest relative risk?
- What are the implications for humans
 - Where is human dependency greatest on ecosystem services of LMEs?
 - Where are humans most vulnerable to changes in LME condition?
- What is the status of the governance arrangements in transboundary LMEs?

Productivity	Fish & Fisheries	Pollution & Ecosystem Health	Socio-economics	Governance
•Chlorophyll	 Fishing subsidies 	•Nutrient loads	•% fish protein	 Governance architecture-
•Primary		 Index of Coastal 	•% GDP tourism	Completeness,
productivity	•Catch from	Eutrophication***		Engagement,
	bottom gear		 Coastal population 	Integration
•SST		•POPs in plastic pellets		(multi-country
	•Fishing		•Rural/ Urban	LMEs only)
	effort	•Micro & macro- plastics***	population	
	•MTI & FIB		•Coastal Poor	***IOC proposed
		•Change in MPA		SDG indicators
	 Ecological 	coverage	•Human	
	footprint		Development Index	
		•Reefs at Risk Index		Relevant to
	 Stock status 		•Night light	Proposed RSP
		 Mangrove extent 	Development index	Coordinated
	•Catch			Indicators
	potential under global	 Cumulative human impacts 	•Climate risk Index	
	warming	•Ocean Health Index	 Contemporary threat index 	

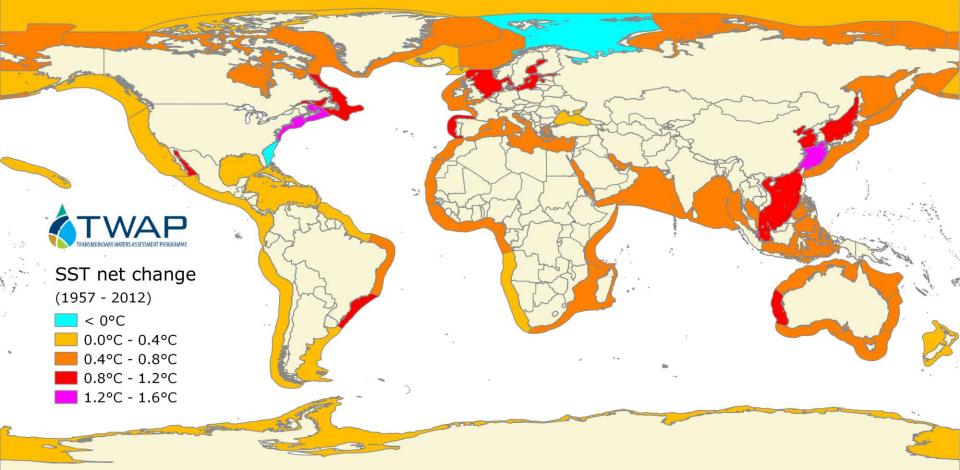
Comparing LMEs- Risk categories


 Assessment required an approach to summarize indicator results and compare LMEs

•Grouping of LMEs into 5 categories of relative risk (colour coded)

