

Instrumentation & lab

- 4 ICPMS (2 ICP-qMS, ICP-TOFMS, HR-ICPMS)
 - GC-ICPMS, HPLC-ICPMS,
 - Laser ablation-ICPMS
- 3 ES-MS (ES-qMS, ES-IT-MS, Orbitrap)
 - Coupled to HPLC and parallel to ICPMS
- AFS
 - GC-pyrolysis-AFS, HPLC-UV(ox)-AFS
- 3 AAS (2 FAAS, 1 GFAAS)
- GC-MS, 4 GC-FID
- Spring 2009 (clean lab, Cat II Microbiology, synthetic lab)
- (access to 400 & 600 MHz NMR)

outline

- Sources and sinks of mercury
- Analytical methodologies
- Target samples
 - Sampling, storage
 - Sample preparation
- Discussion points

- Industrial use: mercury switches, thermostats, thermometer, medications, preservatives, antiseptics, pesticides...
- Amalgamates with gold and silver: use in mining and as a dental fillings
- Geogenic as ore (Cinnabar) and as trace element in coal: Partition of volatile Hg into air during coal combustion
- High-level Hg exposure produces serious neurological problems in adults and in children born to mothers with high mercury levels

Mercury is a global pollutant!

- natural gas residues
 - Scales in pipelines
 - Dust from filters, charcoal, condensates
- Coal, sewage sludge and waste incineration waste products, furnace slags
- Waste products from mercury catalysts
- Paints, batteries, switches, light sources biocides, pharmaceuticals, cosmetics
- Amalgam fillings
- Thermometer, manometers,...

Hg speciation in biological and environmental samples

Table 1. Typical total and methyl mercury concentrations in environmental and biological matrices, compiled from US Environmental Protection Agency data (32).

	Hg _{Tot}	CH₃Hg(II)
Air	1–170*	0-40*
Precipitation	4–90†	0.04-0.6†
Fresh water	0.2-15†	0.04-0.8†
Sea water	0.3–15†	0.01-0.5†
Soil	8–406‡	0.3–23‡
Ocean sediments	2–2200‡	0.06-70‡
Lake sediments	10–750‡	0.3–30‡
Fresh water fish	30–330§	28–310§
Marine fish	10–1300§	10-1240§

US Environmental Protection Agency. 1997. Mercury Study: Report to Congress, Vol. III, Fate and Transport of Mercury in the Environment. EPA-452/R-97-005. US EPA, Office of Air Quality Planning & Standards and Office of Research and Development.

tesla

sla

Rice: a methylmercury hyperaccumulator an emerging problem ?

\rightarrow WHO RfC 1.6 µg/kg bw/week \rightarrow 0.23 µg/kg bw/d \rightarrow 14-16 µg/d

J. Agric. Food Chem. 2008, 56, 2465-2468

Staple food which accumulates MeHg.

J. Agric. Food Chem. 2008, 56, 2465-2468

Biomonitoring of mercury

- Long term exposure:
 - Inorganic mercury: liver and kidney & other organs
 - Methylmercury: brain but also liver and kidney
- Exposure over weeks
 - Hair and nail analysis: mainly methylmercury
- Snapshot exposure
 - Blood (3-4 days)
 - Urine (only for Hg²⁺)

tesla

🎗 tesla

Biomonitoring of exposure - blood analysis

- Gives a direct and relevant value (no external contamination)
- Temporal variability, hence blood levels give only a snapshot
- Invasive sampling
- Storage of blood samples complicated (sample and mercury speciation might change)
- Transport and handling is restricted (infection problem)

🎗 tesla

Biomonitoring of exposure: hair analysis

Limitations:

- lack of precision and accuracy of hair analysis results,
- external contamination (exogenous vs endogenous) and lack of reliable washing process
- Inter-individual variations,
- lack of correlation with health effects,
- lack of believable reference intervals ?

Biomonitoring of exposure: hair analysis

Advantages

- it accumulates high levels of mercury (up to 300 times higher than blood)
- it is easy to collect by relatively non-invasive methods
- Comparable data available
- Hair is stable specimen
- Hair is easy to store and to transport
- It gives an integral value rather than a snapshot
- Can be used as an historical archive (segmental analysis)

outline

- Sources and sinks of mercury
- Analytical methodologies
- Target samples
 - Sampling, storage
 - Sample preparation
- Discussion points

tesla

Hg Analysis: Instrumentation

- Atomic Absorption Spectrometry (AAS)
- Atomic Fluorescence Spectrometry (AFS)
- Total Mercury Analyzer (gold trap-pyrolysis-AAS)
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Requirements for AFS and AAS: Hg must be in the elemental form (Hg⁰);

- → (Chemical) Reduction of Hg²⁺ prior analysis;
- (Pyrolytic) Reduction and breaking Hg-C bond of MeHg prior analysis
- →For speciation chromatography is needed but sequential extractions are possible!

