

#### Mercury: What we need to know...

Desiree M. Narvaez Programme Officer Mercury and other metals programme Chemicals Branch, DTIE UNEP



#### Mercury (Hg) is a heavy metal

#### Species:

- ✓ Metallic or elemental : Hg<sup>o</sup>
- ✓ Ionic or Inorganic :  $Hg^+$  and  $Hg^{2+}$
- ✓ Organic Hg when combined with C
   Notably methylmercury (MeHg or CH<sub>3</sub>Hg),
   Ethylmercury, Phenylmercury



Source: UNIDO

#### Natural mercury releases



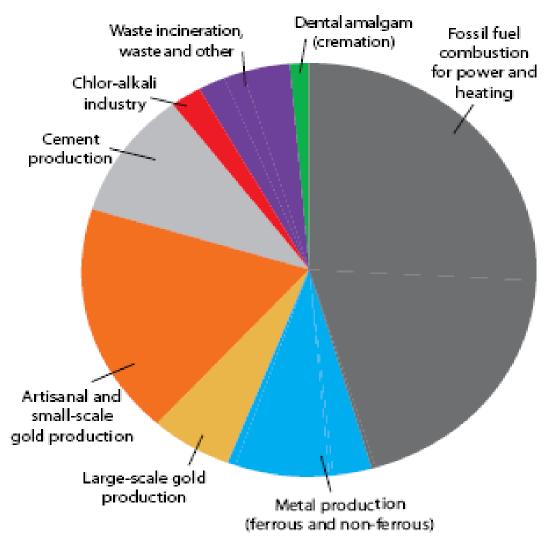
- Mercury is an element, neither created or destroyed
- Average 0.05 mg/kg in earth's crust
- Gradual release from crust to atmosphere
- Volcanoes
- Weathering of rock
- Under sea vents



#### Anthropogenic mercury releases

- Releases from mobilisation of mercury impurities: Coal-fired power, Cement production, non-ferrous metals mining
- Releases from intentional extraction and use of mercury: primary Hg mining, chlor alkali, small scale gold mining, manufacturing of products
- Releases from Waste Treatment: such as incineration/ waste disposal sites, landfill



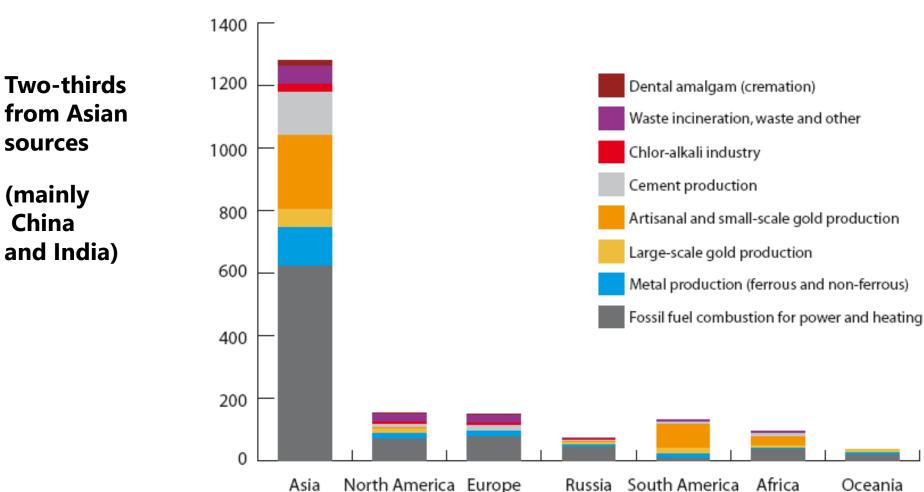



#### 2005 Emissions by Sector



- Combustion of fossil fuels (in particular coal): 45%
- Artisanal and smallscale gold mining: 20%
- Waste and Other figures are conservative estimates and highly uncertain