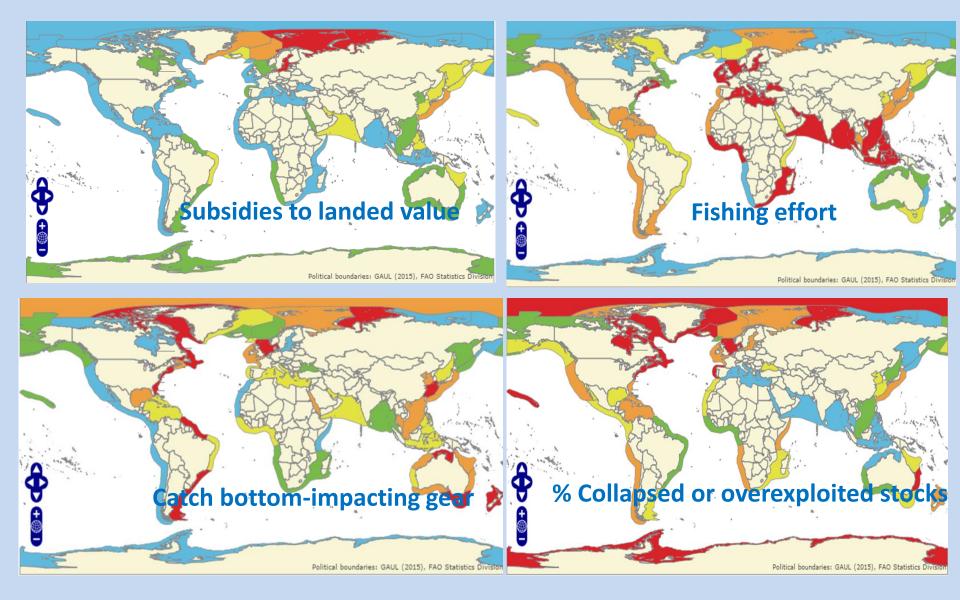
low	est	low	medium	high	highest
				•	

- •Level does not necessarily relate to actual state of the LME
- •Ideally, the cut-off points for the five categories should be based on set targets or reference points, but globally these do not exist for the selected indicators
- •Experts decided on the cut off points
- •Results do no reflect on any particular country- values are averages at the LME scale

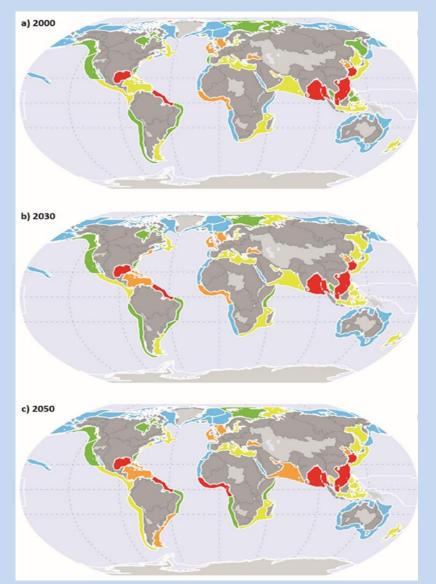

Significant increasing trends: Scotian Shelf, Patagonian Shelf, Labrador Newfoundland, Southeast Australian Shelf LMEs.

Significant decreasing trends: Indonesian Sea, Oyashio Current, Celtic-Biscay Shelf

LMEs.

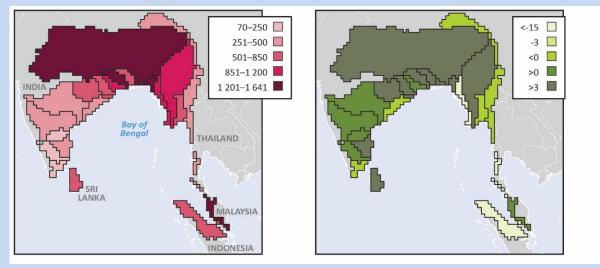

Trends weakly correlated with latitude (O'Reilly and Sherman 2015).

SST (Sea Surface Temperature) (1957-2012)


All but two (SE USA and Barents Sea LMEs) exhibited warming; no consistent Link between LME waters warming and environmental risk; greatest increase In East China Sea (Belkin 2015)

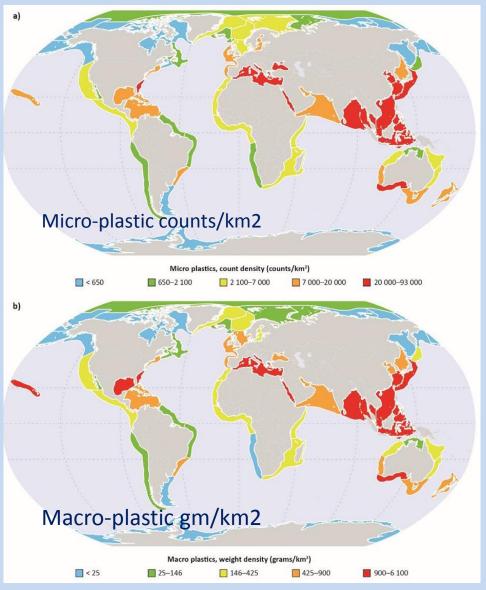
Data coverage: 1950-2010 (D. Pauly & V. Lam)