Direct Mercury Analyser

•Liquid or solid samples (no sample preparation but limited sample mass <100 mg)

- •Sample is dried in an oxygen stream inside a controlled heating coil.
- •Combustion gases are decomposed on a catalytic column at 750 °C.
- Mercury vapour (Hg⁰) is collected on a gold amalgamation trap, subsequently desorbed
 Mercury is determined using atomic absorption spectrometry at 254 nm

•LOD < 1µg/kg (sub-ppb)

Automatic Sampling/monitoring Use of Gold trap for amalgamation LODs < 0.1 ng/m³ (5 pg absolute)

tesla

UNIVERSITY OF ABERDEEN

Species integrity during derivatization? Does the species react quantitatively with the reagent (MeHg⁺ > MeEtHg)? Is the derivatization matrix dependant ? Is the extraction of MeEtHg into the solvent quantitative? Is MeHg⁺ stable or does it transform: demethylation of MeHg to Hg²⁺ or Hg⁰, or formation of Me₂Hg? A need for a reference method The solution: Species-specific isotope dilution (SS-IDMS): Spike of Me²⁰¹Hg Calculation of transformation factors using a double spike: Spike of Me²⁰¹Hg AND ¹⁹⁹Hg²⁺

MeHg⁺ analysis in seawater by SSIDMS using GC/ICP-MS employing a ²⁰¹MeHg⁺ spike

🎗 tesla

MeHg⁺ analysis in biota by SSIDMS using GC/ICP-MS

What did we learn from species-specific GC/ICP-IDMS of methylmercury ?

- The use of isotopically labelled species identifies species transformations
 - Even if species transformation takes place, accurate quantification is possible by speciesspecific ICP-IDMS
 - Species-specific ICP-IDMS can best be used for validation of analytical methods for elemental speciation

tesla

outline

- Sources and sinks of mercury
- Analytical methodologies
- Target samples
 - Sampling, storage
 - Sample preparation
- Discussion points

🎗 tesla

Pre-cleaning for mercury analysis blank management

- Pyrex and/or Teflon dishes should be soaked in acid baths at a temperature of 80°C, rinsed using ultra-high purity water, dried in a drying oven at 100°C and stored in polyethylene bags until use
- gloved hands should be used to manipulate all samples (dirty hands-clean hands principle)
- samples should be stored in polyethylene bags at 4°C and in the dark

tesla

Sampling and storage of hair

- Hair cut from occipital area
- 50-100 mg sufficient but ideally 200 mg
- No washing method necessary due to problems associated with indistinguishable exo and endogenous mercury
- Immediately placed in labelled Ziplok bags with usual precautions
- Storage and transport at ambient temperature
- Homogenization or segmental analysis
- \rightarrow Suggestion is even to use pooled samples

Hair analysis – total Hg

US-EPA 3052 20 mg of hair in pressure microwave vessel 4 replicates Add 9 mL conc. HNO₃ sealed an irradiated to 180°C for 10 min. and diluted to 20 mL Filtered (0.22 µm) and stored at 4°C L.o.d. 0.05 µg/g if CV-AFS or ICPMS is used (D.L. 0.05 ng/mL) Relevant Hg concentration: 0.1 µg/g (10 % of critical value of 1 µg/g).

Hair analysis - speciation

- Sample amount 100 mg ideally more
- 10 mL of 4 M HNO₃, 10 min. Microwave 100°C, filtered and diluted to 20 mL
- External Calibration: HPLC-ICPMS or derivatisation GC-ICPMS
- MeHg (99 ± 6 %), total Hg: 106 ± 7 %)
- $Hg^{2+} \rightarrow MeHg^{+} 4 \%, MeHg^{+} \rightarrow Hg^{2+} 6 \%$
- Alternative sample preparation:
 - 5 mL of 100 mg in 2*M* HCl, 4 h at RT, mechanical shaking, centrifuged diluted to 20 mL
- L.o.d. 0.1 µg/g for individual species when ICPMS is used (D.L. 0.8 ng/mL)

