

Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants - Fourth Round 2018/2019

Coordinated by: Chemicals and Health Branch, Economy Division United Nations Environment Programme

The designation employed and the presentation of material in this report do not imply any expression of any opinion whatsoever on the part of the United Nations or the UN Environment Programme concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any delimitation of its frontiers or boundaries. Any views expressed in the document do not necessarily reflect the views of UNEP.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by UNEP, nor preferred compared to others of a similar nature that are not mentioned. The use of information from this publication concerning proprietary products for publicity or advertising is not permitted.

Sketch on title page: World map displaying regions and number of laboratories according to their capacity to analyse groups of POPs - PCB(6), dl-POPs, PBDE+HxBB, toxaphene or PFAS – and type of matrix – test solution, sediment, fish, human milk, air extract, human plasma, and water – as shown in the "Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants, 4th Round"; prepared by Haosong Jiao, Chemicals and Health Branch; Economy Division.

The electronic version of this document is available from https://www.unep.org/node/1226

Acknowledgment

The work being presented in this report was developed under agreement with UNEP, Economy Division, Chemicals and Health Branch. Funds have been provided by the Global Environment Facility (GEF) through four regional projects "(Continuing) Support for the implementation of the Global Monitoring Plan under the Stockholm Convention in the African/Asian/GRULAC/Pacific Islands Region".

This report has been prepared by

Prof. Dr. Heidelore Fiedler
Örebro University
School of Science and Technology
Man-Technology-Environment Research Center (MTM)
SE-701 82 Örebro
Sweden

Ike van der Veen, MSc.
Vrije Universiteit Amsterdam
Dept. Environment and Health (E&H)
De Boelelaan 1085
NL-1081 HV Amsterdam
The Netherlands

Prof. Dr. Jacob de Boer Vrije Universiteit Amsterdam Dept. Environment and Health (E&H) De Boelelaan 1085 NL-1081 HV Amsterdam The Netherlands

Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – Fourth Round 2018/2019

Contents

Cc	onten	its	i
Lis	st of T	Tables	7
Lis	st of F	Figures	10
Αc	crony	ms and Abbreviations	12
Sι	ımma	ary	14
1	Intro	oduction	15
2	Mat	terials and Methods	17
	2.1	Identification and Preparation of the Test Samples	17
		2.1.1 Naturally Contaminated Test Samples	17
		2.1.2 Test Solutions	18
	2.2	Processing of Samples and Results	18
		2.2.1 Distribution of Test Samples	18
		2.2.2 Reporting Results	19
	2.3	Methods Used by Participants	19
3	Resu	ults	22
	3.1	Participation per United Nations Region	22
	3.2	Compound Group-Specific Results	23
		3.2.1 Organochlorine Pesticides (OCPs)	23
		3.2.2 Polychlorinated Biphenyls (PCB)	33
		3.2.3 Dioxin-like POPs (PCDD/PCDF and dl-PCB)	36
		3.2.4 Polybrominated Diphenyl Ethers (PBDE)	46
		3.2.5 Toxaphenes	50
		3.2.6 Hexabromocylcododecane (HBCD)	52
		3.2.7 Perfluoroalkyl Substances (PFAS)	54
	3.3	Regional Participation	64
	3.4	Methodological Considerations	66
	3.5	Analyte Group - Specific Performance	68
		3.5.1 Organochlorine Pesticides	68
		3.5.2 Polychlorinated Biphenyls	73
		3.5.3 Dioxin-like POPs	76
		3.5.4 Polybrominated Diphenyl Ethers	78
		3.5.5 Hexabromobiphenyl	81
		3.5.6 Toxaphenes	83
		3.5.7 Hexabromocyclododecane	84
		3.5.8 Perfluoroalkyl Substances	86
4	Com	nparison with the previous rounds of UNEP's Interlaboratory Assessment	91
5	Con	clusions and recommendations	95
	5.1	Technical Conclusions	95
	5.2	Recommendations	97

6	References	98
7	Appendices	100
App	pendix I: List of Participants	101

LIST OF TABLES

Table 1:	Participating degree per compound class (maximum number of labs is given)	22
Table 2:	Summary results OCPs, test solution Y (ng/g)	23
Table 3:	Summary of laboratory performance OCPs, test solution Y	24
Table 4:	Summary results OCPs, sediment (ng/g)	25
Table 5:	Summary of laboratory performance OCPs, sediment	26
Table 6:	Summary results OCPs, fish (product basis) (ng/g)	27
Table 7:	Summary of laboratory performance OCPs, fish	28
Table 8:	Summary results OCPs, human milk (lipid weight basis) (ng/g)	29
Table 9:	Summary of laboratory performance OCPs, human milk	30
Table 10:	Summary results OCPs, air extract (TOL) (ng/g)	31
Table 11:	Summary of laboratory performance OCPs, air extract (TOL)	32
Table 12:	Summary results indicator PCB, test solution Z (ng/g)	33
Table 13:	Summary of laboratory performance indicator PCB, test solution Z	33
Table 14:	Summary results indicator PCB, sediment (ng/g)	33
Table 15:	Summary of laboratory performance indicator PCB, sediment	33
Table 16:	Summary results indicator PCB, fish (product basis) (ng/g)	34
Table 17:	Summary of laboratory performance indicator PCB, fish	34
Table 18:	Summary results indicator PCB, human milk (lipid weight basis) (ng/g)	34
Table 19:	Summary of laboratory performance indicator PCB, human milk	34
Table 20:	Summary results indicator PCB, air extract (TOL) (ng/g)	35
Table 21:	Summary of laboratory performance indicator PCB, air extract (TOL)	35
Table 22:	Summary results dI-POPs, test solutions T and U (ng/g)	36
Table 23:	Summary of laboratory performance dl-POPs, test solutions T and U	37
Table 24:	Summary results dI-POPs, sediment (pg/g)	38
Table 25:	Summary of laboratory performance dl-POPs, sediment	39
Table 26:	Summary results dI-POPs, fish (product basis) (pg/g)	40
Table 27:	Summary of laboratory performance dl-POPs, fish	41
Table 28:	Summary results dI-POPs, human milk (lipid weight basis) (pg/g)	42
Table 29:	Summary of laboratory performance dl-POPs, human milk	43
Table 30:	Summary results dI-POPs, air extract (TOL) (pg/g)	44
Table 31:	Summary of laboratory performance dl-POPs, air extract (TOL)	45
Table 32:	Summary results PBDE, test solution V (ng/g)	46
Table 33:	Summary of laboratory performance PBDE, test solution V	46

Table 34:	Summary results PBDE, sediment (ng/g)	46
Table 35:	Summary of laboratory performance PBDE, sediment	47
Table 36:	Summary results PBDE, fish (product basis) (ng/g)	47
Table 37:	Summary of laboratory performance PBDE, fish	47
Table 38:	Summary results PBDE, human milk (lipid weight basis) (ng/g)	48
Table 39:	Summary of laboratory performance PBDE, human milk	48
Table 40:	Summary results PBDE, air extract (TOL) (ng/g)	48
Table 41:	Summary of laboratory performance PBDE, air extract (TOL)	49
Table 42:	Summary results toxaphenes, test solution AA (ng/g)	50
Table 43:	Summary of laboratory performance toxaphenes, test solution AA	50
Table 44:	Summary results toxaphenes, sediment (ng/g)	50
Table 45:	Summary of laboratory performance toxaphenes, sediment	50
Table 46:	Summary results toxaphenes, fish (product basis) (ng/g)	50
Table 47:	Summary of laboratory performance toxaphenes, fish	51
Table 48:	Summary results toxaphenes, human milk (lipid weight basis) (ng/g)	51
Table 49:	Summary of laboratory performance toxaphenes, human milk	51
Table 50:	Summary results toxaphenes, air extract (TOL) (ng/g)	51
Table 51:	Summary of laboratory performance toxaphenes, air extract (TOL)	51
Table 52:	Summary results HBCD, test solution X (ng/g)	52
Table 53:	Summary of laboratory performance HBCD, test solution X	52
Table 54:	Summary results HBCD, sediment (ng/g)	52
Table 55:	Summary of laboratory performance HBCD, sediment	52
Table 56:	Summary results HBCD, fish (product basis) (ng/g)	52
Table 57:	Summary of laboratory performance HBCD, fish	53
Table 58:	Summary results HBCD, human milk (lipid weight basis) (ng/g)	53
Table 59:	Summary of laboratory performance HBCD, human milk	53
Table 60:	Summary results HBCD, air extract (TOL) (ng/g)	53
Table 61:	Summary of laboratory performance HBCD, air extract (TOL)	53
Table 62:	Summary results PFAS, test solution W (ng/g)	54
Table 63:	Summary of laboratory performance PFAS, test solution W	55
Table 64:	Summary results PFAS, sediment (ng/g)	56
Table 65:	Summary of laboratory performance PFAS, sediment	56
Table 66:	Summary results PFAS, fish (product basis) (ng/g)	57
Table 67:	Summary of laboratory performance PFAS, fish	57
Table 68:	Summary results PFAS, human milk (product basis) (ng/g)	58
Table 69:	Summary of laboratory performance PFAS, human milk	58

Table 70:	Summary results PFAS, human plasma (product basis) (ng/g)
Table 71:	Summary of laboratory performance PFAS, human plasma
Table 72:	Summary results PFAS, air extract (MeOH) (ng/g)61
Table 73:	Summary of laboratory performance PFAS, air extract (MeOH)
Table 74:	Summary results PFAS, water (pg/g)63
Table 75:	Summary of laboratory performance PFAS, water
Table 76:	Number of reporting laboratories per POP group and region
Table 77:	Number of reporting laboratories for OCPs per region
Table 78:	Number of reporting laboratories for PCB per region
Table 79:	Number of reporting laboratories for dl-POPs per region
Table 80:	Number of reporting laboratories for PBDE and HxBB per region
Table 81:	Number of reporting laboratories for HBCDs per region
Table 82:	Number of reporting laboratories for toxaphenes per region
Table 83:	Number of reporting laboratories for PFAS per region
Table 84:	Regional distribution of laboratories submitting results for dl-POPs and number o satisfactory results for the dl-POPs
Table 85:	Summary of performance of the 39 laboratories submitting results for PFAS (all PFAS and all matrices included)
Table 86:	Number of laboratories and number of satisfactory results per region for PFAS 87
Table 87:	Number of laboratories that reported results (and z/score assigned) per compound class (maximum number of labs is given)
Table 88:	Summary of z-score results for PFAS in IL2, IL3, and IL4

LIST OF FIGURES

Figure 1	Percentage of laboratories with satisfactory z-scores in the analysis of OCI PCDD/PCDF, PBDE, toxaphene, HBCD and PFAS, with the compounds included did not receive an assigned value.	d, which
Figure 2	Percentage of laboratories with satisfactory z-scores in the analysis of OCI PCDD/PCDF, PBDE, toxaphene, HBCD and PFAS, for all the compounds, which an assigned value.	received
Figure 3	Percentage of laboratories with satisfactory z-scores for analysis of OCPs in solution.	
Figure 4	Results for dieldrin in the test solution.	69
Figure 5	Results for trans-heptachlorepoxide in the air extract.	70
Figure 6	Results for trans-heptachlorepoxide in the air extract arranged by detection r	
Figure 7:	Results for dieldrin in the air extract arranged by detection method	71
Figure 8	Results for dieldrin in the sediment sample arranged by detection method	72
Figure 9	Performances per matrix for the analyses of drins, chlordanes, heptachlors, DI HCHs.	
Figure 10	Results for PCB 28 in the test solution.	74
Figure 11	Performances per matrix for the analyses of PCB	75
Figure 12	Results for PCB 153 in the sediment sample arranged by detection method	75
Figure 13:	Performance of laboratories for analysis of PCDD/PCDF per congener and TEQ (a	-
Figure 14:	Performance of laboratories for analysis of dl-POPs per congener and TEQ (as 9	%CV).78
Figure 15	Results for PBDE 209 in the test solution.	79
Figure 16	Results for PBDE 209 in the sediment sample.	79
Figure 17	Results for PBDE 47 in the fish sample	80
Figure 18	Performances per matrix for the analyses of PBDE	81
Figure 19	Results for PBB 153 in test solution V.	81
Figure 20	Z-scores obtained for PBB 153 in the air extract	82
Figure 21	Z-scores obtained for PBB 153 in the fish sample	82
Figure 22	Results for Parlar 62 in the test solution.	83
Figure 23	Results for the toxaphene congener Parlar 50 in the fish sample	84
Figure 24	Results for γ -HBCD in the test solution.	85
Figure 25	Plots detailed information: γ-HBCD in sediment	86
Figure 26	Results for L-PFOS anion in the test solution.	88
Figure 27	Results for L-PFOS anion in the fish sample	89

gure 28: Performance of laboratories for PFAS according to sample type (as CV)
gure 29 Comparison of performances between interlaboratory assessments for the O analyses (for OCPs determined in all rounds).
gure 30 Comparison of performances between interlaboratory assessments for the indicated PCB analyses
gure 31 z-scores obtained by L103 for OCP analyses in the test solutions in four rounds of t UNEP ILS.
gure 32 z-scores obtained by L030 for PCB analyses in the human milk sample in four rounds the UNEP ILS.
gure 33 Comparison of performances between interlaboratory assessments for the PB analyses

ACRONYMS AND ABBREVIATIONS

AV Assigned value

ASE Accelerated solvent extraction

CEE Central and Eastern Europe

COP Conference of the Parties

CV Coefficient of variation

DDT Dichlorodiphenyltrichloroethane

dl-PCB Dioxin-like polychlorinated biphenyls

dl-POPs Dioxin-like persistent organic pollutants

Includes: 29 congeners that were assigned a TEF by WHO/UNEP expert group (van

den Berg et al., 2006)

EFSA European Food Safety Authority

EPA Environmental Protection Agency (USA)

EtFOSA N-Ethyl perfluorooctane sulfonamide

EtFOSE N-Ethyl perfluorooctane sulfonamidoethanol

EU European Union

FOSA Perfluorooctane sulfonamide(s)

FOSE Perfluorooctane sulfonamidoethanol(s)

GC Gas chromatograph(y)

GC/ECD Gas chromatograph with electron capture detection

GC/MS Gas chromatograph with mass spectrometric detection

GEF Global Environment Facility

GMP Global Monitoring Plan

GPC Gel permeation chromatography

GRULAC Group of Latin America and Caribbean

HCB Hexachlorobenzene

HBCD Hexabromocyclododecane

HCBD Hexachlorobutadiene

HCH Hexachlorocyclohexane

HDPE High-density polyethylene

HPLC High performance liquid chromatography

HRGC High resolution gas chromatography

HRMS High resolution mass spectrometry

HxBB Hexabromobiphenyl

LB Lower-bound

LC Liquid chromatograph(y)

LCV Left-censored values (values below detection limit)

LOD Limit of detection

LRMS Low resolution mass spectrometry

MeFOSA N-Methyl perfluorooctane sulfonamides

MeFOSE N-Methyl perfluorooctane sulfonamidoethanol

MS Mass spectrometer or: mass spectrometry

MS/MS Tandem mass spectrometry

MTM Man-Technology-Environment

NA Not applicable

NAV No assigned value

NC Not contained
ND Not detected

OCP Organochlorine pesticide

OECD Organisation for Economic Co-operation and Development

PBB Polybrominated biphenyl

PBDE Polybrominated diphenyl ethers

PCB Polychlorinated biphenyls

PCDD/PCDF Polychlorinated dibenzo-para-dioxins/polychlorinated dibenzofurans

PFAS Per- or polyfluoroalkyl substances

PFCA Perfluoroalkyl carboxylic acids

PFOS Perfluorooctane sulfonic acid (or sulfonate)

PFSA Perfluoroalkane sulfonic acids
POPs Persistent organic pollutants

QUASIMEME Quality Assurance of Information for Marine Environmental Monitoring in Europe

QA/QC Quality assurance/quality control

TeCDD 2,3,7,8-Tetrachloro-*p*-dibenzodioxin

TEF Toxicity equivalency factor

TEQ Toxicity equivalent

UB Upper-bound United Nations

UPLC Ultra performance liquid chromatography

WEOG Western European and Other Groups

WEPAL Wageningen Evaluating Programmes for Analytical Laboratories

WHO World Health Organization

SUMMARY

The fourth Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants (POPs) was organized in 2018. After invitation to participate in this fourth round of the proficiency test, 148 laboratories from 62 countries had registered. In comparison to the 3^{rd} round in which 175 laboratories had registered, this was somewhat lower. However, again several new laboratories (participating for the first time) joined this exercise. The test materials included test solutions of analytical standards, the abiotic matrices included sediment, air (extract) and water and the biotic matrices were fish, human milk and human plasma. The results for the 23 groups of POPs that were listed in the annexes of the Stockholm Convention until 2013 and in addition hexachlorobutadiene, pentachlorobenzene, α -HCH, β -HCH, γ -HCH, α -endosulfan, β -endosulfan, endosulfan sulfate were assessed. This resulted in a report with a wealth of information on POP analysis and a huge dataset from which the laboratories can evaluate their own methods and performance

The Global Monitoring Plan (GMP) of the Stockholm Convention requires that POP laboratories must be capable – at any time – to analyse samples for POPs within a variation of ±25%. Based on this target error of 25%, the statistical model used provided z-scores based on which the performance of each laboratory for each analyte in each matrix can be assessed.

The results show a scattered picture and in comparison, with previous rounds, the performance of many laboratories receded. For a number of analytes, in particularly for organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), the performance was disappointing. In addition, several laboratories which had been trained within UNEP's or other's capacity building projects and have participated in this scheme for three or four times did not meet the expectations. Relatively low concentrations of OCPs in the test materials and a low fat content in the fish matrix could have played a role. However, these materials are realistic and non-spiked test materials.

A large number of laboratories only analysed a few matrices and especially the standard test solutions, where it was expected that after four rounds of this study, the capacity of the laboratories would have been extended to the analysis of most POPs and the performance would steadily improve. The standard test solution results were often disappointing as well.

More experienced laboratories showed a good to very good performance for chlorinated dibenzodioxins and dibenzofurans and dioxin-like (dl)-PCB, and for PBDE, PFASs and HBCD (α -HBCD in fish and γ -HBCD in sediment). The toxaphene results were encouraging for the test solutions but in a next round, test materials need higher concentrations of toxaphene to enable a realistic test.

This interlaboratory assessment on POPs remains to be among the largest ever organised. Given the overwhelming interest in this study and the need for a substantial increase in quality for many laboratories, it is strongly advised to continue with this study on a bi-ennial basis.

1 Introduction

This interlaboratory assessment is part of the United Nations Environment Programme's (UNEP) capacity building program for laboratories analysing persistent organic pollutants (POPs) that has started in 2005 with the Environment Facility (GEF) funding and implementing the recommendations by the Conference of the Parties to the Stockholm Convention as expressed in the Guidance on the global monitoring plan for POPs (hereinafter referred to as the guidance document) in article 16 of the Convention (for latest version, see UNEP, 2019c). In chapter 4, the guidance document states that "interlaboratory exercises are often used to assess the effectiveness of quality assurance/quality control (QA/QC) practices among several participating labs and to provide a measure of interlaboratory comparability. This usually involves the circulation and analysis of a common standard or reference sample, often at two or more concentration levels". In order to determine the 'true' concentration of chemicals (POPs) in a sample, a chemical laboratory must be able to prove that it is capable to identify and quantify chemicals (analytes) of interest at concentrations of interest. Such accuracy and precision in the determination of POPs is required by article 16 of the Convention and subsequent guidance developed for the Global Monitoring Plan (GMP). To provide reliable monitoring information for the Parties to the Stockholm Convention, the guidance document aims to "confirm a 50% decline in the levels of POPs within a 10-year period" (UNEP, 2019c). This means that POPs laboratories must be capable – at any time – to analyse samples for POPs within a margin of ±25% (Abalos et al., 2013). Participation in the UNEP-coordinated interlaboratory assessment is encouraged in the UNEP/GEF capacity building and data generation projects to support the Global Monitoring Plan (four regional projects during 2016-2020; for further information, http://www.brsmeas.org/Decisionmaking/COPsandExCOPs/2019COPs/Meeting Documents/tabid/7832/language/en-US/Default.aspx, COP INF number UNEP/POPS/COP.9/INF/36). Some countries encourage laboratories reporting data to the GMP to participate in the interlaboratory assessments. Particularly for the fourth round, national food laboratories in Europe participated in this UNEP-coordinated study to assess their performance for the determination of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) following a human exposure assessment by the European Food Safety Authority (EFSA) (EFSA CONTAM Panel, 2018).

In an interlaboratory assessment, participating laboratories all analyse the same sample within a limited time frame for previously selected analytes and report the results to the coordinator of the study. All results are evaluated together according to international standards, thus allowing a performance classification. The current study gave more assistance than a typical proficiency test. For example, in contrast with a proficiency test, after a first inspection of the data by the coordinating institute, the participating laboratories were allowed to make small corrections for obvious errors, such as units, sum parameters, treatment of non-detects and use of decimals. Because many of the participating laboratories are relatively new in this field, an important objective of this assessment is to bring laboratories at a better level of performance. The results of this exercise and the z-scores obtained by the laboratories are very informative about the quality of the participating laboratories. However, more experienced laboratories that also participate should be careful when using these data for accreditation purposes, as in several cases the results may show some bias, due to the influence of a large group of underperforming laboratories. A careful interpretation is needed, in particular for the POP/matrix combinations, which appeared to be 'difficult' (e.g. concentration close to the detection limit, difficult chromatographic separation).

Within the framework of UNEP's capacity building project for training of laboratory staff on POPs analysis in developing countries, the Department of Environment & Health of the Vrije Universiteit Amsterdam, the Netherlands (VU E&H) and the Man-Technology-Environment (MTM) Research Centre, School of Science and Technology at the University of Örebro, Sweden, have organised the Bi-

ennial Global Interlaboratory Assessment on Persistent Organic Pollutants - Fourth Round 2018/2019; "IL4" for short. The results of the assessment are presented in this report and suggestions for improvement of the performance are given.

The POPs studied in this exercise were polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), polychlorinated biphenyls (PCB) and the organochlorine pesticides (OCP), *i.e.*, DDT and metabolites, aldrin, dieldrin, endrin, chlordanes, hexachlorobenzene (HCB), heptachlor and cis-heptachlorepoxide, and mirex. The 'new' POPs included polybrominated diphenylethers (PBDE), hexachlorocyclohexanes (HCHs), chlordecone (kepone), pentachlorobenzene, α and β -endosulfan, endosulfan sulfate and perfluorinated alkane substances (PFAS) as well as hexachlorobutadiene (HCBD). Separate test solutions and assessments were prepared for toxaphene (three 'Parlar' congeners). In total, 16 matrices were offered for analysis: eight test solutions to cover all POPs, two air extracts (one in toluene for the chlorinated and brominated POPs and one in methanol for the fluorinated POPs), sediment, two fish samples (one naturally contaminated sample and the same sample spiked with toxaphene), human milk, human plasma and water (the latter two for PFAS only).

Hundred and forty-eight laboratories from 62 countries registered (see Appendix I: List of Participants for their names and addresses). However, about one fifth of the laboratories did not submit any result, so that, finally, 117 laboratories from 62 countries reported results for at least one POP and one test sample. All codes are confidential and kept with the organizers; they will only be revealed to third parties after permission of the participating laboratory.

2 MATERIALS AND METHODS

2.1 Identification and Preparation of the Test Samples

2.1.1 <u>Naturally Contaminated Test Samples</u>

All samples, apart from the air extracts, and the 'fish toxaphene' were naturally contaminated with the target analytes. The following samples were offered for POPs analysis:

- The sediment test material was sediment originating from the harbour of Rotterdam (The Netherlands) which was dried at 40 °C and sieved (0.5 mm pore size). After homogenization, individual plastic containers were filled with the test matrix and stored at room temperature until shipment. These samples were obtained from the Wageningen Evaluating Programmes for Analytical Laboratories (WEPAL).
- 2. The 'fish A' test material consisted of pike perch (Stizostedion lucioperca) originating from the river Amer (Rhine/Meuse delta) from the Netherlands. After cutting and homogenizing, glass jars were filled with ca. 40 g of the homogenate. The jars were sterilized by autoclaving, which made it possible to store and transport the samples at room temperature before opening of the jar.
- 3. The 'fish toxaphene' test material consisted of pike perch (river Amer, the Netherlands) which was fortified with toxaphene congeners. After cutting and homogenizing, individual glass jars were filled with ca. 40 g of the homogenate. The jars were sterilized by autoclaving, which made it possible to store and transport the samples at room temperature before opening of the jar.
- 4. The **human milk** sample consisted of a pooled human milk sample from four milk banks in Sweden. It has been mixed with cows' milk from Sweden (approx. 25%; to reach the sample volume necessary for this interlaboratory assessment). Fifty mL milk was packed in polypropylene bottles and frozen (-20 °C) prior shipment. All results except for perfluorinated compounds should be reported on a **lipid weight basis**.
- 5. The human plasma sample consisted of a homogenized pooled human blood plasma of individuals in Sweden including some with potential exposures to PFASs. The samples were stored in HDPE vials and kept frozen (-20 °C). Results should be reported on product basis (wet weight) and as an anion. Results could be reported for per- and polyfluoroalkyl substances including PFOS (linear and branched), PFOS precursors, sulfonic and carboxylic acids.
- 6. The **air extract (TOL)** was an extract from PUFs and glassfiber filters in active samplers taken in Brno, Czech Republic and in Örebro, Sweden, in toluene, to which remaining spiked OCPs, PBDE and HBCD extracts from the 3rd round of the interlaboratory assessment were added. The extract was ampouled into 1.2 mL glass vials before shipment.
- 7. The air extract for PFOS and precursor analyses (MeOH) was a methanol extract of PUFs from active samplers, taken in Brno, Czech Republic and in Örebro, Sweden, mixed with remaining spiked extracts from the 3rd round of this study. The extract was ampouled into 1.2 mL glass vials before shipment.
- 8. The **water** test material was a combined surface water sample taken from different locations in the Netherlands. After bottling of the water in HDPE bottles, the material was sterilized by irradiation.

2.1.2 <u>Test Solutions</u>

- 1. The test solution for OCP (Test solution Y) consisted of a mixture of OCPs in iso-octane in a concentration range of 1 ng/g 500 ng/g. This test solution was prepared by VU E&H out of individual stock solutions obtained from Cambridge Isotope Laboratories, Inc. (Tewksbury, USA). After preparation, the solution was ampouled, labelled and stored at room temperature. The OCPs present in the solution were aldrin, dieldrin, endrin, cis-chlordane (alpha), trans-chlordane (gamma), oxychlordane, cis-nonachlor, trans-nonachlor, heptachlor, cis-heptachloroepoxide, trans- heptachloroepoxide, o,p'-DDT, p,p'-DDT, o,p'-DDD, p,p'-DDD, o,p'-DDE, p,p'-DDE, α-HCH, β-HCH, α-endosulfan, β-endosulfan, endosulfan sulfate, chlordecone, hexachlorobenzene, hexachlorobutadiene, mirex, and pentachlorobenzene.
- 2. The **test solution for PCB (Test solution Z)** consisted of a mixture of the indicator PCB (IUPAC nos. 28, 52, 101, 138, 153 and 180) in iso-octane in a concentration range of 1 ng/g 20 ng/g. This test solution was prepared by VU E&H out of individual stock solutions obtained from Cambridge Isotope Laboratories, Inc. (Tewksbury, USA).
- 3. The **test solution for PCDD/PCDF** (**Test solution T**) consisted of a mixture of 17 2,3,7,8-substituted PCDD/PCDF congeners in nonane in the concentration range of 5 ng/g 300 ng/g. This test solution was prepared and labelled by Wellington Laboratories (Guelph, Ontario, Canada).
- 4. The **test solution for dl-PCB (Test solution U)** consisted of a mixture of 12 dl-PCB in nonane in the concentration range of 5 ng/g 300 ng/g. This test solution was prepared, ampouled and labelled by Wellington Laboratories (Guelph, Ontario, Canada).
- 5. The **test solution for PBDE/PBB (Test solution V)** consisted of a mixture of nine PBDE congeners (17, 28, 47, 99, 100, 153, 154, 183 and 209) and PBB 153 in iso-octane in the concentration range of 25 ng/g 750 ng/g. This test solution was prepared, by VU E&H out of individual stock solutions obtained from Cambridge Isotope Laboratories, Inc. (Tewksbury, USA).
- 6. The **test solution for toxaphenes (Test solution AA)** consisted of a mixture of Parlar 26, 50, and 62 in nonane in the concentration range of 1 ng/g 100 ng/g. This test solution was prepared by VU E&H out of individual stock solutions obtained from Cambridge Isotope Laboratories, Inc. (Tewksbury, USA).
- 7. The **test solution for HBCD (Test solution X)** consisted of a mixture of the α , β , and γ -isomers in toluene in the concentration range of 100 ng/g 2,000 ng/g. This test solution was prepared, ampouled and labelled by Cambridge Isotope Laboratories, Inc. (Tewksbury, USA).
- 8. The **test solution for PFAS (Test solution W)** consisted of a mixture of **perfluoroalkyl substances** (perfluoroalkyl acids with perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs), perfluorooctane sulfonamides (FOSAs) and perfluorooctane sulfonamidoethanols (FOSEs)) in methanol in the concentration range of 10 ng/g 300 ng/g. This test solution was prepared, ampouled and labelled by Wellington Laboratories (Guelph, Ontario, Canada).

2.2 Processing of Samples and Results

2.2.1 <u>Distribution of Test Samples</u>

The human milk, human plasma, and the air extracts as well as the test solutions for PCDD/PCDF, dl-PCB, HBCD, and PFAS were distributed by MTM Research Centre. The sediment, fish, and water test

materials and the test solutions for OCP, PCB, PBDE, and toxaphene were distributed by VU E&H. All shipments containing human milk or plasma samples were packed in polystyrene containers with frozen plastic ice blocks.

Each shipment was accompanied by (a) a letter listing the type of test samples contained in the shipment, (b) a customs letter stating the context of the interlaboratory assessment, especially the technical nature and non-commercial approach, (c) certificates on non-infectiousness of the materials, esp. for the human milk and the human plasma. Instructions on the nature of the test materials as well as a file (MS Excel) to report the results were sent by e-mail to all laboratories.

2.2.2 <u>Reporting Results</u>

All results were combined into one results database (MS Excel) according to laboratory (laboratory code), analyte and test material. In this assessment, these aggregated data were shared with the participating laboratories for a confirmation of their data and in addition, laboratories were allowed to make small corrections for obvious errors, such as units, sum parameters, treatment of non-detects and use of decimals.

2.3 Methods Used by Participants

All participating laboratories used in-house methods for sample preparation, clean-up, extraction and instrumental analysis. It shall be noted that not all laboratories provided information on their methods according to the reporting format.

The methods used for the dI-POP analysis by the participants included modified or adapted standard methods for example EPA 1613 and EU 1948. For PCDD/PCDF and dI-PCB, the vast majority of laboratories reported that high resolution GC/MS (HRGC/HRMS) sector-field systems were used. Few laboratories used MS/MS detection and only one laboratory reported use of a LR-MS detector. One laboratory used GC/ECD for the analysis of dioxin-like PCB and reported on toxic equivalents; they did not analyse PCDD/PCDF. None of the laboratories reported use of an Orbitrap for dI-POPs analysis.

For the non-dl POPs (apart from the PFASs) used methods were more diversified and GC/ECD, low resolution GC/MS (including GCxGC/MS), but also HRGC/HRMS was used.

A variety of techniques and methods was used for extraction and sample preparation. Soxhlet extraction was still the most popular extraction method, although more and more laboratories used pressurized liquid extraction (PLE).

Several organic solvents such as toluene, hexane, acetone, acetonitrile or dichloromethane were used in different combinations for extraction of especially the fish and sediment test materials. A mixture of hexane and acetone was the most preferred combination for the analyses of OCPs and PCBs. For PBDE this combination was also used for fish and sediment, but the most preferred solvent for PBDE in sediment was toluene. For the extraction of PFAS almost all participants used methanol, followed by acetonitrile.

Furthermore, a wide variety of sample clean up open column chromatography was used. Acid or base loaded silica was most often used followed by Florisil and alumina (especially for the OCPs). For the analysis of dl-POPs, some of the laboratories included a carbon column as the final separation step in agreement with the standard methods. Quick Easy Cheap Effective Rugged Safe (QuECHERS) was used by a few laboratories.

The sample extraction, clean-up and detection of the more polar PFAS compounds, the perfluoroalkyl carboxylic and sulfonic acids, including PFOS, is completely different from the traditional POPs. From the 39 laboratories that submitted information on instrumentation and methods used for PFAS analysis, all laboratories reported use of liquid chromatography (LC) approaches. The vast majority reported MS/MS detection; up to three laboratories used an Orbitrap instrument and one laboratory used a time-of-flight instrument.

2.4 Data Assessment

The data assessment was carried out according to the principles employed in the data assessment of the QUASIMEME proficiency testing organisation (www.quasimeme.org).

The assigned value, the between-lab coefficient of variation (CV) values and the laboratory assessment using z-scores are based on the Cofino Model (Cofino *et al.*, 2000, 2017, 2018), as was described in the report of the second round (UNEP, 2015).

The z-scores (Thompson and Wood, 1993; Thompson et al., 2006) are calculated for each participant's data for each matrix / analyte combination, which is given an assigned value.

The formula used is:

The z-scores can be interpreted as follows:

|z| < 2 Satisfactory performance

2 < |z| < 3 Questionable performance

|z| > 3 Unsatisfactory performance

|z| > 6 Extreme performance

Since it is not possible to calculate a z-score for values below the limit of detection (LOD), the so-called 'left censored values' (LCVs) are used. The quality criterion used for LCVs is:

LCV/2 < concentration corresponding to |z|=3: LCV consistent with assigned value (AV)

LCV/2 > concentration corresponding to |z|=3: LCV inconsistent with AV, *i.e.* LCV reported by laboratory is much higher than numerical values reported by other laboratories.

