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Aim

This marmal deseribes a strategy for the stakistical
analysls anel ierpretation of biological data on
eommunity strocture, consisting of abmdance or
biomvass readings for a set of species anid a number of
samples. The latter usually comsist of one OT mMoTE
" replicates taken:
a) ata iamber of sltes at one time (spatial analysis),
b) at the same Sike at a number of times (temporal
analysis),
c} far a commnity subject o different manipulative
“treatments” (laboratory or fleld experiments},
or some combjnation of these, The species—by—sam-
ples arrays are typically large, and patterns in
community structure ate often not readily apparent.
Stabstical analysis therefore centres aroind reducdog
the ermplexity of these matrices, usnally by some
graphical representationof thebological relationships
between the samples, ‘This is followed by siatistical
testing to identlfy and characerise changes in
commmnkiy structare in time or space and refate these
to changing erwironmental or experimental .condl-
tiors

Emphasis

Of principle conceyn are the biological efiects of
contmminards, thoogh, snce the same analysis
techndques are appeopriak: o wider shodies of
comummumity structume, a number of examples are
inchided which are not pollution—refated. In gemeral
these illuskrate some impartant aspect of the method-
ofogy which i applicable to pollution studies, The
scope of the examples is specifically marine (though
the techniques have wider application) and, thaagh
the examples range e different comnmumily types
(benthic infauna, corals, plankton, fish etc.), there is a
bias towands soft-sediment benthos, neflecting bath
the anthors” own research interests and the wile-
spread use of snch community data in pollution

vordboring.

Scope
There iz a vast array of sophisticated statistical
indices, through curvilinear o distributional repre-

senviations of richness, dominance, eyvenness ic., 10 &
plethora of muliivariake approaches Involving cluster-
ing or ordination methods. This manmal does st
attemnp: to Eivemmmwﬂfﬂﬂﬂmopﬁuw,mwm
the majority of them. Instead it presents a stratesny
which has ewvolved over several years, within the
Comarunity Eenlogy proup at Plymouth Marine
Laboratory, and whirh has a proven track record in
published analysis and interpretation of a wide range
of marine community data. The manual atberngts &
explain boco and winy the selecied techniques work, toa
level of underskmding sufficient to appreciate when
they are (and are not) applicable, and to interpret their
ouktcome, [t isaimed atecologists with no more thanan
imroductory in gtatisbcs, who need 0
apply these statistical techniques W answer specific
questions about changes in commuonity struckare,

This volume is also 1ok a software manual, describing
how bo iise a particular computer program or package
to carry out the analyses discussed here, though the
advocated approach is mirrored in the soffware
package FRIMER (Flymouth Routines In Multivariate
Ecolagical Research), developed at the Flymouth
Marine Laboratory and avallable conumerclally.
Fooinotes in the text make brief refererwe v the
PRIMER mndules wrhich have been used to obtain the

analyses presentex]. The PRIMER package has been
used throoghout {though the figures have in many
cases been subjected 0 furthesr anhobation ¢4 using 3
presentation graphics program, Harvarnd Graphics).
Note, however, that FRIMER is not the only option for
comgpritation. The major statistical perkages sach &
SAS, BMDPE. SPSS, GENSTAT, eic. have always
includedd mubtvariate opHons, as do some PC
packages sach as SYSTAT, STATGRAPHICS ete. In
additiom, more specialised spftware, such as CLIF5-
TAN, the Comell Ecology programs, Kiv'5T, CANO-
CO, PATN etc, Is fairly widespread. Nome of ihese
packages will offer preciscly the combination of
options discussed here, and some ke a radher
diffcrent (but equally valid) approach to the problems
posed, Anover—riding thrustof the curnentexposition
is, however, fv mhin as great a simplicity of
explanation and transparency of interpretation as 1s
possible in what, conventirmally, has beeni vegmandad as
a difficult ares for practitioners lacking a strong

statistiral background.
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PREFACE

The Repicoa! Sens Progrmmeme was inltlated by UNEP in 1974, Since then the Governing
Ceouncil of UNEP has repeatedly eodorsed a cegional appeoach to the contral of marine polluthon and the
cmmgement of uxcite and ceasial resoucces and has requested the developmient of rejrional action plans.
mwmmmmmmlzmsmdmmmmm
participating ia it (1), (2).

One of the basie components of 1he action plans spansarcd by UMEP in the framenark of the
Regionral Seas Programme i the assesement of the state of the marine emvironcent and of its fegources
and of the sources and 15ends of the pollmiion, and {he impact of pollntkm on boman healib, marne
ecesystzms and amenities. In onder to assist those participating in this activity and to ensure that the data
cbiained through this assessment can be compared on a workd-wide basis mmd thes conlribute 1o the Global
Envicotonent Manitesing System (GEMS) of UNMEP, a sel of Reference Methods and Guidelines for
maring pellurtion siadies iz being developed as part of a programme of compreheasive lechnical support
which inclodes the provision of expent advice, reference methods and material, training and data quality
asurance (3} The methods are meommendesd o be adopled by Governments panticipming in the
Remional Seag Propramime.

The methods and guidelines are prepared in co-operation with 1he relevant specialized bodies of
the United Nations systemes ax well s ather organizations and are tesied by a mamber of experts competent
in 1he ficld relevant 1o 1he methods desrribed

In the description of the methods and guidelines the style used by the Imemational Crgamizaion
for Standandization (130 is followed as clasely as possibile.

The methods and gnidelines, as poblished in UMEPS saties of Refereoce Metheds for Marine
Pollution Sindies, are not considered as final. They ars planned 1o be periodically revised taking into
secomnt the developmeot of <ur nndersttmding of the problems, of analytical instrumentation and the
actual need of the vsers. In onder oo facilie these revisiong the users s imvited to comvey their
comments and sugpestions 10:

Marine Enwvironmenial Studics Labocalaty
TAEA Marine Enviranment Laboratory
E.P. No. 800

MC-98012 MONALCD Celex

which is responsitle for the technical co-ordination of the development, 1oting and iotevcalibration of
Referance Methods,

(1) UNEP; Achicvements and planned dovclopmenl of e UNEPs Regional Seas
Programme and comparable programmes sponsoeed by olber bodies, UNEP
Regional Sey Repors and Stedies Wo, 1, UNEP, 1982,

(2) P. HULM: A siralegy for the Beas. The Regional Seas Propramme:  Past and Fuhare, [INEP
1983.

{3) UNEPAABANC: Referénce Methodz and Materials: A Programme of comprehensive support far
regional and plobal marine poluion assessments, TINEER, 1990,



-jtj-

FREFACE

ACKNOWLEDGEMENTS

INTRODUCTION

CHAFTER 1: A framework for siudying changes in communily sltuciurne

CHAPTER 2. Measurss of similarity of spesies abundancerbiomass between samples

CHAPTER 3:  Hiemrchical clusiering

CHAPTER 4:  Oudination of samples by Principsl Componeots Anatysis (PCA)Y

CHAPTER 5:  Ordination of samples by Mulll-Dimensionsl Scaling (MDS)

CHAPTER 6. Tesling Jot differences babwoon groups of samplex

CHAPTER 7.  Species =;na]ym

CHAPTER & Diversity mensures, dominance curves and other graphical analyses

CHAPTER ;'  Transformations

CHAFTER 10: Speries mmoval and agatepstion

CHAPTER 11: Linkinp commuwnity analyses o sovinooments ] variables

CHAPTER 12: Causality: community experiments in ihe fiekd and labocalory

CHAFTER 13:  Data requitements for biclogical effects stodies: which componems and ancibies
. of the bivta to examine?

CHAPTER 14:  Relative sensltlvities atd meris of omivariate, gmphlcali’dlstnbuuml and

multivariate techniques

CHAPTER 15  Multvariale measures of cummurnity siress

APPENDIX 1  Index of exampie data

AFPPENDIX 2  Principal littratore sources and further rending

APPENDTX 3

Rcﬁ:rmcm' clied



The purpose of this opening chapter is twofold:

a) to introduce a few of the daty sets which are used
most extensively, as illustrations of techniques,
throughout the manual;

b} t0 outling a Framework for the various possible
stages in a community analysis'. '

Examples are given of some core elements of the
recormimended approsches, foreshadowing fhe anaty-
sas explained in detail Jater and explictly meferring
forward to the mdevant chapters. Though at this stage
the details are Ifkely i remein mystifying, the
intention is that this opening chapter should give the
reader some Feel for where the varions techniques are
leading and haw they slot togather.  Ag such, it may
serve both as an introductiom and & summary.

Stages

Itie converdent to cateporise possible analyses broadly
into four main stages,

1) Represewting commaunikies by graphical description
of the eclationships betweon the biota in the various
samples. Thic is thought of as “pure™ description,
tather than explanaticn or tlesting, and the emphasisis
on reducing the complexity of the muliivariate
information in typical species /samples matrices, o
oblain some form of low-dimensional picture of how
the binlogical samples interrelate.

2} Discrimvinating sites/conditions on the basis of thedr
biotic compositon. The paradigm here is that of the
hypothesls test, exarminmg  whether there are
“proven” community differences behween groups of
samplesidentified g priovi, for example dononstrating
differences bebtween control and putabively impactad
sites, cstablishing before/ after impact diferonocs at a
single site, etr.

3) Determining levels of "stress™ or Aisturhance, by
attempting to construct biological measures from the

1. The ferme covponnity 5 wsed thronghond Hhe womnnal,
simeewniad Toosehy, in wefer to any assemilage deia (seniples
iegding brcowndzor binmass for arange of species); the nsnge does
mot neceaarily ingply indegerons sfnechiring of the biofa, for
exaple by competBive dntemotions,

community data which are indicative of distwbed
condiilons. These may be absolule measures ("this
observed structural feature is indicative of pollubon™)
or relative crileria ("under impact, this coefficlent 1z
expected to decrease in comparison with condrol
levels®”). Mote the contrast with the previous stage,
however, which 18 restricted to demnonstrating
diiferences between proups of samples, not ascribing
directionality to the change (e.g. deleterions conse-
quence).

d) Linking to envivonmen tal vardables and examining
issucs of erusaldity of any changes. Having allowed
the biological information to Ylell its own story”, any
associated physical or chernical variables, matched
the sameset of sarmples, can be examined for their own
struchure and its relation 10 the biotie patterm (Its
“explanatory power” ). The extent to which Identified
environmental differences ame actually cowsal to
observed comunonity changes can ondy really be
determined by manipulative experiments, either in
the field or through laboratory /mespcosm studies.

Techniques

The spread of methods for cxtracting workable
tepresenations and summaries of the biological data
can be prouped inte three catepories.

1) Univariate methods collapse the full set of species
oounts for a sample into a single coefficent, for
eample a diversify dxdexr. This might be some
measure of the numbers of different species for a fxed
nurnber of individuals (species richness) or the extent
to which the community counts arc dominated by a
small nuwmber of specles (domlrance/everness
inclex}, or some combination of these. Clearly, the o
priorselectlonof a single taxon as andndicador species,
amenable o specific inferenoes aboat iks response lo 4
particular environmental gradient, alsc gives rise o a
unlvariate analysle.

2} Distvibutianal terhniques, also ormed graphical or
curvilinear plots {when they are not strictly distribu-
tiomal}, are a class of roethod s which surmmarise the set
of spedes counts for a single samplc by a curwe or
Hhstogram. One example 15 k-dominance crrves
{Lambshead e of., 1983}, which rank the species in
decreasing order of abundance, convert the values o
percentage abundance relative ko the total number of



be condensed into one (or 4 small number of) key
summary etatiztics. Simple (or multiple} regression of
Shannom diversity as the dependent variable, against
the envitonmental descriptors as independent vari-
ables, is then technically feasible, though in practice
earcly very informative given the over-condensed
nature of the information ufilised.

For Impact studies, much has been written about the
effect of pollution or disturbance on diversity
measures: whilst the responsc i not necessanly
unidirectional (ander the hypothesis of Hugton, 1979,
diversity is expected to rise at intermediate
disturbance Ievels before its strong decline with gross
disturbance), there is a sense in which deterndaning
stress levels is possible, through relation W historical
diversity pallems for particular emvironmental
gradients. Similarly, empirical evidence may exist thal
particular indicator taxa [o.g. Capitcllids) change in
abundance along specific polinton gradients (e.g. of
organic enrichment). Note though that, unlike the
diversity measures constructed from abundances
across species, avetaged In some way’, indicalor
species levels or the number of species in a sample (5)
may not initially vatisfy the assumptions necessary for
classical statistical analysis. For the number of species,
5, the normality and constant varisnce conditions can
usually be produced by fransfarmation of the variabla
{e.g. log 5). However, for most individual species,
abundance across the set of samples is likely to be a
very ponrly—hehaved variable, stalistically speaking.
Typically, a species will be absent from many of the
samples and, when it is present, the counts are nften
highly variable, with an abundance Ermbahilitjr
distribution whichisheavily right-skewed®. Thus, for
all but the most common individual species,
transéormation §s no redl help and parametric
statistical analyses cannot be applied to the counts, in
any form. In any case, it is not valid to "snoop” ina
lacge daia mabrix, of typically 100250 taxa, farone of

3, Awd iz subject 20 e centrd] Bmit Hezprarn, wkich will berud
b dndnace skaiiptical narmlity.

£, It s fhe methors” cxperience, aerlaindy i the study of hemthic
commuaitics, that the individuals of a species are 1ot distribuied
at rerdom in space (i Poissow process] but are often kighly
ehustered, either tirough Mcel variation in forciHg enddronsttar-
tal Darities or Mochansms o recruitwenf, mortalily ood
commnnity interactions. This laads 10 counis whick, s
alatistical ferms, ore doscribed a2 over—dispersed, combinad
with a high prevalence of eros, causing majer prrebiins i
aitempling peratisiric modelling by categoricalliog-linear
mathads,
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mone “interesting” species to analyse by univariate

technigues (any indicator orkeystone speciesselection

trust be done a priv). Such arguments lead to the
tenets underlying this manual:

a) comumumity data is inherenily multivariate (highly
50} and usnally neads to be analysed e maesse in
ctdor toelicit the importantbiological stractuncand
its relation to the environment;

b) standard parametric modelling is totally invalid.

Thus throughout, zather litile emphasis is given W
Teptesenting communities by univariate measures,
though some possiblities for comstruction can be
found at the start of Chapter B, some brief remnarks cn
hypothosis testing (ANOVA) at the startof Chapter 6,a
discussion of transformations (b0 approxdimate nor-
mality and constant variance} at the startof Chapter 8,
and an example given of 3 gnivarate regression
botween bivta and environment in Chapter 11. Finally,
Chaprier 14 gives a series of delailed companisons of
univariate with distribulional and multivariate tech-
niques, in order to gauge their ralati ve sensitivities and
merits in a range of practical studies. -

The first example is from the IOC/GEEP practical
workshop on biological effects of pollutanis (Baync ot
ai., 1988), hekd at the University of Oslo, August 1986
This attempted tp contrast a range of blochemical,
ceflular, physiological and  community analyses,
applied to feld samples from potentially cantami-
rated and contol sites, in a fordic complex
{Fierford/Langesundfjord) Itnked to Oslofjord (T,
Fig. 1.13. For the benthic macrofaunal component of
this study (Gray et af., 1988), four replicate 0.3 m Day
grab samples were taken at each of six sites (A-E and
G, Fig. 1.1) and, for each sample, organisms retained
on a 1.0 mm sieve were identified and counted. Wet
weights were determined for each species in each
samiple, by pouling individuals within species.

Part of the resulting dala matrix can be seen in Table
1.2 in total there were 110 different tava categorised
from the 24 samples. Such matrices {abundance, A,
and bipmass, B} are the starting point for alf the
aralyses of this manual, and this exarmple is typical in
respectof the relatively high ratioof species bo samples
{always > 1) and the prevalonce of 2eroe. Here, a6
elsowhere, even an undesirable neduction to the 30
*most imporiant” species (see Chapter 2) leaves more
than 50% of the matrix consisting of zeros. Standard
multivariate normal analyses (e.g. Mardia ef 21, 1379)
of these couints are clearly ruled obut; they require both



Tabir 1.3. DNatributional inchniquen. Summary of analyses for the four stages.

2 Dierriminahng

Digiributional examples
St gt ABC {k—dominance) carves {h A} Spacies abuadasce distributions (Ch 8)
1} Representing Caeroa forcach sitefcandition (ov proferubly veplicale)
comanunltos .

ANOYA on unfnariaie summaries fe.g. W, Ch B}, or:

sites/comditiony ANOSTAL tast [Ch &) on “dishoaces” Tid Jor coremgnalily of distribactions
betmeen epery prir of cirpes fe.g. chi-spuard), if talid
3 Determining Riotass curte drops belrw Species tlzondimce distribution fas
stress Lavels mumbers curoe gider delurbance "hrnger Wil with distarbanos
4) Linking to Diffteneft, except far wnivarize summaries of Hhe ouroes (by xegression)
anvironment (Cavsality: ses Chr 12)

A Jess condensed form of summary of each sample is
offered by the distibutiomal/graphical methods,
outlined for the four stages in Table 1.3,

Representalionis by curves or histogrames {Chapter 8,
either plotted for each replicate sample separalcly or
for pooled data within slves or comditions. The formes
permits a visual judgement of the sampling variation
i the curves and, as wi th diversity indices, replication
is mxuired tp discrimirate sifes, 1e. test the mull
hypothesia that two o more sites {/conditions etc.)
have the same curvilinear struchure. The casiest
approach o testing is then ko summarise each replicake
cutvebya single statistic and apply ANCVA asbefore:
for the ABC method, mentioned earlier, the T¥ statistic
(Chapter 8) is a conveniont measura of the extent o
which the biomass curve "dominates” the abundance
curve, of vice—~wersa. This is cffective in prackice
though, in theory, it simply amounts fo computing
annther diversity index and is thorofore just a
univariate approach. A more general test, which
honours  the curvilinear  stroctume, ould  be
constructed by the ANOSIM procedure {described
later under mllivarizte techniques). computed
between every pair of replicate ABC curyes.®

The distributignal/graphical techniques have boen
proposed specifically as a way of determining stress
lepels. For the ABC method, the strongly polluted
(/disturbed} state is mdicated if the abundance
k—-dominance curve falls above the hiomass curve
throughoutits kength (e.g. see the later plotsin Fig. 14):

the phenomenwon is linked o the loss of large-Bodiad
“climax” specles and the risc of small-bodied
opportunists. Nate that the ABC procedure daims o
give an ahsclicle maasure, In the sense that distnrbance
stats is attributable on the basts of samples fmom a
single site; in practice however it is always wise o
design collection irom {matched) impacied and
conirol sites tp- copfirmn that the contrel amdition
exhiblts the “undisharbed” ABC pattern (Mlomass
curve abowve the abundance ourve, Bwoughouat).
Sirmlarly, the species almdance distribution has
features characteristic of disturbed stahas {e.g. soe the
middle plots in Fig. 1.6), namely a move to a less
"Jshaped” distritmtion by a reduction in the firgt one
or two abundance dasses (Joss of rarer species),
combined with the gain of some higher abundance
classes (very numerons opporhmist species).

The distributional / graphical methods may thus have
particular merits in allowing recognition of *stressed”
states (Chapter 14), though they have the disadvan-
tage of being more difficult o work with statistically,

B, This is sownmfal esareric and 5 Aol poevened in this eyl
forr detwdls sex: Clarke {19900, 5 imilarly pauieide s crrrent soope
ave teaty of equality for ks or mare obseroed Nislograme arining
frim specles adundeace disrdations.  Agoin, the most
straightforperd approactt io testing is probably to summris
wich distribution by two ov tHres mesures fof lcation, sread,
slmpreas ete.) and carry ol ANOVA on the susminiery datickon
Jor pack veplicate, Another possibility is @ chi-sguerad it {or
seine frm of Cramer—pon Mises apyprvack), for testiny expality
of fwn ar mare frequency distrimitians, it s i urlibely fo be
Brlid given ihe specles: interdependencie e a single sompls,
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Species rank

twelve sites, ie at site 1, Iwelve spocics were
represented by a single individuoal, two species by 2-3
individuals, three species by 47 individuals, ete.
(Gray and Pearson, 1932). For the middle sites close to
the dump cenirg, the hypothesised 1oss of less—abum-
dant species, and gain of a few species in the higher
gaomebric dlassas, can clearhy be saen,

four stages, when adopting one of three multivaniate
methnds: hierarchical duostering (CLUSTER), multi-
dimensional scaling (MDS) and principal component
analysis (FCA).

thin i A = abendane,
thilek o,

The first two methods startexplicitly froma triangular
matrix af similarity coefficients cornpatted bebween
cvery pair of samples [e.g. Table L6} The cocHicient is
usually some gimple algebraic measure (Chapter 2) of
how close the sbundance levels are tor cach species,
averaged over all species, and defined such that 100%
represents total sl mdlar ity and 0% complete dissimdlar-
ity. Thereis arenge of propertiesthat such a coefficient
should possess but sHil sorme flesxdbility indts dhofoer it
is impurtant t» realise that the definition of what
ronstitutes similatity of two communitics may vary,
depending on the biclogical question under consider-
ation. As with the caclicr metheds, a mollivariate
analyzis too must stternpt ko reduce the complendty of

" the (high—-dimensional) community data by tking a



Teble 1.5, Multtvariate techuiques. Summany of analyses for the four stages,

Muldvarlate examples
Stages Hierarchical clusterlng (Ck 2, 3} MDS sudination (L% 5) PCA ordination (Ch 4)
1) Fepresenting Dendrogran: of simies Conflguration phol of sariples {often 2-Jinutmsiingal)
connm nd Hes
2) Thecritninating ANCEIM o1 nample sivailarily waabeix (Ch 6) ANOSIM on Exclidenn
sltes f conuditions Semierity perceniage breakdow (Ch 7} gates spics resporsibhe distoncas for meltizprmal
Lests, rarehy nalid)
3) Determiming Kecen! nuggestions: “meta-analyses”, tarintility seasures, bragkdoumn of seriation (Ch 25)
stress levels
4} Linking &1 - Vienal: sipertmposing exvircomentnl varizbles on biodic ordinations (Ch 1)
environment Analytical: finding subact of eepiron rumnisl tariables whore ordingion “bes! watches”
the biotic ordizzdion (Ch 11)
§Causality: sae Che 12)

Tabde 1.6 Frierfford macrofauna (), Bray-Curliz smilari-
ties, after WN-transformation of counts, for every pair of
replicats samples frows sites A, B, C only (four veplivates por
sitch

Al A2 A3 A4 Bl B2 B2 B4 OO 2°C3 4
Al -

A &1 -

A3 69 60 -

Ad &8 61 6B

B1 37 M 87 35 -~

B2 42 3¢ 31 3z 55 -

B3 45 39 33 44 6 B -

B 57 29 29 A 59 &3 W -

Cl 3 31 27 25 2% 56 40 4 -

C2 40 34 26 29 43 69 b2 A6 56—
C} 40 31 37 39 B9 &1 67 53 40 66 -
Cd 86 2§ 34 37 65 55 6% 55 38 8¢ A

coefficlent” wilch reflects the extent o which the bwa
sets of ranks do notagree, the ordination givesa simple
and compelling visual representationof “closeness” af
the specles compuosition for any two samples.

The PCA technique (Chapher 4) mkes a different
starting position, and makes rather different asaump-
tions about the defintbon of (dis)similarity of two
samples, but again ends up with an ondinabion plot,
usually in bwo or three dimensicns, which approxi-
mates the comtinuum of relationships bebween
samples (g Fig. 18). In facl, PCA is a rather
unsatisfactory procedure for most  speciesty—
sarnples malrices, for at least two reasons:

a) 1t defines dissimilarity of samples in an inflexible
way (Budidean distance in the full-dimensional
species space, Chapter 4, not well-suited {0 the
rather special nature of species abundance data,
with its predominance of zero vailues;

b} it requires exclusion of the species which are less
common, 5o that the number of spedes retained is
comparable with the number of samples.

Howenver, a description of its pperation is included in
this manual because it is an historically important
technique, the firsl ordination method 0 be devised
and one which {5 still commonly encountered’?, and
because it cormes into i3 own in the analysis of
environmental samples. Abiotic variables (sadiment
grain size, salinity, contaminant lewels efe.) are usually
relatively few in number, are contimuously scaled, and
theirdistributionecan be transforined so that standard
correlation coefficients [and Buclidean distances) ane
appropriate ways of deseribing their inter—relaor-
ghips. PCA s then a fully sadsfactory means of
producing alow—dimensional summary; and evenhas
sorre advan lages over MDS in providing an interpre-
tation of the main axes of the plot.

0. b foct, ratker o berildering array of eridination technimes
ane iH codicion e fes Principel Coowrdizates Amlyeis,
Corregpondence Anatywis, Detrended Cormesporsdence Analysis,
cich. Chupicr 5 s some bricf remarks on their relatider t¢ FCA
and MDS but this wmnual cononivales only an the do
ordination methods soeilzble ar BRIMER.



ated by a stagdanl mnltivariate equivalent of
ANCOVA (MAMNOVA, c.g. Mardia ¢t o, 1975},

Part of the process of discriminating sites, Hmes,
trealments elc, where successful, is the abilily to
identify the species that ave princlpally responsible for
these distinctions: it is all loo easy ta Jose sipht of the
uslc data matrix in a welter of sophisiicatd
multivariateanalyees! Similarly, one might as a result
of a cluster analysis determing certain sibes /Himas. that
group together, and aguin wish to idontify which
species are mainly responsible for the observed
clustering. Mote the distinction here between a priori
groups, identifled before examination of the data, and
# posteriori groups, identified a5 a result of the data
analysls {the ANOSDM tests are wniy applicable to 2
priovi hypotheses). These ideas are pursued inChapter
7. both through rearrangeovent of the data malrix and
through a possible pardtion of the average
Bray-—Curtis dissimilarity between groups of samples,
into components from different species (smilarity
percentage breakdown, SIMPER, Clarke, 1993},

'In the deternrination of stress levels, whilst the muld-

variate techniques are sensitive (Chapter 14} and well-
suited t0 establishing community differences asso-
clabed with differcnt sites/times/reatments etc., their
species—specific basis would appear to make thom um-
suitable for drawing general inferences abott the " pol-
Lution status® of an isolated group of samples. Evenin
comparativestudies, on the face of i thema is nota clear
sense of "directionality” of chanpe (ag deleterious-
ness), when it is established that comumunities at puts-
tively impacted sites differ from those at comtrol sibes.
Nonutheless, there ane a number of ways in which such
directionality has been ascribed in revent studies,
whilst retaining an cssentially mullivariate form of

analysis [(Chapter 15):

al a"meta—analysls” — a combined ordination of data

froma ME Atlangic shelf waters, at a coazse level of
taxonomie discimination'? - suggests a common
directional changz in the balance of taxa under a
variety of types of pollution./ disterbance (Warvwick
and Clarke, 1993a);

bra number of studies demonshate fncreased
“multivariate dispersion” among replicates under
impacted conditions, In comparison W comtrole
{Warwick and Clarke, 1693b);

12, The ofedt of onrying oui the various graphical and
weoultiperiets dunlyses of faxsdanels levels lbaker Bhan species i
the subljact of Chapter 10.

prape1-11

&) anpther feature of disturM dernonstratad ina

patticular cozal community shudy, bul with the
potential for wider applicability, is a Joss of smooth
“gerialion” patterns along ramsects (e.g. of increas-
ing depth), again in comparison to controlsin dme
or vpace (Clatke of 2, 1993

Two muthds of linking sultivariate Holic pettons
to emvirctmerdalvariehles areexplored inChapter 11;
these are illustrated here by the Gamoch Head

dump—ground study described earlier {Fig. 15). The

M5 of the macrofaunal commundtics from the 12 sites
is shown in Fig. 1.9a; this is based on Bray—Curtis
similarities computed from {transformed) apedes
biomass values.!? A steady change in the community
iz apparcnt as the dump cemitre (sile 6} 16 approachad
along the West arm of the transect (sites 1 ko 6), witha
mirroved stucturp along the Bast arm (sites 6 to 12), 5o
that the samples o the twoends of tha transect kave
similar species composition. That this biotic pattern
correlates with the organic Joading of the sediments
can best be secn by superimposing the values for a
single environmental variable, such as Carbon
soncentration, on the MDS confjuration. Fig. 1.9b
ropresonts C valses by dircles of differing diameler,
placed at the corresponding site lucations on the MDS,
and the pattem across sikes of the 11 available
environmental variables {sediment concon rations of
C, N, Cu, Cd, Zn, M1, elc.} can be viewed in this way
(Chapter 11).1

A different approach is required in order o answer
quesilons about combimdions of environmenti vavi-
ables, forexample to what cxtent the biotic pattern can
be “explained” by knowledge of the full set, or a

13. Chapler 13, and the neta—onalysin sectim in Chapter 15,
disoues the rabillipe merits ond deawbacks of using species
absindanece or species Movars when both arz aveiloble; in fact,
Chapter 13 is a twider discussion of the relative adnentages of
sarpling particular coumpowsents of Hhe bivta, for ¢ study on the
effevds of pofiuiards.

