

Hg Analysis: Instrumentation

- Atomic Absorption Spectrometry (AAS)
- Atomic Fluorescence Spectrometry (AFS)
- Total Mercury Analyzer (gold trap-pyrolysis-AAS)
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Requirements for AFS and AAS: Hg must be in the elemental form (Hg^0) ;

- \rightarrow (Chemical) Reduction of Hg²⁺ prior analysis;
- → (Pyrolytic) Reduction and breaking Hg-C bond of MeHg prior analysis

Atomic Spectrometry

• In atomic spectrometry, we use the excitation state of electrons in an **ATOM**

• In atomic fluorescence spectrometry, we excite the electron by applying the appropriate wavelength, then *measure* the light subsequently emitted (Atomic Emission) by the Hg Atom

Light Source: Hollow Cathode Lamp

- Hollow cathode made of element of interest (e.g. of Na to measure Na! Selectivity of AAS!)
- Potential of 100-400 V ionizes Ne (glow discharge)
- Ne⁺ hit the cathode and excite the element
- Emission lines are generated.
- Low pressure and filled with Neon (Ne)

Hg Analysis

Principle of Atomic Fluorescence Spectrometry (AFS)

2) $Hg^{2+} + Sn^{2+} \rightarrow Hg^{0} + Sn^{4+}$

Signal of 0.1 ng/mL and 1.0 ng/mL

Instrument Calibration

Six standards points were prepared for calibration curve: 0.05 - 2 μ g/L in 5% HNO₃

Limit of Detection (LOD) based on 3 σ : 0.05 ng Hg /mL

The effect of carbon-mercury bond (Hg-C)

- Slope (Hg²⁺) > slope (CH₃Hg) means not all Hg-C has been cleaved in the digestion because
 - Hg²⁺+Sn²⁺ \rightarrow Hg^o + Sn⁴⁺
 - $CH_3Hg^+ + Sn^{2+} \rightarrow XXXX$ (no volatile product!!)

Strong digestion methods for Hg analysis in hair: Validation with CRM

No	Digestion method	Total mercury *Results are given as average ± standard deviation (n=3)				
		CRM 085 Certified value µg/g	Measured *value µg/g using 2% SnCl ₂	Recovery (%) @ 2% (w/v) SnCl ₂	Measured *value µg/g using 3 % SnCl ₂	Recovery (%) @ 3%(w/v) SnCl ₂
1	5 ml HNO ₃ + 1ml H ₂ O ₂ (microwave)		19.28 ± 0.5	83.10	21.76 ± 0.2	93.79
2	5 ml Aqua regia (microwave)		32.25 ± 0.2	139.0	31.23 ± 0.3	134.61
3	5 ml HNO ₃ (autoclaved @ 100°C)	23.2 ± 0.8	22.50 ± 0.2	96.98	23.19 ± 0.1	99.96
4	3 ml HNO ₃ + 2 ml H ₂ O (autoclaved @ 100° C)		6.94 ± 0.4	28.62	7.54 ± 0.3	32.50

* Results are given as average \pm standard deviation (n=3)

> Good agreement was found between the certified value and measured value as determined by procedure No 3, total recovery being between 96 and 100%

Cold vapour - AFS for Hg determination

Principle of Atomic Fluorescence Spectrometry (AFS)

CV-AFS is a very sensitive method for Hg determination with detection limits (in solution) in the lower ng/L range (ppt). Sensitivity can be even enhanced by applying amalgamation on gold support (gauze, gold coated silica etc.)

Gold traps for Hg accumulation

- Mercury amalgamates with gold, and gold traps have often been used for the collection and enrichment of mercury and mercury species.
- All volatile mercury species can be collected on gold traps
 → gold traps are not species specific!
- Use of gold traps: Improvement of LOD by enrichment; Direct gas sampling;
- Pyrolysis system needed for AFS or AAS detection after gold trapping!

Cold vapour - AFS for Hg determination

Principle of Atomic Fluorescence Spectrometry (AFS)

CV-AFS is a very sensitive method for Hg determination with detection limits (in solution) in the lower ng/L range (ppt). Sensitivity can be even enhanced by applying amalgamation on gold support (gauze, gold coated silica etc.)