For the interpretation of the z-scores given, the following keys are used:

z score key:	S – Satisfactory	Color code in Appendix IV	S
	Q – Questionable		Q
	U – Unsatisfactory	_	U
LCV key:	C – Consistent		С
	I – Inconsistent		- 1
No data:	B – Blank		В

We consider an assigned value reliable and statistically valid when certain criteria are met. Four different categories are used:

Category 1: For data where the number of numerical observations is \geq 7:

– An AV is based on the mean when \ge 25% of values have a z-score of |z| < 2.

 Where < 25% of the data have |z| < 2, the value is only indicative, i.e. at least 25% of the data must be in good agreement.

In this round there were a few cases where we considered it essential to deviate from this criterion. We will discuss this in the text.

Category 2: For data where the number of numerical observations is > 3 and < 7:

- An AV is based on the mean when ≥ 70% of values have a z-score of |z| < 3 and a minimum of 4 observations have |z| < 2.
- Otherwise, the value is indicative, i.e. for small data sets, n > 3 and n < 7, there needs to be a very good agreement and a maximum of one extreme value before an assigned value can be given.

Category 3: For data where the number of numerical observations is < 4:

No AV is given. Normally, the median value is given as an indicative value.

Category 4: For data where the high total error > 100% in combination with bad performance, no AV is given.

It is important to note that, in contrast with many other interlaboratory exercises, but in line with the three previous rounds, we have set a target error of 25% on which the z-scores are based. It was already explained in the Introduction that all laboratories producing results for the GMP of the Stockholm Convention should be able to distinguish between two values that differ 50% from each other. Consequently, this exercise may be stricter than most other interlaboratory studies that base the z-score on the standard deviation of the dataset, which is often substantially higher for this type of compounds than the desired \pm 25%. This means that compared to other studies it is more difficult to obtain satisfactory z-scores here. It is important to be aware of this when comparing z-scores obtained here, with those from other studies.

In case of a dataset such as generated in an interlaboratory study, ideally one would like to receive duplicate or triplicate values. As this is a lot of work for laboratories, in most cases single values for each parameter are reported. This means that the probability density function can only be used when the dataset shows a normal distribution. In practice the data are often not normal distributed. The choice for the Cofino statistics as a model for evaluation of the data in this study is based on extensive comparisons of evaluations of datasets with different statistical models (Cofino et al., 2017). Of all models tested, the Cofino statistics is the least sensitive for deviations in a dataset from a normal distribution. Many other models using robust statistics suffer from down weighting procedures that insufficiently correct for the outlying data.

3 RESULTS

All results of the 117 laboratories that reported results are given in Appendix II. The z-scores are given in Appendix III. The assessment of the z-scores is given in Appendix IV. Appendix V shows the four plots that characterize the results for each matrix-determinant combination. The submitted results have been evaluated statistically and whenever the data met the requirements as shown in section 2.2, an assigned value was established. Summaries of the assigned values and the percentage of satisfactory to unsatisfactory z-scores are presented below. Whenever numerical LCVs were reported, their consistency with the assigned value was assessed. All Appendices are available online from https://www.oru.se/english/research/research-environments/ent/mtm/research-projects/global-monitoring-plan/Downloads18-19/.

3.1 Participation per United Nations Region

In total, 148 laboratories from all five UN regions Africa, Asia-Pacific, Central and Eastern Europe (CEE), Latin America and Caribbean (GRULAC), as well as West European and other groups (WEOG) registered for the interlaboratory assessment. They represented a total of 62 countries. Of these, 117 laboratories submitted data for the test solutions, the sediment, fish, human milk, human plasma, air extracts, or water samples.

The laboratories that submitted results can be assigned to the five UN regions as follows: Africa (n=14), Asia (n=44), CEE (n=5), GRULAC (n=25), and WEOG (n=29). From Table 77 to Table 83 the number of laboratories submitting results *per* region, *per* compound group and *per* matrix is given.

Table 1 shows the degree of participation *per* compound class and matrix. Clearly, the analysis of HxBB, toxaphene and HBCD is still low for many participants. Dioxin laboratories were fewer than in previous rounds (41 participated). For PFASs the number of participants is similar to the number of laboratories for PBDE, although the number of laboratories for PFASs increased slightly whereas the number of laboratories for PBDE decreased. The number of basic POPs laboratories (analyzing OCPs or indicator PCB) is almost 60.

For all other groups, ca. 30-40 laboratories (PCB/OCP) participated, which is somewhat lower than last round. Quite a few of them only analysed the test solutions and a limited number of other matrices.

Table 1: Participating degree per compound class (maximum number of labs is giv	en).
---	------

Group	Test	Sediment	Fish	Human	Human	Air	Water
	solutions			milk	plasma	extract	
ОСР	58	39	32	22	-	22	-
PCB	56	40	47	37	-	36	-
PCDD/PCDF	41	35	38	23	-	31	-
dl-PCB	41	28	37	25	-		-
PBDE	28	22	26	13	-	25	-
HxBB	10	12	13	6	-	9	-
Toxaphene	10	7	9	5	-	7	-
HBCD	13	8	9	4	-	6	-
PFAS	29	13	25	18	16	18	21

3.2 Compound Group-Specific Results

3.2.1 <u>Organochlorine Pesticides (OCPs)</u>

Table 2: Summary results OCPs, test solution Y (ng/g)

Test Solution Y		n								Between	Inclusion
				Theoretical		Media				lab CV	rate
Analyte	Total	Numerical	LCV	conc.	ΑV	n	Mean	Min	Max	(%)	(%)
Aldrin	50	48	2	71.5	58.1	61.8	58.1	0.11	154	39	68
Dieldrin	51	51	0	55.4	45.7	51.2	45.7	0.01	176	54	75
Endrin	50	48	2	64.3	47.0	48.2	47.0	0.45	229	53	68
Sum Drins LB (ND = 0)	56	56	0	191.1	NAV	131.2	135.5	0.008	498	61	78
Sum Drins UB (ND = LOD)	44	44	0	191.1	156	173	156	0.010	498	41	71
α -Chlordane	45	44	1	69.1	49.4	54.8	49.4	1.00	177	55	73
γ-Chlordane	44	43	1	43.2	37.4	39.6	37.4	1.00	106	33	62
Oxychlordane	27	26	1	47.6	45.3	44.6	45.3	1.00	68	24	62
cis-Nonachlor	21	20	1	60.4	64.3	62.1	64.3	1.00	105	23	62
trans-Nonachlor	24	23	1	57.4	53.1	52.9	53.1	1.00	67	18	67
Sum Chlordanes LB (ND = 0)	45	44	1	277.7	NAV	163	157	0.00	370	80	83
Sum Chlordanes UB (ND = LOD)	18	18	0	277.7	269	259	269	5.00	370	19	61
Heptachlor	56	54	2	53.5	40.7	46.5	40.7	0.04	114	59	72
cis-Heptachlorepoxide	45	44	1	88.6	82.6	87.3	82.6	0.68	977	42	68
trans-Heptachlorepoxide	34	29	5	26.8	24.3	26.0	24.3	0.68	1340	37	60
Sum Heptachlors LB (ND = 0)	57	56	1	168.9	NAV	120	111	0.00	1485	71	76
Sum Heptachlors UB (ND = LOD)	27	27	0	168.9	141	167	141	1.59	1485	44	66
o,p'-DDT	38	38	0	91.8	73.4	83.0	73.4	0.13	236	59	74
p,p'-DDT	52	49	3	84.9	66.5	77.1	66.5	1.00	240	53	69
o,p'-DDD	40	38	2	40.0	35.9	37.4	35.9	0.15	400	40	66
p,p'-DDD	50	47	3	35.0	31.3	34.4	31.3	0.15	475	71	71
o,p'-DDE	39	39	0	47.1	42.9	44.8	42.9	0.11	150	37	70
p,p'-DDE	56	54	2	29.5	24.2	26.7	24.2	0.11	741	45	67
Sum DDTs LB (ND = 0)	57	56	1	328.2	NAV	239	220	0.00	1393	72	77
Sum DDTs UB (ND = LOD)	31	31	0	328.2	293	288	293	33.0	770	34	68
α-НСН	54	52	2	19.7	17.6	18.5	17.6	0.02	72	49	70
β -НСН	49	47	2	212.3	63.2	68.7	63.2	0.07	230	57	72
γ-НСН	57	55	2	48.0	38.3	42.2	38.3	0.98	340	52	69
Sum HCHs LB (ND = 0)	58	57	1	279.9	106	125	106	0.00	412	67	75
Sum HCHs UB (ND = LOD)	49	49	0	279.9	121	132	121	0.09	414	57	76
lpha-Endosulfan	51	48	3	114.1	NAV	81.9	76.2	0.04	531	66	73
β -Endosulfan	47	42	5	68.9	55.8	58.4	55.8	12.0	143	44	69
Endosulfan sulfate	36	32	4	59.2	43.5	44.6	43.5	1.00	92	48	67
Sum Endosulfans LB (ND = 0)	51	49	2	242.2	158	159	158	0.00	531	56	76
Sum Endosulfans UB (ND = LOD)	36	36	0	242.2	161	158	161	0.04	320	53	79
Chlordecone	5	4	1	208.6	NAV	34.4	34.1	1.00	95	119	62
Hexachlorobenzene	44	42	2	18.7	17.9	18.6	17.9	0.98	45	39	62
Hexachlorobutadiene	10	9	1	98.2	NAV	78.0	73.5	1.00	134	51	63
Mirex	33	33	0	124.3	103	102	103	1.00	331	40	66
Pentachlorobenzene	24	23	1	13.8	13.4	13.2	13.4	0.21	25	12	56

Table 3: Summary of laboratory performance OCPs, test solution Y

Analyte	Test Solution Y	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
Aldrin 34 38 24 24 10 Dieldrin 34 37 16 29 18 Endrin 34 28 20 26 22 Sum Drins LB (ND = 0) 38 0 0 0 0 Sum Drins UB (ND = LOD) 30 36 30 23 11 α-Chlordane 30 50 9 23 16 Oxychlordane 18 56 11 15 15 cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlores UB (ND = LOD) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39<		data	z <2	3> z >2	6> z >3	z >6
Dieldrin 34 37 16 29 18 Endrin 34 28 20 26 22 25 25 26 22 25 26 22 25 26 22 25 26 22 25 26 22 25 26 22 25 26 22 25 26 22 25 26 22 25 26 27 27 26 27 27 27 26 27 27	Analyte	received	Satisfactory	Questionable	Unsatisfactory	Extreme
Endrin 34 28 20 26 22 Sum Drins LB (ND = 0) 38 0 0 0 Sum Drins UB (ND = LOD) 30 36 30 23 11 α-Chlordane 30 29 13 38 18 γ-Chlordane 30 50 9 23 16 Oxychlordane 18 56 11 15 15 Gis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes LB (ND = 0) 38 32 18 27 20 cis-Heptachlors 34	Aldrin	34	38	24	24	10
Sum Drins LB (ND = 0) 38 0 0 0 Sum Drins UB (ND = LDD) 30 36 30 23 11 α-Chlordane 30 29 13 38 18 γ-Chlordane 30 50 9 23 16 Oxychlordane 18 56 11 15 15 cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 23 47 9 12 18 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o,p'-DDT 26 </td <td>Dieldrin</td> <td>34</td> <td>37</td> <td>16</td> <td>29</td> <td>18</td>	Dieldrin	34	37	16	29	18
Sum Drins UB (ND = LOD) 30 36 30 23 11 α-Chlordane 30 29 13 38 18 γ-Chlordane 30 50 9 23 16 Oxychlordane 18 56 11 15 15 cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlores LB (ND = 0) 39 0 0 0 0 Sum Heptachlores LB (ND = 0) 39 0 0 0 0 0 Sum Heptachlores LB (ND = 0) 39 0 0 0 0 0 <td>Endrin</td> <td>34</td> <td>28</td> <td>20</td> <td>26</td> <td>22</td>	Endrin	34	28	20	26	22
α-Chlordane 30 29 13 38 18 γ-Chlordane 30 50 9 23 16 Oxychlordane 18 56 11 15 15 cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlorespoxide 23 47 9 12 18 Sum Heptachlors UB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o,p'-DDT 35 31 17 29 17 o,p'-DDT	Sum Drins LB (ND = 0)	38	0	0	0	0
γ-Chlordane 30 50 9 23 16 Oxychlordane 18 56 11 15 15 cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 1 17 29 17	Sum Drins UB (ND = LOD)	30	36	30	23	11
Oxychlordane 18 56 11 15 15 cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o.p-'-DDT 26 29 18 29 24 p.p-'-DDT 35 31 17 29 17 o.p-'-DDD 27 45 13 20 18 p.p-'-DDE	lpha-Chlordane	30	29	13	38	18
cis-Nonachlor 14 62 5 10 19 trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlorepoxide 23 47 9 12 18 Sum Heptachlors UB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o.p-'-DDT 26 29 18 29 24 p.p-'-DDT 35 31 17 29 17 o.p-'-DDD 34 28 16 20 30 o.p-'-DDE 38 46 13 14 23 Sum DOTs LB (ND = 0)	γ -Chlordane	30	50	9	23	16
trans-Nonachlor 16 71 13 0 13 Sum Chlordanes LB (ND = 0) 30 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 O.p'-DDT 26 29 18 29 24 p.p'-DDT 35 31 17 29 17 0.p'-DDD 27 45 13 20 18 p.p'-DDD 34 28 16 20 30 0,p-DDE 38 46 13 14 23 Sum DOTs LB (ND = 0) 39	Oxychlordane	18	56	11	15	15
Sum Chlordanes LB (ND = 0) 30 0 0 0 Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o.p.* DDT 26 29 18 29 24 p.p.* DDT 35 31 17 29 17 o.p.* DDD 27 45 13 20 18 p.p.* DDD 34 28 16 20 30 o.p.* DDE 26 51 15 10 23 p.p.* DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39	cis-Nonachlor	14	62	5	10	19
Sum Chlordanes UB (ND = LOD) 12 61 6 17 17 Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors UB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o,p'-DDT 26 29 18 29 24 p,p'-DDT 35 31 17 29 17 o,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 γ-HCH 39 33 </td <td>trans-Nonachlor</td> <td>16</td> <td>71</td> <td>13</td> <td>0</td> <td>13</td>	trans-Nonachlor	16	71	13	0	13
Heptachlor 38 32 18 27 20 cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors LB (ND = LOD) 18 33 22 26 19 o,p'-DDT 26 29 18 29 24 p,p'-DDT 35 31 17 29 17 o,p'-DDT 35 31 17 29 17 o,p'-DDD 34 28 16 20 30 o,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 <td< td=""><td>Sum Chlordanes LB (ND = 0)</td><td>30</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	Sum Chlordanes LB (ND = 0)	30	0	0	0	0
cis-Heptachlorepoxide 30 44 11 20 22 trans-Heptachlors LB (ND = 0) 39 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o,p¹-DDT 26 29 18 29 24 p,p¹-DDT 35 31 17 29 17 o,p¹-DDD 27 45 13 20 18 p,p¹-DDD 34 28 16 20 30 o,p¹-DDE 26 51 15 10 23 p,p¹-DDD 34 28 16 20 30 o,p¹-DDE 26 51 15 10 23 p,p¹-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 2	Sum Chlordanes UB (ND = LOD)	12	61	6	17	17
trans-Heptachlorepoxide 23 47 9 12 18 Sum Heptachlors LB (ND = 0) 39 0 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o,p¹-DDT 26 29 18 29 24 p,p¹-DDT 35 31 17 29 17 o,p¹-DDD 27 45 13 20 18 p,p¹-DDD 34 28 16 20 30 o,p¹-DDE 26 51 15 10 23 p,p¹-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26	Heptachlor	38	32	18	27	20
Sum Heptachlors LB (ND = 0) 39 0 0 0 Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 0,p¹-DDT 26 29 18 29 24 p,p¹-DDT 35 31 17 29 17 0,p¹-DDD 27 45 13 20 18 p,p¹-DDD 34 28 16 20 30 0,p¹-DDE 26 51 15 10 23 p,p¹-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33	cis-Heptachlorepoxide	30	44	11	20	22
Sum Heptachlors UB (ND = LOD) 18 33 22 26 19 o,p'-DDT 26 29 18 29 24 p,p'-DDT 35 31 17 29 17 o,p'-DDD 27 45 13 20 18 p,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24	trans-Heptachlorepoxide	23	47	9	12	18
o,p'-DDT 26 29 18 29 24 p,p'-DDT 35 31 17 29 17 o,p'-DDD 27 45 13 20 18 p,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 32 36 21 23	Sum Heptachlors LB (ND = 0)	39	0	0	0	0
p,p'-DDT 35 31 17 29 17 o,p'-DDD 27 45 13 20 18 p,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 0 β-Endosulfans LB (ND = 0) 34 27 <	Sum Heptachlors UB (ND = LOD)	18	33	22	26	19
o,p'-DDD 27 45 13 20 18 p,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 β-Endosulfan 34 0 0 0 0 β-Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans LB (ND = 0) 34 27 20	o,p'-DDT	26	29	18	29	24
p,p'-DDD 34 28 16 20 30 o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 β-Endosulfan 32 36 21 23 9 Endosulfans sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 1	p,p'-DDT	35	31	17	29	17
o,p'-DDE 26 51 15 10 23 p,p'-DDE 38 46 13 14 23 Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 0 β-Endosulfan 32 36 21 23 9 20 Endosulfans sulfate 24 36 17 28 8 8 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlorde	o,p'-DDD	27	45	13	20	18
Decision Sum DDTs LB (ND = 0) 39 0 0 0 0 0 0 0 0 0	p,p'-DDD	34	28	16	20	30
Sum DDTs LB (ND = 0) 39 0 0 0 0 Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 β-Endosulfan 32 36 21 23 9 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobutadiene 7	o,p'-DDE	26	51	15	10	23
Sum DDTs UB (ND = LOD) 21 52 16 19 13 α-HCH 36 43 9 24 20 β-HCH 33 27 18 31 20 γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 0 β-Endosulfan 32 36 21 23 9 2 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachloro	p,p'-DDE	38	46	13	14	23
α-HCH 36 43 9 24 20 $β$ -HCH 33 27 18 31 20 $γ$ -HCH 39 33 16 25 23 $γ$ -HCH 39 33 16 25 23 $γ$ -HCH 39 39 33 16 25 23 $γ$ -HCH 39 26 10 33 29 $γ$ -HCH 30 39 26 10 33 29 $γ$ -Endosulfan 34 0 0 0 0 0 0 $γ$ -Endosulfan 32 36 21 23 9 $γ$ -Endosulfan 32 36 21 23 9 $γ$ -Endosulfan 32 36 17 28 8 $γ$ -Endosulfans LB (ND = 0) 34 27 20 29 20 $γ$ -Endosulfans LB (ND = 0) 34 27 20 29 20 $γ$ -Endosulfans UB (ND = LOD) 24 33 17 36 14 $γ$ -Chlordecone 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sum DDTs LB (ND = 0)	39	0	0	0	0
β -HCH3327183120γ-HCH3933162523Sum HCHs LB (ND = 0)3926103329Sum HCHs UB (ND = LOD)3329242720α-Endosulfan3400000β-Endosulfan323621239Endosulfan sulfate243617288Sum Endosulfans LB (ND = 0)3427202920Sum Endosulfans UB (ND = LOD)2433173614Chlordecone30000Hexachlorobenzene304891127Hexachlorobutadiene70000Mirex2245151821	Sum DDTs UB (ND = LOD)	21	52	16	19	13
γ-HCH 39 33 16 25 23 Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 β-Endosulfan 32 36 21 23 9 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	α-НСН	36	43	9	24	20
Sum HCHs LB (ND = 0) 39 26 10 33 29 Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 β-Endosulfan 32 36 21 23 9 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	β -НСН	33	27	18	31	20
Sum HCHs UB (ND = LOD) 33 29 24 27 20 α-Endosulfan 34 0 0 0 0 β-Endosulfan 32 36 21 23 9 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	γ-НСН	39	33	16	25	23
α-Endosulfan 34 0 0 0 0 β-Endosulfan 32 36 21 23 9 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	Sum HCHs LB (ND = 0)	39	26	10	33	29
β-Endosulfan 32 36 21 23 9 Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	Sum HCHs UB (ND = LOD)	33	29	24	27	20
Endosulfan sulfate 24 36 17 28 8 Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	α-Endosulfan	34	0	0	0	0
Sum Endosulfans LB (ND = 0) 34 27 20 29 20 Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	β -Endosulfan	32	36	21	23	9
Sum Endosulfans UB (ND = LOD) 24 33 17 36 14 Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	Endosulfan sulfate	24	36	17	28	8
Chlordecone 3 0 0 0 0 Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	Sum Endosulfans LB (ND = 0)	34	27	20	29	20
Hexachlorobenzene 30 48 9 11 27 Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	Sum Endosulfans UB (ND = LOD)	24	33	17	36	14
Hexachlorobutadiene 7 0 0 0 0 Mirex 22 45 15 18 21	Chlordecone	3	0	0	0	0
Mirex 22 45 15 18 21	Hexachlorobenzene	30	48	9	11	27
	Hexachlorobutadiene	7	0	0	0	0
Pentachlorobenzene 16 58 4 17 17	Mirex	22	45	15	18	21
	Pentachlorobenzene	16	58	4	<u>1</u> 7	17

Table 4: Summary results OCPs, sediment (ng/g)

Sediment		n	•	0, 0,					Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Aldrin	35	22	13	NAV	5.0	3.8	0.11	39.1	87	55
Dieldrin	33	21	12	NAV	3.7	3.0	0.08	9.3	67	54
Endrin	32	20	12	NAV	1.9	1.6	0.17	932	130	54
Sum Drins LB (ND = 0)	37	26	11	8.6	9.2	8.6	0.000	932	76	73
Sum Drins UB (ND = LOD)	29	29	0	NAV	8.3	8.2	0.003	341	90	75
lpha-Chlordane	27	11	16	NAV	0.58	0.35	0.004	7.3	201	49
γ-Chlordane	27	12	15	NAV	0.56	0.35	0.03	5.8	189	50
Oxychlordane	13	5	8	NAV	1.22	0.35	0.22	11.5	242	37
cis-Nonachlor	12	8	4	NAV	0.33	0.18	0.001	4.0	216	55
trans-Nonachlor	12	8	4	0.1	0.12	0.07	0.04	12.0	126	58
Sum Chlordanes LB (ND = 0)	28	17	11	NAV	1.9	1.5	0.00	25.0	163	71
Sum Chlordanes UB (ND = LOD)	9	9	0	NAV	0.82	0.44	0.19	25.0	184	55
Heptachlor	38	18	20	NAV	2.3	1.6	0.005	3633	142	43
cis-Heptachlorepoxide	30	14	16	NAV	0.98	0.73	0.005	560	174	47
trans-Heptachlorepoxide	23	9	14	NAV	1.20	0.50	0.002	12.0	252	37
Sum Heptachlors LB (ND = 0)	39	21	18	NAV	2.7	1.7	0.000	3633	191	64
Sum Heptachlors UB (ND = LOD)	17	17	0	NAV	0.95	0.44	0.003	349	271	53
o,p'-DDT	23	14	9	0.1	0.18	0.10	0.06	25.4	140	54
p,p'-DDT	33	19	14	0.6	0.74	0.55	0.33	23.5	87	51
o,p'-DDD	24	15	9	0.5	0.68	0.47	0.15	8.9	73	51
p,p'-DDD	37	25	12	1.1	1.4	1.1	0.15	246	98	52
o,p'-DDE	24	14	10	0.1	0.13	0.12	0.08	19.0	32	55
p,p'-DDE	37	26	11	1.9	2.2	1.9	0.08	38.6	52	53
Sum DDTs LB (ND = 0)	38	28	10	5.4	6.0	5.4	0.00	256	77	61
Sum DDTs UB (ND = LOD)	19	19	0	5.2	6.4	5.2	3.1	87.3	72	58
$\alpha\text{-HCH}$	37	23	14	NAV	1.23	0.60	0.01	992	242	50
β -НСН	35	19	16	0.3	0.34	0.27	0.03	381	114	49
γ-НСН	39	24	15	NAV	0.33	0.16	0.002	57.0	241	50
Sum HCHs LB (ND = 0)	39	26	13	NAV	1.47	0.67	0.000	1374	256	56
Sum HCHs UB (ND = LOD)	33	33	0	NAV	3.2	2.2	0.003	1374	187	62
lpha-Endosulfan	35	15	20	NAV	2.1	1.0	0.06	650	206	42
β -Endosulfan	31	13	18	NAV	4.2	1.9	0.07	498	149	42
Endosulfan sulfate	24	8	16	NAV	2.8	1.4	0.03	24.7	186	41
Sum Endosulfans LB (ND = 0)	35	20	15	NAV	5.6	4.1	0.000	1148	169	71
Sum Endosulfans UB (ND = LOD)	24	24	0	NAV	7.1	6.3	0.003	30.0	120	78
Chlordecone	2	1	1	NAV	NAV	NAV	0.66	0.66	NAV	NAV
Hexachlorobenzene	27	21	6	3.2	3.4	3.2	0.00	1675	45	64
Hexachlorobutadiene	4	2	2	NAV	NAV	NAV	0.49	0.61	NAV	NAV
Mirex	17	10	7	NAV	2.6	1.8	0.71	4.6	71	51
Pentachlorobenzene	15	13	2	1.8	1.9	1.8	0.61	43	26	59

 Table 5:
 Summary of laboratory performance OCPs, sediment

Sediment	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data	z <2	3> z >2	6> z >3	z >6
Analyte	received	Satisfactory	Questionable	Unsatisfactory	Extreme
Aldrin	24	0	0	0	0
Dieldrin	22	0	0	0	0
Endrin	22	0	0	0	0
Sum Drins LB (ND = 0)	25	22	5	22	22
Sum Drins UB (ND = LOD)	20	0	0	0	0
α -Chlordane	18	0	0	0	0
γ -Chlordane	18	0	0	0	0
Oxychlordane	9	0	0	0	0
cis-Nonachlor	8	0	0	0	0
trans-Nonachlor	8	33	0	8	25
Sum Chlordanes LB (ND = 0)	19	0	0	0	0
Sum Chlordanes UB (ND = LOD)	6	0	0	0	0
Heptachlor	26	0	0	0	0
cis-Heptachlorepoxide	20	0	0	0	0
trans-Heptachlorepoxide	16	0	0	0	0
Sum Heptachlors LB (ND = 0)	26	0	0	0	0
Sum Heptachlors UB (ND = LOD)	11	0	0	0	0
o,p'-DDT	16	30	0	4	26
p,p'-DDT	22	18	12	0	27
o,p'-DDD	16	25	0	17	21
p,p'-DDD	25	19	5	11	32
o,p'-DDE	16	38	0	0	21
p,p'-DDE	25	32	5	8	24
Sum DDTs LB (ND = 0)	26	21	8	13	32
Sum DDTs UB (ND = LOD)	13	42	5	11	42
$\alpha\text{-HCH}$	25	0	0	0	0
β-НСН	24	20	6	3	26
ү-НСН	26	0	0	0	0
Sum HCHs LB (ND = 0)	26	0	0	0	0
Sum HCHs UB (ND = LOD)	22	0	0	0	0
α -Endosulfan	24	0	0	0	0
β -Endosulfan	21	0	0	0	0
Endosulfan sulfate	16	0	0	0	0
Sum Endosulfans LB (ND = 0)	24	0	0	0	0
Sum Endosulfans UB (ND = LOD)	16	0	0	0	0
Chlordecone	1	0	0	0	0
Hexachlorobenzene	18	30	19	19	11
Hexachlorobutadiene	3	0	0	0	0
Mirex	11	0	0	0	0
Pentachlorobenzene	10	47	7	27	7

Table 6: Summary results OCPs, fish (product basis) (ng/g)

Fish A		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Aldrin	28	7	21	NAV	2.4	0.3	0.007	7063	260	34
Dieldrin	27	7	20	NAV	0.45	0.07	0.04	1801	373	37
Endrin	29	10	19	NAV	4.3	0.27	0.004	1325	768	33
Sum Drins LB (ND = 0)	30	11	19	NAV	4.6	1.9	0.000	9477	292	55
Sum Drins UB (ND = LOD)	27	27	0	NAV	1.5	1.0	0.003	9477	186	66
lpha-Chlordane	23	4	19	NAV	0.06	0.02	0.02	3.2	163	47
γ-Chlordane	22	3	19	NAV	0.01	0.01	0.01	5.6	10	48
Oxychlordane	14	4	10	NAV	2.5	0.17	0.01	6.2	441	45
cis-Nonachlor	13	4	9	NAV	0.03	0.02	0.02	11.0	81	61
trans-Nonachlor	13	5	8	0.0	0.04	0.04	0.03	9.0	41	64
Sum Chlordanes LB (ND = 0)	24	8	16	NAV	1.7	1.4	0.00	25.0	184	63
Sum Chlordanes UB (ND = LOD)	10	10	0	NAV	0.40	0.28	0.10	7.6	144	61
Heptachlor	31	10	21	NAV	1.9	0.33	0.0000007	4029	381	33
cis-Heptachlorepoxide	26	9	17	NAV	0.03	0.01	0.000004	700	255	49
trans-Heptachlorepoxide	20	5	15	NAV	0.50	0.06	0.0000005	57.8	510	31
Sum Heptachlors LB (ND = 0)	30	13	17	NAV	1.3	0.67	0.000000	4029	243	64
Sum Heptachlors UB (ND = LOD)	16	16	0	NAV	0.65	0.41	0.000006	222	196	66
o,p'-DDT	20	8	12	NAV	0.54	0.24	0.006	4831	219	44
p,p'-DDT	27	10	17	NAV	0.48	0.14	0.01	120	378	39
o,p'-DDD	19	10	9	0.1	0.16	0.12	0.08	1975	60	61
p,p'-DDD	28	18	10	0.4	0.54	0.42	0.26	923	58	61
o,p'-DDE	20	11	9	0.0	0.06	0.05	0.04	11.0	47	54
p,p'-DDE	28	21	7	2.3	2.3	2.3	0.06	918	51	62
Sum DDTs LB (ND = 0)	29	23	6	3.3	3.9	3.3	0.00	8653	62	63
Sum DDTs UB (ND = LOD)	17	17	0	3.0	3.5	3.0	2.1	60	41	57
α-НСН	32	11	21	NAV	1.2	0.37	0.002	3736	321	35
β -НСН	28	15	13	0.1	0.09	0.06	0.004	2332	171	54
γ-НСН	32	14	18	NAV	0.75	0.41	0.002	31.0	225	41
Sum HCHs LB (ND = 0)	32	18	14	NAV	0.74	0.33	0.000	6069	278	61
Sum HCHs UB (ND = LOD)	28	28	0	NAV	0.90	0.44	0.003	6069	270	57
α-Endosulfan	30	7	23	NAV	5.0	0.15	0.009	248	484	39
β-Endosulfan	28	7	21	NAV	2.6	0.17	0.006	36.0	531	34
Endosulfan sulfate	20	3	17	NAV	0.90	0.06	0.13	1.3	248	44
Sum Endosulfans LB (ND = 0)	30	9	21	NAV	7.1	4.6	0.000	248	194	60
Sum Endosulfans UB (ND = LOD)	20	20	0	NAV	1.2	0.83	0.003	30	202	59
Chlordecone	2	0	2	NAV	NAV	NAV			NAV	NAV
Hexachlorobenzene	25	18	7	NAV	0.70	0.55	0.08	2087	112	57
Hexachlorobutadiene	4	2	2	NAV	NAV	NAV	0.03	0.32	NAV	NAV
Mirex	17	4	13	NAV	0.01	0.01	0.002	1.3	82	67
Pentachlorobenzene	14	7	7	0.1	0.07	0.05	0.01	15.0	79	72

Table 7: Summary of laboratory performance OCPs, fish

Fish A % of the % of z-scores %

Fish A	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data	z <2	3> z >2 6> z >3		z >6
Analyte	received	Satisfactory	Questionable	Unsatisfactory	Extreme
Aldrin	19	0	0	0	0
Dieldrin	18	0	0	0	0
Endrin	20	0	0	0	0
Sum Drins LB (ND = 0)	20	0	0	0	0
Sum Drins UB (ND = LOD)	18	0	0	0	0
lpha-Chlordane	16	0	0	0	0
γ-Chlordane	15	0	0	0	0
Oxychlordane	9	0	0	0	0
cis-Nonachlor	9	0	0	0	0
trans-Nonachlor	9	31	0	0	8
Sum Chlordanes LB (ND = 0)	16	0	0	0	0
Sum Chlordanes UB (ND = LOD)	7	0	0	0	0
Heptachlor	21	0	0	0	0
cis-Heptachlorepoxide	18	0	0	0	0
trans-Heptachlorepoxide	14	0	0	0	0
Sum Heptachlors LB (ND = 0)	20	0	0	0	0
Sum Heptachlors UB (ND = LOD)	11	0	0	0	0
o,p'-DDT	14	0	0	0	0
p,p'-DDT	18	0	0	0	0
o,p'-DDD	13	32	5	0	16
p,p'-DDD	19	25	14	7	18
o,p'-DDE	14	30	0	5	20
p,p'-DDE	19	32	7	25	11
Sum DDTs LB (ND = 0)	20	34	3	14	28
Sum DDTs UB (ND = LOD)	11	47	12	0	41
α-НСН	22	0	0	0	0
β -НСН	19	21	7	4	21
γ-НСН	22	0	0	0	0
Sum HCHs LB (ND = 0)	22	0	0	0	0
Sum HCHs UB (ND = LOD)	19	0	0	0	0
α-Endosulfan	20	0	0	0	0
β -Endosulfan	19	0	0	0	0
Endosulfan sulfate	14	0	0	0	0
Sum Endosulfans LB (ND = 0)	20	0	0	0	0
Sum Endosulfans UB (ND = LOD)	14	0	0	0	0
Chlordecone	1	0	0	0	0
Hexachlorobenzene	17	0	0	0	0
Hexachlorobutadiene	3	0	0	0	0
Mirex	11	0	0 0		0
Pentachlorobenzene	9	29	14	0	7

Table 8: Summary results OCPs, human milk (lipid weight basis) (ng/g)