14, The flecibility ischaarly needed Lo platan WLDS configrretion
several times, superimposing Fifferent envinnmentel variahlos,
Such sitagiiong are e main mobfoatlon for the modsiar
comstruction of the PRIMER puckage, with its shend-aloms
voritinias hd cocchange infarmation via fils. Thus, o similavity
mairx 3 ontput by CLUSTER and et o MDS {and
BIOENY. ANOSIM efc.), and canfigurmtion co-ordinates sre
oubput by MDS (and PCA) and inpnif fo e ploliing rovding
CONPLOT. This can then be run repeatedly with differing
corverion files of site desivnations, or differend colmmus of an
emironmenia file, withou! die weed o re-run the sivilarity or
MDS compebobions,



Tubie1.7, Nutvient enrickment experinsant, So

mesocosme, Norwoay (N). Manfiomel bvadmces (shown for copepnd

cmly) frem fonr repiicete deses for ench of three trentiests [Contoed, Low and High leveln of addded sctricars),

Conkrol Low dose High dose
Spaien e I e B . S L1 L2 13 14 H1 H: H» Hi
Fiatect o gotliceps g a 1 1 % 23 § 15 0 1 @ 0
Darmclzamis frsifards 1 1 1 1 I 3 & § 1 0 o0 32
Tishe 5. 1 (graclis gproup) 0 0 8 ¢ 8 0 0 0 2 ¥ ne a
Tishe sp. 4 a4 a i & 22 33 25 & e 3 32
Tighe yp. 3 4 0 o §® 4 43 8 0 5 ¥ 0 20
Tisbe gp. £ e aJ b i} 151 249 244 87 & ¢ 0 34
Tishe sp. 5 2 0o o 0 129 6 B 115 4 1 40
Typhlamhiascas typblops 4 2 2z 4 S & 4 3 0 8 0 ¢
Buibvrriphilacens Inms 1 g o 2 a a a g o 4 4o ¢
Stewhelia reflers 3 1 o 1 @ 0 o0 @ e 0 a 4
Anpiehsous benwiranis 1 g o ¢ o 2 & [
Ameaim porpile a 8 ¢ @ 4 2 3 2 2 0 1 3z
Froameirg sioyiex a ¢ 1] g r 2 0 5 60 a aJ 0
Leptopmyliun paratypicus 0 0 1 B 6 & 0 n t 0 0 0
Entarirosonm bnglfuntetum 2 2 1 2 I ! 0 0 g o 0 0
Leophontdse indet. 0 o o 0 b a B i 0 o o o
Ancarabolia mirabilis d e 4 4 2 18 3 3 27 3 1 4]
UnidentiBed Copepodites 0 ¢ 1 0 1 1 1 3 8 1 0 @

|5

Copepoda Nemaiodea ey -

H ¢ H o H A framework has been outlined of three categories of

c H c technique (univariake, graphicalidistributional and

oG g S & muléipariate) and four analysis Stages (nepressnting

c H H L H comnrimities, discriminating sites!conditions, defer-

o L wiining levels of stress and linking to environmental

L t pariables). The least familiae ©ols, and the most

Fip: 1.70. Nutrient envbchment oxperiment IN).  Separale
MDS ardimations of ¥ytransfurmed abunslances for copepod
and nemsetoda bpecies, in four replicale boxes from ook of tmee
fraatimanis (T, I, ).

powerful, are in the mullivaniabe category, and those
that underlic the PRIMER programs in particular are
now examingd from first principles.



Daka matrix

The available biological dats is assumed o consist of
an array with p rows (species} and » eclumns
(samiples), whose eniries are counts of each spodes for
cach samplc, or the telal biomass of all individuals of
each species in each sample. For the moment nothing
further is assumed about the structiore of the samples.
They might consist of one or more replicates (repeated
samples) from a number of diffcrent sites, times or
experimental “Ircatments” bt this information 1s oo
used in the initial analisls. The strategy cullined in
Cheprter 1 ig to olserie any pattern of similarities and
differences across the samples (i.e. let the biology “tell
its own story”} and, only later, compare this with
known or hypothesised inter-relations between the
samples based on envirohmental or experimental
factors.

Similarity coefficient

The starting point for many of the analyscs that follow
is the concept of similarity (5 between any pair of
samples, in terms of the biological communities they
contain. Inevitably, because the information for 2ach
sample is mulHvariate {many species), there are many
ways of defining similarity,. cach giving different
weight o different aspects of the community.  For
cxample, some definitions might concentrate on the
similarity in aburdance of the few commonest species
whereas others pay more attention to concerronoe of

rare specics.

The data matrlx itseli may first be modified; there are

three main possibiliies.

@) The absolute numbers (or biomass), L.e. the fully
quanttative data obrerved for each species, are
meost comrnonly used. Inthis case, twoe samples are
considered perfectly sintilar only if they contain the
same species In exacty the same abundance,

b} The relative mumbers {or biomass) are somebmes
used, ie. the data i sfawdardised to give the
peroentage of totl abundance/biomass (over all
species) thatis accounbed for by each species. Thus
eachmatrix entry is divided by ik columm total (and

mwltiplied by 100) to form the new array. Such
stancardisaton will be essembial if, for example,
differing ad wrkiemen volumes of sediment or
water are sampled, so that absolute numbers of
individuals ate not comparable between samples.
Even if sample wvolumes are the same {on if
different, abundances are adjusted o a unitsampla
volume], it may still sometimes be biologically
more relevant to define bwo samples as being
perizetly slmilar when they have the same %
composition of spedes, fluctuations in total
abundance (or biomess} being of no interest

c) A reduclion o sitple presence or absence of each
species may be all that is justifable. For example,
sampling artefacts may make quanttatdve counts
tolally unreliable, or concepts of abund ance may be
cifficalt o define for some lmportant faunal
COMpPOnEDNts.

A similarity coefficient £ is conventionally defined to
take values in the range (0,100%), or less commemly
{0,1), with the ends of the: range representing the
cxckreme possibilities:

§ = 100% (or 1} if two samples are totally similar;

3= 0if tw samiples are totally dissimilar.

What constitutes total similarity, and particuiarly total
dissimilarity, of two samples depends en the specific
similarity coeflicent adepted but there are clearly
some propertles that it wiould be desirable for a
coeffident bo possess. For example, 5 should equal
zero when hwa samples have no species In common
and 5 rust equal 100% if bwo samples have idenbical
entries [after datz reduction, in cases b and c aboveh.
Similarity mairix

Simdlaritias are calcolated between every pair of
sampiles and it is conventional to et these win-142
valuey vutina lower triangular matnix. Thisisa squan:
array, with row and column labels being (he sample
numbers1 ton, but itis not necessary to fillin gither the
diagonals (shmilarity of sample § with itself is always
X% or the upper right riangle (the similarity of
sample f to sample k is the same as the similarity of
sample k bo semplo j, of course).

Similarity malriccs are the basis {explidly or
implicitly) of many rmultivariate methods, both in the
representation given by a clusicring or ondinalion



Tabla 2.1a). OF course, & = 100 if twn samples are
identical, singe |y -y | = 0foralls.

b} A scale change in the measrements does not
change 5. For example, biomass could beexpressad
in g rather than mg or abundance ¢ from
numbxre per oné of vediment surface to rurmbers
per m; all y valugs,are simply multipliod by the
samwe conetant and this cancels in the numerator
and denominator tarms of equation {2.1).

c) *Joink absences* alzo have no effect on 5. Im Table
21a the last species is absent in all samples;
omitting this species dearty makes no differénce to
the two summations in cquation (2,1}, That
similarity should depend on specles which are
presenl:mnneuruﬂ'ﬂ- (ar both) samples, and Hof on
spedies which are absent from both, is usually a
dosicable property.  As Field of al. (1962} put It
*Taking account of joint absences has the offect of
gaying that estuaring and abyssal samples are
similar because. both lack puter—shelf speces”.
Nonethaless, independence of joint absenoes is a
property not shared by all similarity coefficients.

ﬁarmfnn_-qatinn'nl raw daka

Inoneartwo ways, the similaritics of Toble 2. 1b arenot
2 good reflection of the gverall match between the
samples, taking all species into account. To start with,
the similarities all appear 100 low; samples 2 and 3
would seem 4o desorve 4 similarity rating higher than
50%%. Ae will be seen later, this is npt an important
consideration since the most wseful multivariate
methods depend on the relative order {ranking} of the
similarities in the trlangular malrix, rather than their
alsohite values. More importantly, the similaritics of
Table 2.1b are unduly dominated by the counts for the
two most abundant specles (4 and 5), as can be seen
from studylng the form of cquation (11 terms
involving species 4 and 5 dominate the sums in both
mumeralor and denominator.  Yet the larger abun-
dancés in the original data matrix will often ba
extromely variable in replicate samples (in statistical
terms, varlance is often found o increase with the
square of the mean) and it is quite und egirable to base
an asspesrent Of similarity of two communitics only
on the counts for a handiul of very abundant spedes.

The answer iz 10 transform the originad y values
(opunts or biomass) befire computing the Bray-Curtis
similarities. Two usctul transformations are the log
Eransfora, log(l + ), and the double roat (or ik roof)
transform YWy There is more on the effects of
transformation later 1o the manual; for now it is only
necessary ko nole thatthelog(1 + yand Wy tmnsforms

havean approximately similar and fairly scvere cffect
in dowrn—weighting the importance of the very
gbundant species so that the less dominant, and even
the rare species, play some role in determining
similarity of two samples, The result of the ¥
transform for the previous example is shown in-Table
2.2a ard the Bray—Curtis simila¥ibes computed from
these transformed alvmdances, wsing equation {2.1),
are given in Table 2.2b.!

Table 2.2, Loch Lineke mn&ufum {L} cubsst. {@)
—irnnsformed abyndance for the four yearsmmd six species of Tibbe
2.1, (¥ Resulting Bray-Coortls slmflarity motrix.

() Yemr: 64 6§ T1 73 (b
(Bample: 1 2 3 4  Samplel 2 3 &
Speeles :
Eclinpea. 3.7 0 0 0O

Myriche. 21 0 0 13
Labilopl. 77 25 0 138
Amgzng 0 19 33 1.7
Capitella 0 34 ¢ 12
Myhihie Q@ ¢ 0 0

il D Pl 3
Ba ¥
BB

4

There 15 a general increase in similarity Jevels but, of
more importance, the rank order of similarities is no
longer the same as in Table 2.1b (eg 524 > 514 and Sag >
51z now}, showing that {ransformations c#n have a
significant cffect on fhe final vedination or dustering
display. In fact, for very variable dats, choice of
traneformaton can sometimes be more critical than
choice of similarity coefficientor ordination technique,
and tha subjact therefore merits a chapter fo itself
(Chapter %),

Canberra coefficient

Anahernativie to transformation is to select a similari ty
coeffldant that atormficelly adjuste the weighting
glven ko each species when computed on original
counts-{or biomass). Ome such possibility given by
Lance and Wililams (1967)- and referred 0 as the

" Cagberra coefficient, defines similarity batween
sample § anid sample k as:

P
= 1001 - -IE lggmpt
> ’ fm;r +w)
Clearly, this has a strong likeness to the Bray—Curtis
ooefficient, but the abselui¢ difforepces in counts for
each species are separately scaled, Le. the denpminator

(2.2}

1. BrapCurtts & e main cogficient calerlated By. He
FRIMER CLUSTER prograsi, which alsn allves 2 range of
tremsformiations of the dats,



The “simple watching” similarity betwoen samples §
and & is defined as:

Sk = MN(ardllavhec+d) (2.5)

socalled becauseit represents theprobability (+ 100) of

asingle specics picked at random (from the full species
list) belng present in both samples or absent in both
samples. Note that 5 is a fonction of f here, andd thus

depends on pint absences.

If the "simplematching” coefflicicnt is adjosted, by first
remuving all species which are jointly absent from
samples j and k, one obtains the farvard coefficiem:

5 = IM.afia+ic) (2.4)

e § is the probability (<100} that a single spedies
pickad at random {from the reduced spacies Hst) will

be present in both samples.
A popular coeffident found imder several names,
commody Sorensen or Dice, is:

Sy = 100 2qf{Zawbc) (2.7}

Note that this is iderdical to the Bray—Curbs coefficient
when the Jatter iscaleulated oni0, 1 presence fabsence
dalta, as can beseen mosi clearly from the second form
of equation {2.1).2 For example, reducing Table 2.1a tp
10,1} data, and comparing samples 1 and 4 as
previously, equation {2.1) gives:

2i0+1+1 0+

=1} —")=571
14 1+2+2+1+1H3

This is clearly the same constrzction as substituting 2 =
2,b=1, = 2into equation {2.7}.

Among the many other coefficients that have becn
proposed, one that can be found occasionally in
marine ecological studies Is that of MoConsaughey
{1964k

S = 100faf2a+b+c)}{I2(a+b)(a+c)] (2.5}

1) Inenpstecological studies, it seemsto make senseto
use s osefficient which does notdepend on the ommber
of species which are jointly absent from both samples.

¢ Similarities calculated on origlaal abundance (or
biomass? values com ofkm be over-dominated by a
amall rmmber of highly abundant {or large-bodied)
specics, so that thoy fail to reflect similarity of overall
community compositon.

3 Somw cocfficients (such as the Canberra) which
peparately scale the contrlbution of each species o
adjust for this, bave a tendency b over—compansate,
Le. rare species, which may be arbitrarily distributed
across the samples, are given equal weight o very
ootnmon ones. The same critidsmapplics to reduction
of the original matrix to simple presence ! absence of
each species. In addition, the latter lozes potentially
valuable information about the approximate preva-
lenwe of a specles (absent, rare, present in moclest
tumbers, comrern, very abundant ete).

4 A balancod compromidse s often b apply a
similarity cosfficient such as Bray—Curtis lo coumnts or
bicmass values which have been ﬁmdm‘ately H!,r:l ar
fairly severely transformed (log 1 + %) or YWy Al
species then contribute something to the definition of
similarity whilst the retention of eome informaton on
the prevalence of a specics ensures {hal the commoner
species are generally given greater waight than the
TarYe nnes.

5) Initial standardisation is occasionally desirable,
dividing each count by the sl abnndance of all
species in that sample; this is essential when
nen-comparable, unknoen sample volumes havebeen
taken.  Without this colimn stndardisabon, the
Bray-Curtis coefficient will ecflect diferenoes be-
hween bwo samples due both o differing communily
compositiom and/or differing folal abundance. The
standardisation removes any effect of the latter;
whether this is desirable is a biplogicai rather than
statistical question. (Experience with benthic commmu-
nities suggrests that the standardisation sheuld usizally
be avoided, valuable biclogical information being
contadned i the abundance ar Momass gotalsy. MNote,
however, that oolomn standardisalion dpes not
Temove the need subsequently w transfor the data
malrix, if the similarities are to lake accpunt of moene
than fust the few commonest speries

2. Thuethe Sorzveen cofficiontoan dawbiained in the PRIMER
CLUSTER program by "tranisforming™ e dala rapmne,fnb-
sence and selecling Bray-Cunis sirsilarily,

3. In CLUISTER, stawdardization iz mol the defandt oplion for
saniple similarities but, If sdeciad, it is thergfors carrind dut
Defore any dransfoerution.



arbilrary to some dogree. Fleld of of. (1982) suggest

removal of all spéctes that never constitute more than

#% of the total abundarice {/biomass) of any sample,
where pris (arbitrarily}-chesen te lcave in around 50 or
60 ypecies (bypically p =3% orse). Thisis preferable o
simply retaining the 50 or 60 species with the highest
total abundance across all samples, since the laber
siratogy may resultin ornitting several spedes which
are key constituents ofa satewhmh:sdtarm:mﬂsedbya
low total number of individuals? It is important t
nate, however, that this inevitably arblirary process of
omitting species is mo! tecessary for the more nsual
between-sample similarity calculations. There the
computation of the Bray—Curtis coefficient down—
welghts the conltributions of the Tess common spedes
inan enfirely natural and continuons fashion (the rarer
the species the less it condributes, on average}, and all
species should be retained in these calculations. :

*ggwé
The converse concept to slmilarity is that of
dizsimilarvity, the degres 1o which two samples are
unliki pach other. Though similarity and dissimilaviny
are just opposite sides of the samce coin, the latter isa
more natural starting point in constructing ordina-
tons, in which dissismlarities (5) between pairs of

" samples arc tamed into distarices (d) between sample

locations on a “map”. Thus large dissimilarity implies
thatsamples should be Iocated at a large distance from
each other, and dissimiladtes mwear 0 imply nearby
location; & must therefore always be positive, of
Course, .

Similarities can easily be turned into dissimilarities,
by: |

& =1o08-5 : . . 2.1

For axample, for the Bray—Curtis cocfficiond this gives:

#
T Vv -y
P e M Bl (2.12)

% ‘:; (gt + Y

which has lirits & = 0 (0o dissimilarity) and § = 100
(total dissimilarity).

4. The PRIMER CLUSTER pragram wnll compude Bray—Cur-
tiz gpecies pimibaritios, withor sithout v steidsirireation and
Irmngformation {though the defeul! ias recommended heve), and
allewingprior rediction by te p™ criterion. cither Iy specifying
# o due yremiber W of retained ppectas,
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However, rather than- conversion from similarities, -
other important disshmflarity measures anise in the
fist place as distances. Their rolo as impliclt -
dissimilarity matrices undérlying particular ordina-
fion techniques will be scen move clearly later (e.g. in
Frindpal Componerits Analysis, Chapter 4),

Buclidean distance

The natural distance between any bwo points in space
is rafarted 0 as Exclidean distance ((rom classical or
Euclidean geometry). In the context of a spedes
abundance matrix, the Fuclidean distance babween
samples f and k is defined algebradcally as:

g, =WE 5 (v, ¥, 'S 213

This can beatbe understund, gcmmtncall;,r, by taking
the special case where there are only two specles 5o
that samples can be represented by points in
2 dimencional space, narnely their position on the fwa
axes of Spectes 1 and Species 2 counts. . This is
ithustrated helow for a specific two samples by two
species abindance matrix. The co-ordinate polats (2,
3 and (5, 1) on the (3p. 1. Sp 2} axes are the two
samples fand k. The direct distance di betwezn them
of ¥[(2—5P +(3-11%| (Pythagoras) cearly corresponds
b equation (2.13).

Sp2
Sample: | &
Sp1 2 5

Sp2 31

It is easy to envisage the extension of this i a matrix
with three spedes; the two poinds are now simply
located on 3-dimensinnal specles aves and their
straight line distance apart is a natural geomelric
omcept.  Alesbraically, it is the root of the sums of
squared distances apart along the thoge axes, oquation
2.13). EBxtension  four and higher numbers of
species (dimensions) is harder bo envisage peomeln-
ally (in our 3-dimensional world) bul the concept
remaing unchangad and the algebra s no more

© diffeudt t0 understand in higher dimensions than

three: pdditional squared distances apart on each new
species axis are added to the surmation under the
squarc roat in (2.13). In Fct this concept of
representing a specics-by-gamples matrix as pointsin
high—dimensional species space is a very lundamenal
and important one and will be metagain in Chapter 4,



The previcus chapter has shown how o replace the

original daby mabrix with pairwise similarities, chasen
to roflect the parlicniar aspect of similarty in
cornmmity structuce (sfmdlarity in countsof abnmdant
specles, similarity ngeneral disposition of rare spedies
etc) which the binlogist requires to emphasise for the
stady-in question. Typically, the number of pairwise
similaritics is Iarge, n (0 = 132 for nsamples, and itcan
often he bo easler to detect a pattert in the resudting
lower tiangular similarity matrix than it is in the
original data. Tabie 3.1 illusirates this for justa portion
(roughly a quarker) of the similarity matrix for the
Frietfjord macrofauna data (F). Close exarmdnation
shows that the four replicates within site A genarally
have higher within-site similarities than do pairs of
replicates within sites B and C, or replicates betwesn
sites, but the pabtern is far from clear. Whatisneededis
a graphical display linking samplea that have
mutually high levels of similarity.

Table 3.1. Frierford sacrofawsa coupta [Fl. Broy-Curtis
ainrilaritics, after ¥ Ernnsfornidion of comnts, for coery pror of
replizate seonples from sites A, B, C ondy (foxer replicate samples

per sthe).

Aj A2 A3 A4 T B B3I B¢ C1 C2 &3 &4

Al -

AT BT —

A% B9 B0 —

Al 65 61 &6

Bl 37 26 37 35 -

BZ 42 3¢ 3 3 5 -

B3 45 39 38 44 86 66 -

B4 37 29 2% 37 59 £3 &0 -

Cl 35 31 27 25 24 56 40 34 -

€2 40 34 25 29 48 69 52 56 55 -
C3 4 31 37 39 59 61 67 53 40 66 -
Ci 36 28 3 37 65.55 69 55 39 64 T4 -

Cluster analysis (or classificationt aims to And
“natural groupings” of samples such that samples
within a group are more similar o each other,
generally, than sarmples in different groups. Cluster
analysis iz used in the prasent contmet in the following
Ways.
a) Different sites (pr different limes at Hye sarme site}
can be seen o have differing commamity composi-

tions by noting that replicate sarnples within a site
form a duster that is distinct from replicates within
other sites. This can be an important hardle o
overreine in anvy analysis; if veplicates for a site are
clustered more or less randomly with replicates
from cvery other site then further interpretation is
Hiely to be dangerous. (A more Formal statistical
et for distingudshdng sltes is the subfect of Chapter
6.

b} When it is established that sites can be distin-
guishid from one anothéer (or, when replicales ane
not taken, it is assumed that a single sample is
representativeof that siteor Himel, sites or Hmes can
be partitionied into groups with similar cormmunity
shruchare. : ’

¢} Cluster analysis of the gpecies similarity matrix can
be used o define species assemblages, le groups of
species that tmd o co—vocur in a paralle] manner
BcToSS Siles,

Range of methods

Literally hundreds of clustering methods exist, some
of themoperating on similarity / dissimilarity matrices
whilst others are based on the original data. Everitt
{19680 and Cormack (1971) give excellentand readable
reviews. Clifford and Stephenson (1975) is another
will-cstablishod text on assificaltion mcthods, from
an ecoloyical viewpoint,

Five dasses of clustering methods can be distin-

guishead, following the categories of Commack (1971).

1} Hierardiical methods. Samples are grouped and
the groups themecives form clusters atlower levels
of similarity.

2) Optimising technigues. A sirgle set of mutually
exclusive groups (usually a pre—spedfied mumber)
is formed by oplimising some clustering criterion,
‘for example minimising a within—cluster distance
measure in the species space.

3 Mode—seeking methods.  There ave based on
considerations of demsity of samples in the
neighbourhond of other samples, again in the
spacies space,

4} Clumping tedmigues. The term “clumping” is
reserved for macthods in which samples can be
placed in more than one cluster.

5) Miscellaneous techmiques.
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Table3.2, Lock Littulie macrafeuna (L) swbset, Abundanceerray afier ¥N-iransfarm, the restfting Brey-Curtis simlaricy makriz mal
fhe ssicresaizely fused similarity pwatrices from o Fisrarchical clistering, using gronp atcrayge imking,

Yoar &4 B8 71 T3
Semples 1 2 3 4
Specles -
Echdnne.
Mymche
Labidopd.
Avmeang O

Capttelia

Sample 1
1 -

256 —

a0 &9 -

522 §81 420

T 3
70 0 ¢ "F 3
218 0 13 a
17 25 0 14 4
18 35 17
0 34 43 12

Mylvs 0 0O O O

4

Sample 1
1 -

=+ 184 389 -
& Do S50 -

264 3 Sample 1 2836
i _

™ 4%ed 294 -

a) Smglz tinkage. 51, 26:0) is the maxhnum of 5(1, 2
and 501, 4), i.e. 52.2%.

b} Complete linkage. S{Li&4llsthennuinmmuf5(1 3
and 5(1, 4), f.e. 25.6%. :

c} Groanp—averaye link. 5(1, 284)is the grerggeof 5(1,
2} amdd 51, 4], i-e. 3B.9%.

Table 3.2 adopls group-average linking, henwe
8284, 3) = [512, 7 + 5(4, )1}/2 =55.0

The new matrix i again cxamirad for the highest
similarity, defining the next fusing: here this is
between “244” and “3", at similarity level 55.0%. The
malrix is again reformed for the two new clusters 17
and 234" and there is only a single simlarity,
5(1, 26384}, to define. For grovgp—aoeragelinidng, this is
the mean of 5(1, 2&4) and 5(1, 3) but it must be a
wreiphtedinean, allowing for the facithatthere are bwice
a5 mény samples in dusirr 254" as in eluster "3
Hese:

S{1, 2&3&4) = [2x 5(1, 244) + 1% 5(1, 3)1/3
= (2%38.9+1%xD}/3=250

Though it is computationally efficient to form cach
successiva similarity mairix by kking weighted
averages of the similarilies in the previous matrix, an
allzrnabive which is entirely equivalent (and perhaps
conoeptually simpler) is o defina the similarity
between bwa proups as the simple (unweighted)
average of all beiwoemn—group similarities in the initial
triangular matrix. Thug:

S(1, 2&38c4) = [501, 2) + 501, 33 + 51, 4)1/3
=25.6 + 00 + 52.2) /3 = 25.9,
the sarme answer 88 abowe
The final merge of all samples inte a singie group

therefore takes place at similarity level 25.9%, and the
cluslering process for the group-average linking

ghown in Table 3.2 can be divplayed in the follpwing
dendrogram.

rind
Sample 2 4 a I

Dendrogram features

This example raises 4 mmmber of more general points

about the use and appearance of dendrograms.

1} Samples need tu re-ordered alang the x axis, for
clkear presentation of the dendrogram; it is always
possible 19 arrange samples in such an order that
o of the demdrogram branches cross each other.

2) The resulting order of samples on the x axiz is not
unique. A simple analogy 15 with a child’s
“mobile”; (he verbical lines are sirings and the
horizontal lines rigid bars. When the whole
striscture is suspended by the p string, the bars
can rotate frecly, generating many possible re-ar-
rangements of samples on the x axds, For eample,
in the above figore, samples 2 and 4 could switch
places (spquence 4, 2, 3, 1L or sample 1 move to the
opposhte side of the diagram (scquonce 1, Z, 4, 33,
but a sequence such a8 1, 2, 3, 4 is not possibie. It
fellows that to-use the x axis sequence as anovdering
of samples is misleading.

3) Cluster analysis attemnpts to group samples indo
discrete dlustersno tdisplay thefrinter—relationship

* on a continugus saale; the latter is the province of
ordinatiar and this would be preferable for the
simpleexampleabove. Clustering imposes a rather
arbitrary grouping on what appears to be a
continuum of change from an onpollubed year
{1954}, through steadily increasing impact (loss of
some spaciles, increase in abundance of “opportu-

2 OB
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Fig. 3.2 Brizlol Channel! zooplanicton (B), Sarmpling sifes,

Collins and Williams (1582} perform hierarchical
cluster analyses of ooplankton samples, collected by
double oblique hauls at 57 sites in the Bristal Charmel
UK. for three different seasons in 1974 /B}. Thisianota
pollution study but a bassling survey carried out by
the Flymouth laboratory, as part of a major
programme to understand and model the ecosystem
ofthe eztuary. Flg. 5.2 isa map of the sample locations,
=ites 1-58 (site 30 nol sampled).

