

Reducing Mercury Use in ASGM Technical guidance document introduction

Dr. Kevin Telmer, Artisanal Gold Council Nigeria, June 2011

Basis of the Technical Guidance Document

- UNEP Governing Council Decision 25/5, paragraph 4: strengthen and enhance activities related to artisanal and small scale gold mining
- Purpose: to educate miners and those working with them; and to assist national governments with the development of models for programme design to improve nationallevel public policy
- Steering Group presenters plus Partnership Area leads (UNIDO + NRDC)

Structure of the Technical Guidance Document

- Relatively short, simple, attractive and functional
- Document will include discussion of:
 - Existing Technologies, with Emphasis on Mercury Controls and Process Improvement Options
 - Access Requirements
 - Operational Requirements
 - Gold Recovery Statistics
 - Untested Technologies with Potential

Format and Timing

- June 2011
 - Static document
 - Posted on the web
 - Web based document Wiki like evolving document

October 2011

- Peer Review complete
- Dissemination Strategy Developed

Field Testing

- Ghana zero mercury (direct smelting)
- Tanzania vapour capture

Current Practices - Alluvial

Better Practices

"Best" Practices

Technical Document Contents

Reduction of Intensive Mercury Use Eliminating Whole-Ore Amalgamation

Reduction of Intensive Mercury Use Eliminating Whole-Ore Amalgamation

Reduction of Intensive Mercury Use Eliminating Whole-Ore Amalgamation

Concentration

- The most important step in reducing mercury usage is concentration
- Concentration of gold from ores into smaller masses either
 - reduces the amount of mercury needed; or
 - allows a zero mercury technology to be employed such as direct smelting
- Good concentration requires good gold liberation (milling) followed by appropriate concentration technology
- Both require adequate capital often a function of community stability/legality

Improving Concentration

- Sluicing
- Panning
- Vortex
- Spiral Concentrators
- Centrifuges
- Shaker Tables
- Flotation Circuit

Improved Sluicing

- Constant flow of water
- Proper capture material (carpet, fleece)
- Incline of the sluice
- Uniform grain size (proper milling)

YouTube - Blue Bowl

D

YouTube - Sifts gold flakes out of debris - Desert Fox Gold Wheel running -

CONCENTRATE

Existing Mercury Reduction/Elimination Technologies For Processing

- Moving away from mercury whole-ore amalgamation
- Reducing open burning
 - Retort use
 - Vapour capture (gold shops)
- Reactivation of mercury
- Avoiding combining mercury and cyanide
- Zero mercury processing by direct smelting

Reducing Open Burning Retort Use

Reducing Open Burning Retort Use

Reducing Mercury Consumption Reactivation of Mercury

Reducing Open Burning Vapour Capture

Reducing Mercury Emissions & Releases Avoiding Mercury and Cyanide

Reducing Mercury Emissions & Releases Avoiding Mercury and Cyanide

Zero Mercury Use Direct Smelting

Discussion

- Questions
- Discussion
- Recording

D

Reporting Back