Human milk		n				, ,	0.07		Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Aldrin	19	8	11	NAV	4.0	2.5	0.11	137	171	38
Dieldrin	18	9	9	NAV	1.8	0.94	0.63	847	132	45
Endrin	18	7	11	NAV	51.0	18.0	0.20	4432	290	31
Sum Drins LB (ND = 0)	20	13	7	NAV	4.9	2.6	0.000	5279	198	53
Sum Drins UB (ND = LOD)	17	17	0	NAV	13.2	8.2	0.003	5279	184	70
lpha-Chlordane	16	3	13	NAV	100	1.5	9.3	117	219	36
γ-Chlordane	15	4	11	NAV	0.44	0.22	0.06	90	193	47
Oxychlordane	9	4	5	0.9	0.89	0.88	0.84	1.0	5	46
cis-Nonachlor	7	4	3	NAV	0.27	0.24	0.17	1.4	33	67
trans-Nonachlor	8	6	2	NAV	1.2	1.1	0.65	1.7	32	65
Sum Chlordanes LB (ND = 0)	16	9	7	NAV	2.1	1.6	0.00	208	79	69
Sum Chlordanes UB (ND = LOD)	6	6	0	NAV	2.6	2.4	2.0	22.0	16	61
Heptachlor	20	6	14	NAV	5.1	2.1	0.23	155	249	30
cis-Heptachlorepoxide	16	10	6	NAV	1.7	0.79	0.39	472	195	53
trans-Heptachlorepoxide	16	3	13	NAV	1.3	0.05	0.52	666	420	40
Sum Heptachlors LB (ND = 0)	20	12	8	NAV	3.5	1.9	0.00	1138	210	61
Sum Heptachlors UB (ND = LOD)	12	12	0	NAV	6.0	4.5	0.52	1138	173	65
o,p'-DDT	15	8	7	NAV	0.53	0.35	0.20	793	107	60
p,p'-DDT	18	9	9	2.1	2.6	2.1	1.5	54.0	50	48
o,p'-DDD	15	3	12	NAV	29.1	1.5	0.37	794	370	36
p,p'-DDD	19	7	12	NAV	1.7	0.57	0.03	2164	299	36
o,p'-DDE	15	5	10	NAV	0.82	0.40	0.03	352	223	43
p,p'-DDE	21	15	6	25.9	30.7	25.9	0.91	1597	56	52
Sum DDTs LB (ND = 0)	21	16	5	31.6	33.8	31.6	0.00	5700	93	67
Sum DDTs UB (ND = LOD)	11	11	0	26.7	30.0	26.7	2.5	234	44	67
α -HCH	22	9	13	NAV	7.0	2.1	0.07	1915	360	36
β -НСН	20	12	8	2.2	2.4	2.2	1.2	7017	30	51
γ-НСН	22	8	14	NAV	2.2	0.90	0.08	171	228	43
Sum HCHs LB (ND = 0)	22	15	7	2.5	2.8	2.5	0.000	9103	66	58
Sum HCHs UB (ND = LOD)	20	20	0	NAV	7.2	5.2	0.003	9103	155	63
lpha-Endosulfan	19	6	13	NAV	5.1	1.7	0.55	1679	233	39
β -Endosulfan	16	4	12	NAV	12.8	1.8	1.4	45.7	244	39
Endosulfan sulfate	14	2	12	NAV	NAV	NAV	8.0	95.6	NAV	NAV
Sum Endosulfans LB (ND = 0)	19	6	13	NAV	20.27	10.92	0.000	1679	196	62
Sum Endosulfans UB (ND = LOD)	14	14	0	NAV	10.57	7.06	0.003	1071	147	67
Chlordecone	2	0	2	NAV	NAV	NAV			NAV	NAV
Hexachlorobenzene	17	13	4	3.9	4.5	3.9	0.47	88.4	65	70
Hexachlorobutadiene	3	2	1	NAV	NAV	NAV	0.16	0.24	NAV	NAV
Mirex	12	3	9	NAV	0.15	0.07	0.09	0.68	85	58
Pentachlorobenzene	9	5	4	NAV	0.19	0.15	0.04	1.00	135	58

Table 9: Summary of laboratory performance OCPs, human milk

Analyte data received Iz <2 Satisfactory
Aldrin 13 0 0 0 0 Dieldrin 12 0 0 0 0 Endrin 12 0 0 0 0 Sum Drins LB (ND = 0) 14 0 0 0 0 Sum Drins UB (ND = LOD) 11 0 0 0 0 Sum Chlordane 11 0 0 0 0 Oxychlordane 10 0 0 0 0 Oxychlordane 6 44 0 0 0 Cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 sum Heptachlors UB (ND = LOD) 8 0 0 0
Dieldrin 12 0 0 0 0 0 0 0 Endrin 12 0 0 0 0 0 0 0 0 0
Endrin 12 0 0 0 Sum Drins LB (ND = 0) 14 0 0 0 Sum Drins UB (ND = LOD) 11 0 0 0 α-Chlordane 11 0 0 0 0 γ-Chlordane 10 0 0 0 0 Oxychlordane 6 44 0 0 0 Cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 Full column 11 0 0 0 0 Sum Heptachlorepoxide 11 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 <
Sum Drins LB (ND = 0) 14 0 0 0 Sum Drins UB (ND = LOD) 11 0 0 0 α-Chlordane 11 0 0 0 0 γ-Chlordane 10 0 0 0 0 Oxychlordane 6 44 0 0 0 Cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 Heptachlorepoxide 11 0 0 0 0 cis-Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0
Sum Drins UB (ND = LOD) 11 0 0 0 α-Chlordane 11 0 0 0 0 γ-Chlordane 10 0 0 0 0 Oxychlordane 6 44 0 0 0 cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11
α-Chlordane 11 0 0 0 0 γ-Chlordane 10 0 0 0 0 Oxychlordane 6 44 0 0 0 cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
γ-Chlordane 10 0 0 0 0 Oxychlordane 6 44 0 0 0 cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 0 Heptachlor 14 0 0 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 0 o,p'-DDT 10 0 0 0 0 0 0 p,p'-DDT 12 22 11 0 17
Oxychlordane 6 44 0 0 0 cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
cis-Nonachlor 5 0 0 0 0 trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlorepoxide 11 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
trans-Nonachlor 5 0 0 0 0 Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlorepoxide 11 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
Sum Chlordanes LB (ND = 0) 11 0 0 0 0 Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlors poxide 11 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
Sum Chlordanes UB (ND = LOD) 4 0 0 0 0 Heptachlor 14 0 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 0 trans-Heptachlorepoxide 11 0 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 0 o,p'-DDT 10 0 0 0 0 0 p,p'-DDT 12 22 11 0 17
Heptachlor 14 0 0 0 0 cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlorepoxide 11 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
cis-Heptachlorepoxide 11 0 0 0 0 trans-Heptachlorepoxide 11 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
trans-Heptachlorepoxide 11 0 0 0 0 Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
Sum Heptachlors LB (ND = 0) 14 0 0 0 0 Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 0 o,p'-DDT 10 0 0 0 0 0 p,p'-DDT 12 22 11 0 17
Sum Heptachlors UB (ND = LOD) 8 0 0 0 0 o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
o,p'-DDT 10 0 0 0 0 p,p'-DDT 12 22 11 0 17
p,p'-DDT 12 22 11 0 17
o,p'-DDD 10 0 0 0
p,p'-DDD 13 0 0 0 0
o,p'-DDE 10 0 0 0
p,p'-DDE 14 33 5 10 24
Sum DDTs LB (ND = 0) 14 24 5 10 38
Sum DDTs UB (ND = LOD) 7 45 18 9 27
α-HCH 15 0 0 0 0
β -HCH 14 35 0 5 20
γ -HCH 15 0 0 0 0
Sum HCHs LB (ND = 0) 15 32 0 9 27
Sum HCHs UB (ND = LOD) 14 0 0 0
α -Endosulfan 13 0 0 0 0
β -Endosulfan 11 0 0 0 0
Endosulfan sulfate 9 0 0 0 0
Sum Endosulfans LB (ND = 0) 13 0 0 0 0
Sum Endosulfans UB (ND = LOD) 9 0 0 0 0
Chlordecone 1 0 0 0 0
Hexachlorobenzene 11 29 0 29 18
Hexachlorobutadiene 2 0 0 0 0
Mirex 8 0 0 0 0
Pentachlorobenzene 6 0 0 0 0

Table 10: Summary results OCPs, air extract (TOL) (ng/g)

Air extract (TOL)		n			<u> </u>				Between	Inclusion
, ,									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Aldrin	18	15	3	NAV	3.0	2.5	0.34	2770	113	64
Dieldrin	18	17	1	2.4	3.0	2.4	0.86	1186	77	62
Endrin	19	13	6	NAV	1.5	1.1	0.18	8718	109	60
Sum Drins LB (ND = 0)	19	19	0	NAV	6.4	5.1	1.1	12674	135	57
Sum Drins UB (ND = LOD)	17	17	0	8.2	9.5	8.2	2.3	12674	118	57
lpha-Chlordane	20	18	2	1.5	1.9	1.5	0.37	223	65	60
γ -Chlordane	20	17	3	1.5	1.6	1.5	0.02	234	76	69
Oxychlordane	14	11	3	1.3	1.4	1.3	0.22	5.9	25	60
cis-Nonachlor	11	7	4	0.2	0.19	0.18	0.12	18.1	49	61
trans-Nonachlor	13	9	4	NAV	0.32	0.23	0.08	14.7	121	50
Sum Chlordanes LB (ND = 0)	20	18	2	4.6	5.5	4.6	0.00	457	89	61
Sum Chlordanes UB (ND = LOD)	8	8	0	NAV	8.4	6.9	4.5	66.6	70	67
Heptachlor	20	14	6	1.4	1.6	1.4	0.18	9375	56	61
cis-Heptachlorepoxide	18	15	3	1.6	2.0	1.6	0.29	2117	94	62
trans-Heptachlorepoxide	13	9	4	NAV	8.4	2.2	1.2	3487	340	41
Sum Heptachlors LB (ND = 0)	20	16	4	NAV	4.8	3.9	0.00	14979	130	59
Sum Heptachlors UB (ND = LOD)	11	11	0	4.8	4.9	4.8	3.4	14979	40	60
o,p'-DDT	18	16	2	2.2	2.3	2.2	0.13	5.6	15	55
p,p'-DDT	19	17	2	2.9	3.1	2.9	0.55	204	22	53
o,p'-DDD	18	15	3	1.4	1.5	1.4	0.45	1136	31	57
p,p'-DDD	20	17	3	1.6	1.7	1.6	0.31	2970	50	62
o,p'-DDE	19	17	2	1.6	1.6	1.6	0.44	448	22	61
p,p'-DDE	21	20	1	6.4	6.3	6.4	0.11	12.4	22	60
Sum DDTs LB (ND = 0)	21	20	1	16.0	17.1	16.0	0.00	4553	34	65
Sum DDTs UB (ND = LOD)	15	15	0	17.4	17.2	17.4	6.5	58	23	64
α -HCH	22	20	2	2.1	2.3	2.1	0.16	46840	49	62
β -НСН	20	17	3	2.2	2.6	2.2	0.14	1591	76	61
γ-НСН	22	21	1	5.8	5.9	5.8	0.51	17079	20	57
Sum HCHs LB (ND = 0)	22	21	1	10.0	11.1	10.0	0.00	65510	41	61
Sum HCHs UB (ND = LOD)	20	20	0	10.2	10.9	10.2	0.81	65510	35	60
lpha-Endosulfan	19	14	5	NAV	3.2	2.4	0.24	8323	131	60
β -Endosulfan	16	13	3	NAV	3.1	2.5	0.44	98.1	156	54
Endosulfan sulfate	12	8	4	NAV	7.3	2.8	0.04	395	309	44
Sum Endosulfans LB (ND = 0)	19	16	3	NAV	9.1	6.3	0.00	8323	172	60
Sum Endosulfans UB (ND = LOD)	11	11	0	NAV	10.0	7.0	1.2	526	154	63
Chlordecone	1	1	0	NAV	NAV	NAV	3.2	3.2	NAV	NAV
Hexachlorobenzene	19	18	1	5.0	5.0	5.0	0.88	6214	20	61
Hexachlorobutadiene	2	2	0	NAV	NAV	NAV	0.70	2.1	NAV	NAV
Mirex	16	12	4	1.9	2.1	1.9	0.13	12.4	102	58
Pentachlorobenzene	14	10	4	0.8	0.74	0.75	0.33	1.0	21	69

Air extract (TOL) Analyte	% of the data received	% of z-scores z <2 Satisfactory	% of z-scores 3> z >2 Questionable	% of z-scores 6> z >3 Unsatisfactory	% of z-scores z >6 Extreme
Aldrin	12	0	0	0	0
Dieldrin	12	39	11	11	33
Endrin	13	0	0	0	0
Sum Drins LB (ND = 0)	13	0	0	0	0
Sum Drins UB (ND = LOD)	11	29	12	12	47
α-Chlordane	14	35	10	10	35
γ-Chlordane	14	35	5	15	30
Oxychlordane	9	50	0	7	21
cis-Nonachlor	7	36	0	9	18
trans-Nonachlor	9	0	0	0	0
Sum Chlordanes LB (ND = 0)	14	35	10	5	40
Sum Chlordanes UB (ND = LOD)	5	0	0	0	0
Heptachlor	14	35	5	5	25
cis-Heptachlorepoxide	12	28	6	11	39
trans-Heptachlorepoxide	9	0	0	0	0
Sum Heptachlors LB (ND = 0)	14	0	0	0	0
Sum Heptachlors UB (ND = LOD)	7	45	9	9	36
o,p'-DDT	12	56	6	6	22
p,p'-DDT	13	47	11	5	26
o,p'-DDD	12	44	6	17	17
p,p'-DDD	14	30	20	5	30
o,p'-DDE	13	53	11	11	16
p,p'-DDE	14	57	10	19	10
Sum DDTs LB (ND = 0)	14	48	5	24	19
Sum DDTs UB (ND = LOD)	10	60	7	20	13
α-HCH	15	41	5	18	27
β -НСН	14	25	15	10	35
γ-НСН	15	64	0	0	32
Sum HCHs LB (ND = 0)	15	45	0	18	32
Sum HCHs UB (ND = LOD)	14	50	5	10	35
α-Endosulfan	13	0	0	0	0
β -Endosulfan	11	0	0	0	0
Endosulfan sulfate	8	0	0	0	0
Sum Endosulfans LB (ND = 0)	13	0	0	0	0
Sum Endosulfans UB (ND = LOD)	7	0	0	0	0
Chlordecone	1	0	0	0	0
Hexachlorobenzene	13	58	5	11	21
Hexachlorobutadiene	1	0	0	0	0
Mirex	11	31	6	0	38
Pentachlorobenzene	9	50	14	7	0

3.2.2 <u>Polychlorinated Biphenyls (PCB)</u>

Table 12: Summary results indicator PCB, test solution Z (ng/g)

Test Solution Z		n								Between	Inclusion
				Theoretical						lab CV	rate
Analyte	Total	Numerical	LCV	conc.	ΑV	Median	Mean	Min	Max	(%)	(%)
PCB 28	53	52	1	4.4	3.9	4.2	3.9	0.34	41.1	42	70
PCB 52	56	54	2	9.6	10.5	11.4	10.5	1.2	121	38	67
PCB 101	56	55	1	5.3	5.0	5.4	5.0	0.48	50.6	43	69
PCB 138	55	53	2	5.7	6.5	6.9	6.5	0.70	48.4	34	66
PCB 153	56	54	2	12.3	11.6	12.1	11.6	0.66	235	38	70
PCB 180	55	53	2	11.4	10.4	11.2	10.4	1.2	48.4	36	69
Sum Indicator PCB LB (ND = 0)	56	55	1	48.7	48.8	50.8	48.8	0.00	486	35	71
Sum Indicator PCB UB (ND = LOD)	53	53	0	48.7	48.2	50.8	48.2	5.4	486	36	73

Table 13: Summary of laboratory performance indicator PCB, test solution Z

Test Solution Z	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
PCB 28	36	42	21	19	17
PCB 52	38	48	11	21	16
PCB 101	38	43	16	21	18
PCB 138	37	49	15	18	15
PCB 153	38	50	16	16	14
PCB 180	37	49	16	20	11
Sum Indicator PCB LB (ND = 0)	38	52	14	18	14
Sum Indicator PCB UB (ND = LOD)	36	51	17	19	13

Table 14: Summary results indicator PCB, sediment (ng/g)

Sediment		n							Between lab CV	Inclusion rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
PCB 28	39	36	3	4.4	4.5	4.4	0.007	157	58	73
PCB 52	40	38	2	3.9	4.0	3.9	0.005	209	28	61
PCB 101	40	36	4	6.1	6.2	6.1	0.01	348	24	60
PCB 138	40	36	4	8.1	8.2	8.1	0.02	84.0	31	64
PCB 153	40	38	2	10.7	11.0	10.7	0.02	36.0	29	63
PCB 180	40	34	6	6.2	5.9	6.2	0.01	134	33	62
Sum Indicator PCB LB (ND = 0)	40	38	2	39.9	40.7	39.9	0.00	698	25	69
Sum Indicator PCB UB (ND = LOD)	39	39	0	40.1	40.8	40.1	0.07	698	26	68

Table 15: Summary of laboratory performance indicator PCB, sediment

Sediment	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
PCB 28	26	31	18	21	23
PCB 52	27	55	10	8	23
PCB 101	27	55	13	10	13
PCB 138	27	55	13	5	18
PCB 153	27	60	5	10	20
PCB 180	27	45	15	15	10
Sum Indicator PCB LB (ND = 0)	27	63	8	15	10
Sum Indicator PCB UB (ND = LOD)	26	62	10	15	13

Table 16: Summary results indicator PCB, fish (product basis) (ng/g)

Fish A		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
PCB 28	46	42	4	NAV	0.52	0.43	0.01	26.8	126	69
PCB 52	46	42	4	NAV	2.8	2.2	0.03	521	97	73
PCB 101	46	42	4	NAV	7.6	5.8	0.07	450	107	70
PCB 138	45	43	2	NAV	7.3	7.4	0.12	641	111	74
PCB 153	46	44	2	NAV	12.2	10.5	0.12	210	117	75
PCB 180	46	42	4	NAV	4.1	3.5	0.03	2138	109	71
Sum Indicator PCB LB (ND = 0)	47	45	2	NAV	34.0	30.2	0.00	3706	108	78
Sum Indicator PCB UB (ND = LOD)	44	44	0	NAV	35.1	29.4	0.38	3706	108	78

Table 17: Summary of laboratory performance indicator PCB, fish

Fish A	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
PCB 28	31	0	0	0	0
PCB 52	31	0	0	0	0
PCB 101	31	0	0	0	0
PCB 138	30	0	0	0	0
PCB 153	31	0	0	0	0
PCB 180	31	0	0	0	0
Sum Indicator PCB LB (ND = 0)	32	0	0	0	0
Sum Indicator PCB UB (ND = LOD)	30	0	0	0	0

Table 18: Summary results indicator PCB, human milk (lipid weight basis) (ng/g)

Human milk		n							Between	Inclusion
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	lab CV (%)	rate (%)
PCB 28	35	28	7	0.77	0.87	0.77	0.02	66.0	58	64
PCB 52	37	29	8	0.36	0.46	0.36	0.02	116	97	67
PCB 101	35	25	10	0.30	0.35	0.30	0.01	644	63	65
PCB 138	36	29	7	7.5	8.1	7.5	0.18	483	41	58
PCB 153	37	34	3	12.6	14.1	12.6	0.37	337	51	59
PCB 180	35	28	7	6.9	7.4	6.9	0.06	179	40	55
Sum Indicator PCB LB (ND = 0)	37	35	2	26.8	30.1	26.8	0.00	1342	49	61
Sum Indicator PCB UB (ND = LOD)	34	34	0	27.8	30.3	27.8	0.81	1342	51	62

Table 19: Summary of laboratory performance indicator PCB, human milk

Human milk	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
PCB 28	24	34	9	14	23
PCB 52	25	22	16	14	27
PCB 101	24	31	9	14	17
PCB 138	24	42	6	8	25
PCB 153	25	41	8	11	32
PCB 180	24	37	9	11	23
Sum Indicator PCB LB (ND = 0)	25	41	3	19	32
Sum Indicator PCB UB (ND = LOD)	23	41	6	15	38

Table 20: Summary results indicator PCB, air extract (TOL) (ng/g)

Air extract (TOL)		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
PCB 28	35	34	1	4.3	4.2	4.3	0.54	3108	32	66
PCB 52	36	36	0	4.0	4.2	4.0	0.41	2183	27	64
PCB 101	36	36	0	5.2	5.5	5.2	0.54	3787	20	61
PCB 138	35	35	0	3.8	3.9	3.8	0.47	2704	20	59
PCB 153	36	36	0	4.6	4.8	4.6	0.45	929	26	60
PCB 180	36	35	1	2.2	2.3	2.2	0.23	9984	34	65
Sum Indicator PCB LB (ND = 0)	36	36	0	24.8	25.3	24.8	2.64	22695	21	62
Sum Indicator PCB UB (ND = LOD)	35	35	0	25.0	25.4	25.0	2.64	22695	20	64

Table 21: Summary of laboratory performance indicator PCB, air extract (TOL)

Air extract (TOL)	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
PCB 28	24	51	11	23	11
PCB 52	24	53	14	14	19
PCB 101	24	64	6	14	17
PCB 138	24	60	6	11	23
PCB 153	24	56	6	19	19
PCB 180	24	50	8	19	19
Sum Indicator PCB LB (ND = 0)	24	64	3	14	19
Sum Indicator PCB UB (ND = LOD)	24	66	3	11	20

3.2.3 <u>Dioxin-like POPs (PCDD/PCDF and dl-PCB)</u>

Table 22: Summary results dl-POPs, test solutions T and U (ng/g)

Test Solution T and T		n								Between	Inclusion
				Theoretical						lab CV	rate
Analyte	Total	Numerical	LCV	conc.	ΑV	Median	Mean	Min	Max	(%)	(%)
2,3,7,8-TeCDD	41	41	0	80.8	84.8	86.0	84.8	1.2	202	13	64
1,2,3,7,8-PnCDD	41	40	1	55.7	54.1	53.4	54.1	0.67	112	8	64
1,2,3,4,7,8-HxCDD	40	40	0	55.7	56.2	55.4	56.2	0.75	120	14	68
1,2,3,6,7,8-HxCDD	40	39	1	55.7	57.5	56.3	57.5	0.79	112	14	68
1,2,3,7,8,9-HxCDD	40	39	1	195	194	191	194	2.7	516	19	69
1,2,3,4,6,7,8-HpCDD	41	40	1	125	126	125	126	1.4	361	12	65
OCDD	41	40	1	111	111	111	111	0.06	287	13	65
2,3,7,8-TeCDF	41	40	1	11.1	11.1	10.9	11.1	0.16	16.4	14	67
1,2,3,7,8-PnCDF	41	41	0	55.7	53.5	53.3	53.5	0.70	106	11	70
2,3,4,7,8-PnCDF	41	40	1	195	202	198	202	2.7	478	13	66
1,2,3,4,7,8-HxCDF	40	39	1	55.7	55.9	54.5	55.9	0.74	113	14	69
1,2,3,6,7,8-HxCDF	40	39	1	55.7	55.4	55.0	55.4	0.74	112	13	70
1,2,3,7,8,9-HxCDF	41	40	1	195	181	181	181	2.4	404	28	60
2,3,4,6,7,8-HxCDF	41	41	0	55.7	54.5	55.1	54.5	0.74	250	18	59
1,2,3,4,6,7,8-HpCDF	41	40	1	55.7	53.3	52.2	53.3	0.58	89.2	11	62
1,2,3,4,7,8,9-HpCDF	41	40	1	125	125	122	125	1.5	284	12	68
OCDF	41	41	0	181	174	175	174	0.01	379	14	61
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	41	41	0	268	276	274	276	3.6	618	10	63
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	40	40	0	268	276	274	276	3.6	618	9	64
PCB 77	40	40	0	87.1	81.3	80.9	81.3	0.007	41700	27	67
PCB 81	40	39	1	17.4	16.0	16.1	16.0	0.002	6300	25	64
PCB 126	40	40	0	17.4	17.1	17.4	17.1	0.20	12400	22	63
PCB 169	40	39	1	87.1	87.2	85.4	87.2	0.97	78700	12	59
PCB 105	40	39	1	17.4	16.5	16.6	16.5	0.0005	10840	19	62
PCB 114	40	39	1	157	151	150	151	0.004	80000	11	57
PCB 118	40	39	1	105	99.7	99.5	99.7	0.003	25200	18	65
PCB 123	39	39	0	17.4	16.4	16.8	16.4	0.0005	80200	23	68
PCB 156	40	40	0	17.4	16.6	16.8	16.6	0.0005	109300	15	59
PCB 157	39	39	0	157	153	150	153	0.004	16100	17	61
PCB 167	39	38	1	17.4	16.1	16.3	16.1	0.0002	14000	18	61
PCB 189	38	38	0	17.4	16.0	15.8	16.0	0.0005	17600	18	66
WHO2005-TEQ (dl-PCB) LB (ND = 0)	41	41	0	4.38	4.4	4.3	4.4	0.02	3618	16	61
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	38	38	0	4.38	4.3	4.3	4.3	0.05	3618	18	65
WHO2005-TEQ (total) LB (ND = 0)	36	36	0	272	282	279	282	3.7	623	9	63
WHO2005-TEQ (total) UB (ND = LOD)	35	35	0	272	281	279	281	3.7	623	9	63

Table 23: Summary of laboratory performance dl-POPs, test solutions T and U

Test Solution T and U	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
2,3,7,8-TeCDD	28	76	2	10	12
1,2,3,7,8-PnCDD	28	83	2	2	10
1,2,3,4,7,8-HxCDD	27	78	10	0	13
1,2,3,6,7,8-HxCDD	27	78	8	0	13
1,2,3,7,8,9-HxCDD	27	73	8	5	13
1,2,3,4,6,7,8-HpCDD	28	76	7	0	15
OCDD	28	73	10	0	15
2,3,7,8-TeCDF	28	78	7	2	10
1,2,3,7,8-PnCDF	28	83	5	0	12
2,3,4,7,8-PnCDF	28	78	5	5	10
1,2,3,4,7,8-HxCDF	27	80	5	0	13
1,2,3,6,7,8-HxCDF	27	80	5	0	13
1,2,3,7,8,9-HxCDF	28	56	7	22	12
2,3,4,6,7,8-HxCDF	28	61	7	2	29
1,2,3,4,6,7,8-HpCDF	28	78	5	2	12
1,2,3,4,7,8,9-HpCDF	28	76	10	0	12
OCDF	28	66	12	5	17
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	28	80	5	5	10
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	27	80	5	5	10
PCB 77	27	58	18	10	15
PCB 81	27	60	10	10	18
PCB 126	27	63	10	13	15
PCB 169	27	68	5	13	13
PCB 105	27	68	5	10	15
PCB 114	27	70	8	5	15
PCB 118	27	70	8	5	15
PCB 123	26	67	10	10	13
PCB 156	27	63	8	10	20
PCB 157	26	62	10	8	21
PCB 167	26	62	10	8	18
PCB 189	26	66	11	8	16
WHO2005-TEQ (dl-PCB) LB (ND = 0)	28	66	10	10	15
WHO2005-TEQ (dI-PCB) UB (ND = LOD)	26	71	5	11	13
WHO2005-TEQ (total) LB (ND = 0)	24	81	3	6	11
WHO2005-TEQ (total) UB (ND = LOD)	24	80	3	6	11

Table 24: Summary results dl-POPs, sediment (pg/g)

Sediment		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	ΑV	Median	Mean	Min	Max	(%)	(%)
2,3,7,8-TeCDD	35	35	0	4.0	4.1	4.0	1.6	19.6	25	74
1,2,3,7,8-PnCDD	35	33	2	1.1	1.2	1.1	0.56	15.5	35	68
1,2,3,4,7,8-HxCDD	34	32	2	1.3	1.4	1.3	0.11	10.8	41	72
1,2,3,6,7,8-HxCDD	34	34	0	3.3	3.4	3.3	0.28	10.5	25	64
1,2,3,7,8,9-HxCDD	34	34	0	2.5	2.5	2.5	0.21	8.7	32	71
1,2,3,4,6,7,8-HpCDD	35	34	1	51.8	52.3	51.8	0.40	199	27	66
OCDD	35	35	0	509	506	509	0.12	2181	29	69
2,3,7,8-TeCDF	35	35	0	8.5	8.2	8.5	0.85	128	17	71
1,2,3,7,8-PnCDF	35	35	0	7.0	7.1	7.0	0.24	15.8	22	73
2,3,4,7,8-PnCDF	35	34	1	7.3	7.5	7.3	2.4	281	26	72
1,2,3,4,7,8-HxCDF	34	34	0	24.5	24.8	24.5	2.3	47.3	20	70
1,2,3,6,7,8-HxCDF	34	34	0	9.3	9.3	9.3	0.83	17.8	25	68
1,2,3,7,8,9-HxCDF	35	33	2	NAV	2.1	2.0	0.08	57.2	110	68
2,3,4,6,7,8-HxCDF	35	35	0	5.3	5.7	5.3	0.36	18.6	56	78
1,2,3,4,6,7,8-HpCDF	35	35	0	73.8	74.6	73.8	0.59	159	25	61
1,2,3,4,7,8,9-HpCDF	35	35	0	10.4	10.6	10.4	0.09	216	20	63
OCDF	35	35	0	345	337	345	0.04	936	35	75
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	36	35	1	14.9	15.1	14.9	0.00	145	21	69
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	35	35	0	15.1	15.6	15.1	6.3	15803	20	67
PCB 77	26	25	1	410	399	410	0.04	535	17	60
PCB 81	26	23	3	6.2	6.7	6.2	0.0007	457	40	55
PCB 126	26	25	1	19.7	19.8	19.7	1.6	1012	25	60
PCB 169	26	22	4	3.5	3.5	3.5	0.04	56.2	31	58
PCB 105	27	27	0	905	877	905	0.03	1040	14	70
PCB 114	27	25	2	37.1	37.4	37.1	0.001	4055	62	67
PCB 118	27	27	0	3712	3566	3712	0.14	4384	13	63
PCB 123	26	23	3	43.8	48.2	43.8	0.002	520	60	56
PCB 156	27	27	0	755	737	755	0.02	1260	15	63
PCB 157	27	27	0	117	113	117	0.004	776	16	63
PCB 167	27	27	0	374	369	374	0.005	735	22	64
PCB 189	27	26	1	155	152	155	0.004	218	24	66
WHO2005-TEQ (dl-PCB) LB (ND = 0)	28	27	1	2.2	2.2	2.2	0.00	102	32	61
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	27	27	0	2.3	2.3	2.3	0.17	653	28	58
WHO2005-TEQ (total) LB (ND = 0)	27	26	1	16.7	16.6	16.7	0.00	107	31	75
WHO2005-TEQ (total) UB (ND = LOD)	26	26	0	16.8	16.9	16.8	6.51	16456	31	72

Table 25: Summary of laboratory performance dl-POPs, sediment

Sediment	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
2,3,7,8-TeCDD	24	67	17	11	3
1,2,3,7,8-PnCDD	24	56	11	14	11
1,2,3,4,7,8-HxCDD	24	46	14	20	11
1,2,3,6,7,8-HxCDD	24	54	11	23	9
1,2,3,7,8,9-HxCDD	24	57	11	20	9
1,2,3,4,6,7,8-HpCDD	24	56	14	11	14
OCDD	24	53	17	17	11
2,3,7,8-TeCDF	24	75	8	6	8
1,2,3,7,8-PnCDF	24	81	3	3	11
2,3,4,7,8-PnCDF	24	61	14	17	3
1,2,3,4,7,8-HxCDF	24	71	9	9	9
1,2,3,6,7,8-HxCDF	24	60	14	14	9
1,2,3,7,8,9-HxCDF	24	0	0	0	0
2,3,4,6,7,8-HxCDF	24	28	22	33	14
1,2,3,4,6,7,8-HpCDF	24	50	17	17	14
1,2,3,4,7,8,9-HpCDF	24	58	19	11	8
OCDF	24	50	19	17	11
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	24	67	11	17	3
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	24	69	9	20	3
PCB 77	18	63	7	11	11
PCB 81	18	37	7	15	26
PCB 126	18	56	7	11	19
PCB 169	18	44	4	15	19
PCB 105	19	75	4	11	7
PCB 114	19	39	4	18	29
PCB 118	19	68	7	7	14
PCB 123	18	30	11	11	33
PCB 156	19	68	0	14	14
PCB 157	19	68	0	11	18
PCB 167	19	61	7	14	14
PCB 189	19	57	7	21	7
WHO2005-TEQ (dl-PCB) LB (ND = 0)	19	50	7	18	21
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	18	52	7	22	19
WHO2005-TEQ (total) LB (ND = 0)	18	67	0	26	4
WHO2005-TEQ (total) UB (ND = LOD)	18	65	4	23	8

Table 26: Summary results dl-POPs, fish (product basis) (pg/g)