Fig. 3.3 shows the results of a hierarchical dustering
using group-average linking on data sampled during
Aptil 1974, The raw data were expressed as numbers
per cubic metre for each of 24 holoznoplankton

speries, and Bray-Curtis similarities calculated on

Y-transformed abundances, From the mesulting
dendrogram, Colline and Williams sclect the four
groups determined at & 55% similarity level and
chazacterise these as bue sstigrine (sites 1-8, 10, 1),
eshunrineand mavine (9, 11, 1327, 29), arylulive marine
(28, 31, 33-35, £2-44, 4750, 53-55) and stenofiziine
maripe {32, 36-41, 45, 45 51, 52, BEER)L A
correspordding dustering of speries and a re—ordering
of the rows and columnns of the original Jdata matrix
allows the identiticatlon of a number of species groups
characterising these main site clusters, as is seen later
{Chapter 7).

The dendrogram provides a sequence of faidly
convincing groups; once cach of the four main groups
has formed it remaing separate from pther groupsover
arelatively large diop in similarity. Even o, a cluster
analysis gives an incomplete and disjotited picture of
the sample patiern. Remembering the analogy of the
“mobile”, it is not dear from the dendrogram alone
whether there iz any nameal sequence of conumnunity
changa across the four main clusters {impllcit in fhw
designations trug estuarine, estuarine and marine,
euryhaline maring, stenohaline marine). For example,
the stenchaline marine group could just as correctly
have been rotated to lle between the estuarine and
marine and euryhaline marine groups. Infact, there is
a stnnp (and more-grdess continuous) gradient of
comemmnily change across the region, azsociated with
the changing salinity Jevels. This is best seen iy an
ordination of the 57 samples on which are superim-
posed [he salinity kevels at each site; this example is
therefore returmed ko in Chapter 11

FRTET s
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1) Hierarchical clustering with group—avemge link-
ing, based on sample similarity or dissimilarity
matrices such ag Bray—Curtis, bas proved a nscful
technique in a number of ecological shudies of the
last two decades. It i= appropriate for delineating
groups of sites with distinct community stractune
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An ordinaEion i3 a mup of the samples, nsaally in two
or three dimenslons, in which the placement of
samples, rather than representing thelr simple
geographical location, reflocts the similarity of their
biological communities. To e more precize, diglayces
botwern samples on the ordination altempt to matkeh
the enrresponding dissimilaritizs in community struc-
ture nearby points have vory similar communities,
samples which are far apart have few species in
comninom or the same specics at very different levels of
abundance (or biomass). The word “attempt” is
important here smec theve §8 no uniquely defined way
in which this ¢an be achleved, (Indeed, when a large
number of spedes finctuabe in abundance in response
fu a wide variely of envirornmental vanables, each
species being affccted in & different way, the
cothmunity struchire is essentially hish—dinsnsions
and it mnay be impossible to oblain a useful fwu or
three—dimensijonal reprosentabion).

50, a8 with chagter analysis, several method shave boen
proposed, cach using different forms of the original
duta and varying in their technique for approxdrmating
high—dimensional informalion in low—dimemmonal
plats. They include:

a} Principal Companents Aaalysis, PCA (e, for
example, Chatficld and Caollins, 1980);

b) Principal Co—ordinates Analysis, PCoA {Gower,
1966);

ct Correspondence Analysis and Detrended Corre-
spondence  Analysis, DECORANA (Hill and
Gauch, 1980);

d) Malh-Dimersional Scaling, MDS; in particular
nom-metric MDS (zee, for example, Kruskal and
Wish, 1978).

A comprehensive survey of ordination methods is
culside the scope of this volume. As with dustering
mathods, detalled explanation s given anly of the
tachniques required for the analysis strategy adopted
throughoutthe manual. Thisisnot i deny the validity
of pther methods but simply te affinn the impuorltance
of applying, with arderafgnding, one or hwa techniques

L T N L I TR

of provenutility. The two ordination method sselected
are therafore the simplest {arguably) of the varicus
options, at least in conoept, :

a) PCA iz the longest—established method, though the
relative inflexibility: of ity definition limite its
practical usehalness more o multivariale analysls
of envivonmental data rather han specics abun-
dances or biomass; nonctheless it is still widely
encountered and is 0f fundamental fenportance.

b} Non-metric MDS is a more recent development,
whase complex algorithm oould only have been
contemplated in an era of ad vanced comprutational
power; however, its rationale can be very sinnply
described and. underatood, and many people
would arpuc that the need to make few (F any)
assumptionsabout thedatamekeit the mnst widaly
applicable and effectve method available,

T
L o 00 e 00t s

The stariing point for 4 PCA isthe original data matrix
cather than a dedved similarity matrix {though thore is
an impdicit discimilarity matrix undorlying PCA, that
of Eudidean distance}. The data array is thought of as
defining the positions of gamples in relation o axes
representing the full set of species, one axis for each
species. Thisis the very important conceptinboduced
in Chapter 2 {following equation {2.13)). Typically.
there ate many species s the samplos are points in &
very high—dimensional space.

A simple 2-dimensional cxample
It helps to visualise the process by agatn considering

an {artificial) example in which there are only bwo
species (and nine samples).

Sampls 1 2 3 4 5 & F 8 %

i1 14 15 78 14

Abundance Sp.1: 6
2 J F 414

o 3 7111
Sp.2: ¢t 8 & g1

The nine samplks are therefore poinks in two
dimensions,and labealling these points with the sample
number gives the following plot.



(perpendicular) distances of the points from the line.!
The seevd approach comes e noting in the abave
exampletha t the bigoest differences betwaen samples
take place along the PCI axis, with relatively small
changrsin the PC2 divection. The PC1 axis is therafore
definod as that direcBon in which the sgrignee of

sample paints projected perpendicutaidy ondo the axis-

&7 wximized. In fact, these two separate definitions of
thePC1 axis tum outkobe folaly aquivalent and one can
use whichever concept is easier to vizsualise.

Extension to 3—d1mensinnal data

Suppose that the simple example ahuve is exl::ru:lcd to
the foflowing matrix of counts for hrce specics.

| Abundance 8p.1: 6 0 5 7 17 10 1518 4
' Spl 2 0 fF & G160 #1414
Spdk 3 1 6 6 2111015 15

Sample 1 2 3 4 5 6 7 B 9

Samples arc-now puintsin three dimenstons (Sp.1,5p.2

and 5p.3 axcs} and there are theeefore three principal

componant axes, again simply 2 rotation of the three

specles axes. The definiton of the (PC1, PC2, PCE)

et generalises the 2—dimensional case in a natural

ay: B

P is the axis which murcimiises the verience of points
pmeChEd porpendicularly onto it;

PC? is cunstratned to be perpendicular to PCL, I:rut is
then again chosen as the directipn in which the

) vananmofpumhspmpcted pemmdicu]ar}ymuml

.18 maximised;

FC3 ig the axis perpondicular to both PCT andPCi
{Ihere is no choice refnaining hena).

Sp3 - PC3 Pt

Y. This type of tden may be familiar fom ordiiary Tivear
regression, except tiet the latter is furnulated aoymmetricathy:
ihe rigression of y oft X mRiSES the sum of squared perticel
ditanaes pf;m'nis_lhm Har Iine.
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An exjuivalent way of visualising thisis again in kerms
of "best fit”: PC1 is the “best fitting” line to the sample
pomts and, topether, the PC1 and PC2 axes define a
plane (stippled in the above diagram) which is the
“best fithng"” plang.

Algebraic definldon -

The abowe geomelric formulation can be expressed
alpebraically. The throe new variables (PCs) are fust
Linear comiinativns of the old variables (species),
such that FC1, IMC2 and PC3 are necorrelaied. In the
above example:

L.62xSp1 +0.52%5p 2 + 0.58%5p.3

1=
PC2 = —075x5p.1 + 0.65%5p.2 + LASp.3 (4.1}
PC3= 0.28x5p1 +0L35x5p.2 =~ (0.7 5x5p.3

The principal components ars therefore interpretable
{in. theory) in terms of the counts for each original
specics axis. Thus PC1 i5 a sum of reughly equal (and
positive) contributions from each of the spedes; it is
cssentially ordering the samples frovlow ts high total
abundemce. Ata moTe subte level, for samples with
the-same total abundance, PC2 then mainly distin-
guishes rolatively high counts of Sp.2 (and low Sp.1)
trom low Sp.2 {und high Splk Sp3 values do not

© featre strongly in FC2 becanse the corresponding

coefficent i= small. Siritarly the PC3 axis matnly
conitrasts SpJ and 5pd counks.

Variation explained by each PC

The definiton of principal components given above is
in wrms of successively maximising the vardance of
sample pnints projected along cach axis, with the
variance therefore decreasing from 'C1 1o PC2 1o PCA.
It is thus natural to quote the values of these variances
finneatiom to their total 188 a measureof the annount of
“Information” contatned in each axiz. Purthennore, it
turns ot that the otal of the variances along all PC
axes is equal ko the tutal variance of paints projected
successl vely anfo each of the original species axes.
That is, letting vgr {PCi) deniote vaniance of samples om
the ith PC avis and par (5p.) donole varianoe of points
an the ith species axis (f = 1,2.3) '

I var(PCi) = X variSp.i) - 4.2}

Thus, the relative varlation of puints along the fth PC
s (as a percentlagr of fhe total), namely

P = 100, 200 qpg waPCH 44
I mar{PCH I wanSpi)

has s useful interpretation as the % of the original total
variance explained by the ith PC. For the simple



nal abundange data H.-.} is shown -Fig.. 4.1. The

original matrlx contiined a total oF 115 spedies for the
11.samples, one for each yearof the périod 1963-1973.
Pulp-mill effhacnt was fiest discharged to the loch in
1966 with an ingcreased discharge in 1968 /70 and a
subsequent decrease in 1572 /73.

Exclude lass—wmmun apedes

The retention of rarer rppecles inoa PCA ordination will
have a strongly distorting effect, even supposing that
the mnatrix opcrations to constract the ordination are
possible. For the Loch Linnhé data there are 11
samples in 115-dimensional species space!. An initial
and drastic veduction in the nwrber of spocies is
necessary for the PCA algorithm o work. In fact,
many of the species are represented only by a single

individual in a single year and their omission will nog -

be a serfous loss to interpretation, but the nocessity of
making an{essentially arbiivary) dedision aboutwhich
spedies toexclude is one of the problems withapplying
PCA a binlogleal communily data, By confrast, the
clustering mothods of the last chapter were applicd to
a similarity ratrix which could e comstructed from aif

specles, the rarer oncs cither being emphasised, asin

reduction to presence/absence, or down-weighted
automatically (though not ignored totaily) by the
thoice of strillarity coeflicicnt and transformation. An
ordination methed based on this similarity matrix (for
example, the MDS method ofchaptﬂS} clearly seores
over PCA, in this riaspe::t

In fact, Fig 4.1 is based on a data matnix of only 2%
species, those making up more than 3% of (he total
abundance in at least one -of the samples.  (The
rationale for this type of selection procedime was
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Fig. 4.1, Lock Linxke macrofawns (Lh™ 2-dimensiomaf PCA
endination of sampicabundamees (= transformed) froms the 11
yeare PE-1973, PCL {x—axigh and P2 (y-axis) Logether
decoidd fr 7% of Hee dotal saspls beriability,

diecissed in the seclion on - species similaribes in

Chapter 2). Calgulation of the principal components is

now possible though, even =o, the software package
needs to handle its computations carefully. Aolal of
11 sample poings will always fit perfectly into 10
dimenslons (think of the lower—dimensional analogy
again: 3 points in S«dimensicnal space will always lie
on a 2-dimensional plane). Thus, only 10 (at most) PC
axes can beconstrucied, oc ko putit another way,all the
sample variance-can be explained by the first 14 PCe.
In fact, the fitsttwo TCs in Fig. 4.1 explain 57% of the
teal variability a0 the 2-dimensional ordination does
not give a fully satisfactory picture of the changing
community pattern nver the years, If this example
wore being pupsued farther, it would be advisable to
Tock alen at tha third PC (atleast), perhaps with some
form of 3~dimensional perspecti ve plot or by the thrce
separate 2-dimensiomal plots of (PC1, PC2), (PCL,
PC3)and (U2, FTI). Nonetheless, one maln Feature is

“dear Irom Fig, 4.1; the relabively large change in

comutunity composition between 1970 and 1971, and
the reversion in 1973 t0 & community which is more
like: the earlicr years.

Tijanafun_natiun of abundance/biomass

. Inmuch thesame way as wasseen for thecaleatation of

similarity coefficientsin Chapter 2, it may be necessary
o make ap initial transformadon of the abundance or
Blorass values bo avold over—-dominabon of the
resulting anal ysis by the very common spedes. Forfhe
Loch Linnhe data; Capitefle nimbersina yearly sample
range from O 1o over 4000 individoals, wheteas the
bulk of the other species have counts in single or
double figures. For untransformed data (and veing a
covariance-hased analysis, as discussed below), the
Capitefla axis will clearly contain a substantial pars of
the overall variation of 8amples in the species space, so
that the divection of the PC1 iz will wend to be
dictated by that speacs alone. A more balanced
picture will emerge after transformation: Fig. 4.1 is
based on YW -transforméd abundance;

Scale and location changes

The data matrix can also be normaﬂsad Gafter any
ransformation has taken place). For each spovies

- abundance, subrract the mean count and divido by the

standard deviation over all samples for that species.
This makes the variance of samples aleng all spedes
axes the same (= 1) 5o all specics are of potentially
equal imporkance in determinlng the principal
components. This normalised analysisis referred toas
cotrelafion-based PCA rather than the covariance—
irased PCA obtained when the data s not normalised



differen t viriables in the envircnmenial analygis, c.g,
contaminant concentralions will often be right-
skewed (and require something like tog transforma-
tion), salinity may be left-skewed (reverse log
transformation) and sediment granulometry mea-
sures like "% mud® or *dlt/chy” may neced no
transformation at all. These issues are retumed to in
Chapter 5.

REEE = ﬁé@ﬁ

1) PCA is coneeptually simple, Whilst the algebraic
basi= of the PCA algorithm requires a facility with
matrixalgebra for its understanding, the geometric
concepts of a “best fitting” plane in the sperles
space, and cular projection of samples
ontn that plane, ave relatively casily grasped. Some
of the more recently propased erdination mothods,
which either extend or supplant PCA (eg Principal
Co-ordinates Analysis, Detrended Cormespon-
dence Analysis) can be very much harder to
understand for practitioners without a matemati-

cal backgronnd,

2} Itis computationally streightforeard. Again, this
statement needs to be scen in relative terms.
Prindiided the number of species is reduoed, nsually
drastically, the required atrix operations pose no
real problems to modem computing power and
packages are widely available which carry out the
necessary eigenvalue (Leterd roaf) extraction. That
multivariate methods have only come to the fore as
& practical data analysis ool in the last two decades
should not be a surprise o anyone. Even the
computationaily simplest of techniques, PCA,
could never be carried out manually in any realistic
examnple. Noneihcless, PCA tends to take only
sceonds, rather than minuotes or hours, of
processing time on a personal computer. The
constralnts are mainly on the number of species
handled, and large numbers of samples can usuatly
be accommodated. Thisisin contrast o dusterand
MDS analyses which tend to be more constrainad
by the number of samplas they can handle; oneg (he
data is reduced to a similarity matrix between
samples (the input form to both clustering and
MD5) the number of species in thaoriginal matrix is
irrelevant. PCA could therefore have a rale, when
there are large numbers of samples, in providing an
intial picture which would sugwest separation of
the data into two (or more) distinet scts of samples,
each of which s analyssd by more accutate (but
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more computationally-inkmsive) ordinations such
as MDA,

3) Ordinafion axes are interpretable. The PCaxes arp
simple linear combinations of the values for each
species, as in equation (4.1}, se in theory havesome
potential for interpretation. In practice though,
when there are more than a handful of spactes {as s
usual), this rarely Jeads to any useful mformation,
Environmentzal data arrays often contain a smaller
nmber of variables however, and interpretation of
the PCA, axes may be Informative in that case (see,
for exampla, Chapter 11).

1) There i3 lithle flextiility in defining dizsimilarity.
An ordinabion s essentially a techmique for
converting dissimilerities of community composi-
tiom belween samplos into (Eudidean) dishnces
between these samples fn a 2- or higher—dimen-
sional ordination plot. Implicily, PCA defines
disslmilarify between two samples as their Buclide-
an distance apart in the full p-dimensional specics

gpace; howover, as was seen in Chapter 2, this is

rathet a poor way of defining sample dissimilarity:
something like a Bray—Curtis coefficient would be
preferred but standard PCA sannot accommedate
this. The only Aexibility it has s in ransforming

(and/or novmalising) the specics axcs so that

dissimilarity 15 defined as Euclidean distance on

these new scales.

2) Iis  distince-preseroing properties are poar.
Having defined dissimilarity as distance in the
p-dimensional species space, PCA converts these
distances by profeckion of the samples onto the
2-dimensional ordination plane. This may distort
some distances rather badly. Taking the usual
vizual analogy of a 2-dimensional ardination from
three species, itcan be seen that samples which are
relatively far aparton the PC3 axis canend up being
co-incident when projected {perhaps from “nppe-
site sides”) unto the (PC1, PCZ) plane.,




Prinicipal Co—ordinates Analysis -

The fwp main weaktessssof PCA, identificd at theend
of Chaptir 4, are its mfexhility of dissimilarity
measureand its poardletance-preservation. The first
problemis addressed inan invportant paper by Govwer
{1966), describing -an exiwhsion o PCA termed
Principal Co-ordinates Anaiysis {PCoA), also some-
times referresd to a5 classical scaling. This allows a
much wider defindtions of dissimilarity than sfmple
Euclidean distance in the specles space {the basis of

PCA). Dther dissimilarity moasures are comverted fo -

distances, in high-dimensional space, but the. fAinal
stop {8 again a projection. ontp a low-dimensional
ordination space (eg'a 2-dimensionial plane), as in
ordinary PCA. Thus, PCA is.a special case of PCoA,
when the original dissimilarity. is just Euclidean
distance. It follows that PCoA is still subject to the
second criticism of PCA: its lack of emphasis on
distance-preservation when: the informaton.  is
difficult to represent in a low: number of dimensions.

E!mnded'tmup&ndm-:t Ana!ym

Cormspondence analyses arc 3 class of ordination
methods featuring strongly in French data-analysis
literature (for a review in English see Greenacre, 3984),
Key papers in ‘ecology arc Hill' (1973a) and Hill and
Gauch 1980), whao introduced. defrended conespan-
dence analysis (DECORANA). The methods start
from the data m_al:rix, rather ﬂ'l-a.n a st of disslindlarity
- coefficients; sp are rather inflextble in their definition

of sample dissimilarity;in effect, multinnmial assump-

Hons generate an implicit dissimilarity measure of
* by squared” distance: Basie correspondence analy-
sis (CA) has its genesis in & particular model of
utirmodal species response t0 underlying (bat
unmeasured’ environmental gradients; an acoournt is
outslde the scopeof this manual but a comprehensive
expusition (by C E . ter Braak} of CA and related
technicues can be found in Jongmar = of. {1987).1

1. A conttemcnt tony of Girrying ok COTreRpondEnCE maiyses,
avicd related congicel methads, & toouse ber Braaks exeellnf
CANDCO package. :

. The pop'u]ar DECORANA: version of CA‘has:a

primary motivato of . straightening out an “arch
effect” in a-CA ordination, which- is expected on
theoretical grounds - if ‘spedies abundances -have
unimodal (Gau sslan) respenses along a single strong
chyirgnimental gradient. Wheve such models ara not
appropTiats, it is inclear what artefacts the algorithoms
may introduce inta the final picture. In the Hill and
Gauch {1980) procochire, the detrending is essentially
carritd otit by firgt splitting the ordinadon space into
, strelching or shirinking the scale n each
segment and then renligning the segments to remave,
widesale amvature. For some people, this is
unrornfortably dose toa ki ng the data with scissors
and ghugand, thoughthe method istntas subjectiveas
this would fmply, sorve arhitrary decisions about
whene and how the segnientation and rescaling are
defined are rather Mdden from theusesin the program
code. Thus Plelon (1984) and others have crificized
DECORANA for its “overzealous” manipulation of
the data. It is also a pity that the multivariate
echriques which historially have beenapplied most
freguently in the ecological litcrature ate often either
inadequately suited to the data or are based. on
cangeptually complex atgorithme (2.g. DECORANA
ang TWINSPAN, Hill 1979, b}, erecting atommunica-
tion barrier between data analyst and ecologist.
The. ondination technique which is adopted in this
manual’s stratepy, nos—metricMDS, isitsclfa complex
numerical atgorithm but it can @nd will) be-argued
that it 15 conceplualiy simple. It makes fow GF any)
model assumplions about the form-of the data or the
hmﬁunslﬁpufthemmplas,aqdmélinkbetween
the final picture and the yser’s original data is
relatively iransparentand éasy W explain. [raddresses
both the major crittcizms of PCA made earlier: it has
great flexibility both fn the definition and conversion of
dissirnilaxity to distance and its rationale & the
preservaton of these relationships in the low-dimen-
ginnal prdination space.

(DAL it *.
The method of nor—melric MDS was introduced by
Shepard (1962) and Kruskal {1954}, for application lo
problems in psychology; a uscful introductory text is



Table5.1. Lock Linnha macrofaine (L} subset. Abvastancoarray ofter \N-transfrem, tee Bray-Crrtis similarities (as in Table 3.2), the
rapk aimﬁurity weptvix atid Hhe reselling 2—dimensionel MOS ondinaiion.

Year: &4 B8 71 73

Sample 1 2 3 4  Sample 1 2 2

Sper.:ie.q i -

Ectimoca. 170 O ¢ 2 56 -
Myrigche. 231 @ 0 13 3 4D s78 -
Labidopi., 17 25 0 14 4 522 6eJ 20
Amasmmg 0 09 35 1.7

Copilelia  © 34 43 12

Mytdus o 0 0 0
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Three replicate sediment corcs were faken for
meiofauoal analysis on each pocasion, and remmatudes
identified and counted. This analysis considers only
the meen nematnde abundances across replicales and
season na scasotal differences wereevident ina more

detailed analysis), so the data matrix consists of 182

specles and 19 samples.

This is not an example of 2 pollation study: the Exe
estuary is a relatively undmpacted environment. The
aim. here is to display the biclogical rolationships
among the 19 stathomes and then o link Hhwse to a setuf
environmental variables (granulomnetry, intersttial
salinity atc.) measured atthesoribes, 40 teveal potential
delerminants of nematode community structure. Hg.
5.1 shows the 2=dimensional MDS ordination of the 19

sarples, based on Y¥—ransformed abundances and &
Bray—Curtissimilarity matrix. Distinct clusters of sites '

emerge (in agreement with those from a matching
cluster analysis), bearing no clearut relation o
geographical posiion or tidal level of the samples.

15
19
‘f& ; 12 14 18
1a
2 17
: 16
- H ?
2 6
11
1 5

Fig.5.1. Eveestuery nemabodes {X). MDS ordinetion afthe 19

sites based on NN-iransformed anindancss and BrayCurlis
shniltritics (stncag = 0,055,

Instead they appear to relabe #0 variables such as
sediment type and organic content, and thesalinks are
discussed further in Chapter 11, For now the question
ist what are stages in the construction of Fig, 517
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The nor—meitic MDS algorithm, as cmployed In
Fruskal’s original MDSCAL program for example, is
an ikerative procedurs, comstructing the MG plot by
successively refliing the pusidons of the points umiil
they satisfy;, as ddosd ¥ as ;?DG&IH.E, the dissimilarty
relatioms bebween samples” [thas thefollowing sbps.
1) Specify the muntter of disterisions {w} required for
the final ordination plot. IF, as will sornetimes be
desirable, one wishes to compare configurations in
two and three dimensions then they have to be
oonstructed separalely. Fer the morment think of m
as 2.

3 Constructastartingconfiguration of thewcamples.
This could be fe result of an erdination by another
method, for example PCA or PCoA, or ft could
literally be st a random sct of # ponis inm (= 2}
dimensiims,

3) Regress the intzrpoint distances from Hiis plot on

the correspanding dissimilarities, Lot idgl denote
the distance between the fth and kth sample points
on the current ordination plot, and |8y} the
earrosponding dissimilarity in the ariginal dizsimi-
larity mabvix {of, say, Bray-Cuortis cocfficients). A
seatter plot is then drawn of distance against
dissimilarity for all ifi = 12 such pairs of values.
Thisis wrined a Shepard diagram and Fig 5.2 shows
the type of graph that results. {In fact, thisisatalate

3. This is ol the slywrsbion used in te PRIMER program
MDS. The required inpul isestmilordty matrix (g az produced
by CLUSTER), srnef the oudput incisdes o plot file tulicis can be
ingnl 1o CONPLOT b dtsply the 23 MO confiqyration.



three dimenslons, with just a 2—dimensfonal parame-
ter space (the Xy plane} and the vertical aas =)
denotmg, the stress at each fxy} polnt. In reality the
stress surface is 4 funcdon of more parameters than
this of course, bt we have seen before how usaful it
can be fo vivualise high-dimendonal algebraic
operations in terms of 3-dimensional geometry: An
appropriate analogy is t0 imagine o rambler walking
across a.range of hills in a thick fog(!), attempting to
find the kxeest point within an oncircling range of high
peaks. A good sirategy is always 0 walk in the
direction in which the ground slopes away most
steeply {the method of sleepest deseert, in fact] bat
thereis no guarantes that thiz strate gy will necessarly
Eirvd the lowest pointoverall, ie the glabal seinimon of
the stress funclion. The tambler may reach a low point
trom which the ground rises in all directions (and the
thus the steepest descent algorithm converges) buot
there may be an ewon lower poinit on the pther slde of
anadjacent hill. Heds then trapped ina focel mirimm
of the stress function. Whether he finds the global or a
lacal mdnimum depends very miuch on where be starts
the walk, i.e. the starting mnhgu.mhun of points in the
ordination plot.

Such local minima do ¢ocour in rnany MDS analyses,
usually covresponding to configurations of sample
puints which aze only slighfly difforent fomn one
another. Often this may be becauss thero are one or
two points which bear Little relation toany of the other
samples and there are soveval choices as to where they

may be placed, or perhaps they have a more complex

relationship withother samples and may bedifficult to
fit intw {say} a 2-dimensional picture. Thote s nwo
goaranteed method of ensuring that a global
minitum of the stress funciion has been reached: the
practical solution 5 therefore to repeat the MEGS
analysis scveral Hmes starting with different random
positionzs of samples in the initial corfiguration (step 2
above}. If the same (Jowest stness} soluticn re—appears
from a number of diffevent star s then there isa sttong
assurancr, though never a lotal guarantoe, that this is
indeed the best solution. Note that the easics| way o
determinc whether the same solution has beem
reached as in a previous attempt 1s simply to check for
equality nf the stress values; cemember that the
configuratiors themselves could be artdtrarily rotated
or reflected with respect Lo pach ofher® In genuine
applications, conmvetped strews values are rarely
precisely the same If configurations diffor makerially.

