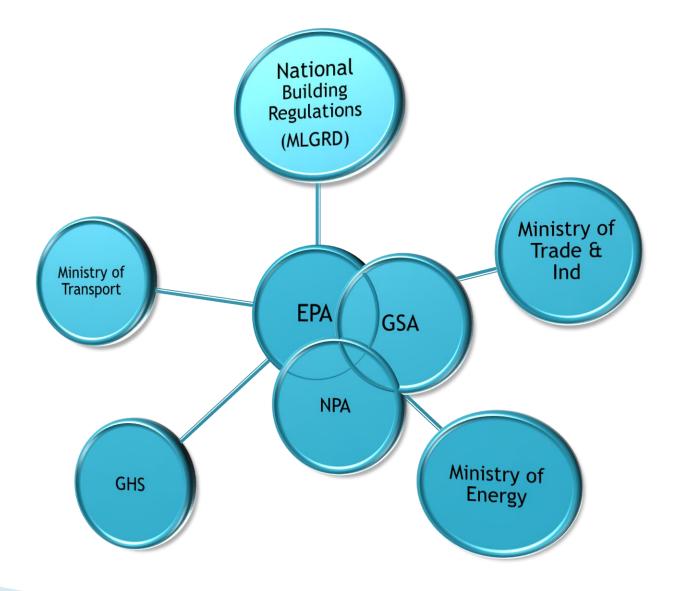
ENVIRONMENTAL AND HEALTH IMPLICATIONS OF FUELS QUALITY IN GHANA

- EMMANUEL K.E. APPOH
- (ENVIRONMENTAL PROTECTION AGENCY, GHANA)
- WORKSHOP ON LOW SULPHUR FUELS IN GHANA
- HOLIDAY INN, ACCRA
- 01 NOVEMBER 2016



Presentation Outline

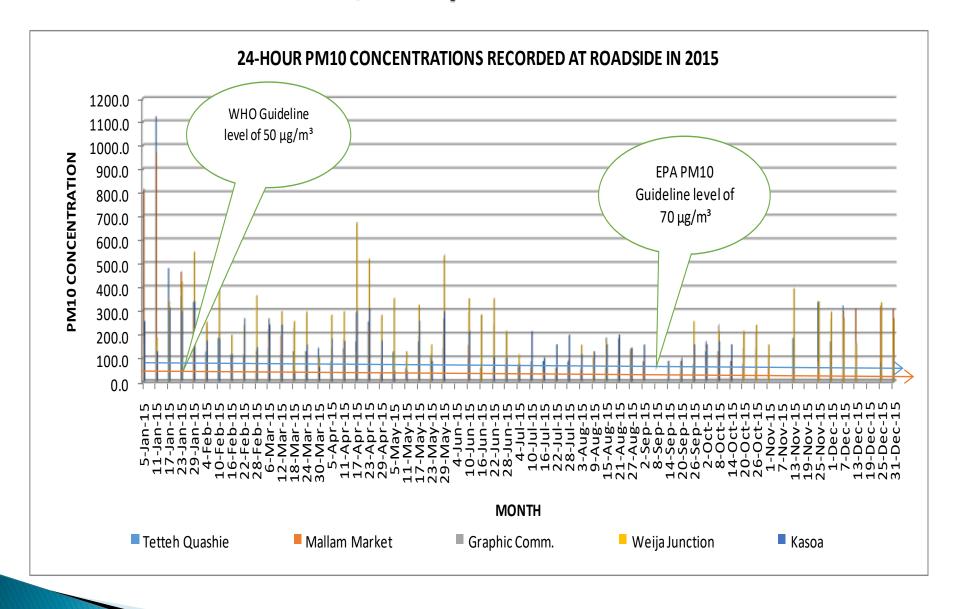
- Cross-sectoral Institutional mandates (EPA, NPA/MoE, MOH/ National Building Regulations, MoT/veh import policy, Ministry of Trade and Industries for non-mobile sources, among others)
- Major sources of Air Pollution in Ghana
- Transport and Vehicular Fleet
- Environmental implications of poor fuel consumption
- Milestone of Ambient Air Quality & Vehicular Emissions Monitoring (AQM) in Ghana.
- Health implications of exposure to emissions from consumption of poor fuel
- Current context
- The path Ways