Fish A		n			(1-0/0/				Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
2,3,7,8-TeCDD	38	31	7	NAV	0.24	0.27	0.004	0.56	96	73
1,2,3,7,8-PnCDD	38	16	22	0.02	0.03	0.02	0.003	0.75	89	48
1,2,3,4,7,8-HxCDD	37	8	29	NAV	0.02	0.01	0.000	0.10	219	45
1,2,3,6,7,8-HxCDD	37	11	26	NAV	0.02	0.01	0.000	0.11	131	48
1,2,3,7,8,9-HxCDD	38	10	28	NAV	0.03	0.01	0.000	0.40	259	43
1,2,3,4,6,7,8-HpCDD	38	21	17	0.02	0.03	0.02	0.0025	0.81	182	47
OCDD	38	27	11	0.07	0.09	0.07	0.0003	3.6	102	57
2,3,7,8-TeCDF	38	34	4	NAV	0.34	0.41	0.007	0.90	100	79
1,2,3,7,8-PnCDF	38	32	6	0.09	0.08	0.09	0.002	0.46	111	77
2,3,4,7,8-PnCDF	38	33	5	0.10	0.09	0.10	0.002	0.53	108	74
1,2,3,4,7,8-HxCDF	38	24	14	0.03	0.05	0.03	0.005	0.28	133	58
1,2,3,6,7,8-HxCDF	37	20	17	NAV	0.02	0.01	0.002	0.40	160	50
1,2,3,7,8,9-HxCDF	37	6	31	NAV	0.06	0.01	0.0000	0.31	119	45
2,3,4,6,7,8-HxCDF	37	15	22	0.01	0.03	0.01	0.0006	0.13	178	48
1,2,3,4,6,7,8-HpCDF	38	17	21	NAV	0.01	0.01	0.0000	1.1	197	47
1,2,3,4,7,8,9-HpCDF	37	9	28	NAV	0.04	0.01	0.0000	0.12	228	47
OCDF	38	16	22	0.02	0.05	0.02	0.0000	4.5	197	44
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	38	36	2	NAV	0.30	0.35	0.000	0.99	110	83
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	36	36	0	NAV	0.37	0.41	0.007	1.4	99	82
PCB 77	37	36	1	NAV	20.3	20.1	0.006	197	111	81
PCB 81	37	30	7	NAV	1.3	0.9	0.002	445	171	64
PCB 126	37	34	3	NAV	4.2	4.3	0.06	1739	110	73
PCB 169	37	27	10	NAV	0.59	0.56	0.008	64.1	113	69
PCB 105	37	36	1	NAV	369	431	0.04	1369	114	74
PCB 114	37	30	7	NAV	29.1	34.8	0.002	5832	115	63
PCB 118	37	36	1	NAV	1817	2035	0.21	10393	115	73
PCB 123	37	30	7	NAV	32.0	30.3	0.003	5056	125	63
PCB 156	37	36	1	NAV	258	238	0.03	1687	131	67
PCB 157	37	34	3	NAV	52.7	51.4	0.006	808	123	67
PCB 167	37	36	1	NAV	164	165	0.06	626	108	72
PCB 189	37	34	3	NAV	32.9	34.3	0.003	152	112	69
WHO2005-TEQ (dl-PCB) LB (ND = 0)	37	37	0	NAV	0.41	0.46	0.009	174	116	70
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	37	37	0	NAV	0.54	0.55	0.009	177	115	74
WHO2005-TEQ (total) LB (ND = 0)	35	35	0	NAV	0.77	0.92	0.01	78.8	105	78
WHO2005-TEQ (total) UB (ND = LOD)	35	35	0	NAV	0.79	1.00	0.02	78.8	98	77

Table 27: Summary of laboratory performance dl-POPs, fish

Fish A	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
2,3,7,8-TeCDD	26	0	0	0	0
1,2,3,7,8-PnCDD	26	32	0	5	5
1,2,3,4,7,8-HxCDD	25	0	0	0	0
1,2,3,6,7,8-HxCDD	25	0	0	0	0
1,2,3,7,8,9-HxCDD	26	0	0	0	0
1,2,3,4,6,7,8-HpCDD	26	29	3	3	21
OCDD	26	37	5	5	24
2,3,7,8-TeCDF	26	0	0	0	0
1,2,3,7,8-PnCDF	26	29	11	37	8
2,3,4,7,8-PnCDF	26	26	8	42	11
1,2,3,4,7,8-HxCDF	26	42	5	3	13
1,2,3,6,7,8-HxCDF	25	0	0	0	0
1,2,3,7,8,9-HxCDF	25	0	0	0	0
2,3,4,6,7,8-HxCDF	25	27	3	8	3
1,2,3,4,6,7,8-HpCDF	26	0	0	0	0
1,2,3,4,7,8,9-HpCDF	25	0	0	0	0
OCDF	26	21	3	5	13
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	26	0	0	0	0
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	24	0	0	0	0
PCB 77	25	0	0	0	0
PCB 81	25	0	0	0	0
PCB 126	25	0	0	0	0
PCB 169	25	0	0	0	0
PCB 105	25	0	0	0	0
PCB 114	25	0	0	0	0
PCB 118	25	0	0	0	0
PCB 123	25	0	0	0	0
PCB 156	25	0	0	0	0
PCB 157	25	0	0	0	0
PCB 167	25	0	0	0	0
PCB 189	25	0	0	0	0
WHO2005-TEQ (dl-PCB) LB (ND = 0)	25	0	0	0	0
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	25	0	0	0	0
WHO2005-TEQ (total) LB (ND = 0)	24	0	0	0	0
WHO2005-TEQ (total) UB (ND = LOD)	24	0	0	0	0

Table 28: Summary results dl-POPs, human milk (lipid weight basis) (pg/g)

Human milk		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
2,3,7,8-TeCDD	23	17	6	0.22	0.21	0.22	0.005	5.0	31	60
1,2,3,7,8-PnCDD	23	18	5	0.56	0.62	0.56	0.009	13.6	44	65
1,2,3,4,7,8-HxCDD	23	17	6	0.28	0.30	0.28	0.04	0.77	30	58
1,2,3,6,7,8-HxCDD	23	22	1	1.9	2.0	1.9	0.05	46.4	34	69
1,2,3,7,8,9-HxCDD	23	19	4	0.51	0.56	0.51	0.002	12.0	27	64
1,2,3,4,6,7,8-HpCDD	23	23	0	3.2	3.4	3.2	0.10	76.7	31	65
OCDD	23	23	0	20.4	21.6	20.4	0.45	594	28	65
2,3,7,8-TeCDF	23	18	5	0.37	0.41	0.37	0.02	11.2	38	56
1,2,3,7,8-PnCDF	23	18	5	0.23	0.27	0.23	0.005	3.9	75	64
2,3,4,7,8-PnCDF	23	22	1	1.7	1.7	1.7	0.05	42.0	26	64
1,2,3,4,7,8-HxCDF	23	22	1	0.68	0.69	0.68	0.01	15.3	24	70
1,2,3,6,7,8-HxCDF	23	21	2	0.62	0.65	0.62	0.01	14.1	23	65
1,2,3,7,8,9-HxCDF	23	10	13	NAV	0.19	0.12	0.001	1.0	149	58
2,3,4,6,7,8-HxCDF	22	18	4	0.44	0.44	0.44	0.001	9.5	30	63
1,2,3,4,6,7,8-HpCDF	23	22	1	1.1	1.0	1.1	0.02	23.5	31	67
1,2,3,4,7,8,9-HpCDF	22	12	10	0.07	0.09	0.07	0.005	1.1	115	64
OCDF	23	12	11	NAV	0.47	0.36	0.01	2.2	124	61
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	23	23	0	1.7	1.7	1.7	0.03	43.4	41	72
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	22	22	0	2.0	1.9	2.0	0.04	44.0	35	65
PCB 77	23	20	3	NAV	10.4	9.7	0.26	159	94	73
PCB 81	23	16	7	1.2	1.3	1.2	0.005	5.0	36	54
PCB 126	24	21	3	10.6	10.3	10.6	0.17	274	27	68
PCB 169	24	20	4	6.5	6.6	6.5	0.13	171	34	58
PCB 105	24	23	1	412	419	412	9.6	10590	15	65
PCB 114	24	22	2	97.3	93.4	97.3	2.4	2600	20	66
PCB 118	24	23	1	1826	1808	1826	49.7	50480	11	61
PCB 123	23	19	4	23.5	25.4	23.5	0.38	490	34	62
PCB 156	24	23	1	1299	1300	1299	33.7	33190	17	65
PCB 157	24	23	1	205	206	205	5.7	5410	18	62
PCB 167	24	23	1	286	290	286	7.5	7800	16	58
PCB 189	23	22	1	127	126	127	3.6	185	18	66
WHO2005-TEQ (dl-PCB) LB (ND = 0)	25	23	2	1.4	1.4	1.4	0.00	35.9	26	62
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	23	23	0	1.4	1.4	1.4	0.07	36.2	25	63
WHO2005-TEQ (total) LB (ND = 0)	23	22	1	3.0	3.2	3.0	0.0	79.3	32	71
WHO2005-TEQ (total) UB (ND = LOD)	22	22	0	3.5	3.5	3.5	0.1	80.2	33	72

Table 29: Summary of laboratory performance dl-POPs, human milk

Human milk	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
2,3,7,8-TeCDD	16	52	9	4	9
1,2,3,7,8-PnCDD	16	48	4	13	13
1,2,3,4,7,8-HxCDD	16	52	0	9	13
1,2,3,6,7,8-HxCDD	16	52	22	9	13
1,2,3,7,8,9-HxCDD	16	61	0	0	22
1,2,3,4,6,7,8-HpCDD	16	57	13	13	17
OCDD	16	61	13	0	26
2,3,7,8-TeCDF	16	43	13	4	17
1,2,3,7,8-PnCDF	16	26	17	13	22
2,3,4,7,8-PnCDF	16	61	13	9	13
1,2,3,4,7,8-HxCDF	16	78	4	4	9
1,2,3,6,7,8-HxCDF	16	70	4	9	9
1,2,3,7,8,9-HxCDF	16	0	0	0	0
2,3,4,6,7,8-HxCDF	15	50	9	9	14
1,2,3,4,6,7,8-HpCDF	16	57	17	9	13
1,2,3,4,7,8,9-HpCDF	15	23	5	9	18
OCDF	16	0	0	0	0
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	16	48	17	17	17
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	15	50	14	18	18
PCB 77	16	0	0	0	0
PCB 81	16	29	13	8	17
PCB 126	17	56	8	8	12
PCB 169	17	44	4	12	20
PCB 105	17	72	0	8	12
PCB 114	17	64	8	4	12
PCB 118	17	72	0	8	12
PCB 123	16	50	8	0	21
PCB 156	17	64	16	0	12
PCB 157	17	64	12	4	12
PCB 167	17	60	8	12	12
PCB 189	16	67	13	4	8
WHO2005-TEQ (dl-PCB) LB (ND = 0)	17	56	8	4	24
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	16	61	9	4	26
WHO2005-TEQ (total) LB (ND = 0)	16	48	22	13	13
WHO2005-TEQ (total) UB (ND = LOD)	15	59	9	18	14

Table 30: Summary results dl-POPs, air extract (TOL) (pg/g)

Air extract (TOL)		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
2,3,7,8-TeCDD	33	32	1	7.0	7.1	7.0	3.6	20.0	18	63
1,2,3,7,8-PnCDD	34	34	0	14.1	14.4	14.1	3.5	31.5	17	66
1,2,3,4,7,8-HxCDD	34	34	0	12.8	12.6	12.8	1.1	36.8	17	66
1,2,3,6,7,8-HxCDD	34	34	0	14.6	14.5	14.6	1.2	37.8	12	68
1,2,3,7,8,9-HxCDD	34	33	1	14.1	14.3	14.1	0.90	123	21	62
1,2,3,4,6,7,8-HpCDD	34	34	0	41.1	41.1	41.1	0.36	118	16	68
OCDD	34	33	1	63.0	63.4	63.0	0.02	161	16	61
2,3,7,8-TeCDF	34	34	0	9.3	9.1	9.3	0.74	33.8	21	67
1,2,3,7,8-PnCDF	34	34	0	16.3	16.0	16.3	0.40	82.9	16	61
2,3,4,7,8-PnCDF	34	34	0	15.9	16.0	15.9	4.0	62.3	18	66
1,2,3,4,7,8-HxCDF	34	34	0	15.4	15.2	15.4	1.3	44.1	16	67
1,2,3,6,7,8-HxCDF	34	34	0	15.7	15.3	15.7	1.3	43.3	15	70
1,2,3,7,8,9-HxCDF	34	33	1	13.2	13.8	13.2	0.62	43.6	35	69
2,3,4,6,7,8-HxCDF	34	34	0	15.0	15.1	15.0	1.3	96.2	17	68
1,2,3,4,6,7,8-HpCDF	34	33	1	32.4	32.8	32.4	0.25	109	14	61
1,2,3,4,7,8,9-HpCDF	34	34	0	27.1	27.6	27.1	0.22	104	15	66
OCDF	34	34	0	31.4	31.4	31.4	0.003	186	28	64
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	34	34	0	39.1	38.7	39.1	17.1	113	16	62
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	33	33	0	39.2	39.0	39.2	17.4	113	16	61
PCB 77	31	28	3	99.5	98.1	99.5	0.01	460	19	62
PCB 81	30	23	7	13.4	13.3	13.4	0.004	163	53	60
PCB 126	30	24	6	19.9	20.8	19.9	2.1	136	29	59
PCB 169	30	21	9	8.6	9.5	8.6	0.42	17.1	49	62
PCB 105	31	29	2	664	678	664	0.03	996	22	65
PCB 114	31	26	5	51.4	51.8	51.4	0.002	1493	30	58
PCB 118	30	28	2	1922	1900	1922	0.10	2475	12	61
PCB 123	30	25	5	38.8	40.5	38.8	0.002	264	35	56
PCB 156	31	28	3	171	170	171	0.01	245	19	61
PCB 157	30	25	5	38.0	38.0	38.0	0.002	193	18	51
PCB 167	30	28	2	85.8	84.9	85.8	0.01	340	27	66
PCB 189	30	24	6	18.5	17.8	18.5	0.001	22.8	16	56
WHO2005-TEQ (dl-PCB) LB (ND = 0)	31	29	2	2.1	2.3	2.1	0.00	13.7	52	63
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	30	30	0	2.3	2.5	2.3	0.22	79.7	38	62
WHO2005-TEQ (total) LB (ND = 0)	29	29	0	39.6	39.0	39.6	0.11	63.5	24	71
WHO2005-TEQ (total) UB (ND = LOD)	28	28	0	40.3	39.1	40.3	0.11	63.5	24	70

Table 31: Summary of laboratory performance dl-POPs, air extract (TOL)

Air extract (TOL)	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
2,3,7,8-TeCDD	22	67	9	15	6
1,2,3,7,8-PnCDD	23	76	3	15	6
1,2,3,4,7,8-HxCDD	23	74	3	15	9
1,2,3,6,7,8-HxCDD	23	82	0	9	9
1,2,3,7,8,9-HxCDD	23	59	15	12	12
1,2,3,4,6,7,8-HpCDD	23	74	6	9	12
OCDD	23	65	15	9	9
2,3,7,8-TeCDF	23	68	9	15	9
1,2,3,7,8-PnCDF	23	68	9	9	15
2,3,4,7,8-PnCDF	23	74	3	18	6
1,2,3,4,7,8-HxCDF	23	74	6	9	12
1,2,3,6,7,8-HxCDF	23	79	3	9	9
1,2,3,7,8,9-HxCDF	23	53	12	21	12
2,3,4,6,7,8-HxCDF	23	76	3	9	12
1,2,3,4,6,7,8-HpCDF	23	74	3	3	18
1,2,3,4,7,8,9-HpCDF	23	76	3	9	12
OCDF	23	59	6	18	18
WHO2005-TEQ (PCDD PCDF) LB (ND = 0)	23	71	9	18	3
WHO2005-TEQ (PCDD PCDF) UB (ND = LOD)	22	70	6	21	3
PCB 77	21	61	6	10	13
PCB 81	20	30	10	10	27
PCB 126	20	43	10	10	17
PCB 169	20	27	7	20	17
PCB 105	21	65	3	16	10
PCB 114	21	45	10	16	13
PCB 118	21	68	3	13	6
PCB 123	20	33	17	10	23
PCB 156	21	55	10	16	10
PCB 157	20	47	10	13	13
PCB 167	20	57	10	7	20
PCB 189	20	60	3	10	7
WHO2005-TEQ (dl-PCB) LB (ND = 0)	21	29	16	16	32
WHO2005-TEQ (dl-PCB) UB (ND = LOD)	20	50	3	23	23
WHO2005-TEQ (total) LB (ND = 0)	20	66	7	24	3
WHO2005-TEQ (total) UB (ND = LOD)	19	64	7	25	4

3.2.4 <u>Polybrominated Diphenyl Ethers (PBDE)</u>

Table 32: Summary results PBDE, test solution V (ng/g)

Test Solution V		n								Betwee	Inclusio
		Numerica		Theoretica						n lab CV	n rate
Analyte	Total	1	LCV	I conc.	AV	Median	Mean	Min	Max	(%)	(%)
BDE 17	19	19	0	200	210	208	210	60.3	260	7	56
BDE 28	26	25	1	37.9	37.7	37.3	37.7	3.7	155	13	64
BDE 47	27	27	0	129	124	123	124	14.1	166	19	69
BDE 99	28	28	0	233	224	224	224	43.1	290	23	65
BDE 100	28	28	0	57.0	56.9	56.0	56.9	7.6	225	11	61
BDE 153	27	27	0	109	105	106	105	24.4	275	17	55
BDE 154	26	26	0	168	140	142	140	33.2	184	25	75
BDE 183	27	27	0	43.4	39.2	40.0	39.2	19.2	62	25	74
BDE 209	20	20	0	592	464	516	464	18.7	709	50	79
Sum PBDE LB (ND = 0)	28	28	0	1569	NAV	1164	1125	148	1862	50	79
Sum PBDE UB (ND =	17	17	•	1560	1402	1405	1402	605	1963	10	60
LOD)	17	1/	0	1569	1492	1495	1492	695	1862	18	69
PBB 153	10	10	0	73.8	68.5	71.1	68.5	44.0	101	26	77

Table 33: Summary of laboratory performance PBDE, test solution V

Test Solution V	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
BDE 17	13	89	0	11	0
BDE 28	18	69	4	15	8
BDE 47	18	70	7	19	4
BDE 99	19	64	7	25	4
BDE 100	19	71	4	14	11
BDE 153	18	59	7	22	11
BDE 154	18	62	23	12	4
BDE 183	18	63	15	22	0
BDE 209	14	40	15	35	10
Sum PBDE LB (ND = 0)	19	0	0	0	0
Sum PBDE UB (ND = LOD)	11	76	6	18	0
PBB 153	7	80	10	10	0

Table 34: Summary results PBDE, sediment (ng/g)

Sediment		n							Between lab CV	Inclusion rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
BDE 17	16	14	2	0.11	0.11	0.11	0.02	0.32	12	65
BDE 28	20	19	1	0.14	0.15	0.14	0.011	236	12	62
BDE 47	21	20	1	1.6	1.7	1.6	0.12	3650	18	64
BDE 99	22	21	1	1.6	1.7	1.6	0.12	3508	44	63
BDE 100	22	21	1	0.42	0.44	0.42	0.03	797	32	58
BDE 153	21	20	1	0.31	0.32	0.31	0.03	574	18	58
BDE 154	20	18	2	0.21	0.22	0.21	0.01	367	31	64
BDE 183	21	18	3	0.15	0.17	0.15	0.04	414	28	60
BDE 209	15	15	0	65.4	63.3	65.4	3.03	134	15	69
Sum PBDE LB (ND = 0)	22	22	0	56.7	64.4	56.7	0.36	9546	53	61
Sum PBDE UB (ND = LOD)	14	14	0	70.8	68.9	70.8	6.5	297	15	68
PBB 153	12	8	4	0.03	0.03	0.03	0.02	63.7	20	55

Table 35: Summary of laboratory performance PBDE, sediment

Sediment	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
Analyte	data received	z <2 Satisfactory	3> z >2 Questionable	6> z >3 Unsatisfactory	z >6 Extreme
BDE 17	11	69	0	13	6
BDE 28	14	70	5	10	10
BDE 47	14	67	5	10	14
BDE 99	15	45	9	14	27
BDE 100	15	55	5	5	32
BDE 153	14	62	5	14	14
BDE 154	14	60	5	5	20
BDE 183	14	57	0	10	19
BDE 209	10	80	0	7	13
Sum PBDE LB (ND = 0)	15	32	9	18	41
Sum PBDE UB (ND = LOD)	9	79	0	7	14
PBB 153	8	58	0	0	8

Table 36: Summary results PBDE, fish (product basis) (ng/g)

Fish A		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
BDE 17	20	14	6	NAV	0.005	0.004	0.0007	0.04	98	62
BDE 28	24	20	4	0.02	0.02	0.02	0.002	0.09	97	77
BDE 47	25	24	1	NAV	0.64	0.68	0.08	157	104	81
BDE 99	26	24	2	NAV	0.26	0.26	0.03	48	109	76
BDE 100	26	25	1	NAV	0.24	0.25	0.03	56	109	77
BDE 153	25	23	2	0.06	0.05	0.06	0.008	10.7	99	73
BDE 154	24	21	3	0.06	0.06	0.06	0.007	12.8	108	74
BDE 183	24	11	13	NAV	0.0010	0.0008	0.0002	0.10	86	69
BDE 209	19	10	9	0.03	0.04	0.03	0.004	0.45	155	57
Sum PBDE LB (ND = 0)	26	25	1	NAV	1.4	1.5	0.00	284	103	81
Sum PBDE UB (ND = LOD)	17	17	0	NAV	1.3	1.6	0.24	3.5	85	82
PBB 153	13	7	6	0.02	0.02	0.02	0.008	0.03	63	68

Table 37: Summary of laboratory performance PBDE, fish

Fish A	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
BDE 17	14	0	0	0	0
BDE 28	16	79	0	4	0
BDE 47	17	0	0	0	0
BDE 99	18	0	0	0	0
BDE 100	18	0	0	0	0
BDE 153	17	44	24	16	8
BDE 154	16	38	21	25	4
BDE 183	16	0	0	0	0
BDE 209	13	32	0	5	16
Sum PBDE LB (ND = 0)	18	0	0	0	0
Sum PBDE UB (ND = LOD)	11	0	0	0	0
PBB 153	9	54	0	0	0

Table 38: Summary results PBDE, human milk (lipid weight basis) (ng/g)

Human milk		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
BDE 17	6	2	4	NAV	NAV	NAV	0.01	0.05	NAV	NAV
BDE 28	13	10	3	0.02	0.03	0.02	0.01	13.3	74	60
BDE 47	13	11	2	0.30	0.32	0.30	0.25	7.5	18	58
BDE 99	13	11	2	0.08	0.08	0.08	0.06	1.7	27	75
BDE 100	13	12	1	0.06	0.06	0.06	0.05	1.0	18	66
BDE 153	13	11	2	0.25	0.25	0.25	0.03	4.5	17	58
BDE 154	13	6	7	NAV	0.007	0.007	0.005	0.04	8	60
BDE 183	13	7	6	NAV	0.014	0.010	0.002	0.26	75	76
BDE 209	10	6	4	NAV	0.93	0.58	0.005	10.7	146	61
Sum PBDE LB (ND = 0)	13	13	0	0.9	1.0	0.9	0.48	26	52	64
Sum PBDE UB (ND = LOD)	6	6	0	1.5	1.6	1.5	1.2	26	33	75
PBB 153	6	2	4	NAV	NAV	NAV	0.03	0.49	NAV	NAV

Table 39: Summary of laboratory performance PBDE, human milk

Human milk	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
BDE 17	4	0	0	0	0
BDE 28	9	46	15	0	15
BDE 47	9	62	0	15	8
BDE 99	9	69	0	8	8
BDE 100	9	69	0	15	8
BDE 153	9	62	8	8	8
BDE 154	9	0	0	0	0
BDE 183	9	0	0	0	0
BDE 209	7	0	0	0	0
Sum PBDE LB (ND = 0)	9	46	0	23	31
Sum PBDE UB (ND = LOD)	4	67	17	0	17
PBB 153	4	0	0	0	0

Table 40: Summary results PBDE, air extract (TOL) (ng/g)

Air extract (TOL)		n							Between lab CV	Inclusion rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
BDE 17	14	14	0	0.43	0.43	0.43	0.25	0.53	18	74
BDE 28	19	19	0	0.87	0.86	0.87	0.07	1.4	17	71
BDE 47	21	19	2	2.5	2.5	2.5	0.20	4.8	9	59
BDE 99	22	22	0	3.5	3.4	3.5	0.28	5.8	16	68
BDE 100	22	22	0	1.3	1.4	1.3	0.09	4.3	19	66
BDE 153	20	20	0	0.84	0.83	0.84	0.07	1.8	17	68
BDE 154	20	19	1	0.82	0.81	0.82	0.07	1.4	14	70
BDE 183	21	18	3	0.62	0.62	0.62	0.05	0.85	17	62
BDE 209	16	12	4	0.81	0.90	0.81	0.05	6.0	52	58
Sum PBDE LB (ND = 0)	22	22	0	11.1	11.0	11.1	0.83	18.8	20	69
Sum PBDE UB (ND = LOD)	14	14	0	12.2	12.3	12.2	7.8	124	19	69
PBB 153	9	9	0	1.2	1.2	1.2	0.44	1.3	4	55

Table 41: Summary of laboratory performance PBDE, air extract (TOL)

Air extract (Tol)	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
BDE 17	9	86	14	0	0
BDE 28	13	79	5	11	5
BDE 47	14	67	10	5	10
BDE 99	15	73	9	14	5
BDE 100	15	73	0	9	18
BDE 153	14	75	5	10	10
BDE 154	14	75	10	5	5
BDE 183	14	67	10	5	5
BDE 209	11	38	6	0	31
Sum PBDE LB (ND = 0)	15	68	14	14	5
Sum PBDE UB (ND = LOD)	9	71	7	14	7
PBB 153	6	89	0	11	0

3.2.5 <u>Toxaphenes</u>

Table 42: Summary results toxaphenes, test solution AA (ng/g)

Test Solution AA		n								Between	Inclusion
				Theoretical						lab CV	rate
Analyte	Total	Numerical	LCV	conc.	ΑV	Median	Mean	Min	Max	(%)	(%)
Parlar 26	10	10	0	40.7	39.7	38.8	39.7	31.9	898	13	75
Parlar 50	10	10	0	56.4	53.8	53.7	53.8	11.1	1163	10	67
Parlar 62	10	10	0	101	101	101	101	8.3	1906	12	68
Sum toxaphenes LB (ND = 0)	10	10	0	198	195	195	195	56.8	3967	11	70
Sum toxaphenes UB (ND = LOD)	10	10	0	198	195	195	195	56.8	3967	11	70

Table 43: Summary of laboratory performance toxaphenes, test solution AA

Test Solution AA	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
Parlar 26	7	90	0	0	10
Parlar 50	7	80	0	0	20
Parlar 62	7	80	0	0	20
Sum toxaphenes LB (ND = 0)	7	80	0	10	10
Sum toxaphenes UB (ND = LOD)	7	80	0	10	10

Table 44: Summary results toxaphenes, sediment (ng/g)

Sediment		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Parlar 26	7	2	5	NAV	NAV	NAV	0.61	1.4	NAV	NAV
Parlar 50	7	1	6	NAV	NAV	NAV	1.0	1.0	NAV	NAV
Parlar 62	7	1	6	NAV	NAV	NAV	0.08	0.08	NAV	NAV
Sum toxaphenes LB (ND = 0)	7	2	5	NAV	NAV	NAV	0.000	2.4	NAV	NAV
Sum toxaphenes UB (ND = LOD)	7	7	0	NAV	0.70	0.55	0.002	3.4	148	70

Table 45: Summary of laboratory performance toxaphenes, sediment

Sediment	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
Parlar 26	5	0	0	0	0
Parlar 50	5	0	0	0	0
Parlar 62	5	0	0	0	0
Sum toxaphenes LB (ND = 0)	5	0	0	0	0
Sum toxaphenes UB (ND = LOD)	5	0	0	0	0

Table 46: Summary results toxaphenes, fish (product basis) (ng/g)

Fish (toxaphene)		n							Between lab CV	Inclusion rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Parlar 26	9	6	3	NAV	0.72	0.62	0.27	13.2	38	50
Parlar 50	9	6	3	NAV	0.86	0.63	0.12	15.0	71	53
Parlar 62	9	5	4	NAV	0.79	0.50	0.06	11.6	64	46
Sum toxaphenes LB (ND = 0)	9	6	3	NAV	2.2	2.1	0.00	39.9	23	61
Sum toxaphenes UB (ND = LOD)	9	9	0	1.9	2.3	1.9	0.05	39.9	44	66

Table 47: Summary of laboratory performance toxaphenes, fish

Fish (toxaphene)	% of the data received	% of z-scores	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte	uata receiveu	Satisfactory	Questionable	Unsatisfactory	Extreme
Parlar 26	6	0	0	0	0
Parlar 50	6	0	0	0	0
Parlar 62	6	0	0	0	0
Sum toxaphenes LB (ND = 0)	6	0	0	0	0
Sum toxaphenes UB (ND = LOD)	6	44	22	11	22

Table 48: Summary results toxaphenes, human milk (lipid weight basis) (ng/g)

Human milk		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Parlar 26	5	4	1	NAV	0.25	0.25	0.10	0.45	49	73
Parlar 50	5	4	1	NAV	0.49	0.52	0.10	0.56	13	67
Parlar 62	5	0	5	NAV	NAV	NAV	0.00	0.00	NAV	NAV
Sum toxaphenes LB (ND = 0)	5	4	1	NAV	0.76	0.81	0.00	0.98	25	68
Sum toxaphenes UB (ND = LOD)	5	5	0	NAV	1.5	1.7	0.30	5.7	103	75

Table 49: Summary of laboratory performance toxaphenes, human milk

Human milk	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
Parlar 26	3	0	0	0	0
Parlar 50	3	0	0	0	0
Parlar 62	3	0	0	0	0
Sum toxaphenes LB (ND = 0)	3	0	0	0	0
Sum toxaphenes UB (ND = LOD)	3	0	0	0	0

Table 50: Summary results toxaphenes, air extract (TOL) (ng/g)

Air extract (TOL)		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
Parlar 26	7	2	5	NAV	NAV	NAV	0.21	2.1	NAV	NAV
Parlar 50	7	1	6	NAV	NAV	NAV	0.40	0.40	NAV	NAV
Parlar 62	7	0	7	NAV	NAV	NAV	0.00	0.00	NAV	NAV
Sum toxaphenes LB (ND = 0)	7	2	5	NAV	NAV	NAV	0.00	2.5	NAV	NAV
Sum toxaphenes UB (ND = LOD)	7	7	0	NAV	2.6	2.3	1.09	79.2	48	64

Table 51: Summary of laboratory performance toxaphenes, air extract (TOL)

Air extract (TOL)	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
Parlar 26	5	0	0	0	0
Parlar 50	5	0	0	0	0
Parlar 62	5	0	0	0	0
Sum toxaphenes LB (ND = 0)	5	0	0	0	0
Sum toxaphenes UB (ND = LOD)	5	0	0	0	0

3.2.6 <u>Hexabromocylcododecane (HBCD)</u>

Table 52: Summary results HBCD, test solution X (ng/g)

Test Solution X		n								Betwee	Inclusio
				Theoretical						n lab CV	n rate
Analyte	Total	Numerical	LCV	conc.	ΑV	Median	Mean	Min	Max	(%)	(%)
$\alpha ext{-HBCD}$	13	13	0	865	775	750	775	587	923	13	77
β-HBCD	13	13	0	1153	1053	1069	1053	618	1280	18	78
γ-HBCD	13	13	0	288	293	290	293	181	437	8	53
Sum HBCD LB (ND = 0)	13	13	0	2307	2102	2120	2102	1642	2450	16	81
Sum HBCD UB (ND = LOD)	13	13	0	2307	2102	2120	2102	1642	2450	16	81

Table 53: Summary of laboratory performance HBCD, test solution X

Test Solution X	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
α-HBCD	9	100	0	0	0
β-HBCD	9	92	0	8	0
γ-HBCD	9	69	8	23	0
Sum HBCD LB (ND = 0)	9	100	0	0	0
Sum HBCD UB (ND = LOD)	9	100	0	0	0

Table 54: Summary results HBCD, sediment (ng/g)

Sediment		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
lpha-HBCD	8	6	2	NAV	11.3	10.8	7.9	31.4	37	54
β-НВСD	8	6	2	NAV	3.7	3.6	3.2	11.4	11	46
γ-HBCD	8	6	2	NAV	39.4	38.6	27.8	246	25	52
Sum HBCD LB (ND = 0)	8	6	2	NAV	54.2	52.6	0.000	289	26	68
Sum HBCD UB (ND = LOD)	8	8	0	NAV	50.2	44.9	0.006	289	59	65

Table 55: Summary of laboratory performance HBCD, sediment

Sediment	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
α-HBCD	5	0	0	0	0
β -HBCD	5	0	0	0	0
γ-HBCD	5	0	0	0	0
Sum HBCD LB (ND = 0)	5	0	0	0	0
Sum HBCD UB (ND = LOD)	5	0	0	0	0

Table 56: Summary results HBCD, fish (product basis) (ng/g)

Fish A		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
α -HBCD	9	7	2	0.03	0.03	0.03	0.02	0.10	58	74
β-НВСD	9	2	7	NAV	NAV	NAV	0.004	0.05	NAV	NAV
γ-HBCD	9	3	6	NAV	0.06	0.009	0.008	0.06	84	44
Sum HBCD LB (ND = 0)	9	7	2	0.05	0.05	0.05	0.00	0.15	37	72
Sum HBCD UB (ND = LOD)	9	9	0	0.08	0.09	0.08	0.05	0.47	69	67

Table 57: Summary of laboratory performance HBCD, fish

Fish A	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
Analyte	data received	z <2 Satisfactory	3> z >2 Questionable	6> z >3 Unsatisfactory	z >6 Extreme
α-HBCD	6	67	0	11	0
β-HBCD	6	0	0	0	0
γ-HBCD	6	0	0	0	0
Sum HBCD LB (ND = 0)	6	67	0	11	0
Sum HBCD UB (ND = LOD)	6	67	0	11	22

Table 58: Summary results HBCD, human milk (lipid weight basis) (ng/g)

Human milk		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
α -HBCD	4	1	3	NAV	NAV	NAV	0.76	0.76	NAV	NAV
β -HBCD	3	0	3	NAV	NAV	NAV	0.00	0.00	NAV	NAV
γ-HBCD	3	0	3	NAV	NAV	NAV	0.00	0.00	NAV	NAV
Sum HBCD LB (ND = 0)	4	1	3	NAV	NAV	NAV	0.00	0.76	NAV	NAV
Sum HBCD UB (ND = LOD)	3	3	0	NAV	0.52	0.55	0.30	0.90	57	82

Table 59: Summary of laboratory performance HBCD, human milk

Human milk	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
α -HBCD	3	0	0	0	0
β-HBCD	2	0	0	0	0
γ-HBCD	2	0	0	0	0
Sum HBCD LB (ND = 0)	3	0	0	0	0
Sum HBCD UB (ND = LOD)	2	0	0	0	0