Dregenenate soluffons can also vecur, in which groaps
of samples collapse to the same point feven though
they arc not 1009 similar), or to the vertces of a

triangle, orare strung outround a circle. Inthese cases
the stresz may go B Zero. (This is akin to cur rambler
startityg his walk outside the encincting hlis, so thathe

* setsoffin totally thewrong directionand endsupat the

seal). Artefactual solution: of this sort are reladvely
rate and sasily detected: repaition from different
ranclom starts will find many splutions which aremnore
semsible. {In fact, a more likely cause of an ordination
in which poinis tend to be placed around the
circumference of 4 circle is that the input matrix is of
sirnilaribcs when the program is expecting dissimilari-
Hes, or vice—versa; in such cases the siness will also be
very high} A much more comunon form of degenerate
sodution ¥ repeatoble and is a genuite result of a
disjunctionin the data. For example, if the data divide
inte two groups, which have no species in common,
then there is clearly oo yard stick for determtning how
far apart the groups should be placed in the MDS plot.
They arc infinitcly far apart, in effect, and it is not
surprising 3 find that the samples in cach group then
ccllapse toapoink. The solution is to split the data and
carry out an ordination separately on each group,

Another feature of MDS mentloned earier is that,
urlike FCA, there i5 not aoy direct relationship
between ordinations in differént numbers of dimen-
sions. In PCA, the 2-dimensional pichre 15 just a
projection of the 3-dimensionzl ona, and all PC axes
can be generated in a single analysis. ‘With MDS, the
minimdgation of siress is cearly a quite different
vptimisation problem for each ordination of different
dimensionality; indeed, this cxplains the greater
success of MDS in distance—preservation. Samples
that arein the same position with respect to (PC1, PC2)
axes, though are far apart on the PC3 axds, will be
projected on top of each ather ina 2-dimensional PCA
but they will remain separale, 0 some depree, in a
2-dirnensivnal as well a5 a 3=dimensional MDS,

If the ullimate alm is &4 2-dimensional ordinabion, it
vay still be useful to carry out a 2-dimensional MDS
initlally. Its first bwvo dimensions will often provida a
reasonablc sterfing peind o theiterative computations

4. The avbitrariness of sricnbeiion oan be @ prectical imvismice
when cmoparing differont ordinations, and it car be heipful 1o
rivabe g OIS 30 ihat its direckion of maxivsal veration eluays
es alaveg the x azis. This ean be smply achizoed by applying
FCA LD the Zed MDIS co—ordimetes {Hhis iz Aol e same thine es
applyfugy PCA o the qrighmal datd malriz of cowrsel); M
FRAIMER MDS routine docs flos mufomaticolly bt dhe
CONPLOT program alsn permmids uscr—sperified orieniation]re.
flectioms,
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accurate placement, or stmply correspords to a major

cror in the dada malkrix

3 Is there distortion when similer samples are
connected in the ovdination plo?? OUnesimple check on
the sucvess of theordinetion indissimidlarity-preserva-
tion is ko idendfy the top 10% or 20% {say) of valucsin
the similarity matrix and draw a line between  the
coregponding points o the MDS configuration. An
inaccurate representation s indicated i several
comneclions are made between points which are
fur ther apart on the plot than ofhey imconnectad pairs
of polnts.

£} Is the "minimum spamming tee” consistent with
the ardirurtion pietrre? A gimilar idea to the aboveisto
construct the mibmun spanning free (MST, Gower
and Ross, 1969}, All samples are. “connected” by a
single line which is allowed to branch but does not
form a closed loop, such that cne minimises the sum
along thisline of dizssimarifics (taken from theoriginal
dissimilarity matrix not the distance matrix from the
ordination, notel. This line is (hen plotted on the
2-dimensional ordination and inadequacy is again
indicated by connections which look unnatural in the
combext of placement of samples in the MDS
configuration.

5 Do superimposed groups from a cluster analysis
distart the ordination plot? The combination of
clustering and ordinafion analyses can be a very
cHoctive way of checking the adequacy and mutual
consistency of buth representations. Fig, 5.3 shows the
dendrogram from a cluster analysis of the Bxe estuary
nematode data {X7 of Fig. 5.1. Two ar more (arbitrary)

:3 smitarity threshold fﬂ'ﬂﬂﬁf
19 Tinz) are inficated (M dum
* Lightly clugpered sub—groups
840 8 100 within groyp 1 mere desig-
- nated 1Aand 1B by Fiedetal,
198321,

similarity values are chosen ata spread of hieranchical
levels, each determining a particular grouping of
samples. Jn Fig. 5.3, four groups areformed ataround
a 15% similarity level and eight groups would be
determodved for any similarity threshold between 30
and 45%. These two sets of groupings amwe
Eupm-impusednntheMDSurdhmﬁun,Fig,SA,ﬂnditiﬁ
clear that the sggreemend between the twa technigpesis
excellent: the clusiers are sharply defined and would
be determined in much the same way If one were (o
select clusters by eye fom the 2-dimensional
ondination alone. The stress for Fly, 5.4 i= also low, at
.05, glving confidence that the 2-dimensional plot is
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Fig. 54, T esiuary nevaiodes (X} 2-dfmengional MD5
confizuratiot, as e Fig. 5.1, itk superiviposed clusters fom
Fiy. 5.3, ot sinsifayity beoeln of 15% (deched fine}and 30%—45%
(et imeomes a), -



2-dimetgional PCA of Fig, 42 but with superimposed
groups from a cluster analysis of the Budidean
distance matrix'® between the 36 sampkss (Fig. 5.5b).
With the same division into five dusters (thin lines)
and ten clusters (thick lines), a much more distorbd
pictere resulis, with samples that ang vu-tual]}r
coincident in tha FCA plot being placed in separatc

groupsand samples appearing distant frony each other -

formirg 8 COmmen group.

The ontcomeore woulkl expecton thenretical grourads
iz therefore apparent in practice heree MDS can
provide a more realistic pickure In siluations where
PCA gives a distorted mepregentation of the troe
“distances” between, samples. Tn fact, the biclogical
condusions from this particular shudy are entirdy
regative: the test described in Chapter 6 shows that
there arc no stofisieally significant differences in
oommumity stchure batwoeen smy of tha four dosing
levels n this experiment.

In situations whate the samples are strongly grouped.,
#s in Fig. 53 and 54, both clustering and ordination
analyses will demonstrate this, nsually in equally
adedquate fashion. The strength of cudination is in
displaying a gradetior of community composition
acrossa setof samples. Anexampleis provided by Fig.
56, of zooplankton data from the Celte Sea {CF
Samples were collected from 14 depihs, scparately for
day and night time studies at a single site. The
changing community composition with depth can be
traced on the resulting MDS (from Bray-Curlis
similarities). There is a greater degree 0f variability in
community sguctune of the near-surface samples,
witha marked change incomposition atabout 2025y
deeper than this the changes are steady bulb less
pronourwced and they step in parallel forday and night
lime samples. Another obvious feature is the sirong
difference in composition between day and night
near-surface samples, contrasted with their relatively
higher similarity at greater depth. Cluster analysis of
the same data would clearly not permit the accuracy
and subtlety of interpretation that is possible from
ordination of a gradually changing communify
pattern.
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Eig. 5.6. Caltic Sax zeoplankton [C). MDS$ plot for night
{But-xed) apd divy time momeples frow 14 depfh (520 Ty, denoted
AL B, ., W), taken ot a ugle site durbog Septentber 1978,

1) MDD iz simpie in concepf, Though the nmumerical
algorithm is undeniably complex, it is always clear
what MD=is trying to achieve: the consbructionof a
sample map whose inter—point distanices have the
samerank ovder as the corresponding disslmilarities
batween samples. '

3 It is based on the releoant sample tefarmation.
MDS works on the sample dissimilarity matrix not
on the original dala array, so thore Is complete
frecdom of choice to define similarity of commumi-
ty compoaition in whatever tetrns are biologically
mest meaningful.

3) Spectes delerions mre umweczssory,  Anothor
advantageof starting from the sample dissimilarity
metrixie that the numbgr of species on which i was -
basod is largely irelevant to the amount of
calculation required. Of course, if the original
matrix contained a large number of spedes whose
patterns of abundance across the samples varied
widely, amd privr transformation (or choice of
similarity coefficlent) dictated that all s pecies were
givencqual weight, then the struchire in the sample
dissirnilaritics might be more difficalt to ropresent
in a low number of dinvensions, More usually, the
simnitarity measure will automatically downweight
the contributinn of species that are mrer {and thus
more prote o random and  uninterpretable
fluctuations). There is then no neoessity b delete
species, either to obilain realistic Jow=dimeansional
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Fig. 87, Non=metric MDE configusasinn of the road distances

(peerely given: in Talle 5.2) botween retected UK foxnsand citias
{stress = 104},

B} Similarities can be given unequal weight. If some

samplas are inhetently less Toliable than others
because they are based on smaller amounts of
materjal sampled [perhaps combining the results of
fewer replicaics), then similaritics involving these
samples can be given less influence in the
construction of the MDS configuratinn: awajghting
term could be added to the definition of stress in
equation (3.1). Itisalso brue, §hough not of practical
signilicance here, that the algorithm can operate
perfectly successfully when the similarity matrix is
stibject to a cortain amount of missing data.'?
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1} MDS is comput ationally demanding. Togeneratea

single configuration with mederale o large
numbers of samples takes spmc litne vn a modern
personal compuler, though speed has begome
ovuchlis of o problem than itunce was. However,
M DSonmuch morethan ;= 100 samplesis ot only
rather computationally intensive {processor tme
increases roughly proportional w #? but alsa
increasing sample sizc generally brings increasing
complexity of the sample rclationships, and a
2-dimensional representativn is unlikely to be
adequate in any case. {Cf course this last point is
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* Fig, 5.8. Nov—netric MDS configminttion of the samie futna and

Cifws as i Table 5.2, buk sharditng frone the matrix of direct (“as
Hee crone flies® ) disfences betivests etery padr {plress m @),

just as true, if not mone bue, for other ordination
methody). Thisscenario was touched onin Chapter
4, wherne it was sugeested that large data sets can
often be sub—divided @ priovd, or on the basiz of
well-defined subsets from a chister analysis, and
the groups analysed separately by MDS. Represen-

tatives {0r averages) from each group can then be
input v an MDS t display the largescale
shucture.

2] Canvergence to the global minivmum of strezs is not

guarantaed, Agwehave seon, theiterativenature of
the MD5 alporiflun makes it nocessary to epoat
each analysis a number of times, from different
atarting confipurations, W be fuirly confident thata
sohation that re—appears several dmes (with the
lowest observed stress) i5 indeed the global
minimum of the stress function. Cencrally, with
higher stress, the greater is the likelhood of

12, Thiz coeld only De nf émppardience if dota weere bo erisedipectly
As gimilerittes eomsteucted from pofrpise comparisona af
trindagizal material, and sorte 0f tRse commperioois arg dot s
oF drt fost. I i wk of relemance i simularities ave gemerated from

2 Species-My-samples data wmatvik siee, wsoafly, either aif or

Home ﬂ_f e similaritics ii:t\l'l'f'!-li'ﬂg @ particelur sampk: can o

citlcwtated; if the latler, then there iz clearly ne wery the sowplp
conefed foture in the ardinagivi



Many comurnity data sets possnss some g prior
defined stucturne within the sct of samples, for
example thers may be replicaics from a namber of

different sites (and/or bmes). A pre-requisie ko
interprcting  community differences between siles
should be a demonstration that there are statistically

significant differenges o interpret.
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Whan the spacics abundance {for biomayss} informatiom
in a sample is reduced o a single indew, such as
Shennon diversity (see Chapter 8), the cuistence of
rerplica be samiples from cach of the groups {sites/ fimes
cic} alluws formal stabistical treatment by analysis of
variance [ANCVA). This requires the assompton that
the wnivariate index is normally distributed and hes
constant variance across the groups, conditions which
are normally not difficult to justify (perhaps atter
trangformation, soe Chapter9). A so—called glottul test
of the mudl hypothesis (Hyl, that there are oo
differences bebween groups, invalves pomputing a
particular ratio of variability in the group means by
varjability among replicates within each group. The
resuling F sfufiatic takes values near 1 if the oull
hypothesis is true, larger values indicating that H, is
false; standard lables of the' F disttibubion yicld a
significance level {p) for the observed F statistic
Foughly speaking, p is intcrpreted as the probability
that the group means we have observed {or a st of
means which appesr to diller From eadh other 10 an
even greater extenl) could have oocurred i the null
hypothesis H,, is ackually troe.

Fig. 6.1 and Table 6.1 provide an {llnstration, for the 6
sites and 4 replicates per site of the Friegfjord
mactofuna samples. Themean Shanmon diversity for
the 6 sites is Seen in Fig. 6.1, and Table £.1 shows that
the F ratio is sufficionfy high that the probability of
obsctving mesns as disparate as this by chance ia p <
0.002 (or g < (L1 %), if the troe mean diversily at all albes
jsthesame Thisisdeemed to beaswifidently unlikely
chance event that the vl hypothesis can safely be
rejected. Conventiun dictates that values of p < 5%
(say?are sufficiently small, i g single lest, to disoount
the possibility that H, i3 true, but theve is nothing
sacrosanct aboul this figure: clearly. values of p = 4%
and 6% should dicit the same inforance. 1t is equally
clear that repeated significance tests, each of which has

Shannan diversity (H)
1
—_—— )
—

L

A e c g 4 E G

Flg. 6.1. Frievfford macrofaune (F).  Mens ol 35%
cornfidence inberinls of Shannon diversity (17} at dhe & field sites
(A-E, ) shoum it Nig, L1

{ray} a 5% puwsibility of deseriblng a chance eventas a
real diffurence, will curmulabvely nin g much greater
tsk of drawingat leastone falsg inference. Thisizane
of the (many) reasons why it s notusually appropriate
ko hangle a mulli species matrix by performing an
ANDVA on cach species in born.  {(More decisivo
reasons are the complexitics of dependence bebween
spectes and the inappropriateness of normality
assumpitions).

Fig. 6.1 ghows the main difference ko be a higher
diversity at the ouler site, A. The intervals displayed
arg 95% confidence inbervals for the tue mean
diversity ateach sibe; note that these are of cqual width
becanse they are based on the assumption of constant
varlance, that is, they uwse a pooled estimate of
replication variability from the residual mean square
in the ANOVA table

Table 5.1, Frierfiord macrefauna {E). ANGWVA tabie showing
rjectivn (et & significanoe fevel of6.7'% b of e global Ingrothest:
af o site—tiside differences” in Shgwaon diversity (H'S,

Sumofl Degof Meen F Sig.
wpares  freedom  Suare matin leval

Sibes 3.938 5 788 15T «RIm
Fesidual 1837 18 his2
Totat 16874 23




ANOSIM test (analysis af similurities} , by analogy
with the acronym ANDVA {analysis of variance). The
history of such penmutabion tests dates hack to the
epidemiological work of Mantel (1967), and this is
combined with a general randotization approach to
the penetation of significance levels (Monte Carlo
tests, Hupe 1968). In the context below, it was

B

Fig.6.3 dlspla}rsﬂmMDSbasedmﬂyun H'IEIZsampIES
{4 replicates per site) frum the B, C and D sites of the
Frierfjord macrofauna data. The null hypothesis (1.}
iz that there are no differcnces in community
eompostion at these 3 sites. In order to eramine H,,
there are 3 main steps:

described by Clarke and Green (1958).

1} Comtpute & tost stafistic reflecting the observed
differenecs betoeen sites, contrasted with differences
amonrg replicates within sites. Using the MDS plot of
Hg. 63, a natwral choice might be to calculate the
average distance between every palr of replicates
within a site and conteast this with the average
dHetance apart of all pairs of samples corresponding to
replicates from dIferent sites. A tesloould ceriainly be
constructed from these distances but has a number of
drawbacks. _

&) Such a statlstic could only apply ko a eliuation in
which the method of display was an MDS rather
tham, say, a cluster analysis,

B The result would depend on whether the MDS was
construcksd in bwo, three or higher dimensions.
Thene is ofttn oo "oorrect” dimensionality and coe
may eruck up viewing tha picture in several differont
dimengions- it would be unsabisfactory to generate
different ket stalistics in this way.

c) The configuration of B, C and Dreplicates inFig. 63
alsa differs slightly from that in Fig. 62a, which
includes the full sat of sites A-F, G. Il iz again
undesirabl e that a test statistic for comparingomiy B,
Cand I should depend on which other sites are
included in the picture.

Thesethree difficulties disappearif the testis based not

on distances belween samnples in an MDS but on the

correspanding (rank} simdlaritics belwoen samples in

I. The PRIMER pengram ANCGSIM cmers fests for peplicates
Jron T—rumy g 2-cvor (mertad ar crosied ) Btk Phe progmans
ANOSIM tackles the sperial case of @ 2-way layout mith g
replication, which el @ modifid shyle afmrdmmdmm
e of Wil chegrier.

Fig. 63. Frierfiord macrofousa (FL MDS ordination as for
Fig. 6.2 bu! compruted only from Whe sirsilarities inouluing sites
B, C and D [stress =411

the underlying triangular similarity matrix. If Fy s
defined as the average of all rank similarities among
replicates mitfin sites, and ¥e is the average of rank
similarities arising from all paire of replicates betmesn
different sites, then a suitable kst sk tishc is

R = (g —nftM2) f5.1)

wherne M = win-11/2 and n i the tota] nurmber of
samples under considerabion. Note that the highest
simllarlty correspondsto a rank of 1 {thelowest valuel,
following the usual maethematical convenHon for
asgigning ranks.

The denpminator constant in equatinn {6.7) has been

chasen so that:

a} R can never technically lie outside the range (-1, 1);

b) R = 1 unly if aff rephicates wiihin sites are more
gimilar b cach other than m:y replica ks from
diffcrent sikes;

o) R isapproximately 2ero if the nudl hypothesisis ko,
=0 that similarides bebween and within sites will be
the same on average.

R will usually fall between O and 1, indicating soime

degros of disedmination betwoon the sltes,. R

sitbstantally Less than zem is unlikely since it wonld

correspind o similatities acvoss differont sites being
figher than those within sites; such an oocitrrence is
more likely to indicatt an incorrect labelling of
samples. The R statistic itself i= a uscful comparative
mieasure of the degree of separation of sites, though the
main interest usually centres on whether it s



computed: 12% of these values are cual to or larger
than(23s0 H, cannol bomjected. By contrast, R=054
for the comparison of B against D, which is the mout
extreme value possible under the 35 pormutations. B
and D am: therefore infered to he significantly
different at the p <2 3% lavel. For C apainst DL R = 057
simitarly leads to rejection of the null hypathesis (p <
3%). :

Theme js a danger in such repeated significance tests
which should be noted {although little can be dons to
ameliorate it here). To reject the nuoll kypothesis at a
siprificanoe level of 3% implies that a 3% risk is being,
riih of drawing an incorrect conclusion (a Type I error,
in statistical tenminclogy). If many such tests ane
performed this risk will cumulate. For cxample, all
pairwise comparisons betwoen 10 sikew, each with 4
replicates (allowing 3% level tests at best), wounld
involve 45 tests, and the overall rsk of drawing at least
one false conclusion is high. For the anatogous
pairwise comparisons following the glohal Fiestina
uwnivariate ANOYA, there exist muiliple comparison
Lests which attemnpt to adjust for this repititon of risk.
N such constructs are possible here, ard ihe
pragmatie course is la Sxgrcise appropriate cankbion in
interprciation and /or enhanoe tho potential signifi-
canee of tha tindl vidual Lests by a modest increass in the
number of replicates.  Eyuation (6.2} shows that 5
replicaies from each site would allow a 1% lewel test fur
a pairwise comparison (126 permutatioms), and &
replicates gives close to 8 02% level test (462
permutations); compounding these sraller values is
clearly preferable bo cumulating 3% rigks (or the 10%
Type Lerror, atbest, ltom pairwise comparisonsof anly
3 replicater!).

This also raiscs the issue of Type I sevor of such a
pormutation at, related to its pemer to detect a
differemce between sites if one genuinely exists. Such
concepts ane not easily examined for nom—parameatric
pracedurcs of this type, which make no distributionsl
assumptions and for which it is difficult to specify a
precize non-null hypothes!s; all that can be obvicosly
said is thal power will improve with increasing
replication,

Generality of application

It iz evident that few, if any, assumptions have been
made sbout the data In constructing the 1-way
ANOSIM test, and 1t is therefore very gmwrﬂll}r
applicable. 1t i5 not resricted t0 Bray-Curtls
similarities or even o similaribics computed from
species sbundance data: it could provide a non—para-

_formed data to oblain the MDS of Fig. 6.5.

i
BT T

page 65

metric alternative to Wilks” A test for data which ary
morenearly muldvariate normally distributed, c.g. for
lesing whother groups [sites or tHmes) can be
distinguished on the basis of thelr environmentaldala
{sce Chapter 11). The latier would involve computing
a Euclidean distance malrix bebween samples (after
suitable transformaton of the emvironmental vari-
ables) and endering thisas a dissimilarity matrix o the
ANOSIM procedare, Clearly, if multivariate normal-
ity assumplions are genuinaly justified then the
AMOEIM testmust lack sensitivity in comparison with
standard MANCWVA, but this would seem 10 be more
than compensatod For by its greater gencrality,

MNote also that there 13 no restriction to a balanoed
number of replicates. Some groups could cven have
vnly one replicate provided enough replication exists
inother groups o generate sullicient permutations for
thie gobal tenst (though there will be 3 sense in which
the puwer of the test is compromised by a markedly
unbalanced design, hereas elsewhere). More useiully,
nate that o assumphions have been made about the
variahility of within—group replication necding o be
similar for all growps. This is soen in the following
example, fur which the grops in the 1-way layout are
not sites but sampd s from different years at a single
site,

i Y
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Warwick ¢f gl {1980b) examined data from 1Dr9phcate
trantects acruss g single ooral-reef gite in 5. Tikus
Tsland, Thousand Islands, Indonesia, foreach of thesix
years 1981, 1983, 1964, 1935, 1987 and 19HH. The
community data are in the formof % coverof a transect
by each of ihe 58 poral spedes identified, and the
analygis vused Bray—Curtis similaritics on untrans
Thera
appcars o be a strong change in conumunity pattern
botwaern 1981 and 1983 {putatively linked to the
1952/3 ElL Nifio) and this i= confirmed by a 1-way
ANOSIM test for these two years alome: R = D43 {p <
0.1%;. Mobe that, though not really designed for ds
situation, the test is perfecily valid in the face of much
greater “variability™ in 1233 than 1981; in fact it is
mainly a change in varlability rather than localion in
the MD& plat that distingurishes the 1981 and 1983
groups(a point refurned toin Chapter 15). This iz m
conitrast with the standard univariate ANOVA (gr
multivariate MAMNOVA} test, which will have no
power to detect 2 variability chanpe; Indeed it is
invalid withoutanassumpticnof approximately equal
variances {or varianice-cavariance matrices) across the

groups.
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Fig. &6, Chyde nematodes 1Y), a) MDS of species abthdances
froam throc ‘pollittad” (P1=P3) and three ‘control sites {13y,
Tklls Borer replivate somples at most dies (skress = 0090, b}
Simulated distrlution of the test statistic R, weder the
Fypothsic HI of ‘o stte differevces’ within esch condition; the
observed K fs 075

demonstrated that there are, in effect, only thrae
"replicates” (the sites 1-3)at cachof the two conditions
(Cand P). This isa 1-way layout,and H2 canbe tested
by 1-way ANCISIM but one first needs to combing the
information from the three original replicates at each
site, tu define a similarity matrix for the 6 "new”
replicates. Consistent with the overall strategy that
bests shuould only be dependantan the rank similarities
in the original triangular mmatrix, voe first avErapes
over the appropriate ranks to nbtain a reduced matrix.
For example, the similarity between the three P1 and
three F2 replicates is defined ay the average of the nine
inter—group renk similarities; this is placed into the
new similarity matrix along with the 14 other averages
(1 with C2, P1 with 1 atc.) and all 15 valwes are then
re—ratiked; the 1-way ANOSIM then gives R = 074,
There are only 10 distinct permutations so that,
although this is actually the most extreme B value
possible, H2 is only able to be rejected at 2 p < 10%
signdficance Jevel,

page 5-7

The other scenario & consider is thal the first test fails

ty Teject HL: there are then two poseibilitles for

encarniming H2: '

a) Proceed with the average ranking and re-ranking
exactly as above, on the assumption that even if it
cannot be proged that there are no differonces
between siter it would be unwise to assume that this
is 50; the test may have had rather lite power to
detect such a difference.

b Infer frorn the: tesst of H1 that there are no di fferences
betwoon sites, and treat all replicates as1f they were ©
separate sites, o.g. there would be 7 replicates for
control and % replicates for polluted conditions in
Fig. 4.6a.

¥Which of these two courses bo take is B matier For

debate, and the argument here §s exactly that of

whether “to ponl” or “not o pool” in forming the
regiddual for the aralogous univariate 2-way ANOVA,

Cptivn b) will certainly have greater power but runs a

real risk of being invalld; ophion a) is the conscrvative

test and it i certainly unwise to design a study with

anything uther than option a) in mind 2

- 2 i 933 .
5 ; it i e
98 der s

An eample of a two—way crossed design is given in
Warwick et &, (19%0a) and is introduced more fully
here in Chapter 12, This is a so—called actural
experiment, shudying disturbance effects on meip-
benthic communitics by the continual reworking of
sedimentby soldier crabs. Twnreplicate samples were
taken fromeach of foor distorbed patebwes of sediment,
and from adjacent undisturbed areas, on a sand flatat
Eaglehawk Neck, Tasmania; Fig. 6.7a is a schematic
representalion of the 16 sample locations. There are
bwa factnrs: the presence or absence of disturbance by
the crabs and the “block cffect” of the four different
disturbance patches. 1t might be anticipated thal the
community will change naturally across the sand flat,
from block o block, and it s impartant to be able Lo
separate this effect fram any changes associated with
the disturbance ikself, There are parallels here swith
impact studies in which poliotants affect sections of
several bays s0 that matched contol and pollated
conditions can be compared against a background of
changing community pattern across & wide spatial
scale. There are presumiend tubereplicate samiples from

Z. The ANOSIM program in tie PRIMER packnge s lways tafes
Ttz first oprion,
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cores were rardlomly divided bitween 4 mesocosm
basing, 16 fo a basin. The experinent involved 15
different nutrnient etrichment conditions and one
cantrol, the freatments being applied to the surlace of
the wndisturbed seclivemt cores.  Afer 16 weeks
condrolled exposure in the mesocosm envirenroenl,
the meiofaunal commmunibes in the 64 cores were
ident fied, ared Bray—Curlis similaribes on rogt-trans-
formed abvmdances gave the MDS of Fig. 6.8, The full
sctof 16 reatments is repeated in each of the 4 basins
(blocks), ko the strichire is a 2—way reatments xblocks
layout with only one replicate per cell, Lidle, if any, of
thisstruchureizapparent from Fig, 6.8 and a formal test
of the null hypothesis

H,: there are v treabment differences (but allowing
thwe possibility of basin effects)

is clearly necessary before any intorpretabion is

attemphed.

In theahsenca of replication, a tedt is still possible inthe
ativgriale case, under the assumption that interaction
effects are small in relation to the main reatrnent or
block differerces (Seheffa, 1959). In a similyr spirit, a
Hobal test of Hy i3 possible herve, relying on (he
observation that if certain treatments ane rosponsiole
for comumuypity changes, in a more—or-oss congistent
way across blocks, separale MDS analyses for cach
block should show a repeated reatmont patbern. This
is illustrated schernaticallyin the top half of Fig. 6.9: the
fact that treabment A is comsistently close to B {and Clo

3 can only arise 3f Hp is falsc. The analogy wath the

4 (tress = 1.28),

univariale Lest is clear: large interaction effects tmply
that the treatrmemt pattern diffiers from block to block
and there is little chance of Identifying a treabment
effect; on the other bemd, for a treatment x block desien
guch as the current mespoosm experiment there is no
reason to expect trea tments to behave very differantly
i the different basins.

Whaltis therefore requived is a measure of how well tha
treatment patterns in the ordinations for the different
blocks match; this stalistic can fhen be recomputed
urkier ali possible (o1 a Tandom subset of} pormuta-
tions of the treabment labels within cach block, As
previvusly, if the observed statistic does not £al? wi (hin
the body of this (stralated) distribution thers is
significantevidence lo reject Hy. Note that, as required
by the statement of H.., the test makes no assumption
aboul the absence of block effects; botween—block
similarities are irrelevant ko a statigtic based only on
agreement in wilhin—llock patberns.