Institutional Mandates

Road Transport and Vehicular Fleet

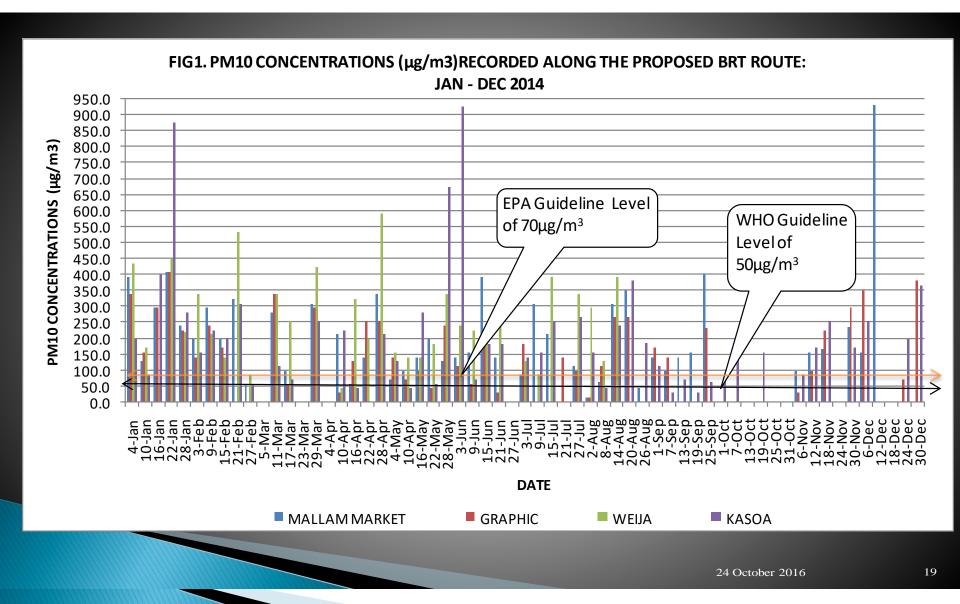
- ❖ 50,000km of road network. Paved road= 9,486km and unpaved roads (feeder roads) 40,555.50km.
- Road transport accounts for about 94% of freight and 97% of traffic movement. Sector that consumes a lot of fuel.
- Increased road traffic over past 10 years
- 84.96% of vehicle fleet in Ghana are privately owned and for commercial activities

Programme in Ghana


- Air Quality Programme in 1996 by EPA; programme implementation in 1997 at Residential, commercial and Industrial areas.
- Pioneering vehicular emission monitoring in Ghana (1997-1998). Outcome: a decision for DVLA to integrate vehicle emission testing into the licensing scheme.
- A paper issued on the reduction of the age of vehicle imports into Ghana.
- Studies and Lead phase out programme in Ghana.
- EPA roadside air quality monitoring (2005-Date).
- Vehicular emissions inventory in Ghana (2006)
- Urban Transport Programme
- * Roadmap to vehicular emissions and fuel economy standards in Ghana (2014-2020).
- Draft AQM and Vehicular Emission standards developed

PROPOSED EPA VEHICLE EMISSION STANDARDS

FUEL	PARAMETER	RECOMMENDED LIMITS	PERIOD	AVERAGE COMPLIANCE (%)	AVERAGE NON- COMPLIANCE (%)
PETROL	CO (%)	3.5	PRE 1995	3,391 (89.1%)	10.9
		2.5	POST 1995	46,380 (91%)	9
	НС (РРМ)	800	PRE 1995	3,696 (94.95%)	5.05
		300	POST 1995	49,547 (84.4%)	15.6
DIESEL	OPACITY (%)	55	PRE1995	1,954 (43.91%)	56.09
		40	POST 1995	1,637 (18.51%)	81.49