Table 60: Summary results HBCD, air extract (TOL) (ng/g)

Air extract (TOL)		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
$\alpha ext{-HBCD}$	6	4	2	82.7	82.4	82.7	74.0	93.1	11	54
β-HBCD	6	4	2	NAV	25.3	24.1	22.5	59.0	14	44
γ-HBCD	6	4	2	103	104	103	95.0	128	12	47
Sum HBCD LB (ND = 0)	6	4	2	223	222	223	0.00	243	8	80
Sum HBCD UB (ND = LOD)	6	6	0	NAV	209	223	0.60	243	15	63

Table 61: Summary of laboratory performance HBCD, air extract (TOL)

Air extract (TOL)	% of the data received	% of z-scores z <2	% of z-scores 3> z >2	% of z-scores 6> z >3	% of z-scores z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
α-HBCD	4	67	0	0	0
β -HBCD	4	0	0	0	0
γ-HBCD	4	67	0	0	0
Sum HBCD LB (ND = 0)	4	67	0	0	0
Sum HBCD UB (ND = LOD)	4	0	0	0	0

3.2.7 <u>Perfluoroalkyl Substances (PFAS)</u>

Table 62: Summary results PFAS, test solution W (ng/g)

Test Solution W		n								Between	Inclusion
				Theoretical						lab CV	rate
Analyte	Total	Numerical	LCV	conc.	ΑV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	28	28	0	58.7	61.4	60.8	61.4	31.8	103	16	69
br-PFOS anion	19	18	1	15.8	12.3	12.7	12.3	7.4	23.4	32	71
tot-PFOS LB (ND = 0)	29	29	0	74.5	69.7	70.0	69.7	40.9	103	18	72
tot-PFOS UB (ND = LOD)	20	20	0	74.5	68.8	68.8	68.8	40.9	99.0	18	71
FOSA	20	20	0	63.2	59.2	62.5	59.2	38.0	203	17	73
MeFOSA	14	14	0	126	126	126	126	51.5	179	8	66
EtFOSA	14	14	0	190	183	189	183	98.0	261	16	71
MeFOSE	13	13	0	126	128	128	128	72.0	154	7	54
EtFOSE	13	13	0	126	132	130	132	69.8	156	11	61
PFOS precursors LB (ND = 0)	20	20	0	631.2	NAV	497	492	49.0	732	49	74
PFOS precursors UB (ND = LOD)	12	12	0	631.2	650	644	650	368	732	4	61
PFBA	24	24	0	63.2	61.4	62.5	61.4	33.7	94.0	11	69
PFPeA	25	25	0	63.2	60.7	61.0	60.7	43.9	87.6	12	69
PFHxA	28	28	0	94.8	92.9	92.3	92.9	62.7	114	15	78
PFHpA	28	28	0	63.2	61.8	61.0	61.8	33.8	81.5	15	77
PFOA	29	29	0	63.2	60.6	61.0	60.6	32.0	111	12	67
PFNA	28	28	0	126	118	116	118	60.4	150	15	81
PFDA	28	28	0	63.2	62.4	61.1	62.4	38.0	74.2	10	72
PFUnDA	28	28	0	63.2	61.4	61.1	61.4	38.8	101	16	76
PFDoDA	28	28	0	190	177	178	177	95.5	249	13	66
PFTrDA	27	27	0	63.2	64.8	65.0	64.8	24.1	102	19	70
PFTeDA	27	27	0	63.2	63.4	64.2	63.4	40.0	85.0	12	72
L-PFBS	27	27	0	83.9	84.8	83.9	84.8	51.5	118	17	79
L-PFHxS	28	28	0	59.8	60.3	61.4	60.3	33.1	99.7	12	62
L-PFDS	26	26	0	60.9	63.7	62.9	63.7	40.3	83.5	15	70
6:2 FTSA	14	14	0	63.2	53.3	56.9	53.3	39.4	115. 5	22	76
PFCAs + PFSAs LB (ND = 0)	29	29	0	1184	1113	1126	1113	98.0	1422	11	67
PFCAs + PFSAs UB (ND = LOD)	12	12	0	1184	1145	1138	1145	830	1375	11	73

Table 63: Summary of laboratory performance PFAS, test solution W

Test Solution W	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	19	75	11	14	0
br-PFOS anion	13	58	16	11	11
tot-PFOS LB (ND = 0)	20	79	3	17	0
tot-PFOS UB (ND = LOD)	14	80	5	15	0
FOSA	14	80	10	0	10
MeFOSA	9	86	0	14	0
EtFOSA	9	79	7	14	0
MeFOSE	9	77	15	8	0
EtFOSE	9	85	8	8	0
PFOS precursors LB (ND = 0)	14	0	0	0	0
PFOS precursors UB (ND = LOD)	8	83	8	8	0
PFBA	16	83	8	8	0
PFPeA	17	80	16	4	0
PFHxA	19	93	7	0	0
PFHpA	19	86	11	4	0
PFOA	20	83	7	7	3
PFNA	19	89	7	4	0
PFDA	19	93	4	4	0
PFUnDA	19	86	11	4	0
PFDoDA	19	75	18	7	0
PFTrDA	18	74	11	15	0
PFTeDA	18	89	11	0	0
L-PFBS	18	89	4	7	0
L-PFHxS	19	79	11	11	0
L-PFDS	18	81	19	0	0
6:2 FTSA	9	79	14	0	7
PFCAs + PFSAs LB (ND = 0)	20	86	10	0	3
PFCAs + PFSAs UB (ND = LOD)	8	92	8	0	0

Table 64: Summary results PFAS, sediment (ng/g)

Sediment		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	12	12	0	3.8	3.8	3.8	2.3	8.0	23	71
br-PFOS anion	7	5	2	0.51	0.55	0.51	0.39	0.93	45	68
tot-PFOS LB (ND = 0)	13	13	0	4.0	4.3	4.0	2.3	8.0	32	80
tot-PFOS UB (ND = LOD)	9	9	0	4.1	4.3	4.1	2.3	5.9	30	81
PFBA	10	3	7	NAV	0.18	0.04	0.11	0.28	157	51
PFPeA	11	2	9	NAV	NAV	NAV	0.09	0.13	NAV	NAV
PFHxA	11	8	3	0.20	0.21	0.20	0.17	1.5	26	65
PFHpA	11	4	7	0.05	0.05	0.05	0.04	0.07	17	58
PFOA	12	11	1	0.47	0.52	0.47	0.27	4.3	23	59
PFNA	11	6	5	0.08	0.08	0.08	0.06	0.12	34	77
PFDA	11	8	3	0.30	0.32	0.30	0.17	6.6	53	68
PFUnDA	11	8	3	0.30	0.27	0.30	0.18	0.47	41	79
PFDoDA	11	7	4	0.32	0.32	0.32	0.27	0.38	17	73
PFTrDA	11	6	5	0.10	0.10	0.10	0.08	0.15	21	59
PFTeDA	11	4	7	0.07	0.09	0.07	0.04	0.11	45	54
L-PFBS	11	7	4	0.13	0.17	0.13	0.07	2.4	51	66
L-PFHxS	11	7	4	0.08	0.09	0.08	0.05	0.94	20	51
L-PFDS	10	3	7	NAV	0.09	0.09	0.09	0.26	5	38
6:2 FTSA	8	5	3	0.69	0.69	0.69	0.44	0.87	2	39
PFCAs + PFSAs LB (ND = 0)	12	11	1	2.1	2.2	2.1	0.00	15.8	57	74
PFCAs + PFSAs UB (ND = LOD)	7	7	0	3.4	3.9	3.4	2.3	19.0	40	67

Table 65: Summary of laboratory performance PFAS, sediment

Sediment	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	8	67	17	8	8
br-PFOS anion	5	57	0	14	0
tot-PFOS LB (ND = 0)	9	77	0	15	8
tot-PFOS UB (ND = LOD)	6	67	11	22	0
PFBA	7	0	0	0	0
PFPeA	7	0	0	0	0
PFHxA	7	45	9	9	9
PFHpA	7	36	0	0	0
PFOA	8	50	17	17	8
PFNA	7	55	0	0	0
PFDA	7	36	9	18	9
PFUnDA	7	36	27	9	0
PFDoDA	7	64	0	0	0
PFTrDA	7	45	9	0	0
PFTeDA	7	36	0	0	0
L-PFBS	7	36	18	0	9
L-PFHxS	7	55	0	0	9
L-PFDS	7	0	0	0	0
6:2 FTSA	5	50	13	0	0
PFCAs + PFSAs LB (ND = 0)	8	42	8	25	17
PFCAs + PFSAs UB (ND = LOD)	5	57	14	0	29

Table 66: Summary results PFAS, fish (product basis) (ng/g)

Fish A		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	21	21	0	8.5	8.6	8.5	6.6	48.6	11	71
br-PFOS anion	13	12	1	0.52	0.53	0.52	0.00	0.68	32	78
tot-PFOS LB (ND = 0)	25	25	0	8.7	8.9	8.7	6.8	48.6	14	70
tot-PFOS UB (ND = LOD)	16	16	0	8.7	8.8	8.7	6.8	24.5	16	76
PFBA	15	1	14	NAV	NAV	NAV	1.4	1.4	NAV	NAV
PFPeA	16	0	16	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFHxA	19	1	18	NAV	NAV	NAV	0.27	0.27	NAV	NAV
PFHpA	19	1	18	NAV	NAV	NAV	0.30	0.30	NAV	NAV
PFOA	22	6	16	NAV	0.06	0.02	0.01	0.23	174	49
PFNA	21	9	12	0.04	0.05	0.04	0.03	0.51	38	52
PFDA	21	20	1	0.80	0.83	0.80	0.57	5.5	13	58
PFUnDA	21	18	3	0.44	0.50	0.44	0.07	3.3	34	54
PFDoDA	21	21	0	0.88	0.89	0.88	0.14	3.6	16	63
PFTrDA	18	17	1	0.51	0.54	0.51	0.30	1.8	41	70
PFTeDA	18	15	3	0.52	0.61	0.52	0.22	1.8	52	63
L-PFBS	20	5	15	NAV	0.05	0.01	0.02	0.48	167	42
L-PFHxS	20	7	13	0.05	0.06	0.05	0.04	0.19	81	53
L-PFDS	17	4	13	NAV	0.11	0.04	0.03	0.17	121	58
6:2 FTSA	10	3	7	NAV	0.14	0.01	0.05	0.14	166	37
PFCAs + PFSAs LB (ND = 0)	22	21	1	3.1	3.2	3.1	0.00	16.4	23	68
PFCAs + PFSAs UB (ND = LOD)	8	8	0	NAV	8.1	9.3	2.5	17.0	68	78

Table 67: Summary of laboratory performance PFAS, fish

Fish A	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	14	90	0	0	10
br-PFOS anion	9	69	15	8	0
tot-PFOS LB (ND = 0)	17	84	4	0	12
tot-PFOS UB (ND = LOD)	11	88	6	0	6
PFBA	10	0	0	0	0
PFPeA	11	0	0	0	0
PFHxA	13	0	0	0	0
PFHpA	13	0	0	0	0
PFOA	15	0	0	0	0
PFNA	14	29	0	0	14
PFDA	14	62	10	0	24
PFUnDA	14	48	5	14	19
PFDoDA	14	71	5	5	19
PFTrDA	12	50	22	11	11
PFTeDA	12	33	11	28	11
L-PFBS	14	0	0	0	0
L-PFHxS	14	20	0	5	10
L-PFDS	11	0	0	0	0
6:2 FTSA	7	0	0	0	0
PFCAs + PFSAs LB (ND = 0)	15	68	9	5	14
PFCAs + PFSAs UB (ND = LOD)	5	0	0	0	0

Table 68: Summary results PFAS, human milk (product basis) (ng/g)

Human milk		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	15	9	6	0.02	0.03	0.02	0.02	7.5	40	61
br-PFOS anion	12	8	4	0.02	0.02	0.02	0.005	0.58	105	60
tot-PFOS LB (ND = 0)	18	12	6	0.03	0.04	0.03	0.00	8.0	59	56
tot-PFOS UB (ND = LOD)	15	15	0	0.07	0.08	0.07	0.03	8.0	103	64
PFBA	8	2	6	NAV	NAV	NAV	2.8	20.4	NAV	NAV
PFPeA	8	0	8	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFHxA	9	1	8	NAV	NAV	NAV	0.13	0.13	NAV	NAV
PFHpA	10	0	10	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFOA	14	9	5	0.03	0.03	0.03	0.02	22.3	38	51
PFNA	13	3	10	NAV	0.7	0.01	0.003	3.0	611	48
PFDA	12	2	10	NAV	NAV	NAV	0.007	1.1	NAV	NAV
PFUnDA	12	3	9	NAV	1.0	0.0	0.70	2.6	231	51
PFDoDA	10	1	9	NAV	NAV	NAV	1.4	1.4	NAV	NAV
PFTrDA	9	0	9	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFTeDA	9	0	9	NAV	NAV	NAV	0.00	0.00	NAV	NAV
L-PFBS	10	1	9	NAV	NAV	NAV	0.90	0.90	NAV	NAV
L-PFHxS	12	4	8	NAV	0.03	0.01	0.01	0.22	113	56
L-PFDS	9	0	9	NAV	NAV	NAV	0.00	0.00	NAV	NAV
6:2 FTSA	4	2	2	NAV	NAV	NAV	0.007	2.7	NAV	NAV
PFCAs + PFSAs LB (ND = 0)	13	11	2	0.05	0.07	0.05	0.00	43.3	97	58
PFCAs + PFSAs UB (ND = LOD)	1	1	0	NAV	NAV	NAV	1.5	1.5	NAV	NAV

Table 69: Summary of laboratory performance PFAS, human milk

Human milk	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	10	40	0	7	13
br-PFOS anion	8	42	0	8	17
tot-PFOS LB (ND = 0)	12	39	0	0	28
tot-PFOS UB (ND = LOD)	10	47	7	27	20
PFBA	5	0	0	0	0
PFPeA	5	0	0	0	0
PFHxA	6	0	0	0	0
PFHpA	7	0	0	0	0
PFOA	9	36	7	0	21
PFNA	9	0	0	0	0
PFDA	8	0	0	0	0
PFUnDA	8	0	0	0	0
PFDoDA	7	0	0	0	0
PFTrDA	6	0	0	0	0
PFTeDA	6	0	0	0	0
L-PFBS	7	0	0	0	0
L-PFHxS	8	0	0	0	0
L-PFDS	6	0	0	0	0
6:2 FTSA	3	0	0	0	0
PFCAs + PFSAs LB (ND = 0)	9	46	0	8	31
PFCAs + PFSAs UB (ND = LOD)	1	0	0	0	0

Table 70: Summary results PFAS, human plasma (product basis) (ng/g)

Human plasma		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	14	14	0	14.7	14.4	14.7	0.50	24.5	9	59
br-PFOS anion	10	10	0	5.4	5.1	5.4	0.60	10.3	38	65
tot-PFOS LB (ND = 0)	16	16	0	19.8	19.5	19.8	1.1	24.5	22	77
tot-PFOS UB (ND = LOD)	12	12	0	20.1	19.9	20.1	1.1	23.8	9	62
FOSA	7	0	7	NAV	NAV	NAV	0.00	0.00	NAV	NAV
MeFOSA	3	0	3	NAV	NAV	NAV	0.00	0.00	NAV	NAV
EtFOSA	3	0	3	NAV	NAV	NAV	0.00	0.00	NAV	NAV
MeFOSE	3	0	3	NAV	NAV	NAV	0.00	0.00	NAV	NAV
EtFOSE	3	0	3	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFOS precursors LB (ND = 0)	6	0	6	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFOS precursors UB (ND = LOD)	3	3	0	NAV	0.50	0.95	0.50	2.5	117	80
PFBA	12	3	9	NAV	0.14	0.05	0.11	14.5	83	50
PFPeA	12	1	11	NAV	NAV	NAV	0.64	0.64	NAV	NAV
PFHxA	13	0	13	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFHpA	13	2	11	NAV	NAV	NAV	0.03	0.18	NAV	NAV
PFOA	16	15	1	2.1	2.1	2.1	1.0	11.8	9	60
PFNA	15	14	1	0.95	0.95	0.95	0.41	3.2	12	63
PFDA	14	11	3	0.53	0.52	0.53	0.29	0.70	10	47
PFUnDA	15	11	4	0.48	0.48	0.48	0.34	2.6	16	55
PFDoDA	14	7	7	0.07	0.08	0.07	0.05	0.72	47	74
PFTrDA	13	2	11	NAV	NAV	NAV	0.03	0.15	NAV	NAV
PFTeDA	13	0	13	NAV	NAV	NAV	0.00	0.00	NAV	NAV
L-PFBS	13	1	12	NAV	NAV	NAV	0.47	0.47	NAV	NAV
L-PFHxS	15	13	2	6.3	6.2	6.3	3.0	6.7	7	61
L-PFDS	12	3	9	NAV	5.9	0.08	0.01	8.2	351	49
6:2 FTSA	7	1	6	NAV	NAV	NAV	2.0	2.0	NAV	NAV
PFCAs + PFSAs LB (ND = 0)	16	16	0	9.9	10.2	9.9	2.8	34.1	19	64
PFCAs + PFSAs UB (ND = LOD)	5	5	0	12.0	12.1	12.0	10.3	14.2	13	80

Table 71: Summary of laboratory performance PFAS, human plasma

Human plasma	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	9	71	7	14	7
br-PFOS anion	7	50	10	20	20
tot-PFOS LB (ND = 0)	11	88	0	6	6
tot-PFOS UB (ND = LOD)	8	92	0	0	8
FOSA	5	0	0	0	0
MeFOSA	2	0	0	0	0
EtFOSA	2	0	0	0	0
MeFOSE	2	0	0	0	0
EtFOSE	2	0	0	0	0
PFOS precursors LB (ND = 0)	4	0	0	0	0
PFOS precursors UB (ND = LOD)	2	0	0	0	0
PFBA	8	0	0	0	0
PFPeA	8	0	0	0	0
PFHxA	9	0	0	0	0
PFHpA	9	0	0	0	0
PFOA	11	75	6	6	6
PFNA	10	67	13	7	7
PFDA	9	64	7	7	0
PFUnDA	10	60	7	0	7
PFDoDA	9	36	7	0	7
PFTrDA	9	0	0	0	0
PFTeDA	9	0	0	0	0
L-PFBS	9	0	0	0	0
L-PFHxS	10	73	7	7	0
L-PFDS	8	0	0	0	0
6:2 FTSA	5	0	0	0	0
PFCAs + PFSAs LB (ND = 0)	11	69	6	13	13
PFCAs + PFSAs UB (ND = LOD)	3	100	0	0	0

Table 72: Summary results PFAS, air extract (MeOH) (ng/g)

Air extract (MeOH)		n							Between	Inclusion
									lab CV	rate
	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	17	17	0	4.2	4.5	4.2	2.5	14.2	21	67
br-PFOS anion	10	5	5	NAV	0.16	0.09	0.07	1.7	99	56
tot-PFOS LB (ND = 0)	18	18	0	4.1	4.4	4.1	2.5	14.2	21	63
tot-PFOS UB (ND = LOD)	11	11	0	4.1	4.1	4.1	2.7	9.4	25	74
FOSA	10	10	0	48.9	48.5	48.9	19.0	71.0	23	64
MeFOSA	9	9	0	175	174	175	59.0	233	6	59
EtFOSA	9	9	0	180	176	180	46.0	325	10	63
MeFOSE	10	10	0	84.9	91.5	84.9	39.0	258	28	64
EtFOSE	10	10	0	91.1	91.5	91.1	33.0	204	4	56
PFOS precursors LB (ND = 0)	10	10	0	596	580	596	200	889	41	77
PFOS precursors UB (ND = LOD)	9	9	0	627	583	627	200	889	27	67
PFBA	13	13	0	6.4	6.5	6.4	3.5	9.5	41	84
PFPeA	13	12	1	3.1	3.1	3.1	1.8	4.4	34	81
PFHxA	15	15	0	6.2	6.5	6.2	3.6	12.0	22	66
PFHpA	14	14	0	3.2	3.4	3.2	1.7	6.0	27	71
PFOA	16	16	0	3.4	3.5	3.4	1.8	5.5	25	67
PFNA	14	14	0	3.1	3.1	3.1	1.7	4.7	21	69
PFDA	15	15	0	6.3	6.6	6.3	3.9	10.3	21	68
PFUnDA	14	14	0	2.9	2.9	2.9	1.6	5.6	30	67
PFDoDA	13	13	0	2.9	3.0	2.9	1.7	6.0	30	68
PFTrDA	14	14	0	3.0	3.3	3.0	1.1	5.7	55	82
PFTeDA	13	12	1	3.0	3.4	3.0	1.2	5.8	56	76
L-PFBS	15	15	0	7.1	7.5	7.1	3.7	12.0	26	70
L-PFHxS	15	15	0	4.1	4.3	4.1	2.7	10.5	19	64
L-PFDS	11	11	0	3.9	3.5	3.9	0.83	5.3	35	76
6:2 FTSA	9	8	1	0.26	0.30	0.26	0.20	2.0	51	66
PFCAs + PFSAs LB (ND = 0)	17	17	0	54.4	55.2	54.4	3.6	92.0	33	67
PFCAs + PFSAs UB (ND = LOD)	7	7	0	NAV	67.1	66.3	3.6	92.0	49	83

 Table 73:
 Summary of laboratory performance PFAS, air extract (MeOH)

Air extract (MeOH)	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	11	65	12	6	18
br-PFOS anion	7	0	0	0	0
tot-PFOS LB (ND = 0)	12	67	6	11	17
tot-PFOS UB (ND = LOD)	7	73	9	9	9
FOSA	7	60	10	30	0
MeFOSA	6	78	11	11	0
EtFOSA	6	67	0	22	11
MeFOSE	7	50	20	10	20
EtFOSE	7	70	0	10	20
PFOS precursors LB (ND = 0)	7	50	10	40	0
PFOS precursors UB (ND = LOD)	6	56	11	33	0
PFBA	9	38	31	31	0
PFPeA	9	46	23	23	0
PFHxA	10	60	13	13	13
PFHpA	9	57	21	7	14
PFOA	11	63	13	25	0
PFNA	9	64	21	14	0
PFDA	10	67	13	20	0
PFUnDA	9	57	14	14	14
PFDoDA	9	62	8	15	15
PFTrDA	9	43	7	43	7
PFTeDA	9	31	23	31	8
L-PFBS	10	60	13	27	0
L-PFHxS	10	60	20	0	20
L-PFDS	7	64	18	9	9
6:2 FTSA	6	44	11	11	22
PFCAs + PFSAs LB (ND = 0)	11	59	12	18	12
PFCAs + PFSAs UB (ND = LOD)	5	0	0	0	0

Table 74: Summary results PFAS, water (pg/g)

Water		n							Between	Inclusion
									lab CV	rate
Analyte	Total	Numerical	LCV	AV	Median	Mean	Min	Max	(%)	(%)
L-PFOS anion	19	18	1	2.4	2.5	2.4	0.001	2294	33	70
br-PFOS anion	14	14	0	2.0	1.9	2.0	0.37	2162	40	67
tot-PFOS LB (ND = 0)	21	20	1	3.9	4.2	3.9	0.00	4456	42	66
tot-PFOS UB (ND = LOD)	16	16	0	4.3	4.5	4.3	1.72	4456	33	67
PFBA	16	16	0	6.9	7.6	6.9	0.006	64430	34	66
PFPeA	15	13	2	5.7	5.8	5.7	0.009	8.6	36	71
PFHxA	17	17	0	7.9	7.7	7.9	0.007	9.4	17	76
PFHpA	17	17	0	3.7	3.8	3.7	0.003	8.7	19	68
PFOA	19	18	1	10.1	10.1	10.1	0.01	17928	23	68
PFNA	18	13	5	0.53	0.54	0.53	0.000	3217	16	58
PFDA	17	10	7	0.34	0.35	0.34	0.000	751	14	52
PFUnDA	18	3	15	NAV	0.27	0.05	0.07	2514	224	43
PFDoDA	16	3	13	NAV	0.20	0.06	0.07	1.8	115	53
PFTrDA	14	0	14	NAV	NAV	NAV	0.00	0.00	NAV	NAV
PFTeDA	14	2	12	NAV	NAV	NAV	0.06	0.11	NAV	NAV
L-PFBS	18	17	1	7.1	6.8	7.1	0.010	2351	24	68
L-PFHxS	17	16	1	1.4	1.4	1.4	0.002	464	16	63
L-PFDS	15	0	15	NAV	NAV	NAV	0.000	0.000	NAV	NAV
6:2 FTSA	9	9	0	15.7	16.5	15.7	0.02	21490	31	54
PFCAs + PFSAs LB (ND = 0)	20	20	0	45.0	45.9	45.0	0.06	111930	40	66
PFCAs + PFSAs UB (ND = LOD)	7	7	0	NAV	66.0	67.4	0.06	108	44	76

Table 75: Summary of laboratory performance PFAS, water

Water	% of the	% of z-scores	% of z-scores	% of z-scores	% of z-scores
	data received	z <2	3> z >2	6> z >3	z >6
Analyte		Satisfactory	Questionable	Unsatisfactory	Extreme
L-PFOS anion	13	53	11	16	16
br-PFOS anion	9	43	14	21	21
tot-PFOS LB (ND = 0)	14	48	5	24	19
tot-PFOS UB (ND = LOD)	11	56	6	19	19
PFBA	11	63	6	6	25
PFPeA	11	38	25	13	6
PFHxA	12	78	6	6	6
-PFHpA	12	67	6	11	11
PFOA	13	58	21	5	11
PFNA	12	44	11	0	17
PFDA	11	41	0	0	18
PFUnDA	12	0	0	0	0
PFDoDA	11	0	0	0	0
PFTrDA	10	0	0	0	0
PFTeDA	10	0	0	0	0
L-PFBS	12	67	6	11	11
L-PFHxS	12	61	6	6	17
L-PFDS	10	0	0	0	0
6:2 FTSA	6	56	0	0	44
PFCAs + PFSAs LB (ND = 0)	14	45	15	20	20
PFCAs + PFSAs UB (ND = LOD)	5	0	0	0	0

3.3 Regional Participation

The following Table 76 shows the distribution of laboratories that submitted results for at least one POP in one of the test samples and where a z-score could be assigned. It can be seen that most laboratories obtained z-scores for OCPs, namely 86 laboratories, followed by laboratories analyzing PCB(6) with 71 laboratories. For dioxin-like POPs, where analysis is considered costly and demanding, 67 laboratories did participate. A conclusion from this IL4 is that the African region does not have capacity for the analysis of brominated flame retardants (here: PBDE with HxBB combined), HBCD or PFAS. CEE and GRULAC do not have proven capacity for HBCD. GRULAC and CEE are emerging and start to build up capacity for PFAS with one and two laboratories, respectively.

Table 76: N	Number of	reporting	laboratories i	oer POP	group and region
-------------	-----------	-----------	----------------	---------	------------------

	<u> </u>		<u> </u>			
Region/POP Group	OCPs	PCB(6)	dl-POPs	PBDE+HxBB	HBCD	PFAS
Africa	16	9	1			
Asia	23	20	32	15	7	11
CEE	3	4	2	2		2
GRULAC	26	17	8	5		1
WEOG	18	21	21	18	8	25
Grand Total	86	71	64	40	15	39

The following Tables (Table 77 to Table 83) show the number of laboratories reporting results for each matrix and per region. The total number of laboratories that reported results for a given POP in any of the test samples is summarized in column "Total Labs". For some POP/matrix combinations, no z-scores could be assigned and therefore, there is no qualified laboratory. These are: PCB(6) in fish, HBCD in fish and human milk, and toxaphene in sediment, human milk and air extract.

The lowest number of laboratories reported results for toxaphene (9 laboratories; Table 82) and HBCD (15 laboratories; Table 81). A quite impressive number of laboratories reported results for the more advanced POPs such as for dl-POPs (64 laboratories; Table 79), or PFAS (39 laboratories; Table 83). However, it shall be noted that the vast majority of these laboratories are found in the Asia-Pacific and the WEOG regions.

From all test samples, the test solution for POPs standards had the highest reporting rate in general. Exceptions often can be found in the WEOG region where laboratories prefer "real samples" such as for PCB(6) in air extract, dl-POPs in fish, or PFAS in water in the Asia-Pacific region. The air extract, a core matrix in the GMP, in general, is quite frequently analyzed. High interest in all regions and for all group of POPs is for fish (not a core matrix in the GMP).

Table 77: Number of reporting laboratories for OCPs per region

Region	Total Labs	Test Solution	Sediment	Fish	Human milk	Air Extract
Africa	16	10	9	9	4	3
Asia	23	17	13	9	4	6
CEE	3	2	2	1		
GRULAC	26	21	11	9	9	5
WEOG	18	10	5	5	5	8
Grand Total	86	60	40	33	22	22

Table 78: Number of reporting laboratories for PCB per region

Region	Total Labs	Test Solution	Sediment	Fish	Human milk	Air Extract
Africa	9	7	5		6	4
Asia	20	17	13		8	11
CEE	4	3	2		1	2
GRULAC	17	16	10		10	5
WEOG	21	13	10		12	14
Grand Total	71	56	40		37	36

Table 79: Number of reporting laboratories for dl-POPs per region

Region	Total Labs	Test Solution	Sediment	Fish	Human milk	Air Extract
Africa	1	1			1	1
Asia	32	25	25	19	10	21
CEE	2	1			1	2
GRULAC	8	6	3	4	1	1
WEOG	21	13	9	15	12	12
Grand Total	64	46	37	38	25	37

Table 80: Number of reporting laboratories for PBDE and HxBB per region

Region	Total Labs	Test Solution	Sediment	Fish	Human milk	Air Extract
Africa						
Asia	15	12	12	11	4	8
CEE	2	1			1	2
GRULAC	5	4	3	3	1	2
WEOG	18	11	7	12	7	10
Grand Total	40	28	22	26	13	22

Table 81: Number of reporting laboratories for HBCDs per region

Region	Total Labs	Test Solution	Sediment	Fish	Human Milk	Air Extract
Africa						
Asia	7	5		5		3
CEE						
GRULAC						
WEOG	8	8		4		3
Grand Total	15	13		9		6

Table 82: Number of reporting laboratories for toxaphenes per region

Region	Total Labs	Test Solution	Sediment	Fish	Human Milk	Air Extract
Africa						
Asia	2	2		2		
CEE						
GRULAC	3	3		3		
WEOG	4	4		4		
Grand Total	9	9		9		

Table 83: Number of reporting laboratories for PFAS per region

Region	Total	Test	Sediment	Fish	Human	Air	Human	Water
	Labs	Solution			milk		plasma	
Africa								
Asia	11	7	5	7	6	7	5	8
CEE	2	2	1	1	1	1	2	1
GRULAC	1	1				1		1
WEOG	25	19	7	17	11	9	9	12
Grand Total	39	29	13	25	18	18	16	22

3.4 Methodological Considerations

The number of laboratories submitting results for each group of analytes, the concentrations of the target compounds in the test materials, and variations in the analytical methods used by the participants are factors that may influence the interpretation and the outcome (Wells and De Boer, 2006). Calculation and dilution errors are other factors that may impede the understanding of the data. Nonetheless, based on the results and previous experience with interlaboratory studies, several problems could again be elucidated.

The POPs concentrations in all matrices except human milk are presented on a wet weight (w/w) basis. Participants were asked, however, to report the lipid content of human milk, so it could be used when needed for interpretation of the data.

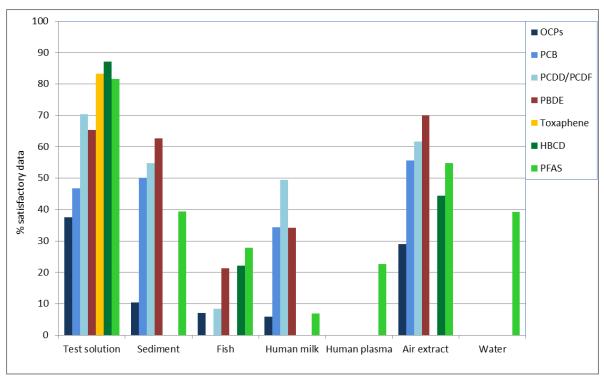


Figure 1 Percentage of laboratories with satisfactory z-scores in the analysis of OCPs, PCB, PCDD/PCDF, PBDE, toxaphene, HBCD and PFAS, with the compounds included, which did not receive an assigned value.

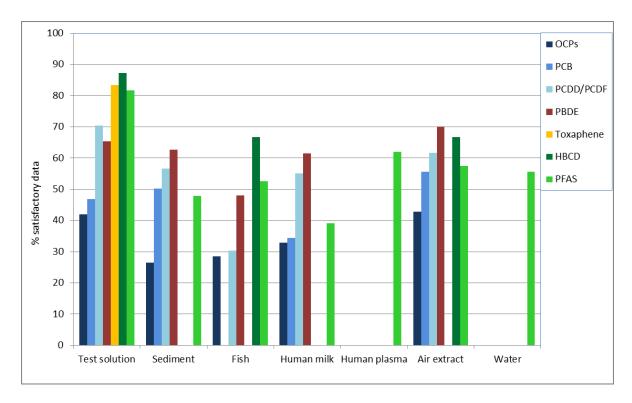


Figure 2 Percentage of laboratories with satisfactory z-scores in the analysis of OCPs, PCB, PCDD/PCDF, PBDE, toxaphene, HBCD and PFAS, for all the compounds, which received an assigned value.

The overall performance of labs measuring the test solution (certified test solutions) was not satisfactory. Laboratories should be able to analyse a test solution. A standard solution contains no matrix and in fact the only variables tested in this way are ability to dilute, to add internal standard and the instrumental method. Possibly some of the laboratories have not stored their stock solutions in a proper way.

Figure 1 and Figure 2 show that less than 50% had satisfactory z-scores for OCPs and less than 60% for PCB and HxBB. Failure to analyse a test solution properly, makes all efforts for matrix test materials more or less in vain. It is a clear signal to go back to the basics and check instrumentation, calibration and basic techniques.