In fact, for the same reasoms advanced for the previpus
ANCSIM tests (e, arbitrariness in choice of MDS
dimensionality), it is more satisfactory o define
agresment botvween treakment patterns by referencs (o
the underlying similarity malrix and oot the MOS
locations, Fig. 6.9 indicates baro tonbes, which 1ead to
equivalent formwulations. I there are y reatmenits and
thus M = u(n-13/2 similaritics within a block, a naharal
chaice for agreement of two blocks | and & is the
Spearman corrélation coefficient
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nematode communities at 19 siteg in the Exe estuary,
seen in Chapter 5. In fact, thisis based om snaverage of
dataover 6 suncessivebi-monthly sampling occasions.
For the individual tmey, the samples remain strongly
clustered into the 4 or 5 main groups apparent from
Pig.6.11. Less clear, however, is whethet any structure
oxists within the largest group (sikes 12 4o 19) or
whether the scatter in Fig, 611 is simply the

consaquence of sampling variation.
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Fig. 6,11, Exe estrary nematodes {X3. MDS, for 19 inter—gidal

gitex, of species ainerdarces aoeragad Over & bE-nonthly
aaming eovasions; see aleo Fiy. 5.1 (stress m 005,
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a o Fig. .10, Westerschalde
o
K nn" H JH N G nematodes experiment
F L By = WL MDS for the 16
M E A g A » treatments (A o F), per-
I forused separately far eack
N L of the four Beshis; L
skaved treatimznt portemy is
apparent  (siress  rorges
fron: .16 to 0.20).

Rejection of the null hypothesis of “no site to site
differences”™ wovld be suggested by a common site
pattern in the scparate MDS plots for the 6 dmes (Fig.
6.12). Atsome of the limes, however, one of the site
samples is missing {site 19 at times 1 and 2, gite 15 at
time 4 and site 18 at time ). Instead of removing these
sites from gf pluts, in arder to achieve matching sets of
similaritles, cne can remove for each peir of times only
those sites missing for either of that padr, and compute
the Spearman correlation p between the remaining
rank similaribies. Thep values for all pairs of times are
then averaged to give fay, L. the Jeft-hand route is
taken in the Jower half of Fig. £9. This is vsually
referred 40 as pairwise removal of missing data, in
aomirast to the Hskeise remavel that would be needed
for the vight-hand rouke. Though increasing the
wmputation time, palrwise removal cleady utiliscs
mare of the available information.

Figure 612 shows evidence of a consistent site pattern,
for example in the proximity of sites 12 10 14 and the
tendency of sita 15 ko be placed on its owm; the fact that
site 15 is missing on one nccasion does not undormdre
this perceived stcture. Pairwise computat n pives
Pau = {1.36 and its significance can be determinad by a
Monte Carlo test, as before. The (nom—missing) site
labels are perruted amongst the available samples,
separately for cach time, and these designations fixed
whilst all the paired o values are computed (using
pairwize removal) and averaged. Here, tha largest
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Chapter 2 {page 2-6) describes how the original data
matrix can beused todefinesimilarities balween cvery
pair of eperies; biro specics aze thought of as “simdlar™ If
theirnumbers {or bivmass) tend to Auctuate in parallel
across sites. The resuling species similarify matrix
can be input to a cluster analysis or ordination in
exactly the same way as for sample similarities,!

Fig. 7.1 displays the results of a duster analysis on Bxe
cstiary nematode data {37, extensively lfustrated in
Chapter 5. The dendrogram is based on Bray—-Curtis
similaritics computed on standardised abundances, ag
given in equations (2.9 and (2.10). Following the
recornmendaltions on page 2-6, the number of species
was first reduced, remining only those that accounted
for more than 4% of the total abundance at any one site.
Cluster analysis with a greater number of species is
possitle but the “hit-and-miss” oconrrence of the

1. Compulation of species smilarities & an optiog availifle i
the PRIMER priyrens CLUSTER, and is weferred io gz isporse
analysis by Fild of al. £1982).

rarer species across the gites ends to confuse the
picture. In fact, at 2 similarity of around 1909%, the
dendrogram divides fairly neatly intn 5 clusters of
species, and these groups man be identified with the 5
clusters that emerge from the sample dendrogram,
Fig, 53. (This identificaion comes simply from
categurising the species by the site groups in which
they have the greatest abundance; the correspondence
bebween site and spectes groupings.on this basis is soen
o be very close.]

Fig 7.2 shows the 2-dimensional MDS plot of the sarme:
species similaritics. The groups determined from the
cluster analysis are superimposed and ihdicatea good
measure of agreement. However, both clustering and
MDS have worked well here bocause the sitos are
strongly prouped, with many species characteristic of
ooly ane site group. Typically. speciescluster analyses
are lesz clearly delineated tham this and the
corresponding MDS ardinations have high stross, A
more informative approach is often to concenitrate on
the sgmple similariies and highlight the spedcs
principally responsible for determining the sample
groupingsin the clustet or ordination analyses.
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dissimilarity 3 between groups 1 and 2* Typleally,
there are mamy pairs of samples (f, k) making ap the
average &, and a useful measure of how consilently a
spocics contributes to 8 across all such pairs is the
staredard deviation ST of the §yf) values. 5 KFis
large and STHE) small fand thus the ratio 5 /S0 ) is
large), them the /th species notonly contribubes much to
the dissimilarity between groups 1 and 2 but it also
does 50 consistentdy in inter—comparisons of all
samples in the twe groups; it is thus a good
discriminating species.

Tabfe 7.1. Briztol Chiatme! rooplankdon [R). Breckdiwn of
avergge dissimilar iy fetwesn growps 1 and 2 infe comribulions
frovmeach pecies; speciesare ordered idecreasing cardy thutioe
fpart oaly given). '

Group 1:; 1 2 A5 1 & F K 10,12

Grogp #: #,2&,190,29,77,17,11,80,T5,16,14,21 18,25, 7%, 22 .26 17
Greup F:o4F 35, il 68 50, 53,44 43, 73,35 54,55,47 31

Craup &: 5T, 81,65 ,37 32 36,348 57 56,70 28 19,40 45 52

Fig. 7.3, Rriatel Chasnel zovpieakion (B, Shade mateix for
the 24 species and 57 aites. The origlnal auridences e been
catagarizad and seprisertad by symbuls of increasing density,
and i s axd coluwens of ths array re—wdorsd on the lesas of
cluster ard MIDS aralysss of the sites aud species.

Similarity breakdown

An alternatlve, more analylical way of achieving the
game characterisation is t0 comput: the average
dissimilarity & botwoen off pairs of inter-group
sampley (ie. wvery sample in group 1 paired with
evary sample in groap 2, say) anud then break this
average down indo the separate contribufions from
each species to 5.7

For Bray—Curlisdissimilarity 8 between two samples
§ and k, the contribution from the ith species, Sali
could simply be definad as the fth term in the
summation of equation (2,11}, namely:

Bti) = 100 Ly — e L2, % oty + e (7.1)

By} i= then averaged over all pairs {f, k], with fin the
first and k in the second group, o give the sverage
contribution T (eom the fth species W the overall

3. This ie irglepumiad iv the PRIMER program SIMPER
{“similariiy perceiages”], beth in respoet of cortrrkons o
wtvrage eimilardiy withip @ grop and avertge drssiombrity
Badpecw gevvirpm.

Sip. Nawe & SDM5;) 5 /SINE) %
&  Ewrylmory affiniz FrFOLE 3 13.0
4 Cendropages Bamalus 73 44 17 252
3 Colerns helgelandicy 6.8 44 1 367
1 Acartia biffloss 57 4 14" 153
23 Tt lomyicurmis S5 33 17* 556
18 Peeudoalonys elongatus 47 1.5 ar 635
13 Faravalanus prtus - 33 4.2 04 B%1
15 Plewarbrachie plensjo A1 2.8 11 M3
W Sagitia pleamns fir 24 14 T.6% 731
149 Sagitta elagans 2T 1A 13 825
E  Castrosaoous spinifer 20 1&# 11 859
14 Plerrobrocliie priees 18 & 1.2 #5.0
10 Mesopodopsia shebberi 1.7 14 13 918
21 Schistowysiz sprirdtus 16 14 1.1 e ¥
17 Pulychaste lorvas 5 13 12 g
2 Arurbin clousi a7 18 4 853

For the Brizipl Charmel 2ooplankton data {8) of Fig.
7.3, Table 7.1 shuwy the results of broaking down the
disshrilarities behween sample grosps 1 and 2 inby
specics conbribubions.  Spevies are ordered by their
aycrage conkibution 5 to the total average
dissimilarity 6= £} = 52.5. Specles which an: likely bo

4 Thovgh s is a vaural defivitioe, it shocld ba noated ot
ihee {5 ra nnammbigrions partition of By Teto contribubions fom
edch spuiios, enas e standavdisieg Lo i the desosminator of
equation (7.1} iz & fusction of all species palues.

5, The sl definition of standand deviation from elemantary
al tibies isw comuenient meamre of variabidily leve, bl Here is
we semse in ok the QR velues mre “indepemdent
obagremiions”, and ane carnot use standard stavistical infarence
i define, say, “08% confiderce fderoalsT for e mean
emdribndion frim the ith specias,



A variety uf diEferEﬂl' indices {sing}e mm*Lbcrs.] can be
used as measures of some atfribule of comumtndty
structune in a sample. These inglude the ohal number
of individuals (N}, intal number of species (5, the total
biomass (E), and alse ratios such as BN {the average
sizecian organismin the sa mple} and N 5 {the avernge
miamber ofindividuals per specics). These indices tend
tobe leszinformative than some measure of the way in
which the total number of indiviguals is divided up
among the diffevent spocics, i.e. diversity indices.

Indices of diversity and evenness

A single index of spacies {or higher taxon) diversity is
comrnonly emploved ln community studies, and Is
amenable to simpie statistical analysle, A bewildering
variety of diversity indices has bocn used, and itisnot
appropriate here & discuss thoir relative meris and
dizadvaniages. Good accounis can be found inHeip of
gL (1988} and Magmurran {1991).

Twn different asprcts of communi by strucure oonitrib-

uie to the concept 0f community diversiby:

a) Species richness. This is a measure related, to the
total number of species present.  Chvipusly we
wold consider a sample containing more specics
than anather te be the more diverse.

b) Equitability. Thiz cxpresses how evenly the
mdividuals are disiributed among the different
specles, and is often termed ereroess. For wample,
il two samples each comprising 100 individualsand
four specles had speciesabundances of 25, 26,25,25
ang 97, 1, 1. 1, we wauld intuitvely consider the
focmet to be more diverse although the spcies
richness s the same, The former hashighevenness,
but low dominance (essentially the reversc of
evenness), while the latter has low evenness and
high dominance (the sampla being highly domi-
nated by one specles).

Dilferent diversity indices may emphasize the species
tichness or equitability cimponents of diversity o
varying degrocs. Several of these indices ave indluded
as gpecial cases im g unified sories of Avergity mumbers
of different orders proposed by Hill (19736)2
However, these numbery do not as yet soem to have
been widely adepted. The mosl commonly used
diversity measure is the Shawron—Wiener diversity
inelax:

H = - X pilog p) (8.1
wherep; s the proportionaf the total count for biomass
cte) atising from the ith species., :

Thig incm-paratves both the spocies richness and
equitability components. Note that lagarithms to the
base 2 arn often ueed in the cakoulation, giving the
diversity units ag ‘bits per individual’, Log 15 also
frequently used, so0 when comparing published
indices it s lmprortant to check that the satve logarithm
base has been used in each case.

Species richmess

Species vickncss is often given simply as the total
number of speries (), which is obviously very
dependent on sample size (the bigger the sample, the
more Fpecies there are likely to bed. More commonly
Margalefs index () is used, which also incerporates
the total number of individuals {N) and isa measure of
the number of ypecies present for a given number of
individuals:
={51h g M 8.2

Equitabitity

Thizis mosteornaonly expressed ae Plafon's cretress
fredenc:

F = H{uvbserved} | H'ma: (3.3}
where H g 15 the madomum possible diversity which

would be achieved if all species were equally
abundant {= lag 5.

1. Althoughthis book refates specifically ts the me;'ubﬁ_ﬂhos, e
trastmret of shofitival mthiods & applicable to all comatmirity
abniies,

2. The PRIMER prigram DIVEREE furmns E!ncﬁan:fmm ']
dozen oy o indicer, Eacleding Hill sunsbers and the other
richness mud equilahility ieasures giten fere,



Determining stress levels

Increasing levels of enviromomental siress have
genceally beon considered to decrease diversity {eg.
H'}, decrease species richness {e.g. d) and decrease
avenness (eg. Fl. ie cresse dominance.  This
interpretation may, however, be an vver—simplifica-
tinn of the situation. More recent theories on the
indluence of disturbarce or stress an diversity suggest
that in sihtations where disiurbance Is minimal,
species diversity is reduced becanse of competitive
exclusion between species; with a sightly increased
level or frequency of disturbance competition is
relaxcd, resulling inan increased diversily, and thenat
stil} higher or more fraquent levels of disturbance
species start o become eliminated by shress, so Hat
diversity lalizagain. Thusilisalintermediate levelzof
disturbance that diversliy is highest (Conmel], 1975;
Huslon, 197%). Therefore, depending on the starting
point of the cooununity in relaton to existing stress
lewels, Incraasing lavels of strass (eg inducad by
pollution} may elther cesult in an increase or decrease
in diversity. It is difficult, if oot impossible, 1 say at
what point on this contimmm the commmuniby under
investipation cxists, or what value of diversiiy one
might expect at that site if the community were not
subjected to any anthropogenic stess, Thas, changes
in diversity can only be assessed by comparisons
belween skations along a spalial contaminabon
gradient (e, Flg. 8.1} or with historical data{Fig. 3.2

Caswell’'s neatral model

The equilability component of diversity can, however,
be compared with some theoretical expectation of
diversity, given the number of individuals and species
present. Observed diversity has been compared with
predictions from Caszeell’s seatval modal (Caswroll,
1978). This model constructs an ecologically ‘neutral!
community with the same number of species and
individuals as the observed community, assuming
certain community assembly rules {random births/
draihs and random imanigrations,/ crigrations) and
i interactions bebwwewen speciey.  The deviation
slalistic V is then determined which compares the
observed diversity (H') with that predicted from the
nenttral model (ECH)):

{H' - E(H'H
5.D.(H)

v = 8.4)

A value of zero for the V statistic {ndicates neutrality,
posiive values indicate greater diversity than
predicted and negative values lower diversity, Yalues

»+2 or <=1 indicate significant departures from
neutrality. The computer Fmg;am of Goldman &
Lambshesd (1959} i3 yseful,

Table 8.1 gives the V shatistics for the macrobenthos
and nematode component of the meichenthos from
Hamilton Harbour, Bermuda (.f. Fig. 8.1). Mote that
the diversity of the macrobenthos at slations H4 and
H3 iz signdficantly Below neoteal model predictions,
but the nematodes are dese oy neutrality atall stabions.
This indicales (hat tha nacrobenthic communities ans
under some kind of siress at these two stations.
However ibmust beborra in mind that deviationin H
from the noutral model prediction depends only on
differences in equitability, since the species richness i5
fixed, and that 1he equitability component of diversity
may behave differently from the specics richness
component In tesponsa to stress (see, for example, Fig.
B2). Also, it iz quite possible that the ‘intermediate
disturbance hypothesis’ will hava 2 bearing on the
behaviour of ¥ in regsponse to dsturbance, and
increased disturbance may either cause it to decrease
arincrease. Using this method, Caswell found that the
fera of tropical rain (orests had a diversity below
nentral model predictions!

Table 8.1, Hamiltoa fHarbour, Bermuda (HI, 'V skatisfica for
sumined replicates of mgerobenihos and meiobenifie Rematode
samples at 5z fations,

Stgtion Macrabanthos Mematodes
H2 +It5 =1
H3 54 +i14
H4 -5 =15
Hb -19 0.
HE =1.3 =4
H7 —i.Z 14

Wwwmmmwmﬁwmwwwm‘w

Hig
ses*wm-ﬁﬁﬁﬁﬁﬁﬁ-ﬁ59%%ﬁmﬁﬁsﬁﬁmﬁﬁmﬁmxmﬁﬁmﬁm&»%ﬁﬁg
The purpose of graphical /distributional representa-
Licoms is Lo extract nformabion on patterns of relative
species abundanees without reducing that informa-
Lian Lo a single summary statistic, such a= a diversity
index. This class of echniques can be thought of as
intermeadiate between yuiogriale summarios and full
meultivariafe analyses, Unlike mulbvariate methods,’
thiese distributions may extract universal Features of
commmani by structute which are nota function of the

4. This iz implemented in e PRIMER pragram CASWELL.
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palluted fouter) statioms is much fatter, with low
dominance. Fig, 8.5b shows Fdominance curves for
the same data. Here the curve for the inner statlons is
elevaled, indicating Iower diversity than at the 250 m-
1 km stations.

Abundance/biomass camparison (ABRC) plots

The adventage of distribution plots such as f—domd-
nance curves is that the distribution of species
abundanvesamongindividualsand thedistribution of
species biomasses among individuals can be com-
pared on the: same terms. Since the two have different
unils of mcasurcment, this is oot powsible with
diversity indices,

13 5 T % 1113
Geometric abundanca class

dance clrgeag for the 12
satipling skations shonm
in Fig. 8.3,

18 B ra 1113

This is the basis of the Abundarce/Biowass Contpari-
son {ABC) method of determining levels of distur-
bance {pollution~induced or otharwise} on benthic
macrofauna commungties. Undet stable conditons of
frequent disturbance the competitive dominants in
macrobenthic communities are K-sclected or conser-
vative species, with the attribules of large body slze
and long life—span: these ake rarely docodinant
numerically but are dominant in terms of binmass.
Also prasemt in these communitics are smaller
rselected or opporhunistic species with a short
fifespan, which are usually numerically dominant
but do not represcnt a large proportion of the
community biomass. When polluton perturbs a
communily, conscrvative species are less favoursd
and nppartunistic species often become the bicmass
dominands as well a5 the rmmerical dominants. Thus,

a b

18 - © 1040
: 2 Fig. 85, Ekofisk macra-
ol g @ benthes (E). a) Average
3 : € ranked specfes gbhundance
R ol & 60 ourpes (xais fogyed) for
£ # § stations within 250 m of
a =9l % T 44 Hat cenitne of drilling activ-
o ; i ity (dotted line) and 10
E‘ 20 stakiuns Breiueenr 2450 m
= ard 1k from the conire
ob, w9 ol e fsolid ek b b-domsi
1 10 1oo 1 10 100 RRECe ourves for Hie same

Species rank

groups of statiors,
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maethixd of data analysis would have indicated gross
polludon. However, the biomass and abundance
curves start © become transposed at some distance
from the dump-centre, when species diversity is still
high.

Transformations of —dominance curves

Yory often k-dominarnce curves approach a cunla-
tive frequency of 100% or a large part of thelr length,
ard in highly dominated communities this may be
after the first two or three top-ranked species. Thug, it
may be difficult to distinguish between the frms of
these curves, The solution to this problem ie to
transform the y—axis so that the comulative values are

wears, 193 fo 1973,
Afmmrdnnee a Hhick liee,
Dioruaes = thin line.

closer 0 linearity. Clarke (1990} suggests tha medified
logistic tansformation:

3 = lagll1 + y)f107 -yl

Anexample of the efect of this ransformationon ABC
curves is given in Fig. 8.9 for the macrofauna at two
stations in Fricrfjord, Norway fFl, A being an

reference sitke and C a potentially
impacted site. At sile C there is anindication (hat the
biomass and abundarce curvas crossatabaut tha tanth
spreics, bl since both curves are close to 100% at this
point, tha crossover is unclear.  The Iogistic
transformation enables fhis orossover to be beber
visualised, and {llustratos more clearly the differerces
in the ABC configuralions between these two siles.

{8.5)
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thebiomass curve, showing a slight and steady dedine
before the inevitable final rise.

Under poliuted conditions there is still a change in
position of partial dominance curves for abundance
and biomass, with theabondanoe curve now above the
biomass curve in places, amd the abundence ourve
becoming much more variable. This implies that

Tor gita A

-l

Partial % dominance

1 10
Speciss rank

Fig.5.10. Frierfiord macrofmmalE). Partinldomminsmes curtes
(etnsdancallbiomase comparison) for referesce site A {o.f. Figs
8.9z and ¢ for corresponding stavdard and transformed ABC
plais).

) ‘I.I:I rudifind Ingislic tramsfor-
- madion. Abendance = ihick
Jiret, Mopiass = thdy Tlne.

pollubicn effects are not just seen In changas to a fow
dominant spevies but are a phernnenon which
pervades the complete suite of speries in the
comanunity:  For example, the time series of
macrobenthoadata from Loch Linnhe {Fig. 8.11) shows
that in the most polluted years 1971 and 1972 the
abundance curve is above the hiomass raree for most
of it= length (and the shundance curve is very
atypically ematic), the curves s over in the
maderately pelluted years 1668 ard 1970 and have an
unpolhated configuration pricr to the pollutica inpact
in 1956. In 1067, there is perhaps the suggrestion of
Incipient change it the inftal rise in the abondance
curve. Although these crves are not so smooth (and
thercfore not 30 visually appealing!) as the original
ABC curves, thay may provide a useful alternative aid
to interpretation and are certainly more robust m
random fluctiations in the abundance of a small-
sized, numerically dominant spedes.

Phyletic role in ABC methad

Warwick and Clarke (1994) have recently shown that
the ABC respomse results from () a shift in the
proportions of different phyla presentncompnunities,
sore phyla having largor-bodied species than others,
arnet [ii) & shift in the reladve distributions of
abundarce and biomass among sperics within the
Polychacta but not within any of the othet trajor phyla
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W statistics

Whemn the aumber of sites, Bmes or replicates is large,
presenting ABC plots for sery sample can be
cumbersome, and it woldd be convenient w recuce
each plot to a single summiary s@atistic, Clearly, some
infprmation onust be lost In such a condensation: one
plots cumwlafive domdnance curves rather than
quoting a diversity index precisely bocause of a
reluctance to reduce the diversity information o a
single statistie. Nonetheless, Warwick's (1986)
contention that the biomass and abundance carvwes
increasingly overlap with moderate disturbance, and
transpase altogether for the grossly disturbed condi-
tion, Is a unidirectional hypothesisand very amenable
to quantification by a single summary statistic.

Fig. 8.12 displays the difference curpes B-A for each of
four replicate macrofauna samples from two Staticns
(2 arud H4) in Harndlton Harboue, Berrmuda; theseare
slmply the resull of subbracting the abundance (A;}
from the bipmass (B)) value for each spedles rank Gin
an ABC curve.

For all four replicates from H2, the biomass curve iy
above the abundance curve thrughout i length, 50
the sum of the B-A; values across the ranks § will be
strongly positive. Incontrast, this sum will be strongly

rr—

7. Wote lal, as aluways with an ABC curve, B and 4, dit not
mecensarily refer tr values for the sae speckes; e ramking is
perfortiad aparately for abyndmee end biorass.

B N AP TR S BT S S PP

regativefor the replicatas at H4, for which abundamice
and biconasscurves are largely transposed. Intermedi-
ate cases in which A and Fourves are mtertwined wiil
e b0 glve E(Bi—4;) values near zero. The summation
resquires some Form of standardisation to & commen
scale, so that comparisons can be made betwoon
samples with differingmurmnbers of species, and Clarke
(1990} proposes the W lfor Warwick) statlsic

W= ° (B-Afis0Ns-D] (8.7).
Itcanbe shownalgebraically that Wiakes valuesin the
range (=1, 1), with W — + 1 foreven abundanoe across
species but biomass dominated by a single species,
and W — 1o the converse case (though neither limit
is likely to be attained in practice].

An oxample is given by the changing macrofauna
commmunitles along the fransect across the sludge-
dumping ground at Garroch Head 1G1. Fig. 8.13 plots
the W values for each of the 12 stations against the
statlon number. These summarise the 12 component
ABC plots of Fig. 8.8 and clearly delineate a similar
pattern of gradual change from unpefluted
disturbed conditions, as the contre of twe dumpsite is

approached.
Hypothesis testing for dominance curves

There arc o zeplicates in the Garroch Head data
allow testing for statisticn] signifimnce of observed
changes in ABC patterns bul, for studics invplying
replication, the Wtatistic provides an obvious route o
hypothesls testing. For he Bermhuda samples of Fig.
8.12, Wiakes values 0.431,0.253, 0.250and 0.349 for the

.5

W aiatistic
o
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1 2z 3 4 5 & T @ 3 1011 12
Station

Fig. 813 Goarrcch Hend macrofeens (Gl W veluss
eorresponding to the 12 ABC curpes of Fig. 8.8, plotted againsd
plation mmirer; statipn § i7 the centre of tee demp grownd (Fig,
#.3h



iR

There are two distinct roles for ransformations in

comnvni by analyses:

a} tu validate statistical assumptivns for parametric
techrifques — in the approach of this manual such
methods are resiricted to unferiste tosts;

b} fo weight the contibutions of cotvrnon and carve
spedes in the (non-parametric) smlfioeriae repre-
sentatdone. ’

The second reason is the only one of relevance to the

preceding chapters, with the exception of Chapter §

whaere 1t was seen that standard parametricanalysis of
varlance (ANCWVA) could be applied to diversity
indices computed from replicate samples at diffenmt
sites or times. Being composite indices, derived from
all specles counts in a sample, some of these will
already be approxdmately continiaoie varaws with
symmetric distribubions, and others can be readily
transformed tn the normality and constant variance
raquirementsof standard ANOVA. Alsp, thevemay ba
interost in the abundance patterre of individual
species, specified 2 priori (e, keystone species), which

are sfficlently comanot across st sltes for there o

be some possibility of valid parameiric analysis after

{ransformation.

For purely illustrative purposes, Table9.1 extracts the
counts of a single Thasir specics from the Pricrfjord
macrofauna data {FJ, consisting of four replicates at
each of six sites,

Table 9.1, Frievfiord macrofassa [F). Abwndance of a single

apecics (Thyasicw sp) i four veplicate grabs af cach of the six
aites {A-F, G).

[ A BE. C D E G
Replicate
1 1 7 1] 1 [ -1
2 ¥ L1 1] & 1R .1
3 3 a 0 K a3 52
4 il 2 | 13 [ a6
bfean 48 30 04& &4 BLE® 555
Stand. dev: 43 29 1.5 51 187 148
Two feabures are apparent: .
1} the teplicates am not symmetrically distributed
(they tend 0 be right—skewed); '

2} the replication variance tends to increase with
increasing mean, as i8 chear from the mean atwd
starcdard deviation (s.4.) values given in Table 9.1

el

HRE BEAE S
siiasan g

The lack of symmetry (and thus spproximate
normality)of the replication distribution is probably of
lezsimportance than the large difference in variabiliby;
ANOVA relles pn an assumption of constant variance
across the groups. Fortunately, both defects can be
overcom: by a simple ransformationof theraw data;a
power transformation (such as a square rool), or a
lpgarithmic transformation, have the effect both of
reducing right-skewness and stabilising the variange.

