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4-Nonylphenols 

Key References: 

 A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, J.N. Lester, Nonylphenol in the environment: A critical 

review on occurrence, fate, toxicity and treatment in wastewaters, Environ. Int. 34 (2008) 1033–1049. 

doi:10.1016/j.envint.2008.01.004 

 European Chemicals Agency, ECHA SVHC Support Document for 4-Nonylphenol, branched and linear, 

2012. https://echa.europa.eu/documents/10162/3024c102-20c9-4973-8f4e-7fc1dd361e7d 

 European Chemicals Agency, ECHA SVHC Support Document for 4-Nonylphenol, branched and linear, 

ethoxylated, 2013. https://echa.europa.eu/documents/10162/9af34d5f-cd2f-4e63-859c-529bb39da7ae 

 

Chemical Identification 

Name Abbreviation CAS Numbers Structure 

4-Nonylphenol, 

branched and 

linear 

4NPs 84852-15-3; 26543-97-5; 104-40-5; 

17404-66-9; 30784-30-6; 52427-13-

1; 186825-36-5; 142731-63-3; 

90481-04-2; 25154-52-3; others not 

identified 

 
CAS#: 84852-15-3 

 
CAS#: 104-40-5 

 
CAS#: 26543-97-5 

 
CAS#: 186825-36-5 

4-Nonylphenol, 

branched and 

linear, 

ethoxylated 

4NPnEOs 

(where n is 

the grade of 

ethoxylation) 

104-35-8; 7311-27-5; 14409-72-4; 

20427- 84-3; 26027-38-3; 27942-27-

4; 34166-38- 6; 37205-87-1; 127087-

87-0; 156609-10-8; 68412-54-4; 

9016-45-9; others not identified 

 
 

Completed assessments as the basis for inclusion: EU REACH SVHC 

 

Notes: Nonylphenols are a group of chemicals that exist as many isomers having a nine carbon side chain 

which can be attached at various points on a phenol ring. 4-nonylphenols (4NPs) are nonylphenol isomers that 

exist in both branched and linear forms. For the inclusion as Substances of Very High Concern (SVHCs) within 

the European chemicals regulation, REACH [1], 4NPs are defined as “substances with a linear and/or branched 

alkyl chain with a carbon number of 9 covalently bound in position 4 to phenol, covering also UVCB* and 

well-defined substances which include any of the individual isomers or a combination thereof.” 

4-nonylphenol polyethoxylates (4NPnEOs) are 4-nonylphenol isomers that exist in both branched and linear 

forms and contain an ethoxylated phenol ring with varying grades (chain lengths) of n ethoxylation. Technical 

4NPnEO products are sold with varying grades of ethoxylation including up to a grade of 70 [2]. 

                                                
* UVCB: Substances of unknown or variable composition, complex reaction products or biological materials. 
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Physical and Physicochemical Properties 

Property 4NPs  

CAS#: 

84852-15-3 

4NP 

(linear) 

CAS#:  

104-40-5 

4NP 

(minimally 

branched) 

CAS#: 

26543-97-5 

4NP (highly 

branched) 

CAS#: 

186825-36-5 

4NPnEOs  

NP2EO* CAS#: 20427-

84-3,  

NP10EO* CAS#: 29716-

54-9 

Molecular formula C15H24O C15H24O C15H24O C15H24O (C2H4O)n C15H24O 

Molecular weight 

[g/mol] 

220.4 220.4 220.4 220.4 308.5 (4NP2EO) to  

660.9 (4NP10EO) 

Physical state at 

20°C 

Liquid (see 

note below) 

solid  solid solid solid 

Melting point [°C] -8 [3] 42 [4] 90 † 87 † 140 (4NP2EO) †, 300 

(4NP10EO) † 

Density [g/cm3] 0.95 [3] NR NR NR NR 

Vapor pressure 

[mmHg] 

7.5*10-3 at 

38 °C [3]; 

2.25*10-3 at 

25 °C [5] 

8.2*10-4 at 

25 °C [5] 

6*10-5 at 25 

°C† 

1.8*10-4 at 

25 °C† 

1.33*10-7 (4NP2EO)† to  

2.11*10-19 (4NP10EO)† at 

25 °C 

Water solubility at 

25°C [mg/L] 

5.7 [3] 7.0 [5] 1.2† 1.4† 1.05 (4NP2EO)† to  

0.46 (4NP10EO)† 

Octanol/water 

partition coefficient 

(log KOW) 

5.4 [3] 5.76 [5] 5.92† 5.80† 5.30 (4NP2EO)† to  

3.11 (4NP10EO)† 

Organic 

carbon/water 

partition coefficient 

(log KOC) 

4.41 (MCI 

Method)†;  

4.28 (Kow 

Method)† 

4.58 (MCI 

Method)†;  

4.28 (Kow 

Method)† 

4.51 (MCI 

Method)†; 

4.37 (Kow 

Method)† 

4.42 (MCI 

Method)†;  

4.30 (Kow 

Method)† 

3.394 (MCI Method)†, 

3.41 (Kow Method)† 

(4NP2EO) to 4.42 (MCI 

Method)†; 1.66 (Kow 

Method)† (4NP10EO) 

Air/water partition 

coefficient (log KAW) 

-3.61† -2.86† -3.61† -3.61† -6.98 (4NP2EO)† to  

-21.45 (4NP10EO)† 

Dissociation 

constant (pKa) 

Approx. 10  

(or higher) 

[5] 

NR NR NR NR 

Note: The physical state of 4NP (CAS# 104-40-5) is reported in the EU SVHC support document as being 

liquid, and the document does not provide a value for the melting point [5]. However, the reported melting 

point of 42 °C from another source suggests that it would be solid at 20 °C [4]. 

                                                
*
 Derived from linear 4NP 

† Estimated value using models in EPI Suite v4.11 [8]. 

NR = not reported 



  DRAFT 

12 

 

Degradation Pathways and Kinetics 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  X    [5,6] 

Photolysis X    Shallow waters [5–7] 

OH-radical 

reactions 

X    Atmosphere [6,8] 

Biodegradation X   WWTP Water, 

Sediments, Soil 

[5,6] 

 

 

Kinetics 

Mechanism Reported values Reference 

Photolysis In clear shallow waters, half-lives of 10-15 h (4NPs)  [7] 

OH-radical reactions In atmosphere, half-lives of 2.48 h (4NPs) and 2.66 h (4NP1EO) to 

0.88 h (4NP8EO) 

[6,8] 

Biodegradation (in water) 4NPs: 

Open flask (allowing volatilization): half-life = 2.5 d 

Closed flask: half-life = 16 d 

4NPnEOs: 

Aerobic fresh water: >99 % degraded after 100 h, no change in 4NP 

concentration (mixture of 4NP2EO through 4NP15EO) 

Aerobic estuarine water: 100 % degraded after 4–24 d (adaption time 

of 0 –12 d, no 4NPs detected) (mixture of 4NP7EO through 

4NP24EO, average NP18EO) 

[8–11] 

Biodegradation (in soil) 4NPs: 

Initially half-life = 4.5 to 16.7 d, then later >40 d (biphasic) 

2.1 to 10.3 d (branched isomers), 1.4 d (linear isomer) 

4NPnEOs: 

Dissipation half-life initially 7 d, then later 150 d, then >360 d 

(triphasic) (4NP1EO) 

Dissipation half-life initially 8 d, then later 110 d, then >360 d 

(triphasic) (4NP2EO) 

Dissipation half-life initially 0.3–5.2 d, then later 11.4–48 d 

(biphasic) (4NP12EO) 

[8,12–15] 

Biodegradation (in 

sediment) 

4NPs: 

Freshwater sediments: half-life = 13.6–99 d (aerobic), 

46.2 to >154 d (anaerobic) 

Marine sediments: half-life = 5.8 d to >70 d (aerobic or 

methanogenic) 

4NPnEOs: 

Aerobic: half-life = 69–115 d (4NP1EO) 

Anaerobic: half-life = 49–77 d (4NP1EO) 

[8,16–19] 

Biodegradation (in WWTP 

sewage sludge) 

4NPs: 

Aerobic: half-life = 7.5 d (at 20 °C) and 3.1–4.7 d (at 30 °C) (4NPs) 

Anaerobic: half-life = 38.5 d (at 20 °C) and 36.5 d (at 30 °C) (4NPs) 

4NPnEOs: 

Anaerobic: 57% transformed into 4NP after 150 d (4NP2EO) 

[8,19–21]  

 

 

Notes: Degradation has generally been found to occur more quickly across environmental media under 

aerobic conditions than those under anaerobic conditions, with some studies finding little to no degradation 

under anaerobic conditions. The higher the branching degree of the alkyl chain, the lower the resulting 

biodegradability. Biodegradation is enhanced by increasing temperature, and microorganisms were found in 
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some studies to need a period to adapt to an environment containing the nonylphenol before biodegradation 

could begin [6]. 

The ethylene oxide groups on highly-ethoxylated 4NPnEOs can break down and yield shorter-chain 

4NPnEOs. The degradation rates of longer-chain 4NPnEOs were found to be similar or higher than those of 

shorter-chain 4NPnEOs [6]. Studies found that 4NPnEOs degrade into 4NPs at varying rates in wastewater 

treatment plant sludges, depending on the sludge composition [6]. 

 

 

Intentional Uses and Production Levels 

Uses 

4NPs 

 Most commercialized forms of nonylphenols [22]. 

 Primarily used for the production of nonylphenol polyethoxylates (4NPnEOs) and also in lubricant 

additives, formaldehyde resins, epoxy resins, and polymeric stabilizers [22]. 

4NPnEOs 

 Primarily used in industrial, commercial, and household products as surfactants [23]. 

 Also used in emulsion polymerization, textile and leather auxiliaries, paints, pesticides, metal processing, 

and film development [23]. 

Production Levels 

4NPs 

 First produced in 1940 with almost exponential increase in production and use in the years following [24]. 

 Reported and estimated annual production levels: 154 200 tonnes in the United States 2001 [24], 16 500 

tonnes in Japan in the year 2000 [25], 16 000 tonnes in China in 2004 [24], and near 73 500 tonnes in the 

EU in 1997 [23]. 

 Increased restrictions in the EU are estimated to have caused a decrease in production there by 50 % since 

the year 2005 [26]. 

 Switzerland has banned the use of both nonylphenol and nonylphenol ethoxylates [27]. 

 Production has been noted in developing countries and countries with economies in transition including 

China, India, and across South America with no known phase-out schedules in place, and annual 

production is estimated to be increasing in some of these markets [28]. 

4NPnEOs 

 Estimated worldwide production: 520 000 tonnes in 1995 [29]. 

 Annual production in the EU: 118 000 tonnes in 1997 [23]. 

 Annual production in Japan: 34 600 tonnes in 1998 [25].  

 Estimated production in China: 50 000 tonnes per year in 2006 [30]. 

 Replacement by alternative surfactants (often alcohol ethoxylates) in many of the European, Canadian, 

and Japanese markets [24]. 
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Emission Sources into the Environment 

 

 Limited information found on ongoing uses and release sources. 

 Most releases occur during the use and disposal of products containing 4NPs and 4NPnEOs [28]. 

4NPs 

 Emission Sources 

Production Likely released; e.g., estimated releases in Canada in 1996 with about 0.5 % by 

mass of total Canadian production [31]. 

Use Diffuse emissions expected from degradation of nonylphenol ethoxylates; 

higher concentrations in the environment are found in closer proximity to 

urban or industrialized areas and storm water releases [28]. 
Disposal  Degradation of nonylphenol ethoxylates, especially in wastewater treatment 

plant (WWTP) processes, are a source of release of NPs into the environment 

[32]. 

 One study identified that 60–65 % of nonylphenolic compounds entering a 

WWTP were released into the environment with much of the released 

nonylphenol found in the effluent sludge [33]. 

 Treated wastewaters released to nearby natural water bodies and contaminated 

sludge applied to open lands are important sources of environmental 

contamination [24]. 

Other sources Not produced naturally [28]. 

 

4NPnEOs 

 Emission Sources 

Production Not reported 

Use Continental releases into the environment estimated for Europe in 2002 from 

multiple sectors including releases of about 12 tonnes per day in the agricultural 

industry, 18 tonnes per day from textile processing, and 51 tonnes per day in the 

public domain as industrial and institutional cleaning products [23]. 

Disposal The degradation of nonylphenol ethoxylates, especially in wastewater treatment 

plant (WWTP) processes, are a source of release of NPs into the environment [32]. 

Other sources Not produced naturally [28]. 
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Distribution in the Abiotic Environment and Biota 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for these chemicals as surfactants, a plausible emission 

pattern was assumed to estimate the resulting distribution in the natural environment using the Level III 

fugacity model in EPI Suite [8]. The assumed emission pattern and the resulting environmental distribution 

from the model are presented in the table below for each chemical. 

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

4NP 

linear 

0 % 90 % 10 % 0 % 41 % 16 % 43 % 

4NP min. 

branched 

0 % 90 % 10 % 0 % 30 % 18 % 52 % 

4NP 

highly 

branched 

0 % 90 % 10 % 0 % 33 % 19 % 48 % 

4NP2EO 0 % 90 % 10 % 0 % 71 % 24 % 5 % 

4NP10EO 0 % 90 % 10 % 0 % 27 % 20 % 53 % 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

4NPs 

740 fish [3] 

124 (estimate for linear isomer, 

CAS# 140-40-5) 
fish [8] 

3138 (estimate for branched 

isomer, CAS# 186825-36-5) 
fish [8] 

4NP2EO 34 (estimate) fish [8] 

4NP10EO 29 (estimate)  fish [8] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in 

published literature including in the following:  

 

- Careghini, A.; Mastorgio, A. F.; Saponaro, S.; Sezenna, E. Bisphenol A, nonylphenols, 

benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a 

review. Environ. Sci. Pollut. Res. 2015, 22 (8), 5711–5741. 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

Year 

Number 

of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

4-Nonylphenols (4NPs) 

River water (low-

flow season) 

China 2005/2006 8 0.036 – –33.23 

μg/L 

2.52 μg/L 100 % 

(LOD = 

0.1 

ng/L) 

[35] 

River water (high-

flow season) 

China 2005/2006 10 0.48 – –30.55 

μg/L 

1.28 μg/L 100 % [35] 

River water 

(Mississippi River) 

United 

States 

1999 6 ND <0.05 μg/L NR [36] 

River water 

(Cuyahoga River) 

United 

States 

2000 4 0.07 – –0.20 

μg/L 

0.14 μg/L NR [36] 

River water 

(Texacoco River) 

Mexico 2001 15 0.93 – –7.6 

μg/L 

NR NR [37] 

Wastewater influent 

(Chicago) 

United 

States 

2005/2006 7 3.4 – –150 

μg/L 

79 μg/L NR [36] 

4NP1EO 

River water 

(Mississippi River) 

United 

States 

1999 6 ND <0.05 μg/L NR [36] 

River water 

(Cuyahoga River) 

United 

States 

2000 4 0.05 – –0.14 

μg/L 

0.05 μg/L NR [36] 

River water 

(Texacoco River) 

Mexico 2001 15 ND – –6.1 

μg/L 

NR NR [37] 
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Measured 

compartment 

Sampling 

location 

Sampling 

Year 

Number 

of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

Wastewater influent 

(Chicago) 

United 

States 

2005/2006 7 2.9 – –58 μg/L 15 μg/L NR [36] 

4NP4EO 

River water 

(Mississippi River) 

United 

States 

1999 6 ND <0.05 μg/L NR [36] 

River water 

(Cuyahoga River) 

United 

States 

2000 4 ND – –0.05 

μg/L 

<0.05 μg/L NR [36] 

Wastewater influent 

(Chicago) 

United 

States 

2005/2006 7 ND – –3.1 

μg/L 

1.4 μg/L NR [36] 

 

 

 

Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to 4NPs and 

4NPnEOs exist for different organisms and across different study levels. A comprehensive but non-exhaustive 

set of reported observations is included below, and further observations can be found in published literature 

reviews including in the following: 

 
- A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, J.N. Lester, Nonylphenol in the environment: A critical 

review on occurrence, fate, toxicity and treatment in wastewaters, Environ. Int. 34 (2008) 1033–1049. 

doi:10.1016/j.envint.2008.01.004 

- European Chemicals Agency, ECHA SVHC Support Document for 4-Nonylphenol, branched and linear, 

2012. https://echa.europa.eu/documents/10162/3024c102-20c9-4973-8f4e-7fc1dd361e7d  

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

4NP; 

4NPnEO 

frog, medaka Increased vitellogenin level in males 

(feminization) 

[38–41] 

4NP; 

4NPnEO 

carp, medaka, rainbow trout Histological alterations in gonads (testis, 

ovaries) 

[41–43] 

4NP rainbow trout, oyster Impaired reproduction (fecundity, fertility, 

spermatogenesis inhibition) 

[44–46] 

4NP; 

4NPnEO 

medaka, oyster Altered sex ratio (skewed to females) [47–49] 

4NP amphibians Thyroid axis related developmental effects [50,51] 

4NP crassostrea gigas larvae Growth and abnormal developments of 

individuals 

[52] 

4NP fish (various species) Altered spawning behaviour [53,54] 
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In vitro level 

Substance Cell line Observation Reference 

4NP MCF-7 Induced cell proliferation and adipocyte 

formation 

[55–57] 

4NP MCF-7, yeast (Sphingobium 

xenophagum Bayram) 

Estrogen receptor (ER) activation (including 

binding and transcription processes) 

[56,58] 

4NP; 

4NPnEO 

rainbow trout hepatocytes, male 

African clawed frog hepatocytes 

Vitellogenin* mRNA or protein expression [59–61] 

4NP yeast two-hybrid system, 

stickleback kidney cell 

Androgen receptor (AR) blockage (receptor 

inhibition or suppression of androgen 

production) 

[62,63] 

4NP blood plasma from bear cubs, 

thyroid hormone transport 

protein transthyretin from 

several species 

Weak potency to bind to thyroid hormone 

transport proteins 

[64,65] 

 

 

Notes:  

The exact chemicals (including CAS numbers) used in the studies are often not reported, and instead mixtures 

are commonly reported to have been used. 
Based on available information, it can be expected that in-vivo data for branched nonylphenols describe the 

adverse effects for linear nonylphenols as well [5]. 

Nonylphenol ethoxylates are expected to have similar effects to nonylphenols, and toxicity to aquatic organisms 

tends to decrease with increasing degree of ethoxylation [66]. 

 
 * Vitellogenin is a precursor protein normally synthesized by females during oocyte maturation. 
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4-tert-Octylphenols 

Key References: 

 European Chemicals Agency, SVHC support document 4-(1,1,3,3-tetramethylbutyl)phenol, (2011). 

https://echa.europa.eu/documents/10162/4c6cccfd-d366-4a00-87e5-65aa77181fb6. 

 European I Chemicals Agency, SVHC Support Document: 4-(1,1,3,3-Tetramethylbutyl)phenol, 

ethoxylated, 2012. https://echa.europa.eu/candidate-list-table/-/dislist/details/0b0236e1807db570. 

 C.A. Staples, G.M. Klecka, C.G. Naylor, B.S. Losey, C8- and C9-Alkylphenols and Ethoxylates: I. 

Identity, Physical Characterization, and Biodegradation Pathways Analysis, Hum. Ecol. Risk Assess. An 

Int. J. 14 (2008) 1007–1024. doi:10.1080/10807030802387705. 

 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

4-tert-Octylphenol; 

4-(1,1,3,3-

tetramethylbutyl)phenol 

4tOP 140-66-9 

 

4-tert-Octylphenol, ethoxylated; 

4-(1,1,3,3-

tetramethylbutyl)phenol, 

ethoxylated 

 

4tOPnEO 

(where n is the 

grade of 

ethoxylation) 

2315-67-5;  

2315-61-9; 

2497-59-8; 

9002-93-1; others 

not identified  

Completed assessments as the basis for inclusion: EU REACH SVHC 

 

 

  

https://echa.europa.eu/candidate-list-table/-/dislist/details/0b0236e1807db570
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Physical and Physicochemical Properties 

Property 4tOP 4tOP1EO  

CAS#: 2315-67-5 

4tOP10EO  

CAS#: 9002-93-1 

Molecular formula C14H22O (C2H4O)1C14H22O (C2H4O)10C14H22O 

Molecular weight [g/mol] 206.32 250.38 646.86 

Physical state at 20°C solid solid solid 

Melting point 

[°C] 

84 - 85 [1]; 

79 - 82 [2] 

102† 309† 

Density  

[g/cm3] 

0.89 at 90°C [1]; 

0.95 [2] 

NR NR 

Vapor pressure at 25°C 

[mmHg] 

1.575*10-3 [3];  

7.5*10-3 [2] 

6.99† 4.42*10-18 † 

Water solubility [mg/L]  19 at 22 °C [2];  

12.6 at 20.5 °C [4] 

8.0 at 20.5 °C [4];  

5.4† 

2.3†  

Octanol/water partition 

coefficient (log KOW) 

4.1 [5];  

3.7 [6] 

4.86† 2.39† 

Organic carbon/water 

partition coefficient (log KOC) 
4.0 (MCI method)†;  

4.0 (Kow method)† 

2.9 (MCI method)†;  

3.3 (Kow method)† 

3.8 (MCI method)†;  

1.3 (Kow method)† 

Air/water partition coefficient 

(log KAW) 

-3.7† -5.3† -21.6† 

Dissociation constant (pKa) 10.33 at 25 °C 

(estimated) [2] 

NR NR 

 

  

                                                 
† Estimated value using models in EPI Suite v4.11 [9]. 

NR = not reported 
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Degradation Pathways and Kinetics 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  4tOP; 

4tOPnEO 

   [3,7] 

Photolysis 4tOP; 

4tOPnEO 

   Surface water [8] 

OH-radical 

reactions 

4tOP; 

4tOPnEO 

   Atmosphere [9] 

Biodegradation 4tOP; 

4tOPnEO 

(inherently, see 

notes) 

  WWTP River water [3] 

 

 

Kinetics – 4-tert-Octylphenol (4tOP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 0.25 d [8] 

Photolysis in water Half-life = 6.9–13.9 h [3,8] 

Biodegradation (mixed population of 

non-adapted micro-organisms from 

activated sewage sludge) 

No degradation after 28 d [3] 

Biodegradation (non-adapted aerobic 

micro-organisms from activated 

sludge) 

20 % degraded after 28 d [3] 

Biodegradation (domestic activated 

sludge) 

69.9 % degraded after 35 d [3] 

Biodegradation (bacterial community 

isolated from activated sludge, 

aerobic conditions) 

> 90 % degraded after 32 h [10] 

Biodegradation (bacterial community 

isolated from activated sludge, 

anaerobic conditions) 

20 % degraded after 36 h [10] 

Biodegradation (river water) Half-life = 7–50 d   [3] 
 

 

Kinetics – 4-tert-Octylphenol, ethoxylated (4tOPnEO) 

Mechanism Reported values Reference 

Biodegradation (bacterial community 

isolated from activated sludge, 

aerobic conditions) 

>90 % degraded (Triton X-100 & Triton X-15) within 36 h 

 
[10] 

Biodegradation (bacterial community 

isolated from activated sludge, 

anaerobic conditions) 

>90 % degraded (Triton X-100) within 36 h; 

35 % degraded (Triton X-15) within 36 h 
[10] 

 

Notes: 

Due to the similar structures of octylphenol and nonylphenol and that octylphenol can be a significant 

impurity in nonylphenol, it can be expected that some degree of general acclimation of microbial populations 

has occurred. Therefore, 4tOP is considered to be inherently biodegradable. [3] 

 

Triton is a commercially available mixture of ethoxylated 4tOP of different ethoxylation degrees. The average 

ethoxylation degree of Triton X-100 is 9.5 and that of Triton X-15 is 1.5 [11,12]. 
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Intentional Uses and Production Levels 

Uses 

4tOP 

 Use in the EU: 1050 tonnes in 2001, primarily for the production of phenolic resins (98 % of total use), 

mostly for the manufacture of tire rubber and also electrical insulation coatings, adhesives, paints and 

printing inks [13–15]. 

 2 % of the total use in the EU in 2001 for the production of octylphenol ethoxylates and subsequent 

derivatives [15].  

 Switzerland and Norway have largely prohibited the use of octylphenol [15,16]. 

4tOPnEOs 

 Used mostly used in the EU for emulsion polymerization (52 %) in 2001 [14]. 

 Additional uses: textile and leather finishing (14 % of uses in the EU in 2001), pesticide formulations as 

emulsifiers (4 % of uses in the EU in 2001), and minor uses in water-based paints and veterinary 

medicines [15]. 

 Use largely prohibited in Switzerland and Norway [15,16]. 

Production Levels 

4tOP 

 Production in the EU: 22 663 tonnes in 2001 [14]. 
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Emission Sources into the Environment 

 

 Limited information was found for ongoing uses and release sources of 4tOP and 4tOPnEOs. 

 Similarly to nonylphenols, some direct releases from production, use of containing products, and disposal 

and treatment of wastes are likely to occur. 

 

4tOP 

 Emission Sources 

Production  Potential release as impurity during the production of nonylphenols [15]. 

 240 kg released from one facility in the UK to controlled waters in 2003 [15]. 

 Estimated to be similar to emissions from nonylphenol production due to 

almost identical production processes [15]. 

Use Primarily from abrasion of tires, marine paint application, and production of resins 

[15]. 

Disposal No information found on specific releases during disposal. However, based on the 

products they are used in, releases may occur from disposal of products containing 

them (such as marine paints and improper disposal of tires). 

Other sources Not reported 

 

4tOPnEOs 

 Emission Sources 

Production 200 kg released from one facility in the UK to controlled waters in 2003 [15]. 

Use Primarily from washing of imported textiles [10] and from use of pesticides [15].  

Disposal Not reported 

Other sources 
Not reported  

 

 

 

 

Distribution in the Abiotic Environment and Biota 

Estimated Environmental Distribution 

Inadequate data regarding the emission patterns for these chemicals across their wide range of uses have been 

identified, hindering a representative understanding of their environmental distribution. Additional efforts are 

needed to better understand the emission patterns, and environmental models (e.g., the Level III fugacity 

model in EPI Suite [9]) could then be used to estimate the distribution of these chemicals across the different 

environmental compartments.  

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

4tOP 12-470 fish (several species) [17] 

4tOP1EO 417 (estimate) fish [9] 

4tOP10EO 10 (estimate)  fish [9] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in 

published literature including in the following: 

 

- G. Klečka, J. Zabik, K. Woodburn, C. Naylor, C. Staples, B. Huntsman, Exposure Analysis of C8- and 

C9-Alkylphenols, Alkylphenol Ethoxylates, and Their Metabolites in Surface Water Systems within 

the United States, Hum. Ecol. Risk Assess. An Int. J. 13 (2007) 792–822. 

doi:10.1080/10807030701456726. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ)). NR = not reported. 

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

4-tert-Octylphenol (4tOP) 

River water China 2015 4 1.20– 

3.99 ng/L 

1.38 ng/L 100 % (LOD = 

0.13 ng/L) 

[18] 

River water Vietnam 2013 36 ND–35 ng/L NR NR (LOD = 

2.0 ng/L) 

[19] 

River water China 2009 26 1.54– 

45.8 ng/L 

4.12 ng/L 100 % (LOD = 

NR) 

[20] 

River water China 2008 30 2.4–14.5 ng/L 4.3 ng/L 100 % (LOD = 

NR) 

[21] 

River water UK 2005 8 NR–37.6 ng/L NR 100 % (LOD = 0.1 

ng/L) 

[22] 

River water Germany 2000 15 ND–5 ng/L 2.5 ng/L 93 % (LOD = NR) [23] 

River water Canada 1999 5 ND–48 ng/L ND 40 % (LOD = 

1 ng/L) 

[24] 

River water Germany 1998/ 

1999 

19 0.4–6.0 ng/L 1.0 ng/L 100 % (LOD = 
NR)  

[25] 

Sea water 

(surface 

microlayer) 

Poland 2011/ 

2012 

54 ND– 

177.9 ng/L 

19.4 ng/L NR [26] 

Sea water 

(sub-surface 

water, river 

outlet) 

Poland 2011/ 

2012 

24 ND– 

834.8 ng/L 

6.0 ng/L NR [26] 

Sea water 

(sub-surface 

water, coastal 

sea) 

Poland 2011/ 

2012 

36 ND–63.0 ng/L 5.8 ng/L NR [26] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Sea water 

(open water 

<4 m depth) 

Poland 2011/ 

2012 

30 ND–65.9 ng/L 2.3 ng/L NR [26] 

Sea water 

(near bottom) 

Poland 2011/ 

2012 

30 ND–56.4 ng/L 0.1 ng/L NR [15] 

Sea water Portugal 2010 36 4.3–41 ng/L 

(mean values) 

NR NR [27] 

Sea water Greece 2005/ 

2006 

22 1.7–18.2 ng/L NR NR [28] 

Sea water USA 1999 21 1.56–8.34 ng/L 2.76 ng/L 100 % (LOD = 

0.08 ng/L) 

[29] 

Sea water Germany 1998/ 

1999 

19 0.02–18 ng/L 3.6 ng/L 100 % (LOD = 

NR) 

[25] 

River 

sediment 

China 2015 4 ND ND 0 % (LOD = 0.17 

ng/g dw) 

[18] 

River 

sediment 

China 2009 25 0.14– 

1.7 ng/g dw 

0.52 ng/g 

dw 

100 % (LOD = 

NR) 

[20] 

River 

sediment 

China 2008 29 ND–2.6 ng/L ND 38 % (LOD = NR) [21] 

River 

sediment 

UK 2005 8 4.7–31.3 ng/g NR 100 % (LOD = 

0.14 ng/g) 

[22] 

River 

sediment 

Germany 1998/ 

1999 

11 21– 

86 ng/g dw 

39 ng/g dw 100 % (LOD = 

NR) 

[25] 

Sea Sediment Greece 2005/ 

2006 

20 6.0–25.0 ng/g 

dw 

NR NR [28] 

Sea sediment China 2010/ 

2011 

66 0.7– 

11.1 ng/g dw 

5.1 ng/g dw  100 % (LOD = 

NR) 

[30] 

Sea sediment India 2014 30 107.35–268.89 

ng/g dw 

184.07 

ng/g dw 

(LOD = 0.1 ng/g 

dw) 

[31] 

Sea sediment USA 1999 10 ND–45.0 ng/g ND 50 % (LOD = NR) [29] 

Suspended 

particulate 

matter (sea) 

Greece 2005/ 

2006 

22 61–196 ng/g dw NR NR [28] 

4tOP1EO 

River water Germany 1998/ 

1999 

19 0.8–6.3 ng/L 1.5 ng/L 100 % (LOD = 

NR) 

[25] 

Sea water Portugal 2010 36 6.9–36 ng/L 

(mean values) 

NR NR [27] 

Sea water Greece 2005/ 

2006 

22 ND–9.5 ng/L NR NR (LOD = 

4 ng/L) 

[28] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Sea water USA 1999 21 2.27–26 ng/L 7.75 ng/L 100 % (LOD = 

0.08 ng/L) 

[29] 

Sea water Germany 1998/ 

1999 

19 0.1–12 ng/L 1.3 ng/L 100 % (LOD = 

NR) 

[25] 

River 

sediment 

Germany 1998/ 

1999 

11 30–113 ng/g dw 91 ng/g dw 100 % (LOD = 

NR) 

[25] 

Sea sediment Greece 2005/ 

2006 

20 ND– 

14.3 ng/g dw 

NR NR (LOD = 5 ng/g 

dw) 

[28] 

Sea sediment USA 1999 10 ND–45.0 ng/g ND 50 % (LOD = NR) [29] 

Suspended 

particulate 

matter (sea) 

Greece 2005/ 

2006 

22 9.3– 

443 ng/g dw 

NR 100 % (LOD = 

NR) 

[28] 

4tOP2EO 

River water Vietnam 2013 36 ND–37.1 ng/L NR NR (LOD = 

2.7 ng/L) 

[19] 

River water Germany 1998/ 

1999 

19 0.6–6.8 ng/L 1.3 ng/L 100 % (LOD = 

NR) 

[25] 

Sea water Greece 2005/ 

2006 

22 ND–11.7 ng/L NR NR (LOD = 

4 ng/L) 

[28] 

Sea water Portugal 2010 36 46–182 ng/L 

(mean values) 

NR NR [27] 

Sea water USA 1999 21 1.7–15.6 ng/L 4.53 ng/L 100 % (LOD = 

0.08 ng/L) 

[29] 

Sea water Germany 1998/ 

1999 

19 0.1–21 ng/L 6.4 ng/L 100 % (LOD = 

NR) 

[25] 

Suspended 

particulate 

matter (sea) 

Greece 2005/ 

2006 

22 71–429 ng/g dw NR 100 % (LOD = 

NR) 

[28] 

Sea sediment Greece 2005/ 

2006 

20 ND–66 ng/g dw NR NR (LOD = 5 ng/g 

dw) 

[28] 

Sea sediment USA 1999 10 ND–46.6 ng/g ND 50 % (LOD = NR) [29] 

River 

sediment 

Germany 1998/ 

1999 

11 45–140 ng/g dw 110 ng/g 

dw 

100 % (LOD = 

NR) 

[25] 

4tOP3EO 

River water Vietnam 2013 36 ND–36 ng/L NR NR (LOD = 

1.6 ng/L) 

[19] 

Sea water USA 1999 21 0.31–10.3 ng/L 1.67 ng/L 100 % (LOD = 

0.08 ng/L) 

[29] 

Sea sediment USA 1999 10 ND–14.1 ng/g ND 50 % (LOD = NR) [29] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

4tOPnEO (unspecified mixture) 

River water Germany 2000 15 ND–9.6 ng/L 2.2 ng/L 93 % (LOD = NR) [23] 

 
Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to 4tOP exist 

for different organisms and across different study levels. A comprehensive but non-exhaustive set of reported 

observations is included below, and further observations can be found in published literature reviews including 

in the following: 

 

- L.J. Mills, C. Chichester, Review of evidence: Are endocrine-disrupting chemicals in the aquatic 

environment impacting fish populations?, Sci. Total Environ. 343 (2005) 1–34. 

doi:10.1016/j.scitotenv.2004.12.070. 