Nutrient inputs & Coastal eutrophication potential

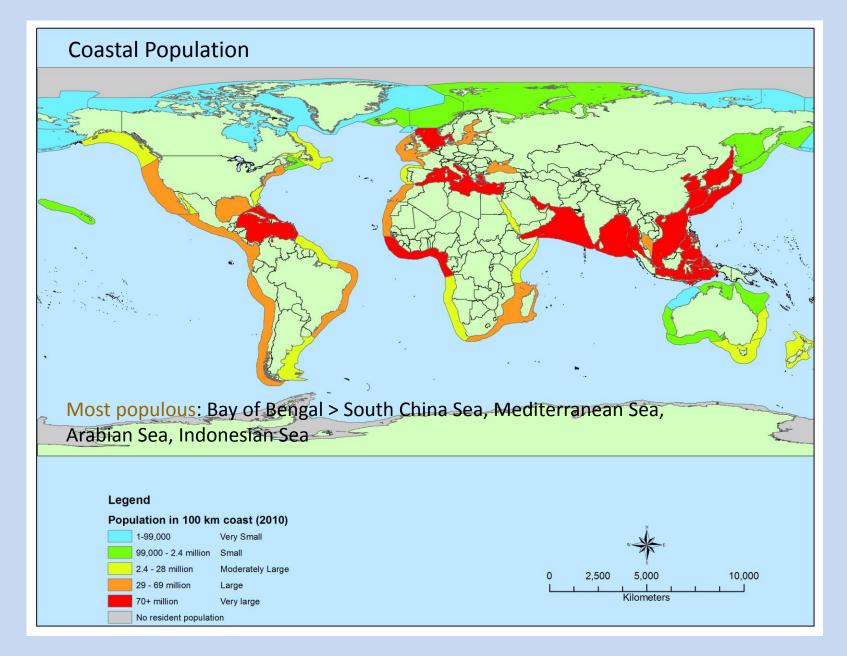

- Global NEWS model- overall indicator of coastal eutrophication developed for 63 LMEs, based on the amount of nitrogen input by rivers as they enter the land-sea boundary of the LME, and nutrient ratios (dissolved Si to N or P).
- Based on current trends, coastal eutrophication risk will increase in 21% of LMEs by 2050- mainly in southern and eastern Asia, South America and Africa.
- Iberian Coastal & Northeast US Continental Shelf are projected to lower their eutrophication risk by 2050.

S. Seitzinger (IGBP) & E. Mayorga (Univ. Wash)

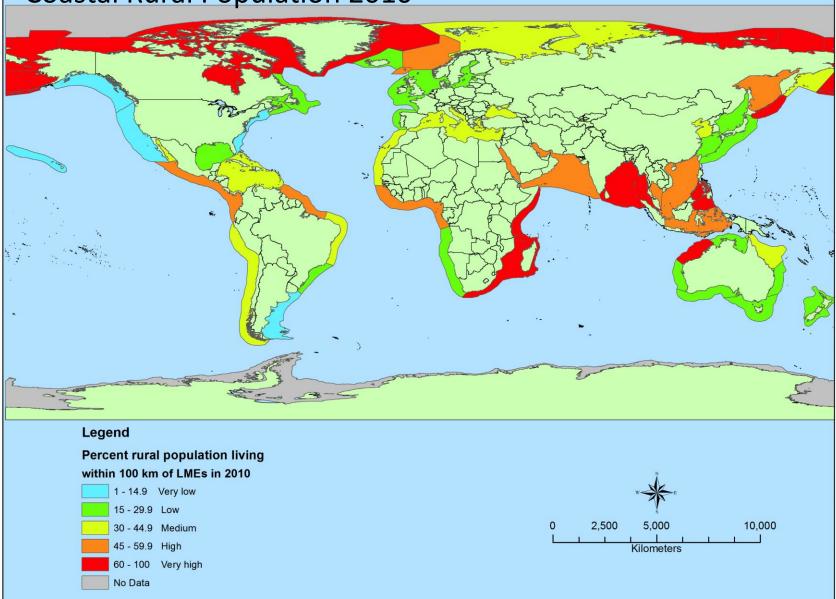
Spatial variation in nutrient inputs Example from Bay of Bengal LME


DIN kg/km2/yr

Index coastal eutrophication


- Nutrient yields, eutrophication potential, and sources of nitrogen can vary considerably among the river basins that drain into an LME.
- Such information is important in identifying the spatial variation of nutrient effects and their sources in order to achieve reductions within LMEs.