Power transformations

The potwer transformations y* = 17 form a simple and
uscful Family, in which decreasing values of A produoce
increavingly severe transformations. The log trans-
form, y* = log(y), can also be encompassed in dis
s&rtes{tecl'lnicall};(yj" =1)fk =+log. yas L — D). Box
ang Cox (1964} give a formal maximum likoifupod
procedure for optimal seleckion of A but, in practice, &
precise vaiue is not important, and. indeed rather
artificial if ane were bo use slighty diffenent valoesof,
for each new analysls. The aim should be to select a
transformation of the right order for all data of a
pardeular type, chooslng only from, say: none, square
ook, 4I:I1rnutm'lngariﬂ1mi:._ It is ot necessary For a
valid ANOWVA that the variance be precisely stabilised
or the non—norrmality tofally retooved, fust that gross
departures from the parametrie assumpions (e.g. the
order of magnitude change in s.d. in Table 9.1} are
avolded. Oneusedul technique izin plotlays.d. againat
log mean and estimate the approximale slope of dhis
rolationship (fil. This is shown here for the data of
Table 2.1

Log(ad.)

f =055

T T T 1 T
0 1 2 3 % Loglmean}

Itcanbe shown that, approximalely, if & is set roughly
equal ko 1 —f, the transformed data will have constant
variance. That is, a slope of Zemw implies no
tramsformation, 0.5 implies tha squara root, 0.75 thedth
rootand 1 tho log transform. Here, the square motis
indicated ard Table 9.2 gives the mean and standard



trarsforn. However, in this form, the ramsformation
is impractical because the {many) 2ero values produce
log{l} —+ —=. Thus, common practiceis touse log(l+y)
rathor than log(y), sincelag(? +y)is always positive for
positive ¥ and log(i+y) = 0 for ¥ = 0. The modified
trersformation no longer falls shictly within the
power sequence; on large abundances it does produce
a more severe transformation than the 4th root but for
small abundarces 1EL5 less severe than the 4th roat. In
fact, there are rarely any practical differences between
cluster and ordination resulty performed folluwing
y'2% or logf{1+y) transformations; they are effectively
equivalentin focusing attention on patterns within the
whole community, rm:-ang contributions from both
comnmon and rare species,

Tabkle 9.4. Lock Linnhe macrofauna (L) subset. The chenrging
sininrity between samples 2and 4 (of Thble %3] a3 ench of the six
species is owithed in durs, for both wntransformed and dib
rovt—iransfarmal abundances.

pagad-3

walghting the effeds of common spocies,  Sperdes
which are sufficlently ubiquitous o appear in
samplaz {producing a 1 in all columns) clearly cannct -
discriminale between The samples inany way, and fhus
donptcontribute by the final multivariate description.
The emphasis is therefore shifted firmly towards
patterns in the intermediate and rerer species, the
generally larger numbers of these tendimg o over—ride
the contributions from the few nurmetical or blomass

-Jomdhants.

Thirfa 9.5, Lock Linnhe macrofauma (L) sulraet. Presence (1) or
abeerice (03 of the six species i the four samples of Table 5.3, and
the resuiting Bray—Curtis siorilanilies.

Uit st end
SPer:ies omitted: Mone 1 2 3 4 E &
Beay—Cuntia (5): N M 1 4 13 M4 M

Yy-transformed

fesamitted: MNome 1 2 3
Bray-Curils {5} e B 5 6l

H
& o
a2

Presencefabrence
Sample: 1 12
Speocies

Echingea

L)
-

Samplel 2 5 4
1 -
a3 -

1 4 s -

4 EF 88 B -—

Myrivie,
Fabidopl
Amasana
Capitelia
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-
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The legical end-point of bhis transformation

isthercfom not the log transform bu tareduction of the
quantitative data by presescef/abeence, the Bray—Curtis
coefficient (say} being commputed on the resulting
matrix of 1% (presence) and @'s (abeence)  This
computation 1s Mustrated in Tabe 9.5 for the subsetof
the Loch Linnhe macrofauna datz used earlier
Comparing with Talde 9.3, note that the rank order of
similarities again differs, though it is choser b that for
the4th oot ransfiormation than for theimitransformead
data, In fact, reduction 0 presence/abeance can be
thought of aa the ultimate ransformation o down-

1. Theugh practical differences are Tikely fo be negligible, on
jraarely trenrefical grosmds it conld be mrgued that i A roat ia
e more satisfactory of the Moo transformations because
Bray-Curtis similarityy ia then fnpariast te a scale change in
¥ Similarity talues gould be aliered under 2 Togfisy)
transformation if sbumdances were convertal from shsolute
palues fo Rumbers per 1% of the sdmpled substrale, or if biomass
readings were conoeried from mgte g. Thivdeea not fepper with
a siried power deansformation; i és clesy fram equation (2.1 ] that
any miuliiplying conslapt applied oy will cance] on the topand
boftoure Bres of e summutiiess.

One inevitable consaquence of "widendng B fran.
chisc" in thiz way, allowing many more specics e have
a say in determining the overall commumity pattern, is
that it will become increasingly hander o obtaln 2—d
ordinabions with low stress: the "view” we have
chosen 10 take of the community is inherenty
high—dimensichal. This can be scenin Fig. 9.1, for the
dosingexperiment{I}inthe Solberpstrand mesocosm
(CEEF Celo werkshop), previously met in Figs 4.2 and
5.5. Four levels of contaminant dosing (designated
Control, Low, Medium, High) were each represented
by four replicate samples of the resulting nematode
commntties, giving the MDS ondinations of Fig. 2.1.
Nopte that as the severity of fransformabion increases,
through none, root, 4th roat and presence/absence |
(Fig- 9.7a i0 9.1d respectively), the siress values rise
from0.08 t00.19. Itisimportant bo realise that this is st
an argument for deciding against ansformation of
the data. Fig. 9.1a is not a detier representation of the
batwreon~sample relationships than the other plobs: it
is a different one. The choice of transformalion is
determined by which aspects of the community we
wish tosdy. If interestis in the response of the whnle
comraurity then we have toaccepl that it may be more
difficult ko captore this in 2 low—dimensional picture (a
3 or higher-dimensional MDS may be desirable).
Om theother hand, if the data are totally dominated by
pne or two spedes, and §t is these that are of key
binlogical interast, then of course it will be possible o
visualise in a 1- or 2-d picture how thelr numbers lor



For some univariate and graphical/distributional
methods of data analysis it is important to mclude all
species present at cach site, since the omission of some
of them will affect the outoome of the analyeis. {This1s
chviausly true for diversity measues such as species
richness, for example). In cortain drcumstances,
however, it is not pessible or not advisable to indude
all species In multivariate analyses. There arg two

main cdroumstances where eliminating species i

nEcessary:

a) Semple PCA (not MDS) ordinations. The species
numbar must be reduced i {zay) <50 specles, or
clse there will be with computing
efgenvalues (see Chapier 4).1

b} Specigs ordinations, Althgugh MDS and cluster
avalyses are possible for all species, the rarer
species, whosa ocenrrence at a particular station
may largely be Gue to chance, must be excluded for
an interpretable outcome (see Chapter 732

The way in which speriee are eliminated Tequires
careful consideration. A commonly employed method
is o rernove those species which are rare in respect of
their total abundance at all stations in the survey, for
erample those specles cormprising less than 1 or 3% of
the total numnber of individuals. This howeves can be
dangerous in situations where iotal abundance
beween stationg is very variabile, as is often the case.
Situations frequendy arise whene certain stations have
a very low overall abundance of organisms, but there
maybe many spevies which axe absolutely characteris-
tic of those stations. Using the above method of species
reduction, all these speries could be eliminated! To
overcome this problem itis recommended that spacies

1. As discussed in Chapter ¢, PCA &5 not sormally
recomztnded for species data. If required, hmoever, PRIMER
o perforin it by first rwnising RELRUICE, fa retsin only the 50
st leporiant apocies (in e sense dofined below), and Hien
using SWAP do transpore the satriz for antey inte the POA
rawtine, which expacts variohbs a3 columiss,

2. This could also be carried out by aw ivithal rex of REDUCE
but a befler option gemerally is I specify reduction of species
{{satmplen) directly in CLUSTER. Thir tod! retmin Immoledge of
thwégﬁdwfhhmu}mmmihdermms
(feamples) simiGrity matriz

accounting for »¢% of the total acore (abundance or
biommiass) in ary ore sample are retained (p is chosen o
red uce species o the reguired mumber; typically p=2
or 4).

13 5! R
We have already seen (Chapters 4 & 5) that samplg
relatlonships can often be well summariscd in g
2-dimensional ordination, which fe reduced fom a
very much higher-dimensional species space. This
implies that many specics must be inferchangeable in
the way they charactorize the samples, and that an
anatysizof a small subset of the total number nfspecies
may give a similar result to that for the full species
analysis. This cen be confirmed by performing MOS
on & randomly chosen subset of species. Gray ef al,
(1928}, for cxample, compared the configusations
produced froman MDSaf 110 species of macrcbenthos
at six statlons (o Friecfiord, Morway with & similar
analysls using just 19 randomly selected spedes {Fig.
10.1). Note that the prdinations areremarkably similar
n the way in which they discriminate between sites
(although there s a slight difference in that the
replicate samplesat stations G and E ave transposed in
location).

Thas, there appears to be considerable redundaney in
the spedes which characterise the community
aompesition. Although the above example, extracting
a rangom. subset of species, is of no Teal peactical
interest, attempts have been made to exploit this
redundancy in the centext of taxonomic aggregation.

The painstaking work involved in sorling and
identifying samples to the species level has resulied in
comrmunity analysis for environmental impact studies
being traditionally reganded as labowr—intensive,
time-oonsuring and therefore relatively expensive.
One practical means of overcoming this problem is ko
exploit the redundancy in community dats by
analysing the samples to higher taxonomic levels such
a8 family or phyla; rather than  species. T¢ results
from Identifications o highet taxonomic kevels are
comparable 10 3 full species analysis, this means thas:
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Fig. 10.2. Nutriens—snrichmeant experiment, Solborgsbrand (NT. MU plot of copepod abundasices {{—transforma, BroyCurtis
similaritios} for four regdicates from each of ikree irectmeemts; species dida aggregated indo gamra irsd fawzilies (atress m 0.09,0.09, 0.06).

2} Dighributional methods. Aggregation for ABC
curves is possible, and family Jevel analyses are
often identical 1o species level analyses (see Fig,

3)

Coufle root

Np transform

10.7%
Univariale methoads.

well-eatablished.

The congept of polution
indicator groups rather than indicator spedies is
For example, at organically
enriched gites, polychaetes uf the Eamily Capiteli-

midae. The nematodelcopeprod ratio (Raffaelli and
Mason, 1851} is an example of a polhztion index
hased.on hMgher taxonomiclevels. Such indices ane

likzly to be of more ganweral applicability than thoge

‘based on spevies level information.  Diversity
Indices themselves can be defined at hierarchical
twonomic Jevels for internal comparative pur-
poses, although this §5 net commonly done in

daebecorne abundant {not fust Capitella captintel, as practioe,
do meinbenthic nematodes of the family Cocholai-
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Fig. 0.3, Lock Limnbe macrofmma (L), MDE {using BrayCurtis simileritics) of samples from 11 yers.  Abundmyces e

‘a’ﬂ'—tmmﬁmmd (top) awd uu!rmmﬁmmﬂ fhoteam), uhtk 115 species {'I:fﬂ, ageregale] inlo 45 fanillles {middl=} ard 9 pk_u,rh fn:gﬁlll,
(Rending across rotos, sivess = 0.09, 0.08, (L18, 0.09, (.69, 002),




the left in 1973 associated with reduced pollution
levels arvd corormunity stresss. This pattern is equally
clear at all levals nf Bxonomic apgregation. Again, the
s¢parationed the most polhated years ismost distinct at
the phyham level, at Jeast for the double sqoare coot
transformead data (and the confipurationis more linear
with reepect o the pollution gradient at the phylum
level for the untransformed data).

Amaoco—-Cadiz oll-spill

Macrofauna species were sampled at station “FPierre
MNpire’ in the Bay of Morlaix on 21 occasiens between
April 1977 andd Pobrary 1942, spanning the period of
the wrethk of the ' Amgoo—Cadiz’ in March 1978, The
specles abundatce MDS has baen repeated with the
data agpregabad into Ave "phyla™ Annelida, Mollusea,
Arthropoda, Echinodermata and "odwres’ (Fig. 10.4).
The analysis of phyla closely reflects the Hming of
pollation events, the configuration being slighity more

...............

linear than in the species analysis. All pre-spill
sarnples (A-E) are In the top left of the configoration,
the imrnediate post-splll sarnple (F) shifts abruptly o
the bottomright afber which there isa gradual recovery
in the pre—spill direction. Noba that in the specics
analysis, although requlls are similar, the immediate
post—spill response is rather more gradual. The
comaInunity reponse at the phylum level is emarkably
sensitive, consldering that the sarping slte was some
40 km away from the oil-spill.

Indanesian resf eorals

The El Nifit of 1982-3 resulted in extensive bleaching
of reof corals throughout the Pacific. Fig. 105 shows
the coral commwndty response at South Pard Island
avet sl years in the perdod 19811988, basad on ton
replicate line transects along which coral species cover
was determined. Note the immediate post=EL Nifo
locabion shiff on the speries MD5 and a circuitous

a Sampling sites b ' Species
Fal L= |Z0km E}
2
Ed [ ]
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L : [ ™ » &
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Fig. 10.6, Ekefisk oil-plziform macrobentkoa [E], o) ﬁ{ﬂp-ﬂf elatien pesifions, indiceting symbolishading commentions for disfamez
zanes from Hee aentre af drilling ectfeily; bI-d MDS for root-tramsfermed Efzrcﬁ's,ﬁrmﬂymrd Pl eberudarices respeckoelyy (stress w

0.12,0.11,0.13).
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again shown to be surprisingly sensitive in ::Icu:cﬁﬁg
pollution—induced community changa.
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Loch Linnhe macrofauna

ABC plots for the Loch Linnhe macfobenthos spacies
data are given in Chapter 8, Fig. 87, wher the
performance of these curves with respect to the
tirne—course of pollution events iz dircossed. In Fig.
1017 the specics data are aggregated to family level,
and it is seen that the curves are virtually identical o
the specles level analysis, so that there would have
bren no loss of information had the samples only been
sorbed originally inte familics. :

Simtlar results were produced by replotting the ABC
curves for ithe Garroch Head sewage sludge dumping

ground macrobenthus iG] (Fig, 8.8) at the family level
Warwick, 1988b).

Il-:durnes-ian reaf corals

Fig. 108 shows results from another survey of 10
replicate line ransects for coral cover aver the petiod

21 B3 84 85 &7 84

P — T 1262-3 EI Nina, Speties data
(lieft) howe bemm aggrageted
into genera (right).

19811988, in this case at South Tikus Island, [ndonesia
Ii. WNote the similarity of the spedes and genus
anatyscs for the auraber of taxa and Shannon diversity,
withan immediate post-EI Nifio drop and subscquent
saggrstion of partial recovers. _

NHE Rt

Clearly the operatonal taxomomic level for envircn-
mental impact stodies is another fackor o be
considered when planning such ' survey, along with
dectslons about fhe mamber oi stations to be sampled.,
number of replicates, types of statistical analysis tobe
employed ot The choice will depend on several
factors, particularly the ime, manpower and expertise
available and the éxtent to which that component of
the biota being studicd is known to be robust to
taxonomie aggremtion, for the type of statistical
analysis being emplnyed and the type of perturhation
aupectrd.  Thug, §t 18 difficult to give any firm
recommendations and each case must be treated onits
individual merite. For rpating mani loring of orgamic
croichmentsituations using macrobenthos, cne canbe -
relatively certain that Family level analysis will be
perlecily adequate, bul for other components of the
fanna, ard for other bypes of perturbation, sufficient
evidence has not yet accomulated 1o be sure of this,



Inmany studies, ﬂ‘lElehC data is rmlchﬂdbyasmteuf
rnvirenmenta! variables measured at the same set of
Eites. These pould be gatirel variables desciibing the
physical properties of the substrate {or wafer? from

which the samples were taken, e.g. median particle
diameter, depth of the water column, salimity ctc., or
they could beconfaminamivariables such as sediment
concentrations of heavy metls. The requirement here
15 to exarmine the extent bo which the physico-chemical
data iy related to {"explains”) the cbserved biological
pattorr.

The appeoach adopted is firstly to analyse the botic
data and then ask how well the informaton on
environmental varfables, taken either singly (Field e
af., 1932) or in combination {Clarke and Ainsworth,
1993), matches this communilby struchurel.  The
motivation here, as in earlier chaplers, is (0 Totain
simplicity an Iransparency of analysis, by leting the
Epecies and emvirommental data “tefl thelr cwn
5lnn|as"' (under minimal model assumpticns) before

the extent tn which one provides an
“axplanation” of the othet.

g g e

shirhictt

An analogous range of multlvariate methods is
awailable for divplay and testing of environmental
samples as has been described for Eaunistic data:
species are simply replaced by physioal/chemical
variables. However, the matrix cnirics an: now of a
rather different type and lead o different analysis
chiices, Nolongerdo zeros predominate; the readings
are usually more nearly continugus and, though their
distribuions are often Tight-skeswed {with variability
increasing with the mean), it is often powible o
transform them to approximate normality [(and

1. Methods such as canonical correlation (e.g. Mardia et al.,
1979), and Hazimpartant lecknique of cananical correspordece
fher Braak, 1056}, bake the mther diffennd stance of endvalding
the enrdrmmeninl data within the biotic anabysss, motitmtcd by
specific gradient wodels defining the speclep—cnmtanment
reltianzhipa.

stabilise the variance) by a simple root or logarithmic
transformation, scc Chaphor %, Under these condi-
tlons, Euclidean distance is an appropriate reasure of
dissimilarity and PCA (Chapter 4) is an effective
ordination techrique, though note that this will need
io be performed on the correlation rather than the
covariance matrix, i.e. the variables will wsually have
different units of measurement and need normalising
to a comenon scale {see the discussion on pd-6).

In the typleal case of samples from a spadal
contamiant g;mdlent. it is also wsually true that the
number of variables is either much smaller than fora
biotic matrix or, ¥ a large number of chetnical
determinations has been meade (eg. GC/MS malyas
of a range of specific armmatle hydrocatbons, FCB
congeners ete.), they areoften highly inter—oornelated,
tending to preserve a fixed relation to each cther ina
simple dilution modal. APCA can thus be expected to
do an adequate job of representing in (say) two
dimensions a pattern which 1s inherendy low-—dimen-
sicnal to start with.

In a case whete the samples are replicates from
different groups, defined a priori, the ANOSIM tests of
Chapter  are equally available for testing environ-
menkd hypotheses. e establishing  differences
bebween sibes, times, amdidons ete,, where such bests
aremeaningful.? The appropriate (rank) dissimilarity

matrix would use Enclidean distances.

For the 12 sampling s-taumsCF!g. 8.3) across the
sewage-sludge dump ground at Gamroch Head (GL
the biotic information was supplemenbed by sediment
chemical data oo metal concentrations {Cua, Mn, Co, ...}
and organic loading (% carbon and nitrogen); also
recotded was the water depth ateach station. The data
matrix iz shown in Table 11.1; it follows the norrmal
convention in classical mulivariate analysis of the

2. The ANDSIM teats in it PRIMER package are not mirg e
orly presitnfiby; e dafa i Tave besn Eransforoed o
approxiisale normality 50, if the sumberof variables i nol Lerge,
elasaread weeltivaviate (MANGVA) tests such as Wilks' A {e.g.
Murdiz el al,, 1979} are oalid, and wifl gewerlly fune graaler
o



strong pattern of incremental change on moving from
the ends of the transect to the centre of the dump site,
which (unsurprisingly) has the greatest levels of
organic enrichment and metal concentrations (a
significant exceplion being Mn).

4

3
#
#i
o
&

Univariate community measures

If the bictic data are best summarised by one, or a few,
simple nnivariate measures {suchas diversity indices),
one posaibility is fo atternpt to cormelate these with a
similarly small number of environmental variables,
takeri one at a time. The summary provided by a
ptindpal component from & PCA of environmental
variablescanba exploibed Inthis way. Inthe case of the
Garroch Head dump ground, Fig 11.2 shows (he
relatinn batween Shannon diversiby of the macrofauna
samples at the 12 sites and the averall contamdnanit
load, as reflected in the first FC of the environmental
data (Fig, 11.1). Here the relationship appears to bo a
simple linear decrease in diversity with increaging
load, arud the ftted Iinear regression line clearly hasa
significantly non—zero slope (f = —0.29, p<D.1%}.

Specias divarsity (H}

PG for ¢hemical variables

i 112, Garvock Head macvofpina (Gl Lidar wegredsion of
Sharnon diversity (H'), at the 12 smrpling stafions, against the
[first PC axis seive from the environmental PCA of Fiy, 111,
which brvadiy represents an axis of mcreasing cordomsinan ko
(equrtinn T1.1).

pags 11—3

Multvariate community measures

In most cases howevct, the biotic data is best described
by a multivadate summary, such as an MD5S
ordination. ks relation to a undvariate environmental
measure can then be visualized by represeating the
valugs of this variable ag symbols of differing size and
superimposing these symbols on the blatie ordnatlon
of the corresponding samples. This, or the simpler
superimpoeition of coded values for the variabla, can
bz an cffective meang of noling any consighent
differences in the envitonmental variable behween
blatlc clesters or ohserving a smooth relationshipwith
ardination gradients {Field et ef., 1982).%

The clustor analysis of zooplankton samples from 57
sites In the Bristol Channed (5} was seen in Chapler 3,
ad the dendrogram suggested a division of the
samples into 4 or 5 main clusters {Fig. 3.3). The'
matching M3 (Fig. 11.3), whilst in good agresment
with the clusicr analysis, reveals a more informative
picture of a sbong, gradient of change from the Inner
Channel to the Celile Sca ditgs. This is soon most
graphically by superimposing a code representing the
salindty lavels for aach sample (Fig. 114). Biological

considerations suggest that a simple linear coding is
nol appropriate: one would expect specias turnaver ko

bemuch greater through a salinity differential of 1 ppe
in fully satine water than the mrmover from a gimilar 1

ppt change at {zay} 25 ppt. This mativates application

of & reverse logarifiomic transformation, log (36-5), ar

- mmore precisehy:

#*=a-blog (36 -s) 1.2}

wheres =8.33, b =3 are simple constants chosen for this
data W constrain the ransformed variable 5° o the
range 1 (fow) to 9 (high salinity}. Fig. 11.4 then clearly

. Superimposing environmenial dats anke an ordination i
opiion previded in the PRIMER program CONPLOT, whidh
dispbays MDS conflgurations, The tecTirlgue cort aiso b weeful
inavwider enntert: Fiald ot ol (TO82) superinpars morpholegical
characteristics of erch spocies orio ¢ goccioe MDS of e tyne soet:
in Chapier 7, and Warick and Clorke (19930, senalsa Fig, 15.3)
give on muanple of superivposilion of biokic variables draww
from Hee saame ot wa b os wsed bo ovedte the MODS, The latter
exths prrde fresight fnte the roke of irsdiuicdunl fr in shaaping the
bintic priclune, especialli when the somber of fexe is amiall, o is
the vase far the phprinntoped * meta-araiyais of Chapler 15,



The maﬂm’auna samples from the 12 stations on the
Ciarroch Head transect () lead to the MDS plotof Fig.
11.5a. For achange, this isbased not om sbundance but
biomass values (root-transformed).® Earlier in the

. chapter, it was seen that the rontaminant gradiont
Indured a marked respomse in species diversity {(Fig,

11.2}, and therelsan«ven more graphic representation
of steady comumunity changein the multivariate plotas

the dump centre is approached {stativns 1 through 4o -

6), with gradnal reversion to the origina) commurdty
structure on moving away from the centre (stations &
through be 12). The correlation of the blotic patiern
with particular contaminant variables is clearly

Mustrated by the superdmposition technique Inbro- -
- duced above; Fig. 11.5b displays tha values.of % carbon

in the sediment {Table 11,1} a5 drdes of varying
dlameter, which condirms the main axis of the bigiHe
MDS as one of increasing organic enrichment. Several
of the meta! concentrations from Table 11.1 show a

similar pattern, one E:mephun belng Mn, which .

displays a strmg gradient in the other direction (Fg.
11.5c). Infact, some of the metal and organic variablas
are 50 highly correlated with each other (e.g. compare
the plot for Phin Fig. 11.54 with 11.5b) that there {5 little

& Chagrler 14 argues that, where §t s aoaibibde, omoss con
aotiatines be e binlogically relevt ihan abundonce, thongh
in practice MDS plois from both will be Browdly similar,
expecially srdar hesizry ravsfirmation os the datg levds booavds
prevencefebamee (Chapter 9).

a . b

pointin retaining all of them in the environmental data
malrix. Cleatly, when two abiotic varlables are so
strongly related (collinear), separake putative eifacts
on the bictic struchure could never be disentangled
(their effects are said to be confenndad).

The Gatroch Head data is an example of a smoath
gradation in faunal stracture reflected in a makching
gradatdom in scveral conbminent variables,  In
contrast, the Exe estuary nematode comurinities (X,
discnssed extensively in Chaptor 5, separate into fve

" well-defined dusters of samples (Fig, 11.6a). Foreach .

of the 19 intertidal sites, six environmental variables
were alse vecorded: the median particle diameter of
the sediment (MPD), its percentage soganic conent {%
Ohg), the depth of the water table (WT} and of the
blackened hydrogen sulphide layer (HS), the
interstitiai salinity (Sal) and the helghtof the samplean
the shome, in relaton o the inter—tidal range {Ht).
When each of these is superimpuosed in tom on the
biotic ordination, some instructive pattemns cmerge.
MPD, represented appropriately by circles of differing
size (Fig. 11.6b), appears o increase monotonically
aiong the maln MDS ads but cannot be responsible for
the division, for exarnplk, bebiveen sites 1-4 and 7-9.
Cn the pther hand, the relation of salinity to the MDS
configuraion is non-moenptonic (Fig. 11.46c), with
larger values for the “middle”® pgroups, but now
providing a conitrast between the 1-4 and 79 chusters.
¢her variables, such as the height up the shote,

Blata
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Hg. 11.7b is effeclivcly jost a scatter plot, since it
involves only two variables).

The point to notice here is the remarkable dopree of
concordance bebween biolic and ahiotic plots, particu-
larly Figs. 11.7a and ¢ both group the samplos in very
similar fashion,. Leaving out MFPD (Fig. 11.7h), the
(79 group is lese clearly distinguished from {f, 17)
and cne alzo loses some matching atructure in the
(1219 group. Adding variables such as depth of the
water lable and height up the shere (Fig. 11.74), the
(1-4) group becomes more widely spaced than is in
kecping with the biotic plot, sample 9 is separated
from 7 and 8, sample 14 split from 12 and 13 etc., and
the fit again deteriorates. In fact, Fig. 11.7¢ reprosents
the best fitfing environmental combination, in the
sense defined below, and therefure best “explains® the
commmunity pattern.

Measuring agreement in patbern

Quantifying the match bebween any twoplods poutd be
accomplished by a Procrustes analysis {Gower, 1971,
in whichone plotis rotated, scaled or reflected to fitthe
other, in such a way as o minimize a sum of squared
distances bebween the supedimpesod configurations.
This is not wholly consistent, however, with the
appreach in earlier chaplers; for exactly the same
reasons us advanced in deriving the ANOSIM statistic
in Chapter &, the “best match* should not be

0, 0.0, Gk

dependent on the dimensionality one happens 40
choose to view the bwo patterns.  The more
hindamental constructs ane, as usuat, the similarity
maltrices underlying both biotic and abiotic ordina-
tions” These are chusen differently to match the
respective form of the data (e.g. Bray—Curtis for biota,
Endlidemn distance fur environmental variables) and
will not be scaled in the same way,  Their ranks,
however, can e oompared through a rank correlation
caefficient, a very natural measure bo adopt bearing in
mind that a successful MDS is a function only of the
similarity ranks.

The pracedure is summarlsed schamatically in Fig.
118, and Clarke and Alnsworth (1593) describe (he
approachindetail. Two possible matching cocHicicnts
are defined botween the (unvavelled} elements of the
respactive rank similarity malrices (1, i = 1, .., N} and
fg:i=1, ..., N) whera N = (k=732 and i3 the number
of samples. Theseare the simple Speavrtan coefficient
{eg. Kemdall, 19700

7. For cxamgpdy, i spite of e vory b strese or Pig. 11,7, 0 24
Procrustes fit of 1378 and ool be rather poor, stroe the O, {1
ard (12— 90 graps are indorckmyed between the plats, Yok, the
iinerprebadion of the toor analyses fs fundamentolly the same
{ffoe clesters, il e (5, 0] smonp oned on a Timb el ), and this
Wil he fully expressed, withowt erbelrary dimensionality
constrRiitds, in the wnderlping simikarity snalrioes,

AR L T e
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amd 6109 have lawer valucs than for samples 5, 10and
12 to 19, with sample 11 intermediate).