- European Chemicals Agency, SVHC support document 4-(1,1,3,3-tetramethylbutyl)phenol, (2011). 

https://echa.europa.eu/documents/10162/4c6cccfd-d366-4a00-87e5-65aa77181fb6. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

4tOP frogs No change in plasma steroid levels [32] 

4tOP killfish, eelpout, atlantic 

salmon and frogs 

Increased plasma or liver vitellogenin* level [32–35] 

4tOP medaka and clams Intersex gonads [36,37] 

4tOP guppies Histological alterations in gonads (testis, ovaries) [38] 

4tOP rainbow trout Delayed / reduced gonad development [39] 

4tOP zebrafish, medaka and 

eelpout 

Impaired reproduction (fecundity, fertility, 

spermatogenesis inhibition, impaired oocyte 

development, decreased egg production or egg 

fertility) 

[34,36,40] 

4tOP guppies, medaka and frogs Decreased / altered sexual behaviour in males [36,41,42] 

4tOP guppies and frogs No effect on sex ratio [32,38] 
 

 

In vitro level 

Substance Cell line Observation Reference 

4tOP rainbow trout cells Weak estrogenic potential (to induce vitellogenin 

synthesis in primary hepatocytes) 

[40,43] 

4tOP frogs Vitellogenin* mRNA or protein expression [44] 

4tOP carp and frogs Competitive binding to the estrogen receptor 

(displacing 17β-estradiol) in liver cytosol of carp 

and frog estrogen receptor 

[40,45] 

4tOP arctic charr Competitive binding to sex steroid-binding protein 

in plasma 

[46] 

 

Notes: *Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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4-tert-pentylphenol & 4-heptylphenol, branched 

and linear  
 
Key References: 

 European Chemicals Agency, ECHA SVHC Support Document for 4-Heptylphenol, branched and linear, 

2016. https://echa.europa.eu/documents/10162/f3dba6ab-8dd8-2457-4213-2f390b0539f1. 

 European Chemicals Agency, ECHA SVHC Support Document for p-(1,1-dimethylpropyl)phenol, 2016. 

https://echa.europa.eu/documents/10162/3cbffe6e-fc78-0884-e5cd-a519eccf6a02. 
 

 

Chemical Identification 

Name(s) Abbreviation CAS Number(s) Structure(s) 

4-tert-pentylphenol; 

p-(1,1-

dimethylpropyl) 

phenol; 

p-tert-amylphenol 

4tPP 80-46-6 

 

4-heptylphenol, 

branched and linear 

4HPbl 6465-71-0; 6465-74-3; 6863-24-

7; 1987-50-4; 72624-02-3; 

1824346-00-0; 1139800-98-8; 

911371-07-8; 911371-06-7; 

911370-98-4; 861011-60-1; 

861010-65-3; 857629-71-1; 

854904-93-1; 854904-92-0; 

102570-52-5; 100532-36-3; 

72861-06-4; 71945-81-8; 

37872-24-5; 33104-11-9; 

30784-32-8; 30784-31-7; 

30784-27-1 

 

CAS#: 72624-02-3 
 

 

CAS#: 1987-50-4 

 

CAS#: 100532-36-3 

 

CAS#: 1824346-00-0 

Completed assessments as the basis for inclusion: EU REACH SVHC 

 

Note: 4-Heptylphenols are a group of chemicals that exist as many isomers having an either linear or branched 

seven carbon side chain in the para-position relative to the OH-group. For inclusion as Substances of Very High 

Concern (SVHCs) within the European chemicals regulation (REACH) [1], 4-Heptylphenols are defined as 
“substances with a linear and/or branched alkyl chain with a carbon number of 7 covalently bound 

predominantly in position 4 to phenol, covering also UVCB- and well-defined substances which include any of 

the individual isomers or a combination thereof.” 
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Physical and Physicochemical Properties 

Property 4tPP 4HPbl 

(CAS#:  

72624-02-3) 

4HPbl, linear 

(CAS#:  

1987-50-4) 

4HPbl, 

minimally 

branched 

(CAS#:  

100532-36-3) 

4HPbl, highly 

branched 

(CAS#: 

1824346-00-0) 

Molecular formula C11H16O C13H20O C13H20O C13H20O C13H20O 

Molecular weight 

[g/mol] 

164.25 192.3 192.3 192.3 192.3 

Physical state at 

20°C 

solid liquid solid solid solid 

Melting point 

[°C] 

94.7 [2] -9°C (pour 

point) [3] 

80.4† 70.2† 49.6† 

Density  

[g/ cm3] 

0.962 at 20°C  

[4] 

0.965 at 15.6 

°C [3] 

NR NR NR 

Vapor pressure at 

25°C [mmHg] 

2.00*10-3 [5] 1.95*10-3 [3] 2.8*10-4 † 5.1*10-4 † 2.4*10-3 † 

Water solubility at 

25°C [mg/L]  

193 at 21°C[2]; 

168 at 25°C [6] 

42 at 20°C [3] 9.6† 11.1† 14.9† 

Octanol/water 

partition coefficient 

(log KOW) 

3.6 at 22 

°C[2] ; 

4.03 [7] 

NR 5.01† 4.93† 4.79† 

Organic 

carbon/water 

partition coefficient 

(log KOC) 

3.40 (MCI 

method)†, 3.25 

(Kow method)† 

NR (4.06 MCI 

method)†, (3.86 

Kow method)† 

(3.99 MCI 

method)†, (3.82 

Kow method)† 

(3.90 MCI 

method)†, (3.74 

Kow method)† 

Air/water partition 

coefficient (log 

KAW) 

-4.11† NR -3.86† -3.86† -3.86† 

Dissociation 

constant (pKa) 

10.43 [7] 10.25 [3] NR NR NR 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [9]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism Expected to occur? Technosphere Environment Reference 

 Yes No Not reported 

Hydrolysis  4tPP; 4HPbl    [2,3] 

Photolysis   4tPP; 4HPbl    

OH-radical 

reactions 

4tPP; 4HPbl    Atmosphere [2] 

Biodegradation 4tPP; 4HPbl   WWTP  [2,3] 
 

 

Kinetics – 4-tert-Pentylphenol (4tPP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 3 h (estimated)† [2] 

Biodegradation (domestic non-adapted 

activated sludge) 

73 % degraded after 28 d [8] 

Biodegradation (activated sludge, 

adaptation not specified) 

0 % degraded after 28 d [8] 

 

 

Kinetics – 4-Heptylphenol, branched & linear (4HPbl) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 2.6 h (estimated)† [9] 

Biodegradation (closed bottle test) 1.6 % degraded after 28 d [1] 

Biodegradation (mixed culture inoculum 

derived from activated sewage 

sludge/soil) 

25.4 % degraded after 29 d [1] 

 

 

 

Intentional Uses and Production Levels 

Uses 

4tPP 

 Used as a monomer in the production of phenolic resins (novolaks and resols) which are used in paints, 

varnishes and as printing ink resins; ethoxylated novolaks are used as oil field demulsifiers [10]. 

 Used as a germicide in cleaning solutions [10]. 

 The disulphide derivative is used as a vulcanizing agent for the curing of rubber [10].  

4HPbl 

 No information available on uses; however, it is probable that they are used in applications similar to 

other alkylphenols including 4tPP and 4-nonylphenols. 

 

Production Levels 

4tPP and 4HPbl 

 Both currently registered in the EU with 100–1000 tonnes per year of production or import [2]. 
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Emission Sources into the Environment 

4tPP 

 Emission Sources 

Production Not reported 

Use Not reported. However, based on the reported uses (including in resins, cleaning 

solutions, and rubber) and its low air/water partition coefficients, releases from 

products could occur during use and enter the environment through wastewater 

treatment effluent or rainwater runoff. 

Disposal Not reported. However, depending on the treatment method of disposed products, 

releases into the environment could potentially occur through wastewater treatment 

plant effluents or leachate runoff from landfills. 

Other sources Not reported 

 

4HPbl 

 Emission Sources 

Production Not reported 

Use Not reported.  However, based on their expected uses as well as their low air/water 

partition coefficients, releases from products could occur during use and enter the 

environment through wastewater treatment effluent or rainwater runoff. 

Disposal Not reported. However, depending on the treatment method of disposed products, 

releases into the environment could potentially occur through wastewater treatment 

plant effluents or leachate runoff from landfills. 

Other sources Not reported 
 

 

 

Distribution in the Abiotic Environment and Biota 

Expected Partitioning 

Inadequate data regarding the emission patterns for these chemicals across their wide range of uses have been 

identified, hindering a representative understanding of their environmental distribution. Additional efforts are 

needed to better understand the emission patterns, and environmental models (e.g., the Level III fugacity 

model in EPI Suite [9]) could then be used to estimate the distribution of these chemicals across the different 

environmental compartments. 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

4tPP 177 (estimate) fish [9] 

4HPbl 555 (steady state) – 578 (kinetic) fish [3] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported.  

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

Year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

4-tert-Pentylphenol (4tPP) 

River water Germany 2000 15 ND–5.9 ng/L 1.7 ng/L 53 % (LOD = NR) [11] 

River water Germany 1998 13 0.1–0.7 ng/L 0.4 ng/L 100 % (LOD = 

NR) 

[12] 

River water Germany 1998 6 ND–0.02 ng/L ND 17 % (LOD = NR) [12] 

Sea water Germany 1999 11 ND–7.7 ng/L 3.8 ng/L 82 % (LOD = NR) [12] 

Sea water Germany 1998 8 ND–0.3 ng/L ND 25 % (LOD = NR) [12] 

River 

sediment 

Germany 2000 12 ND–1.9 ng/g 

dw 

ND 17 % (LOD = NR) [11] 

River 

sediment 

Germany 1998 11 ND–77 ng/g dw 31 ng/g dw 91 % (LOD = NR) [12] 

Industrial 

effluent 

NR 

(Belgium) 

NR (2004) 1 17.3 ng/L 17.3 ng/L 100 % (LOD = 5.0 

ng/L) 

[13] 

4-Heptylphenol, branched & linear (4HPbl) 

River water South 

Korea 

2008 6 ND–10 ng/L ND 17 % (LOD = NR) [14] 

River water Japan NR (2004) 1 ND ND 0 % (LOD = NR) [15] 

River water South 

Korea 

2003 5 ND–166.4 µg/L 159.2 

µng/L 

80 % (LOD = 

10 µg/L) 

[16] 

River water South 

Korea 

2002 5 ND–399 µg/L 362.7 µg/L 80 % (LOD = 

10 µg/L)  

[16] 

River water Japan NR (2000) 1 80 ng/L 80 ng/L 100 % (LOD = 

20 ng/L) 

[17] 

WWTP 

effluent 

South 

Korea 

2003 6 ND–180.6 µg/L 122 µg/L 83 % (LOD = 

10 µg/L) 

[16] 

WWTP 

effluent 

South 

Korea 

2002 6 ND–384.1 µg/L 339.3 µg/L 67 % (LOD = 

10 µg/L)  

[16] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this not reported information based 

on the general details provided in the study. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to 4HPbl or 4tPP 

exist for different organisms and across different study levels. A comprehensive but non-exhaustive set of 

reported observations is included below, and further observations can be found in published literature reviews 

including in the following: 

 

- L.J. Mills, C. Chichester, Review of evidence: Are endocrine-disrupting chemicals in the aquatic 

environment impacting fish populations?, Sci. Total Environ. 343 (2005) 1–34. 

doi:10.1016/j.scitotenv.2004.12.070. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

4HPbl atlantic cod Changed plasma steroid levels [18] 

4HPbl common carp, medaka and 

atlantic cod 

Increased plasma, hepatic vitellogenin* levels [18–22] 

4HPbl atlantic cod Delayed gonad development [23] 

4HPbl common carp and atlantic cod Histological alterations in gonads (testis, 

ovaries) 

[18,19] 

4HPbl common carp, medaka, atlantic 

cod and fathead minnow 

Impaired reproduction (fecundity, fertility, 

spermatogenesis inhibition, impaired oocyte 

development, decreased egg production) 

[18–22] 

4HPbl atlantic cod Altered spawning behavior [18] 

4tPP common carp and medaka Exposure duration dependent altered sexual 

differentiation 

[21,24] 

 

 

In vitro level 

Substance Cell line Observation Reference 

4tPP rainbow trout cells Estrogen receptor (ER) activation [25] 

 

 

Notes:  

*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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Phthalates (EU SVHCs) 

Key References: 

 European Chemicals Agency, ECHA SVHC Support Document for Bis (2-ethylhexyl) phthalate (DEHP), 

(2014). https://echa.europa.eu/documents/10162/fa429d23-21e7-4764-b223-6c8c98f8a01c. 

 C.A. Staples, D.R. Peterson, T.F. Parkerton, W.J. Adams, The Environmental Fate of Phthalate Esters: A 

Literature Review, Chemosphere. 35 (1997) 667–749. 

 
 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Diethylhexyl phthalate; 

bis(2-ethylhexyl) phthalate  

DEHP 117-81-7 

 

Diisobutyl phthalate DIBP 84-69-5 

 

Dibutyl phthalate DBP 84-74-2 

 

Benzylbutyl phthalate BBP 85-68-7 

 

Completed assessments as the basis for inclusion: EU REACH SVHC 

 

Notes: These phthalates are all used as plasticizers, with DEHP being the most common and limited 

information available for the others. These four phthalates are classified as Substances of Very High Concern 

(SVHCs) within the European Union. 
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Physical and Physicochemical Properties 

Property DEHP DIBP DBP BBP 

Molecular formula C24H38O4 C16H22O4 C16H22O4 C19H20O4 

Molecular weight 

[g/mol] 

390.6 278.3 278.3 312.4 

Physical state at 

20°C 

liquid liquid liquid liquid 

Melting point 

[°C] 

-55 [1];  

-46 [2] 

-64 [3] -35 [1] [2] -35 [2] 

Density  

[g/cm3] 

0.981 at 25 °C [1]; 

0.986 [2] 

1.049 at 15 °C [1] 1.0465 at 20 °C [4]; 

1.0459[4]; 1.0465 [2] 

1.119 at 25 °C [1]; 

1.1 [2] 

Vapor pressure at 

25°C [mmHg] 

1.42*10-7 [5]; 

6.2*10-6 [2] 

4.76*10-5 [6] 2*10-5 at 25 °C [7]; 

1.4*10-5 at 20°C [2] 

8*10-7 [2] 

Water solubility at 

25°C [mg/L]  

0.25 [8];  

0.34 [2] 

6.2 at 24 °C [9] 11.2 at 20 °C [10]; 

13 at 20 °C [2] 

2.69 at 20 °C [2] 

Octanol/water 

partition coefficient 

(log KOW) 

7.45 [11] 4.46†; 

4.11 (QSAR 

estimate) [12] 

4.50 [13] 4.73 [13] 

Organic 

carbon/water 

partition coefficient 

(log KOC) 

5.08 (MCI 

method)†; 5.00 

(Kow method)† 

2.91 (MCI 

method)†; 3.07 

(Kow method)† 

3.06 (MCI method)†; 

3.28 (Kow method)† 

3.85 (MCI 

method)†; 3.41 

(Kow method)† 

Air/water partition 

coefficient (log 

KAW) 

-4.96† -4.30† -4.13† -4.29† 

Dissociation 

constant (pKa) 

Not applicable Not applicable Not applicable Not applicable 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [16]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  DEHP; DIBP; 

DBP; BBP (all 

negligible) 

   [14] 

Photolysis DBP; BBP DEHP 

(negligible) 

DIBP  Surface water [15] 

OH-radical 

reactions 

DEHP; DIBP; 

DBP; BBP 

   Atmosphere [16,17]  

Biodegradation DEHP; DIBP; 

DBP; BBP 

  WWTP Surface water [17–20] 

 

 

Kinetics – Diethylhexyl phthalate (DEHP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 1 d [17] 

Hydrolysis Half-life = 2000 yr [14] 

Hydrolysis and photolysis (artificial river 

water, in sunlight) 

Half-life = 1600 d (pH = 7) [15] 

Biodegradation (surface water) Half-life = 50 d [17] 

Biodegradation (aerobic sediment) Half-life = 300 d [17] 

Biodegradation (semi-continuous 

activated sludge)  

81.5 % degraded after 24 h [18] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms )  

73–92 % degraded after 28 d,  

Half-life = 4.6–6.8 d 

[19] 

 

 

Kinetics – Diisobutyl phthalate (DIBP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 14 h (estimated)† [16] 

Biodegradation (aqueous solutions in 

flask, inoculum prepared from activated 

sludge) 

Half-lives = 15–23.3 h [21] 

 

 

Kinetics – Dibutyl phthalate (DBP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 14 h (estimated)† [16] 

Hydrolysis Half-life = 22 yr [14] 

Hydrolysis (artificial river water, in the 

dark) 

Half-life = 1300 d (pH = 7) [15] 

Hydrolysis and photolysis (artificial river 

water, in sunlight) 

Half-life = 360 d (pH = 7) [15] 

Biodegradation (semi-continuous 

activated sludge)  

>95 % degraded after 24 h [18] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms)  

57 % degraded after 28 d,  

Half-life = 15.4 d 

[19] 
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Kinetics – Benzylbutyl phthalate (BBP) 

Mechanism Reported values Reference 

OH-radical reactions 12 h (estimated)† [16] 

Hydrolysis <5 % degraded after 28 d, half-life ≥ 100 d [20] 

Photolysis <5 % degraded after 28 d, half-life ≥ 100 d [20] 

Hydrolysis (artificial river water, in the 

dark) 

Half-life = 1500 d (pH = 7) [15] 

Hydrolysis and photolysis (artificial river 

water, in sunlight) 

Half-life = 480 d (pH = 7) [15] 

Biodegradation (activated sludge) 93–99 % degraded after 1d (aerobic),  

<10 % degraded after 28 d (anaerobic) 

[20] 

Biodegradation (river water) 100 % degraded after 9 d, half-life = 2 d [20] 

Biodegradation (lake water microcosm) >95 % degraded after 7 d, half-life ≤ 4 d; 

51–65 % degraded after 28 d 

[20] 

Biodegradation (activated sludge)  93 % degraded after 48 h [18] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms)  

43–88 % degraded after 28 d, 

half-life = 19.4–15.3 d 

[19] 

 

 

 

 

 

Intentional Uses and Production Levels 

Uses 

DEHP 

 Mainly used as a plasticizer in polymer products (>95 % of its total use in the EU), mostly in flexible 

PVC products [17].  

 The content of DEHP in flexible polymer materials is typically around 30 % (w/w) [17]. 

 Applications of flexible PVC are widespread and include wiring and cable, film and sheeting, flooring, 

tubing, and other miscellaneous products such as shoe soles and gloves [17,22].  

 

Other phthalates 

 DBP and BBP are fast-fusing plasticizers for PVC and are mostly used in combination with DEHP [22]. 

 

Production Levels 

DEHP 

 Global production estimates: 2.12 million tonnes per year in 1988, with Eastern Asia and Western Europe 

producing the largest regional amounts (490 000 and 465 000 tonnes per year, respectively) [22]. 

 Production volume in Western Europe: 595 000 tonnes per year in 1997;  221 000 tonnes per year in 2004 

[17]. 

 

Other phthalates 

 Total use volumes of DEHP, DBP, DIBP and BBP together: approximately 63 000 tonnes in article 

manufacturing in the EU in 2014 [23].  

 No other recent data on DEHP and no production levels for DIBP, DBP, and BBP were found. 
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Emission Sources into the Environment 

 The use and disposal of polymer products containing phthalates are estimated to be the main release 

sources into the environment [17]. 

 

DEHP 

 Emission Sources 

Production Contributes a small fraction (5 %) to the total emissions during the product 

lifecycle [17]. 

Use Not reported 

Disposal  Released from municipal landfills through leachates [17]; thus, landfills may 

serve as long-term emission sources. 

 Potential local emission sources include the incineration of DEHP containing 

products, de-inking process of paper recycling, and car shredding [17]. 

Other sources Not reported 

 

Phthalates in general 

The table below provides general information relevant for all phthalates including DEHP. As no specific 

information was found for DIBP, DBP, or BBP, the information below is meant to provide an overview of 

potential emission sources of phthalates in general; for some specific information on other phthalates, see the 

fact sheets “Phthalates (non-EU REACH SVHCs) 1” and “Phthalates (non-EU REACH SVHCs) 2”. 

 Emission Sources 

Production Likely released during production [24,25,17]. 

Use  Main source of releases to the atmosphere is through evaporation during the 

processing with PVC. The extent of such losses may vary from 0.02 % for 

injection molding to up to 1 % for coating processes [26]. 

 Phthalates can migrate slowly out of polymer products throughout their entire 

lifetime, since plasticizers are not chemically bound to the polymer matrix [17].  

Disposal  Different levels of emissions may occur depending on the treatment applied.  

 86 % of the plastics disposed of in the US in 2008 (approximately 34 million 

tons) have ended up in landfills [27]. 

 Releases (e.g. through landfill leachate) can be expected, as phthalates are not 

covalently bound in plastic products that may later be disposed of. [28] 

Other sources Not reported 
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Distribution in the Abiotic Environment and Biota 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for these chemicals as plastic additives and the emission 

scenario information generated by the OECD [29], a plausible emission pattern was assumed to estimate the 

resulting distribution in the environment using the Level III fugacity model in EPI Suite [16]. The assumed 

emission pattern and the resulting environmental distribution from the model are presented in the table below 

for each chemical.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

DEHP 50 % 50 % 0 % 2 % 39 % 15 % 44 % 

DIBP 50 % 50 % 0 % 5 % 73 % 20 % 2 % 

DBP 50 % 50 % 0 % 9 % 81 % 8 % 2 % 

BBP 50 % 50 % 0 % 5 % 69 % 11 % 15 % 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

DEHP 
40–900  fish [14] 

38–2627  various aquatic species [14] 

DIBP 239 (estimated)† fish [16] 

DBP 
2068–2125 fish [14] 

185–1485  various aquatic species [14] 

BBP 
29 – 662 fish [14] 

100 fresh water snails (Physa) [14] 

 

DEHP is reported as persistent (but not very persistent), toxic, and not bioaccumulative under REACH 

[30,31].  
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported.  

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Diethylhexyl phthalate (DEHP) 

River water Spain 2012 7 ND ND 0 % (LOD = 

460 ng/L) 

[32] 

Surface water 

(rivers, lakes, 

channels) 

Germany 1997 116 0.33–97.8 µg/L 2.27 µg/L 100 %  [33] 

Sea water Arctic 2004 16 ND–3326 pg/L 210.5 pg/L 94 % (LOD = 

24 pg/L) 

[34] 

River sediment China 2014 7 18.5–355 µg/g 

dw 

180 µg/g dw 

(mean) 

NR [35] 

River sediment China 2014 9 2.33–44.5 µg/g 

dw 

12.2 µg/g dw 

(mean) 

NR [35] 

Surface water 

sediment 

Germany 1997 35 0.21–8.44 mg/kg 

dw 

0.7 mg/kg 

dw 

100 %  [33] 

Atmosphere Arctic 2004 6 375–1129 pg/m3 724.5 pg/m3 100 %  [34] 

Diisobutyl phthalate (DIBP) 

Sea water Arctic 2004 16 ND–204 pg/L 6 pg/L 56 % (LOD = 

5 pg/L) 

[34] 

River sediment China 2014 7 0.414–4.35 µg/g 

dw 

2.02 µg/g dw 

(mean) 

NR [35] 

River sediment China 2014 9 0.131–0.404 µg/g 

dw 

0.303 µg/g 

dw (mean) 

NR [35] 

Atmosphere Arctic 2004 6 132–617 pg/m3 187.5 pg/m3 100 %  [34] 

Dibutyl phthalate (DBP) 

River water Spain 2012 7 ND–1759 ng/L 604 ng/L 86 % (LOD = 

230 ng/L) 

[32] 

Surface water 

(rivers, lakes, 

channels) 

Germany 1997 116 0.12–8.80 µg/L 0.5 µg/L 100 %  [33] 

River sediment China 2014 7 0.469–2.43 µg/g 

dw 

1.28 µg/g dw 

(mean) 

NR [35] 

River sediment China 2014 9 0.158–0.304 µg/g 

dw 

0.246 µg/g 

dw (mean) 

NR [35] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Surface water 

sediment 

Germany 1997 35 0.06–2.08 mg/kg 

dw 

0.45 mg/kg 

dw 

100 %  [33] 

Benzylbutyl phthalate (BBP) 

River water Spain 2012 7 ND ND 0 % (LOD = 

190 ng/L) 

[32] 

Surface water 

(rivers, lakes, 

channels) 

Germany 1997 116 ND–2.95 µg/L NR 22 % (LOD = 

0.02 µg/L) 

[33] 

Sea water Arctic 2004 16 ND–48 pg/L 5.5 pg/L 94 % (LOD = 

0.2 pg/L) 

[34] 

Surface water 

sediment 

Germany 1997 35 ND–0.19 mg/kg 

dw 

NR 11 % (LOD = 

0.02 µg/L) 

[33] 

Atmosphere Arctic 2004 6 42 - 124 pg/m3 74 pg/m3 100 %  [34] 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to 

benzophenones exists for different organisms and across different study levels. A comprehensive but non-

exhaustive set of reported observations is included below, and further observations can be found in published 

literature reviews including in the following: 

 

- European Chemicals Agency, ECHA SVHC Support Document for Bis (2-ethylhexyl) phthalate 

(DEHP), (2014). https://echa.europa.eu/documents/10162/fa429d23-21e7-4764-b223-6c8c98f8a01c. 

- C.R. Tyler, S. Jobling, J.P. Sumpter, Endocrine Disruption in Wildlife: A Critical Review of the 

Evidence, Crit. Rev. Toxicol. 28 (1998) 319–361. doi:10.1080/10408449891344236. 

 

 

Population level / field studies 

No reported studies investigating this level were identified during preparation of the fact sheet. 

 

 

 
  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

DEHP; 

DIBP 

marine (rare) 

medaka, Chinese rare 

minnow, mouse 

Changed plasma steroid (testosterone and 17b-

estradiol) levels 

[36–38] 

DEHP; DBP Xenopus leavis 

(DBP), zebrafish 

(DEHP) 

Changed expression profiling of key genes involved in 

various thyroid hormone pathways  

[39,40] 

DIBP rat Changed expression profiling of key genes involved in 

steroidogenesis 

[41,42] 

DEHP marine (rare) medaka Increased plasma or liver vitellogenin* level; no effect 

found for DBP 

[36,43] 

DEHP; 

DIBP 

marine (rare) 

medaka, Chinese rare 

minnow, rat, mouse 

Impaired reproduction (reduced egg production, 

inhibited oocyte maturation in females and retarded 

spermiation in males, anogenital distance and nipple 

development in males, decreased sperm count and 

motility) 

[36–

38,44,45] 

DEHP Chinese rare minnow Decreased egg protein content in offspring (F1)  [37] 

DEHP; 

DIBP 

marine medaka, rat, 

mouse 

Changed testicular testosterone levels and histological 

alterations in gonads (testis, ovaries)  

[33,35,38, 

43,44,39] 

DEHP; DBP abalone Growth and abnormal developments of individuals  [48] 

DEHP; DBP abalone Altered hatching rates; no effect found for BBP in 

rainbow trout 

[48,49] 

DEHP; 

BBP, DBP 

Daphnia magna No effects on reproduction found  [49,50] 

DEHP; DBP fathead minnow, 

goldfish 

No effects on expression of mRNA of the ER alpha or 

beta or androgen receptor found  

[44,51] 

 

  

https://echa.europa.eu/documents/10162/fa429d23-21e7-4764-b223-6c8c98f8a01c
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In vitro level 

Substance Cell line Observation Reference 

DBP; BBP fathead minnow Competitive binding to the estrogen receptor 

(displacing 17β-estradiol) in in vitro assay; no effect 

found for DEHP 

[52] 

DEHP marine (rare) 

medaka, Chinese rare 

minnow 

Altered gene transcription in gonads (testis, ovaries)  [36,37] 

DEHP Chinese rare minnow Altered transcription profiles of genes involved in 

steroidogenesis and plasma sex hormone levels  

[53] 

DEHP Chinese rare minnow Vitellogenin* mRNA or protein expression  [37] 

DEHP; DBP fathead minnow Affected sex steroid hormone synthesis  [51] 

 

 

Notes: 
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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Benzophenones 

Key References: 

 A. Careghini, A.F. Mastorgio, S. Saponaro, E. Sezenna, Bisphenol A, nonylphenols, benzophenones, and 

benzotriazoles in soils, groundwater, surface water, sediments, and food: a review, Environ. Sci. Pollut. 

Res. 22 (2015) 5711–5741. doi:10.1007/s11356-014-3974-5. 

 S. Kim, K. Choi, Occurrences, toxicities, and ecological risks of benzophenone-3, a common component 

of organic sunscreen products: A mini-review, Environ. Int. 70 (2014) 143–157. 

doi:10.1016/j.envint.2014.05.015. 

 D. Sánchez-Quiles, A. Tovar-Sánchez, Are sunscreens a new environmental risk associated with coastal 

tourism?, Environ. Int. 83 (2015) 158–170. doi:10.1016/j.envint.2015.06.007. 

 

 
 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Benzophenone-1;  

2,4-Dihydroxybenzophenone 

BP-1 131-56-6 

 

Benzophenone-2;  

2,2',4,4'-tetrahydroxybenzophenone 

BP-2 131-55-5 

 

Benzophenone-3;  

Oxybenzone 

BP-3 131-57-7 

 

4,4’-Dihydroxybenzophenone  4,4’-DHB 611-99-4 

 

Completed assessments as the basis for inclusion: SIN List (BP-1; BP-2; BP-3; 4,4’-DHB), Danish Criteria 

(BP-1; BP-2; BP-3; 4,4’-DHB) 
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Physical and Physicochemical Properties 

Property BP-1 BP-2 BP-3 4,4’-DHB 

Molecular formula C13H10O3 C13H10O5 C14H12O3 C13H10O3 

Molecular weight 

[g/mol] 

214.2  246.2  228.2  214.2  

Physical state at 20°C solid solid solid solid 

Melting point 

[°C] 

142 [1] 186 † 65 [2];  

62.9 [3] 

142 † 

Density  

[g/ cm3] 

1.27 [4] 1.22 [5] 1.43 [3] NR 

Vapor pressure at 25°C 

[mmHg] 

1.41*10-7 † 3.44*10-10 † 7.5*10-6 [3] 2.46*10-8 † 

Water solubility at 25°C 

[mg/L]  

413.4 † 398.5 † 6 [3] 1905 † 

Octanol/water partition 

coefficient (log KOW) 

2.96 † 2.78 † 3.79 [6];  

3.6 [3] 

2.19 † 

Organic carbon/water 

partition coefficient (log 

KOC) 

3.28 (MCI 

method)†; 3.09 

(Kow method)† 

3.51 (MCI 

method)†; 3.33 

(Kow method)† 

2.98 (MCI 

method)†; 3.44 

(Kow method)†  

3.27 (MCI 

method)†; 2.67 

(Kow method)† 

Air/water partition 

coefficient (log KAW) 

-8.97 † -13.83 † -6.21 † -12.07 † 

Dissociation constant 

(pKa) 

NR NR NR NR 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [14]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes  No Not reported 

Hydrolysis BP-3  BP-1; BP-2; 

4,4’-DHB 

 Water [3] 

Photolysis  BP-1; BP-2; 

BP-3; 4,4’-

DHB 

   [7] 

OH-radical 

reactions 

BP-3  BP-1; BP-2; 

4,4’-DHB 

 Atmosphere [7] 

Biodegradation BP-1; BP-3; 

4,4’-DHB 

 BP-2 WWTP Sediments [8–10] 

 

 

Kinetics – Benzophenone-3 (BP3)  

Mechanism Reported values Reference 

Hydrolysis Half-life = 41.9 d (pH 7 and 25 °C) [3] 

Biodegradation (activated sludge) Half-life = 10.7 d (aerobic conditions) [8] 

Biodegradation (digested sludge) Half-life = 8.7 d (nitrate-reducing conditions) 

Half-life = 5.1 d (Fe(III)-reducing conditions) 

Half-life = 4.3 d (sulfate-reducing conditions) 

Half-life = 4.2 d (non-amended conditions) 

[8] 

 

 

Notes: Information on half-lives were found to be only available for BP-3. The major product of 

biodegradation of BP-3 is BP-1 [10]. 

