ОзонЭкшн. Кигалийская поправка. Информационный листок №3.

ПГП, СО₂ (экв.) и корзина ГФУ

Предыстория: Успешность достижения целевых показателей сокращения ГФУ согласно Кигалийской поправке будет измеряться в тоннах ${\bf CO_2}$ эквивалента. Важно, чтобы политические деятели и заинтересованные стороны в промышленности понимали, как вычисляется этот параметр и как он позволяет проявлять гибкий подход к сокращению ГФУ в каждой стране. Для вычисления тонн ${\bf CO_2}$ эквивалента необходимо знать ${\bf \Pi} {\bf \Gamma} {\bf \Pi}^1$ (потенциал глобального потепления) каждого соответствующего газа.

ЧТО Такое ПГП? Потенциал глобального потепления (ПГП) – это мерило относительного воздействия различных газов на глобальное потепление. ПГП показывает количество тепла, уловленного 1 тонной газа, относительно количества тепла, уловленного 1 тонной СО₂, за определенный период. СО₂ был избран Межправительственной комиссией по изменению климата (IPCC) в качестве эталонного газа и его ПГП принят за единицу. Большинство ГХФУ и ГФУ обладают ПГП в тысячи раз превосходящий ПГП СО₂. Например, у ГФУ-134а ПГП равен 1430. Это означает, что выброс 1 тонны ГФУ-134а внесет такой же вклад в глобальное потепление, как выброс 1430 тонн СО₂.

Почему у одного и того же газа различные значения ПГП? В разных изданиях не всегда указаны те же самые величины ПГП для одного и того же газа. Для этого есть две основные причины:

- а) ПГП может быть определен для измерения воздействия на разных временных отрезках: 20, 100 или 500 лет. В результате для каждого временного отрезка получаются разные величины ПГП.
- б) Имеется неопределенность по поводу наилучшей величины ПГП, присваиваемой каждому газу. Основным источником данных о ПГП являются Доклады IPCC. Величины ПГП, опубликованные IPCC, обновляются на протяжении последних 20 лет.

ПГП, использованные в Кигалийской поправке: В Кигалийской поправке согласован стандартный набор величин ПГП для отчетности по потреблению и производству ГФУ. Величины ПГП для ГХФУ и ГФУ указаны в Приложении С и Приложении F Монреальского протокола. и основаны на столетнем ПГП согласно IV Оценочному докладу IPCC.

Некоторые ГХФУ и ГФУ используются как чистые жидкости, например, ГФУ-134а в различных применениях. Однако многие из самых распространенных ГФУ являются смесями двух или более отдельных молекул ГФУ. ПГП смеси является взвешенной усредненной величиной ПГП компонентов смеси. См. примеры вычисления ПГП смеси в Вставке 1.

Группа	Жидкость	Стандартная величина ПГП в
		Монреальском
		протоколе
ГФУ	ГФУ-134а	1 430
	ГФУ-227еа	3 220
ГФУ	R-404A	3 922
смеси	R-410A	2 088
ГХФУ	ГХФУ-22	1 810
	ГХФУ-141b	725

Вставка 1. Вычисление ПГП для смеси

ПГП для ГХФУ важны, так как они составляют часть базового потребления страны (См. подробнее о базовом потреблении Информационный листок Кигали №5).

В таблице показаны величины ПГП, которые следует использовать для самых распространенных ГФУ и ГХФУ. Таблица в конце настоящего Информационного листка содержит подробный перечень величин ПГП для всех важных молекул и смесей.

Что такое тонны CO₂ эквивалента?

Тонны CO_2 эквивалента это взвешенные по ПГП количества газа.

Их зачастую называют тоннами ${\rm CO_2}$ -экв. или тоннами ${\rm CO_2}$.

Тонны CO_2 эквивалента вычисляются умножением массы газа (в тоннах) на ПГП (потенциал глобального потепления) этого газа.

Вставка 2: Вычисление тонн СО2 эквивалента

Например, тонны CO_2 эквивалента для 100 kg $\Gamma\Phi Y$ -404A вычисляются так:

СО2 экв. = масса (в тоннах) х ПГП

Масса = 100/1 000 = 0.1 тонн

 $\Pi \Gamma \Pi R-404A = 3922$

Отсюда: 100 кг R-404A это 0,1 x 3922 тонн CO_2e

= 392,2 тонн CO₂-экв.

Измерение сокращения ГФУ для «корзины» газов: Использование параметра **тонны CO_2-экв.** для измерения прогресса в сокращении ГФУ делает возможным применение единого набора целевых показателей сокращения к целой корзине ГФУ. Корзина подконтрольных ГФУ перечислена в Приложении F Монреальского протокола вместе со стандартными величинами ПГП. Целевые показатели производства и потребления заданы в тоннах CO_2 -экв. и применяются к всеобщему использованию всей корзины ГФУ.

Этот метод позволяет каждой стране планировать сокращение так, чтобы наилучшим образом соответствовать местным условиям. Не существует директивных требований прекращения применения определенных молекул ГФУ – это совокупная цель для всех ГФУ, измеренных в тоннах CO_2 -экв., которой следует достичь. Что поощряет использование альтернатив с низким ПГП, но позволяет продолжать использование малых количеств газов с высоким ПГП на рынках, где нет рентабельной альтернативы.