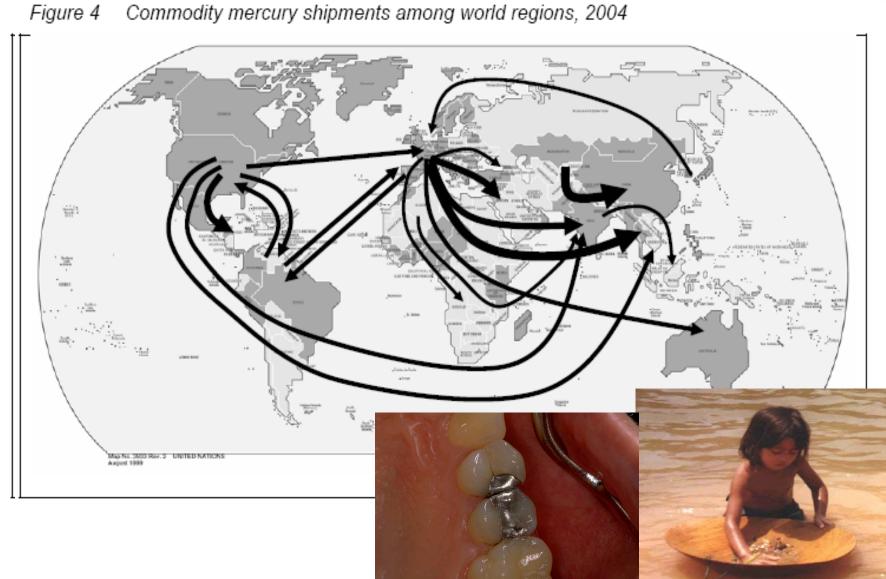





#### 2005 emissions by region

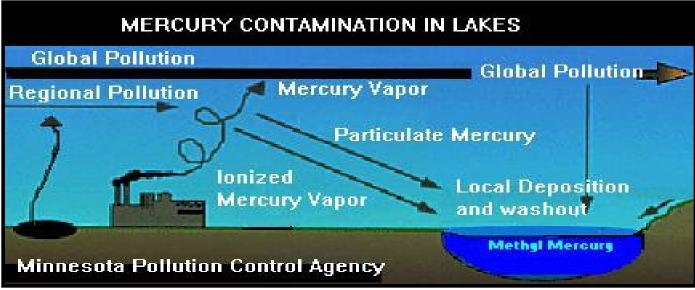


#### Geographical distribution reflects economic activity and technology, and presence of ASGM


Emissions of mercury to air in 2005 from various anthropogenic sectors in different regions



Mercury emissions, tonnes


#### Mercury Trade 2004

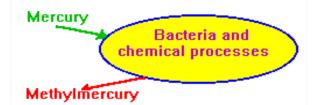




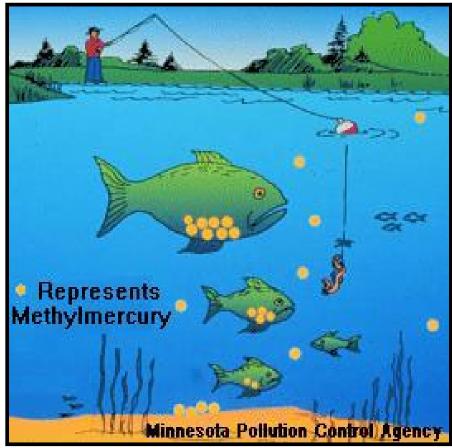
### Global Cycle and Transport of Mercury





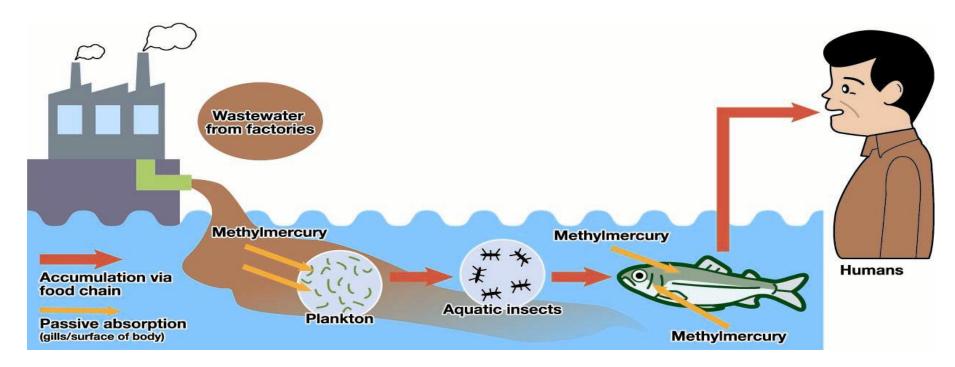

- Hg moves through environmental media and ultimately enters water bodies and deposits either close to source or long distance from source EPA
- Chemical and physical forms determine their behavior in the environment and pattern of deposition
- Divalent Hg- water soluble and relatively reactive and likely to deposit within a short distance
- Elemental Hg-tends to disperse long distance and may not deposit until it has traveled thousands of kilometers