 

 

 

Production Levels and Uses 

Uses 

Benzophenones in general are used as: 

 UV-filters in cosmetic products including sunscreens, skin care products, hairsprays and shampoos [7].  

 UV-filters in plastic packaging including in food packaging [7]. 

 Photo-initiators for inks and varnishes that are cured with UV-light [7]. 

 

Intentional Production Levels 

 Little information is available on the current and historical production levels of benzophenones. 

 BP-3 was listed as High-Production Volume (HPV) chemical in the US in 1990 [11] and is currently 

registered in the EU with 100–1000 tonnes per year of production or import [3]. 
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Emission Sources into the Environment 

 

 Primary releases occur during use and disposal of products containing benzophenones [7,10,12]. 

 BP-3 can transform into BP-1 in both the environment and during treatment processes [8]. 

 

Releases From: 

Production – No information on emissions during production of benzophenones was found.  

Use – Benzophenones can be released directly into the aquatic environment during recreational activities (e.g. 

applied products washing off) [7,10]. 

Disposal – Removal of benzophenones in wastewater treatment plants is often incomplete*, and they are 

consequently released into the aquatic environment via effluents [7,10,13].  

 

*Exact removal efficiencies of many benzophenones in wastewater treatment processes are still unclear. Removal 

efficiencies of BP-1 and BP-3 during primary sedimentation of wastewater treatment in Hong Kong are low (7–28%). In 

the same treatment plant, biological treatment and chlorination of wastewater both led to a moderate removal efficiency 

for BP-1 of up to 70 %, whereas sand filtration only removed up to 43 % of BP-1 and BP-3 in wastewater. The most 

efficient treatment for the removal of BP-1 and BP-3 is reverse osmosis (removal efficiency >99 %) [10]. 

 

 

Distribution in the Abiotic Environment and Biota 

Expected Distribution 

Based on the identified uses and emission sources for these chemicals as additives in personal care products, a 

plausible emission pattern was assumed to estimate the resulting partitioning in the environment using the 

Level III fugacity model in EPI Suite [14]. The assumed emission pattern and the resulting environmental 

partitioning from the model are presented in the table below for each chemical. 

 

 Assumed Emission Pattern Modeled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

BP-1 0 % 90 % 10 % 0 % 71 % 24 % 5 % 

BP-2 0 % 90 % 10 % 0 % 70 % 23 % 7 % 

BP-3 0 % 90 % 10 % 0 % 65 % 32 % 3 % 

4,4’-DHB 0 % 90 % 10 % 0 % 72 % 24 % 4 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

BP-1 11 (estimated)† fish [14] 

BP-2 8 (estimated)† fish [14] 

BP-3 36–158 (estimated) fish [3] 

4,4’-DHB 3 (estimated)† fish [14] 

 

The potential for BP-3 to bioaccumulate in aquatic organisms is reported as being moderate to high [7]. 

However, there are only a few cases of BP-3 detection in aquatic wildlife from Swiss lakes and Spanish rivers 

[7].  
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in 

published literature including in the following:  

 

- A. Careghini, A.F. Mastorgio, S. Saponaro, E. Sezenna, Bisphenol A, nonylphenols, benzophenones, 

and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review, Environ. Sci. 

Pollut. Res. 22 (2015) 5711–5741. doi:10.1007/s11356-014-3974-5. 

- S. Kim, K. Choi, Occurrences, toxicities, and ecological risks of benzophenone-3, a common 

component of organic sunscreen products: A mini-review, Environ. Int. 70 (2014) 143–157. 

doi:10.1016/j.envint.2014.05.015. 

- D. Sánchez-Quiles, A. Tovar-Sánchez, Are sunscreens a new environmental risk associated with 

coastal tourism?, Environ. Int. 83 (2015) 158–170. doi:10.1016/j.envint.2015.06.007. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

  
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Benzophenone-1 (BP-1) 

River water Spain 2011 5 ND–7.54 ng/L ND 40 % (LOD = 

1.0 ng/L) 

[15] 

River water Korea 

 

2003 25 ND–47 ng/L ND 4 % (LOD = 

25 ng/g dw) 

[16] 

Lake water Korea 2003 6 ND ND 0 % (LOD = 

5 ng/L) 

[16] 

Sea water Spain 2009 3 ND–280 ng/L ND 30 % (LOD = 

32 ng/L) 

[17] 

River sediment China 2009 6 ND ND 0 % (LOD = 

0.041 ng/g dw) 

[18] 

River sediment Chile 2009 6 ND ND 0 % (LOD = 

4.6 ng/g dw) 

[19] 

River sediment Korea 2003 15 ND ND 0 % (LOD = 

0.1 ng/g dw) 

[16] 

Coastal sea 

sediment 

Chile 2009 4 ND ND 0 % (LOD = 

4.6 ng/g dw) 

[19] 

WWTP effluent Spain 2011 5 ND–31.1 ng/L 2.98 ng/L 60 % (LOD = 

2.5 ng/L) 

[15] 

WWTP influent Spain 2011 5 152.4–722 ng/L 283.2 ng/L 100 % (LOD = 

8.0 ng/L) 

[15] 

WWTP sludge China 2009 5 4.41– 

91.6 ng/g dw 

NR 100 % (LOD = 

0.41 ng/g dw) 

[18] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Benzophenone-2 (BP-2) 

River water Spain 2011 5 ND ND 0 % (LOD = 

1.2 ng/L) 

[15] 

Urban 

groundwater 

Spain 2011 5 ND ND 0 % (LOD =  

1 ng/L) 

[15] 

River sediment China 2009 6 ND ND 0 % (LOD = 

0.067 ng/g dw) 

[18] 

WWTP effluent Spain 2011 5 ND ND 0 % (LOD =  

3 ng/L) 

[15] 

Benzophenone-3 (BP-3) 

River water Japan 2008 2 16–41 ng/L 36.5 ng/L 100 % (LOD = 

NR) 

[20] 

River water Spain 2011 5 ND–37.8 ng/L ND 40 % (LOD = 

0.7 ng/L) 

[15] 

Lake water Korea 2003 6 ND ND 0 % (LOD = 

5 ng/L) 

[16] 

Lake water Switzer- 

land 

2005 11 ND–30 ng/L 20 ng/L 82 % (LOD = 

2 ng/L) 

[13] 

Lake water Czech 

Republic 

2011 6 21–550 ng/L 

 

NR NR [21] 

Urban 

groundwater 

Spain  2011 5 ND–34 ng/L ND 40 % (LOD = 

0.5 ng/L) 

[15] 

River sediment Korea 2003 15 ND ND 0 % (LOD = 

0.1 ng/g dw) 

[16] 

River sediment China 2009 6 0.272– 

0.545 ng/g dw 

NR 100 % (LOD = 

0.067 ng/g dw) 

[18] 

River sediment Colombia 2010 6 ND–5.38 ng/g 

dw 

NR NR (LOD = 

0.4 ng/g dw) 

[19] 

WWTP effluent Spain 2011 5 7.71–34 ng/L  15.6 ng/L 100 % (LOD = 

1.5 ng/L) 

[15] 

WWTP effluent Switzer-

land 

2002/ 

2003 

13 ND–600 ng/L 85 ng/L 92 % (LOD = 

10 ng/L) 

[13] 

Lake fish Switzer- 

land 

2002 10 ND–123 ng/L 102 ng/L 60 % (LOD = 

15 ng/L) 

[13] 

Aquaculture 

fish 

China 2015 19 ND–3.1 ng/g 

dw 

ND 26 % (LOD = 

0.9 ng/g dw) 

[22] 

Wild mussels & 

clams 

China 2015 6 ND–12.4 ng/g 

dw 

<LOQ 50 % (LOD = 

0.9 ng/g dw, LOQ 

= 2.9 ng/g dw) 

[22] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

4,4’-Dihydroxybenzophenone (4,4’-DHB) 

River water Spain 2011 5 ND ND 0 % (LOD = 

1.8 ng/g dw) 

[15] 

Urban 

groundwater 

Spain 2010 31 ND–4.1 ng/L NR 6 % (LOD = NR) [23] 

Urban 

groundwater 

Spain 2011 5 ND ND 0 % (LOD = 

1.5 ng/L) 

[15] 

River sediment Chile 2009 6 ND ND 0 % (LOD = 

0.8 ng/g dw) 

[19] 

River sediment Colombia 2009 6 ND ND 0 % (LOD = 

0.8 ng/g dw) 

[19] 

WWTP effluent Spain 2011 5 ND ND 0 % (LOD = 

3.5 ng/L) 

[15] 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to 

benzophenones exist for different organisms and across different study levels. A comprehensive but non-

exhaustive set of reported observations is included below, and further observations can be found in published 

literature reviews including in the following: 

 

- P.Y. Kunz, K. Fent, Multiple hormonal activities of UV filters and comparison of in vivo and in vitro 

estrogenic activity of ethyl-4-aminobenzoate in fish, Aquat. Toxicol. 79 (2006) 305–324. 

doi:10.1016/j.aquatox.2006.06.016.  

- M. Krause, A. Klit, M. Blomberg Jensen, T. Søeborg, H. Frederiksen, M. Schlumpf, W. Lichtensteiger, 

N.E. Skakkebaek, K.T. Drzewiecki, Sunscreens: Are they beneficial for health? An overview of 

endocrine disrupting properties of UV-filters, Int. J. Androl. 35 (2012) 424–436. doi:10.1111/j.1365-

2605.2012.01280.x. 

- J. Wang, L. Pan, S. Wu, L. Lu, Y. Xu, Y. Zhu, M. Guo, S. Zhuang, Recent Advances on Endocrine 

Disrupting Effects of UV Filters, Int. J. Environ. Res. Public Health. 13 (2016) 782. 

doi:10.3390/ijerph13080782. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

BP-1; BP-2 fathead minnow Increased vitellogenin* level in females [24] 

BP-3; 4,4’-DHB fathead minnow No effect found on vitellogenin* level in females [24] 
 

In vitro level 

Substance Cell line Observation Reference 

BP-1; BP-2 human, fish Competitive binding to the estrogen receptor 

(displacing 17β-estradiol) 

[25] 

BP-1; BP-2;  

BP-3; 4,4’-DHB  

yeast, with rainbow 

trout estrogen receptor 

Reporter gene expression – estrogenicity [24] 

BP-1; BP-2 human, with rainbow 

trout estrogen receptor 

Reporter gene expression – estrogenicity; no effect 

found for BP-3 

[25] 

BP-1; BP-2 human, fish Induced vitellogenin* synthesis / vitellogenin* 

mRNA or protein expression; no effect found for 

BP-3 

[25] 

 

Notes: 
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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3-BC, 4-MBC, EHMC 

Key References: 

 D. Sánchez-Quiles, A. Tovar-Sánchez, Are sunscreens a new environmental risk associated with coastal 

tourism?, Environ. Int. 83 (2015) 158–170. doi:10.1016/j.envint.2015.06.007. 

 S. Ramos, V. Homem, A. Alves, L. Santos, Advances in analytical methods and occurrence of organic 

UV-filters in the environment — A review, Sci. Total Environ. 526 (2015) 278–311. 

doi:10.1016/j.scitotenv.2015.04.055. 

 M.M.P. Tsui, H.W. Leung, T.-C. Wai, N. Yamashita, S. Taniyasu, W. Liu, P.K.S. Lam, M.B. Murphy, 

Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters 

from different countries, Water Res. 67 (2014) 55–65. doi:10.1016/j.watres.2014.09.013. 

 

 
 

Chemical Identification 

Name(s) Abbre-

viation 

CAS 

Number 

Structure 

3-Benzylidene camphor;  

1,7,7-trimethyl-3-

(phenylmethylene)bicyclo[2.2.1] 

heptan-2-one 

3-BC 15087-24-8 

 

4-Methylbenzylidene camphor; 

Enzacamene; 

1,7,7,-trimethyl-3-[(4-

methylphenyl) 

methylene]bicycle[2.2.1] heptan-

2-one 

4-MBC 36861-47-9 

 

2-ethylhexyl 4-

methoxycinnamate;  

octyl methoxycinnamate; 

Octinoxate 

EHMC 5466-77-3; 

83834-59-7 

 

Completed assessments as the basis for inclusion: SIN List (3-BC; 4-MBC; EHMC ), Danish Criteria (3-BC; 

4-MBC; EHMC)  
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Physical and Physicochemical Properties 

Property 3-BC 4-MBC EHMC 

Molecular formula C17H20O C18H22O C18H26O3 

Molecular weight [g/mol] 240.4  

 

254.4 290.4 

Physical state at 20°C solid solid liquid 

Melting point 

[°C] 

77.4 [1] 66–69 [2] -68.3 [3] 

Density  

[g/ cm3] 

NR NR NR 

Vapor pressure at 25°C 

[mmHg] 

2.59*10-4 1† 1.52*10-5 † 1.38*10-5 † 

Water solubility at 25°C 

[mg/L]  

9.9 [4] 1.3 at 20 °C [2];  

5.1 [4] 

150 [4] 

Octanol/water partition 

coefficient (log KOW) 

4.49 [4] 5.14 [2];  

4.95 [4] 

5.8 [4] 

Organic carbon/water 

partition coefficient (log 

KOC) 

3.88 (MCI method)†; 

4.09 (Kow method)† 

4.09 (MCI method)†; 

4.40 (Kow method)† 

3.94 (MCI method)†; 

4.12 (Kow method)† 

Air/water partition 

coefficient (log KAW) 

-11.10 † -4.06† -4.14† 

Dissociation constant 

(pKa) 

Not applicable Not applicable Not applicable 

  

                                                      
1 Estimated value using models in EPI Suite v4.11 [6]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis   3-BC; 4-MBC; 

EHMC 

   

Photolysis EHMC  3-BC   [5] 

OH-radical 

reactions 

3-BC; 4-MBC; 

EHMC 

   Atmosphere [6] 

Biodegradation EHMC;  

4-MBC 

  3-BC WWTP Sediment [7–9] 

 

 

Kinetics – 3-Benzylidene camphor (3-BC) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 1.5 h (estimated)1 [6] 
 

Kinetics – 4-Methylbenzylidene camphor (4-MBC) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 1.4 h (estimated)1 [6] 

Biodegradation (marine sediment, 

aerobic) 

2–23 % degraded after 130 d  

29–68 % degraded after 420 d 

[7] 

Biodegradation (marine sediment, 

anaerobic) 

8–24 % degraded after 130 d 

36–47 % degraded after 420 d 

[7] 

Biodegradation (WWTP water phase 

primary and biological treatments) 

Approximately 75 % degraded during WWTP process [8] 

Biodegradation (WWTP water phase 

primary and biological treatments) 

13–23 % degraded during WWTP process [9] 

 

 

Kinetics – 2-Ethylhexyl 4-methoxycinnamate (EHMC) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 2.4 h (estimated)1 [6] 

Biodegradation (WWTP water phase 

primary and biological treatments) 

Approximately 90 % degraded during WWTP process [8] 

Biodegradation (WWTP water phase 

primary and biological treatments) 

86–97 % degraded during WWTP process [9] 

Photolysis (natural sunlight) Half-life = 0.8 h [5] 

Photolysis Half-life = 21 h [10] 
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Intentional Production Levels and Uses 

Uses 

 3-BC and 4-MBC are used as UV filters in cosmetic products, especially sunscreens [1,2,12]. 

 EHMC is also used as a UV filter in cosmetics, as well as in adhesives and sealants, coating products, 

fillers, putties, plaster, biocides, cleaning products and several other applications [13]. 

 The use of these chemicals as UV filters is regulated within the EU and other countries [12]: 

o In 2015, the use of 3-BC as a UV filter and absorber in cosmetics in the EU was revoked [14]. 

o China, India, South Africa, and countries that are members of ASEAN and Mercosur authorize 

use of 3-BC as a UV filter in sunscreen with a maximum concentration of 2 % (as of 2015) [15]. 

o 4-MBC is used as a UV-filter in sunscreen and other cosmetics with a maximum concentration of 

4 % in the EU [2]. 

 Use of 4-MBC in cosmetics is prohibited in Japan and the USA [13]. 

 

Production Levels 

 No information was found on the current and historical production levels of 3-BC and 4-MBC. 

 EHMC is registered in the EU with 1000–10 000 tonnes per year of production or import [3]. 

 

 

 

Emission Sources into the Environment 

 

 Little information regarding 3-BC, 4-MBC and EHMC emissions into the environment found to be 

available.  

 However, they are all used as UV filters, a class of chemicals for which releases into the environment are 

well known [4,12,16].  

 Release into the aquatic environment via recreational activities and wastewater effluent is the primary 

pathway of UV filters into the environment [16]. 

 

Releases From: 

Production – UV filters are released into wastewater during manufacturing of products containing them, such 

as cosmetics and products used for protection of UV-light sensitive materials [13,16]. 

Use – UV filters are released directly into the aquatic environment by washing off the skin during bathing 

activities and by discharge of untreated wastewater from plants manufacturing sunscreen products [16]. 

Additionally, they can also be released from the many other products (e.g. paper or plastic-based products, 

adhesives and sealants, cleaning products) [13].  

Disposal – Removal of 4-MBC and EHMC in wastewater treatment plants is often incomplete, and they are 

consequently released into the aquatic environment via effluents [18,19]. Residues of UV-filters in packaging 

of personal care products are reported to be released in landfills [16] 
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Distribution in the Abiotic Environment and Biota 

Expected Distribution 

Based on the identified uses and emission sources for these chemicals as additives in personal care products, a 

plausible emission pattern was assumed to estimate the resulting distribution in the environment using the 

Level III fugacity model in EPI Suite [6]. The assumed emission pattern and the resulting environmental 

distribution from the model are presented in the table below for each chemical.  

 

 Assumed Emission Pattern Modeled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

3-BC 0 % 90 % 10 % 0 % 44 % 31 % 25 % 

4-MBC 0 % 90 % 10 % 0 % 38 % 28 % 34 % 

EHMC 0 % 90 % 10 % 0 % 62 % 22 % 16 % 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

3-BC 313 fish (fathead minnow) [20] 

4-MBC 251–1955  fish (zebrafish embryos) [21] 

EHMC 167–1500  fish [22] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in 

published literature including in the following:  

 

- D. Sánchez-Quiles, A. Tovar-Sánchez, Are sunscreens a new environmental risk associated with 

coastal tourism?, Environ. Int. 83 (2015) 158–170. doi:10.1016/j.envint.2015.06.007. 

- S. Ramos, V. Homem, A. Alves, L. Santos, Advances in analytical methods and occurrence of organic 

UV-filters in the environment — A review, Sci. Total Environ. 526 (2015) 278–311. 

doi:10.1016/j.scitotenv.2015.04.055. 

- Y. Kameda, K. Kimura, M. Miyazaki, Occurrence and profiles of organic sun-blocking agents in 

surface waters and sediments in Japanese rivers and lakes, Environ. Pollut. 159 (2011) 1570–1576. 

doi:10.1016/j.envpol.2011.02.055. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported.  

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

3-Benzylidene camphor (3-BC) 

Seawater 

surface 

microlayer 

South 

Pacific 

ocean 

2006 2 9–13 ng/L 10.5 ng/L 100 % (LOD 

= NR) 

[23] 

Lake fish Switzer- 

land 

2006 NR ND ND 0 % (LOD = 

29 ng/g lipids) 

[24] 

Aquaculture 

fish 

China 2015 19 ND ND 0 % (LOD = 

1.8 ng/g dw) 

[25] 

Wild mussels & 

clams 

China 2015 6 ND ND 0 % (LOD = 

1.8 ng/g dw) 

[25] 

4-Methylbenzylidene camphor (4-MBC) 

Lake water China 2013/ 

2014 

60 ND–89.1 ng/L 1.0 ng/L 65 % (LOD = 

NR) 

[26] 

Lake water Switzer-

land 

2002 11 ND–28 ng/L 7 ng/L 82 % (LOD = 

NR) 

[19] 

River water Spain 2011 5 ND–12.6 ng/L ND 20 % (LOD = 

3.5 ng/L 

[27] 

Groundwater Poland 2012/ 

2013 

16 ND–3.625 µg/L 0.262 µg/L NR (LOD = 

0.014 µg/L) 

[28] 

Groundwater Spain 2011 5 ND–<10 ng/L  

(LOQ) 

ND 0 % (LOD = 

3 ng/L) 

[27] 

Seawater Arctic 2012/ 

2013 

14 ND ND 0 % (LOD = 

0.28 ng/L) 

[17] 

Seawater Thailand 2012/ 

2013 

2 ND ND 0 % (LOD = 

0.28 ng/L) 

[17] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

Seawater China 2012/ 

2013 

7 ND ND 0 % (LOD = 

0.28 ng/L) 

[17] 

Seawater USA 2012/ 

2013 

10 ND ND 0 % (LOD = 

0.28 ng/L) 

[17] 

Seawater Japan 2012/ 

2013 

8 ND ND 0 % (LOD = 

0.28 ng/L) 

[17] 

Seawater Hong 

Kong 

2012/ 

2013 

60 ND–379 ng/L NR 12 % (LOD = 

0.28 ng/L) 

[17] 

Seawater China 2013 61 20.39–74.5 

ng/L 

31.3 ng/L 100 % (LOD 

= NR)  

[25] 

Seawater 

(surface 

microlayer) 

Majorca 

Island 

2011 3 25.7–

109.6 ng/L 

59.8 ng/L 100 % (LOD 

= NR) 

[29] 

Seawater 

(surface 

microlayer) 

Majorca 

Island 

2011 5 26.6–65.0 ng/L 51.4 ng/L 100 % (LOD 

= NR) 

[29] 

Beach water Canary 

Islands 

2011 108 ND–1043.4 

ng/L 

ND–46.1 

ng/L* 

70 % (LOD = 

0.9 ng/L) 

[30] 

Seawater (near 

beaches) 

Norway NR 

(2007) 

2 ND ND 0 % (LOD = 

NR) 

[31] 

Seawater (near 

beaches) 

Norway NR 

(2007) 

4 13.4–439.9 

ng/L 

56.5 ng/L 100 % (LOD 

= NR) 

[31] 

Seawater 

(Fjord) 

Norway NR 

(2007) 

9 ND–2.6 ng/L ND 33 % (LOD = 

NR) 

[31] 

Seawater 

(Fjord) 

Norway NR 

(2007) 

10 ND–38.2 ng/L 13.5 ng/L 70 % (LOD 

=NR) 

[31] 

River sediment Spain 2009 20 ND ND 0 % (LOD = 8 

ng/g dw) 

[32] 

Lake sediment 

(recreational) 

Germany 2007 3 ND ND 0 % (LOD = 6 

ng/g) 

[33] 

Lake sediment China 2013/ 

2014 

15 ND–13.9 ng/g 

dw 

5.64 ng/g dw 93 % (LOD = 

NR) 

[26] 

Estuarine 

sediment 

Chile 2009 2 ND ND 0 % (LOD = 

1.1 ng/g dw) 

[34] 

River sediment Chile 2009 6 ND ND 0 % (LOD = 

1.1 ng/g dw) 

[34] 

Estuarine 

sediment 

(swamp) 

Colombia 2010 3 ND–17.2 ng/g 

dw 

NR NR (LOD = 

1.1 ng/g dw) 

[34] 

Estuarine 

sediment (river) 

Colombia 2010 6 ND ND 0 % (LOD = 

1.1 ng/g dw) 

[34] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

Marine 

sediment 

Hong 

Kong 

2012 

(August) 

13 ND ND 0 % (LOD = 

7.33 ng/g dw) 

[35] 

Marine 

sediment 

Hong 

Kong 

2013 

(Feb.) 

13 ND ND 0 % (LOD = 

7.33 ng/g dw) 

[35] 

Marine 

sediment 

Hong 

Kong 

2013 

(June) 

13 ND ND 0 % (LOD = 

7.33 ng/g dw) 

[35] 

Marine 

sediment 

(Tokyo bay) 

Japan 2013 

(July) 

8 ND ND 0 % (LOD = 

7.33 ng/g dw) 

[35] 

Coastal 

sediment 

Chile 2009 11 ND ND 0 % (LOD = 

1.1 ng/g dw) 

[34] 

Coastal 

sediment 

Colombia 2010 4 ND –7.9 ng/g 

dw 

NR NR (LOD = 

1.1 ng/g dw) 

[34] 

Mussels and 

clam 

China 2015 6 ND–<6 ng/L 

(LOQ) 

ND 17 % (LOD = 

1.8 ng/g dw) 

[25] 

Fish China 2015 

 

19 ND  ND 0 % (LOD = 

1.8 ng/g dw) 

[25] 

WWTP effluent 

(24-hour 

composite 

samples) 

Spain 2011 5 ND–23.8 ng/L ND 20 % (LOD = 

4 ng/L) 

[27] 

WWTP influent 

(24-hour 

composite 

samples) 

Spain 2011 5 <33.3 (LOQ) - 

48.3 ng/L 

<33.3 ng/L 

(LOQ) 

20 % (LOD = 

10 ng/L) 

[27] 

Landfill 

leachate 

Poland 2012/ 

2013 

9 1.22–16.64 

µg/L 

3.77 µg/L NR (LOD = 

0.056 µg/L) 

[28] 

2-Ethylhexyl 4-methoxycinnamate (EHMC) 

Lake water Switzer-

land 

2002 11 ND–7 ng/L ND 36 % (LOD = 

2 ng/L) 

[19] 

Seawater China 2013 61 34.15–

191.67 ng/L 

131.73 ng/L 100 % (LOD 

= NR)  

[25] 

Beach water Canary 

Islands 

2011 108 ND–756.4 ng/L ND–71 ng/L* 77 % (LOD = 

1.6 ng/L) 

[30] 

Seawater Arctic 2012/ 

2013 

14 ND–66 ng/L 25 ng/L 71 % (LOD = 

0.41 ng/L) 

[17] 

Seawater Thailand 2012/ 

2013 

2 NR–95 ng/L 88 ng/L 100 % (LOD 

= 0.41 ng/L) 

[17] 

Seawater China 2012/ 

2013 

7 ND–79 ng/L NR 57 % (LOD = 

0.41 ng/L) 

[17] 

Seawater USA 2012/ 

2013 

10 ND–150 ng/L NR 100 % (LOD 

= 0.41 ng/L) 

[17] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

Seawater Japan 2012/ 

2013 

8 ND–95 ng/L 46 ng/L 63 % (LOD = 

0.41 ng/L) 

[17] 

Seawater Hong 

Kong 

2012/ 

2013 

60 ND–4043 ng/L 89 ng/L 93 % (LOD = 

0.41 ng/L) 

[17] 

River sediment Chile 2009 6 ND ND 0 % (LOD = 

4.1 ng/g dw) 

[34] 

River sediment Spain 2009 20 ND–42 ng/g dw ND 35 % (LOQ = 

1.6 ng/g dw) 

[32] 

Lake sediment 

(recreational) 

Germany 2007 3 14–34 ng/g 21 ng/g 100 % (LOD 

= 5 ng/g) 

[33] 

Estuarine 

sediment 

Chile 2009 2 ND ND 0 % (LOD = 

4.1 ng/g dw) 

[34] 

Estuarine 

sediment 

(swamp) 

Colombia 2010 3 ND–39 ng/g dw NR NR (LOD = 

4.1 ng/g dw) 

[34] 

Estuarine 

sediment (river) 

Colombia 2010 6 ND–47.1 ng/g 

dw 

ND NR (LOD = 

4.1 ng/g dw) 

[34] 

Marine 

sediment 

Hong 

Kong 

2012 

(August) 

13 ND–447 ng/g 

dw 

8.3 ng/g dw 

(of samples 

>LOD) 

85 % (LOD = 

0.51 ng/g dw) 

[35] 

Marine 

sediment 

Hong 

Kong 

2013 

(Feb.) 

13 ND–291 ng/g 

dw 

6.5 ng/g dw 

(of samples 

>LOD) 

69 % (LOD = 

0.51 ng/g dw) 

[35] 

Marine 

sediment 

Hong 

Kong 

2013 

(June) 

13 ND–119 ng/g 

dw 

5.1 ng/g dw 

(of samples 

>LOD) 

92 % (LOD = 

0.51 ng/g dw) 

[35] 

Marine 

sediment 

(Tokyo bay) 

Japan 2013 

(July) 

8 0.3–54.5 ng/g 

dw 

10.3 ng/g dw 100 % (LOD 

= 0.51 ng/g 

dw) 

[35] 

Coastal 

sediment 

Chile 2009 11 ND ND 0 % (LOD = 

4.1 ng/g dw) 

[34] 

Coastal 

sediment 

Colombia 2010 4 ND –17.8 ng/g 

dw 

NR NR (LOD = 

4.1 ng/g dw) 

[34] 

Fish China 2015 

 

19 ND–12.7 ng/L <4.0 ng/L 

(LOQ) 

73.7 % (LOD 

= 1.2 ng/g dw) 

[25] 

Mussels and 

clam 

China 2015 6 <4.0 (LOQ)–

51.3 ng/L 

21.05 ng/L 100 % (LOD 

= 1.2 ng/g dw) 

[25] 

Notes:  
Additional information regarding the sampling location and year is sometimes provided after values that are not 

reported (NR) in parentheses. This represents an estimated value for this non-reported information based on the 

general details provided in the study. 

 

*Range of medians from six beaches 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure exist for 

different organisms and across different study levels. A comprehensive but non-exhaustive set of reported 

observations is included below, and further observations can be found in published literature reviews including 

in the following: 

 

- P.Y. Kunz, K. Fent, Multiple hormonal activities of UV filters and comparison of in vivo and in vitro 

estrogenic activity of ethyl-4-aminobenzoate in fish, Aquat. Toxicol. 79 (2006) 305–324. 

doi:10.1016/j.aquatox.2006.06.016. 

- M. Krause, A. Klit, M. Blomberg Jensen, T. Søeborg, H. Frederiksen, M. Schlumpf, W. Lichtensteiger, 

N.E. Skakkebaek, K.T. Drzewiecki, Sunscreens: Are they beneficial for health? An overview of 

endocrine disrupting properties of UV-filters, Int. J. Androl. 35 (2012) 424–436. doi:10.1111/j.1365-

2605.2012.01280.x. 

- J. Wang, L. Pan, S. Wu, L. Lu, Y. Xu, Y. Zhu, M. Guo, S. Zhuang, Recent Advances on Endocrine 

Disrupting Effects of UV Filters, Int. J. Environ. Res. Public Health. 13 (2016) 782. 

doi:10.3390/ijerph13080782. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

3-BC;  

4-MBC 

zebrafish No estrogenicity observed [36] 

3-BC;  

4-MBC; 

EHMC 

fathead minnows, 

rainbow trout, medaka 

Increased vitellogenin* level in females [37–39] 

3-BC aquatic species Histological alterations in gonads (testis, ovaries) [20] 

3-BC aquatic species Impaired reproduction (inhibited oocyte and 

spermatocyte development) 

[20] 

3-BC;  

4-MBC 

frog No effect on sex ratio or alterations in gonads 

observed  

[40] 

 

 

In vitro level 

Substance Cell line Observation Reference 

3-BC yeast, with rainbow 

trout estrogen receptor 

Reporter gene expression - estrogenicity [37] 

4-MBC; 

EHMC 

yeast, with rainbow 

trout estrogen receptor 

No effect on reporter gene expression - estrogenicity [37] 

4-MBC; 

EHMC 

medaka Induced vitellogenin* synthesis / vitellogenin* 

mRNA or protein expression 

[39] 

 

 

Notes:  
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 

 

 

 



  DRAFT 

75 

 

References 

[1] Scientific Committee on Consumer Safety (SCCS), Opinion on 3-Benzylidene camphor, 2013. 

doi:10.2772/56529. 