Базовая линия для вычислений сокращения ГФУ основана на сочетании потребления ГФУ и ГХФУ (см. Информационный листок Кигали №5). Базовое количество должно также рассматриваться как корзина газов с величинами ПГП для ГХФУ, используемое для вычисления их тоннажа в СО₂-экв.

Спектр ПГП: На Рис. 1 показан спектр ПГП для ГФУ, ГХФУ и нетрадиционных (NIK) жидкостей, с использованием поясов ПГП, указанных Группой технико-экономической оценки Монреальского протокола. Полосы не являются общепринятыми, но помогают показать смесь жидкостей, которая может быть использована в будущем.

Самые распространенные ГХФУ и ГФУ² имеют ПГП в диапазоне 1400-4000. Средневзвешенный ПГП этих ГХФУ и ГФУ около 2000.

Для достижения 80%-85% сокращения потребления ГФУ посредством Кигалийской поправки, потребуется использовать ГФУ со средним ПГП около 200-300. Как показано на Рисунке, есть различные «ультра-низкие» ПГП с величинами ниже 30. Вероятно, в будущем бу-

ПГП Примеры ПГП сверхвысокий > 10000 HFC-23 (14 800) очень высокий 3000-10000 R-404A (3 922) R-507A (3 985) R-410 (2 088) HCFC-22 (1 810) HFC-134a (1 430) высокий 1000-3000 HFC-32 (675) R447A (583) R454B (446) средний 300-1000 низкий 100-300 R454A (239) R455A (148) очень низкий 30-100 HR430A (94) сверхнизкий < 30 R717 (0) R744 (1) R290 (3) HF01234yf (<1)

Рис. 1

На основе докладов ТЕАР целевой группы.

дет значительное потребление газов с ультра-низким ПГП и некоторое потребление газов со средним ПГП и ограниченное применение газов с высоким ПГП, так, где нет технических альтернатив. См. возможные варианты низких ПГП в Информационном листке Кигали №4.

Таблица величин ПГП: В таблицах приведен подробный перечень ПГП* разных жидкостей, на которых отразится Кигалийская поправка. Цветовая кодировка основана на Рис.1.

Группа	Жидкость	ПГП
	ГФУ-23	14 800
	ГФУ-32	675
	ГФУ-41	92
	ГФУ-125	3500
	ГФУ-134	1100
	ГФУ-134А	1 430
	ГФУ-143	353
ГФУ	ГФУ-143А	4470
ТФУ	ГФУ-152А	124
	ГФУ-227ЕА	3220
	ГФУ-236СВ	1340
	ГФУ-236ЕА	1370
	ГФУ-236FA	9810
	ГФУ-245FA	1030
	ГФУ-365МFС	794
	ГФУ-4310МЕЕ	1640
	ГХФУ-22	1810
	ГХФУ-123	77
ГХФУ	ГХФУ-124	609
	ГХФУ-141В	725
	ГХФУ-142В	2310
	ХФУ -11	4750
	ХФУ -12	10.900
ХФУ	ХФУ -113	6 130
	ХФУ -114	10 000
	ХФУ -115	7 370
	ГФО-1234ҮF	4
ГФО	ГФО-1234ZE	7
ΙΨΟ	ГФО-1233ZD	4
	ГФО-1336МZZ	9
	АММИАК	0
	CO2	1
ПРОЧИЕ	ПРОПАН	3
TIPUMIE	ИЗОБУТАН	3
	ПЕНТАН	5
	ПРОПИЛЕН	2

R-401A R-401B	ПГП 1 182
	1 182
R-401B	1 102
	1 288
R-402B	2 416
R-403A	3 124
R-403B	4 457
R-404A	3 922
R-407A	2 107
R-407C	1 774
R-407F	1 825
R-408A	3 152
R-409A	1 585
R-409B	1 560
R-410A	2 088
R-411A	1 597
R-412A	2 826
R-413A	2 053
R-415A	1 507
R-415B	546
R-416A	1 084
R-417A	2 346
R-418A	1 741
R-419A	2 967
R-420A	1 536
R-421A	2 631
R-421B	3 190
R-422A	3 143
R-422B	2 526
R-422C	3 085
R-422D	2 729
R-423A	2 280
R-424A	2 440
R-425A	1 505
R-426A	1 508
R-427A	2 138
R-428A	3 607
R-429A	14
R-430A	95
R-431A	38
R-432A	2
R-433A	3
R-433B	3
R-433C	3
R-434A	3 245
R-435A	26
N-433A	

0	000
Смесь	ПГП
R-436A	3
R-436B	3
R-437A	1 805
R-438A	2 265
R-439A	1 983
R-440A	144
R-441A	3
R-442A	1 888
R-444A	93
R-444B	296
R-445A	135
R-446A	461
R-447A	583
R-448A	1 387
R-449A	1 410
R-449B	1 412
R-450A	605
R-451A	149
R-451B	164
R-452A	2 140
R-452B	698
R-453A	1 765
R-454A	239
R-454B	466
R-454C	148
R-455A	148
R-456A	687
R-457A	139
R-458A	1650
R-459A	460
R-459B	145
R-460A	2103
R-461A	2767
R-502	4 657
R-507A	3 985
R-508A	13 214
R-508B	13 396
R-510A	1
R-511A	9
R-512A	189
R-513A	631
R-513B	596
R-514A	7
R-515A	393
N OTOA	090

^{*} Значения от ТЕАР 2014