The best 2—variable combination also involves depth
of the Ha5 layer but adds the interstitial salinity: The
correlation {py, = B.76) is markedly botber than for any
other 2—varisble subset, and this iy the combination
shown in Flg, T1.7b. The best 3-variable combination
cetains these two but adds the median panicle
diamcter, and gives the averall optimum value for puw
of LEHFIg. 11.7ck; pyy drops slightly to 0.79 for the best
4—and higher—way combinations. The results in Table
1.2 do thercfore seem 40 accerd with the visual
impressions in Fig. 11.7.10 In this cose, the flest column
of Table 11.2 has a hierarchical structure: the best
combination at one vl is always a subsct of the best
combinatian on the Hne below. This 5 not guarandzed
(althoagh It seems to happen surprisingly offen) since
gli corrbinations have been evaluated and simply
ranked. .

Tablz 11,2 Exe astuary semadodes (X), Combinatios of the 6

envirommetal wairinhles, dthen kot o fime, yiabding the beof
mafches af bintic and abipdic similerity wmatvices for caclt k, as

thicasnired Iy wenkglebed Spenrtn rank correbtind 1y, bold dype

trdicates ooerall optimum.
abbrepittiane,

Sew oprlter lext for oerichis

k Bert variable combinations {pg)

1 HS ®Org  Sal
(62) (a4} [53)

2 H#S,5 HS MPD HS %Org Sal 20 ..
{.78} {57 {45) {51
3 H,5, Sal, MFD H5, Sal, %Ovg  HLS, Sal, WT ...
_ (.50} (.75 (.73}
4 H{S Sl MPD, %Org H.S, Sal, MPD, Ht ..
{.73) (.78
5 H;5 3al MPD, mihg He ..
(.73}
é  HS, Sal MFD, %0Org, He WT
£.77)

10, This will ot afiveys be e ase if te 24 frnal ondinatine
has pm-peglictble stress, It iz e watching of the sitilanity
weabvices whick is definitive, although i wond ussially boa good
#zate pled the abiokic ordimaiion for the best combination ot sl
wabie of K, in order {0 gauge fhe offect of @ saall charge i Py,
the irterpratation. Experince o BIF suggests Fhal comdinalion:
Frringinesatne valis of P b0 bun desingalplaces da 1wod give rise
o ondimgtions whieh o dishirguesiable Ay preciiolhy
mpur.lunt way, ths it is recommended that py i qroted ouiy
1o fhis noeperecy, as ie Tkl 71,3

Anexhaustive search over v variablkes involves

ol
= 27-1 1.5
kfie-k) 15

E.l;-:l

combinatfons, Le. 63 for the Exe estuary study, though
this namber quickly betornes prohibitive when D is
larger than 11 or 12, Above that level, one could
consider stepwise (and related} procedurcs which
scarch in a mwre hierarchical fashion, adding and
delcting variables one at a time.  These are not
guaranieed to find the glvbal minimum of p, and run
the significant risk of focussing attention on a single
“best” combination whet, in reality, there may be very
many cumbinativns giving an essenfially similar
match to the biota. In practice, it may be desirable to
limit the: scale of the scanch initially, for a number of
reasons, e always to incdlude s variable known friom
previous experience or exiernal information to be
potentially causal. Allernatively, as discussed eaclier,
scatter plots of the environmental variables may
demonstrate that some are highly inter—correlated and
nothing in the way of impraved *cxplanation”” could
be achieved by entering them all into the analysis.

Ancxampleis given by the Garroch Head racrofauna
study |G}, for which the 11 abiotic variables of Table
11.1 arc first bransformed, o validate the vse of
Euclidean distances and standard product-moment
corralations (page 11-2), and then examined for
evideme of collinearity (page 11-5). A possible
rule—of-thumb would be to redure all subsets of
(ransformed) variables which have muhual correla-
tions averaging more than abouot (.95 (say} to a single
representative, Hera, this leaves 8 ablotle var{ables in
the fall BIO-EMNY search, which resulls in an gplimal
malch of the bintic patern with C, N and Cd (py, =
N.78}. The coresponding ordination plots are seen in
Fig. 11.9. The bictic MD5 of Fig. 119, though
struchured mainly by a single strong gradient towards
the dump centre (e, the organic enrichoment gradicnt
seen In Fig. 11.9b), 1s nét wholly 1-dimensional.

Addilional information, on a heavy metal, appu:ars 10
improve the mplanabon
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Two final points can be made aboul the sampling
design. The general subject of experimental and field
survey desipgn is an inmense one, requiring a manual
of itz ownl®, Ttis also a probleratic area for many of
the (nem—parametrlc) multl varfate techniques because
theladk of formal model struchures makes itdifficult o
define pawer of rlatistical procedures, such as the
randomisation kstsdescribed above and m Chaptera b
and 15. In the context of linking biotic and abjokic
patlerns, it is intuitively clear that this haz the groatest
prospect of success I there are a moderately Targe
number of sample conditlons, and the closest possible
matching of envirenmental withbiological data. Inthe
case of a number of replicates from each of a number of
sites, this conld imply that the biokic samples, which
woild bre well-separated in order to represent genuine
variation aka site, would eadh have a closely—matched
environmental replicate.,

Another lesson of the earlier Garroch Head Eiu:ampleis
the difficulty of drawing oconclusions about cansality
from gy obscrvetional stady. In that case, a subsct af
ablode variables were 50 highly correlated with each
other thal it was desirable o omut al but one of themn
from the computations. Theremay scmelimes be good
external neasoms for retalning a particular number of

14, Green (197%) prowides some wseful guidelines, mmindy inike
enrtext of wn Foariate analyses.

it
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the set but, in gencral, oncof them is chosen arbitearily
asa proxy for therest Ifthat variabledoesappear labe
linked to the bictic pattern then any member of the
subset could be implicated, of course.  More
imporantly, there cannot be a definitive cousal
implication hare, since each retaingd varlable is alap a
proxy for any poentially causal varable which
correlates highly with it, but remains whnzersured.
Clearly, inan envirpnmental impact study, a design in
which the main pollution gradient (e.g. chemical) is
highly correlated with verinbons in some nabural
covironmental measures (e salindty,  sediment
shucture), canmot ba very informative, whather the
latter variables are measured or not A desirable
stratepy, particularty for the non~parametric multiva-
riate analyses considered here, is to lirnil the influence
of important nalural variables by attempting to select
sites which have the same environmental condlions
but a range of contaminant impacts (inchuding control
sites!? of course). Even then, ina purely observational
study one can never entitely escape the siricture that
any apparent change ih community, with changing
pullution impact, could be the resalt ofan unmeasured
natural variable with which the oomtaminant levels
happen to correlate. Suchissues of causality motivaie
the following chapler on experimenial approaches.

15, Nobe the plurality; Underioood (1992] argues persursioely
it fuspact ie best establishod against a baseling of sie—to—gite
maristildy in conird conditions.



In Chapter 11 we have seen how both umivariate and
multivariate community atiributes can be correlated
with natural and anthrapogenic envirenmental vari-
ables, With careful sampling desdgn, these methods
can provide strong evidence as to which environnven-
tal variables appear e affecl comununily structure
most, but they canngt actually g canse and effoct.
In experimental sltuatlons we can fbvestigate the
effects of a singla factor (the tregtment) om commumity
structure, while ofher fwctors are hekd constant or
controlled, tws establishing cause and effect. There
arc thror main calegorics of exporiments that can
used: .

1) "Watural experiments’. Mature provides the treat-
ment: i.e. we compare places or Hmes which dilfer
in the intensity of the environmental fackor in
question.

2} Field expetintenty, The exporimentor provides the
treatment: ie environmental factors (biological,

" chemical or physical) are manipulated in the feld.

3) Latoratoryexperiprents. Environmoental faci prs are

manipulated by the experimenter in laboratory
. TREsOCOSMS OF microoosms.

Tha degree of maturalness’ (hance realizm) decragses
from 1-2, but the degree of control which can be
exarted over confounding environmental variables
incredses from 1-3.

In this chapter, each class of experiments is illustratad
by a single example. Unfortunately all these concern
the mwdobenthos, since this component of the biota 15
very amenable to cormmunity level speriments [see
Chapter 13), whereas experiments with other compo-
nents of the bota have mainly been concernad with
populations of ndividual species, rather than comanu-
nities.

In all cases cave should be i2ken to avoid peudorepli-
catian, i.e. the lrertmends should be replicated, rather
than a series of replicate’ samples takem froma single
treatment (psewdareplicates, &g, Hurlbert, 1964), This
is because other confounding variables, pften un-
kongnwm, may alsn differ between (he trealmenls. Ibis
also impottant 10 run experiments long enough for
cormrmunity changes to oocur: thisfavours components
of the fauna with short penerabon tmes (see Chapter
13).

o TS R0 TN R N R A S s W

It is arguable whether so called natwral experiments
are achually experiments at all, and not stmply
well-desipned field surveys, since they make compar-
isons of places or imes which differin the indensity of
the particular envivonmental factr under congider-
ation. The cbvious logical Aaw with this approach is
that its validity rests pn the assumption that places or
fimes differ only in the mtensity of the selected
cavironmental factor {ireatment); there is n possibil-
ity of andostly afiocalivng treobinenis 1o experimental
mrita, the central tood of experimentation and one that
ensures that the putentinl effocts of unmeasazed,
uncomirolied variables are averaged out across the
experimental groups. Design is often 2 problem, bt
statistical terhmniques such as bwo-way ANOVA, eg.
Soka! and Rohlf (1981), or bvo—way ANOSIM
{Chapler 6], may enable us lo examine the reatment
effact allowing for diffcrences betweon sites,  for
example. This is illustrated in the first esccample below,

In somw: cascs balural experiments may be the only
possible approach for hypothesis testing in communi-
ty acology, becanse the atiribute of community
structure under comsideration may result from
srolutionary mechanisims rather than ecological
wechawfems, and we obviously caomot conduct
manipulative field vr laboratory experiments over
evolutlonary dme. Ome example of a community
attribute which may be determined by evolutionary
mwechanisms relales to size spectra in marine benthic
communitics. Several hypolheses, some complemen-
tary and some comtradictory, have been inyoked 1o
explain biomass size spectra and species sze
distributions in the melazoan benthos, both of which
hayvebimodal patiemsin shallow temperate shelf seas.
Ecological explanations involve physical constraints
of the sedimentary environment, animals needing to
be small enough to move between the particles {ie
interstitial) or big enough to burrow, with an
intermediate size range capable of neither (Schwing-
hamer, 1981}, Evolutionary explanations invalke the
opbimisation of bwo size-related sets of reproductve
and foeding baits: for example small animals -
(metobenthas) have direct benthic development and
ean be dispersed 28 adults, large animals (macroben-
thosy have planktonde larval development and
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For the nematodes, species richness, species diversity
and evorness were significantly reduced in disturbed
as opposed to undisturbed areas, although total
abundance was unaffected.  For the copepods,
however, there wers no significant differences in any
of these univariale measines,

Grephical/distributional plots. F—dominance turves
{Fig. 12.2) also revealed significant differences in the
relative specics abundance distributions for nema-
todes {using both the ANOVA and ANOSIM-hased
tesks referred to briefly at the end of Chapter B, and
detailed in Clarke, 1990). For the copepods, however,

{plots given in Chapter 13, Fig. 13.4), dominance
turves are intermingled and crossing, and there is no
significant treatment cffect. '

Mulfivariafe ardinations, MDS revealed significant
differences in specics composition for both nematodes
and copepeds: the effects of crab disturbance were
gimilar within each block and similar for nematodas
and copepods. Nobe the similarities in Fig, 12.3
between the nematode and copepad configurations:
both disturbed samples within each block are above
both undisturbed (except for ome block for the
copepods), and the blocks are arranged in sequence

Mematandes Copepods Meicfauna
¢ L L 2
[ ] [ ]
I..I 2 “u _ i
Y ® ] ‘ r [ ]
L . ®
O . - 0
a - a l:h {} O
N o N .
¢ A DD ¢ o2 & A

Fig. 12.3. Tasmaria, Exglehmok Neck [T} MDS configwrations for nematode, copepod and “meigfmena’ {nematode + copepod}
ainendance (roltramsforpad). Differend shapes sepresent the forr blocks of semiples, Opes symbols = smdisturbed, filled = disturbed

(strems = (L2, 0.09, 011 respectinely).
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Moreorless natural communities of somecomponents
of the binta can be maintained in laboratory (and also
ouidoor) experimental comtainers and subijected o a
variety of manipulations. Many types of experimental
systems have been wsed for marine studies, ranging
from migrocosms fcontainers less than 1 mi) o
mesacostas {1-1000m*). Macrocosms (larger than 10°
n?), usunlly invelving the artifidal enclosure of
netural araas it the field, have alzo been used, but so
far mainly for research on fish.

Effects of organic enrichment on meiofaunal
community structure [N}

Gee et ol (1985} collected undisturbed box cores of
sublitloral sediment and transferred them 4o the
expenimental mesocosms estmblished at Solbergs-
trand, Oslofford, Morway. They effected organic
enrichment by the addition of powdered Ascophytiim
nedusim in quantities equivalent to 50 g C m=2 {four
replicate baxesy and 200 g C m (four eplicate boxes),
with four undosed boxes as controls, in a randomised
design within one of the large mésocosmbasing. After
56 days, five small core samples of sediment were
taken from cach boxand combined to give one sample.
The structure of the meiofaunal communites in these
samnples was then compared.

Univariats indices, Table 12.3 shows that, for the

sgwiatodes, there were no significant differences in’

speces richness or Shanoon diversity between
troatments, but evenness was significantly higher in
enriched boxes than controls. For the copepods, there
were significant differences in spovics richrwss and
cvenhesy between reatments, nitnot in diversily

Uraphical/distributional plets. Fig, 12.5 shows the
average k-dominance cueves nver all four boxes in
each treatment. For the memmtodes these are clnsely
coincident, suggesting nn obvious treatment effect.
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trmtrenl. C = condrol, L =
Bowr and H = haigde doma,

For the copopods, hwowever, there are apparent
differences between the rurves. A feature of the
copepad assemblages in the cnriched boxes was the
presence, in highly variable numbers, of several
species of the large epibenthic harpacticoid Tiche,
which ane "weed’ species often found in old ayuaria
and associated with organic chrichment. IFthis gens
Is omitted from the analysis, a clear sequence of

- increasing clevation of the k-dominance curves 16 -
* evident from control ko high dose hoxes.

Table 12,3, Nutrlent—envickment experiment (N), Uniariate
msasyres for all replicater ot the eed of #he cxperiment, mith fie
Foratio and stgnificanice kevels from ome—may ANOVA,

ies Shanmum - Species
: Tichness (4} diversity (27 cvanness {9
MNermatodes : ) :
Control 3.0z 275 L)
174 2389 iy
336 247 0424 .
452 . 2.76 077
Lowr dase 4.3% . 286 D&rr
265 247 D840
4567 2.89 bass
233 227 0,860
High dose 28 217 0782
.52 232 843
430 2,400 .4624
400 247 0823
F ratie 0. 7349 513
Sigmificence (g} w2 s 5%
Copepods ]
Conkrol 281 1493 0927
.o 158 .92
280 1.7 0.MF -
247 194 0931
Lo domes 1.4 160 0643
146 128 0532
166 136 0424
1.72 T8¢ o4
High doses 1.7% 154 0787
087 FEr ] 0820
143 434 0.1eh
. 1.1% .70 0872
F nrtio 1772 285 45n
Seymificence fp) <0.1% L <5




—_— e s -

WM”MW%:%;" %$%%§igﬁwmx% 5

The binlngica] effects of pollutants can be shudied on
asscmblages of a wide varicty of organisms:

Pelagos
= planktorn {(both phytoplankton and zeoplankion)
— fish (pelagic and demersal

Benihos Gzofi-botimm)
— macrobenthns
— meiobenthos
— (microbenthos, not much used for commumity
stgles)

Bentips (hard-boflom)
— eplfauna {encrusting forms, eg. corals)
- motile fauna (both macrofauna and meigfauhain
e.g. algae, holdfasts and epifauna)

These varioug components of the kot each have
certain practical and concepitual advantages and
disadvantages for use in biological effects studias.
These are discussed in this chapter, and an cxample is
given for each of the compenents (although not all of
these examples are directly concerned with pollution
effects).

% o e p g T w ;e&‘ﬁw
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The advantages of plankton are that:

a) Long tows over rdatively large distances result in
comnmunity samples which roflect integrated
ecclogical conditions over large arcas, They are
therefore uwseful in mondtoring mure  global
changes.

b) Identification of macro-plankionic organismas is
moderately easy, berause of the ready availability

of appropriate literature.

The diegdvantaye of plankton is that, because the water
magses in which they are suspended are continually
mobile, thoy are not useful for monitoring the Local
effocts of a particular pollutant source.

R

Example: Conbinuous Plankton Resorder

Plankton samples have been collected from *ships of
opportunity’ plying their wsual cormmerdal ntes
across the NE Atlantic since the lak 1940 (Colebrock,

HE ol
Bpabyriag gereiiiis iy

1886}, The planktan recorders collectsamples through
a small aperpurs, and these ame trapped on a
continupusly winding rollof silk o that each section of
sillk containy an integrated sample from 3 relalively
large area.  This has enabled long term tremds in
planklon abundance 10 be ausessed: there has been a
gradual decline in both zooplankbon and phytoplank-
mn since the early 1950s, wilh an upturn in the 19804
{Fix. 13.1).

%ﬁ $%%§ﬁ§
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The advanitages of fish are that

a} Becauscof their mobility they are again morauseful
for studying eeneral rather than local effects, but
some demersal fish communities may show siko
fidelity, such as the coral-reef fish in the examplc
bel owe

b} The taxomoroy of fish is relatively easy, at least in
Burope and M. America,

Zooplankicn

Phytoplankion

-Z

Standard deviation

1950 1960 1870 1280
Y Year

Fig. 34.1. Coatimzous Mankton Recorder Surpey of tha NE
AHantic (P). Firgt princtl componenis for soepfonkton qnd

phyloplankten, over the yeers of e survey (from Colebrpok,
1986) Craphs soalwd to 2ery mean and usl pardanes,
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Iir.13.3. Amoco=Codiz oil spill, Bay of Mordaix{4], MD=
fur meacrobatiuee & stalion “Piorre Mok, 8 approdgmately
S—montiy sampling intervals (ress = 0.09).

a) Becpuse of their small size and high density in
marine sadiments, quantitative sampling of e
meicbenthos i= casy from smali ships, open boats
cfc. L :

b} The small volume of the samples means that they
can easily be transported o the laboimtory: and
need not be provessed on board ship.

<} Their geacration Hmes ane usually measured in
months rather than pears, so that their polential
respomse lime bo pollotion everds is much faster
than that of the macrebenthos.

d} Because of this fast response tme, and direct
benthic vather than plankionic develapment, the
meicbenthns ate good candidates for causality
cxperiments in experimental microcosms  and

MESDUOHANS

The disgdvantages of melobenthos are that:

a) Thelr tamonwrrty is considered difficult. Tdentifice-
tion of almost all the moiobenthic taxa to Specles
level presents difficuliles even in Europe and North
America, and in many parts of the world the fauma
iz almost completely unknown. Hewever, three
Factors miligate ko a considerable depree against
this prublerm;

{. Therobushiessof commemity anal ysesto theuse
of taxonomic levels higher than species {see
Chapter 10}.

ii. The cosmapolitan nabure of most mziobenthic
Zenerd.

ii. The increasing availability of easily used keys la
meiobenthic gencra.  For cxample, the pictorial
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keys to marine nematodes of Platt and Warwick
(1958} have been used succrssfully worldwide.

b) Community responses of the meiobenthos o
prollution ars Tt well dorumented, so that there is
not an extenslve body of informabon in the
Hizrature against which particular casc—hisborics
can be evaluated.

Example: Soldier crab disturbance of
nematode assemblages, Tasmania

This natural feld experiment was described in
Chapter 12, It will be remembered that the nematode
diversity profiles were affacted by the crab distur-
bance (Fig. 12.2), whereas no significant effect was
noted for copepods (Fig. 13.4). Many nematode
species are more sodentary in habit than copepods,
often adhering t0 sand—graing by secretions from their
candal glands, and some species prefor conditions of
low oxygen concentration or are abligate anagrobes.
The so called ‘thighictic® welofaunal community
wontaing many nuematode species, but apparently no
cupepuds. Nen-bioturbated sediments will have »
verhical gradient in physical and cherndval comditions
ranging from wavedistarbed sediments with an
axiphilic meiofanna commamily near the surface to a
stable sediment with a thiototic community deeper
down, Dramabic disturbance by crabs, of the idnd
found at this site, will inevitably destroy this gradient,
50 that the whole sed tment column will be well acrated
and unstable. This reduction in habitat complexity is
probably the mest parsimonious explanation for the
reduction in nematode specics diversity.

The differential respumse of these twa components of
the meicbenthos has been elaborated here in order @
demonstrate how a knowled ge of the biolopy of these
comiponents cam ald in the imterprela lom of communi-
by nespunses to perturbation. The maombanthos and
meinbenthos may also respond differently to dilferonl
kinds of perturbativn (e, physical disturbance,
“pollution*} so that a comparative study of bath may
be indicative of the cawse.

Example: Macrobenthos and meiohenthos in
Hamilton Harbour, Bermuda

Fig. 13.5 shuows the average k=dominance curves for
the macrobenthos and the nematode component of the
mciobenthos at six stations in Hamilton Harbour. For
the macrobenthus, the curves at throe of the statboms
(H3, H4 & Hb} are much o clevated than the other
three, suggesting some kind of perturhation at these
gsitcs. For the nematodes, however, all curves are
closely coincident. There must therefore be some form
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Fig, 13.6. Indonesion vecf=corals (1L MDS for coral Rpecies
fercemtage cover data for Sputh Pari Islmd {10 soplioadc
Pdhsrots I eack year). 1=TO2], 3=1883 ofc. (streas = 0250

Is seen in comenunity compositon bebwron 1981 and
1983, with a more stead y pattern of chayygathereafter,
though witheuat full reversion to the initdal state.

e
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Huard-bottom motile fauna

The metile fauna living on rocky substrates and
associated with algae, holdfasts, hydroids gte. has
rarely been used in pollubionimpact studies becauscal
ils many dfsadvaniages:

a) Remate sampling 15 difficult.

= ) pege13-5

B Quantititative extraction from the substrate, and
comparaivequantficaticn of abuhdances between
different substrato types, are difficult

<} Responses to perturbation are largely unknown.

d) A suitable habitat (eg. algac) is not always
availablr, A solubon to this prablem, and also
problem (b), might be o deploy standardised
artificial pubstrates, .z, plastic mesh pan—sorub-
bers, along suspected polletinn gradients in the
field, allowing these to become colonised.

Example: Metazoan fauna of intertidal
seaweed samples from the Isles of Scllly

‘The entire metazoan fauna {macrofauna + meiofauna}
was examined from five speciey of intertidal
macro-algae (Chowadrus, Lowrencia, Lomentaria, Chedo-
thara, Polysiphonia) each collected at cight sites near
low water from rocky shores on the [sles of Scilly, UK.
(Gee and Warwick., 1994}, The MDS plots for
meicbenthas and macrobenthos were very similan,
with the algal spedes showing very similar relation-
ships t0 each other in tetms of their mcicfaunal and
macrofaunal commeund ty structure (Fig. 137). The
strgeture of the weed therefore clearly influcncsd
comninity sttuchire in both these components of the
bonthic fauna.

%pecles ahundance data a:eh_',r far the most L‘mnmrd:,r
used inenvironmental impact studies at the coomang-
ty level. Flowever, (he abundance of a spedes is
perhaps the leasi ecologically relevant measure of its
relative importance i a cornmunity, and we have
already seen in Chaptor 10 that higher taxonomic

Melotauna Macrafauna
L . )
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Two communities with a completely differsnt tasn-
numic composition meay have identical univariate o
graphical/ disttibutional structure, and conversely
those comprising the same spacles may have very
different univariate ot praphical strockune.  Thiy
chapter compares univariate, grephical and mulivarl-
ate metheds of data analyzis by appliying them ko a
brnad range of studies on variows components of the
maringe hinta from a vadety of localities, in order to
address the question of whether specics dependent
and specles independent attribuies of community
structure behave the same or differently in response lo
envirpnmental changes, and which are the most
semeltive, Within cach class uf methods we have seen
inpreviouschapters that thereisa very wide variety of
different techniques employed, and o make this
comparalivesscrtise more tractable we have chosen to
examing only one methad for each dass:

Shannen-VWiemer diversity index H' (sce Chapter 8),

k-dominance curves including ABC plats {Chapber 8),

nen-metric MDS ordination on.a Bray{Curts similari-
ty matrix of approprialcly transformed species
abundance or biomass data {Chapter 5).

As part of the GEEP/TOC Cslo Workshop, macroben-
thos samples ware collected at a series of sixskabonsin
Frierijord /Langesundfjord {F}, stabion A being the
outermost and station G the innermaost (station F was
not sampled for macrobenthos). For a map of the
sampling locations see Fig, 1.1.

Univariate indices

Site A had a higher spexies diversily and sita C the
lowest but the others were not significantly different
(Fig. 14.0).

Graphical/distributional plots

ABC plots indlcated thatstatinns C, Dand E were most
shressed, B was moderately stressed, and A and G were:
unstressed (Fig, 14.2)

%
e
papeniiy

Shannon diver=ity (H')
[ 5]

Fig. 14.1. Frievfjord macrobenthos (E). Shaunon diversity
fieant and 35% confidence ftervals) for exch station,

Multivariate analysis

An MDS of all 24 samples (4 replicates ateach station},
supporicd by the ANOSIM test, showed that only
stations B and C were ot signiHeantly diffecent from
2ach other (Fig, 14.3). Gray et of. (1958) show that the
dusiers correlate with water depth rather than wilth
meastred levels of anthropogenic variables such as
hydrocarbons o metals.

Conclusions

The MDS was much better at disziminating bebween
stations than the diversity measurg, but pechaps morg
importantly; sites with simitar univariate or graphi-
cal/digtributional commamity strocture did not
cluster together on the MDS. For éxample, diversity at
E was not significantly different from D but thoy ane
Furthest apart on the MDS; comversedy, E and G had
different ABC plais but clusicred together. However,
B, C and D ail have low divetsity and the ABC plots
indicate disturbance at these stations. The most likely
cxplanatlon is that these deep—waler sktions arc
affected by soasonal anoxda, rather than anthropogenic
pellation.
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Warwick et al. (1990b) analyscd coral community
responses Lo the EL Nitto of 1982-3 at two reefs siles in
the Thousand Islands, Indonesia [f, based on 10
replicate line transects fur each of the years 1981, 83, 34,
Bh, 87 and 88,

Univariate indices

At Pari Taland there was an imumediabe reducton in
diverslty in 1983, apparent full recovery by 1985, with
a subsequent but not sipnificant redoction (Fig. 1451

Graphical/distributional plots

The mean —dominanas cuives were similar in 1951
and 1985, with the curves for 1983, 84, 87 and &8 mare
elevated (Fig. 14.6). Tests on the replicate curves (see
the end of Chapler 8 confirmed the significance of

Shannan diversity (H)
ma
L
—.—.._

1 .
1981 1983 1984 1985 18AT 1086
Year

Fig. 14.5. Indoncsian reef corpls, Mart Eiland f1]. Shapaon
dEversify (reans aed 859 confidmcor intervals) of the speies
coral coveer frope 10 brasects In sk yenr,
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Fig. 149, Maldive Istands, voral-resf fish (M). Anerage
ke nanee curies for abundace md fomass ot mingd and
endrol voef-flar sites.