Some of the compounds, such as the PCDD/PCDF, PBDE, PFAS and toxaphene, showed a better performance, although in fact with the target of 25% CV the performance should be closer to 100%.

During the evaluation of these results the question came up if some laboratories had reported results for the test solutions on a weight per volume (w/v) basis as is done in other studies. Therefore, we asked all participants to check if they had reported according to the instructions (w/w basis) or if they had reported on w/v basis. Forty-five out of 95 laboratories answered. Forty-two of the these had reported on a w/w basis, according to the instructions. Two laboratories had reported on a w/v basis and indeed those can be found on the lower side of all results. One laboratory reported an error. Many labs that reported on a w/w basis had used density corrections, which might have introduced small deviations. This outcome does not help in explaining the discrepancies between theoretical values and assigned values. Apart from the two laboratories, no serious mistakes or misinterpretation of the guidelines were made. It means that laboratories should pay much more attention to the storage and preparation of their calibration solutions.

As expected, the between-lab CV values were larger for the matrix-based test materials. Fewer satisfactory z-scores were obtained using the same criteria (z = 2, so 25% CV for the group performance). In particular, the OCP and PCB results were rather disappointing. The pike perch test material had a low fat percentage (ca. 0.7%) which made it possibly difficult for laboratories to determine the correct concentrations. It may be assumed that a number of laboratories took in too little matrix for their determination, possibly partly caused by the quantity of material provided; 35 g is not so much for the analysis of a large suite of parameters. Other laboratories may first have calculated the results on a lipid weight basis and then used the wrong fat content to calculate back to the total concentration on a wet weight basis. The fat of the pike perch consists mainly of phospholipids with only a small amount of triglycerides. If a laboratory does not use a more polar solvent for extraction in combination with a non-polar solvent, mistakes can easily be made, both in the fat content as well as in the POP concentration. For a proper determination of the fat content a method according to Bligh and Dyer (1959) or Smedes (1999) is strongly recommended. The air extract results show somewhat better results, which is probably due to the absence of matrix and the fortification of POP concentrations. These results are hopeful as air is an important matrix in the GMP. The results for PFAS in the water and human plasma sample were promising.

Overall, there are still too few laboratories submitting satisfactory results. Also, more laboratories should report a more complete set of data.

3.5 Analyte Group - Specific Performance

3.5.1 <u>Organochlorine Pesticides</u>

The individual results for the OCPs for the test solution show between-lab model CV values of 39%-54% for the drins, 18%-55% for the chlordanes and 37%-71% for the DDTs (Table 2). Since the test solution is without any matrix, no extraction or cleaning is required, and the results represent the performance on the instrumental analyses only. To be able to analyse more complex matrices laboratories should be able to have a good performance on the instrumental analyses, meaning that the overall performance on the test solution should be much better than $\pm 25\%$ (|z| = 2). In the third round the results were already disappointing with only 44% of the laboratories receiving a satisfactory z-score (|z| < 2), but in this round even less (average 38%) participants were able to analyse OCPs satisfactory (Table 3). In Figure 3 the percentage of laboratories with satisfactory z-scores for the test solution is given per OCP group.

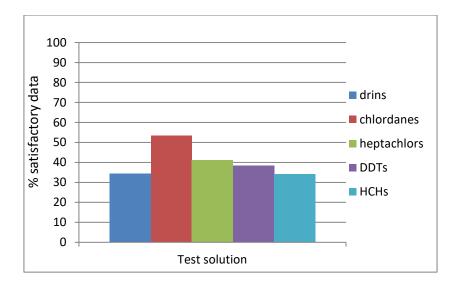


Figure 3 Percentage of laboratories with satisfactory z-scores for analysis of OCPs in the test solution.

As an example, the variation of reported results for the test solution is shown in Figure 4 for dieldrin (54%), in which the individual results from each laboratory are given in addition to the consensus value as calculated by the Cofino statistics and the UNEP criteria of 12.5% (z=1) and 25% (z=2) (UNEP, 2012). The WEOG and Asian laboratories do generally a better job than laboratories from the other regions. However, also in the WEOG group an extreme (high) outlier was found. GRULAC and African laboratories tend to report too low values.

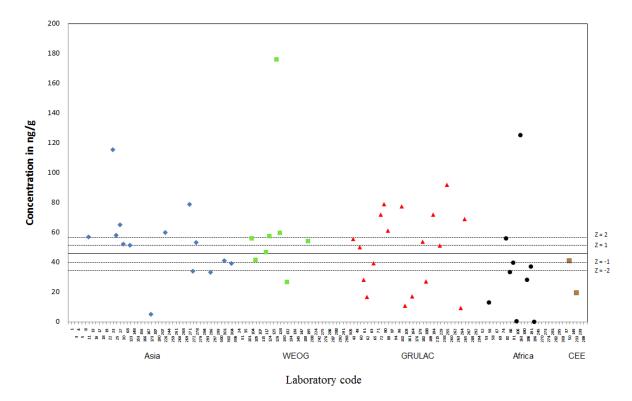


Figure 4 Results for dieldrin in the test solution.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

The performance of OCPs in the air extract was also less good compared to the third round, with an increase in CV from 27% in the third round to 76% in this round. This result is partially caused by the performance for trans-heptachlorepoxide (CV= 340%) (Figure 5). Although only nine results of transheptachlorepoxide > LCV were reported, arranging those results by detection method shows a clear difference per method (Figure 6). Using ECD resulted in higher concentrations and more deviation between laboratories, than using HR-MS. This clearly points to an overlap of the trans-heptachloro epoxide peak with an interference. Mass spectrometry is able to correct for that. If not available, a second GC column in GC-ECD would be essential here, keeping in mind that not all phases would be able to separate this interference and trans-hepo. Also, for other OCPs like the chlordanes, the DDTs and the HCHs smaller CVs are observed for HR-MS data (Figure 7).

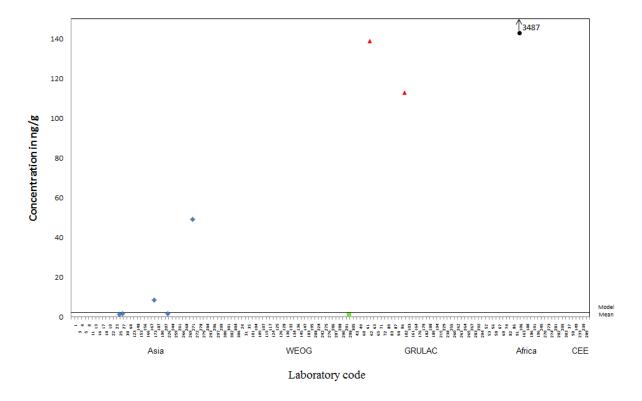


Figure 5 Results for trans-heptachlorepoxide in the air extract.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The model mean value is given by the straight line. Laboratory code on the x-axis, concentration in ng/g on the y-axis. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

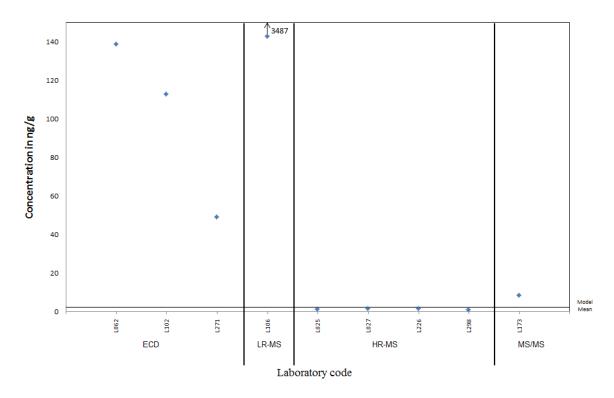


Figure 6 Results for trans-heptachlorepoxide in the air extract arranged by detection method.

Laboratory code on the x-axis, concentration in ng/g on the y-axis, concentration in ng/g on the y-axis. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

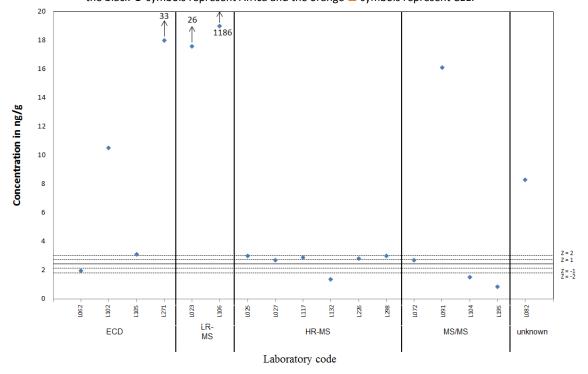


Figure 7: Results for dieldrin in the air extract arranged by detection method.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

Based on the criteria described in section 2.2, an assigned value could be calculated for the milk sample only for five OCPs (oxychlordane, p,p'-DDT, p,p'-DDE, β -HCH, hexachlorobenzene) of which the mean concentrations were between 0.9 and 26 ng/g (Table 8). For the other OCPs, less than four numerical results were submitted for seven OCPs (category 3 (section 2.2)), between 3 and 7 numerical values were reported with too much variation for eight other OCPs (category 2), and seven or more numerical values were reported for eight compounds, with less than 25% of the z-score |z| < 2 (category 1). Mean concentrations of those OCPs were low (0.05-18 ng/g), which might have led to these results.

In the third round, the average CV% of OCPs in the sediment test material was extremely high (196%), which might have been caused by a high background contamination, since the sediment originated from a highly polluted river. The sediment in this round, originating from a different location (Rotterdam harbour, the Netherlands) contained mean OCP concentrations of 0.07 ng/g -4 ng/g (average 1.1 ng/g), and the average CV% decreased to 138%. For the drins in the sediment sample, the average CV% decreased from 307% in the third round to 95% in this round. In the report of the third round (Fiedler et al., 2017), it has been discussed that submitted results on the drins could be higher when analysed with other detection methods than MS, due to interferences in the chromatogram, which could not be removed during cleaning, since sulphuric acid treatment is not allowed, because of degradation of the drins. This was clearly shown by the results reported for dieldrin in sediment in that round where nine participants out of 28 reported to have used an MS method. Although only one participant (L191) who used ECD in the third round for dieldrin in sediment, switched to an MS method in this round, a higher percentage of participants used an MS method (10 out of 21 participants), which might explain the lower CV% for the drins (Figure 8). Of course, also a CV of 95% is still much too high.

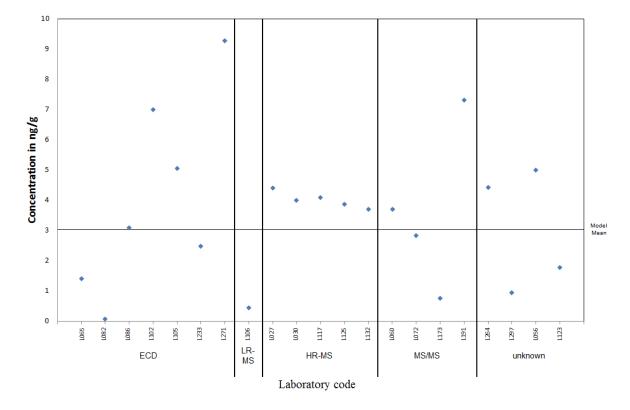


Figure 8 Results for dieldrin in the sediment sample arranged by detection method.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The blue ♦ symbols represent Asia, the green symbols represent WEOG, the red symbols represent GRULAC, the black symbols represent Africa and the orange symbols represent CEE.

An even larger variation was seen for OCPs in the fish test material. Only for seven OCPs an assigned value could be calculated, and CV values were extremely high (10% (γ -chlordane) -768% (endrin), average 244%) (Table 6). Mean OCP concentrations were on the low side (0.01-2.3 ng/g, average 0.25 ng/g), and for most compounds (22 out of 28) more than 50% of the participants reported a value < LCV (Table 6).

The results on OCP analyses were disappointing for all matrices in this round. For only six OCPs in the test solution (Table 3) and seven in the air extract (Table 11) more than 50% of the data showed satisfactory z-scores, while for none of the compounds in the sediment sample, the fish sample, and the human milk more than 50% of the data were satisfactory (see Table 4, Table 6, and Table 8). In Figure 9 the performance per matrix is given for the analyses of drins, chlordanes, heptachlors, DDTs, and HCHs, showing that the high average CV values are caused by the results of all OCPs groups.

Although an MS is not always available in a laboratory, and especially HR-MS is too costly for some laboratories, results on OCPs in this interlaboratory study show that MS, and especially HR-MS is giving more consistent results for OCP analyses.

On one hand spiking of test materials should be considered, which would help the laboratories in their performance as higher concentrations are less prone to errors. On the other hand, OCP concentrations at most places in the world are not very high anymore and laboratories should also be able to measure these low concentrations.

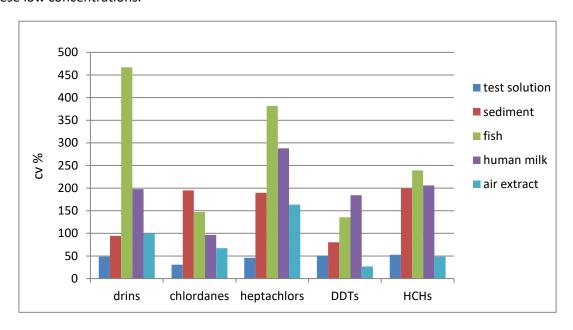


Figure 9 Performances per matrix for the analyses of drins, chlordanes, heptachlors, DDTs, and HCHs.

3.5.2 <u>Polychlorinated Biphenyls</u>

Although for the indicator PCB results were more satisfactory than for the OCPs, only for the air extract more than 50% of the results on average were satisfactory (|z| < 2) (Figure 1). In comparison with the previous studies, the percentage of satisfactory z-scores received for the test solution decreased from 86% in the first study, to 66% in the second study, to 57% in the third study to only 47% in the present study (Figure 1, Table 13), and average model between lab CV values increased from 13% in the first study, to 22% in the second study, to 27% in the third study, to 38% in the present study, while all concentrations were in the same order of magnitude.

The increasing CVs and the decreasing number of satisfactory data might be related to experience of the laboratories. Of the 148 participants in this round, 49 laboratories participated for the first time, and 10 laboratories participated for the first time in the third round. For the sum of PCB (UB) the CV was 36% (Table 12). Performing the statistical evaluation only on the results of the laboratories who already participated in the first or second round results in a much lower CV (26%), while calculating the model CV over the results of the participant who participated for the first time in the third round or in the present round, resulted in a much higher CV (59%). The difference of reported results of the more experienced participants (CV=29%), and of the first time participants in the third, or fourth round (CV=90%) are shown for PCB 28 in the test solution in Figure 10.

Figure 10 Results for PCB 28 in the test solution.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ◆ symbols represent Africa and the orange ■ symbols represent CEE.

For the air extract, the results were slightly better than for the test solution. Between-lab CV values were 20%-34% (average 26%) (Table 20, Figure 11). Sediment is a dirtier matrix than an air extract, and as expected the results for the sediment sample show a larger variation (24%-58%, average 34%). However, in comparison with the previous ILS (CV= 53%-75%, average 63%) the results improved, with 50% satisfactory results compared to 31% in the third round.

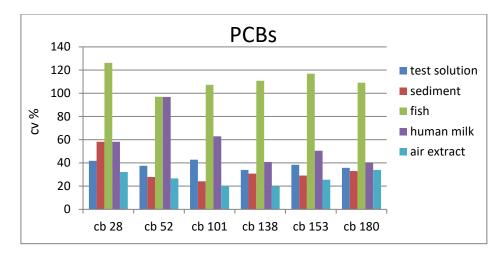


Figure 11 Performances per matrix for the analyses of PCB.

In Figure 12 the reported results for PCB 153 in the sediment are plotted per detection method. With HR-MS most participants obtained a satisfactory z-score (87%). With ECD 44% of the results were satisfactory, with LR-MS 63%, and with MS/MS 40%.

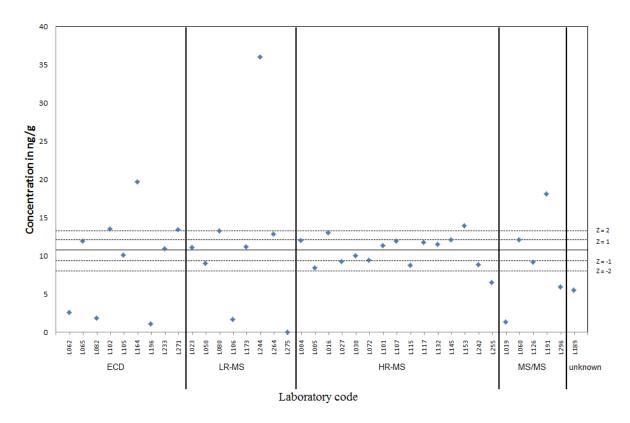


Figure 12 Results for PCB 153 in the sediment sample arranged by detection method.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

PCB concentrations in the human milk (0.3-13 ng/g) were in the same range as in the third round. The performance was a little better with 34% satisfactory z-scores in the present round (Table 19) compared to 30% in the third round, and a model between lab CV of 58% (present) (Table 18, Figure 11) compared to 63% (third round).

The largest variation for PCBs was found for the fish sample (CV=111%). For none of the PCBs an assigned value could be calculated (Table 16), because <25% of the data was satisfactory (category 1, section 2.2). Median PCB concentrations (0.43-11 ng/g) were in the same range as in the test solution, the air extract, and milk sample, but since fish is a more complex, it could be more difficult to analyse low concentrations. Compared to the third round the model between lab CV increased substantially, from 63% to 111%. Interestingly, the PCB concentrations in the fish test material were not very low. Laboratories, even when not very experienced should not have any problem with analysing these levels, even when using ECD. The only possible explanation of these disappointing results is the low fat content and the composition of the fat. Pike perch contains mainly phospholipids. PCBs are also present in phospholipids (de Boer, 1988). But to extract the phosphoplids a polar solvent like chloroform and methanol is needed (Bligh and Dyer, 1959, de Boer, 1988). To extract the PCBs from the phospholipids a mixture of a non-polar and polar solvent such as pentane and dichloromethane or hexane and acetone is needed. The first one is preferred because it results in less co-extraction and cleaner chromatograms.

3.5.3 Dioxin-like POPs

A total of 64 laboratories reported at least one result for a dl-POP in one of the test samples (and was assigned a z-score). For the individual matrices, the number of reporting laboratories was smaller since very often, the laboratories are specialized on either abiotic or biotic matrices. For the dioxin-like POPs, almost 3,000 satisfactory performance results have been generated in this interlaboratory assessment (see right column of Table 84). However, the regional distribution varies highly as can be seen in Table 84. The majority of the laboratories is located in the Asia and the WEOG regions. In these two regions, also the good performances can be found. It should be mentioned that especially in the GRULAC region the number of dioxin laboratories has increased and in this IL4 have achieved more than 250 satisfactory results. In the African region, the analytical capacity is still restricted to one laboratory. The performance of this African dioxin laboratory continues to be quite satisfactory.

Table 84: Regional distribution of laboratories submitting results for dl-POPs and number of satisfactory results for the dl-POPs

Region	# of Labs	# of S results (dl-POPs)
Africa	1	64
Asia	32	1411
CEE	2	111
GRULAC	8	251
WEOG	21	986
Grand Total	64	2823

All dl-POPs analysis was done with gas chromatographic systems; one laboratory used ECD as the detector. Among the mass spectrometric instrumentation, HRMS as sector-field instrument, is detector; corresponding to 78% to 87% of all detectors named. MS/MS systems were mentioned by 3-4 laboratories and one or two used LRMS instruments.

The most common extraction procedure was Soxhlet extraction; manual systems seemed to be used more frequently than automatic systems. A wide range of clean-up approaches was used with a majority for alumina and/or silica columns. Florisil clean-up was listed only once. The vast majority of the laboratories used internal labeled standards but two of them also used another native standard substance and two mentioned that they do not use a (labeled) internal standard.

The global picture across all test samples for PCDD/PCDF is shown in Figure 13 and for dl-PCB in Figure 14.

With respect to the PCDD/PCDF, the CV values were satisfactory for the test solution (CV = 10 for lower bound (LB) and CV=9 for upper bound (UB) (Table 22) and for the sediment sample (CV=21 (LB) and CV=20 (UB) (Table 24), both on WHO₂₀₀₅-TEQ basis. For individual congeners, the CV values ranged from 8 to 28 for the test solution and from 17 to 110 for the sediment (Figure 13). The very high CV of 110 was obtained for 1,2,3,7,8,9-HxCDF. Also, for the air extract, satisfactory performance was achieved with CVs=16 for LB and UB for the WHO₂₀₀₅-TEQ. The CVs for the congeners ranged 15-35 (Table 30).

The CVs expressed as WHO $_{2005}$ -TEQ of the human milk (Table 28) and especially of the fish sample (Table 26), were unsatisfactory. For the WHO $_{2005}$ -TEQs the CVs were CV=41 (LB) and CV=35 (UB) for human milk and CV=110 (LB) and CV=99 (UB) for the fish sample. The individual congeners had CVs in the ranges 23-149 for human milk and 89-259 for fish. The high CV of 259 was for 1,2,3,7,8,9-HxCDD; in principle, none of the CVs was in an acceptable range (lowest was CV=89 for 1,2,3,7,8-PnCDD.

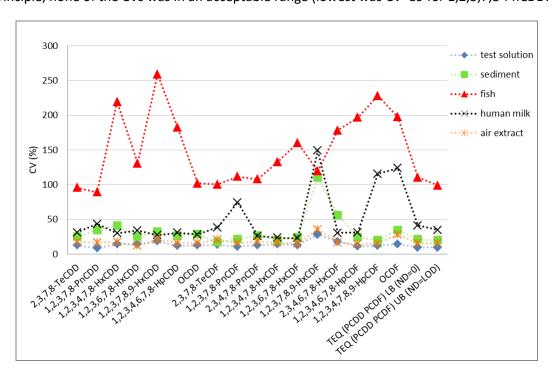


Figure 13: Performance of laboratories for analysis of PCDD/PCDF per congener and TEQ (as %CV).

With respect to the dI-PCB, the CV values on WHO $_{2005}$ -TEQ basis were satisfactory for the test solution (CV for LB and CV=18 for UB) (Figure 14, Table 22). For the individual twelve congeners, the CV values ranged from 11 to 27 for the test solution. For the sediment (Table 24) and the human milk samples (Table 28), the CV values for the WHO $_{2005}$ -TEQ were questionable with CV=32 for LB and CV=28 for UB for the sediment and CV=26 (LB) and CV=25 (UB) for the human milk sample. The CVs for individual congeners ranged from 13 to 62 for sediment and from 11 to 94 for human milk.

The CVs for for the WHO₂₀₀₅-TEQ of the fish (Table 26) and the air extract (Table 20) were unsatisfactory with CV=116 (LB) and CV=115 (UB) for fish and CV= 52 (LB) and CV=38 (UB) for the air extract. The ranges for the individual congeners were 108-171 for fish and 12-53 for air extract.

In general, the higher CV values for the WHO $_{2005}$ -TEQ are due to the higher weight of the non-ortho-PCB in the TEQ calculation.

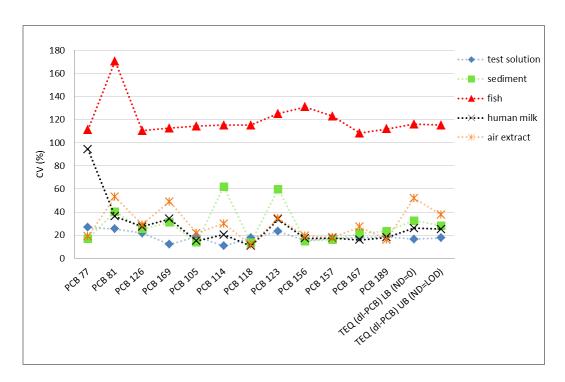


Figure 14: Performance of laboratories for analysis of dl-POPs per congener and TEQ (as %CV).

3.5.4 <u>Polybrominated Diphenyl Ethers</u>

The performance for the PBDE analyses was better than for the OCP and PCB analyses (Figure 1). For the test solution, 65% of the results were satisfactory with a model between lab CV of 22% on average (Table 32, Table 33). In this round PBDE 209 was included for the first time. Analysing this compound is more challenging than analysing the other PBDE. For PBDE 209 in the test solution 40% of the results were satisfactory with a CV of 50% (Figure 15, Table 32, Table 33).

The results for the PBDE in the air extract were relatively good, and comparable with the results of the test solution with between lab CV values of 9%-19%. The analyses of PBDE 209 was more challenging, with 38% of satisfactory results, and a between lab CV of 52% (Table 40, Table 41). For the sediment the PBDE concentrations were in the same range (0.1-1.6 ng/g) as in the third round, but the performance improved substantially from 19% satisfactory results in the third round to 63% in the present study (Table 35). Apart from a better performance of the laboratories, the sediment quality may have played a role as in the sediment of the previous round many interferences were present. Although sediment is a more difficult matrix to analyse than a test solution or an air extract, an acceptable 80% of the participants were able to obtain a satisfactory results on PBDE 209 in sediment (Figure 16).

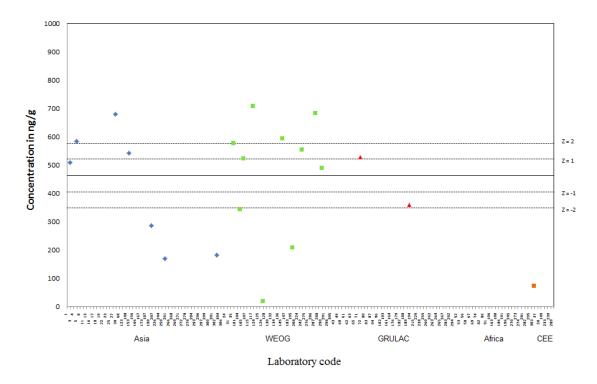


Figure 15 Results for PBDE 209 in the test solution.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, $z = \pm 1$ (12.5%) and $z = \pm 2$ (25%) are given by the dotted lines. The blue \diamond symbols represent Asia, the green \blacksquare symbols represent WEOG, the red \triangle symbols represent GRULAC, the black \bigcirc symbols represent Africa and the orange \blacksquare symbols represent CEE.

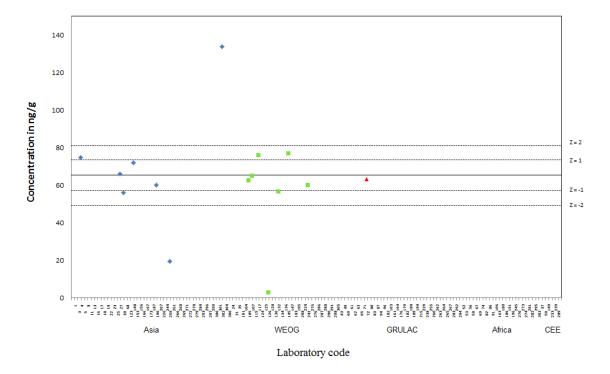


Figure 16 Results for PBDE 209 in the sediment sample.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, $z = \pm 1$ (12.5%) and $z = \pm 2$ (25%) are given by the dotted lines. The blue \diamond symbols represent Asia, the green \blacksquare symbols represent WEOG, the red \triangle symbols represent GRULAC, the black \bigcirc symbols represent Africa and the orange \blacksquare symbols represent CEE.

Concentrations of PBDE in the human milk test material, and in the fish sample were all on the low side. For the human milk, the model mean concentrations were 0.01-0.3 ng/g, which resulted in no assigned values for PBDE 17, 154 and 183. For PBDE 209 only six numerical results were reported with a mean concentration of 0.58 ng/g, and a model between lab CV of 146% (Table 48). For the other PBDE 62% of the data was satisfactory (Table 39).

For the fish sample, it was only possible to calculate an assigned value for PBDE 28, 153,154, and 209. Although most participants reported a numerical value, the concentrations (model means 0.0008-0.68 ng/g) were too low to get a good agreement between the reported results. For PBDE 28, 153, 154, and 209 an assigned value could be calculated even though the concentrations for those compounds were also low (0.02-0.06 ng/g), but this resulted in extreme high model between lab CVs of 97-155% (Figure 17, Table 36).

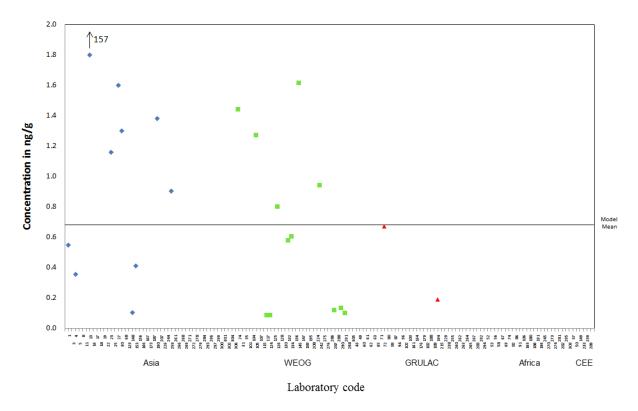


Figure 17 Results for PBDE 47 in the fish sample.

Laboratory code on the x-axis, concentration in ng/kg on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

Overall, the results on the PBDE were relatively good (Figure 18), except for the fish sample in which the concentrations were too low to get a good agreement, and for some of the PBDE with very low concentrations in the human milk sample. Unfortunately, no data at all were reported by African and CEE laboratories, although some of them have been trained in this type of analysis.

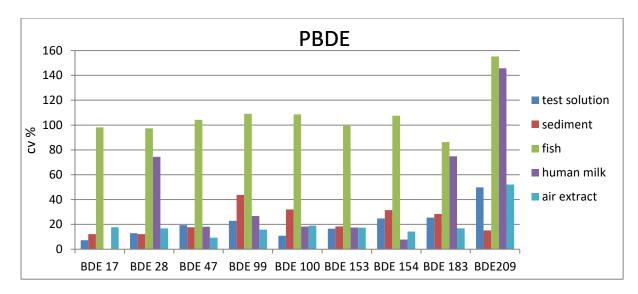


Figure 18 Performances per matrix for the analyses of PBDE.

3.5.5 <u>Hexabromobiphenyl</u>

In the third round, PBB 153 could be analysed in two different solutions. The first solution contained PBB 153 (696 ng/g) together with the PBDE. In the other solution, PBB 153 was provided as the sole compound (11.3 ng/g). In the present study one solution (V) was provided, containing PBB 153 (73.8 ng/g) together with the PBDE (Table 32). Ten participants submitted results, of which eight obtained a satisfactory score (Figure 19, Table 33).

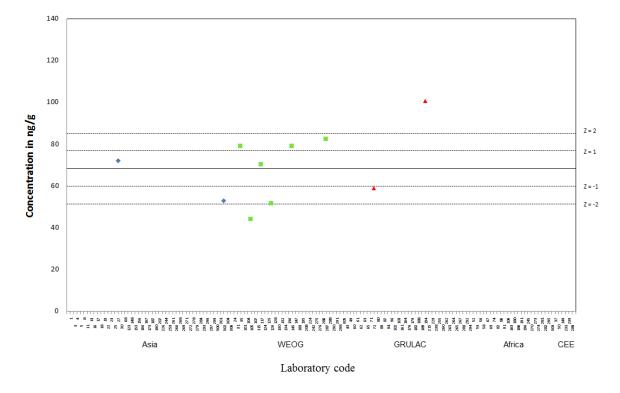


Figure 19 Results for PBB 153 in test solution V.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by a straight line, $z = \pm 1$ (12.5%) and $z = \pm 2$ (25%) are given by the dotted lines. The blue • symbols represent Asia, the green symbols represent WEOG, the red symbols represent GRULAC, the black symbols represent Africa and the orange symbols represent CEE.

Even though the concentrations of PBB 153 in the air extract are more than 50 fold lower than in the test solution, the performance was better, with a model between-lab CV of 3.5%, and 89% of the results being satisfactory (Figure 20, Table 40, Table 41).

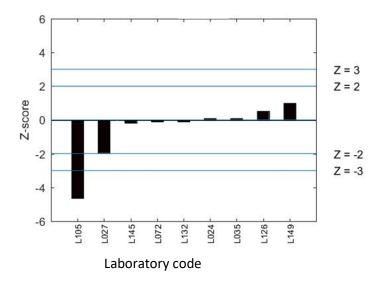


Figure 20 Z-scores obtained for PBB 153 in the air extract. Laboratory code on the x-axis, Z-score on the y-axis.

The concentration of PBB 153 in the sediment sample was low (model mean 0.03 ng/g), but still 8 out of 12 submitted results were > LCV (Table 34). Despite the low concentration and the difficult matrix, all laboratories except one were able to obtain a satisfactory z-score. The concentration of PBB 153 in the fish was even lower (0.016 ng/g), which resulted in six laboratories reporting a value < LCV, and seven participants submitting a numerical value (Table 36). All of those numerical results were satisfactory (Figure 21).

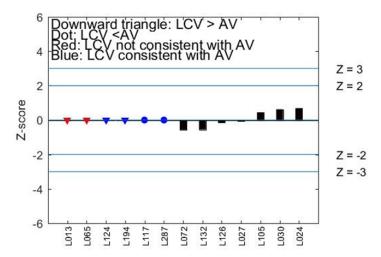


Figure 21 Z-scores obtained for PBB 153 in the fish sample. Laboratory code on the x-axis, Z-score on the y-axis.

Unfortunately, the concentration of PBB 153 in the human milk sample was so low that only two participants were able to report a numerical value (Table 38).

Overall, the results on PBB 153 in this round were satisfactory. In this round all of the participants analysing PBB 153 reported to have used an MS method (LR-MS: n=4, HR-MS: n= 11, MS/MS: n=3), which might have resulted in a better agreement between the laboratories.

3.5.6 <u>Toxaphenes</u>

In the third round of the study toxaphenes were included for the first time. In that round 14 laboratories analysed the test solution, with a good agreement. The individual results for the toxaphenes showed between-lab CV values of 11%-26%, and 83% of the participants received satisfactory z-scores. Theoretical concentrations in the test solution were relatively high compared to environmental concentrations (Parlar 26, 97.7 ng/g; Parlar 50, 139 ng/g; Parlar 62, 100 ng/g), which might have contributed to the good agreement. In the present round the concentrations were a little lower for Parlar 26 (41 ng/g), and Parlar 50 (56 ng/g), and equal for Parlar 62 (101 ng/g) (Table 42). Ten participants submitted results on the test solution. The results of one of the participants was unsatisfactory for the analyses of all three toxaphenes, and the results of one other participant was unsatisfactory for the analyses of Parlar 50 and 62 (Figure 22). Also, in this round the results are all in good agreement, with low model between lab CV% (Parlar 26, 13%; Parlar 50, 9.6%; Parlar 62, 12%).