# Fate of Mercury


Metabolic conversion, bioaccumulation biomagnification through "food-chain"

- Hg in sediments converts into methylmercury (MeHg)
- MeHg enters the aquatic food chain: plants, fish (marine freshwater), marine mammals
- MeHg uptake by humans through fish consumption

In lakes and streams, mercury is transformed into a toxic form.













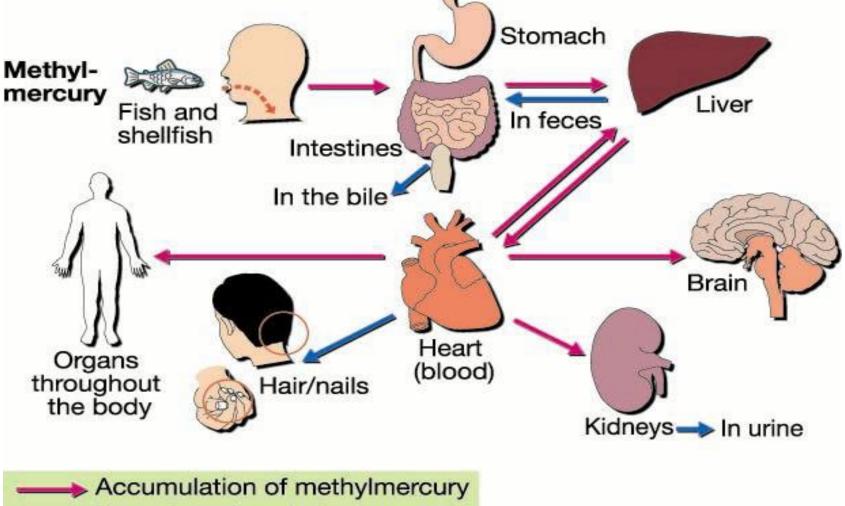


Organic (Methylmercury) - ingestion (95% absorbed in GIT) of freshwater and marine fish -bound in protein tissue, not in fatty deposits -trimming and skinning of contaminated fish do not reduce Hg

# Effects on the Environment and the Ecosystem










Causes neurological and reproductive effects, particularly in birds and predatory mammals
High levels seen in seals, whales, polar bears



#### Exposure Pathway and Effects on Humans



Excretion of methylmercury


| Mercury<br>Species                     | Sources                                                                                                                                                           | Routes of exposure                         | Elimina<br>tion  | Toxicity                                                 |              |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|----------------------------------------------------------|--------------|
| Elemental<br>(metallic)                | <ul> <li>ASM</li> <li>Chlor alkali</li> <li>Non ferrous mining</li> <li>Waste incineration</li> <li>Amalgams</li> <li>Manufacturing of medical devices</li> </ul> | Inhalation                                 | Urine and faeces | CNS<br>Kidney<br>Lungs<br>Skin (Acrodyni<br>children)    | UNEP<br>a in |
|                                        | <ul><li>Folk remedies</li><li>Cosmetics/soaps</li></ul>                                                                                                           | Dermal                                     |                  |                                                          |              |
| Inorganic<br>(mercuric<br>chloride)    | <ul> <li>Manufacturing and<br/>breakage of Lamps,<br/>Batteries</li> <li>Disinfectants</li> <li>Cosmetics/soaps</li> </ul>                                        | Inhalation<br>Ingestion<br>Dermal          | Urine            | CNS<br>Kidney<br>GI tract<br>Skin (Acrodyni<br>children) | a in         |
| <i>Organic<br/>(methyl;<br/>ethyl)</i> | <ul> <li>Folk medicine</li> <li>Fish</li> <li>Fungicides</li> <li>Preservatives</li> <li>(vaccines)</li> </ul>                                                    | Ingestion<br>Parenteral<br>Transplacental; | Faeces           | CNS<br>Cardiovascular                                    | 2            |



