

Alternative Fuels and Vehicles: Co-benefits and Co-costs for India

Subash Dhar
UNEP DTU Partnership, Copenhagen

P R Shukla
Indian Institute of Management, Ahmedabad

Supported by:

based on a decision of the German Bundestag

Partner Organizations:

In collaboration with:

Contents

- Context
- Low Carbon Transition Strategies
 - Fuel Economy
 - Biofuels
 - Electric Vehicles
- Conclusions

Trends in Vehicle Ownership

Policy Name	Description							
Fuel Economy	Binding fuel economy standards starting 2017							
Standards for cars	• Fuel efficiency improvement in cars of 10% by 2017, and 20% by 2022 relative to							
	2010 levels							
Auto Fuel Policy	Phased implementation of vehicle and fuel quality norms in the country							
National Policy on	Proposed blending target of 20% blending of biofuels both for bio-diesel and							
Biofuels	bio-ethanol by 2017							
	Financial incentives							
	• Waiver on excise duty for bio-ethanol and excise duty concessions for biodiesel							
National Electric	 Investments in R&D, power and electric vehicle infrastructure 							
Mobility Mission	• Phase-wise strategy for research and development, demand and supply							
Plan	incentives, manufacturing and infrastructure upgrade							

Scenario Framework

FUEL ECONOMY

Global Comparison - Vehicles

Vehicle Ownership

Vehicle Efficiency

Future Fuel Economy

GFEI Targets

Average Fuel Economy: 4 wheelers

Fuel Economy: Co-benefits

PM 2.5 Emissions

Fuel Savings

BIO FUELS

Biofuels Targets & 1st Generation

Ethanol Surplus /Deficit from 1st Gen.

Land Required for Jatropha

Year	Diesel deman d (BL)	For 5% blending			10% ding	For 20% blending	
		Α	В	А	В	Α	В
2010	46.9	2.3	3.0	4.7	6.0	9.4	11.9
2020	98.8	4.9	6.3	9.9	12.6	19.8	25.2
2030	155.7	7.8	9.9	15.6	19.8	31.1	39.7

A = Biodiesel demand (BL) B = Jatropha area (Mha)

Source: Purohit & Dhar, 2015

2015 ow Carbon

ransport

Inclusive and sustainable mobility

Biomass for Biofuels

Biomass Availability

Biomass Supply Curve

Source: Purohit & Dhar, 2015

- Job creation especially in rural areas
- Energy Security improvement through oil savings and fuel mix diversification

Oil Savings

ELECTRIC VEHICLES

- Charging infrastructures
- Battery Costs
- Driving Range

Mode Shares and Trip Lengths

	Modal S	hares (%	of trips)	Average Trip Length (km)			
	Vizag	Rajkot	Udaipur	Vizag	Rajkot	Udaipur	
3-wheeler	9.0%	10.8%	11.0%	5.9	4.31	4.47	
Bus	18.0%	3.1%	2.0%	11.7	8.47	8.47	
Car	2.0%	2.3%	3.0%	9.3	11.67	5.98	
2-wheeler	15.0%	35.4%	34.0%	5.8	4.18	5.22	
Bicycle	3.0%	10.0%	2.0%	3.2	3.4	5.08	
Cycle-rickshaw	1.0%	0.8%			4		
Walk	52.0%	37.7%	48.0%	0.7	1.68	2.54	
Average Trip Length (km)				4.1	2.8	3.9	
Average Trip Rate	1.66	1.30	1.12				

Battery Costs

Co-benefits EVs

Oil Savings

PM 2.5 Emissions

Overall Contribution of Supply Side Measures

- A growth in vehicles is inevitable for India
- Supply Side measures provide the bulk of CO₂ emission reduction
- Financial incentives and infrastructure essential for success of supply side change
- All the three supply measures will improve energy security
- EV provide the largest benefits for air quality in cities
- Electricity cleaning is essential for low carbon transport

Questions?

Subash Dhar sudh@dtu.dk

Ressources

 Project Website <u>www.unep.org/transport/lowcarbon</u>

Reports Referred

- Shukla, P. R., Dhar, S., Pathak, M., & Bhaskar, K. 2014. *Electric Vehicles Scenarios and Roadmap for India*. Copenhagen: UNEP DTU Partnership.
- Purohit, P., & Dhar, S. 2015. Biofuel Roadmap for India. Copenhagen: UNEP DTU Partnership, Technical University of Denmark
- Dhar, S., Pathak, M., & Shukla, P. R. 2015. Transport Scenarios for India: Harmonising Development and Climate Benefits: UNEP DTU Partnership, Technical University of Denmark