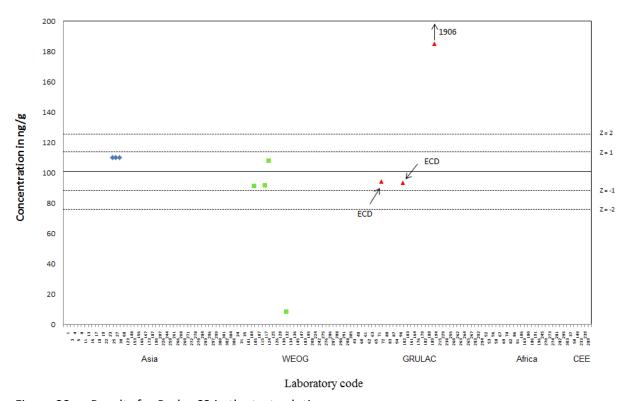


Figure 22 Results for Parlar 62 in the test solution.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green symbols represent WEOG, the red symbols represent GRULAC, the black symbols represent Africa and the orange symbols represent CEE.

In the third round, only one participant reported to have used ECD for the analyses of toxaphenes. Concentrations of toxaphene reported by that participant were much lower than concentrations reported by other participants. Since this was only one result, it was not possible to draw any conclusions in that round. In the present round all 10 participants reported which detection system they used. An MS method was used by the majority (LR-MS (n=2), TOF-MS (n=2), HR-MS (n=2), MS/MS

(n=2) ECD was used by two of the participants (Figure 22). This time no difference in results is observed between the use of an ECD and MS detection systems.

Although it is preferred to use naturally contaminated samples for an intercomparison study, it is of no use to send a material which is so low in contamination that no participant will be able to analyse it above LCV. For this reason, the fish sample in the present study was fortified with Parlar 26, 50 and 62 (Table 46). Nine participants analysed this fish test material, of which six were able to report a numerical value for Parlar 26 and Parlar 50, and five were able to analyse Parlar 62 > LCV (Table 46). Mean concentrations reported were 0.50- 0.63 ng/g, which is 60-200 fold lower than concentrations in the test solution. This resulted in CV values of 38-71 (Figure 23, Table 46). Unfortunately, it was not possible to calculate an assigned value (category 2, see section 2.2). Yet, the results are really promising.

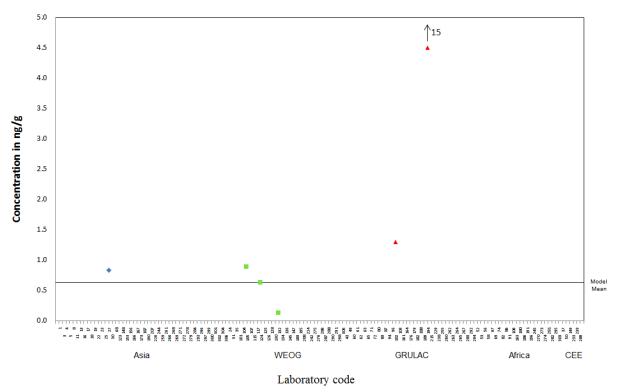


Figure 23 Results for the toxaphene congener Parlar 50 in the fish sample.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The model mean value is given by the straight line, The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

For the unspiked sediment sample (Table 44), and for the spiked air extract (Table 50), only one or two participants reported a numerical value. For the human milk sample only four participants were able to report a numerical value for Parlar 26 and Parlar 50. No result > LCV was submitted for Parlar 62 in the human milk (Table 48). As a result, no assigned value could be calculated.

3.5.7 <u>Hexabromocyclododecane</u>

HBCDs were included in the study for the second time this round. The performance for HBCDs in the test solution was already good the first time the isomers were included, with an average of 81% of the participants receiving a satisfactory z-score. In the present round the performance on the test solution was even better with an average of 87% satisfactory results, and an average between-lab model CV value of 13% (Figure 24, Table 52, Table 53).

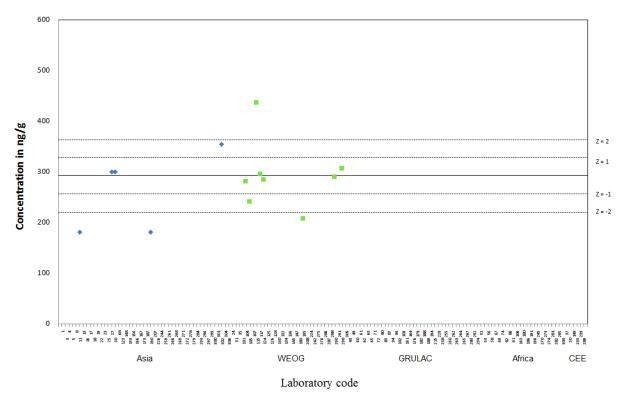


Figure 24 Results for γ -HBCD in the test solution. Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, $z = \pm 1$ (12.5%) and $z = \pm 2$ (25%) are given by the dotted lines. The blue \diamond symbols represent Asia, the green \blacksquare symbols represent WEOG, the red \triangle symbols represent GRULAC, the black \bullet symbols represent Africa and the orange \blacksquare symbols represent CEE.

Only six participants handed in results for HBCDs in the air extract, of which four reported numerical values. Those results were in very good agreement with a CV of 11-14% for the individual isomers.

The most relevant isomer for fish is α -HBCD. Although in the fish sample this compound was present in a very low concentration (model mean: 0.03 ng/g), still seven participants out of nine were able to report a numerical value of which only one result was not satisfactory.

Model between lab CV values for the isomers of HBCD in the sediment sample (11-36%) were lower than in the third round (36-91%), but too few participants reported a numerical value (n=6) with too little agreement to be able to calculate a assigned value (category 2, see section 2.2). Detailed information for γ -HBCD in the sediment sample is shown in the 'kilt' plots in Figure 25.

Unfortunately, for the human milk sample it was not possible to calculate assigned value due to low participation degree.

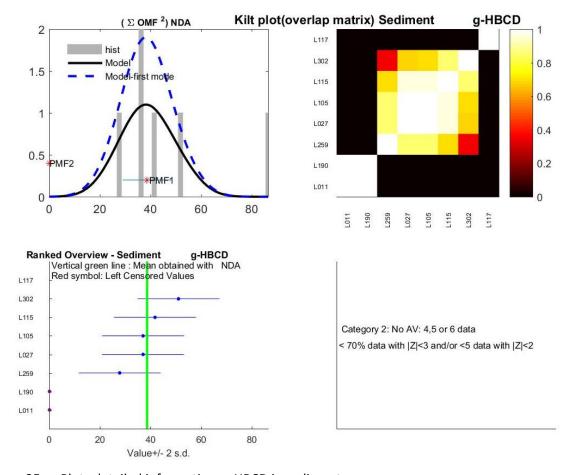


Figure 25 Plots detailed information: γ -HBCD in sediment

Overall, the performance on the diastereomers of HBCD was good, except for the test solution. The number of participants was low, especially considering the fact that the isomers of HBCD are listed at the monitoring list of the Stockholm Convention (UNEP, 2013, 2019c).

3.5.8 <u>Perfluoroalkyl Substances</u>

In total, there were 28 PFAS determinands for test solution, air and human plasma and 21 for human milk, water, and sediments (without the PFOS precursors and their sums). For sum parameters, upperbound (UB) and lower-bound (LB) values were to be reported. For LB values, all values below the limit of detection (LOD) were set zero (<LOD=0) to calculate the sum of the analytes (referred to as 'tot-PFAS class); likewise, for UB values, the values below the limit of detection (LOD) were set at the LOD to calculate the sum of the analytes (<LOD=LOD).

A total of 39 laboratories submitted results and for 1869 datasets (PFAS compound and matrix) z-scores could be assigned (Table 85). Of the z-scores, 1228 were satisfactory corresponding to 66% of all z-scores for PFAS. 328 or 18% were unsatisfactory and 174 or 9% were questionable. 3% (corresponding to 63 z-scores) and 4% (corresponding to 76 z-scores) had insufficient statistical power and results corresponded to C (consistent) and I (inconsistent), respectively. The highest number of z-scores (>100) were for laboratories that analysed abiotic and biotic matrices; *i.e.* L126 (115), L107 (113), L027 (109), and L105 (103). Three laboratories had only unsatisfactory results.

Table 85: Summary of performance of the 39 laboratories submitting results for PFAS (all PFAS and all matrices included)

z-sore interpretation	#S	#Q	#U	#C	#1	#Res
Number of z-scores	1228	174	328	63	76	1869
Percentage	66%	9%	18%	3%	4%	100%

The distribution of PFAS laboratories and the number of satisfactory results ("S") in terms of z-score interpretation according to region is shown in Table 86.

Table 86: Number of laboratories and number of satisfactory results per region for PFAS

Region	No of Labs	No of S results (PFAS)
Africa		
Asia	11	331
CEE	2	37
GRULAC	1	57
WEOG	25	803
Grand Total	39	1228

All participating laboratories used in-house methods for sample preparation, clean-up, extraction and instrumental analysis. It shall be noted that not all laboratories provided information on their methods according to the reporting format. Unfortunately, no systematic information could be obtained as to digestion steps applied before extraction. One laboratory reported acid digestion and one laboratory sonication for sediment and fish. Manual extraction was much more used than automated systems (88.4% vs. 11.6%). Methanol was the most frequently used solvent (70%), acetonitrile was used in 8.8% of the samples. 103 of the samples (or 55.1%) were cleaned-up with SPE and 39 (or 20.9%) with LLE; only one laboratory (0.5%) used QuEChERS in one sample. 43.6% of the laboratories reported use of an extra column (isolator column) whereas 56.4% did not use such column.

The **test solution** contained L- and br-PFOS, five precursor compounds, 11 carboxylic acids, three sulfonic acids (without PFOS) and one fluorotelomer sulfonic acid; thus, a total of 22 compounds to be reported together with three sum parameters, each of them for lower-bound (LB) and upper bound (UB) (Table 62). Up to 29 laboratories reported values and none of them was left-censored. Assigned values could be calculated for 27 of the 28 parameters. Only for the LB of the five precursors, no AV could be calculated. The theoretical value for the sum of these five was 631 ng/g; the coefficient of variation (CV) between laboratories was 49%. For the UB value, the CV was very narrow with 4%.

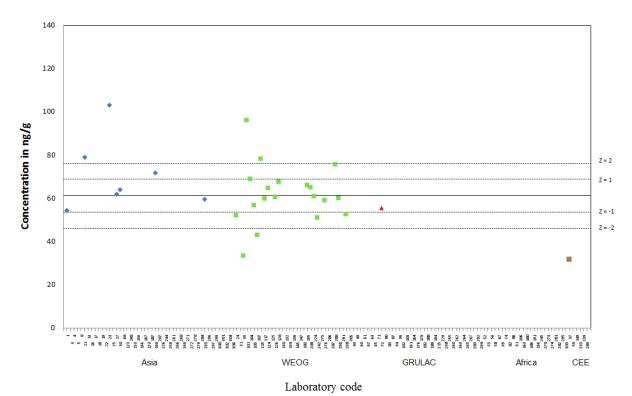


Figure 26 Results for L-PFOS anion in the test solution.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

About 21 laboratories submitted results for the **fish sample** (Table 66). No consensus values could be calculated for five carboxylic acids and two sulfonic acids; the high number of laboratories with LCV should be noted, indicating that the concentrations were very low. Of the 22 laboratories, no consensus value could be assigned for PFOA and the CV was very high (174%); for PFHxS, the CV was also quite high (167%) but the statistical power was sufficient to calculate an AV. The CVs for L-PFOS and the tot-PFOS were excellent (between 11 and 16); only for br-PFOS the CV was higher with 32% (but still acceptable). It is interesting to note that br-PFOS could be quantified at an AV of 0.52 ng/g.

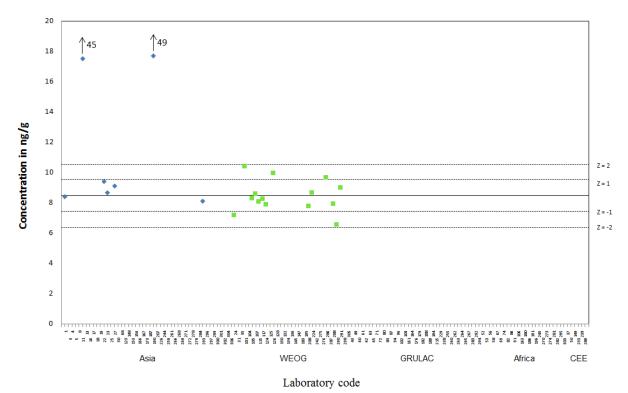


Figure 27 Results for L-PFOS anion in the fish sample.

Laboratory code on the x-axis, concentration in ng/g on the y-axis. The assigned value is given by the straight line, z = ± 1 (12.5%) and z = ± 2 (25%) are given by the dotted lines. The blue ◆ symbols represent Asia, the green ■ symbols represent WEOG, the red ▲ symbols represent GRULAC, the black ● symbols represent Africa and the orange ■ symbols represent CEE.

The global picture of laboratory's performance in PFAS analysis – as percentage variation of the CV – is shown in Figure 28. It shall be noted that the broader spectrum of PFAS has been analysed for the test solution of analytical standards and human plasma only. For water, sediment, fish and human milk only the linear and branched PFOS isomers and their sum were requested. The air test sample included the precursor FOSAs and FOSEs. As can be seen, the human milk sample posed some problems to the laboratories; possibly due to the low concentrations (20 pg/g wet weight for L-PFOS) (Table 68). For most of the analytes, it was not possible to calculate an AV. For the congeners where an AV could be assigned, the CVs were quite high (from 38% for PFOA to more than 100 for br-PFOS, tot-PFOS UB, and PFHxS). Even higher CVs were obtained for PFNA (CV=611) and PFUnDA (CV=231).

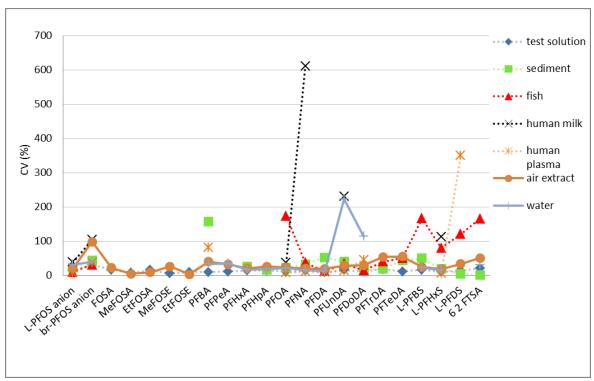


Figure 28: Performance of laboratories for PFAS according to sample type (as CV).

4 COMPARISON WITH THE PREVIOUS ROUNDS OF UNEP'S INTERLABORATORY ASSESSMENT

The present study was the fourth round of the interlaboratory assessment on POPs organized by UNEP. In the first assessment, test solutions, sediment, fish, human milk, and fly ash were tested for OCP, PCB and dl-POPs. In the second round two additional compound classes were added, e.g. PBDE and PFASs. Transformer oil was included in the second round for the analyses of PCB only, and water and human serum were included for PFASs analyses. Fly ash was not included anymore. In the third assessment transformer oil was excluded from the study. Toxaphene, HBCD, and HxBB were added. In the present study the same matrices, and compound classes as in the third round could be analysed again.

Table 87 shows the degree of laboratory participation *per* compound class and matrix in this IL4. Only laboratories are listed for POPs groups where z-scores could be assigned. It is striking, that for example the number of laboratories for PCB in fish is "0", due to the fact that no z-score could be assigned for any or the six congeners nor the sum of PCB.

For all POPs groups, the number of participating laboratories with z-scores was lower than in the previous third Round (IL3), which had a record-high number of participating laboratories. Only for PFASs, a slight increase was observed (25 in IL3 and 29 in IL4). Clearly, the analysis of HxBB, toxaphene and HBCD is still low for many participants. Dioxin laboratories were fewer than in previous rounds (41 in IL4). For PFASs the number of participants is similar to the number of laboratories for PBDE, although the number of laboratories for PFASs increased slightly whereas the number of laboratories for PBDE decreased. The number of basic POPs laboratories (analyzing OCPs or indicator PCB) is 57 and 56, respectively.

As can be seen from Table 87, there is still a large number of laboratories where z-scores could be assigned to test solutions only. For all matrices except water and human plasma, the numbers are comparable with up to 36 to 40 laboratories.

Table 87: Number of laboratories that reported results (and z/score assigned) per compound class (maximum number of labs is given).

POP group/	Test	Sediment	Fish	Air	Human	Human	Water
Test sample	Solutions				Milk	Plasma	
ОСР	57	37	28	22	21		
PCB	56	40	0	36	37		
dl-POPs	41	35	38	34	24		
PBDE	28	22	25	22	13		
HxBB	10	12	13	9	0		
HBCD	13	0	9	6	0		
PFAS	29	13	25	18	15	16	20
Toxaphene	10	0	9	0	0		
Maximum	57	40	38	36	37	16	20

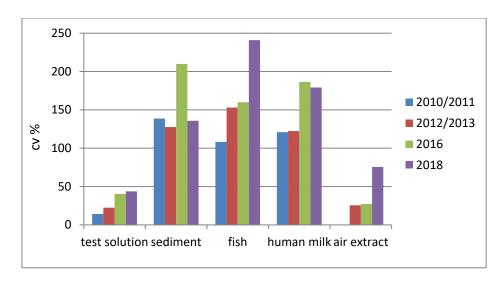


Figure 29 Comparison of performances between interlaboratory assessments for the OCP analyses (for OCPs determined in all rounds).

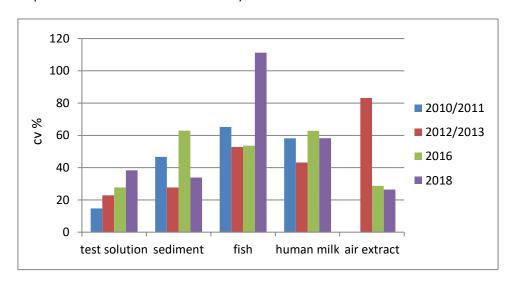


Figure 30 Comparison of performances between interlaboratory assessments for the indicator PCB analyses.

The performance for OCPs in the test solution went significantly backwards in the third round compared to the first two assessments, and in the fourth round the performance was even worse (Figure 29). Also, the performance of PCBs in the test solution went again backwards (Figure 30). It should be expected that all participants would be able to analyse a test solution with a good agreement, since no matrix is present. In the third round a lot of new participants were included in the study, and in the fourth round again 46 laboratories participated for the first time. It could be that some of those new participants are less familiar with the setup of the UNEP interlaboratory study, what might cause a bigger variance in the results. One of the issues not all participants are aware of, although it is clearly requested in all of the documents, is that the results on the test solutions should be reported on mass base, and not on volume base. Since test solutions have to be analyses by laboratories located all over the world, with all different climates, temperatures and pressures, reporting a test solution on volume base, would create an error due to differences in density, while expressing the results on weight base would give a more solid result. Reporting results on volume base instead of reporting on weight base might have resulted in a lower assigned value, a lower z-score for labs who reported their result on volume base, and a higher z-score for laboratories who reported their result on weight base.

The performance on the sediment sample is more or less stable for the OCP analyses, except for the results obtained in the third round, which might have to do with the very polluted location the sediment sample originated from in that assessment. Sediment is a difficult matrix for OCP analyses. A clean-up is required, but not all OCPs are stable for sulphuric acid treatment. It has been observed that it does make a difference which detection method has been used for OCP analyses (section 3.5.1, Figure 6, Figure 7).

For the other matrices, the fish, the human milk, and the air extract, the variance between the laboratories increased for OCP analyses compared to the first two assessments. The fish sample contained low concentrations of POPs, which might be a challenge to laboratories, however why the performance on the human milk, and on the air extract are decreasing for OCPs is not clear.

17 laboratories participated on the analyses of OCPs and 19 laboratories on the analyses of PCB in all four rounds. Trends in individual results of those laboratories over the four laboratories cannot clearly be detected. As an example the z-scores obtained by participant L103 for OCPs in the test solution in the four rounds are shown in Figure 31, and the z-scores of participant L030 obtained for PCB in the human milk sample in the four rounds are shown in Figure 32.

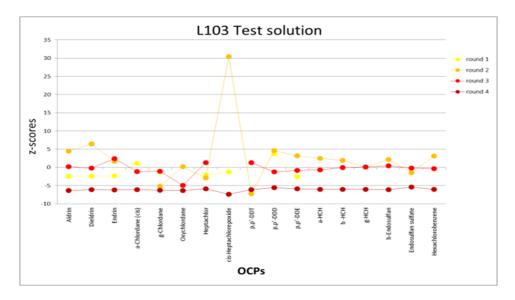


Figure 31 z-scores obtained by L103 for OCP analyses in the test solutions in four rounds of the UNEP ILS.

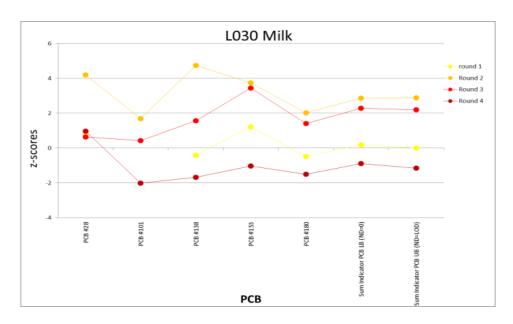


Figure 32 z-scores obtained by L030 for PCB analyses in the human milk sample in four rounds of the UNEP ILS.

Although no trends can be indicated in the results of individual laboratories, it is important that laboratories asses their own results per round. In case of unsatisfactory or questionable z-scores participants should try to identify the cause of the deviation, to be able to optimize their analyses and to be able to keep their performance on OCP analyses good.

The performance for the PBDE analyses in the third round was generally better than in the second round, except for the sediment sample (Figure 33). In this round the performance on the sediment sample was much better, and the CV% was even lower than in the second round of the study. The human milk appeared to be a difficult matrix for PBDE analyses in the second round. In the third round the performance improved, and in this round it improved even more. The performance on the test solution and on the air extract stayed the same compared to the third round, when the performance was already good.

Overall the performance on the PBDE analyses was relatively good, except for the fish sample, like also for the OCP and PCB analyses, which might be due to the low concentrations present in the fish.

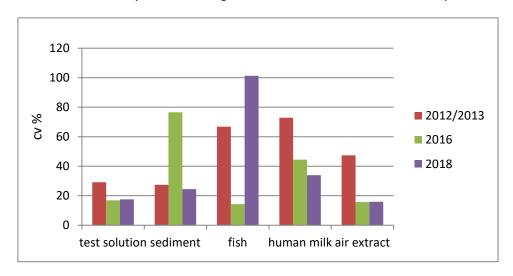


Figure 33 Comparison of performances between interlaboratory assessments for the PBDE analyses.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Technical Conclusions

Again, a number of new laboratories entered this study. It is encouraging to see that many laboratories show an interest in this type of studies and apparently are also working on setting up methods and improving their performance. However, for the comparison with previous exercises, this is a handicap. The new participants are less experienced. For a number of matrices a poorer performance of the newcomers could be identified. Obviously, this has a negative impact of the overall results.

One of the main reasons of the flawed results is the lack of routine in many laboratories. A substantial number of laboratories even only carry out POP analyses for this interlaboratory study without further analyses in the rest of the year. Such a situation will never lead to satisfactory results. Daily or at least weekly or monthly experience in the analysis of POPs is essential to produce reliable results. We therefore recommend restricting this exercise to those laboratories that truly report data to the Global Monitoring Plan or can demonstrate that regular analyses in their laboratory are carried out.

Many participants report results for only one or maybe two analyte groups or only one or two matrices. The statistical evaluation is hampered by lower participation numbers. In some cases the assigned values could not be established or were established but based on a rather low number of laboratory results. To prevent errors in the assigned values, we plan to raise the minimum number of numerical observations to 10 or higher (now 7, see 2.4) for the next round.

Clearly, OCP results produced by GC/ECD are of lower quality that those based on GC/MS. Negative peaks present in the second fraction of the extracts after clean up cause serious errors in the determination and labelled standards cannot be used to correct for that.

OCP, PCB and PBDE results in the fish test material were disappointing. Many laboratories apparently struggle when the fat content of a fish sample is very low such as in this case for the pike perch. Yet, many fishes have low fat contents of around 1 %. More in general it can be observed that many laboratories struggle when concentrations are relatively low in test materials. The air extract analysis resulted as in the previous round in better results, which was at least partly due to fortifying of the extract.

Although overall the performance of the dioxin laboratories remained to be stable and quite impressive, in comparison to the three previous assessments, the results for dioxin-like POPs were not as good as before. Especially the fish matrix but also the human milk test sample generated higher CV values than before. Typically, laboratories analyse both groups of chemicals, PCDD/PCDF and dl-PCB, whereby there is larger variation for the dl-PCB congeners and the WHO₂₀₀₅-TEQ values. The laboratories carrying out these analyses are apparently well aware of the required quality issues and have expensive and sophisticated instrumentation for this task such as high-resolution mass spectrometers (sector-field instruments) coupled to HRGC. A few laboratories used low resolution mass spectrometers (quadrupole instruments). We also assume that these laboratories in general are quite stable as to personnel and analyze large number of samples per year. There is still one laboratory that applies "basic POPs" analysis using ECD detector and no internal standards (whereby it is not clear if not internal standard at all or no labelled standard). New dioxin laboratories are emerging with good performance but few sample types (one in Asia-Pacific, one in GRULAC).

The analysis of brominated flame retardants, PBDE and HBCD was in general encouraging, the fish test material excluded. However, only a small number of the more experienced laboratories participated in this exercise and extension to a wider suite of laboratories is highly desired. This is in particular

desirable, as several of the laboratories involved in this study will sooner or later face the challenge of e-waste screening for flame retardants before prior to possible recycling. Although this is not a GMP-related task it is an important activity for the Stockholm Convention.

The number of laboratories analysing toxaphene slowly increases. The results of the test solution and fortified fish test material were encouraging. Results were less good for the non-spiked air and sediment test materials.

In comparison with previous interlaboratory assessments (Fiedler et al., 2020), more PFAS laboratories participated in this IL4. As in IL3, besides PFOS, which is listed in the Stockholm Convention (UNEP, 2009, 2019a) and recommended for analysis in the GMP guidance document (UNEP, 2019b), a wider spectrum of perfluoroalkane carboxylic acids and sulfonic acids were included in the assessment. PFOA was already included although PFOA, its salts and PFOA-related compounds were listed in 2019 only (UNEP, 2019). Subsequently, the number of z-scores that were achieved continuously increased since the second round (IL 2) (see Table 88). Although in general, PFAS laboratories are at the higher end of performance in the UNEP-coordinated laboratories and the number of satisfactory results increased; it must be noted that the performance decreased from 85% satisfactory results in IL2 to 66% in IL4. Whereas the number of PFAS laboratories and the number of good results increase, care should be taken to choose proficient laboratories and carefully assess the successful participation as to the PFAS analyte and the matrix.

Table 88: Summary of z-score results for PFAS in IL2, IL3, and IL4

PFAS	# S	# Q	# U	# C	# I	Total	% S	% Q	% U	% C	% I
IL2	377	39	19	3	4	435	85	4	9	1	1
IL3	461	64	89	8	8	630	73	14	10	1	1
IL4	1228	174	328	63	76	1869	66	9	18	3	4

With respect to logistics, difficulties occurred again with strict regulations at customs and domestic transport. Some of the biological test materials, fish or human milk – had to be sent twice or could not be shipped with express mail.

In contrast to other interlaboratory assessments, laboratories were allowed to have a second look at their data after the compilation of all results. About 100 laboratories submitted new results files whereby only editorial corrections were allowed to be undertaken. Commonly occurring errors included the following:

- Errors with units for reporting (dimensions) or volume basis instead of mass basis;
- Sequence of congeners in this assessment does not correspond to chromatographic elution sequence or sequence in the laboratory's normally used template;
- Errors with the summation of congeners to report sums of parameters;
- Lack of understanding to calculate the toxic equivalent (for dioxin-like POPs);
- Errors with the choice of the TEF scheme;
- Incorrect handling of LODs to report lower-bound or upper-bound values.

The results of this assessment emphasise the need for all laboratories to pay more attention to quality assurance (QA) and more extensive method validation. It is imperative that authorities, management and others provide the resources necessary for an adequate QA-scheme in each laboratory. Regular, routine analyses instead of one-off projects would help to build up the required level of experience for this type of analysis.

Based on the results achieved in this assessment, it is concluded that a long-term commitment to organise similar assessments on a regular basis (1-2 years) will be needed to obtain a reasonable-to-

good comparability of POP laboratories world-wide. Results need to be discussed at workshops or in mutual exchange programmes (e.g. per continent). To achieve the UNEP criteria for all regions, provision of training and information on methods and QA/QC will still be needed, especially for the new POPs added to the convention.

5.2 Recommendations

Based on the results in this third exercise, the following recommendations are proposed:

- 1. Continuation of the bi-ennial scheme of interlaboratory assessment studies is needed to monitor and improve the overall level of performance of POPs analysis of the analytical laboratories worldwide, including in developing countries.
- 2. Laboratories need to carry out POP analyses **on a regular basis** in order not to lose the built up knowledge. Governments should support their laboratories herein, as only participation in this interlaboratory study and occasional training will not be enough to guarantee reliable analytical results for POPs. Admission criteria for the next round should take this aspect into account.
- 4. Laboratories analysing OCPs strongly are encouraged to use GC-MS and ¹³C labelled standards to improve their analysis. This and previous rounds have shown that GC/ECD results are not reliable for most of the OCPs.
- 5. Participating laboratories are encouraged to train their own technicians by repeatedly analysing certified reference materials and internal laboratory reference materials.
- 6. Laboratories are encouraged to develop methods for toxaphene, brominated flame retardants, PFASs, hexachlorobutadiene and chlordecone. At the moment there is very little capacity in the various UN regions for these POPs.
- 7. Participants should consider to more often use a second GC column to check possible co-elutions.

6 REFERENCES

Abalos, M., Abad, E., van Leeuwen, S.P.J., Lindstrom, G., Fiedler, H., de Boer, J., and van Bavel, B. (2013). Results for PCDD/PCDF and dl-PCBs in the First Round of UNEPs Biennial Global Interlaboratory Assessment on Persistent Organic Pollutants. *TrAC-Trends Anal. Chem.* **46**, 98-109.

Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. *Can. J. Biochem.* Physiol. **37**, 911-917.

Cofino, W. P., Wells, D. E., Ariese, F., van Stokkum, I. H. M., Wegener, J.-W., Peerboom R. J. (2000). A new model for the inference of population characteristics from experimental data using uncertainties. Application to interlaboratory studies. *Chemometrics Intell. Lab. Syst.* **53**, 37-55.

Cofino, W.P., Molenaar, J., Torfs, P. (2017). Evaluating proficiency tests with robust statistics. Wiley StatsRef: Statistics reference Online, DOI: : 10.1002/9781118445112.stat04068.pub2.

De Boer, J. (1988). Chlorobiphenyls in bound and non-bound lipids of fishes; comparison of different extraction methods. *Chemosphere* **17**, 1803-1810.

EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) (2018). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. *EFSA Journal* **16**, 5194 (5284 pp).

Fiedler, H., de Boer, J., and van der Veen, I. (2017). Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants - Round 3 2016/2017. United Nations Environment Programme (UNEP), Geneva, Switzerland. https://wedocs.unep.org/handle/20.500.11822/21743

Fiedler, H., van der Veen, I., and de Boer, J. (2020). Global interlaboratory assessments of perfluoroalkyl substances under the Stockholm Convention on persistent organic pollutants. TrAC Trends Anal. Chem. 124, 115459.

Molenaar, J., Cofino, W.P., Torfs, P.J.J.F. (2018). Efficient and robust analysis of interlaboratory studies. Chemometrics Intell. Lab. Syst. **175**, 65-73.

Smedes, F (1999). Determination of total lipid using non-chlorinated solvents. *Analyst* 124, 1711-1718.

Thompson, M., Wood, R. (1993). International Harmonised Protocol for Proficiency Testing of (Chemical) Analytical Laboratories. *J. Assoc. Off. Anal. Chem.* **76**, 926-940.

Thompson, M., Ellison, S., and Wood, R. (2006). The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories: (IUPAC Technical Report). Pure Appl. Chem. **78**, 145-196.

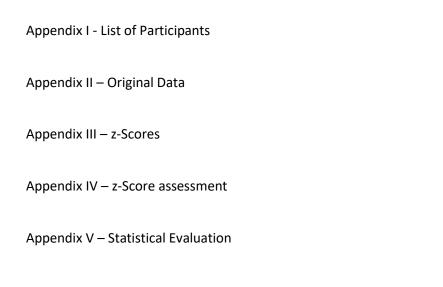
UNEP (2009). Decision SC-4/17. Listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride. In SC-4/17, United Nations Environment Programme (UNEP), ed. (Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants).

UNEP (2012). Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – First Round 2010/2011 U.N.E.P. (UNEP), ed. (Geneva, Switzerland: United Nations Environment Programme (UNEP)).

UNEP (2013). Decision SC-6/13. Listing of hexabromocyclododecane. In SC-6/13, United Nations Environment Programme (UNEP), ed. (Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants).

UNEP (2015). Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants - 2nd Round 2012-2013, United Nations Environment Programme (UNEP), ed. (Geneva, Switzerland).

UNEP (2019a). Decision SC-9/4: Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride. In SC-9/4, United Nations Environment Programme (UNEP), ed. (Geneva, Switzerland: Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants).


UNEP (2019b). Decision SC-9/12: Listing of perfluorooctanoic acid (2019), its salts and PFOA-related compounds. In SC-9/12 (UN Environment, Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants).