🚊 tesla

QA/QC for Hg speciation in hair

- Double spiking with ¹⁹⁹Hg²⁺ and ²⁰¹HgMe (Species-specific isotope dilution analysis) using ICPMS hyphenated to HPLC or GC
 - IAEA-085 (methyl-Hg in hair) Certified total Hg is $23.2 \pm 0.8 \ \mu g/g$, and CH₃Hg as Hg is 22.9 $\pm 1.0 \ \mu g/g$
 - and estimated Hg²⁺ is 0.1 0.5 µg/g. (additional IAEA-086 and NIES-13 available)

Relevant concentration: 1 µg/g

Fish/Biota - speciation

- 0.1 g sample (d.w.) in 5 mL TMAH
- Aliquot 1 mL 30 min microwave in glass container at 65°C
- Buffer with acetate to pH 3.9 propylation or pH 4.9 ethylation for derivatisation
- Organic solvent (iso-octane 1 mL)
- Add reagent 1 mL 1 % NaBEt₄ or NaBPr₄
- L.o.d. 0.005 μg/g (0.1 ng/mL GC-ICPMS)
- Fish in most cases not necessary to do speciation analysis since most of Hg is MeHg. Conservatively assuming all as MeHg for risk assessment

 \rightarrow Rice?

tesla

UNIVERSITY

OF ABERDEEN

Rice-speciation necessary

→So far no extensive knowledge
→But it seems that there is no direct correlation
→Speciation analysis necessary to estimate risk

J. Agric. Food Chem. 2008, 56, 2465-2468

🎗 tesla

Mercury in soil/sludge/sediment

General observations
 Methylmercury high in non-contaminated areas (0.10-30 %)
 Anthropogenic contamination (cinnabar mining or chlor-alkali plants < 0.001 %)
 → speciation analysis essential !

- Samples transferred to polyethylene bags, frozen at -20°C within 24 h of collection and later freeze-dried (lyophilized).
- Samples should be homogenized and sieved through a 50 µm nylon screen or use the < 2mm fraction</p>
- Concentrations of THg determined on the fine soil fraction only

→Species specific IDMS possible since danger of loosing species integrity

Vaccination

- Preservative Thimerosal
 - When injected, it disintegrate quickly to ethylmercury
- 0.01 % Hg ‼
- 1 mL injection = 100 µg Hg

- EtHgPr, MeHgPr, HgPr2 using GC-ICPMS

outline

- Sources and sinks of mercury
- Analytical methodologies
- Target samples
 - Sampling, storage
 - Sample preparation
- Discussion points for heterogeneous sampling

tesla

Mercury determination in heterogeneous waste materials

What is the aim of the analysis? - determine the overall Hg contamination in the waste material? - determine the Hg contaminated proportion of the waste material? - determine different Hg species: Hg⁰, Hg²⁺, MeHg...

- What is the sample like?
- Can one identify possible Hg "hotspots"?
- Sort material out prior Hg determination?

How to take a representative Sample? How much is a representative sample? How to homogenize a heterogeneous sample?

🎗 tesla

Mercury determination in heterogeneous waste materials: Hg⁰ analysis

UNIVERSITY

What should we do?

- 1. Proficiency tests for THg and MeHg analysis for nationally identified expert labs
- Collection of pooled human hair samples (controls and exposed subjects in each country)
- 3. Rice from exposed regions (5-10 samples per country)
- Collection of a integral waste streams (fly ash, sewage sludge)??
- 5. Residues from extraction of energy (water geothermal or charcoal from natural gas, etc.)
- Special samples (vaccines with Hg preservatives)???

Hair samples

- Each country samples three "hot spots" each 20 hair samples (incl. two controls)
- 200 mg each
 - Subdivide into 2 subsamples (not by cutting!!)
 - Clearly mark the start and the end of the hair growth
 - Take data (questionnaire, worker for how long, many hours, sex, age, fish/rice consumption)
 - Ethic committee??

tesla

tesla

If possible rice sample

- Rice from three hot spots and two control areas (from mill or farmer), each three samples (20g each).
- Questionaire about the pre-use of irrigation water

Other samples

- Fish
- Sewage sludge from treatment plan
- Sediment from setting ponds

Chile

- 361-4xx t of Hg
- Majority is from metal production however not much associated with copper mining and production
- but main source is from mine tailings in region II and IV where also exposure to people exists.

tesla

Pakistan

- Main release from chlor-alkali cells (21,000 t)
- Mercury cells should be phased out.
- Listed only in use w/o any release
- No exposure data available

Philippines

- 5500 t released into atmosphere (globally)
- Primary metal production (32 %) 75 t/y mainly gold mining w/o exposure data
- Energy resources (20%) 3-4 g Hg/MWh
- Release air 45 %, water 17%