1 November 2016

Road side Air Quality

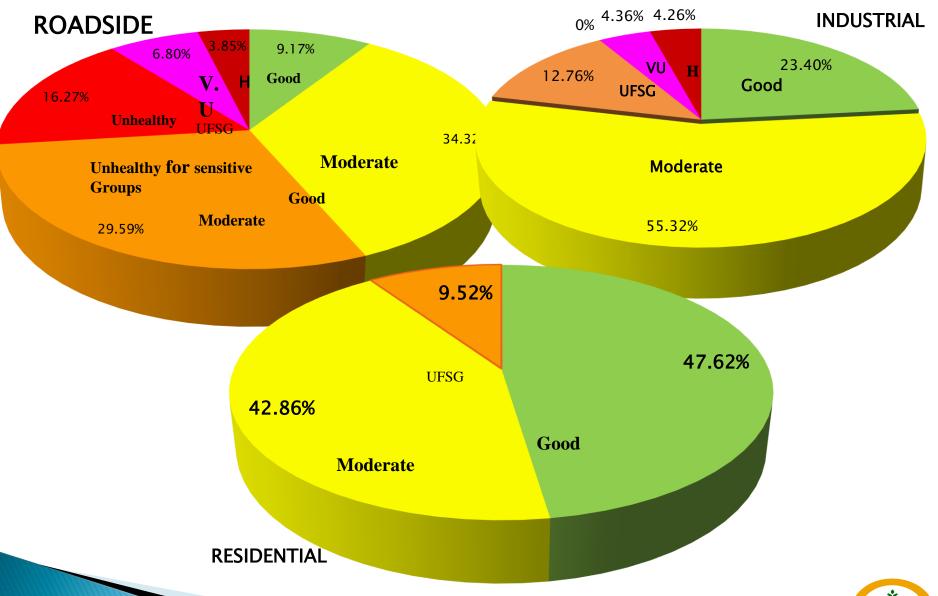
1 November 2016

Road side Air Quality

1 November 2016

poor fuel quality

- Malfunctioning of catalytic converters in vehicles.
- Reduced engine life due to use of poor quality lubricants/fuels
- Incomplete combustion of fuel leading to higher vehicular emissions (BC, CO, HC, CO2, NOx).
- BC, CO2, NOx are SLCP (GHG) have global warming potential and climate change consequences including Flooding, pest infestations, Heat waves, drought, poor plant growth and yield etc.



Environmental Implications, cont'n

*emissions affect crops via multiple pathways including radiactive forcing, CO2 and ozone concentrations, temperature change, slow and fast precipitation changes, and agriculture yield changes.

Air Quality Index

Implications on Human well-being

- Respiratory infections from PM exposures.(second to malaria of the 10 burden of diseases in Ghana). Decreased productivity of affected persons.
- Aggravation of Asthma incidences; dizziness;
- Lung cancer¹ especially BC from exhaust of diesel engines.
- Death in extreme cases esp. from Carbon Monoxide exposure
- Decrease/Loss of agric produce and productivity which have the potential of defeating the sustainable development goals on poverty eradication.

Current Context

- Policy on taxation on imported used and over-aged vehicles and engines into Ghana. An effective deterrent??
- Continuous use of poor fuel quality (high sulphur levels)
- Congestion and poor roads, vehicle maintenance and driving pattern exacerbating emission problem.
- Long over-due national vehicular emission standards.
- funds and logistics for pollution related health studies, education/awareness creation by health workers among others.
 - Refinery investment commitments

The Path Ways

- Restriction on Age limit of imported vehicles to 8 yrs; and increasing duty over CFI value (Cost of Freight and Insurance).
- Systematic plan for 50ppm sulphur level in fuels by 2020
- Public awareness & sensitisation on merit to reduce sulphur in fuels
- Implementation of roadmap to vehicular emission and fuel economy standards.
- develop standards & regulations for the fuel/vehicles technology; National vehicular emission standards
- Better investment in refineries
- Exposure Assessments: for emissions/air pollutants
- Pollution related health studies; Cost benefit in relation to GDP
- Collaborative efforts needed to reduce SLCP to help achieve<1.5 degree Celsius target by 2030s.

Let's clean the air!

A healthy fuel, environment & Public Health are what we want!

Thank You!

1 November 2016 16