UNEP (2019c). Guidance on the Global Monitoring Plan for Persistent Organic Pollutants, United Nations Environment Programme (UNEP), ed. (Geneva, Switzerland), pp. 149.

Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., et al. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences 93, 223-241.

Wells, D.E., De Boer, J. (2006). Evaluation of the quality of measurement of organochlorine contaminants in the marine environment: the QUASIMEME experience. TrAC-Trends Anal. Chem. **25**, 350-363.

7 APPENDICES

Please note: Appendices II to VII are electronically available from the WebSite at Örebro University https://www.oru.se/english/research/research-environments/ent/mtm/research-projects/global-monitoring-plan/Downloads18-19

APPENDIX I: LIST OF PARTICIPANTS

Name	Region	E-mail
Susan Wolf 3M EHS Laboratory 3M Center Building 260-5N-17 St. Paul, MN, 55144 United States of America	WEOG	stwolf@mmm.com
Dr. László Tölgyesi Agilent Technologies, LC/MS Workflows Hewlett-Packard-Strasse 8 Waldbronn, D-76337 Germany	WEOG	laszlo_toelgyesi@agilent.com
Onesmus Kyalo Mwaniki Analytical Chemistry Laboraotry Kenya Plant Health Insoectorate Service P.O BOX 49592-00100, Ololua Ridge, Karen Nairobi, 00100 Kenya	Africa	omwaniki@kephis.org
Nguyen Hung Minh Analytical Laboratories for Environment, Dioxin and Toxins; Northern Centre for Environmental Monitoring Vietnam Environment Administration Nr. 556, Nguyen Van Cu Street, Long Bien Hanoi, 100000 Vietnam	Asia	nhminh@vea.gov.vn; lab.dioxin@gmail.com
James Nyirenda Analytical Services Laboratory University of Zambia, Department of Chemistry Great East Road, P.O. Box 32379 Lusaka, 10101 Zambia	Africa	nyirendaj@unza.zm; jamesn7414@gmail.com
Jose Lailson-Brito jr. Aquatic Mammal and Bioindicator Laboratory Universidade do Estado do Rio de Janeiro Avenida San Martín 340; Apartment 105 Leblon Rio de Janeiro, 22441-013 Brazil	GRULAC	joselailson@gmail.com

Name	Region	E-mail
Belisario Acevedo ASINAL S.A.S. Calle 10 Sur No 41-27, Ciudad Montes Bogotá D.D., 46068 Colombia	GRULAC	belisario.acevedo@asinal.net.co
Ushma Dahya AsureQuality LTD-Wellington 1 C Quandrant Drive, Waiwhetu, Lower Hutt - 5010 Wellington, 5010 New Zealand	WEOG	Wgtn-quality@asurequality.com
Sirichai Sunya Bureau of Quality and Safety of Food, Department of Medical Sciences Ministry of Public Health 88/7 Tiwanon Rd. Amphoe Muang Nonthaburi, 11000 Thailand	Asia	sirichai.s@dmsc.mail.go.th
Stephanie Defour CARSO - LSEHL 4 Avenue Jean Moulin Venissieux, 69200 France	WEOG	sdefour@groupecarso.com
Jan Quik Centraal Laboratorium, Bureau Openbare Gezondheidszorg, AFDELING CHEMIE Rode Kruislaan Br. 11AC Paramaribo, Suriname	GRULAC	jan.quik@gmail.com
WARUNEE BUALA Central Laboratory (Thailand) Co., Ltd. (Chachoengsao Branch) 36/6 Moo 8, T.Tasa-arn , A.Bangpakong Chachoengsao, 24130 Thailand	Asia	Qm.dcmch@gmail.com
Raounak Jabour Central Laboratory in Ministry of Local Administration and Environment Kafer Sosah 17 Nesaan Street Damascus, 3773 Syria	Asia	rawjabour@gmail.com

Name	Region	E-mail
Yasser Mostafa, Emad Attallah Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food 7 Nadi El Said St, Dokki Giza, 12311 Egypt	Africa	yassernabil@hotmail.com; emadatala@yahoo.com
Sorra Kongkalimeen Centralab Laboratory (Thailand) Co.,Ltd. (Songkhla Branch) 9/116 Kanchanawanich Hat Yai, Songkhla, 90110 Thailand	Asia	sora.kongka@gmail.com
Kanchanaporn Singyote; Wanisa Meecharoen Centralab Laboratory (Thailand) Co.,Ltd. (Bangkok Branch) 50 Phaholyothin Rd., Ladyao, Jatujak Bangkok, 10900 Thailand	Asia	qm-bk@centrallabthai.com; wanisa@centrallabthai.com
Baili Benjemaa Chedia Centre Internationale des Technologies et de l'Environnement de Tunis Boulevard Leader Yasser Arafat Charguia Tunis, 1080 Tunisia	Africa	unite-cho@citet.nat.tn
Centre Testing International (Suzhou) Co. Ltd. No.3286, Chengyang road, Xiangcheng district Suzhou, Jiangsu 215134 China	Asia	
Jimena Durán Durán; Maria del Carmen Arteaga Centro de Analisis Investigacion y Desrrollo (CEANID) Universidad Autonoma Juan Misael Saracho Campus Universitario, Zona el Tejar, Avenida Las Americas Tarija, 591 Bolivia	GRULAC	jimenadd@hotmail.com; airam.nemrac@hotmail.com

Name	Region	E-mail
Alonso-Hernandez; Carlos Manuel Centro de Estudios Ambientales de Cienfuegos Laboratorio de Ensayos Ambientales AP 5 Km1.5 Ciudad Nuclear Cienfuegos, 59350 Cuba	GRULAC	carlos@ceac.cu
Marcelo Bascope Centro de Investigaciones Quimicas CIQ SRL Calle juni s/n Zona Sapenco, Casilla 22 Quillacollo Cochabamba, Bolivia	GRULAC	marbascope@hotmail.com
Rainer Malisch Chemisches und Veterinäruntersuchungsamt (CVUA) Freiburg Bissierstr. 1 Freiburg, 79114 Germany	WEOG	rainer.malisch@cvuafr.bwl.de
Lei Zhang China National Center for Food Safety Risk Assessment Room 203, Panjiayuan Nanli 7, Chaoyang District Beijing, 100021 China	Asia	zhanglei1@cfsa.net.cn
Yiwen Wang China Test (Jiangsu) Testing Technology Company No. 262, Chengfeng Road Kunshan City, 215300 China	Asia	welcomewyw@163.com
María Ángeles Martínez Calvo CIEMAT - Group of Persistent Organic Pollutants Avda. Complutense 40 Madrid, 28040 Spain	WEOG	ma.martinez@ciemat.es

Name	Region	E-mail
Silvana Yolanda Díaz Castro Contaminantes de Productos Agrícolas Vía Interoceánica Km. 14 1/2 y Eloy Alfaro, Granja del MAG, Tumbaco Quito, 170518 Ecuador	GRULAC	silvana.diaz@agrocalidad.gob.ec
Yamazaki Norimasa CSD IDEA (Beijing) Environmental Test & Analysis Co., Ltd. Building D2-101, No. 66 Xixiaokou Road, Haidian District Beijing, 100192 China	Asia	shanqijiaozheng@zchb.net
K.P. Prathish CSIR - National Institute for Interdisciplinary Science and Technology Environmental Technology Division Council of Scientific and Industrial Reearch, Govt. of India Industrial Estate P.O., Pappanamcode Thiruvananthapuram, 695019 India	Asia	pratihishkp@niist.res.in; prathishkp@gmail.com
Kwadwo Ansong Asante CSIR Water Research Institute CSIR Premises, Airport Residential Area, Achimota, Behind Golden Tulip Hotel Accra, Ghana	Africa	kaasante@chemist.com
Patricia Simone Departamento Laboratorio Ambiental DINAMA Avenida Italia 6201, Modulo 14, Planta alta Montevideo, 11500 Uruguay	GRULAC	patricia.simone@mvotma.gub.uy
Linroy Christian Department of Analytical Services Dunbars, Friars Hill St. John's, Antigua and Barbuda	GRULAC	linroy.christian@ab.gov.ag

Name	Region	E-mail
Nghiem Xuan Truong Department of Chemistry and Environment Vietnam-Russian Tropical Centre (Trung tam Nhiet doi Viet-Nga) 58 Nguyen Van Huyen Street, Nghia DO Ward, Cau Giay District Hanoi, Vietnam	Asia	truongnx68@gmail.com
Shem O. Wandiga, Vincent Madadi Department of Chemistry, College of Biological and Physical Sciences University of Nairobi Riverside Drive, Chiromo Campus Nairobi, 00100 Kenya	Africa	sowandiga@iconnect.co.ke; vmadadi@uonbi.ac.ke; madadivin2002@yahoo.com
Vu Tu Department of Environmental Quality Analysis 18 Hoang Quoc Viet, Cau Giay Hanoi, 84 Vietnam	Asia	vvtuiet@gmail.com
Hecham Elhamri Department of Toxicology Institut National d'Hygiène No 27 Avenue Ibn Batouta Agdal Rabat, 10000 Morocco	Africa	elhamrih@yahoo.fr
Lizzy Mokwena Department of Water and Sanitation (DWS) Resource Quality Information Services (RQIS) KwaMhlanga Rd, Roodeplaat Dam Pretoria, 0001 South Africa	Africa	MokwenaL@dws.gov.za
Zongwei Cai Dioxin Analysis Laboratory, Department of Chemistry Hong Kong Baptist University 224 Waterloo Road, Kowloon Tong Hongkong, 999077 China	Asia	dioxin@hkbu.edu.hk

Name	Region	E-mail
Xiaoyan Zheng Dioxin Lab of China National Environmental Monitoring Center Dayangfang No. 8, Anwai Beiyuan, District Chaoyang Beijing, 100012 China	Asia	zhengxy@cnemc.cn
Lirong Gao Dioxin Laboratory, Research Center for Eco- environmental Sciences Chinese Academy of Sciences No. 18 Shuangqing Road, Haidian District Beijing, 100085 China	Asia	gaolr@rcees.ac.cn
Jane Beebwa Directorate of Government Analytical Laboratory Plot 2 Lourdel Road, Wandegeya Kampala, Uganda	Africa	jbeebwa@gmail.com; beebwajane@yahoo.com
Maria Yumiko Tominaga Divisão de Análises Físico-Químicas CETESB Cia Ambiental do Estado de São Paulo, Alto de Pinheiros Av. Prof. Frederico Hermann Jr., 345 São Paulo, 05459-900 Brazil	GRULAC	mytominaga@sp.gov.br
Kit Granby DTU Food DTU, National Food Institute Kemitorvet building 202 Kgs. Lyngby, 2860 Denmark	WEOG	kgra@food.dtu.dk
Werner Tirler Eco-Research Via Negrelli, 13 Bolzano, I-39100 Italy	WEOG	w.tirler@eco-research.it

Name	Region	E-mail
Ma. Fatima Anneglo R. Molina EMB Central Office Laboratory Environmental Management Bureau (EMB) Department of Environment and Natural Resources (DENR) Compound, Visayas Ave Quezon City, 1116 Philippines	Asia	mfarmolina@gmail.com
Ngassoum Martin Benoit Ensai University of Ngaoundere Dang Ngaoundere, 455 Cameroon	Africa	ngassoum@yahoo.fr
Jacco Koekkoek Environment and Health Department VU University De Boelelaan 1087 Amsterdam, 1081HV Netherlands	WEOG	jacco.koekkoek@vu.nl
Tham Trinh Environmental Laboratory, Faculty of Environment Hanoi University of Natural Resources and Environment (ENVILAB-HUNRE) No.41, Phudien St, Phudien Ward, North Tulien District Hanoi, 100000 Vietnam	Asia	thuanlengoc@gmail.com
Ruchaya Boonyatumanond Environmental Research and Training Ccenter, Technolopolis Amphoe Klong Luang, Tambon Klong 5 Pathumthani, 12120 Thailand	Asia	ruchaya2007@gmail.com
Boubacar Madio dit Aladiogo Maiga Environmental Toxicology and Quality Control Central Veterinary Laboratory Km8, Sotuba Route de Koulikoro Bamako, Mali	Africa	aladiogo2@gmail.com

Name	Region	E-mail
Jerry Asumbere EPA Laboratory Ghana Environment Protection Agency EPA Head Office, Starlet's 91 Road, Ministries Accra, Ghana	Africa	jjasums@yahoo.com
Maria Nilsson Eurofins Environment Sweden AB Sjöhagsgatan 3, Port 1 Lidköping, 531 40 Sweden	WEOG	marianilsson@eurofins.se
Cathrin Landegren Eurofins Food & Feed Testing Sweden AB Sjöhagsgatan 3, Port 2 Lidköping, 531 40 Sweden	WEOG	cathrinlandegren@eurofins.se
Heike Henjes Eurofins GfA Lab Service GmbH Am Neuländer Gewerbepark 4 Hamburg, 21079 Germany	WEOG	heikeHenjes@eurofins.de
Da Chen Exposome and Metabolomics Laboratory Jinan University Room 2068, Qifu building, No.855, East Xingye Avenue, Jinan University, Panyu District Guangzhou, 511486 China	Asia	dachen@jnu.edu.cn
Marie Ndao Fondation CERES-Locustox Km 15 Route de Rufisque Dakar, Senegal	Africa	ndaomarie@yahoo.fr
Sumbukeni Kowa Food and Drugs Control Laboratory Nationalist Road, UTH Complex, P.O. Box 30138 Lusaka, 10101 Zambia	Africa	sumbukeni@yahoo.com

Name	Region	E-mail
Adebola A. Adeyi Geo-Environmental Research Laboratory, Basel Coordinating Centre for the African Region University of Ibadan No. 1 Ijeoma Road Ibadan, 200284 Nigeria	Africa	bolaoketola@yahoo.com
William M. Muyoki Government Chemist Department, Kenyatta National Hospital P. O. Box 20753-00202 Nairobi, 00202 Kenya	Africa	wmunyoki@yahoo.com
Benny Mallya Government Chemist Laboratory Agency 5 Barack Obama Drive, P.O Box 164 Dar es-Salaam, Tanzania	Africa	bmallya@yahoo.com
Tak-chung Chan Government Laboratory Hong Kong Special Adminstrative Region 10/F, Homantin Government Offices, 88 Chung Hau Street Homantin, Kowloon, Hong Kong Hongkong SAR	Asia	tcchan@govtlab.gov.hk
Andrés Ramírez Restrepo Grupo Diagnostico y Control de la Contaminación Cra 53 #61-30 Sótano 1 Medellin, 050010474 Colombia	GRULAC	calidad.gdcon@gmail.com
Jingfang Mu Guangzhou PRO Environmental Testing Technology Services Co. Ltd. G-5-308, South China New Material Innovation Park, No. 31, Kefeng Road, Huangpu District Guangzhou, Guangdong 510663 China	Asia	55818865@qq.com

Name	Region	E-mail
Anita Eng Hazardous Air Pollutants (HAPs) Laboratory 4905 Dufferin Street Toronto, M3H 5T4 Canada	WEOG	anita.eng@canada.ca
Tatsuya Hattori IDEA Consultants, Inc Riemon 1334-5 Yaizu-City, Shizuoka pref, Japan	Asia	tatsuya@ideacon.co.jp
Sergey Gromov IGCE - Institute of Global Climate and Ecology Roshydromet and RAS (IBMoN OPL) Glebovskaya street 20-B Moscow, 107258 Russia	CEE	sergey.gromov@igce.ru
José Vinicio Macías -Zamora IIO-UABC (Laboratorio de COPs) Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanologicas Edificio E25, Carretera Tijuana (Unidad Sauzal) 3917 Ensenada, 22860 Mexico	GRULAC	vmacias@uabc.edu.mx
Mereoni Gonelevu, Karalaini Rabo Institute of Applied Sciences University of the South Pacific Laucala Bay, Private Mail Bag Suva, 679 Fiji	Asia	rabo_k@usp.ac.fj; gonelevu_m@usp.ac.fj
Enkhtuul Surenjav Institute of Chemistry and Chemical Technology Mongolian Academy of Sciences MAS 4th Building, Bayanzurkh District, Peace Avenue 13330 Ulaanbatar, 210351 Mongolia	Asia	enkhtuulls@yahoo.com

Name	Region	E-mail
Dzintars Zacs Institute of Food Safety Animal Health and Environment "BIOR" Lejupes iela 3 Riga, LV-1076 Latvia	CEE	Dzintars.zachs@gmail.com
Britt Elin Øye Institute of marine research, Chemistry and Contaminants lab Havforskniningsinstituttet, Kjemi og fremmedstoff lab Nordnesboder 5 Bergen, 5005 Norway	WEOG	BrittElin.Oye@hi.no
Jiayin Dai Institute of Zoology, Chinese Academy of Sciences Beichen West Road 1-5 Beijing, 100101 China	Asia	daijy@ioz.ac.cn
Thomas Manfred Krauss Instituto Nacional de Controle em Saúde - INCQS (National Institute for Quality Control in Health) Fundação Oswaldo Cruz (FIOCRUZ) Avenida Brasil, 4365, Manguinhos Rio de Janeiro, 21040-900 Brazil	GRULAC	thomasm.krauss@gmail.com; thomas.krauss@incqs.fiocruz.br
Arturo Gavilan Instituto Nacional de Ecologica y Cambio Climatico Investigación de Contaminantes, Sustancias, Residuos y Bioseguridad Av. San Rafael Atlixco No. 186 Col Vicentina Mexico City, 09340 Mexico	GRULAC	arturo.gavilan@inecc.gob.mx
Clemens Ruepert Instituto Regional de Estudios en Sustancias Toxicas Universidad Nacional Campus Omar Dengo, Apdo 86 Heredia, 3000 Costa Rica	GRULAC	clemens.ruepert@una.cr

Name	Region	E-mail
Floria Roa-Gutiérrez Instituto Tecnologico de Costa Rica Escuela de Química/CEQIATEC 800 m Este Estadio Fello Meza Cartago, Costa Rica	GRULAC	froa@itcr.ac.cr
Adriana Rosso INTI Argentina Colectora Gral Paz 5445 – Edificio 50 San Martín, B1650WAB Argentina	GRULAC	adrosso@inti.gob.ar
João Paulo Lacerda IPT - Instituto de Pesquisas Tecnológicas Avenida Professor Almeida Prado, 532 - Prédio Cidade Universitária São Paulo, SP 05508-900 Brazil	GRULAC	jpaulo@ipt.br
Cheng Tao J&A Testing Center/ CAIQ Southern Testing Center Level 2 Building D, 1335 Binan Rd, Binjiang District Hangzhou 310053, P.R.China Hangzhou, 310053 China	Asia	chengtao@jatests.com
Fumio Kaji Japan Environment Sanitation Center 10-6 Yotsuyakamicho Kawasaki-ku Kawasaki City, 210-0828 Japan	Asia	fumio_kaji@jesc.or.jp
Chen Weihai Jiangsu WeipuTech Co. LtdCO.,LTD No.58,Weixin Road,Wuzhong District Suzhou, Jiangsu, 215100 China	Asia	chenweihai198512@163.com
Bondi Gevao Kuwait Institute for Scientific Research Environmental Pollution and Climate Program Jamal Abdul Nasser Street safat, 13109 Kuwait	Asia	bgevao@kisr.edu.kw

Name	Region	E-mail
Cesar Augusto Bernal LABCAM Unidad de Laboratorios de Calidad Ambiental Marina - LABCAM Calle 25 No. 2-55 Playa Salguero Santa Marta, 470006342 Colombia	GRULAC	Cesar.bernal@invemar.org.co
Jayed Maria Laboratoire des Contaminants Organiques: pesticides et hydrocarbures Institut National de Recherche Halieutique. (INRH) 2 Aîn Diab, Bd Sidi Abderrahmane Casablanca, Morocco	Africa	mjayed2003@gmail.com
Maria Laura Porto Laboratorio Central "Dr Fco. Alciaturi" (GGL)-OSE Carolos Roxlo 1275, 1er subsuelo- Laboratorio Montevideo, 11200 Uruguay	GRULAC	mporto@ose.com.uy
Juan Echarte Laboratorio de Contaminantes Orgánicos Persistentes Servicio Nacional de Sanidad y Calidad Agroalimetaria de Argentina Av Fleming 1653 Martinez, Provincia Buenos Aires, 1640 Argentina	GRULAC	jecharte@senasa.gov.ar
Ivonne Loayza Laboratorio de Control Ambiental Ministerio de Salud Las Amapolas 350 – Lince Lima 14, Peru	GRULAC	iloayza@minsa.gob.pe
Rodrigo Loyola Sepulveda Laboratorio de Dioxinas Universidad de Concepción Cabina 5, s/n Barrio Universitario Concepción, 4070386 Chile	GRULAC	rodrigoloyola@udec.cl

Name	Region	E-mail
Katia Ramirez Laboratorio de Ensayos EULA Universidad de Concepción. Barrio Universitario S/N Concepción, 4030000 Chile	GRULAC	kramirez@udec.cl
Cesar C. Martins Laboratório de Geoquímica Orgânica e Poluição Marinha/UFPR R. Vereador Antonio dos Reis Cavalheiro, 651, 502A Curitiba, 80035210 Brazil	GRULAC	ccmart@ufpr.br
Alejandra Acosta Laboratorio de Residuos de Plaguicidas Ministerio de Ganadería Agricultura y Pesca, Dirección General de Servicios Agrícolas Avenida Millan No. 4703 Montevideo, 12900 Uruguay	GRULAC	alacosta@mgap.gub.uy
Rafael Pissinatti Laboratório Nacional Agropecuário - Lanagro/Mg Ministerio da Agricultura, Pecuária e Abastecimento (MAPA) Avenida Rômulo Joviano, SN Pedro Leopoldo, MG, 33600-000 Brazil	GRULAC	rafael.pissinatti@agricultura.gov.br
Alejandra Torre Laboratorio Tecnológico del Uruguay (LATU) Av Italia 6201 Montevideo, 11500 Uruguay	GRULAC	atorre@latu.org.uy
Rivelino Cavalnate Laboratory for Assessment of Organic Contaminants (LACOr) Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), . Av. Abolição, 3207-Meireles Fortaleza, 60165-081 Brazil	GRULAC	rivelino@ufc.br

Name	Region	E-mail
Begoña Jiménez Laboratory of Environmental Chemistry (IQOG) CSIC Juan de la Cierva 3 Madrid, 28006 Spain	WEOG	bjimenez@iqog.csic.es
Esteban Abad Laboratory of Dioxins, Environmental Chemistry Department Jordi Girona 18-26 Barcelona, E 08034 Spain	WEOG	esteban.abad@idaea.csic.es
Olga González LESPEC-ESPOL (Laboratorio de espectrometría) Campus Gustavo Galindo Km 30,5 vía Perimetral Guayaquil, 90903 Ecuador	GRULAC	omgonzal@espol.edu.ec
Armin Maulshagen mas muenster analytical solutions gmbh Wilhelm-Schickard-Strasse 5 Muenster, D-48149 Germany	WEOG	a.maulshagen@mas-tp.com
Leondios Leondiadis Mass Spectrometry and Dioxin Analysis Laboratory 27 Neapoleos str. Aghia Paraskevi Attikis Athens, GR-15341 Greece	WEOG	leondi@rrp.demokritos.gr
Gunshiam Umrit Mauritius Sugarcane Industry Research Institute 1, Moka Road Reduit, 80835 Mauritius	Africa	gunshiam.umrit@msiri.mu
César Ramiro Castro Palacios Ministerio de Energía y Recursos Naturales No Renovables (Ex-MEER) Av. Republica del Salvador y Suecia Quito, Ecuador	GRULAC	ramiro.castro@recursosyenergia.gob .ec

Name	Region	E-mail
Ingrid Ericson Jogsten MTM Research Centre Örebro University Fakultetsgatan 1 Örebro, SE-701 82 Sweden	WEOG	ingrid.ericson@oru.se
Frankie Smith NAFIC Sand Hutton York, YO41 1LZ United Kingdom	WEOG	frankie.smith@fera.co.uk
Päivi Ruokojärvi National Institute for Health and Welfare, Finland Neulaniementie 4 Kuopio, 70210 Finland	WEOG	paivi.ruokojarvi@thl.fi
OUAHIDI MOULAY LAHCEN National Laboratory for Studies and Monitoring of Pollution sis, Av Mohamed Ben Abdellah Erregragui, Madinat Al-irfane, Rabat, Morocco	Africa	mouahidi2@yahoo.fr
Alan Yates National Measurement Institute Riverside Corporate Park 105 Delhi Road, Riverside Corporate Park Sydney, NSW 2113 Australia	WEOG	alan.yates@measurement.gov.au
Nudjarin Ramungul National Metal & Materials Technology Center (MTEC) 114 Thailand Science Park, Paholyothin Road, Klong 1 Klong Luang, Pathumthani, 12120 Thailand	Asia	nudjarr@mtec.or.th

Name	Region	E-mail
Ting Zhang National Research Center for Environmental Analysis and Measurements Sino-Japan Friendship Center for Environment Protection, No.1 Yuhuinanlu, Chaoyang District Beijing, 100029 China	Asia	zhangting@edcmep.org.cn
Shenjie Lie NEMC-Ningbo Environmental Monitoring Center No. 105, Baoshan Road, Haishu District, Zhejiang Province Ningbo, 315012 China	Asia	lsjie1205@sina.com
Stine Marie Bjørneby NILU - Norwegian Institute for Air Research Instituttveien 18 Kjeller, 2007 Norway	WEOG	smb@nilu.no
Yuan Wang Ningbo Entry-exit Inspection and Quarantine Bureau Technical Center Room720, Building A, No.66, Qingyi Road, Hi-Tech District, Ningbo City, 315000 China	Asia	wangyuan8912854@126.com; farfarocean@126.com
Line Småstuen Haug Norwegian Institute of Public Health Department of Environmental Exposure and Epidemiology Lovisenberggata 8 Oslo, 0456 Norway	WEOG	Line.smastuen.haug@fhi.no
Abdelilah BELHAJ Office National de l'Electricité et de l'Eau Potable-Direction Contrôle Qualité des Eaux National office of electricity and drinking water- water branch. Station de traitement Bouregrag Av. Mohammed Belhacen El Ouzzani Rabat, 10220 Morocco	Africa	abdbelhaj@onee.ma

Name	Region	E-mail
Gilvan Yogui Organic Compounds in Coastal and Marine Ecosystems Laboratory Av. Arquitetura s/n UFPE/DOCEAN Recife, 50740-550 Brazil	GRULAC	gilvan.yogui@ufpe.br
Crentsil Kofi Bempah Organic Residue Laboratory, Nuclear Chemistry and Environmental Research Center Ghana Atomic Energy Commission Nulear Chemistry and Environmental Research Center, National Nuclear Research Institute, Ghana Atomic Energy Commission, Main Atomic Street Kwabenya, Accra, Ghana	Africa	crentbempah@hotmail.com; c.bempah@gaecgh.org
Nick Alexandrou Organics Analysis Laboratory Environment Canada 4905 Dufferin Street Toronto, M3H 5T4 Canada	WEOG	nick.alexandrou@canada.ca
Dave Hope Pacific Rim Laboratories Inc. #103 - 19575 55A Avneue Surrey, V3S 8P8 Canada	WEOG	dave@pacificrimlabs.com
Tara Dasgupta Pesticide Research Laboratory Department of Chemistry, University of the West Indies 2 Plymouth Crescent Mona, St. Andrew Kingston, 0007 Jamaica	GRULAC	tara.dasgupta@gmail.com; info@prljamaica.com
Kavita Gandhi Pesticide Residue Laboratory National Environmental Engineering Research Institute Room No. SJ-31, Silver Jubilee Building, Nehru Marg Nagpur, Maharashtra, 440020 India	Asia	kn_gandhi@neeri.res.in

Name	Region	E-mail
Jianqing Zhang POPs Laboratory of Shenzhen Center for Disease Control & Prevention 1st floor Toxicology Building, No.8 Longyuan Road, Longzhu Avenue, Nanshan District Shenzhen, Guangdong 518055 China	Asia	969676617@qq.com
Jun Huang POPs Research Center School of Environment, Tsinghua University No. 1 Qinghuayuan Beijing, 100084 China	Asia	huangjun@mail.tsinghua.edu.cn
Jelena Koron Public Health Institute, County of Istria Nazorova ul. 23 Pula, 52100 Croatia	CEE	elena.rauch@zzjziz.hr; analitika@zzjziz.hr
Yunesfi Syofyan Puslitbang Kualits dan laboratorium Lingkungan (P3KLL)-KLHK Kawasan PUSPIPTEK gedung 210, Jln. Raya Puspiptek-Serpong Tangerang Selatan – Banten, 15314 Indonesia	Asia	yunes_sy@yahoo.com
Xianyu (Fisher) Wang QAEHS The University of Queensland 20 Cornwall Street, Woolloongabba, The University of Queensland Brisbane, QLD 4102 Australia	WEOG	x.wang18@uq.edu.au
Netnapa Chingkitti Reference Laboratory and Toxicology Center, Bureau of Occupational and Environmental Diseases Research and Laboratory Development Center, 4th Floor, Srithanya Hospital Soi Tiwanon Road Talad Kwan, Nonthaburi, 11000 Thailand	Asia	ch_netnapa@hotmail.com

Name	Region	E-mail
Galina Zykova Research and Technical Center of Radiadion - Chemical Safety and Hygiene Federal Medical Biological Agency of Russian Federation 40, Shchukinskaya str. Moscow, 123182 Russia	CEE	gvzykova@yandex.ru
Pham Hung Viet Research Center for Environmental Technology and Sustainable Development (CETASD) Vietnam National University, University of Science 334 Nguyen Trai str, Thanh Xuan Hanoi, 100000 Vietnam	Asia	vietph@hn.vnn.vn
Lee Ching Chang/Shu Yao Yang Research Center for Environmental Trace Toxic Substances National Cheng Kung University 138 Sheng Li Road, Tainwn 704, Tainan, 704, Taiwan ROC	Asia	cclee@mail.ncku.edu.tw; shuyao@mail.ncku.edu.tw
Stefan van Leeuwen RIKILT - Institute of Food Safety Akkermaalsbos 2 Wageningen, Netherlands	WEOG	stefan.vanleeuwen@wur.nl
Mauricio Araya Quijada Sección Química Ambiental Sub-Departamento del Ambiente del Instituto de Salud Pública de Chile Av. Marathon 1000, Ñuñoa Santiago, 7780050 Chile	GRULAC	maraya@ispch.cl
Ivo de Oliveira Setor de Análises Toxicológicas CETESB Av. Prof. Frederico Hermann Jr., 345 São Paulo, 05459-900 Brazil	GRULAC	ifoliveira@sp.gov.br

Name	Region	E-mail
Sandra Graré SGS Belgium, Division IAC Polderdijkweg 16 - Haven 407 Antwerp, B-2030 Belgium	WEOG	Sandra.grare@sgs.com
Takumi Takasuga Shimadzu Techno-Research Inc. 1, Nishinokyo, Shimoai-cho, Nakagyo-ku Kyoto, 604-8436 Japan	Asia	t_takasuga00@shimadzu- techno.co.jp
Sukun Zhang South China Environmental Monitoring Analysis Centre, SCIES Institute of Environmental Sciences, MEP 7 West Street Yuancun, Tianhe District Guangzhou, 510655 China	Asia	zhangsukun@scies.org
Anna Cumanova State Hydrometeorological Service Environment Quality Monitoring Department 134 Grenoble Street Chisinau, MD-2072 Moldova	CEE	ana.cumanova@meteo.gov.md
Per Liljelind Trace Analysis Platform Umeå University Linnaeus vägen 6 Umeå, S-901 87 Sweden	WEOG	Per.liljelind@chem.umu.se
Petra Pribylová Trace Analytical Laboratories, RECETOX Research Centre for Toxic Compounds in the Environment, Masaryk University Kamenice 753/5 Brno, 62500 Czechia	CEE	pribylova@recetox.muni.cz
Wee Patanapiradej UAE-IDEA Advance Analytical Company Limited MIDI Building 86/6 Soi Treemit, Rama IV Road, Klongtoey district Bangkok, 10110 Thailand	Asia	wee@uia.co.th

Name	Region	E-mail
Benjawan Viriyothai United Analyst and Engineering Consultant Co., Ltd. 3 Soi Udomsuk 41, Sukhumvit Road, Bangchak, Phrakhanong Bangkok, 10260 Thailand	Asia	benjawan@uaeconsultant.com; piyapat@uaeconsultant.com
Kehinde Olayinka University of Lagos Central Research Laboratory Department of Chemistry, University of Lagos Lagos, Nigeria	Africa	kolayinka@unilag.edu.ng
Emma Smith University of West Indies Department of Biological and Chemical Sciences Cavehill Campus St. Michael, BB11000 Barbados	GRULAC	emma.smith@cavehill.uwi.edu
Chrissy Shonga Zambia Bureau of Standards, Lechwe House Freedomway, Southend Lusaka, 10101 Zambia	Africa	cshonga@zabs.org.zm; chrissyshonga@gmail.com
Zhang Xiu Jing Zhe Jiang Zhong Tong Detection Technology Co., Ltd. Building 25, Yuxiu Road, Zhuangshi Street, Zhenhai District Ningbo City, 31500 China	Asia	zhangxiujing011126@126.com
Liu Jinsong Zhejiang Environmental Monitoring Centre Xueyuan Road, No 117 Hangzhou, 310012 China	Asia	liu70923@163.com

Name	Region	E-mail
Leandro Anido Noronha Rua Alfredo Balthazar da Silveira 1785 - Recreio Rio de Janeiro, 22790-710 Brazil	GRULAC	leandro.anido@sgs.com
Laure Joly Rue Juliette Wystman 14 Brussels, B-1050 Belgium	WEOG	laure.joly@sciensano.be
Vincent Vaccher Route de Gachet, CS 50707 101 Nantes, F-44307 France	WEOG	vincent.vaccher@oniris-nantes.fr
Thorsten Bernsmann Joseph-König-Strasse 40 Muenster, D-48147 Germany	WEOG	thorsten.bernsmann@cvua-mel.de
Somsak Tharata 164/86 Moo 3, Donkaew, Maerim Chiangmai, 50180 Thailand	Asia	sci.somsak@gmail.com