#### Mercury Effects on Fetus and Children

#### Uncommon syndrome "Pink disease":

- Pain in the extremities
- Pinkish discoloration and desquamation
- Hypertension
- Sweating
- Insomnia, irritability, apathy








Muhlendahl



#### Source: WHO Children's Environmental Health





#### Healthy Brain



# Brain from a person with Minamata disease.

An empty space in a shrinking brain due to necros/small neurons. Lars.Hylander@hyd.UU.SE

#### Factors affecting Occurrence and Severity of Health Effects



- Chemical form
- Dose
- Age
- Duration
- Route of exposure
- Dietary patterns of fish and seafood consumption

#### Susceptible Population

- More sensitive- fetus, newborn, children
   Mothers, pregnant women, women of reproductive age
- Exposed to high levels of Hg-subsistence fishers, recreational anglers, regular eaters of fish, shellfish, muscles and organs from marine mammals
- Individuals with diseases of the liver, kidney, nervous system, lungs
- Individuals with dental amalgams
- Workers with high occupational exposure
- Users of products (soaps, creams, traditional/cultural)



#### Biomonitoring



- Hair-chronic exposure to methylHg, dire UNEP relationship with blood
- Blood ,Cord blood, Urine, Nails, Human milk

- .1µg/kg/day intake of methylHg=
- 1 μg/g hair=5~6 μg/li in cord blood=4~5 μg/li blood

#### Environmental monitoring

• Sediments, soil, air

#### Maximum allowable Hg in Fish to be sold in the market



- Codex Alimentarius: .5 mg/kg methylHg in non predatory fish;
  - 1 mg/kg methylHg in predatory fish
- USFDA: set an action level of 1 mg/kg methylHg in finfish and shellfish
- EC: allows .5 mg Hg/kg in fish products
- Japan: .3 mg methylHg/kg in fish





#### Mandates of Mercury Work

- Initiated by UNEP Governing Council in February 2001 (21<sup>st</sup> session)
- Responded to concerns raised in different fora that national/regional action not sufficient to address mercury pollution



UNITED NATIONS NVIRONMENT PROGRAMN CHEMICALS



GLOBAL MERCURY ASSESSMENT



IOMC INTER-ORGANIZATION PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS A compensive agreement among UNEP, ILO, FAO, WHO, UNIDO, UNITAR and OECD

**UNEP 2002** 

## GC Decision 22 (2003) Need for global policy response



The Governing Council

- Endorsed conclusions of the Working Group
- Decided (GC 22/4)
   national, regional and global actions should be initiated ASAP



**UNEP Headquarters Nairobi** 

 Urged all countries to adopt goals and take actions to identify exposed populations and reduce anthropogenic Hg releases

#### Establishment of a UNEP Mercury Programme

- To support efforts of countries to take action to reduce Hg pollution, the Governing Council requested UNEP to initiate technical assistance and capacity building activities to support the efforts of countries.
- In response, UNEP established a mercury programme within its
   United Nations, Geneva Chemicals Branch in Geneva, Switzerland.





#### GC 23/9 (2005): Strengthened UNEP Mercury Programme




- Reiterated the conclusions of the GMA report on the global adverse impacts of Hg on health and environment
- Reiterated its decision that national, regional and global actions should be initiated ASAP
- Urged all countries to adopt goals and take actions to identify exposed populations and reduce anthropogenic Hg releases
- Urged Governments, IGOs, NGOs and private sector implement PARTNERSHIPS in a clear, transparent and accountable manner, as one approach to reducing risks from mercury

#### GC Decision 24/3 (2007)



- Recognised that current efforts to reduce risks from mercury are not sufficient to address the global challenges posed by mercury
- Options of enhanced voluntary measures and new or existing legally binding instruments will be reviewed and assessed in order to make progress in addressing this issue

#### GC Decision 25 (2009)...



Healthy Populations and Healthy Environments ---- Poverty Reduction (MDG and SD)



#### More information on the UNEP Mercury Programme available at...

http://www.chem.unep.ch/mercury/