[2] Scientific Committee on Consumer Products (SCCP), Opinion on 4-Methylbenzylidene Camphor, 2006. 

http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_075.pdf (accessed May 15, 2017). 

[3] European Chemicals Agency, Substance Registration Dossier for 2-Ethylhexyl trans-4-

methoxycinnamate, (n.d.). https://echa.europa.eu/de/registration-dossier/-/registered-dossier/15876/4/3 

(accessed May 5, 2017). 

[4] M. Silvia Díaz-Cruz, M. Llorca, D. Barceló, D. Barceló, Organic UV filters and their photodegradates, 

metabolites and disinfection by-products in the aquatic environment, Trends Anal. Chem. 27 (2008) 

873–887. doi:10.1016/j.trac.2008.08.012. 

[5] L.A. MacManus-Spencer, M.L. Tse, J.L. Klein, A.E. Kracunas, Aqueous Photolysis of the Organic 

Ultraviolet Filter Chemical Octyl Methoxycinnamate, Environ. Sci. Technol. 45 (2011) 3931–3937. 

doi:10.1021/es103682a. 

[6] US EPA, Estimation Programs Interface SuiteTM for Microsoft® Windows, (2017). 

[7] A. Volpe, M. Pagano, G. Mascolo, P. Grenni, S. Rossetti, Biodegradation of UV-filters in marine 

sediments, Sci. Total Environ. 575 (2017) 448–457. doi:10.1016/j.scitotenv.2016.10.001. 

[8] T. Kupper, C. Plagellat, R.C. Brändli, L.F. de Alencastro, D. Grandjean, J. Tarradellas, Fate and 

removal of polycyclic musks, UV filters and biocides during wastewater treatment, Water Res. 40 

(2006) 2603–2612. doi:10.1016/j.watres.2006.04.012. 

[9] Y.-S. Liu, G.-G. Ying, A. Shareef, R.S. Kookana, Occurrence and removal of benzotriazoles and 

ultraviolet filters in a municipal wastewater treatment plant, Environ. Pollut. 165 (2012) 225–232. 

doi:10.1016/j.envpol.2011.10.009. 

[10] R. Rodil, M. Moeder, R. Altenburger, M. Schmitt-Jansen, Photostability and phytotoxicity of selected 

sunscreen agents and their degradation mixtures in water, Anal. Bioanal. Chem. 395 (2009) 1513–1524. 

doi:10.1007/s00216-009-3113-1. 

[11] N. Serpone, A. Salinaro, A. V. Emeline, S. Horikoshi, H. Hidaka, J. Zhao, An in vitro systematic 

spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and 

their chemical UVB/UVA active agents, Photochem. Photobiol. Sci. 1 (2002) 970. 

doi:10.1039/b206338g. 

[12] A.J.M. Santos, M.S. Miranda, J.C.G. Esteves da Silva, The degradation products of UV filters in 

aqueous and chlorinated aqueous solutions, Water Res. 46 (2012) 3167–3176. 

doi:10.1016/j.watres.2012.03.057. 

[13] European Chemicals Agency, Substance Information for 2-Ethylhexyl trans-4-methoxycinnamate, 

(2017). https://echa.europa.eu/substance-information/-/substanceinfo/100.157.824 (accessed May 22, 

2017). 

[14] European Commission, Commission Regulation (EU) 2015/1298 of July 28 2015 amending Annexes II 

and VI to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic 

products, 2015. http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=uriserv:OJ.L_.2015.199.01.0022.01.ENG. 

[15] D. Sánchez-Quiles, A. Tovar-Sánchez, Are sunscreens a new environmental risk associated with coastal 

tourism?, Environ. Int. 83 (2015) 158–170. doi:10.1016/j.envint.2015.06.007. 

[16] D.L. Giokas, A. Salvador, A. Chisvert, UV filters: From sunscreens to human body and the 

environment, Trends Anal. Chem. 26 (2007) 360–374. doi:10.1016/j.trac.2007.02.012. 

[17] M.M.P. Tsui, H.W. Leung, T.-C. Wai, N. Yamashita, S. Taniyasu, W. Liu, P.K.S. Lam, M.B. Murphy, 

Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface 

waters from different countries, Water Res. 67 (2014) 55–65. doi:10.1016/j.watres.2014.09.013. 

[18] M.M.P. Tsui, H.W. Leung, P.K.S. Lam, M.B. Murphy, Seasonal occurrence, removal efficiencies and 

preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants, 

Water Res. 53 (2014) 58–67. doi:10.1016/j.watres.2014.01.014. 

[19] M.E. Balmer, H.-R. Buser, M.D. Müller, T. Poiger, Occurrence of Some Organic UV Filters in 

Wastewater, in Surface Waters, and in Fish from Swiss Lakes, Environ. Sci. Technol. 39 (2005) 953–

962. doi:10.1021/es040055r. 

[20] P.Y. Kunz, T. Gries, K. Fent, The Ultraviolet Filter 3-Benzylidene Camphor Adversely Affects 



  DRAFT 

76 

 

Reproduction in Fathead Minnow (Pimephales promelas), Toxicol. Sci. 93 (2006) 311–321. 

doi:10.1093/toxsci/kfl070. 

[21] V. Wai, T. Li, M. Po, M. Tsui, X. Chen, M. Nga, Y. Hui, L. Jin, R.H.W. Lam, R. Man, K. Yu, M.B. 

Murphy, J. Cheng, P. Kwan, S. Lam, & Shuk, H. Cheng, Effects of 4-methylbenzylidene camphor (4-

MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos, Environ. Sci. Pollut. 

Res. (2016). doi:10.1007/s11356-016-6180-9. 

[22] K. Fent, A. Zenker, M. Rapp, Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in 

Switzerland, Environ. Pollut. 158 (2010) 1817–1824. doi:10.1016/j.envpol.2009.11.005. 

[23] A. Goksøyr, K.E. Tollefsen, M. Grung, K. Løken, E. Lie, A. Zenker, K. Fent, M. Schlabach, S. Huber, 

Balsa Raft Crossing the Pacific Finds Low Contaminant Levels, Environ. Sci. Technol. 43 (2009) 4783–

4790. doi:10.1021/es900154h. 

[24] A. Zenker, H. Schmutz, K. Fent, Simultaneous trace determination of nine organic UV-absorbing 

compounds (UV filters) in environmental samples, J. Chromatogr. A. 1202 (2008) 64–74. 

doi:10.1016/j.chroma.2008.06.041. 

[25] Z. Sang, K.S.-Y. Leung, Environmental occurrence and ecological risk assessment of organic UV filters 

in marine organisms from Hong Kong coastal waters, Sci. Total Environ. 566–567 (2016) 489–498. 

doi:10.1016/j.scitotenv.2016.05.120. 

[26] C. Wu, X. Huang, J. Lin, J. Liu, Occurrence and Fate of Selected Endocrine-Disrupting Chemicals in 

Water and Sediment from an Urban Lake, Arch. Environ. Contam. Toxicol. 68 (2015) 225–236. 

doi:10.1007/s00244-014-0087-6. 

[27] P. Gago-Ferrero, N. Mastroianni, M.S. Díaz-Cruz, D. Barceló, Fully automated determination of nine 

ultraviolet filters and transformation products in natural waters and wastewaters by on-line solid phase 

extraction-liquid chromatography-tandem mass spectrometry, J. Chromatogr. A. 1294 (2013) 106–116. 

doi:10.1016/j.chroma.2013.04.037. 

[28] J. Kapelewska, U. Kotowska, K. Wiśniewska, Determination of personal care products and hormones in 

leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification 

microextraction and GC-MS, Environ. Sci. Pollut. Res. 23 (2016) 1642–1652. doi:10.1007/s11356-015-

5359-9. 

[29] A. Tovar-Sánchez, D. Sánchez-Quiles, G. Basterretxea, J.L. Benedé, A. Chisvert, A. Salvador, I. 

Moreno-Garrido, J. Blasco, Sunscreen Products as Emerging Pollutants to Coastal Waters, PLoS One. 8 

(2013) e65451. doi:10.1371/journal.pone.0065451. 

[30] A. Sánchez Rodríguez, M. Rodrigo Sanz, J.R. Betancort Rodríguez, Occurrence of eight UV filters in 

beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment, 

Chemosphere. 131 (2015) 85–90. doi:10.1016/j.chemosphere.2015.02.054. 

[31] K.H. Langford, K. V. Thomas, Inputs of chemicals from recreational activities into the Norwegian 

coastal zone, J. Environ. Monit. 10 (2008) 894. doi:10.1039/b806198j. 

[32] P. Gago-Ferrero, M.S. Díaz-Cruz, D. Barceló, Fast pressurized liquid extraction with in-cell purification 

and analysis by liquid chromatography tandem mass spectrometry for the determination of UV filters 

and their degradation products in sediments, Anal. Bioanal. Chem. 400 (2011) 2195–2204. 

doi:10.1007/s00216-011-4951-1. 

[33] R. Rodil, M. Moeder, Development of a simultaneous pressurised-liquid extraction and clean-up 

procedure for the determination of UV filters in sediments, Anal. Chim. Acta. 612 (2008) 152–159. 

doi:10.1016/j.aca.2008.02.030. 

[34] E. Barón, P. Gago-Ferrero, M. Gorga, I. Rudolph, G. Mendoza, A.M. Zapata, S. Díaz-Cruz, R. Barra, 

W. Ocampo-Duque, M. Páez, R.M. Darbra, E. Eljarrat, D. Barceló, Occurrence of hydrophobic organic 

pollutants (BFRs and UV-filters) in sediments from South America, Chemosphere. 92 (2013) 309–316. 

doi:10.1016/j.chemosphere.2013.03.032. 

[35] M.M.P. Tsui, H.W. Leung, B.K.Y. Kwan, K.-Y. Ng, N. Yamashita, S. Taniyasu, P.K.S. Lam, M.B. 

Murphy, Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in 

marine sediments in Hong Kong and Japan, J. Hazard. Mater. 292 (2015) 180–187. 

doi:10.1016/j.jhazmat.2015.03.025. 

[36] R. Schreurs, P. Lanser, W. Seinen, B. Van der Burg, Estrogenic activity of UV filters determined by an 

in vitro reporter gene assay and an in vivo transgenic zebrafish assay, Arch. Toxicol. 76 (2002) 257–

261. doi:10.1007/s00204-002-0348-4. 



  DRAFT 

77 

 

[37] P.Y. Kunz, H.F. Galicia, K. Fent, Comparison of in vitro and in vivo estrogenic activity of UV filters in 

fish, Toxicol. Sci. 90 (2006) 349–361. doi:10.1093/toxsci/kfj082. 

[38] H. Holbech, U. Nørum, B. Korsgaard, B. Poul, The chemical UV-filter 3-benzylidene camphor causes 

an oestrogenic effect in an in vivo fish assay., Pharmacol. Toxicol. 91 (2002) 204–8. 

doi:10.1034/j.1600-0773.2002.t01-3-910403.x. 

[39] M. Inui, T. Adachi, S. Takenaka, H. Inui, M. Nakazawa, M. Ueda, H. Watanabe, C. Mori, T. Iguchi, K. 

Miyatake, Effect of UV screens and preservatives on vitellogenin and choriogenin production in male 

medaka (Oryzias latipes), Toxicology. 194 (2003) 43–50. doi:10.1016/S0300-483X(03)00340-8. 

[40] P.Y. Kunz, H.F. Galicia, K. Fent, Assessment of hormonal activity of UV filters in tadpoles of frog 

Xenopus laevis at environmental concentrations, Mar. Environ. Res. 58 (2004) 431–435. 

doi:10.1016/j.marenvres.2004.03.027. 

 

 



  DRAFT 

78 

 

Bisphenol F and S 
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Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Bisphenol F 

 

BPF 620-92-8 

 

Bisphenol S BPS 80-09-1 

 

Completed assessments as the basis for inclusion: SIN List (BPF; BPS) 

 

 

 

Physical and Physicochemical Properties 

Property BPF BPS 

Molecular formula C13H12O2 C12H10O4S 

Molecular weight [g/mol] 200.23 250.27 

Physical state at 20°C solid solid 

Melting point 

[°C] 

162.5 [1] 240.5 [1] 

Density  

[g/cm3] 

NR 1.37 at 15 °C [1] 

Vapor pressure at 25°C [mmHg] 3.72*10-7 † 4.72*10-10 † 

Water solubility at 25°C [mg/L]  542.8† 1100 [2];  

3518† 

Octanol/water partition coefficient (log 

KOW) 

3.06† 1.2 [3];  

1.65† 

Organic carbon/water partition 

coefficient (log KOC) 

4.18 (MCI method)†;  

2.87 (Kow method)† 

3.26 (MCI method)†;  

2.20 (Kow method)† 

Air/water partition coefficient (log 

KAW) 

-9.67† -12.96† 

Dissociation constant (pKa) pKa1 = 7.55, 

pKa2 = 10.80 at 25 °C [4] 

pKa1 = 8 [3]; 8.2 [5] 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [7]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes  No Not reported 

Hydrolysis  BPF; BPS    [2] 

Photolysis BPF; BPS     [2,6]  

OH-radical 

reactions 

BPF; BPS    Atmosphere [7] 

Biodegradation BPF; BPS 

(sediment) 

 BPS (water, 

activated 

sludge) 

 WWTP Sea, River [3,8,9]  

 

 

Kinetics – Bisphenol S (BPS) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 1.6 h (estimated)† [7] 

Photolysis Half-life = 91 min [6] 

Biodegradation (activated sludge) No degradation after 4 weeks [2] 

Biodegradation (seawater) No degradation after 30 d (modified TOC-Handai 

method); 

No degradation after 30 d (sea die-away method) 

[2,8] 

Biodegradation (river water, aerobic) No degradation after 3 weeks in 24 of 24 cases [9] 

Biodegradation (pond sediment, 

anaerobic) 

Approximately 60 % degraded after 80 d [9] 

 

 

Kinetics – Bisphenol F (BPF) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 8.8 h (estimated)† [7] 

Biodegradation (river water, aerobic) Complete degradation after 2 weeks in 21 of 24 cases [9] 

Biodegradation (pond sediment, 

anaerobic) 

Approximately 80 % degraded after 80 d [9] 

Biodegradation (activated sludge) 1 % degraded after 4 weeks [2] 

Biodegradation (seawater) 8–58 % degraded after 30 d (modified TOC-Handai 

method); 

75–100 % degraded after 30 d (sea die-away method) 

[2,8] 
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Intentional Production Levels and Uses 

Uses 

 Bisphenols S and F are used as substitutes for bisphenol A (BPA) as monomers in the production of 

polycarbonate plastics and epoxy resins [10]. 

o Polycarbonate plastics are used primarily in the building and construction, optical media, 

electronics, and the automotive sectors [11]. 

o Epoxy resins are mainly used for protective coatings (>50 %), printed circuit board laminates, 

semiconductor encapsulates, tooling, molding, flooring, and adhesives [12]. 

 Bisphenol S is widely used as a developer in thermal paper, which is used for receipts, tickets, etc. [13] 

 

Production Levels 

Bisphenol S 

 Currently registered in the EU with 1000–10 000 tonnes per year of production or import [3]. 

 Imported by 8 companies in the US with four of those companies reporting a total import volume of 2107 

tonnes in the year 2011, while the remaining four companies listed their import volumes as classified 

business information [14]. 

 

Bisphenol F 

 Produced by one company in the US with a production volume of 161 tonnes in the year 2011 [14]. 
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Emission Sources into the Environment 

 

 As bisphenols F and S are used as direct substitutes for bisphenol A, it can be expected that the primary 

sources of releases into the environment are similar to bisphenol A. 

 This may include releases during production and processing, releases from polycarbonate and epoxy resin 

products, disposal of thermal paper, and landfill leachates. 

 The table below shows known emissions of bisphenol A as a reference. 

 

Bisphenol A 

 Emission Sources 

Production  148 kg per year into water in the EU [11]. 

 418 kg per year into air in the EU [11]. 

Use Release from polycarbonate and epoxy resins products, and thermal paper during 

use [15].  

Disposal  Inappropriate disposal of thermal paper can lead to emissions into the 

environment or enter the paper recycling process [13]. 

 Disposal of products containing bisphenols either as an additive or monomer 

(e.g. polycarbonate plastics) in landfills can lead to contamination of the 

environment via leachates [11].   

Other sources Occurs in a type of orchid [16] and in mustard made from one type of mustard 

seeds [17]. 
 

Distribution in the Abiotic Environment and Biota 

Expected Partitioning 

Inadequate data regarding the emission patterns for these chemicals across their wide range of uses have been 

identified, hindering a representative understanding of their environmental distribution. Additional efforts are 

needed to better understand the emission patterns, and environmental models (e.g., the Level III fugacity 

model in EPI Suite [7]) could then be used to estimate the distribution of these chemicals across the different 

environmental compartments. 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

Bisphenol F 6.6–11  fish [3] 

Bisphenol S <0.2–<2.2  fish [3] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported.  

 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Bisphenol F (BPF) 

River water Korea 2014 10 ND–1301 ng/L ND 40 % (LOD = 

NR) 

[18] 

River water Japan 2013/ 

2014 

8 76.2–2846 ng/L 287.5 ng/L 100 % (LOD = 

NR) 

[18] 

River water China 2013 13 ND–ND ND 0 % (LOD = 

0.059 ng/L) 

[19] 

River water China 2013 10 ND–ND ND 0 % (LOD = 

0.059 ng/L) 

[19] 

River water China 2012 5 ND–3.47 ng/L ND 40 % (LOD = 

0.45 ng/L) 

[20] 

River/Canal 

water 

India 2014 12 ND–289 ng/L ND 33 % (LOD = 

NR) 

[18] 

Lake water China 2013 23 ND–5.6 ng/L 0.5 ng/L 87 % (LOD = 

0.059 ng/L) 

[19] 

Surface water 

(rivers, lakes, 

channels) 

Germany 1997 30 ND–180 ng/L NR 77 % (LOD = 

0.1 ng/L) 

[21] 

Seawater Japan 2013/ 

2014 

10 ND–1474 ng/L 167 ng/L 90 % (LOD = 

NR) 

[18] 

River sediment China 2013 12 ND–0.41 ng/g 

dw 

ND 8 % (LOD = 

0.053 ng/g dw) 

[19] 

River sediment China 2013 7 ND–3.8 ng/g 

dw 

ND 43 % (LOD = 

0.053 ng/g dw) 

[19] 

River sediment China 2012 5 ND–30.16 ng/g 

dw 

6.24 ng/g 

dw 

60 % (LOD = 

0.2 ng/g dw) 

[20] 

River sediment USA 1998 to 

2012 

82 ND–27.5 ng/g 

dw 

1.44 ng/g 

dw 

59 % (LOD = 

NR) 

[22] 

Lake sediment China 2013 23 ND–1.2 ng/g 

dw 

0.47 ng/g 

dw 

91 % (LOD = 

0.053 ng/g dw) 

[19] 

Surface water 

sediment 

Germany 1997 7 ND–7.3 µg/kg 

dw 

NR 58 % (LOD = 

1 µg/kg dw) 

[21] 

Sewage sludge USA 2006/ 

2007 

76 ND–242 ng/g 

dw 

8.16 ng/g 

dw 

68 % (LOD = 

1.79 ng/g dw) 

[23] 
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Bisphenol S (BPS) 

River water Korea 2014 10 ND–42 ng/L ND 20 % (LOD = 

NR) 

[18] 

River water Japan 2013/ 

2014 

8 1.5–8.7 ng/L 3.35 ng/L 100 % (LOD = 

NR) 

[18] 

River water China 2013 13 0.22–52 ng/L 8.9 ng/L 100 % (LOD = 

0.047 ng/L) 

[19] 

River water China 2013 10 0.61–46 ng/L 8.4 ng/L 100 % (LOD = 

0.047 ng/L) 

[19] 

River water China 2012 5 0.29–18.99 

ng/L 

0.51 ng/L 100 % (LOD = 

0.04 ng/L) 

[20] 

River/canal 

water 

India 2014 12 ND–7204 ng/L 44 ng/L 83 % (LOD = 

NR) 

[18] 

Lake water China 2013 23 0.28–67 ng/L 2.0 ng/L 100 % (LOD = 

0.047 ng/L) 

[19] 

Seawater Japan 2013/ 

2014 

10 ND–15 ng/L ND 40 % (LOD = 

NR) 

[18] 

Lake sediment China 2013 23 ND–0.76 ng/g 

dw 

0.071 57 % (LOD = 

0.043 ng/g dw) 

[19] 

River sediment China 2013 12 ND–1.1 ng/g 

dw 

ND 8 % (LOD = 

0.043 ng/g dw) 

[19] 

River sediment China 2013 7 ND–0.051 ng/g 

dw 

ND 14 % (LOD = 

0.043 ng/g dw) 

[19] 

River sediment China 2012 5 ND–0.22 ng/g 

dw 

0.07 ng/g 

dw 

60 % (LOD = 

0.03 ng/g dw) 

[20] 

River sediment USA 1998 to 

2012 

82 ND–4.65 ng/g 

dw 

ND 16 % (LOD = 

NR) 

[22] 

Sewage sludge USA 2006/ 

2007 

76 ND–1480 ng/g 

dw 

5.8 ng/g 

dw 

84 % (LOD = 

1.79 ng/g dw) 

[23] 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to bisphenols F 

and S exist for different organisms and across different study levels. A comprehensive but non-exhaustive set of 

reported observations is included below, and further observations can be found in published literature reviews 

including in the following: 

 

- M. Naderi, M.Y.L. Wong, F. Gholami, Developmental exposure of zebrafish (Danio rerio) to bisphenol-

S impairs subsequent reproduction potential and hormonal balance in adults, Aquat. Toxicol. 148 (2014) 

195–203. doi:10.1016/j.aquatox.2014.01.009.  

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

In vivo level 

Substance Organism Observation Reference 

BPS zebrafish 

embryo 

Increased vitellogenin* level in males (feminization) [24] 

BPS zebrafish Changed plasma steroid and thyroid levels  [24–26] 

BPS zebrafish Impaired reproduction (decreased egg production)  [24] 

BPS zebrafish Altered sex ratio (skewed to females)  [24] 

BPS; BPF zebrafish Altered spawning behavior and hatching rates  [24,25,27] 
 

In vitro level 

Substance Cell line Observation Reference 

BPS zebrafish 

transcriptomics 

Altered gene transcription hypothalamic-pituitary-gonad (HPG) 

axis, especially indirectly affected gonadotropin hormones 

production that play important role in reproduction  

[25] 

BPF zebrafish 

transcriptomics 

Altered expression of genes involved in various thyroid hormone 

pathways (e.g. signalling,  synthesis and transport) 

[26] 

BPS zebrafish Altered reproductive neuroendocrine-related gene expression  [28] 

 

 

Notes:  
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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BHT and BHA  

Key References: 

 Organisation for Economic Co-operation and Development, SIDS Initial Assessment Report For SIAM 

14 - 2,6-di-tert-butyl-p-cresol (BHT), 2002. http://www.inchem.org/documents/sids/sids/128370.pdf 

(accessed April 10, 2017). 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Butylated hydroxytoluene BHT 128-37-0 

 

Butylated hydroxyanisole; 

tert-Butylhydroxyanisole; 

tert-Butyl-4-

methoxyphenol 

 

BHA 25013-16-5 

 

Completed assessments as the basis for inclusion: SIN List (BHT; BHA), Danish Criteria (BHA) 

 

Note: BHA often refers to a mixture of two isomers 2-tert-butyl-4-methoxyphenol and 3-tert-butyl-4-

methoxyphenol [1]. 

 

Physical and Physicochemical Properties 

Property BHT BHA 

Molecular formula C15H24O C11H16O2 

Molecular weight [g/mol] 220.36 180.24 

Physical state at 20°C solid solid 

Melting point [°C] 70 [2] 51 [2] 

Density [g/cm3] 1.048 at 20 °C [3] 0.666 at 27 °C [4] 

Vapor pressure at 25°C [mmHg] 5.16*10-3 [5] 2.34*10-3 † 

Water solubility at 25°C [mg/L]  0.6 [6];  

0.4 at 20 °C [7] 

insoluble [2]; 

610 at 29 °C, pH=1.28 [4] 

Octanol/water partition coefficient 

(logKOW) 

5.10 [8] 3.29 [9]; 3.5† 

Organic carbon/water partition 

coefficient (log KOC) 

4.17 (MCI method)†,  

3.91 (Kow method)† 

2.92 (MCI method)† ,  

3.08 (Kow method)† 

Air/water partition coefficient (log 

KAW) 

-3.77† -5.46† 

Dissociation constant (pKa) 12.2 [8] 1.67*10-4 [4] (see note) 

Note: The included pKa value for BHA as reported in the REACH dossier may be a typo. 

                                                      
† Estimated value using models in EPI Suite v4.11 [13]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanisms 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis BHT BHA    [10,11] 

Photolysis BHT; BHA     [10,11] 

OH-radical 

reactions 

  BHT; BHA    

Biodegradation BHT BHA  WWTP Soil, water [4,6,11,12] 
 

 

Kinetics – Butylated Hydroxytoluene (BHT) 

Mechanism  Reported values Reference 

OH-radical reactions Half-life = 7 h (estimated) † [13] 

Photolysis 20 % of BHT remains after 240 h of UV irradiation [14] 

Photolysis + Hydrolysis (water with 

sunlight) 

74.8 % degraded after 8 d [10] 

Hydrolysis (water in the dark) 40.4 % degraded after 8 d [10] 

Biodegradation (soil) 77–86.7 % degraded after 1 d,  

82.4–93.7 % degraded after 24 d 

[12] 

Biodegradation (activated sludge) 50.1–79.4 % degraded after 7d, 

79.2–95 % degraded after 28 d, 

94.1–99.2 % degraded after 56 d 

[6] 

 

 

Kinetics – Butylated Hydroxyanisole (BHA) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 4 h (estimated) † [13] 

Photolysis 65 % of BHA remains after 240 h UV irradiation [14] 
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Intentional Uses and Production Levels 

Uses 

BHT and BHA 

 Widely used as antioxidants and preservatives [15,16].  

 Permitted as food additives in the US with certain limitations [17]. 

 Also used as antioxidants in pesticide formulations [11]. 

 

BHT 

 Used as an antioxidant in food products, animal feed, cosmetics, packaging material, petroleum products, 

synthetic rubbers, plastics, elastomers, oils, waxes, soaps, paints, and inks [18,19].  

 Global use profile in 2000: 

o 27 % rubber, 

o 27 % plastics, 

o 17 % mineral oils/fuels, 

o 12 % foodstuff/pharmaceuticals/cosmetics, 

o 11 % animal feed/pet food, 

o 6 % printing inks/miscellaneous [19]. 

 

BHA 

 Mainly used in food, food packaging, animal feed, cosmetics, and in rubber and petroleum products 

[4,15].  

 

Production Levels 

BHT 

 Global production volume: approximately 62 000 tonnes in 2000 [19]. 

 This included: 

o US – 7000 tonnes, 

o Japan – 15 000 tonnes, 

o Western Europe – 25 000 tonnes, 

o Russia – 5000 tonnes, 

o India – 1000 tonnes, 

o China – 9000 tonnes [19]. 

 Currently registered in the EU with 10 000–100 000 tonnes per year of production or import [4].  

 757 tonnes reported for production or import in the US by 11 producers in 2011; another 12 producers are 

listed, but have declared their annual production volumes as classified business information [20]. 

 

BHA 

 Currently registered in the EU with 100–1000 tonnes per year of production or import [4]. 
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Emission Sources into the Environment 

 

 Little information on emission sources of BHT and no information on emission source of BHA has been 

found.  

 

BHT 

 Emission Sources 

Production Released into the environment during processing of plastics containing BHT, due to 

its volatility at processing temperatures [18].  

Use  Released from polyolefin plastics (e.g. LDPE films) [21] and polylactic acid 

[16]. 

 This can occur throughout the use phase of relevant plastic products. 

Disposal  Not reported 

 Releases from plastics during disposal could be expected due to its known 

potential to leach from those plastics. 

Other sources Not reported 

 

BHA 

 Emission Sources 

Production Not reported 

Use Not reported 

Disposal Not reported 

Other sources Not reported 
 

 

 

Distribution in the Natural Environment 

Expected Distribution 

Based on the identified uses and emission sources for these chemicals as plastic additives and the emission 

scenario information generated by the OECD [22], a plausible emission pattern was assumed to estimate the 

resulting distribution in the natural environment using the Level III fugacity model in EPI Suite [13]. The 

assumed emission pattern and the resulting environmental distribution from the model are presented in the 

table below for each chemical.  

 

 Assumed Emission Pattern Modeled Partitioning Results 

 Air Water Soil Air Water Soil Sediment 

BHT 50 % 50 % 0 % 2 % 51 % 3 % 44 % 

BHA 50 % 50 % 0 % 1 % 87 % 8 % 4 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

BHT 646 (estimated) † fish [13] 

BHA 57 (estimated) † fish [13] 
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Measured Environmental Concentrations 

Measured concentrations for BHT and BHA have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration  

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Butylated Hydroxytoluene (BHT) 

River water Germany 2000/ 2001 9 25–365 ng/L 172 ng/L 100 % (LOD = 

5 ng/L) 

[23] 

River water 

(upstream of 

WWTP) 

Sweden 2002 1 0.62 µg/L 0.62 µg/L 100 % (LOD = 

NR) 

[24] 

River water 

(downstream of 

WWTP) 

Sweden 2002 3 0.1–0.47 µg/L 0.16 µg/L 100 % (LOD = 

NR) 

[24] 

Ground water Germany 2000/ 2001 78 ND–2156 ng/L 126 ng/L 78 % (LOD = 

5 ng/L) 

[23] 

WWTP influent Germany 2001 4 263–478 ng/L 349 ng/L 100 % (LOD = 

5 ng/L) 

[23] 

WWTP influent Sweden 2002 1 2.53 µg/L 2.53 µg/L 100 % (LOD = 

NR) 

[24] 

WWTP effluent Germany 2001 4 22–258 ng/L 105 ng/L 100 % (LOD = 

5 ng/L) 

[23] 

WWTP effluent Sweden 2002 4 0.32–0.61 µg/L 0.505 µg/L 100 % (LOD = 

NR) 

[24] 

Wastewater USA 1999/ 2000 85 NR–0.2 µg/L 0.1 µg/L 

(estimated) 

2.4 % (LOD = 

0.12 µg/L) 

[25] 

Sewage sludge  China 2010/ 2011 56 51.7–30 300 

ng/g dw 

2350 ng/g 

dw 

100 % (MQL = 

1.2 ng/g dw)  

[26] 

DWTP source 

water 

USA 2006/ 2007 19 ND–49 ng/L ND 5 % (LOD = 

25 ng/L) 

[27] 

DWTP finished 

water 

USA 2006/ 2007 18 ND–26 ng/L ND 6 % (LOD = 

25 ng/L) 

[27] 

DWTP 

distribution 

water (tap 

water) 

USA 2006/ 2007 15 ND ND 0 % (LOD = 

25 ng/L) 

[27] 

        

        

Butylated Hydroxyanisole (BHA) 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration  

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

River water South 

Korea 

2008 6 ND ND 0 % (LOD = 

1 ng/L) 

[28] 

Creek water 

(effluent-

dominated) 

South 

Korea 

2008 4 ND–4.5 ng/L ND 25 % (LOD = 

1 ng/L) 

[28] 

Wastewater USA 1999/ 2000 85 NR–0.1 µg/L 0.1 µg/L 

(estimated) 

2.4 % (LOD = 

0.08 µg/L) 

[25] 

Sewage sludge  China 2010/ 2011 56 ND–17.4 ng/g 

dw 

2.44 ng/g dw 66.1 % (MQL = 

15 ng/g dw) 

[26] 

DWTP source 

water 

USA 2006/ 2007 19 ND ND 0 % (LOD = 

NR) 

[27] 

DWTP finished 

water 

USA 2006/ 2007 18 ND ND 0 % (LOD = 

NR) 

[27] 

DWTP 

distribution 

water (tap 

water) 

USA 2006/ 2007 15 ND ND 0 % (LOD = 

NR) 

[27] 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure exist for 

different organisms and across different study levels. A comprehensive but non-exhaustive set of reported 

observations is included below. 