Floating micro & macro-plastic debris


- Model simulated movements of floating plastic in the ocean
- Proxy sources of plastics coastal population density, shipping density, & level of urbanization
- Results consistent with observational data from shipboard measurements and shoreline surveys
- Highest (both types of plastics) in E-SE Asia, Gulf of Thailand highest globally
- Others with high plastics: Include Southeast US Continental Shelf, Mediterranean, Red Sea LMEs

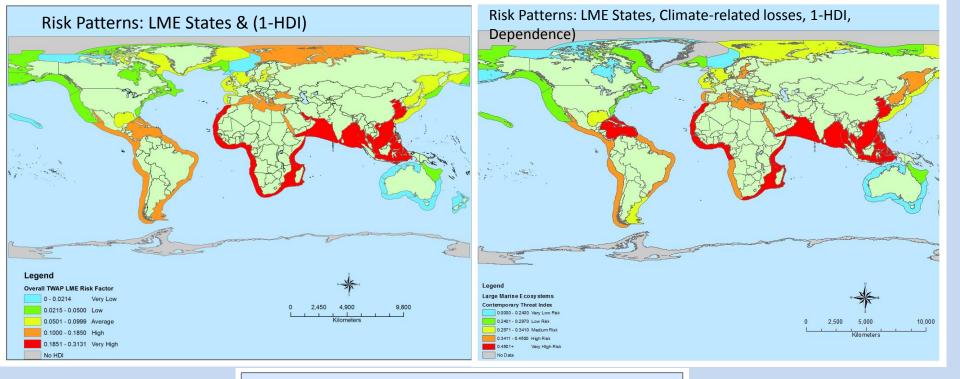
P. Kershaw (GESAMP) & C.M. Lebreton

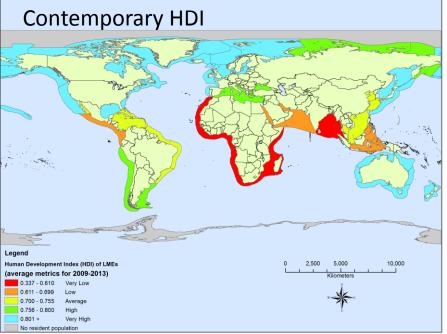
In 100 km coast, 2.5 billion in 2010 (40% of global population). 60% live in urban coastal areas. (Talaue McManus & Estevanez)

Coastal Rural Population 2010

Global coast is urbanizing with almost 60% of coastal population residing in Urban centers.

Governance Arrangements


- Evaluated the formally-established transboundary governance arrangements relevant to fisheries, pollution, and biodiversity and habitat destruction in the 50 multi-country LMEs and the WPWP.
- 3 indicators:
 - (i) level of completeness of the structure of arrangements to address a given issue(s);
 - (ii) level of integration of institutions involved in addressing the suite of identified transboundary issues within a given LME; and
 - (iii) level of engagement of countries participating in arrangements that address the identified transboundary issues within the LME.


L. Fanning, R. Mahon et al

Governance Arrangements

- Fisheries arrangements tend to have high completeness levels but need improvement in institutional collaboration for implementation.
- Few pollution arrangements have repercussions for non-compliance.
- Biodiversity arrangements have the lowest levels of completeness.
 Accountability is limited and lack of data and information provisions is a serious shortcoming at the LME level.
- Over 50% LMEs have very low levels of institutional integration. Efforts should focus on collaboration among organizations and/or the creation of overarching integrating mechanisms if EBM is to be effectively implemented.
- Countries have high commitment towards participation in agreements addressing transboundary issues. The nature of agreements (binding/non-binding) influences the level of commitment.

Key Messages

LME States:

- LMEs with developing economies: highest risks due to a combination of coastal eutrophication and plastic litter density, and moderate to high risks from collapsed or overexploited fish stocks
- LMEs next to developed nations: high risks triggered by a combination of high shipping frequencies, high capacityenhancing fisheries subsidies, and high catches from bottomimpacting gear
- All LMEs, except for the Australian shelf LMEs, the Red Sea and Gulf of California, are at risk due to the low percentage of established recovery zones such as MPAs.
- Degrading LME conditions and climate related risks as additional burdens for socioeconomically compromised coastal populations of mostly tropical LMEs
- Sustainability Targets: Enhanced human wellbeing within limits of healthy ecosystems.

http://onesharedocean.org/data

Thank you!

United Nations Intergovernmental Educational, Scientific and Cultural Organization Commission

ernmental graphic

United Nations I Educational, Scientific and Cultural Organization

International Hydrological Eo Programme