DEVELOPING AN INVENTORY OF ULAB

Melisa Lim
Secretariat of the Basel, Rotterdam and Stockholm Conventions
Why is an inventory useful

Key output: information on the amount of ULAB generated

- Strategy for environmentally sound management (ESM):
 - Policies
 - Collection system
 - Planning and financing of disposal/recycling facilities

- Effectiveness of control system
 - Transboundary movements of ULAB controlled according to Basel Convention (BC)

- Facilitate reporting
 - Data provided as part of national report under the BC
Practical guidance on the inventory of ULAB

- Simple methodology for developing ULAB inventory
- Appropriate for early stages of developing a system for the ESM of ULAB

- Guidance aims to facilitate national reporting under BC:
 - Information to be collected on:
 - Generation of ULAB
 - Waste disposal and recovery (recycling) facilities
 - Transboundary movements of ULAB

- Request by BC Conference of the Parties for pilot-testing of the guidance and comments from Parties
Methodology

Classification of ULAB:

Consistent classification useful for data collection, analysis and reporting.

Basel Convention
Annex I:
Y31: lead; lead compounds
Y34: acidic solutions or acids in solid form

Annex VIII:
A1160: waste lead-acid batteries, whole or crushed
A4090: waste acidic or basic solutions, other than those specified in the corresponding entry on list B (note the related entry on list B B2120)
Methodology

Calculating estimate of ULAB generation:

Relies on readily available statistics and data on a few key parameters

Step 1: Collect data on the amount of LAB in use
Step 2: Estimate amount of ULAB generated based on lifespan and weight of LAB

Amount of ULAB generated per year = Amount of LAB in use / Life span

Practical guidance step-by-step calculation and examples
Methodology

Data requirements:

- Identify LAB applications in your country (table 2 of Practical guidance)
- Identify possible sources of information and information to be collected (table 2)
- For each application:
 - number of LAB per system (table 3)
 E.g. 1 LAB per vehicle; 10 for a mobile phone station
 - Weight of each LAB (table 3)
 - Lifespan (varies according to conditions of use)

Practical guidance provides:
- Example questionnaire for collecting data
- Model database for recording information
Collecting data for national reporting

Information to be reported includes:

- Country contacts (focal point transmits national report and competent authority authorizes imports and exports of hazardous wastes)
- Legislation to implement BC
- National definitions of waste and hazardous wastes
- Restrictions on transboundary movements of hazardous and other wastes
- Use of notification and movement documents
- Options for final disposal and recovery of hazardous and other wastes
- Import of hazardous and other wastes
- Export of hazardous and other wastes
- Amount of hazardous and other wastes generated
- Disposal which did not proceed as intended
- Accidents during transboundary movements
- Cases of illegal traffic

Assessing results and conclusions

- Make inventory more complete:
 - Reliability of collected data
 - Ways for improving data quality (e.g. field survey instead of desk study)
 - Mechanism for regular updating of the inventory

- Assessing accuracy:
 - E.g. compare amount generated with amount exported and/or disposed
Next steps: pilot testing

- Email to interested countries
- Introductory webinar with technical expert
- Follow-up webinar for support

- Feedback and comments on the Practical guidance to be provided by 30 January 2018
Acknowledgements

Draft practical manual for the development of inventories of used lead-acid batteries

- Document UNEP/CHW.13/INF/22
- Available at: http://www.basel.int/TheConvention/tabid/5310/Default.aspx
- Technical expertise: Brian Wilson (bwilson@ila-lead.org)
- Financial support: European Union
THANK YOU

Melisa.lim@brsmeas.org