 

 

Population level / field studies 

No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

BHT rat Increased iodine uptake (iodine is crucial for thyroid 

hormone synthesis)  

[29] 

BHA rat Altered thyroid and sex hormone levels in serum  [30] 

BHA rat Altered reproduction (decreased sperm quality, disrupted 

recurring period of sexual receptivity and fertility)  

[30] 

BHT; BHA rat Altered sex organ weights in females [30–32] 

 

 

In vitro level 

Substance Cell line Observation Reference 

BHA U2OS human cells 

with ERa and ERb 

receptors 

Estrogen receptor (ER) activation (including binding and 

transcription processes) 

[33] 

BHA rainbow trout  Competitive binding to the estrogen receptor (displacing 

17β-estradiol) 

[34] 

BHT rainbow trout No competitive binding to the estrogen receptor (displacing 

17β-estradiol) 

[34] 

BHA human Induced cell proliferation (estrogenic activity) in 

proliferation assay 

[35] 

BHT human No induced cell proliferation (estrogenic activity) in 

proliferation assay 

[35] 

BHT; BHA human breast 

cancer cell line 

Androgen receptor (AR) blockage (receptor inhibition or 

transcription process alteration) 

[36] 
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Carbon disulphide 

Key References: 

 M.D.S. Lay, M.W. Sauerhoff, D.R. Saunders, Carbon Disulfide, in: Ullmann’s Encycl. Ind. Chem., 

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2000: pp. 565–582. 

doi:10.1002/14356007.a05_185. 

 

 

 

Chemical Identification 

Name Abbreviation CAS Number Structure 

Carbon disulphide CS2 75-15-0 
 

Completed assessments as the basis for inclusion: SIN List 

 

 

 

Physical and Physicochemical Properties 

Property Carbon disulphide 

Molecular formula CS2 

Molecular weight [g/mol] 76.14 

Physical state at 20°C liquid 

Melting point [°C] -112.1 [1]; -111.6 [2] 

Density [g/cm3] 1.2632 at 20 °C [1] 

Vapor pressure at 25°C [mmHg] 359 [3]; 206 [4] 

Water solubility at 25°C [mg/L]  2160 [5], 2900 at 20 °C and pH of 5.9 [6] 

Octanol/water partition coefficient 

(log KOW) 

1.94 (QSAR estimate) [7]; 2.7 [8] 

Organic carbon/water partition 

coefficient (log KOC) 

1.34 (MCI method)†, 1.68 (Kow method)† 

Air/water partition coefficient (log 

KAW) 

-0.23† 

Dissociation constant (pKa) Not applicable  

  

                                                      
† Estimated value using models in EPI Suite v4.11 [11]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanisms 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  X 

(negligible) 

  Water [9] 

Photolysis X     [9] 

OH-radical 

reactions 

X    Atmosphere [9] 

Biodegradation X   WWTP  [6] 
 

 

Kinetics – Carbon disulphide (CS2) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 5.5–15 d [9] 

Photolysis Half-life = 7.7 d (calculated) [9] 

Biodegradation (activated sludge, non-

adapted, aerobic) 

>80 % degraded after 7 d [6] 

 

 

 

 

Intentional Uses and Production Levels 

Uses 

 Mainly used for the production of regenerated cellulose (viscose rayon and cellophane) and carbon 

tetrachloride (via chlorination) [2,10]. 

 Minor uses include other applications such as in the rubber industry, as a flotation agent, in pesticides, and 

in other miscellaneous chemical reagents [2]. 

Production Levels 

 Registered in the EU with a volume of 100 000 to 1 000 000 tonnes per year of production or import [6]. 

 Approximately 900 000 tonnes produced globally in 1990 [2].  
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Emission Sources into the Environment 

 Mainly released into the atmosphere due to its high volatility [9]. 

 Can also occur naturally, either by bacterial processes, volcanic activity or weathering of sulfide minerals 

[9,10].CS2 can also occur naturally, either by bacterial processes, volcanic activity or weathering of 

sulphide minerals. While estimates in Canada suggest that up to 35 000 tonnes CS2 may be added to the 

Canadian environment annually from these natural sources alone, other reports state that the natural 

emissions of carbon disulphide are thought to be small compared to anthropogenic sources [9,10]. 

 

 Emission Sources 

Production Approximately 16 000 tonnes released into the environment from manufacturing 

and processing facilities in the USA in 1999 [9]. 

 

Use Can be released into the environment from viscose fibers and cellophane films 

since it is not bound to the end product [9,10]. 

Disposal Not reported 

Other sources  Estimates in Canada suggest that up to 35 000 tonnes may be added to the 

Canadian environment annually from natural sources [9,10]. 

 Other reports state that the natural emissions of carbon disulfide are small 

compared to anthropogenic sources [9,10]. 
 

 

 

 

Distribution in the Natural Environment 

Expected Distribution 

Based on the identified primary emissions of carbon disulphide to air [9], a plausible emission pattern was 

assumed to estimate the resulting distribution in the environment using the Level III fugacity model in EPI 

Suite [11]. The assumed emission pattern as well as the resulting environmental distribution from the model 

are presented in the table below.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

MTBE 100 % 0 % 0 % 100 % 0 % 0 % 0 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

Carbon disulphide <60 fish [6] 
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Measured Environmental Concentrations 

Measured concentrations for carbon disulphide have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Carbon disulphide (CS2) 

Seawater Pacific 

Ocean, 

Indian 

Ocean, 

Southern 

Ocean 

1996 NR ND ND 0% (LOD = 

0.04 nM) 

[12] 

Air (above 

river water 

surface) 

China 2006 8 0.1–14.8 µg/m3 6.4 µg/m3 100 % (LOD = 

0.048 µg/m3) 

[13] 

Air (above 

riverbank) 

China 2006 8 ND–0.71 µg/m3 0.16 µg/m3 NR (LOD = 

(0.048 µg/m3) 

[13] 

Ambient air 

(near landfills) 

Spain 2014 51 0.09–

0.44 mg/m3 

0.13 mg/m3 NR (LOD = 

0.8 pg/m3) 

[14] 

Air (rural/ 

coastal areas) 

China 2002 19 5–896 pptv 35 pptv* 100 % (LOD = 

0.5 pptv) 

[15] 

Ambient air 

(industrial 

area) 

Korea 2004/  

2005 

60 ND–2.23 ppbv 0.82 ppbv* 98 % (LOD = 

0.01 ppbv) 

[16] 

Ambient air 

(rural area) 

Senegal 2006 NR 0.1 ppbv (mean) 

 

NR NR  [17] 

Atmosphere 

(above ocean 

surface) 

Pacific 

Ocean, 

Indian 

Ocean, 

Southern 

Ocean 

1996 NR ND–13.5 pptv 5.6 pptv* NR (LOD = 

1 pptv) 

[12] 

Note: *pptv = parts per trillion volume / ppbv = parts per billion volume 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to carbon 

disulphide exist for different organisms at the in vivo level. A comprehensive but non-exhaustive set of reported 

observations is included below. 

 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 
 

Substance Organsim Observation Reference 

CS2 rat Changed sex hormone levels (plasma and/or whole body) / 

affected sex hormone secretion  

[18,19] 

CS2 rat Impaired reproduction (decreased sperm counts and activity, 

increased teratospermia)  

[18] 

CS2 mouse Loss of the early embryo (due to damaged endometrial 

cells)  

[20] 

 

In vitro level 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 
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Dithiocarbamates 

Key References: 

 A. Mayo-Perez, R.D. Harbison, Fungicides, in: Hamilt. Hardy’s Ind. Toxicol., John Wiley & Sons, Inc., 

Hoboken, New Jersey, 2015: pp. 901–916. doi:10.1002/9781118834015.ch88. 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Metam-sodium; 

Sodium 

methyldithiocarbamate 

MS 137-42-8 

 

Thiram; 

Tetramethylthiuram 

disulphide 

TM 137-26-8 

 

Ziram ZM 137-30-4 

 

Zineb ZB 12122-67-7 

 

Completed assessments as the basis for inclusion: SIN List (MS; TM; ZM; ZB), Danish Criteria (MS; TM; 

ZB) 
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Physical and Physicochemical Properties 

Property Metam-sodium Thiram Ziram Zineb 

Molecular formula C2H4NS2Na C6H12N2S4 C6H12N2S4Zn (C4H6N2S4Zn)n 

Molecular weight [g/mol] 129.2 240.4 305.8 275.8  

Physical state at 20°C solid solid solid solid 

Melting point [°C] 86.5–90.5 [1]; 

decomposes upon 

melting [2] 

155–156 [3]; 

144–146 [4] 

246 [5];  

251–252.5 [6] 

157 (decomposes) 

[7] 

Density [g/cm3] 1.44 [1] 1.3 at 25 °C [8]; 

1.36 at 20 °C [4] 

1.71 at 20 °C [6] 1.74 at 20 °C [9] 

Vapor pressure at 25°C 

[mmHg] 

4.31*10-4 [1] 1.72*10-5 [10] 7.5*10-9  

at 0 °C [11] 

<7.5*10-8  

at 20 °C [10] 

Water solubility at 25°C 

[mg/L]  

7.22*105 [12] 30 [13]; 17 [4] 1 [6] 10 [10] 

Octanol/water partition 

coefficient (log KOW) 

-2.9 [1] 1.73 [10] ;  

2.1 [4] 

1.23 [11] ;  

1.65 [6] 

1.30 [10] 

Organic carbon/water 

partition coefficient (log 

KOC) 

1.77 (MCI 

method)†, 0.73 

(Kow method)† 

2.79 (MCI 

method)†, 3.07 

(Kow method)† 

3.05 (MCI 

method)†, 2.79 

(Kow method)† 

3.13 (MCI 

method)†, 2.88 

(Kow method)† 

Air/water partition 

coefficient (log KAW) 

NR -5.13† -7.60† -8.19† 

Dissociation constant 

(pKa) 

pKa1 = 2.99, 

pKa2 = 11.06 [1] 

NR NR NR 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [16]. 

NR = not reported 
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Degradation Pathways and Kinetics 
 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not Reported 

Hydrolysis MS; TM; ZM; 

ZB 

    [1,14] 

Photolysis MS; TM; ZM  ZB   [15] 

OH-radical 

reactions 

MS; TM; ZM; 

ZB 

    [1,16] 

Biodegradation MS; TM; ZM; 

ZB 

    [1] 

 

 

Kinetics – Metam-sodium (MS) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 2 h (estimate) [16] 

Photochemical degradation Half-life = 1.6 h [1] 

Photolysis (in shallow water) Half-life = 28–44 min [14,15] 

Hydrolysis Half-life = 2–7.5 d [14] 

Biodegradation (soil) Half-life = 23 min–4 d [1] 
 

 

Kinetics – Thiram (TM) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 21 min (estimate) [16] 

Photolysis (in water) Half-life = 24–28 min [17] 

Hydrolysis Half-life = 3.5 d [1] 

Hydrolysis Half-life = 7.8 d (20 °C, pH 6.3) [18] 

Biodegradation (soil) Half-life = 1–105 d [1] 

Biodegradation (soil) Half-life = 2.6–9.9 d [19] 

Biodegradation (soil) Half-life = 4.6–7.7 d [18] 
 

 

Kinetics – Ziram (ZM) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 0.9 h (estimate) [16] 

Photolysis Half-life = 0.3 d [1] 

Hydrolysis Half-life = 0.7 d [1] 

Biodegradation (soil) Half-life = 30 d [1] 

Biodegradation (soil) Half-life = 5.7–11.4 d [20] 
 

 

Kinetics – Zineb (ZB) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 0.9 h (estimate) [16] 

Hydrolysis Half-life = 8.6 d [1] 

Hydrolysis (natural seawater) Half-life = 4 d [21] 

Biodegradation (soil) Half-life = 23 d [22] 

Biodegradation (soil) Half-life = 30 d [1] 
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Emission Sources into the Environment 

Metam-sodiumMetam-sodium 

 Emission Sources 

Production Not reported 

Use Breaks down into several volatile compounds upon application in soils [14,32,33]. 

Disposal Not reported 

Other sources Not reported 

 

Thiram 

 Emission Sources 

Production Not reported 

Use Not reported. However, based on its use as a fungicide it can be expected that it 

mostly releases to soil during use. 

Disposal Not reported 

Other sources Not reported 

 

Ziram 

 Emission Sources 

Production Not reported 

Use Not reported. However, based on its use as a fungicide it can be expected that it 

mostly releases to soil during use. 

Disposal Not reported 

Other sources Not reported 

 

Zineb 

 Emission Sources 

Production Not reported 

Use Expected to be released to surface waters due to its use in antifouling paints 

[26,27]. 

Disposal Not reported 

Other sources Not reported 
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Uses and Production Levels 

Uses 

Metam-sodium 

 Used as a broad-spectrum non-systemic soil fungicide with nematicidal, herbicidal, bactericidal, and 

insecticidal activities. 

 Decomposes rapidly in moist soil to its active form methyl isocyanate, which acts as a soil fumigant 

and is used on a large number of crops [1]. 

Thiram  

 Used as a fungicide, mainly as a broad-spectrum seed treatment for many crops [1]. 

 Also applied to foliage on grapes, vegetables, ornamentals, fruits, and used to control scab and storage 

diseases on apples, pears, etc. [1]. 

 Used in higher concentrations as a deer, rodent, bird and insect repellent [23–25]. 

 Another large use is as an accelerator and vulcanizing agent in rubber processing [25]. 

 Other uses include slime control in paper production and use as a bacteriostat in soap and antiseptic 

sprays [25]. 

Ziram 

 Used as a fungicide for fruits, nuts, vines, vegetables and ornamentals [1]. 

 Also used as a repellent against birds and rodents [1].  

Zineb 

 Used to control a number of plant diseases in different crops and approved for use in antifouling 

paints in many countries [1,26,27]. 

 Its fungicidal activity is due to its degradation products, mainly ethylenethiuram monosulfide [1]. 

 

Production Levels 

Metam-sodium 

 Annual use in agriculture in the US: 23 000–25 000 tonnes in 2007 [28]. 

 Annual use in agriculture in California, US: 5125 tonnes in 2001 [29]. 

Thiram  

 Registered in the EU with a volume of 1000–10 000 tonnes per year of production or import [4]. 

 Use in the US: 286 tonnes  in 2004 [30]. 

Ziram 

 Registered in the EU with a volume of 100–1000 tonnes per year of production or import [6]. 

 Use in the US:  862 tonnes in 2004 [31]. 

Zineb 

 No information on production or use levels was found. 
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Distribution in the Natural Environment 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for these chemicals as fungicides, a plausible emission 

pattern was assumed to estimate the resulting distribution in the environment using the Level III fugacity 

model in EPI Suite [16]. The assumed emission pattern is based on the estimated foliar interception and 

retention values [34]. The assumed emission pattern and the resulting environmental distribution from the 

model are presented in the table below for each chemical.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

Metam-S. 10 % 0 % 90 % 0 % 5 % 95 % 0 % 

Thiram 10 % 0 % 90 % 0 % 1 % 99 % 0 % 

Ziram 10 % 0 % 90 % 0 % 1 % 99 % 0 % 

Zineb 10 % 0 % 90 % 0 % 1 % 99 % 0 % 

 

 

Bioaccumulation Potential 

Thiram and zineb are reported to be not bioaccumulative [21]. 

 Bioconcentration factor (BCF) Organism Reference 

Metam-Sodium 3.2 (estimate) fish [16] 

Thiram 6.4 (estimate) fish [16] 

Ziram 3.0 (estimate) fish [16] 

Zineb 3.3 (estimate) fish [16] 
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Measured Environmental Concentrations 

 

Only few measured environmental concentrations were identified for these chemicals. A non-exhaustive set of 

the reported measurements that have been found are included below. No measurements were found for metam-

sodium. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 
 

Measured 

compartment/ 

medium 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Reference 

Thiram (TM) 

River water Spain NR 

(1996) 

1 ND ND 0 % (LOD = 

36 µg/L) 

[35] 

Groundwater 

and surface 

water 

USA NR 

(1987–

1996) 

NR ND ND 0 % (LOD = 

NR) 

[36] 

Sea sediment Republic 

of Korea 

2010/ 

2011 

39 22.3–62.2 ng/g 

dw 

39.8 ng/g dw 

(mean) 

100 % (LOD 

= NR) 

[37] 

Agriculture 

waste water 

India NR 

(1998) 

2 18.2–18.4 µg/L 18.3 µg/L 100 % (LOD 

= NR) 

[38] 

Ziram (ZM) 

Fog water 

(near treated 

crops) 

India 2001/ 

2002 

8 ND–404 µg/L 164 µg/L 75 % (LOD = 

20 µg/L) 

[39] 

Sea sediment Republic 

of Korea 

2010/ 

2011 

39 ND ND 0 % (LOD = 

NR) 

[37] 

Air over 

treated almond 

orchard (before 

application) 

USA 1994 5 ND ND 0 % (LOD = 

14– 23 ng/m3) 

[40] 

Air over 

treated almond 

orchard (after 

application) 

USA 1994 2.26 

µg/m3 

ND ND 55 % (LOD = 

14–23 ng/m3) 

[40] 

Agriculture 

waste water 

India NR 

(1998) 

1 26 µg/L 26 µg/L 100 % (LOD 

= NR) 

[38] 

Zineb (ZB) 

Fog water 

(near treated 

crops) 

India 2001/ 

2002 

8 ND–231 µg/L 140 µg/L 75 % (LOD = 

21 µg/L) 

[39] 

Sea sediment Republic 

of Korea 

2010/ 

2011 

39 1.29–107 ng/g 

dw 

37.1 ng/g dw 100 % (LOD 

= NR) 

[37] 
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Measured 

compartment/ 

medium 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Reference 

Agriculture 

waste water 

India NR 

(1998) 

2 24.8–30 µg/L 27.4 µg/L 100 % (LOD 

= NR) 

[38] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this non-reported information 

based on the general details provided in the study. 

 
 
 

Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure exist for 

different organisms and across different study levels. A comprehensive but non-exhaustive set of reported 

observations is included below. 

 

 

Population level / field studies 

  No reported studies investigating this level were identified during preparation of the fact sheet. 

 

In vivo level 
 

Substance Organism Observation Reference 

ZM rat Antithyroid effect (reduced iodine uptake and/or iodine 

protein bound required for thyroid hormone synthesis) 

[41] 

TM; MS rat Blocked ovulation (time dependent for certain 

compounds) 

[42,43] 

ZM; TM mouse Induced sperm shape abnormalities [44] 

ZM; TM chicken Antifertility effects (decreased ovarian weight, reduced 

egg production) in laying hens 

[45,46] 

ZB chicken No fertility effects in laying hens [45,46] 

TM rat Altered reproduction (ovulation delay, decreased 

fertilized oocytes, increased supernumerary sperm, 

ovulated oocyte numbers), no such effect found for 

MS 

[47,48] 

 

In vitro level 

Substance Cell line Observation Reference 

ZB hamster cells 

with human 

TPO enzymes 

Inhibition of thyroid peroxidase (TPO) enzyme leads 

to decreased thyroidal synthesis of thyroid hormones 

[49] 

ZM; TM hamster cells 

with human 

TPO enzymes 

No inhibition of thyroid peroxidase (TPO) enzyme [49] 

ZM; ZB hamster cells 

with human 

TPO enzymes 

Altered gene expression involved in thyroid signaling 

pathway (TPO iodinating activity) 

[49] 
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Methyl tert-butyl ether 

Key References: 

 European Commission Joint Research Center, tert-Butyl Methyl Ether - Summary Risk Assessment 
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Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Methyl tert-butyl ether; 

2-methoxy-2-

methylpropane 

MTBE 1634-04-4 

 

Completed assessments as the basis for inclusion: SIN List, Danish Criteria 

 

 

Physical and Physicochemical Properties 

Property MTBE 

Molecular formula C5H12O 

Molecular weight [g/mol] 88.15 

Physical state at 20°C liquid 

Melting point [°C] -108.6 [1] 

Density [g/cm3] 0.7353 [1] 

Vapor pressure at 25°C [mmHg] 250 [2] 

Water solubility at 25°C [mg/L]  4.8*104 [3] 

Octanol/water partition coefficient (log KOW) 1.06 [4] 

Organic carbon/water partition coefficient (log KOC) 1.06 (MCI method)†, 1.35 (Kow method)† 

Air/water partition coefficient (log KAW) -1.62† 

Dissociation constant (pKa) Not applicable 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [9]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanisms 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis   X    

Photolysis   X    

OH-radical 

reactions 

X    Atmosphere [4] 

Biodegradation  X  WWTP Soil [4] 
 

 

Kinetics – MTBE 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 3–6 d [4] 

Biodegradation (activated sludge, 

domestic, non-adapted, aerobic) 

0 % degraded after 28 d [4] 

Biodegradation (soil, aerobic) Half-life = 80–102 d [4] 

Biodegradation (soil, anaerobic) 0 % degraded after 250 d [5] 
 

 

 

 

 

Intentional Uses and Production Levels 

Uses 

 Mainly (98 % of total quantity produced) used as an additive in petrol, where it acts as an octane enhancer 

[6,7]. 

 To a lesser extent also used in the production of high purity isobutylene, as reaction solvent, extractant, 

and chromatographic eluent [6,7]. 

 

Production Levels 

 Currently registered in the EU with 1 000 000–10 000 000 tonnes per year of production or import [4].  

 In 1997, the production volume in the EU was 3 000 000 tonnes [6]. 

 Since 2001 the production and use has been declining due to legislative efforts in the US to phase out 

MTBE and replace it with ethanol [8]. 
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Emission Sources into the Environment 

 

 Environmental emissions result mainly from storage, distribution and use of petrol [6]. 

 Other uses contribute only negligibly to the total emissions, partly because of the low amounts used and 

partly because of the uses themselves, where fewer amounts are released into the environment [6]. 

 Emission Sources 

Production Not reported 

Use  Automobile exhaust gases are a major source of emissions in ambient air [6]. 

 Releases to the aquatic environment from disposal of tank bottom water either 

directly or via WWTPs to surface water (during storage of petrol in storage 

tanks, water is condensed at the bottom of the tanks, and due to the high water 

solubility of MTBE this water may have a high concentration of MTBE) [6]. 

Disposal Not reported 

Other sources Not reported 
 

 

 

Distribution in the Natural Environment 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for MTBE as a fuel additive, a plausible emission pattern 

was assumed to estimate the resulting partitioning in the environment using the Level III fugacity model in 

EPI Suite [9]. The assumed emission pattern as well as the resulting environmental distribution from the 

model are presented in the table below.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

MTBE 50 % 50 % 0 % 26 % 74 % 0 % 0 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

MTBE 1.5 fish [6] 
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Measured Environmental Concentrations 

Measured concentrations for MTBE have been reported in numerous environmental media. A non-exhaustive 

set of reported concentrations is included below, and further measurements can be found in published literature 

including in the following: 

 

- C. Sablayrolles, A. Breton, C. Vialle, C. Vignoles, M. Montréjaud-Vignoles, Priority organic pollutants 

in the urban water cycle (Toulouse, France), Water Sci. Technol. 64 (2011) 541. 

doi:10.2166/wst.2011.580. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

MTBE 

River water Japan 2002/ 

2003 

72 ND–0.46 µg/L NR 68 % (LOD = 

0.003 µg/L) 

[10] 

Ground water Korea NR 

(2009) 

110 ND–0.45 µg/L NR 57.3 % (LOD 

= 0.01 µg/L) 

[11] 

Ground water France 2006-

2009 

4 <LOQ <LOQ 0 % (LOQ = 

1 µg/L) 

[12] 

Ground water Japan 2002/ 

2003 

66 ND–5.9 µg/L NR 33 % (LOD = 

0.003 µg/L) 

[10] 

Ground water Denmark 1993-

2001 

218 ND–1.4 µg/L ND 0.5 % (LOD = 

NR) 

[13] 

Ground water USA 1993/ 

1994 

211 ND–

23 000 µg/L 

NR 26.5 % (LOD 

= 0.2 µg/L) 

[14] 

Rainwater France 2006-

2009 

4 <LOQ <LOQ 0 % (LOQ = 

1 µg/L) 

[12] 

Run-off water France 2006-

2009 

10 <LOQ–1.9 µg/L <LOQ NR (LOQ = 

1 µg/L) 

[12] 

Estuary water UK 2002 17 ND–194 ng/L 16 ng/L 88 % (LOD = 

6 ng/L) 

[15] 

Roof collected 

water 

France 2006-

2009 

4 <LOQ <LOQ 0 % (LOQ = 

1 µg/L) 

[12] 

Raw 

wastewater 

France 2006-

2009 

8 <LOQ <LOQ 0 % (LOQ = 

1 µg/L) 

[12] 

Treated 

wastewater 

France 2006-

2009 

8 <LOQ <LOQ 0 % (LOQ = 

1 µg/L) 

[12] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this non-reported information 

based on the general details provided in the study. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to MTBE exist 

for different organisms and across different study levels. A comprehensive but non-exhaustive set of reported 

observations is included below. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

 

Substance Organism Observation Reference 

MTBE zebrafish, fathead 

minnow 

No effect on reproduction (fecundity) observed [16] 

MTBE rat Changed sex- and thyroid hormone levels (in serum)  [17,18] 

MTBE rat Enzyme induction involved in testosterone metabolism  [19] 

MTBE rat Impaired reproduction (altered sperm count and quality)  [18] 

MTBE rat No effects on reproduction (altered oocyte count and 

fragility) found 

[20] 

 

In vitro level 

Substance Cell line Observation Reference 

MTBE rat Altered spermatogenic cell morphology and decreased 

number of spermatogenic cells  

[21] 

MTBE rat Altered testosterone production  [22] 

MTBE rat prostate,  

human adrenal 

corticocarcinoma  

No androgen receptor binding affinity observed [23] 

MTBE rat prostate,  

human adrenal 

corticocarcinoma  

No altered production of testosterone and estradiol 

(steroidogenic pathways) observed  

[23] 
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Parabens 

Key References: 

 D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens. From environmental studies to human health., 

Environ. Int. 67 (2014) 27–42. doi:10.1016/j.envint.2014.02.007. 
 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Methylparaben MP 99-76-3 

 
 

Ethylparaben EP 120-47-8 

 
 

Propylparaben PP 94-13-3 

 
 

Butylparaben  BP 94-26-8 

 
 

Completed assessments as the basis for inclusion: SIN List (PP; BP), Danish Criteria (MP; EP; PP; BP) 
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Physical and Physicochemical Properties 

Property MP EP PP BP 

Molecular formula C8H8O3 C9H10O3 C10H12O3 C11H14O3 

Molecular weight 

[g/mol] 

152.1  166.2 180.2 194.2 

Physical state at 20°C solid solid solid solid 

Melting point [°C] 131 [1] 116 [1] 96 [1] 68 [2] 

Density [g/cm3] NR NR 1.06 [3] NR 

Vapor pressure at 25°C 

[mmHg] † 

8.55*10-4 † 9.29*10-5 † 3.07*10-4 † 2.51*10-4 † 

Water solubility at 25°C 

[mg/L] † 

2 500 [4] 1 894† 500 [5] 207 [5] 

Octanol/water partition 

coefficient (log KOW) 

1.96 [6] 2.47 [6] 3.04 [6] 3.57 [6] 

Organic carbon/water 

partition coefficient (log 

KOC) † 

1.94 (MCI 

method)†; 2.11 

(Kow method)† 

2.07 to 2.32 [7] 2.46 (MCI 

method)†; 2.71 

(Kow method) † 

2.72 (MCI 

method)†; 3.00 

(Kow method)† 

Air/water partition 

coefficient (log KAW) † 

 -6.83 † -6.71 † -6.58 † -6.46 † 

Dissociation constant 

(pKa) 

8.4 [8] NR NR 8.47 [9] 

 

  

                                                 
† Estimated value using models in EPI Suite v4.11. [29] 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  MP; EP; PP; 

BP (all 

negligible) 

   [10] 

Photolysis  MP; EP; PP; 

BP (all 

negligible) 

   [11–13] 

OH-radical 

reactions 

MP; EP; PP; 

BP 

   Natural waters [14] 

Biodegradation MP; EP; PP; 

BP 

  WWTP  [15–17] 

 

 

Kinetics – Methylparaben (MP) 

Mechanism Reported values Reference 

Biodegradation (activated sludge) 99 % degraded within 5 d  

Half-life = ≤3 d  

[16,17] 

 

 

Kinetics – Ethylparaben (EP) 

Mechanism Reported values Reference 

Biodegradation (activated sludge) 99 % degraded within 5 d  

Half-life = ≤3  

[16,17] 

 

 

Kinetics – Propylparaben (PP) 

Mechanism Reported values Reference 

Biodegradation (activated sludge) 99 % degraded within 5 d  

Half-life = ≤3 d  

[16,17] 

 

 

Kinetics – Butylparaben (BP) 

Mechanism Reported values Reference 

Photolysis Half-life = 410 h in air  [11] 

Biodegradation (activated sludge) 99 % degraded within 5 d  

Half-life = ≤3 d 

[16,17] 
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Intentional Uses and Production Levels 

Uses 

 Widely used as preservatives in cosmetics, pharmaceuticals, food commodities, and industrial products 

[18]. 

 First used in 1920s as preservatives in drug products [19]. Used as preservatives in more than 60 % of 

personal care products in 2006 [20]. Other estimates from 2005 place MP and/or PP as present in 48 % of 

cosmetics and personal care products and BP in 13 % [21]. 

 Approved by the US Food and Drug Administration for use in foods as a preservative following specific 

regulations; MP and PP generally recognized as safe (GRAS) for use in foods when adhering to the use 

limits of 0.1 % [10]. 

 Following the studies published in the early 2000s suggesting PB to have estrogenic activity and potential 

to be a carcinogen, some manufacturers began replacing parabens with other preservatives. Content of 

parabens in cosmetics significantly decreased between 1981 and 1995 (from upwards of 25 % down to 

<1 %) [18,22].  

 

Production Levels 

Methylparaben 

 Registered for production or import in the EU with a range of 1000–10 000 tonnes per year [23].  

 In the US in 2011: had active manufacturers and/or importers; however, the actual production/import 

levels are marked as confidential business information [26]. 

 

Ethylparaben 

 Registered for production or import in the EU with a range of 100–1000 tonnes per year [24,25]. 

 

Propylparaben 

 Registered for production or import in the EU with a range of 100–1000 tonnes per year [24,25]. 

 In the US in 2011: had active manufacturers and/or importers; however, the actual production/import 

levels are marked as confidential business information [26]. 

 

Butylparaben 

 No information on production volumes found. 

 Not registered for production or import in the EU. 
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Emission Sources into the Environment 

 

 Use of parabens worldwide in products leads to their ubiquitous occurrence in the environment [18]. 

 Releases often end up in surface waters mainly through wastewater treatment plant effluents, runoffs, and 

deposition of particles from the air [18]. 

Releases From: 

Production – No information found on emissions during the production of parabens. It is therefore not clear 

whether emissions occur or not. 

Use – Parabens can be released from products in which they are present. This is apparent from their 

widespread presence in wastewater treatment plants [18] (e.g. washing off cosmetics, etc.).  

Disposal – The observed average efficiency of paraben removal from wastewater treatment plants is high 

(96.1 to 99.9 %) [17,27]; however, they have still been detected in most WWTP effluents at concentrations up 

to 4000 ng/L [18]. Effluents from wastewater treatment processes considered as major point sources into the 

environment (0–1.6 % of the influent mass released in final effluents [28]). 

 

 

Distribution in the Abiotic Environment and Biota 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for these chemicals as additives in personal care products, a 

plausible emission pattern was assumed to estimate the resulting distribution in the environment using the 

Level III fugacity model in EPI Suite [29]. The assumed emission pattern and the resulting environmental 

distribution from the model are presented in the table below for each chemical.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

MP 0 % 90 % 10 % 0 % 77 % 23 % 0 % 

EP 0 % 90 % 10 % 0 % 76 % 24 % 0 % 

PP 0 % 90 % 10 % 0 % 75 % 24 % 1 % 

BP 0 % 90 % 10 % 0 % 77 % 22 % 1 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

Methylparaben 9 (estimated)† fish [29] 

Ethylparaben 20 (estimated)† fish [29] 

Propylparaben 47 (estimated)† fish [29] 

Butylparaben 105 (estimated)† fish [29] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in published 

literature including in the following:  

 

- Błędzka, D., Gromadzińska, J., Wąsowicz, W., 2014. Parabens. From environmental studies to human 

health. Environ. Int. 67, 27–42. doi:10.1016/j.envint.2014.02.007 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported.  

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD or LOQ 

Refer-

ence 

Methylparaben (MP) 

River water Australia 2014 32 ND–

12 510 ng/L 

2810 ng/L 50 % (LOD = 1000 

ng/L) 

[30] 

River water 

(low-flow) 

China 2005 8 NQ–1062 ng/L 82 ng/L 75 % (LOD = 0.5 

ng/L) 

[31] 

River water 

(high-flow) 

China 2005 10 NQ–213 ng/L 12 ng/L 90 % (LOD = 0.5 

ng/L) 

[31] 

River water Spain NR (2011) 9 ND–42 ng/L NR NR (LOD = 

0.3 ng/L) 

[32] 

Storm water Australia 2014 34 ND–

13 780 ng/L 

6570 ng/L 82 % (LOD = 1000 

ng/L) 

[30] 

Sediment Spain NR (2008) 2 0.84–6.35 ng/g 1.8 ng/g 100 % (LOQ = 

0.49 ng/g) 

[33] 

Sediment 

(high-flow) 

China 2013 23 1.82–15.1 ng/g 4.73 ng/g 100 % (LOD = 

0.01 ng/g) 

[34] 

Sediment 

(low-flow) 

China 2013 23 1.43–11.1 ng/g 4.14 ng/g 100 % (LOD = 

0.01 ng/g) 

[34] 

Ethylparaben (EP) 

River water Australia 2014 32 ND– 

35 170 ng/L 

5260 ng/L 94 % (LOD = 2000 

ng/L) 

[30] 

Storm water Australia 2014 34 ND– 

305 550 ng/L 

5155 ng/L 94 % (LOD = 2000 

ng/L) 

[30] 

River water Spain NR (2011) 9 ND–1.1 ng/L NR NR (LOD = 

0.17 ng/L) 

[32] 

Sediment Spain NR (2008) 2 0.54–5.10 ng/g 0.82 ng/g 100 % (LOQ = 

0.49 ng/g) 

[33] 

Sediment 

(high-flow) 

China 2013 23 ND–0.63 ng/g 0.14 ng/g 96 % (LOD = 0.01 

ng/g) 

[34] 

Sediment 

(low-flow) 

China 2013 23 0.13–0.32 ng/g 0.23 ng/g 100 % (LOD = 

0.01 ng/g) 

[34] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD or LOQ 

Refer-

ence 

Propylparaben (PP) 

River water Australia 2014 32 ND–8290 ng/L 2870 ng/L 81 % (LOD = 1000 

ng/L) 

[30] 

Storm water Australia 2014 34 ND–6220 ng/L 2790 ng/L 79 % (LOD = 1000 

ng/L) 

[30] 

River water 

(low-flow) 

China 2005 8 8–2142 ng/L 631 ng/L 100 % (LOD = 0.1 

ng/L) 

[31] 

River water 

(high-flow) 

China 2005 10 NQ–480 ng/L 34 ng/L 90 % (LOD = 0.1 

ng/L) 

[31] 

River water Spain NR (2011) 9 ND–2.5 ng/L NR NR (LOD = 

0.2 ng/L) 

[32] 

Sediment Spain NR (2008) 3 0.59–4.03 ng/g 1.47 ng/g 100 % (LOQ = 

0.28 ng/g) 

[33] 

Sediment 

(high-flow) 

China 2013 23 ND–0.19 ng/g 0.06 ng/g 65 % (LOD = 0.01 

ng/g) 

[34] 

Sediment 

(low-flow) 

China 2013 23 0.2–2.40 ng/g 0.58 ng/g 100 % (LOD = 

0.01 ng/g) 

[34] 

Butylparaben (BP) 

River water Australia 2014 32 ND–8470 ng/L 4335 ng/L 94 % (LOD = 1000 

ng/L) 

[30] 

Storm water Australia 2014 34 ND–5530 ng/L 4375 ng/L 97 % (LOD = 1000 

ng/L) 

[30] 

River water 

(low-flow) 

China 2005 8 ND ND 0 % (LOD = 

0.1 ng/L) 

[31] 

River water 

(high-flow) 

China 2005 10 ND ND 0 % (LOD = 

0.1 ng/L) 

[31] 

River water Spain NR (2011) 9 ND NR 0 % (LOD = 0.03 

ng/L) 

[32] 

Sediment Spain NR (2008) 3 0.28–0.71 ng/g 0.39 ng/g 100 % (LOQ = 

0.21 ng/g) 

[33] 

Sediment 

(high-flow) 

China 2013 23 ND ND 0 % (LOD = 0.01 

ng/g) 

[34] 

Sediment 

(low-flow) 

China 2013 23 ND ND 0 % (LOD = 0.01 

ng/g) 

[34] 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to parabens 

exist for different organisms and across different study levels. A comprehensive but non-exhaustive set of 

reported observations is included below. 
 

 
Population level / Field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

PP zebrafish Anti-estrogenicity [35] 

MP; PP  rainbow trout, 

zebrafish and 

medaka 

Increased vitellogenin* level in males (feminization) [35–37] 

EP; PP; 

BP 

rainbow trout Impaired reproduction (decreased egg production) [38] 

PP zebrafish Altered sex ratio (skewed to females)  [39] 
 

 

In vitro level 

Substance Cell line Observation Reference 

MP medaka Vitellogenin* mRNA or protein expression [37] 

MP zebrafish Altered gene transcription – anti-estrogenicity  [40] 

 

 

Notes:  
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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Other Phenol Derivatives 

Key References: 

 Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Nitrophenols, 

1992. https://www.atsdr.cdc.gov/toxprofiles/tp50.pdf (accessed May 18, 2017). 

 Organisation for Economic Co-operation and Development, 2,4,6-Tribromophenol - SIDS Initial 

Assessment Report, 2003. http://www.inchem.org/documents/sids/sids/118796.pdf (accessed May 24, 

2017). 

K.W. Schmiedel, D. Decker, Resorcinol, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH 

& Co. KGaA, Weinheim, Germany, 2011: pp. 245–260. doi:10.1002/14356007.a23_111.pub2. 

 

 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

4-Nitrophenol 4NiP 100-02-7 

 

2,4,6-Tribromophenol TBP; 

Tribromophenol 

118-79-6 

 

Resorcinol; 

3-Hydroxyphenol; 

1,3-Dihydroxybenzene; 

1,3-Benzenediol 

RS 108-46-3 

 

Completed assessments as the basis for inclusion: SIN List (4NiP; TBP; RS), Danish Criteria (4NiP; RS) 
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Physical and Physicochemical Properties 

Property 4NiP TBP Resorcinol 

Molecular formula C6H5NO3 C6H3Br3O C6H6O2 

Molecular weight [g/mol] 139.1 330.8 110.1 

Physical state at 20°C solid solid solid 

Melting point [°C] 113–114 [1] 94–96 [1]; 95.5 [2] 109.8 [3] 

Density [g/cm3] 1.479 [2] 2.55 [4] 1.278 [3] 

Vapor pressure at 25°C [mmHg] 9.79*10-5 at 20 °C [5] 3.15*10-4 [2] 4.89*10-4 [6] 

Water solubility at 25°C [mg/L]  15.6 [7] 70 at 15 °C [8] 7.17*105 [7];  

1.41*106 [9] 

Octanol/water partition 

coefficient (log KOW) 

1.91 (QSAR estimate) 

[10] 

4.13 (QSAR estimate) 

[10] 

0.80 (QSAR estimate) 

[10] 

Organic carbon/water partition 

coefficient (log KOC) 

2.46 (MCI method)†, 

2.37 (Kow method)† 

2.91 (MCI method)†, 

3.38 (Kow method)† 

2.38 (MCI method)†, 

1.70 (Kow method)† 

Air/water partition coefficient 

(log KAW) 

-7.77† -5.84† -8.39† 

Dissociation constant (pKa) 7.15 [11]; 7.08 [5] 6.80 [11] pKa1 = 9.30,  

pKa2 = 11.06 [11]; 

pKa1 = 9.4, 

pKa2 = 11.4 [9] 

 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [24]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  TBP; RS 4NiP   [12,13] 

Photolysis 4NiP; TBP; RS   In aqueous 

solution: pH ≥
9  

Atmosphere [13–15] 

OH-radical 

reactions 

4NiP  TBP; RS  Atmosphere [14] 

Biodegradation 4NiP; TBP; RS   WWTP Soil [9,13,16–

20] 
 

 

Kinetics – 4-Nitrophenol (4NiP) 

Mechanism Reported values Reference 

Photolysis Half-life = 1.3 d (calculated as sunny summer day 

equivalents) 

[14] 

OH-radical reactions Half-life = 2.5 h (calculated as sunny summer day 

equivalents) 

[14] 

Biodegradation (topsoil, 10°C, 15% 

water, aerobic) 

Half-life = 0.7–1.2 d  [17] 

Biodegradation (topsoil, 10°C, 3% water, 

aerobic) 

Half-life = 1.2 d [17] 

Biodegradation (topsoil, 10°C, 15% 

water, anaerobic) 

Half-life = 14 d [17] 

Biodegradation (subsoil, 10°C, 

anaerobic) 

Half-life = 40 d [17] 

Biodegradation (soil; 10 µg 4NiP /g soil) Mineralization rate constant = 0.152 mg/(L*d) [21] 

Biodegradation (soil; 100 µg 4NiP /g 

soil) 

Mineralization rate constant = 0.75 mg/(L*d) [21] 

Biodegradation (soil) Depletion of 30–40 % of 4NiP after one month [22] 

Biodegradation (sterile river water with 

river water biofilms) 

Half-life = ND–5.63 days (upstream of WWTP);  

8.2–16.1 d (WWTP effluent); 

ND–5.7 d (downstream of WWTP) 

[23] 

 

 

Kinetics – 2,4,6-Tribromophenol (TBP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 22.5 d (estimated)† [24] 

Photolysis (simulated sunlight) Half-lives = 110–116 (river water), 144 min (seawater), 

223 min (ultrapure water) 

[25] 

 

 

Kinetics – Resorcinol (RS) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 0.6 h (estimated)† [24] 

Biodegradation (activated sludge, non-

adapted, aerobic) 

66.7 % degraded after 14 d [12] 

Biodegradation (activated sludge, 

adapted, aerobic) 

97 % degraded after 4 d [12] 
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Intentional Uses and Production Levels 

Uses 

4-Nitrophenol 

 Registered in the EU as an intermediate chemical only and in unreported quantities [26].  

 Used in the production of pharmaceuticals, dyes, insecticides and herbicides [27,28]. 

 

Tribromophenol 

 Used as a wood preservative and flame retardant [29]. 

 Registered in the EU as being used in polymers for the manufacture of plastic products [13]. 

 

Resorcinol 

 Used as an industrial intermediate. The primary use (>50 %) is in the production of reinforced rubber 

products (e.g. tires, conveyor belts), followed by (circa 25 %) high-quality wood adhesives (e.g. for the 

manufacture of laminated wooden beams). Other uses include production of dyes, pharmaceuticals, and 

light stabilizers. [9] 

 

Production Levels 

4-Nitrophenol 

 No recent production volumes found [26].  

 Consumption and export in the US: about 10 000 tonnes in 1987 [30]. 

 

Tribromophenol 

 Global annual production volume: approximately 9500 tonnes in 2001 [31]. 

 Annual production volume in Japan: approximately 2500 tonnes [31]. 

 Registered in the EU with 0–10 tonnes per year of production or import [13]. 

 

Resorcinol 

 Global annual production capacity: approximately 50 000 tonnes in 2010 [9]. 

 Currently registered in the EU with 10 000–100 000 tonnes per year of production or import [12].  
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Emission Sources into the Environment 

4-Nitrophenol 

 Emission Sources 

Production Not reported 

Use  Used as an intermediate chemical only [26]. 

 Likely being released into the environment through its industrial use [26]. 

Disposal Incineration as waste from chemical production sites may lead to release of small 

quantities into the atmosphere [30]. 

Other sources  Released as a secondary pollutant by phenol nitration in the atmosphere (in 

both the liquid and gas phases) [14,32] and in surface waters [33].  

 Also released by hydrolysis of pesticides (e.g. parathion) [34]. 

 Released into the atmosphere to a smaller extent as primary pollutant from 

gasoline and diesel engines [35]. Car exhausts are the main source of 

atmospheric concentrations [36]. 

 

Tribromophenol 

 Emission Sources 

Production Not reported 

Use Emissions when used as a flame retardant or wood preservative [31,37]. 

Disposal Not reported 

Other sources  Bromination of organic substrates by marine algae [38]. 

 Produced by a class of worms (polychaete) [39]. 

 Formed in water treatment systems by chlorination of water containing bromide 

ions [37] for production of drinking water [40], and cooling water for nuclear 

power plants [41,42].  

 May also be formed as a by-product of tetrabromobisphenol A, which is used 

as a flame retardant [43]. 

 

Resorcinol 

 Emission Sources 

Production  Approximately 22.4 tonnes (estimated) annually and globally released during 

production in the early 2000s [15].  

 During the production of tires in Europe the early 2000s, approximately 5 

tonnes (estimated) annually released to WWTPs and approximately 1.5 tonnes 

to the atmosphere [44]. 

 Production of dyes and hair dyes releases 3 and 1.5 tonnes (estimated), 

respectively, to WWTPs per year in Europe in the early 2000s [44]. 

Use Approximately 170 tonnes per year released to WWTPs during use of hair dyes and 

pharmaceutical products (e.g. topical ointments) in Europe in the early 2000s [44]. 

Disposal Expected to occur with landfilling of discarded pharmaceutical products [44]. 

Other sources Not reported 
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Distribution in the Natural Environment 

Estimated Environmental Distribution 

Inadequate data regarding the emission patterns for these chemicals across their wide range of uses have been 

identified, hindering a representative understanding of their environmental distribution. Additional efforts are 

needed to better understand the emission patterns, and environmental models (e.g., the Level III fugacity 

model in EPI Suite [24]) could then be used to estimate the distribution of these chemicals across the different 

environmental compartments. 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

4-Nitrophenol 

57 fish (golden orfe) [45] 

80 fish (fathead minnow) [46] 

11 algae (Chlorella fusca) [45] 

Tribromophenol 513 fish (zebrafish) [47] 

Resorcinol 3 (estimate)† fish [24] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concen-

tration range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

4-Nitrophenol (4NiP) 

Surface water Germany 1999 30 ND–0.60 µg/L NQ (LOQ = 

0.04 µg/L) 

40 % (LOD = 

0.01 µg/L) 

[48] 

Lake water Ant-arctica 1998/ 

1999 

9 11–70 ng/L 28 ng/L 100 %  [49] 

Ground water 

(low depth, on site 

of former 

ammunition plant) 

Germany NR 

(1995) 

1 15 µg/L 15 µg/L 100 %  [50] 

Ground water 

(high depth, on 

site of former 

ammunition plant) 

Germany NR 

(1999) 

1 88 µg/L 88 µg/L 100 %  [50] 

Rain water France 1991 8 1.11–757 

µg/L 

1.69 µg/L 100 %  [51] 

Rain water Germany 1989/ 

1999 

20 1.2–19.5 µg/L 5.7 µg/L 

(mean) 

100 %  [52] 

Cloud water Germany 1994 6 6.4–46 µg/L 21 µg/L 100 %  [53] 

Cloud water United 

Kingdom 

1993 6 0.05–

4.94 µg/L 

2.03 µg/L 100 %  [36] 

Cloud water France 1991 7 1.66–

16.27 µg/L 

3.76 µg/L 100 %  [51] 

Mountain fog Germany 1988 10 8.1–40.2 µg/L 17.7 µg/L 100 %  [54] 

Urban radiation 

fog 

Germany 1988 4 13.9–

23.0 µg/L 

20.2 µg/L 100 %  [54] 

Lake suspended 

matter 

Antarctica 1998/ 

1999 

3 ND–

42 735 ng/kg 

ND 33 % (LOD = 

NR) 

[49] 

Snow Antarctica 1996/ 

1997 

6 8–13 ng/L 10 ng/L 67 % (LOD = 

5 ng/L) 

[49] 

Snow Russia 2011 7 0.22–

1.65 µg/L 

0.27 µg/L 100 %  [55] 

Soil (surburban 

area) 

China NR 

(2011) 

 

1 800 mg/kg 800 mg/kg 100 %  [56] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concen-

tration range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Air particle phase Japan 1982 5 5.1–42 µg/g 8 µg/g 100 %  [35] 

Air (mountain 

summit, liquid 

and gas phases) 

United 

Kingdom 

1993 10 1.23–

39.0 ng/m3 

13.42 ng/m3 100 %  [36] 

Urban air Italy 1998 1 0.3 µg/m3 0.3 µg/m3 100 %  [57] 

2,4,6-Tribromophenol (TBP) 

River water Republic 

of Korea 

2006 13 ND–3.34 ng/L 0.685 ng/L 69 % (LOD = 

0.21 ng/L) 

[41] 

River water China 2014 1 ND ND 0 % (LOD = 

2.8 ng/L) 

[58] 

River water China 2014 15 ND–810 pg/L 250 pg/L 80 % (LOD = 

30 pg/L) 

[43] 

River water (e-

waste recycling 

area, control site 

negative) 

China 2013 14 ND–320 ng/L 110 ng/L 

(mean) 

NR (LOD = 

NR) 

[59] 

Seawater China 2014 2 26.2–

68.4 ng/L 

47.3 ng/L 100 %  [58] 

Seawater (close to 

nuclear power 

plant, surface) 

Republic 

of Korea 

2006 

(Spring) 

15 1.11–

16.2 ng/L 

2.87 ng/L 87 % (LOD = 

0.21 ng/L) 

[41] 

Seawater (close to 

nuclear power 

plant, bottom) 

Republic 

of Korea 

2006 

(Spring) 

15 1.73–

6.14 ng/L 

2.96 ng/L 80 % (LOD = 

0.21 ng/L) 

[41] 

Seawater (close to 

nuclear power 

plant, surface) 

Republic 

of Korea 

2006 

(Summer) 

15 0.378 - 

7.23 ng/L 

0.655 ng/L 100 %  [41] 

Seawater (close to 

nuclear power 

plant, bottom) 

Republic 

of Korea 

2006 

(Summer) 

15 0.718 - 

3.42 ng/L 

1.58 ng/L 100 %  [41] 

Seawater ( close 

to nuclear power 

plant, surface) 

Republic 

of Korea 

2006 

(Fall) 

15 0.793 - 

20.2 ng/L 

14.0 ng/L 20 %  [41] 

Seawater ( close 

to nuclear power 

plant, bottom) 

Republic 

of Korea 

2006 

(Fall) 

15 0.810– 

2.78 ng/L 

1.17 ng/L 100 %  [41] 

Seawater (close to 

nuclear power 

plant, surface) 

Republic 

of Korea 

2007 

(Winter) 

15 0.515–

3.50 ng/L 

1.51 ng/L 80 % (LOD = 

0.21 ng/L) 

[41] 

Seawater (close to 

nuclear power 

plant, bottom) 

Republic 

of Korea 

2007 

(Winter) 

15 0.580– 

2.64 ng/L 

1.45 ng/L 73 % (LOD = 

0.21 ng/L) 

[41] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concen-

tration range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Snow China NR 

(2014) 

1 ND ND 0 % (LOD = 

NR) 

[60] 

River sediment China 2014 13 ND–410 pg/g 

dw 

20 pg/g dw 54 % (LOD = 

3 pg/g dw) 

[43] 

River sediment Republic 

of Korea 

2006 4 ND–1.10 ng/g 

dw 

0.757 ng/g 

dw 

75 % (LOD = 

0.11 ng/g dw) 

[41] 

River sediment (e-

waste recycling 

area, control site 

negative) 

China 2013 14 ND–47 ng/g 21 ng/g 

(mean) 

NR (LOD = 

NR) 

[59] 

Marine sediment 

(close to nuclear 

power plant) 

Republic 

of Korea 

2006 

(Spring) 

15 1.56–

6.31 ng/g dw 

3.94 ng/g dw 100 %  [41] 

Marine sediment 

(close to nuclear 

power plant)  

Republic 

of Korea 

2006 

(Summer) 

15 1.80–

12.3 ng/g dw 

2.90 ng/g dw 100 %  [41] 

Marine sediment 

(close to nuclear 

power plant)  

Republic 

of Korea 

2006 

(Fall) 

15 1.25–

3.57 ng/g dw 

2.55 ng/g dw 100 %  [41] 

Marine sediment 

(close to nuclear 

power plant) 

Republic 

of Korea 

2007 

(Winter) 

15 0.560–

3.78 ng/g dw 

2.38 ng/g dw 100 %  [41] 

Air Norway 2003 49 ND - >LOD NR 35 % (LOD = 

NR) 

[61] 

Resorcinol (RS) 

River water Japan 2010/2011 24 1.2–1150 ng/L 20.8 ng/L 100 %  [62] 

River water China NR 

(2005) 

5 0.26 µg/L 

(mean) 

NR NR [63] 

Lake water (near 

WWTP) 

Denmark 2006 2 ND ND 0 % (LOD = 

0.0056 µg/L) 

[64] 

Seawater 

(background) 

Denmark 2006 1 ND ND 0 % (LOD = 

0.0056 µg/L) 

[64] 

Surface water 

(near pulp 

industry) 

Sweden 2006 3 ND ND 0 % (LOD = 

0.0056 µg/L) 

[64] 

Seawater (near 

WWTP) 

Denmark 2005 2 ND ND 0 % (LOD = 

0.0056 µg/L) 

[64] 

Seawater (harbor) Faroe 

Islands 

2005 1 0.0857 µg/L 0.0857 µg/L 100 %  [64] 

Surface water 

(near industrial 

site) 

Norway 2005 2 ND–

0.354 µg/L 

NR 50 % (LOD = 

0.1 µg/L) 

[64] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concen-

tration range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Coastal seawater 

(near landfill) 

Iceland 2006 1 0.0018 µg/L 0.0018 µg/L 100 %  [64] 

Seawater (near 

WWTP) 

Norway 2005 2 ND ND 0 % (LOD = 

0.1 µg/L) 

[64] 

Runoff water 

(near factory hall) 

Faroe 

Islands 

2005 1 ND ND 0 % (LOD = 

0.0056 µg/L) 

[64] 

Air (near pulp 

industry) 

Sweden 2006 3 ND ND 0 % (LOD = 

0.1 ng/m3) 

[64] 

River sediment Finland 2005 1 ND ND 0 % (LOD = 1–

10 ng/g dw) 

[64] 

Lake sediment Norway 2005 2 ND–17 ng/g 

dw 

NR 50 % (LOD = 

2 ng/g dw) 

[64] 

Lake sediment Sweden 2006 3 ND ND 0 % (LOD = 2– 

4 ng/g dw) 

[64] 

Lake sediment Finland 2005 1 ND ND 0 % (LOD = 1–

10 ng/g dw) 

[64] 

Lake sediment 

(near WWTP) 

Denmark 2005 2 ND–1.0 ng/g 

dw 

NR 50 % (LOD = 

1–10 ng/g dw) 

[64] 

Marine sediment Norway 2005 1 ND ND 0 % (LOD = 1–

10 ng/g dw) 

[64] 

Marine sediment 

(near WWTP) 

Denmark 2005 2 ND ND 0 % (LOD = 

2 ng/g dw) 

[64] 

WWTP effluent Faroe 

Islands 

2005 1 ND ND 0 % (LOD = 

0.1 µg/L) 

[64] 

WWTP effluent Denmark 2005/ 

2006 

2 ND–0.24 µg/L NR 50 % (LOD = 

0.0054 µg/L) 

[64] 

WWTP effluent Norway 2006 3 ND ND 0 % (LOD = 

0.1 µg/L) 

[64] 

WWTP effluent Sweden 2005 9 ND–

0.008 µg/L 

ND 22 % (LOD = 

0.0055–0.0057 

µg/L) 

[64] 

WWTP effluent Finland 2005 6 ND–

0.011 µg/L 

ND 17 % (LOD = 

0.0056–0.0058 

µg/L) 

[64] 

Pulp and paper 

industry effluent 

Finland 2005 2 ND ND 0 % (LOD = 

0.0054–0.0057 

µg/L) 

[64] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this not reported information based 

on the general details provided in the study. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to 

benzophenones exists for different organisms and across different study levels. A comprehensive but non-

exhaustive set of reported observations is included below, and further observations can be found in published 

literature reviews including in the following: 

 

- B.S. Lynch, E.S. Delzell, D.H. Bechtel, Toxicology Review and Risk Assessment of Resorcinol: 

Thyroid Effects, Regul. Toxicol. Pharmacol. 36 (2002) 198–210. doi:10.1006/rtph.2002.1585. 

 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

 

Substance Organism Observation Reference 

TBP; 4NiP zebrafish, rat Changed plasma steroid levels  [65–67] 

RS rat Disrupted iodine uptake (iodine is crucial for thyroid 

hormone synthesis) 

[68] 

RS zebrafish Thyroid gland function disrupting activity [69] 

4NiP rat Altered sex organ weight [70] 

TBP zebrafish Disturbed the gonad morphology [71] 

TBP zebrafish Reduced fertilization success [71] 

TBP zebrafish Altered sex ratio (skewed to females) [65] 
 

 

In vitro level 

 

Substance Cell line Observation Reference 

TBP zebrafish Vitellogenin* mRNA or protein expression [65] 

4NiP yeast cells with 

human ER and 

AR receptors 

Estrogenic and anti-androgenic effect (receptor 

transactivation assay) 

[72] 

TBP zebrafish Altered transcription profiles of steroidogenic genes in 

gonads (testes and ovary) 

[65] 

4NiP cells from 

chicken embryo 

Decrease in testicular cell viability and spermatogonial 

cell number 

[73] 

RS enzyme assay, 

thyroid endpoint 

Inhibition of thyroid peroxidase (TPO) enzyme leads to 

decreased thyroidal synthesis of thyroid hormones 

[74] 

TBP seabream Weak potency to bind to thyroid hormone transport 

proteins and displace the thyroid hormone 

[75] 

 

Notes:  
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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PCP, Tebuconazole, and Triclosan 

Key References: 

 A. Van Der Zande, Exploration of management options for Pentachlorophenol (PCP) - Paper for the 8 th 

meeting of the UNECE CLRTAP Task Force on Persistent Organic Pollutants, Montreal, 18 -20 May 

2010, 2010. https://www.unece.org/fileadmin/DAM/env/documents/2013/air/PCP.pdf (accessed May 11, 

2017). 

 G. Bedoux, B. Roig, O. Thomas, V. Dupont, B. Le Bot, Occurrence and toxicity of antimicrobial 

triclosan and by-products in the environment, Environ. Sci. Pollut. Res. 19 (2012) 1044–1065. 

doi:10.1007/s11356-011-0632-z. 

 C.C. Montagner, W.F. Jardim, P.C. Von der Ohe, G.A. Umbuzeiro, Occurrence and potential risk of 

triclosan in freshwaters of Sao Paulo, Brazil-the need for regulatory actions, Environ. Sci. Pollut. Res. 21 
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Chemical Identification 

Name(s) Abbreviation CAS Number(s) Structure 

Pentachlorophenol PCP 87-86-5 

 

Tebuconazole TCZ 107534-96-3; 

80443-41-0 

 

Triclosan; 

5-chloro-2-(2,4-

dichlorophenoxy)phenol 

TCS 3380-34-5 

 

Completed assessments as the basis for inclusion: SIN List (PCP), Danish Criteria (PCP; TCZ; TCS)  
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Physical and Physicochemical Properties 

Property Pentachlorophenol Tebuconazole Triclosan 

Molecular formula C6HOCl5 C16H22ON3Cl C12H7Cl3O2 

Molecular weight [g/mol] 266.34 307.81 289.54 

Physical state at 20°C solid solid solid 

Melting point [°C] 174 [1]; 191 [2] 104.7 [2]; 105 [3] 54–57.3 [4];  

56–57 [5] 

Density [g/cm3] 1.978 [4]; 1.99 [2] 1.25 at 26 °C [2] 1.55 at 22 °C [5] 

Vapor pressure at 25°C 

[mmHg] 

0.12 [2]; 1.1*10-4 [6] 2.9*10-8 [2]; 1.3*10-8 [7] 4.65*10-6 † 

Water solubility at 25°C 

[mg/L]  

14 at 20 °C [8];  

14 at 25 °C [9] 

36 at 20 °C [7] 10 at 20 °C [10] 

Octanol/water partition 

coefficient (logKOW) 

3.82 [2] 3.7 [2] 4.76 [5] 

Organic carbon/water 

partition coefficient 

(logKOC) 

3.70 (MCI method)†,  

4.07 (Kow method)† 

3.19 (MCI method)†,  

2.63 (Kow method)† 

4.37 (MCI method)†, 

3.93 (Kow method)† 

Air/water partition 

coefficient (logKAW) 

-6.00† -8.23† -6.69† 

Dissociation constant (pKa) 4.70 [11]; 4.73 [2] NR 7.9 [4]; 8.14 [5] 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [14]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis   PCP; TCS; 

TCZ 

   

Photolysis PCP TCS TCZ   [2,12,13] 

OH-radical 

reactions 

PCP; TCS; 

TCZ 

   Atmosphere [14] 

Biodegradation PCP; TCS; 

TCZ 

  WWTP Soil, Sediment [2,5,15–

19] 
 

 

Kinetics – Pentachlorophenol 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 19.4 d (estimate) [14] 

Photolysis (in water under natural sunlight) Half-life = 48 d [12] 

Biodegradation (soil) Half-life = 63 d [2] 

Biodegradation (soil, flooded conditions) Half-life = 10–70 d [17] 

Biodegradation (soil, upland conditions) Half-life = 20–120 d [17] 
 

 

Kinetics – Tebuconazole 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 11 h (estimate) [14] 

Biodegradation (soil) Half-life = 62 d [2] 

Biodegradation (soil) Half-life = 365 d [16] 

Biodegradation (sediment) Half-life = 305 d [2] 

Biodegradation (water) Half-life = >30 d [16] 

Biodegradation (water) 20 % degraded after 28 d [15] 
 

 

Kinetics – Triclosan 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 8 h (estimate) [14] 

Photolysis (in water) Half-life = 4 d (freshwater) – 8 d (seawater) [20] 

Biodegradation (activated sludge) 50.1 %, 71.2% and 99.4% degraded after 1 d, 7 d, 

and 14 d, respectively 

[5] 

Biodegradation (soil) Half-life = 17.4–35.2 d [5] 

Biodegradation (soil) Half-life = 104 d (TCS), 443 d (MeTCS, primary 

metabolite) 

[18] 

Biodegradation (activated sludge) Half-life = 54–86 h [19] 
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Intentional Uses and Production Levels 

Uses 

Pentachlorophenol 

 Mainly used as a wood preservative to protect utility poles, cross-arms, and building materials [21,22]. 

 Also used as a pre-harvest defoliant on selected crops [2], although it is presumably no longer used for 

agricultural purposes [22]. 

 Regulated in the US as a restricted-use pesticide since 1984, meaning its use is limited to certified 

applications [23]. 

 Its use is forbidden in the EU in the excess of 0.1 % by weight in mixtures [24]. 

 It is listed under Annex A of the Stockholm Convention, which aims to eliminate production and use for 

ratifying members. A specific exemption is in place for use in utility poles and cross arms. [25] 

Tebuconazole 

 Used as a fungicide and formulated as an oil-in-water emulsifier, as a foliar spray, and as a concentrate for 

seed treatment [2]. 

 Also used as a wood preservative [26]. 

Triclosan 

 Used as a broad spectrum antimicrobial in clinical settings and consumer products, including 

antimicrobial soaps, antiseptics, antimicrobial detergents, skin care products, and oral care products [27]. 

 It is also incorporated on the surface of plastics and textile products for antimicrobial treatment [13]. 

 

Production Levels 

Pentachlorophenol 

 Production and imports in the US: 450–4500 tonnes in 2012 [23]. 

Tebuconazole 

 Worldwide consumption: 15 000–16 000 tonnes in 2015 [28]. 

 Agricultural use in the US: 177 tonnes in 2006 [16]. 

Triclosan 

 Worldwide annual production: 1500 tonnes in 1998, of which 350 tonnes were used in Europe and 450 

tonnes in the US [29]. 

 Use in the EU: about 450 tonnes in 2006 [29]. 
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Emission Sources into the Environment 

 

Pentachlorophenol 

 Emission Sources 

Production About 18 kg are estimated to be released to air from the production of around 2000 

tonnes annually in countries that are members of the UN Economic Commission 

for Europe [22]. 

Use Released during its use as wood preservative: can occur via different pathways 

during the treatment process itself and can also migrate from wood that has been 

treated with it [22,30,31]. 

Disposal  Can be released by disposal of pre-treated wood in landfills [22,30]. 

 Leachate of the landfills containing pre-treated wood products and hazardous 

waste is reported as the main release pathway in the US [22]. 

Other sources Not reported. 

 

Tebuconazole 

 Emission Sources 

Production Not reported. 

Use Not reported. However, based on its use as agricultural biocide, it can be expected 

that it is mostly released to soil during its use. 

Disposal Not reported. 

Other sources Not reported. 

 

Triclosan 

 Emission Sources 

Production Not reported. 

Use Emissions mostly from personal care products ending up in domestic wastewater. 

Incomplete removal from wastewater treatment plants, and especially the spreading 

of biosolids onto soils, releases it into the environment [13,29]. 

Disposal Not reported. 

Other sources Not reported. 
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Distribution in the Natural Environment 

Expected Distribution 

Based on the identified uses and emission sources for these chemicals, a plausible emission pattern was 

applied to estimate the resulting distribution in the environment using the Level III fugacity model in EPI 

Suite [14]. The assumed emission pattern for tebuconazole is based on the estimated foliar interception and 

retention values [32], and the one for triclosan is based on its use as an additive in personal care products. The 

assumed emission pattern and the resulting environmental distribution from the model for these two chemicals 

are presented in the table below.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

TCZ 10 % 0 % 90 % 0 % 1 % 99 % 0 % 

TCS 0 % 90 % 10 % 0 % 28 % 21 % 51 % 

 

Insufficient data was found to be available for pentachlorophenol in order to determine its emission pattern. 

Additional efforts are needed to better estimate the emission pattern, and environmental modeling could then 

be used to estimate the partitioning across the different environmental compartments. 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

Pentachlorophenol 
3.5–188.5 lake salmon (eggs) [33] 

7.9–64 killifish (Fundulus similus) [34] 

Tebuconazole 9.79–16.25 zebrafish [35] 

Triclosan 

646 mussels [36] 

74 daphnia (eggs) [37] 

2.7–90 aquatic species [29] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental. A non-exhaustive 

set of reported concentrations is included below, and further measurements can be found in published literature 

including in the following: 

 

 G. Bedoux, B. Roig, O. Thomas, V. Dupont, B. Le Bot, Occurrence and toxicity of antimicrobial 

triclosan and by-products in the environment, Environ. Sci. Pollut. Res. 19 (2012) 1044–1065. 

doi:10.1007/s11356-011-0632-z. 

 A.L. Perez, M.A. De Sylor, A.J. Slocombe, M.G. Lew, K.M. Unice, E.P. Donovan, Triclosan 

occurrence in freshwater systems in the United States (1999-2012): A meta-analysis, Environ. Toxicol. 

Chem. 32 (2013) 1479–1487. doi:10.1002/etc.2217. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. RL = reporting level.  
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Pentachlorophenol 

River water China 2014 62 0.09–8.65 µg/L 0.12 µg/L 100 %  [38] 

River water USA 2001 76 ND–51 ng/L ND 2.6 % (LOD = 

NR) 

[39] 

Lake water China 2014 37 0.03–9.57 µg/L 0.38 µg/L 100 %  [38] 

Lake water China 1998 8 ND–103.7 µg/L 3.76 µg/L 87.5 % (LOD = 

0.005 µg/L) 

[40] 

Fresh water USA 2001 73 ND–<RL (2 

µg/L) 

ND 5.4 % (LOD = 

NR) 

[41] 

River and pond 

sediments 

China 2000/ 2001 44 0.56–163 ng/g 

dw 

NR NR (LOD = 

NR) 

[42] 

Lake sediment China 1998 8 0.18–48.3 µg/g 

dw 

15.85 µg/g 

dw 

100 %  [40] 

Estuary 

sediment 

Poland 2012/ 2013 4 ND–

12.4 ng/g dw 

3.47 ng/g dw 75 % (LOD = 

0.85 ng/g dw) 

[43] 

Lake fish (bile) China 1998 15 ND–0.63 ng/mg ND 40 % (LOD = 

0.01 ng/mg) 

[40] 

Tebuconazole 

River water China 2010/ 2011 41 ND–7.1 ng/L 1.6 ng/L 98 % (LOQ = 

0.6 ng/L) 

[44] 

River water China NR (2009) 1 3 ng/L  3 ng/L 100 %  [45] 

River water USA 2005/ 2006 103 ND–115 ng/L ND 6 % (RL = 

10 ng/L) 

[16] 

Seawater Europe 

(North 

Sea) 

2014 12 ND–1.02 ng/L 0.285 ng/L 58 % (LOD = 

0.14 ng/L) 

[46] 

River sediment China NR (2009) NR ND ND NR  [45] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

River sediment China 2010/ 2011 14 ND–2.5 ng/g 

dw 

0.15 ng/g dw 86 % (LOQ = 

0.4 ng/g dw) 

[44] 

Estuary 

sediment 

China NR (2009) NR ND ND NR  [45] 

Agricultural 

soil (30 d after 

treatment) 

India 2011 2 <LOQ 

 

<LOQ 0 % (LOQ = 

50 ng/g) 

[47] 

Treated 

wastewater 

China NR (2009) 3 2 ng/L (mean)  2 ng/L 

(mean) 

NR (MQL = 

3 ng/L) 

[45] 

Untreated 

wastewater 

China NR (2009) NR <MQL <MQL NR (MQL = 

3 ng/L) 

[45] 

Sewage sludge China NR (2009) NR ND ND NR (MQL  = 

5 ng/L) 

[45] 

Sewage sludge China NR (2009) NR <MQL <MQL NR (MQL = 

5 ng/L) 

[45] 

Triclosan 

River water Spain 2012 22 ND–16 ng/L ND 9 % (LOD = 

NR) 

[48] 

River water Brazil 2010/2011 71 ND–66 ng/L ND 48 % (LOD = 

0.7 ng/L) 

[49]  

River water India 2009 26 approx. 10–139 

ng/L 

40.7 ng/L NR (LOD = 

3.0 ng/L) 

[50] 

River water India 2009 22 approx. 10–

5160 ng/L 

142 ng/L NR (LOD = 

3.0 ng/L) 

[50] 

River/estuary 

water 

India 2009 8 NR 8.95 ng/L NR (LOD = 

3.0 ng/L) 

[50] 

River water 

(low-flow 

season) 

China 2005/2006 8 48–1023 ng/L 405 ng/L 100 %  [51] 

River water 

(low-flow 

season) 

China 2005/2006 10 35–217 ng/L 77 ng/L 100 %  [51] 

River water 

(upstream of 

WWTP) 

Australia 2004 NR 9–47 ng/L NR 100 %  [52] 

River water 

(downstream of 

WWTP) 

Australia 2004 NR 21–43 ng/L NR 100 %  [52] 

River water Germany NR (2002) NR ND–10 ng/L NR NR (LOD = 

3 ng/L) 

[53] 

River water USA 2001 76 ND–140 ng/L ND 4 % (LOD = 

NR) 

[39] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Surface and 

ground water 

USA 2001 73 

 

<100 ng/L ND 8.1 % (LOD = 

NR) 

[41] 

Still water Spain 2012 11 ND–13 ng/L ND 36 % (LOD = 

NR) 

[48] 

Domestic well USA 2000 1 ND ND 0 % (LOD = 

1 µg/L) 

[54] 

Wells 

downgradient 

from landfill 

USA 2000/ 2002 4 ND ND 0 % (LOD = 1 

µg/L) 

[54] 

Estuary / river 

water 

Spain NR (2014) 11 27–310 ng/L 120 ng/L 100 %  [55] 

Estuary / river 

sediment 

Spain NR (2014) 13 0.3–9.6 ng/g dw 3.8 ng/g dw 100 %  [55] 

Mangrove 

water 

India 2009 2 ND–approx. 26 

ng/L 

ND NR (LOD = 3.0 

ng/L) 

[50] 

River sediment Spain 2012 18 ND–8 ng/g dw 7 ng/g dw 94 % (LOD = 

NR) 

[48] 

River sediment India 2009 39 approx. 4–85.3 
ng/g dw 

11.0 ng/g dw NR (LOD = 1.5 

ng/g dw) 

[50] 

River sediment India 2009 33 approx. 8.5– 

46.87 ng/g dw 

14.0 ng/g dw NR (LOD = 1.5 

ng/g dw) 

[50] 

River sediment India 2009 12 approx. 6.8– 

32.1 ng/g dw 

22.5 ng/g dw NR (LOD = 1.5 

ng/g dw) 

[50] 

River sediment India 2009 3 ND–approx. 11 

ng/g dw 

ND NR (LOD = 1.5 

ng/g dw) 

[50] 

Soil USA 2006 26 ND–66.6 ng/g 

dw (range of 

means from all 

sites) 

8.2 ng/g dw 

(median of 

means) 

92 % (LOD = 

1.0 ng/g dw) 

[56] 

Agricultural 

soil 

Spain NR (2010) 6 ND–3.8 ng/g NR NR (LOD = 

0.08 ng/g) 

[57] 

WWTP sludge 

(dewatered)  

Canada 2009 1 10 900 ng/g dw 10 900 ng/g 

dw 

100 %  [58] 

Drinking water Spain 2012 8 ND ND 0 % (LOD = 

NR) 

[48] 

WWTP influent Spain 2012 21 ND–18.4 ng/L 5.4 ng/L 57 % (LOD = 

NR) 

[48] 

WWTP effluent Spain 2012 21 9.2–71.3 ng/L 45.1 ng/L 100 %  [48] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this non-reported information 

based on the general details provided in the study. 
 



  DRAFT 

156 
 

Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure exist for 

different organisms and across different study levels. A comprehensive but non-exhaustive set of reported 

observations is included below. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 
 

In vivo level 
 

Substance Organism Observation Reference 

TCZ; PCP zebrafish Changed thyroid levels (plasma and/or whole body) [59–61] 

TCZ carp and frog Changed steroid levels (plasma and/or whole body) [62,63] 

TCZ zebrafish Increased  vitellogenin* level (whole body) [64] 

PCP zebrafish Abnormal individual developments [61] 

TCS male fathead 

minnows 
No effect on plasma vitellogenin* levels 

[65,66] 

TCS medaka Increased hepatic vitellogenin* levels [67] 

TCS rat  Altered thyroid hormone (TH) homeostasis (changed 

serum TH levels) 

[68–70] 

TCS frog No effect on thyroid hormone (TH) homeostasis [71] 

TCS  rat Increased uterine weight [72] 

TCS mosquitofish Impaired reproduction (decreased sperm counts) [73] 

TCS medaka No effect on reproduction (hatching, egg production)  [67] 

TCS frog Interference with the thyroid axis, altered development [74] 

TCS fathead minnow No effect on gonad development [66] 

TCS rat  
Altered sex ratio (skewed to females) 

[70] 

 

TCS japanese medaka No effect on sex ratio (skewed to females) [75] 
 

 

In vitro level 

Substance Cell line Observation Reference 

TCZ; PCP rat pituitary GH3 

cells 

Altered transcription profiles of  genes involved in various 

thyroid pathways in zebrafish larvae and rats 

[59,60] 

PCP biological 

material from 

multiple species 

Weak potency to bind to thyroid hormone transport 

proteins (and replace the thyroid hormone) in salmon, frog 

and seabream 

[76,77] 

TCS frog tadpole tail 

fin cells and rat 

pituitary GH3 

cells 

No effect on thyroid hormone-associated gene expression 

(but effect from metabolite, methyl TCS) 

[71] 

TCS frog (Xenopus 

laevis) XTC-2 

cells 

Altered thyroid hormone-associated gene expression [78] 

TCS mosquitofish Altered vitellogenin* mRNA expression in  [73] 

TCS rat uteri and GH3 

cells 

Altered estrogen-sensitive gene expression in rats [72] 

 

Notes:  
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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Phthalates (non-EU REACH SVHCs) 1  

Key References: 

 C.A. Staples, D.R. Peterson, T.F. Parkerton, W.J. Adams, The Environmental Fate of Phthalate Esters: A 

Literature Review, Chemosphere. 35 (1997) 667–749. 

 
 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Diethyl phthalate; 

Palatinol A 

DEP 84-66-2 

 

Dihexyl phthalate DHP 84-75-3 

 

Dicyclohexyl phthalate DCHP 84-61-7 

 

Completed assessments as the basis for inclusion: SIN List (DEP; DHP; DCHP), Danish Criteria (DEP; 

DHP; DCHP) 
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Physical and Physicochemical Properties 

Property DEP DHP DCHP 

Molecular formula C12H14O4 C20H30O4 C20H26O4 

Molecular weight [g/mol] 222.24 334.45 330.42 

Physical state at 20°C liquid liquid solid 

Melting point 

[°C] 

-40.5 °C [1]; 

-60 °C [2] 

-58 °C [3] 66 [4] 

Density  

[g/cm3] 

1.120 at 25 °C [5];  

1.118 at 20 °C [2]; 

1.010–1.016 at 20 °C [5] 1.383 at 20 °C [4] 

Vapor pressure at 25°C 

[mmHg] 

1.65*10-3 [6];  

2.1*10-3 [7]; 

4*10-4 [3] 

5*10-6 [8]; 

1.4*10-5 [6] 

8.69*10-7 [9] 

Water solubility at 25°C 

[mg/L]  

1080 [6];  

932 at 20 °C [2];  

896 at 20 °C [3] 

0.05 [10] 4 [11] 

Octanol/water partition 

coefficient (log KOW) 

2.24 [6]; 

2.42 [10]; 

2.38 [8] 

6.82 [12]; 

6.30 [8] 

6.20† 

Organic carbon/water 

partition coefficient (log 

KOC) 

2.02 (MCI method)†,  

2.13 (Kow method)† 

4.10 (MCI method)†,  

4.57 (Kow method)† 

4.12 (MCI method)†,  

4.22 (Kow method)† 

Air/water partition 

coefficient (log KAW) 

-5.4 (QSAR estimate) 

[13]; -4.6† 

-3.53 (QSAR estimate) 

[13]; -2.98† 

-5.39† 

Dissociation constant 

(pKa) 

Not applicable  Not applicable Not applicable 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [36]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  DEP; DHP; 

DCHP (all 

negligible) 

   [14] 

Photolysis   DEP; DHP; 

DCHP 

   

OH-radical 

reactions 

DEP; DHP  DCHP  Atmosphere [14] 

Biodegradation DEP; DHP; 

DCHP 

  WWTP River water, 

river sediment 

[14–20] 

 

 

Kinetics – Diethyl phthalate (DEP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 57 h (estimated)† [14] 

Biodegradation (semi-continuous 

activated sludge) 

>94.8 % degraded after 24 h [16] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms) 

99 % degraded after 28 d, half-life = 2.2 d [15] 

Biodegradation (aerobic, RDA, shaken) Half-life = 0.4 d [14] 

Biodegradation (aerobic, MITI 

inoculum) 

Half-life = 4.3 d [14] 

Biodegradation (sludge, anaerobic) 100 % degraded after 2 weeks, half-life = <2.3 d  [14,17] 

Biodegradation (sewage sludge, 

anaerobic) 

100 % degraded after 8 d [18] 

Biodegradation (soil) 100 % degraded after 25 d [19] 

Biodegradation (sludge, anaerobic) Half-life = 5 d [14] 

Biodegradation (six river sediment 

samples, aerobic) 

Half-life = 0.5–8.8 d [20] 

Biodegradation (six river sediment 

samples, anaerobic) 

Half-life = 24.7–49.3 d [20] 

 

 

Kinetics – Dihexyl phthalate (DHP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 13 h (estimated)† [14] 

Biodegradation (semi-continuous 

activated sludge) 

>92.8 % degraded after 24 h [16] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms) 

>99 % degraded after 28d.  

Half-life = 2.9 d. 

[15] 

Biodegradation (six river sediment 

samples, aerobic) 

Half-life = 3.1–19.6 d [20] 

Biodegradation (six river sediment 

samples, anaerobic) 

Half-life = 19.1–30.2 d [20] 
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Kinetics – Dicyclohexyl phthalate (DCHP) 

MechanismCompartment Reported values Reference 

Biodegradation (six river sediment 

samples, aerobic) 

Half-life range = 2.3–37.4 d [20] 

Biodegradation (six river sediment 

samples, anaerobic) 

Half-life range = 24.9–28.8 d [20] 

 

 

 

 

 

Intentional Uses and Production Levels 

Uses 

DEP 

 Primarily used as a plasticizer in cellulose acetate polymers (e.g. plastic films and sheets, molded and 

extruded articles such as toothbrushes and tool handles) and as a solvent in cosmetics (e.g. perfume, hair 

spray, soaps and nail polish) [3,21,22]. 

 Used as a vehicle for fragrances in perfumes and other personal care products [23].  

 Used as an alcohol denaturant in certain cosmetic products detergents and insecticides, and can be found 

in non-polymer products such as dye application agents, adhesives and sealants [23]. 

 

DHP 

 Used as a plasticizer in cellulose and vinyl plastics [3]. 

 

DCHP 

 Used in PVC products, in sealants, textile printing, plastisol products, coating products and many more 

[24,25]. 

 

Production Levels 

DEP 

 Currently registered in the EU with 1000–10 000 tonnes per year of import or production [2].  

 Production level in the US: 4500 tonnes in 2008 [21].  

 

DHP 

 No information on the production levels of DHP was found. 

 Pre-registered under EU REACH on November 30th 2010, but no registrations have been submitted as of 

May 2017 [26].  

 Could be assumed that it is not produced or imported in quantities equal to or larger than 100 tonnes per 

year in the EU [27]. 

 

DCHP 

 Currently registered in the EU with 100–1000 tonnes per year of import or production [28].  

 Approximately 27 tonnes produced in the Nordic countries in 2013 [25]. 
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Emission Sources into the Environment 

DEP 

 Emission Sources 

Production Released during production [29]. 

Use May leach out or volatilize from products it is incorporated in [22]. 

Disposal May leach out of landfills into water or soil, and can also enter the atmosphere 

through the combustion of plastics [22]. 

Other sources Not reported 

 

Phthalates in general 

The table below provides general information relevant for all phthalates including DEHP. As no specific 

information was found for DIBP, DBP, or BBP, the information below is meant to provide an overview of 

potential emission sources of phthalates in general; for some specific information on other phthalates, see the 

fact sheets “Phthalates (EU REACH SVHCs)” and “Phthalates (non-EU REACH SVHCs) 2”. 

 Emission Sources 

Production Likely released during production [29–31].  

Use  Main source of the releases to the atmosphere is through evaporation during 

processing with PVC. The extent of such losses may vary from 0.02 % for 

injection molding to up to 1 % for coating processes [32]. 

 Phthalates can migrate slowly out of polymer products throughout their entire 

lifetime, since plasticizers are not chemically bound to the polymer matrix [31].  

Disposal  Different levels of emissions may occur depending on the treatment applied.  

 86 % of the plastics disposed of in the US in 2008 (approximately 34 million 

tons) ended up in landfills [33]. 

 Releases (e.g. through landfill leachate) can be expected, as phthalates are not 

covalently bound in disposed plastic products. [34] 

Other sources Not reported 
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Distribution in the Natural Environment 

Estimated Environmental Distribution 

Based on the identified uses and emissions for these chemicals as plastic additives and the emission scenario 

information generated by the OECD [35], a plausible emission pattern was assumed to estimate the resulting 

distribution in the environment using Level III fugacity modeling in EPI Suite [36]. The assumed emission 

pattern and the resulting environmental distribution from the model are presented in the table below for each 

chemical.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

DEP 50 % 50 % 0 % 8 % 64 % 28 % 0 % 

DHP 50 % 50 % 0 % 7 % 76 % 3 % 14 % 

DCHP 50 % 50 % 0 % 1 % 36 % 38 % 25 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

DEP 118 fish (bluegill sunfish) [37] 

DHP 1066–3254  Daphnia magna [38] 

DCHP 1600 fish [39] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in 

published literature including in the following:  

 

 A. Bergé, M. Cladière, J. Gasperi, A. Coursimault, B. Tassin, R. Moilleron, Meta-analysis of 

environmental contamination by phthalates, Environ. Sci. Pollut. Res. 20 (2013) 8057–8076. 

doi:10.1007/s11356-013-1982-5. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ)). NR = not reported. 

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Diethyl phthalate (DEP) 

River water Spain NR  

(2014) 

7 ND–ND ND 0 % (LOD = 

330 ng/L) 

[40] 

River water France 2008/ 

2009 

29 ND–528 ng/L 

(range of means) 

NR NR (LOD = 

29 pg/L) 

[41] 

River water China 2004/ 

2005 

15 ND–0.288 µg/L NR 60 % (LOD = 

0.01 µg/L) 

[42] 

River water Taiwan 2000 14 ND–2.5 µg/L 0.5 µg/L 

(mean) 

NR [20] 

Rainwater Nether-

lands 

1999 3 240–430 ng/L 340 ng/L 

 

100 %  [43] 

Surface water Nether-

lands 

1999 87 ND–2300 ng/L 430 ng/L 

(of values 

>LOD) 

 

28 % (LOD = 

70 ng/L) 

[43] 

Urban lake 

water 

China 2005 15 15–320 ng/L 31 ng/L 100 %  [44] 

Sea water 

(dissolved) 

Arctic 2004 11 0.03–4 ng/L 0.35 ng/L 100 %  [45] 

Sea water (total 

suspended 

matter) 

Arctic 2004 11 ND–4.1 ng/L 0.09 ng/L 78 % (LOD = 

NR) 

[45] 

Sea water Arctic 2004 NR ND–795 pg/L 40 pg/L 71 % (LOD = 

8 pg/L) 

[46] 

River bed 

sediment 

France 2008/ 

2009 

10 1–239 ng/g dw NR (33 

ng/g dw) 

NR (LOD = 

1.6 ng/g dw) 

[41] 

Sediment Nether-

lands 

1999 16 ND–1200 ng/g dw 133 ng/g 

dw 

 

94 % (LOD = 

65 ng/g dw) 

[43] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Diethyl phthalate (DEP) 

Sediment Taiwan 2000 6 ND–1.9 µg/g dw 0.2 µg/g 

dw (mean) 

NR [20] 

Marine 

sediment 

Spain 2007 5 ND ND 0 % (LOD = 

50 ng/g) 

[47] 

Urban lake 

sediment 

China 2005 15 0.028–1.05 µg/g 

dw 

0.13 µg/g 

dw 

100 %  [44] 

Suspended 

matter 

Nether-

lands 

1999 50 ND–2692 ng/g dw NR 

 

64 % (LOD = 

46 ng/g dw) 

[43] 

Soil China NR  

(2003) 

23 ND–2.61 µg/g 0.18 µg/g 78 % (LOD = 

4.43 ng/g)  

[48] 

Atmosphere 

(vapour) 

Arctic 2004 3 0.64–3.4 ng/m3 0.75 ng/m3 100 %  [45] 

Atmosphere 

(particle) 

Arctic 2004 3 ND–0.18 ng/m3 0.01 ng/m3 67 % (LOD = 

NR) 

[45] 

Atmosphere 

(gas phase) 

Arctic 2004 NR 177–895 pg/m3  320 pg/m3 NR  [46] 

Atmosphere 

(particle phase) 

Arctic 2004 NR 5–41 pg/m3 18 pg/m3 NR [46] 

Tap water Spain NR  

(2014) 

7 ND–381 ng/L ND 14 % (LOD = 

330 ng/L) 

[40] 

WWTP 

influent 

NR 

(Austria) 

NR  

(2010) 

15 0.77–9.2 ng/L 3.9 ng/L 100 %  [49] 

WWTP 

effluent 

NR 

(Austria) 

NR  

(2010) 

15 ND–1.1 ng/L 0.15 ng/L 80 % (LOD = 

0.065-0.11 

ng/L) 

[49] 

Untreated 

municipal 

wastewater 

Nether-

lands 

1999 12 4.1–44 000 ng/L 13 000 

ng/L 

 

100 %  [43] 

WWTP 

effluent 

Nether-

lands 

1999 9 ND–930 ng/L 840 ng/L 

 

67 % (LOD = 

300 ng/L) 

[43] 

Industrial 

wastewater 

Nether-

lands 

1999 10 ND–5200 ng/L 4200 ng/L 

 

50 % (LOD = 

350 ng/L) 

[43] 

Dihexyl phthalate (DHP) 

Surface water 

(lakes, rivers 

and reservoirs), 

wet season 

China 2013 19 ND ND 0 % (LOD = 

0.03 µg/L) 

[50] 

Surface water 

(lakes, rivers 

and reservoirs), 

dry season 

China 2013 19 ND ND 0 % (LOD = 

0.03 µg/L) 

[50] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Diethyl phthalate (DEP) 

River water, 

surface (0.5 m 

deep) 

China 2012 9 ND–1.12 µg/L ND 11 % (LOD = 

NR) 

[51] 

River water, 

deep (5 m 

deep) 

China 2012 9 ND ND 0 % (LOD = 

NR) 

[51] 

River water Taiwan 2000 14 ND ND NR [20] 

River water United 

States 

1984 4 ND–8 ng/L ND 25 % (LOD 

NR) 

[52] 

Urban lake 

water 

China 2005 15 ND  ND 0 % (LOD = 

NR) 

[44] 

Surface snow Antarctic 1993/ 

1994 

7 ND–20 ng/L 2 ng/L 57 % (LOD = 

0.7 ng/L) 

[53] 

Buried snow Antarctic 1993/ 

1994 

6 ND–67 ng/L 31 ng/L 67 % (LOD = 

0.7 ng/L) 

[53] 

Urban lake 

sediment 

China 2005 15 ND– 0.34 µg/g dw 0.046 µg/g 

dw 

87 % (LOD = 

NR) 

[44] 

Sediment Taiwan 2000 6 0.1–1.1 µg/g dw 0.2 µg/g 

dw (mean) 

NR [20] 

Sediment 0-10 

cm depth 

United 

States 

1979 1 5.6 ng/g dw 5.6 ng/g 

dw 

100%  [54] 

Filtered tap 

water 

China NR  

(2012) 

1 ND ND 0 % (LOD = 

29 ng/L) 

[55] 

Dicyclohexyl phthalate (DCHP) 

River water, 

level period 

(spring) 

China 2010 23 ND–3.609 µg/L 0.664 µg/L 

(mean) 

61 % (LOD = 

NR) 

[56] 

River water, 

wet season 

China 2010 23 ND–1.411 µg/L 0.120 µg/L 

(mean) 

65 % (LOD = 

NR) 

[56] 

River water, 

level period 

(autumn) 

China 2010 23 ND–1.937 0.197 µg/L 

(mean) 

83 % (LOD = 

NR) 

[56] 

River water, 

dry season 

China 2009 23 0.057–1.434 µg/L 0.297 µg/L 

(mean) 

100 %  [56] 

River water Taiwan 2000 14 ND ND NR [20] 

Surface water 

(lakes, rivers 

and reservoirs), 

wet season 

China 2013 19 0.08–1.65 µg/L 0.31 µg/L 100 %  [50] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Diethyl phthalate (DEP) 

Surface water 

(lakes, rivers 

and reservoirs), 

dry season 

China 2013 19 ND ND 0 % (LOD = 

0.03 µg/L) 

[50] 

Surface water China NR  

(2016) 

4 ND ND 0 % (LOD = 

0.45 µg/L) 

[57] 

Surface water Nether-

lands 

1999 87 ND–60 ng/L ND 

 

33 % (LOD = 

3 ng/L) 

[43] 

Urban lake 

water 

China 2005 15 ND–76 ng/L ND 7 % (LOD = 

NR) 

[44] 

Rain water Nether-

lands 

1999 3 ND ND 

 

0 % (LOD = 

8 ng/L) 

[43] 

Suspended 

matter 

Nether-

lands 

1999 51 ND–1300 ng/g dw ND 

 

47 % (LOD = 

2 ng/g dw) 

[43] 

Sediment Nether-

lands 

1999 21 ND–11 ng/g dw ND 

 

19 % (LOD = 

2 ng/g dw) 

[43] 

Sediment Taiwan 2000 6 ND–1.9 µg/g dw 0.2 µg/g 

dw (mean) 

NR [20] 

Urban lake 

sediment 

China 2005 15 ND–0.22 µg/g dw 0.066 µg/g 

dw 

53 % (LOD = 

NR) 

[44] 

WWTP 

effluent 

Nether-

lands 

1999 9 2–20 ng/L ND 

 

22 % (LOD = 

NR) 

[43] 

Untreated 

municipal 

wastewater 

Nether-

lands 

1999 12 ND–210 ng/L 150 ng/L 

 

50 % (LOD = 

11 ng/L) 

[43] 

Industrial 

wastewater 

Nether-

lands 

1999 10 ND–16 000 ng/L 370 ng/L 

 

80 % (LOD = 

5 ng/L) 

[43] 

WWTP sludge China 2010 25 0.1–0.19 µg/g dw 0.11 µg/g 

dw 

100 %  [58] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this non-reported information 

based on the general details provided in the study. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to phthalates 

exists for different organisms and across different study levels. A comprehensive but non-exhaustive set of 

reported observation is included below. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

DEP zebrafish Disrupted sex hormone balances through modulating key 

steroidogenic genes 

[59] 

DEP carp Dose-dependent vitellogenin induction [60] 

DEP abalone Growth and abnormal developments of individuals  [61] 

DCHP rat Increased thyroid [62] 

DEP abalone Altered hatching rates [61] 

DHP rainbow trout No effect on hatching rates and reproduction observed  [63] 

DCHP rat Impaired reproduction (decreased sperm count and motility, 

disrupted recurring period of sexual receptivity and fertility, 

altered nippel development, decreased testicular germ cells)  

[62–67] 

DEP, DHP Daphnia magna, 

Japanese 

medaka 

No impaired reproduction (decreased sperm count and 

motility, disrupted recurring period of sexual receptivity and 

fertility, altered nippel development, decreased testicular 

germ cells) observed 

[62–67] 

 

 

In vitro level 

Substance Cell line Observation Reference 

DCHP human, mouse  Induced cell proliferation (estrogenic activity)  [68,69] 

DCHP mouse  Glucocorticoid receptor activation  [68] 

DCHP mouse  No PPAR-gamma receptor activation observed [68] 

 

Notes:  
*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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Phthalates (non-EU REACH SVHCs) 2 

Key References: 

 C.A. Staples, D.R. Peterson, T.F. Parkerton, W.J. Adams, The Environmental Fate of Phthalate Esters: A 

Literature Review, Chemosphere. 35 (1997) 667–749. 

 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Dioctyl phthalate DOP 117-84-0 

 

Diisodecyl phthalate DIDP 26761-40-0; 

89-16-7;  

68515-49-1 

(mixture) 

 

Diundecyl phthalate, 

branched and linear 

DUP 3648-20-2 (linear);  

85507-79-5 

(diisoundecyl 

phthalate) 

 

Completed assessments as the basis for inclusion: SIN List (DOP; DIDP; DUP) 

 

Note: DIDP CAS number 68515-49-1 is a mixture of di-C9–C11-branched alkyl esters, C10-rich.   
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Physical and Physicochemical Properties 

Property DIDP DUP (mix) 

CAS#: 85507-79-5 
DUP (linear) 

CAS#: 3648-20-2 
DOP 

Molecular formula C28H46O4 C30H50O4 C30H50O4 C24H38O4 

Molecular weight 

[g/mol] 

446.66 474.72 474.72 390.56 

Physical state at 

20°C 

liquid liquid unclear unclear 

Melting point 

[°C] 

-50 [1] -40  

(pour point) [2] 

35.5 [3]; 

-9 [4] 

25 [1]; 

-25 [4] 

Density  

[g/ cm3] 

0.966 at 20 °C [1] 0.9527 at 20 °C [2] 0.955 at 20 °C [5] 0.978 at 20 °C [6] 

Vapor pressure at 

25°C [mmHg] 

5.28*10-7 [7] <5.25 [2] 1.2*10-9 † 1*10-7 [4] 

Water solubility at 

25°C [mg/L]  

0.28 [8] 7*10-8 † 1.11 at 20 °C [9] 0.022 [10]; 

5*10-4 [11] 

Octanol/water 

partition coefficient 

(log KOW) 

10.36† 11.83† 11.49† 8.10 [12] ; 

8.06 [4] ; 

8.2 [11] 

Organic 

carbon/water 

partition coefficient 

(log KOC) 

6.04 (MCI 

method)†, 6.52 

(Kow method)† 

6.91 (MCI 

method)†, 7.34 

(Kow method)† 

6.71 (MCI 

method)†, 7.15 

(Kow method)† 

5.15 (MCI 

method)†, 5.27 

(Kow method)† 

Air/water partition 

coefficient (log 

KAW) 

-4.34† -2.46† -2.58† -2.8 (QSAR 

estimate) [13];  

-3.98† 

Dissociation 

constant (pKa) 

Not applicable Not applicable 

 

Not applicable 

 

Not applicable 

Note: The reported melting points of DUP and DOP show substantial inconsistencies.  

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [21]. 

NR = not reported 
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Degradation Pathways and Kinetics 

 

Mechanism 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis  DOP; DIDP; 

DUP (all 

negligible) 

   [14] 

Photolysis   DOP; DIDP; 

DUP 

   

OH-radical 

reactions 

DOP  DIDP; DUP  Atmosphere [14] 

Biodegradation DOP; DIDP; 

DUP 

  WWTP River water [14–20] 

 

 

Kinetics – Dioctyl phthalate (DOP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 10 h (estimated)† [14] 

Biodegradation (semi-continuous 

activated sludge) 

84.5 % degraded after 24 h (for diisooctyl, a branched 

isomer of DUP) 

[16] 

Biodegradation (aerobic, RDA, shaken) Half-life = 1 d [14] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms) 

>99 % degraded after 28 d.  

Half-life = 8.8 d (for diisooctyl, a branched isomer of 

DUP) 

[15] 

Biodegradation (sludge, anaerobic) Approximately 25 % degraded after 70 d. 

Half-life = 115 d  

[14,17] 

Biodegradation (sewage sludge, 

anaerobic) 

No degradation after 32 d [18] 

Biodegradation (sludge, anaerobic) Half-life = 20.6 d [14] 
 

 

Kinetics – Diisodecyl phthalate (DIDP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 4.9 h (estimated)† [21] 

Biodegradation (laboratory scale landfill 

reactor) 

0 % degradation  [19] 

Biodegradation (semicontinuous 

activated sludge) 

68 % degraded after 24 h [16] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms) 

>99 % degraded after 28 d.  

Half-life = 9.6 d. 

[15] 

 

 

Kinetics – Diundecyl phthalate (DUP) 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 4.0–4.4 h (estimated)† [21] 

Biodegradation (semicontinuous 

activated sludge) 

29–45 % degraded after 24 h [20] 

Biodegradation (acclimated shake flask, 

inoculum prepared from soil and sewage 

microorganisms) 

>99 % degraded after 28 d.  

Half-life = 6.2 d 

[15] 
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Uses and Production Levels 

Uses 

DOP 

 Used as a plasticizer in plastics and cellulose acetate resins [22].  

 Exists primarily as a component of mixed phthalate products, such as C6–C10-phthalate. DOP comprises 

approximately 20% of such mixed phthalate products, and very little pure DOP is commercially 

manufactured. [22] 

 

DIDP 

 Primarily used as plasticizer in polyvinyl chloride (PVC), with a typical content of 25 to 50% in flexible 

PVC products [23].  

 End products include cable sheaths, films and sheets, flooring, and coating [23].  

 Also used in adhesives, sealants, paints and automotive applications [24]. 

 

DUP 

 Primarily used as a plasticizer in PVC [22].  

 End products include wiring, cable jacketing and insulation, furniture, automobile upholstery, floor mats 

and seat covers, flooring, wall coverings, coil coatings, pool liners, water stops, roofing membranes, and 

coated fabrics [25].  

 Also used in thermoplastics (i.e. flame retardant nylon), rubbers, paints and adhesives [25]. 

 

Production Levels 

DOP 

 Global consumption: 3.24 million tonnes in 2014 [26].  

 Pre-registered under EU REACH by several hundred legal entities [27]; however, quantities of use or 

production are not yet reported in the registration process. 

 

DIDP 

 Production in the EU: approximately 280 000 tonnes per year in 1994 [23].  

 Consumption in the EU: approximately 191 000 tonnes for PVC uses and about 9000 tonnes per year for 

non-PVC uses [23] in 1994. Remained roughly the same in 2010 [28]. 

 Consumption in the US: 533 000 tonnes per year for PVC uses and 85 000 tonnes for non-PVC uses in the 

mid 1990s [23].  

 Canada: 10–100 tonnes produced in 2012, with a net import of 900–9000 tonnes [24]. 

 

DUP 

 Production of DUP in the US: reported as 18 000 tonnes in 2008 [25].  

 Production in Canada: more than 10 000 tonnes in 2012 with a net export of 900 to 9000 tonnes [24]. 
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Emission Sources into the Environment 

DOP 

 Emission Sources 

Production Released to the atmosphere by plastic producers and transportation machinery 

producers, e.g., 250 kg released as such in Japan in 2008 [29]. 

Use Not reported 

Disposal Not reported 

Other sources Not reported 

 

Phthalates in general 

The table below provides general information relevant for all phthalates including DOP. As no specific 

information was found for DIDP or DUP, the information below is meant to provide an overview of potential 

emission sources of phthalates in general; for some specific information on other phthalates, see the fact sheets 

“Phthalates (EU REACH SVHCs)” and “Phthalates (non-EU REACH SVHCs) 1”. 

 Emission Sources 

Production Likely released during production [29–31]. 

Use  Main source of the releases to the atmosphere is through evaporation during 

processing with PVC. The extent of such losses may vary from 0.02 % for 

injection molding to up to 1 % for coating processes [32]. 

 Phthalates can migrate slowly out of polymer products throughout their entire 

lifetime, since plasticizers are not chemically bound to the polymer matrix [31].  

Disposal  Different levels of emissions may occur depending on the treatment applied.  

 86 % of the plastics disposed of in the US in 2008 (approximately 34 million 

tons) ended up in landfills [33]. 

 Releases (e.g. through landfill leachate) can be expected, as phthalates are not 

covalently bound in plastic products disposed of. [34] 

Other sources Not reported 
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Distribution in the Natural Environment 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for these chemicals as plastic additives and the emission 

scenario information generated by the OECD [35], a plausible emission pattern was assumed to estimate the 

resulting distribution in the environment using the Level III fugacity model in EPI Suite [21]. The assumed 

emission pattern and the resulting environmental distribution from the model are presented in the table below 

for each chemical.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

DOP 50 % 50 % 0 % 2 % 56 % 11 % 31 % 

DIDP 50 % 50 % 0 % 1 % 61 % 34 % 34 % 

DUP 50 % 50 % 0 % 1 % 59 % 39 % 1 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

DOP 

974 (estimated)†  aquatic species [21] 

660 (3-day magnification factor) 

28 500 (33-day magnification factor) 
algae [36] 

9400 (3-day magnification factor), 

2600 (33-day magnification factor) 
Daphnia magna [36] 

1.2 (3-day magnification factor), 

9400 (33-day magnification factor) 
fish [36] 

DIDP 
3500 mussels [37] 

116 Daphnia magna [38] 

DUP 640 fish [39] 
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Measured Environmental Concentrations 

Measured concentrations for these chemicals have been reported in numerous environmental media. A non-

exhaustive set of reported concentrations is included below, and further measurements can be found in 

published literature including in the following:  

 

 A. Bergé, M. Cladière, J. Gasperi, A. Coursimault, B. Tassin, R. Moilleron, Meta-analysis of 

environmental contamination by phthalates, Environ. Sci. Pollut. Res. 20 (2013) 8057–8076. 

doi:10.1007/s11356-013-1982-5. 

  M. Remberger, L. Kaj, K. Hansson, H. Andersson, E. Brorström-Lundén, H. Lunder, M. Schlabach, 

Selected Plasticisers and Additional Sweeteners in the Nordic Environment, 2013. 

doi:10.6027/TN2013-505. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 
 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Dioctyl phthalate (DOP) 

River water France 2012 11 ND ND 0 % (LOQ = 

0.01 µg/L) 

[40] 

River water France 2012 2 ND ND 0 % (LOQ = 

0.01 µg/L) 

[40] 

River water France 2008/ 

2009 

29 ND–26 ng/L 

(range of 

means) 

NR NR (LOD = 

53 pg/L) 

[41] 

River water China 2004/ 

2005 

15 ND–0.059 µg/L ND NR (LOD = 

0.01 µg/L) 

[42] 

Surface water Nether-

lands 

1999 87 ND–78 ng/L ND 

 

28 % (LOD = 

2 ng/L) 

[43] 

Urban lake 

water 

China 2005 15 ND ND 0 % (LOD = NR) [44] 

Urban lake 

sediment 

China 2005 15 ND–0.629 µg/g 

dw 

0.02 µg/g 

dw 

80 % (LOD = NR) [44] 

Rainwater Nether-

lands 

1999 3 38–250 ng/L 41 ng/L 

 

100 %  [43] 

River bed 

sediment 

France 2008/ 

2009 

2 65 ng/g dw 

(mean) 

NR NR (LOD = 

16.2 ng/g dw) 

[41] 

Industrial 

wastewater 

Nether-

lands 

1999 10 12–2800 ng/L 150 ng/L 

 

100 %  [43] 

Suspended 

matter 

Nether-

lands 

1999 51 ND–47 ng/g dw 90 ng/g dw 

 

73 % (LOD = 

2 ng/g dw) 

[43] 

Sediment (type 

NR) 

Nether-

lands 

1999 

 

21 ND–55 ng/g dw 11 ng/g dw 

 

62 % (LOD = 

2 ng/g dw) 

[43] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Air urban area 

(gas and 

particle phases) 

China 2005/ 

2006 

10 0.3–2.7 ng/m3 1.2 ng/m3 100 %  [45] 

Air suburban 

area (particle 

phase only, gas 

phase ND) 

China 2005/ 

2006 

10 0.01–0.7 ng/m3 0.2 ng/m3 100 %  [45] 

Air (gas and 

particle phases) 

North Sea NR 

(2006) 

10 ND ND 0 % (MDL = 

0.002 ng/m3) 

[46] 

Air particle 

phase 

Germany NR 

(2006) 

6 ND–0.013 

ng/m3 

0.002 

ng/m3 

(mean) 

NR (MDL = 

0.002 ng/m3) 

[46] 

Air gas phase Germany NR 

(2006) 

6 ND ND 0 % (MDL = 

0.002 ng/m3) 

[46] 

Air vapor phase France 2002/ 

2003 

20 0.0–1.1 ng/m3 NR NR (LOD = 25–

75 pg/m3) 

[47] 

Air particle 

phase 

France 2002/ 

2003 

20 0–0.6 ng/m3 NR NR (LOD = 25–

75 pg/m3) 

[47] 

Untreated 

municipal 

wastewater 

Netherlan

ds 

1999 12 260–2400 ng/L 660 

 

100 %  [43] 

WWTP effluent Nether-

lands 

1999 9 ND–19 ng/L ND 

 

44 % (LOD = 

2 ng/L) 

[43] 

WWTP influent Denmark 1999 7 220–790 ng/L  570 ng/L 100 % (LOD = 

NR) 

[48] 

WWTP effluent Denmark 1999 7 0–30 ng/L 10 ng/L 40 % (LOD = NR) [48] 

WWTP influent NR 

(Austria) 

NR 

(2010) 

15 ND–1.1 ng/L 0.54 ng/L 80 % (LOD = 

0.13–0.26 ng/L) 

[49] 

WWTP effluent NR 

(Austria) 

NR 

(2010) 

15 ND–0.26 ng/L ND 7 % (LOD = 

0.067–0.14 ng/L) 

[49] 

Diisodecyl phthalate (DIDP) 

River water France NR 

(1997) 

6 ND–1.08 µg/L ND 33% (LOD = 

0.5 µg/L) 

[50] 

River water England 1998 4 ND–0.4 µg/L 0.25 µg/L 75 % (LOD = 

0.2 µg/L) 

[51] 

Urban storm 

water 

Sweden 2006 13 ND–17 µg/L 0.77 µg/L 69 % (LOD = 

0.1 µg/L) 

[52] 

Seawater Canada NR 

(2006) 

9 NR 76.7 ng/L 

(mean) 

83 % (LOD = 

50 ng/L) 

[53] 

Rainwater Nether-

lands 

2003 50 ND–98 µg/L ND 6 % (LOD = 10–

100 ng/L) 

[54] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Raw drinking 

water 

England 1998 1 ND ND 0 % (LOD = 

0.2 µg/L) 

[51] 

Road runoff 

water 

(motorway) 

Austria 2008 4 ND–9.9 µg/L ND 25 % (LOD = 

0.01 µg/L) 

[49] 

Road runoff 

water 

(suburban area) 

Austria 2008 4 ND–4.8 µg/L ND 50 % (LOD = 

0.01 µg/L) 

[49] 

Suspended 

matter river 

water 

Germany NR 

(2000) 

3 6–10 mg/kg dw 9.2 mg/kg 

dw 

100 %  [55] 

Sediment 

(landfill) 

Sweden 2006 1 290 µg/kg dw 290 µg/kg 

dw 

100 %  [56] 

Sediment 

(remote areas) 

Sweden 2006 3 ND ND 0 % (LOD = 

100 µg/kg dw) 

[56] 

Sediment 

(urban area) 

Sweden 2006 3 1.2–3.4 mg/kg 

dw 

1.5 mg/kg 

dw 

100 %  [56] 

Sediment 

(industrial area) 

Sweden 2006 6 ND–360 µg/kg 

dw 

190 µg/kg 

dw 

67 % (LOD = 

100 µg/kg dw) 

[56] 

Bottom 

sediment 

Canada NR 

(2006) 

12 NR 385 ng/g 

dw (mean) 

92 % (mean LOD 

= 4.6 ng/g dw) 

[53] 

Suspended 

sediment 

Canada NR 

(2006) 

9 NR 43 200 

ng/g dw 

92 % (mean LOD 

= 4.6 ng/g dw) 

[53] 

Sediment Netherlan

ds 

NR 

(1999) 

30 ND–1.11 mg/kg 

dw 

ND 32 % (LOD = 

15 µg/kg dw) 

[57] 

Sediment Denmark 2010/ 

2011 

3 NQ–63 µg/kg 

dw 

NQ 33 % (LOQ = 

20 µg/kg dw) 

[58] 

Sediment Finland 2011 3 510–940 µg/kg 

dw 

660 µg/kg 

dw 

100 %  [58] 

Sediment Faroe 

Islands 

2011 4 0.11–36 mg/kg 

dw 

10.1 mg/kg 

dw 

100 %  [58] 

Sediment Iceland 2011 3 NQ–1.3 mg/kg 

dw 

0.88 mg/kg 

dw 

67 % (LOQ = 

0.02 mg/kg dw) 

[58] 

Sediment Norway 2002/ 

2005 

3 77–850 µg/kg 

dw 

370 µg/kg 

dw 

100 %  [58] 

Sediment Sweden 2011 3 25–510 µg/kg 

dw 

55 µg/kg 

dw 

100 %  [58] 

Soil (forest) France 2011 1 <LOQ <LOQ 0 % (LOQ = 0.64–

1.78 ng/g)  

[59] 

Soil (rural) France 2011 1 13.5 ng/g dw 13.5 ng/g 

dw 

100 %  [59] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Soil 

(agriculture) 

France 2011 1 40.2 ng/g dw 40.2 ng/g 

dw 

100 %  [59] 

Soil (urban) France 2011 2 NR 65 ng/g dw NR [59] 

Soil Nether-

lands 

NR 

(1999) 

35 ND ND 0 % (LOD = 

15 µg/kg dw) 

[57] 

Air (remote 

area) 

Sweden 2006/ 

2007 

3 ND ND 0 % (LOD = 

0.25 ng/m3) 

[56] 

Air (industrial 

areas) 

Sweden 2006/ 

2007 

6 ND–2.4 ng/m3 0.46 ng/m3 83 % (LOD = 

0.25 ng/m3) 

[56] 

Air (urban 

area) 

Sweden 2006/ 

2007 

3 1.1–5.5 ng/m3 2.3 ng/m3 100 %  [56] 

WWTP effluent Denmark 2011 3 NQ NQ 0 % (LOQ = 

100 ng/L) 

[58] 

WWTP effluent Faroe 

Islands 

2011 2 1.4–4 µg/L 2.7 µg/L 100 % [58] 

WWTP influent Faroe 

Islands 

2011 1 1.5 µg/L 1.5 µg/L 100 %  [58] 

WWTP effluent Norway 2011 3 170–200 ng/L 180 ng/L 100 %  [58] 

WWTP effluent Sweden 2011 3 NQ–370 ng/L 200 ng/L 0 % (LOQ = 

100 ng/L) 

[58] 

WWTP effluent Finland 2011 3 NQ–220 ng/L 110 ng/L 67 % (LOQ = 

100 ng/L) 

[58] 

WWTP Sludge Sweden 2006/ 

2007 

16 16–51 mg/kg 

dw 

20.5 mg/kg 

dw 

100 %  [56] 

WWTP Sludge Denmark 2011 2 9.9–14 mg/kg 

dw 

12 mg/kg 

dw 

100 %  [58] 

WWTP Sludge Norway 2011 3 14–15 mg/kg 

dw 

14 mg/kg 

dw 

100 %  [58] 

WWTP Sludge Sweden 2011 3 19–42 mg/kg 

dw 

20 mg/kg 

dw 

100 %  [58] 

WWTP Sludge Faroe 

Islands 

2011 2 1.8–8.6 mg/kg 

dw 

5.2 mg/kg 

dw 

100 %  [58] 

WWTP Sludge Finland 2011 3 4.9–32 mg/kg 

dw 

25 mg/kg 

dw 

100 %  [58] 

WWTP Sludge Iceland 2011 3 6.7–19 mg/kg 

dw 

12 mg/kg 

dw 

100 %  [58] 

Drinking water England 1998 2 ND ND 0 % (LOD = 

0.2 µg/L) 

[51] 
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Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number 

of 

samples 

Concentration 

range 

Median 

concen-

tration 

Samples  

> LOD 

Refer-

ence 

Diundecyl phthalate (DUP) 

Sediment Denmark 2010/ 

2011 

3 NQ NQ 0 % (LOQ = 

10 µg/kg dw) 

[58] 

Sediment Finland 2011 3 NQ NQ 0 % (LOQ = 

10 µg/kg dw) 

[58] 

Sediment Faroe 

Islands 

2011 4 NQ NQ 100 %  [58] 

Sediment Iceland 2011 3 NQ NQ 0 % (LOQ = 

10 µg/kg dw) 

[58] 

Sediment Norway 2002/ 

2005 

3 NQ–58 µg/kg 

dw 

NQ 33 % (LOQ = 

10 µg/kg dw) 

[58] 

Sediment Sweden 2011 3 NQ–21 µg/kg 

dw 

NQ 33 % (LOQ = 

10 µg/kg dw) 

[58] 

WWTP influent Faroe 

Islands 

2011 1 NQ NQ 0 % (LOQ = 

20 ng/L) 

[58] 

WWTP effluent Denmark 2011 3 NQ NQ 0 % (LOQ = 

20 ng/L) 

[58] 

WWTP effluent Finland 2011 3 NQ NQ 0 % (LOQ = 

20 ng/L) 

[58] 

WWTP effluent Faroe 

Islands 

2011 2 NQ NQ 0 % (LOQ = 

20 ng/L) 

[58] 

WWTP effluent Norway 2011 3 NQ NQ 0 % (LOQ = 

20 ng/L) 

[58] 

WWTP effluent Sweden 2011 3 NQ NQ 0 % (LOQ = 

20 ng/L) 

[58] 

WWTP Sludge Denmark 2011 2 NQ NQ 0 % (LOQ = 

20 µg/kg dw) 

[58] 

WWTP Sludge Finland 2011 3 NQ NQ 0 % (LOQ = 

20 µg/kg dw) 

[58] 

WWTP Sludge Faroe 

Islands 

2011 2 NQ NQ 0 % (LOQ = 

20 µg/kg dw) 

[58] 

WWTP Sludge Iceland 2011 3 NQ–230 µg/kg 

dw 

NQ 33 % (LOQ = 

20 µg/kg dw) 

[58] 

WWTP Sludge Norway 2011 3 1.2–1.4 mg/kg 

dw 

1.4 mg/kg 

dw 

100 %  [58] 

WWTP Sludge Sweden 2011 3 NQ–870 µg/kg 

dw 

NQ 33 % (LOQ = 

20 µg/kg dw) 

[58] 

Note: No reports of measurements of the occurrence of DUP in the natural environment were found during the 

preparation of this fact sheet. Therefore, only measurements of DUP concentrations in different WWTP 

compartments are presented. It remains unclear whether or not DUP exists in the natural environment at 

measurable concentrations. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to phthalates 

exists for different organisms and across different study levels. A comprehensive but non-exhaustive set of 

reported observations is included below. 

 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

Substance Organism Observation Reference 

DOP abalone Effect on metamorphosis [60] 

DOP rat Decreased sperm count and motility, elevated alkaline 

phosphatase and calcium levels in serum 

[61] 

DIDP Japanese medaka No effect on sex ratio observed [62] 

DIDP mouse Increase in the incidence of non-neoplastic lesions, 

increase in brain, kidney, spleen adrenal and liver weights 

and decrease in body weight 

[63] 

DIDP rat Decreased testis weight, increased liver weight, increased 

serum levels of alkaline phosphatase, and decreased total 

cholesterol 

[64] 

DIDP; DUP Daphnia magna, 

Japanese medaka 

No effect on reproduction (egg production) observed [62,65,66] 

DUP rainbow trout No effect on hatching rates observed [66] 

DUP rat Decreased implantation sites, decreased relative anogenital 

distance in males, increased occurrence of lumbar ribs, 

increased number of ossification centers in caudal vertebral 

centra 

[67] 

 

 

In vitro level 

Substance Cell line Observation Reference 

DOP rat Disrupted iodine uptake (iodine is crucial for thyroid 

hormone synthesis)  

[68] 

DOP human, yeast, rat  Not competitively binding to uterine estrogen receptor  [69] 

DIDP human Decreased the expression of genes involved in sulphonation [70] 
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Quadrosilan 

Key References: 

 G. Petersen, D. Rasmussen, K. Gustavson, Study on enhancing the Endocrine Disrupter priority list with 

a focus on low production volume chemicals, 2006. 

http://ec.europa.eu/environment/chemicals/endocrine/pdf/final_report_2007.pdf 

 U. Hass, S. Christiansen, M. Axelstad, J. Boberg, A.-M. Andersson, N.E. Skakkebaek, K. Bay, H. 

Holbech, K.L. Kinnberg, P. Bjerregaard, Evaluation of 22 SIN List 2.0 substances according to the 

Danish proposal on criteria for endocrine disrupters, 2012. 

http://orbit.dtu.dk/fedora/objects/orbit:118034/datastreams/file_65c11a04-5ea1-4c6b-acaa-

cea852fa46a4/content (accessed April 4, 2017). 

 

 

 

Chemical Identification 

Name(s) Abbreviation CAS Number Structure 

Quadrosilan; 

2,6-cis-diphenyl-

hexamethyl-

cyclotetraosiloxane 

QS 33204-76-1 

 

 

Completed assessments as the basis for inclusion: SIN List, Danish Criteria  

 

 

 

 

Physical and Physicochemical Properties 

Property Quadrosilan 

Molecular formula C18H28O4Si4 

Molecular weight [g/mol] 420.76 

Physical state at 20°C solid 

Melting point [°C] 44.0 °C [1] 

Density [g/cm3] NR 

Vapor pressure at 25°C [mmHg] 8.37*10-6 † 

Water solubility at 25°C [mg/L]  2.6*10-3 † 

Octanol/water partition coefficient (log KOW) 9.22† 

Organic carbon/water partition coefficient (log KOC) 6.88 (MCI method)†, 8.00 (Kow method)† 

Air/water partition coefficient (log KAW) -1.87† 

Dissociation constant (pKa) Not applicable  

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [5]. 

NR = not reported 



  DRAFT 

195 
 

Degradation Pathways and Kinetics 

 

Information on degradation pathways of quadrosilan was not found during the preparation of this fact sheet. 

 

 

 

 

Intentional Uses and Production Levels 

Uses 

 May be used in breast implants and bearing grease [2], although other reports state that this use is not 

documented [3]. 

 May be used as a treatment for prostatic cancer under the trade name Cisobitan [4]. 

 

Production Levels 

No information on production levels was found. 

 

 

 

Emission Sources into the Environment 

 

 0.1 kg per year are released to air and 200 kg per year to wastewater [2].  

 Specific information regarding emissions during the different phases of the life cycle was not found. 

 

 

 

Distribution in the Natural Environment 

Estimated Environmental Distribution 

Inadequate data regarding the emission patterns for quadrosilan across its wide range of uses have been 

identified, hindering a representative understanding of its environmental distribution. Additional efforts are 

needed to better understand the emission patterns, and environmental models (e.g., the Level III fugacity 

model in EPI Suite [5]) could then be used to estimate the distribution of quadrosilan across the different 

environmental compartments. 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

Quadrosilan 1085 (estimated)† fish [5] 
 

 

 

 

Measured Environmental Concentrations 

 

No measured environmental concentrations were found during the preparation of this fact sheet. It is 

unclear whether or not the chemical exists in the environment at measurable concentrations. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to quadrosilan 

exists for different organisms at the in vivo level. A comprehensive but non-exhaustive set of reported 

observations is included below. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 
 

Substance Organism Observation Reference 

Quadrosilan rat Decreased testosterone levels in males [6] 

Quadrosilan rabbit, dog, 

rat, mouse 

Impaired reproduction (altered genital / reproductive organs, 

disrupted sperm / oocyte production, increased fragmentation)  

[7–9] 

 

 

In vitro level 

 No reported studies investigating this level were identified during the preparation of this fact sheet. 
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Triphenyl phosphate 

Key References: 

 I. Van Der Veen, J. De Boer, Phosphorus flame retardants: Properties, production, environmental 

occurrence, toxicity and analysis, Chemosphere. 88 (2012) 1119–1153. 

doi:10.1016/j.chemosphere.2012.03.067. 

 D.N. Brooke, M.J. Crookes, P. Quarterman, J. Burns, Environmental risk evaluation report: Triphenyl 

phosphate (CAS no. 115-86-6), Bristol, 2009. 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/290862/scho0809bquk-e-

e.pdf 

 

 

 

Chemical Identification 

Name Abbreviation CAS Number Structure 

Triphenyl phosphate TPhP 115-86-6 

 

Completed assessments as the basis for inclusion: SIN List 

 

 

 

Physical and Physicochemical Properties 

Property TPhP 

Molecular formula C18H15O4P 

Molecular weight [g/mol] 326.3 

Physical state at 20°C solid 

Melting point [°C] 50.5 [1] 

Density [g/cm3] 1.2055 at 50 °C [1] 

Vapor pressure at 25°C [mmHg] 6.28*10-6 [2] 

Water solubility at 25°C [mg/L]  1.9 [2]; 7.3*10-7 [3] 

Octanol/water partition coefficient (log KOW) 4.59 (QSAR estimate) [4] ; 4.76 [2] 

Organic carbon/water partition coefficient (log KOC) 4.03 (MCI method)†, 3.24 (Kow method)† 

Air/water partition coefficient (log KAW) -3.87† 

Dissociation constant (pKa) Not applicable 

 

  

                                                      
† Estimated value using models in EPI Suite v4.11 [6]. 

NR = not reported 
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Degradation Pathways and Kinetics 
 

Mechanisms 
Expected to occur? 

Technosphere Environment Reference 
Yes No Not reported 

Hydrolysis X    Natural waters [5] 

Photolysis X    Surface water [5] 

OH-radical 

reactions 

X    Atmosphere [6] 

Biodegradation X   WWTP Soil, sediment [5,7] 
 

 

Kinetics – TPhP 

Mechanism Reported values Reference 

OH-radical reactions Half-life = 12 h (estimated)† [6] 

Hydrolysis Half-life = 7.5 d (pH 8.2) [5] 

Hydrolysis Half-life = 19 d (pH 7) [5] 

Biodegradation (activated sludge, 

aerobic) 

83–94 % degraded after 28 d [7] 

Biodegradation (river sediment, mostly 

anaerobic) 

89.7 % degraded after 40 d [7] 

Biodegradation (activated sludge, 

domestic, aerobic) 

93 % degraded after 49 d [7] 

Biodegradation (soil, aerobic) Half-life = 37 d [7] 
 

 

 

Intentional Uses and Production Levels 

Uses 

 Mainly used as a flame retardant and plasticizer in plastics such as cellulose acetates, cellulose nitrates, 

vinyl polymers, and others.  [5,8,9] 

 Also used as an additive in hydraulic fluids and lubricants [5]. 

 Main areas of use in the EU in 2005 included printed circuit boards, thermoplastic/styrenic polymers, 

thermosets and epoxy resins, and photographic film [5]. 

 

Production Levels 

 Currently registered in the EU with 1000–10 000 tonnes of production or import. [7] 

 4500–22 700 tonnes produced or used in the US in 2006 [8]. 

 

 

Emission Sources into the Environment 
 

 Emission Sources 

Production Only a minor source of total environmental emissions [8]. 

Use Hydraulic fluid leakages and leaching from plastics it is incorporated in [5,8]. 

Disposal Leaching from disposed plastics [5]. 

Other sources Not reported 
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Distribution in the Natural Environment 

Estimated Environmental Distribution 

Based on the identified uses and emission sources for triphenyl phosphate as a plastic additive and the 

emission scenario information generated by the OECD [10], a plausible emission pattern was assumed to 

estimate the resulting distribution in the environment using the Level III fugacity model in EPI Suite [6]. The 

assumed emission pattern and the resulting environmental distribution from the model are presented in the 

table below.  

 

 Assumed Emission Pattern Modelled Distribution Results 

 Air Water Soil Air Water Soil Sediment 

DEP 50 % 50 % 0 % 2 % 39 % 35 % 24 % 

 

 

Bioaccumulation Potential 

 Bioconcentration factor (BCF) Organism Reference 

Triphenyl phosphate 
144 killifish [7] 

113 fish [8] 
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Measured Environmental Concentrations 

Measured concentrations for TPhP have been reported in numerous environmental media. A non-exhaustive set 

of reported concentrations is included below. 

 

Concentrations are provided in varying units depending on the media. Mass per mass dry weight (dw) and wet 

weight (ww) are sometimes used. ND = not detected, i.e., below the limit of detection (LOD). NQ = not 

quantified, i.e., below the limit of quantification (LOQ). NR = not reported. 

 

Measured 

compartment 

Sampling 

location 

Sampling 

year 

Number of 

samples 

Concentration 

range 

Median 

concentration 

Samples  

> LOD 

Refer-

ence 

Triphenyl phosphate (TPhP) 

River water UK 2011 13 ND–21.7 ng/L 15.1 ng/L 87 % (LOD = 

4.5 ng/L) 

[11] 

River water Austria 2005 4 <MQL 

(=4.4 ng/L)– 

10 ng/L 

NR NR [12] 

River water Germany 2002 10 <LOQ (10)–

80 ng/L 

15 ng/L 80 % (LOD = 

NR) 

[13] 

Surface and 

ground water 

USA 2001 73 ND–<RL 

(= 0.5 µg/L) 

NR 1.35 % 

(LOD = NR)   

[14] 

River sediment Austria 2005 4 ND–160 µg/kg 

dw 

NR NR [12] 

WWTP effluent Austria 2005 16 <MQL 

(=7.0 ng/L)–

170 ng/L 

NR NR [12] 

WWTP sludge China NR 

(2013) 

19 <LOQ (4.2) – –

656.7 µg/kg dw 

46.7 µg/kg dw 95 % (LOD = 

2.1 µg/kg dw 

[15] 

River water UK 2011 13 ND – 21.7 ng/L 15.1 ng/L 87 % (LOD = 

4.5 ng/L) 

[11] 

Marine herring Sweden NR 

(2009) 

72 7.1 – –34 ng/g 

lipid 

16 ng/g lipid 100 % (LOD 

= NR) 

[9] 

Note: Additional information regarding the sampling location and year is sometimes provided after values that 

are not reported (NR) in parentheses. This represents an estimated value for this non-reported information 

based on the general details provided in the study. 
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Scientific Evidence of Adverse Endocrine-Related Environmental Effects 

Reported scientific evidence of adverse endocrine-related environmental effects from exposure to triphenyl 

phosphate exist for different organisms and across different study levels. A comprehensive but non-exhaustive 

set of reported observations is included below. 

 

Population level / field studies 

  No reported studies investigating this level were identified during the preparation of this fact sheet. 

 

In vivo level 

 

Substance Organism Observation Reference 

TPhP zebrafish Changed sex hormone levels (plasma and/or whole body)  [16,17] 

TPhP zebrafish Increased plasma vitellogenin* levels in males [16] 
 

 

In vitro level 

Substance Cell line Observation Reference 

TPhP human, 

zebrafish 

Altered transcription profiles of genes involved in estrogen 

and thyroid hormone pathways  

[16,18,19] 

TPhP zebrafish Altered mRNA expression involved in various hormonal 

receptor centered gene networks 

[17] 

 

*Vitellogenin is a precursor protein normally synthesized by females to be incorporated in eggs. 
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