Conclusions

There were clear differences in community composi-
ticn due to mining activity revealed by multivariate
methods, even on the reefslopes adjacent to the
mined flats, but these wers not detecied at all by
univariate of gmphical/distributional tachniques,
even on the flats where the separation inthe MDS = s0
obvious. '

The entire metazoan fauna (macrofauma + melofauna)
haz been analysed from five species of intertidal
macto-algae (Chandrus, Lavrencia, Lomentarie, Clado-
Phora, Polysiphania) each collected at ciflwe sites near
fow water from rocky shores on the Lsles of Sellly [S)
{Fig. 14.11}.
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Fig. 14,10, Muldoe Iskands, coral—resffish (M), MDS of d8is
root—iransformesl species abundanee duta. Sywmbaks as in Fig,
14 8, ie. cirrles = rogf-fint, squares = slope, sl = thfned, mpen
2 pamirod (sbrzes = (39,

Fig. 14.18. Tsles of Scilly {S). Mup of the 7 sites from oech of
wilrich & seivpeed speries were callected.

Undvariate indices

The meiofauna and macrofauna showed dearly
different diversity paticrns with respect to weed bype;
for the meipfauna there was a trend of increasing
diversity from the coarsast (Chomdrusz) to the finest
(Polysiphonda) weed, but for the macrofaona theme was
oo cear trend and Polpsihonia had the lowest
diversity (Fig. 14.12}.

Graphical/disttibutional plots

These differences in meiofaura and macrofauna
diversity prafiles were also reflected in the §-domi-
nance corves (Fig, 14.13) which had different
soquerding for these bwo faumal components, for
example the Polysiphords curve was the Jowest for
mwiofauna and highest for macrofauna.

~ Multivariate analysis

The MDS plots fur meichenthos and macrobenthos
were very gimilar, with the alpal species showing very
similar relationships to each other in Erms of their
meiofaunal and macrofaunal community sbructure
fsee Fig. 137, in which the shading and symbol
conventions for the different weed species are the
samve as those In Fig. 14.12). Twvo—way ANCSIM (weed
species/siles) showed all weed species o be
signifleantly different from each cther in the composi-
tion of bath macrofauna and meiotuna,




Lig. 14.14. Tagy estuary meicheatkoz (K. L'Iprlﬂ sfiatoirg
bocatioms of 10 intertidal md-flat sites.
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This carple of the effect of disturbance by burrowing
ant fFeading of soldier crabs (T was dealt withinsome
detzil in Chapter 12,  For nematodes, univariate
graphical and multivariate methods all distinguished

- disturbed from undisturbed sites. For copepods only

the maltivariate methods did.  Univariate and
graphical methods indicated different responces for
nematodes and copepods, whorcas the multivaziate
methods indicaled a similar respumse fur these twa
txa.

Ry
GENE Ve

Three general conclusions emerge from these gxam-

ples:

1) The similaﬁty in c'nmmunity structure between
gites Or bimés based on their onivariate ar
graphical/distributional attributes s different
from their clustering in the multivariak: analysis.

2} The species—dependent multvariate methed i3
much more sensitive than the specics~independent
methods in diseiminating betwicen sites or Hmes,

3} Inexamples where more thanone component of
faona has been studied, univariabe and graphical
methods may give differont resulis for diferent
cornponents, whercas multivarate methodstend bo
give the samc resulis,

The semsitive mullivariate methods have hitherto only

 been used for debecting differences in community

omposidon between sites.  Althoogh these differ-
erwes can be correlated with messured Ievels of
stressorgsuch ag potlutants, the multivariate methods
so far Jdoscribed do not o themsclves indicate

Copepods

Fig. 14.15. Tomtar estuary
mctbenthos {RL —domi-
RANGE WIS fOr amalpam-
‘atedt dada from B roplicate
otres for  memmatode  and
copupod  species aboen-

Speacies rank

P R dareep.  Far clevity  of
preseriiafion,  some  siles
Bazyr beear omitted,



W have seern in Chapler 14 tha i mo variabe rethods
of data analysis are very sonsitive for detecting
differences in commnity shructure between samples
in space, or changes ovor Hme  Unbl recently
however, thosa methods have simply been used to
detect differences bobween communities, and not in
themsclyesas measures of comimunity sfressin the same
sense that sprecies—independenl methods (e, diversi-
by, ABC curves) have been wsed. Ewven using Lhe
relatively less sensit ve species—independont mcthods
there mayhe problems of interpretabion im this context.
Diversity does nat behave consistently or predictably
fn response to envirommental stress.  Both current
theory (Connedl, 1978 Huston, 1979) and ompdrical
observation {e.. Danvin 1384) suggest that increasing
levels of disturbance may either decrease or ingrense
diversity, and it may e¢ven remain the same. A
mongtonic response would beeasier to interpret, False
indicationsof disturbance using the ABC method may
also arise when, as povasionally happens, the spedes
responsible for elevated abundance curves are
pollution sensitive ralber than pollution hlerant
species (e small amphipods, Hydrobia efc).
Knowledge of the actual identilics of the species
involved will therefore aid the inferpretation of ABC
curvas, angd the resulling conclusions will be derived
from an informal hybrid of specics—independent and
spedes—dependentinformation (Warwick and Clarke,
in press), In this chapter we deseribe three possible
approaches to the measurement of community stress
using the fully spedes—dependent midiiviriale meth-
ads.,

Thiz method was initially devised as a means of
comparing the severity uf community siress betwean
varions caces Of bath anthropogenic and natural
disturbance, On initial consideration, measares of
community degradation which are independentef the
taxpnomic identity of the species invalved would be
most appropriate for such comparative studies.
Spedies comyposiion varies so much from place to
place depending vn local environmental conditlons
that any general spevics—dependent response b stress
would be masked by thiv variability,. However,
diversity meastres are alzo sensitive to changes in
natural enviconmental variables and an uoparturbed
cammunily in ona Incality could easily have the same

diversity as a porturbed community in ancther.  Alsn,
to pblain comparative data on species diversity
requives a highly skilied and painstaking analysis of
spocies and an unusually high degree of standardisa-
tion with respect to the degree of taxonomic rigour
appliet to the sample analysis: e, it is not valid o
compare diversily at o site where one laxon is
designated as “nementi nes™ with another at which this
taxon has heen divided into specics.

The pmblem of natmral varability in specics
composition from place to place can be ovorcotne by
working at taxonomic levels higher than specles. The
kaxonwmic composition of natural commanities teruds
o become increasingly similar at these higher levels.
Although lwo commundties rmay have no species in
cormanon, they will almdast Cevtalnly comprise the same
phyla. For spfi-bottorn marine benihos, we have
already seen in Chapter 10 that disturbance effects are
detectable with multivariate methods at the highest
treonomiic levels, cven in some instances where these
effects are rather subHe and are not evidenced in
univariate measures even at (he specics lewel, e.g. the
Amoco—Cadiz fA)and Ekofisk {Ef studies.

Meta-analysis is a term widely vsed in biomedical
statistics and refers ko the combined analysizof a range
of individual case—stadies which in themsalves are of
limited value but in combination provide a mome
global insight into fiv problem under investigation.
Warwick, and Clarke (1993a) have combined macto-
bemthic data aggregaled to phyla from a mnge of
cage-studies {7} relating | varying types of disturs
bance, and also from siles which ane regarded as
unaffected by such perturbations. A choice was made
of the mast ecalogically meaningful units in which o
work, bearing in mind the fact that abundance is a
rather poor measure of such relevance, biomass is
better and preduction is pechaps the most relevant of
all (Chapter 13). OF course, no studics have measured
production (P) of all species within a community, but
many studics provide both abundance (A) and
biomass (B) data. Troduction was therefore approxi-
mated using the allomelric cquaton:

P=iBJAIM3x A 15.1)

BfA is of course the mean body-size, and 0.73 is the
average exponent of the regression of annual
production on body-size for macrobenthic inverte-
brates.  Since the data from each study are
standardized {i.c. production of cach phylum is
oxprassed as a proportion of the total) the intercept of
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Fig. 15.2. Jaint NE Atlantic skelf stues ("meta—avalysis”)
ffl. As Pig. 357 bud with tndividual studies highliaheed: &)
Garrech Head (Chyde) dump—grownd; b Loch Lisuche ed Lock
Eil: &) Friesfiard and Amoco—Cadiz opil! {Minrlaizh

Stations at the two extremities of the fransect (1 and
12} are at the extrema Jeft of the wedge, and stations
close to the dump contre (8) are at the sutreme right.

2} Lach Linnke end Lock Eil {L). In the carly years
(1982-68) both stations are sitoated at the unpol-
luted left-hand cnd of the configuration {Fig.
15.2h). - After this the L. Eil station mupves tovards
the right, and at the end of the sampling pericd
{1973) it isclose to the right-hand end; only the sites
at the centre of the Clyde dump-site are more
polltedt.  The L. Linnhe statfon s rather less
affected and (he previously mentioned recovery in
1973 is eyidenced by the return to the left—harud end
of the wedge.

d) Frmjj'urdf’ﬂsiof;ard}fﬂ 'I‘helcﬁl:cmghtsecmme
of staHons in the meta—analysis is A-G-E-D-B-C

{Fig. 15.2c), exacly matohing the canking inorder of
increasing stress. Note that the three stations
affected by seasonal anoxia (B, C and DY are well to
the right of the other three, bust are nok a= severcly
disturbed as the organicatly enriched sites in 1) and
2) above,

& Amoco—Ladis spitl, Morlaix fA]. Note the shift 1o
the rmiglht between 1977 {pre—sp'!ll} and $97R
{post—spill), and the subscquen treturn to the lethin
197981 (Fig. 15 2¢). However, the shitti= relatively
small, suggasting thai this is ondy a mild effecs,

5} Skagerrak. Thebinloglcally disturbed 3Mmstation
iswell Lo the right of the wndisturbed 100m station,
although the furmer is sbll quite close to the
Teft-hand end of the wodge.

6-8) Unpolluted sites. The Northwmberland, Car-
marthen Pay and Keil Bay stations are all siluated at
the lell-hand end v the wedge.

An initial premize of this nwthod was that, at the
phytom level, the laxonomic composition of commu-
nitiesis relatively jogs affected by natural environmen-
tal varlablas than by pollution er disturbance {Chapter
115, To best this Warwick and Clarke (1993a) super-
imposed symbols scaled insize acconding o the valugs
of the lwo most important environonental yvarlabyes
constdered to influsnce community struchare, sedi-
ment grain gize and water depih, onto the meta—analy-
fls MDS configuralion (Chapter 11). Both variables
were quilte randomly disttbiited, which supporis the

original assumpton.

With respect to individual phyla, anmelids comprisea
high proportion of the ttal “production” at the
polluted ond of the wedge, with a decrease at the least
polluted gites. Molluscs are also present al al! sikes,
except the twa most pollated, and have Increasingly
higher domirance towards the non-polluted end of
the wedge, Echincdenms an: even more concentrated
at the npn—polluted end, with some tendency for
higher dominance at the bokom of the configuration
(Fig. 15.3a). Cnetacea ane again concentrated ko the
left, but this time completely confined bo the lop part of
the configuration (Fig. 15.3b). Clearly, the differences
in relative proportinns of crustaceans and cchinod-
ermas ara largely responsible for the vertical spread of
sarnples at this end nf the wedge, but these differcnces
cannot be oxplained in terms of the cffects of any
recotded nabaral environmental vardables. Nematoda
are clearly more impoviant at the polured end of the
wed ge, an shvious consaquence of the fact that species
associated with arganic envchiment tend to be very
large in comparison with their nomnal meiofaunal
counterparty (e.g. Oncholatmids), and are therefore



locathom of samples on the MDS or PCA plots and
emphasise the misuement (0 the tighty of putatively

impacted samples relati ve to appropriate controls. For .

a new study, the spread of sample positions in the
meta-analysis allows one to scale the importance of
observed changes, in the cottext of differongs
hetweencontrol and impacted samples for the training
set.

Table 151, Joint NE Attantic shelf studfies (*meta-analy-
gia”) {J). Eigenvechirs for first therze priaoipyl components from
covqricice—based PCA of stamdardised muel 4k ropt—trens-

Formed pliylu g “producin (afl seveples),

Fhyum M FCl PCs

Cnidaria —1039 LT LY 5 1]
Platylwlm.i.mhm —L6 a0 —i05
Mamerieq {759 8.0 T
Nematoda f.349 ey S X ..
Prinpulida iR #1410 (o0
Sipuncula —{1.156 0.217 L105
Annolida 0,266 2] =t 2
Chelloarata .00 rh2] K] =001
Cristaces (.265 .54 . 289
Mrdlosca —i,445 ~{L37 0768
Phoronida .00 0005 (LY
Brhinodermeta =523 4 T 0014
Hemichordata —{LiwE7 067 —LoFE
Chordata 04012 [ificry a3

It is perhaps premature, howevet, 10 make a poditive
recomvmendation that new dela sels: should be
evaluated in elther of the above ways. The training
data is unlikely toba fully sepresentative of all typesof
porturbation that could be encountered. For ccarnple,
all the grossly polinted samples presently involve
organic enrichment of some kind, which is conducive
0 the occurrence of the large nematodes which play
some part in the posiboning of these samples al the
extrema tight of the mel—analysis MDS or FCA. This
may not bappen with communities subjecked B0 boxic
chemical contamination only. Also, the training data
ara only from the NE Evropean shelf, although data
from a topical Jocality (Trinddad, West Tndics) have
alsn beeny shown to conform with the same trend
{Agard & af., 1993).

Warwick and Clarke {29930 nobed that, in a_vnﬂl:tjr l:lf
covironmental impact studies, the variabilily among
samples collected from impacted areas was much
grater than that from control sltes. The suggestion
was that this variability in itsel ! may be an identifiable

iy rd

Page 15—5

symptom of perturbed situations. The four examples

exarrined were:

U Meivbenikos from & nutriewt—enrichment study
VL a mesooosm experiment to study the cffects of
three lovels of particulate organic cnrichment
{oontrol, low dose and high dose) on meiobenthic
ammmunity structure (hematdes plus copepods),
using Four replicate box—cores of sediment for each
treatment level.

2) Macrobenthos from the Ekofisk oil field, N Sea {E];
agrmb sampling survey at 39 stations around the gil
field centre. Tp compare the variability among
samples at different levels of pallution impact, the
stations were divided into four groups (A-D) with
approximately equal variability with respect o
pollution loadings. These groups were selected
froin a scatter plot of the concentrations of twa koy
pollution-related environmental variables, petro-
lcum hydrocatbons and bardum.  Since (he
dose/response curve of orgamisms o pollutant
cohcchtrations is usually lagarithmie, the values of
these two variables were log—transformed.

3 Corals from 5 Tikus island, Tndoyesia {I); thanges
in the structure nf reef—coral communibics etwoen
1981 and 1983, along ten replicate line transects,
resulting from the effects of the 1982-82 E1 Mino,

4 Reef=fich in the Maldive Islarnds (M): the structure
of fish cormuni Hes on reef flaks at 23 coral sites, 11
of which had been subjected to mining, with the
remaining 12 unmlned sites acting as controls.

Data were analysed by non-metrie MDS using the
Fray—Curtis similarity measura and #ither square yoot
(masocosm, Elofisk, Tikus) ur fourth root (Maldives)
transformed speciesabundance data (Fig. 15.4). While
the contral and low Jose treatments In the melofaunat
mesqresm experiment show  tght clustering of
replicates, the high dosc replicates are much mone
diffusely distributed {Fig. 154a). For the Ekofisk
macrobenthas, the Group D (most impacted ) staions
are mich more widely spaced than those in Groups
A—C {Fig. 15.4b). For the Tikus Island corals, the 1963
neplicates are widely scatterd aroumnd 2 tight cluster of
1981 replicates {Fig. 15.4c), and for the Maldives figh
the control sites are Hightly elustered entirely to the left
of a mora diffuse cluster of replicates of mined sitas
{Fig. 154d}y. Thus, the increased variability in
moltivatiate structure with increaged distorbance 1=
clearly evident in all examples.

It is possible by congbruct an index from the relative
variabilily between impacted and control samples.
One obvious comparative measore of dispersion
would be based on the differenge In average distance



For the Fkofisk macobenthps, strongly positive
valucs ane found in comparisens between the group D
{mostim pacted) #a fonsand the other three groups. It
should be noted howeyver that stations in groups C, B
and A areincreasingly more widely spaced geographi-
cally. Whilst groups B and C kave similar variability,
the deproc of dispersion incroases between (he two
vutermost groups B and A, probably due to natural
patial variability. However, tho most impacted
stativns in group D, which fall within acircle of 500 m
diameter aroumd the ol-ficld centre, still show a
greater degree of dispersion than the stations in the
puter group A which are situated outside a drcle of 7
kilorneters diameter arvund the oll-field. Comparison
of the impactad versus control conditions for both the
Tikus Island corals and the Maldives reef=fish glves
strongly posltive IMD valucs, For the Maldives study,
the mined sites werg more closd y spaced geographi-
cally than the contral sites, so this is ancther example
for which the increased dispersion vesulting from the
anthropogenicimpactis “working against” a potential
increase in variability due o wider spacing of sites.
Nonetheless, for both the Fkofisk and Maldives
sludies the Increased dispersion associabed wlth the
impact more than cancels out that induced by the
differing spatial scalos. For both the mesocosm
melobenthos and the Tikus Island coral studies there
ate no such differences In spatial layout between the
trestments to dilute the observed dispersion rffects,

Application of the comparative indox of multivariate
dispersion suffers from the lack of any obvious
satistical framework within which to lest hypotheses
of oommparable varlability between proups.  As
proposed, it isaiso restricted to the comparison of only
two groups, though it <in be extended we several
groups in stralghtforward fashion. Letr denote the
meanof the Mj = i~ 132 rank similarities atoong the
#; sarniples within the ith group (i =1, .., g} having (ag
before) ra—ranked the triangular metrix ignoring all
between—group similarities, and let N dengte the
numbet of similaritiss invelved in this ranking process
{N = § N;). Then the dispetsion sequence
tafk, Tafk, s Vyfk (15.4}
defines the relative variability within each of the g
groups, the larger values corresponding to greater
within—group dispersion. The dencminator sceling
factor kis (N -+ T2, Le. simvply the mean of all M ranks
involved, so that a relative dispersion of unity
corresponds 0 “average dispersion”. (If the number
of samples is the same n all growps then the valuesin
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aquation (15.4) willaverage unity, though this will not
gquile be the case if the {r5} are pnbalanced.)

Asan axarnple, the relative dispersion values givon by
equation {154} have been computed® for the four
studies considoved abova{Table 153). This tan be seen
as compkmentary information to the IMD values;
Tablc 15.2 provides the pairwise comparisons follow-
ing on from the ginbal picture in Table 153, The
conclustons frorm Table 15.3 are, of course, congistent
with the earlier discuesion, e.g. the crease it
varfahility at the oulormost sites in the Ekofisk study:
because of their greater geographical spread, being
nonethoiees smaller than the increased dispersion at
the comtral, impracted staligns

Tahls15.3, Variakiley skaly (N E, ). M), Relative dispersion of
the gronsps (e wartion 15410 ench of the four sieadies.

Madobenthos Contnol 0.58
Lowdoza 0.79
High dosc ig3
Marmbenthos Croup A 154
Crnup § re
Goniapy 051
Grotip D 1658
Corals 1981 058
1983 142
FKesf-fish Caontrol reofs 2T )
Mined peefs 144

Clear—ut zonabon patlerns in the form

change in ciommmunity stuctute with incroasing water
depth are a etiking feahre of intertidal and
shallow—water benthic communities onboth haxd and
soft substrata. The causes of these zonation patterns
ara varied . and may ditfer according i circumstances,
but inchsde environrental gradients such as Light or
wave eneapy. competition and predation. None of
those mechanisms, however, will necessarily give rise
to discontinuous hands of different assemblages of
species, whichisimplicd by the term zomatios, and the
more peneral term serfation iz perhaps more
appropriate for this patlern of community change,
zonation (with discontinuitles) being a spedal case.
Many of the factors which determine the pattern of

1. Bodh ke IMDrand the relativedispersion palues o covnpraded
by Ele PRIMER program MV DISP.



Trangeat A : B

Year

B3

Fig. 15.6. Ko Phuket covals
{K). MDS ordaretion of the
ShaHging corgl cammumnitio

87

{specics cover date) along
three tremsactz (A o C} at
faur vimes (1983 to TOHS)
The iiies indicate the degroe
of erition by linking succes-
Sive poieds aony & irmasct,
from onshore (3} fo offshors

semples {12 ar 17} M5

8B

1963 is ovitied (e bext) and
Ho singies wene teben for
trangect C in 1986 (rending
acrss vaws, slress = 010,
0.12, 0.09; 0.10, 0.17; 058,

,\ L72]  twlus are @ fop right.

Sample 1 from tmnsact A in
o N\

non-mononic — with the composltion bedng =imilar
aroppositeenda of the transactbut very differentin the
tiddle — them the TMS will be close to zcro.  These
tear—rerg valuos can be nepative ag well as positive
but no particular significance attaches to this.

A statistical significance test would clearly beuseful, to
answer the question: when is fhe IMS suffidently
ditferent from zeso o reject the null hypothesis of a
complete absence of serlation? Such a kst can be
derivad by a Moute Carlo permutotion procedure. 1f
the nul]l hypothesisis true then the lahelling of samples
along the transect (1,2.....%) fsentirely arbitrary, and the
spread of IMS values which are consistord with thenull
hypothesis can be defermiined by recomputing it for
permatations of the sample labels in one of the twe
similarity matrices (holding tha other fixed). For T

randomly selected perinatations of the sample labels, -

if only ¢ of the T simulated M5 values are greater than

or equal tn the observed IMS, the null hypothesis can -

be refected at a significance level of HHNEINT+1)%.
In struchure, the test i analogous to that considered at
the cnd of Chapter 6 (implemented in the PRIMER
program ANQSIMR), and again referred to briefly in
Chapter 11 i the context of the BIG-ENV procedure,

(.14, 0.17; 0.0F, G049, 0,100,

One distinctve feature of the current best is that tied
ranks will be much more prevalent, particularhy in the
sirnilarities computed from the linear sequence, and it
is adwisable to make proper allowance for this in
calculating the Spearman coefficients. Kendsall {1970,
equation 3.7) gives an appiopriabe: adjstmeant to pg,
and this form 15 nsed in the anatysis below.?

In.lEl'ﬂB be{nre&mdmdgingopemhcms,ﬂﬂﬁ
configurations (Fig, 15.6} indicute that the points along
each fransoct oomformn rather clossly to a linear
sequence, and there are no obvious discrmbinuities in
the sequence pf community change (ie. no disoate

2. The onleskations for the tests were carrial out using the
FRIMER progiam RELATE. The smilarity—based formia-
tionr, amd the associated permufation fest. ave aleo readily
eafarndabla o more cotplor wiadels Ehar o finegr sequence of
chinge ey & spetisl franseal.  In a honstlogous sy,
crmpnfly change cowld be reluted &9 o femporal trend oy
cyelicity, or do the supling positions i @ 2—dimensianal spabial
layoul, There are null Bypothests tesis for.all these possibili es
it RELATE, in adddition to @ gencral test for Lack of relaitonship
betsooen gy ore supplied simikarity wuttHees1oithile nome label
sets CimTasendently derived).



AR R R

The Following 15 a list of all (mal) data sets used as
cxamplos in the text, where they are referenced by their
indexing letter {A-Z). In addition t the pages on
which these cxamples can be found, the entrige give
the source roference (see also Appendix 3) for the
original publication of {hese data. WNote that these are
nat always the appropriate references for the analyscs
presented in tho text; the later can gencrally be found
in Appendix 2.

A — Amoco=Cadiz il spill, Bay of Morlaix, France,
Macrofmana, (Dauvin, 1984}
pI0-4, 105, 132, 153,152, 15-3

B — Bristol Channel, England. Zooplenkion. (Collins
end Williams, 1952)
p 3-8, 3-6, 72,73, 74, 11-3,11¢

C - Celtic Sca. Zooplankton. (Calling, pers. comm.).
p2

L - Dosing expetiment, Solbergsirand mesocosm,
Norway (GEET Workshop}. Nematodes . (Warwick
ef al., 19088),
pi5, 5894

E - Ekofisk pil platficem, N. Sea, Macrofaiein, (Gray o
al., 19%0),
p8—4 85 105 10-4,14-2,14 3 155,156, 15~/

F-Frierfjoed, Norway (GEEF Workshop), Mecrofiu e,
(Cray et ql., 1938].
pi-3,14,1-9.1-10,3-1, 32,61, 62, 6=3, 64, 3-9,
91,101, 72, 13-4, 14-1, 14-2, 152, 15-3

G-Garmoch Head, Scotland. Macrefzina. (Pearsonand
Blackstock, 15245,
pli-4,1-7, 18, 1=17, 112, 54,85, 8-4, 3-8. 8-11,
-1, i1-2, M-3, 11-5, 118, 1111, 15-2, 15-3

H - Hamilton Harbuour, Bermuda (GEET Workshop).
Moacrofapna, wematodes, (Warvreick of of., 1990ch
p -2 8-3,811,13-3.734

I- Indonesian reef corals, 5. Parl and 5. Tiks [slands.
Coral % cover. (Warwick ef of., 1990b).
p 65, 64, &2, 10-4, 10-5, 10-7, 134, 13-5, 14-3,
144, 155,156, 15+

T - Joint NE Atlantic shelf studies mcta—anal ysis™).
Macrefouna "production”™.  (Warwick and Clarke,
19933)
p lo=Z, 15-3, 154, 15-5

K- Ko Phuket coral reefs, Thailand, Coral speciescoven
(Clarke et al, 1993). )
pi54, I5-3,15-10

L - Loch Linnhe and Loch Eil, Scotflandd, Adacrofisi.
{Pgarson, 1375
rl1-6, 1-7, 110,44, #-5, 86, 8-7, 810, 10-3, 104,
104,107,152, 15-3

M —Mal dive Istands. Coral recf fish. {Dawson-Shep-
hord ef al.. 1992),
p13-2, 144, 145, 15-5,15-6, 157

M — Nutrient-enriglunent experiment, Solbergsivand
mesocost, Morway. Nemsatodes, copepods.  (Gee ot
al., T9E3).
pI=13, 1-13, 103, 104, 12=5, 126, 15-5, 15-6, 157

P - Planktom survey (Continuous Plankton Recorder),
M.E. Adantic. Zooplanklom, phuteplankion. {Cole-
brock, 1556).

p 131

R-Tamar estuary mud-flat, S.W. England. Nesmivdes,
copepods. (Austen and Warwick, 1989).
p146,14-7, 148

5 - Scilly Isles, UK. Seaweed mefazoa. (Goe and
Warwick, 1994).
p13-5, 145,146

T — Tasmania, Eaglc]'hawk Meck. Nmfad'ﬁ,mpqnd&
(Warwick et al., 1990a)
p&7. 58 12-2,12-3,12-4,13-3, 134, 14-?

W - Wosterschelde estuary cores, MNetherlands;
mesocosm experiment on food supply. Nematodes.
CAusten and Watrwick, in prass)
p6-8.6-9, 611

X —Exe estuary, England. Newatodes. (Warwick, 1971}.
pP53.5-4,5-7,6-11,6-13.7-1,7-2, 115, 116, 117,
1i-2

¥ — Clyde, Scotland. Nemﬁ:niﬂ: {Lambshead, 1986)
péb, 67

Z — Azoic sedimeot rooglonization experiment.
Copepodds. (Olafzson andere 1992,
p 124



This marrual chiefly reﬂeclsan_;,lpproa.ch o rodbvari-
ate and other graphical cormmunity analyses that has
been adopted and develnped at the Plymeoutl Marine
Lahoratory (PML) over the last decade, and has been
the subject of assessmment and training at several 100
and FAQ/UNEF workshops (e.g. papers in Bayne e al,

1988, Addison and Clarke 1990). Methodological

papers involving work at TML tnclode: Field e af.
{1982}, warwick (1986), Clarke and Green (1988},
Clarke{1990), Watwick and Clarke (19%%a & b}, Clarke
and Ainsworth {1993}, and Clarke and ‘Warwick
(1999}, Clarke (1993} and Warwick (1993} reviaw thess
trathods, and a numbet of PML papersexempliby their
use through the PRIMER package: see for example the
papers listed nnder Warwick in Appendix 3,

O¥ course, the exposition bere draws ona widet body
of statistical and deseriptive: bechniques, “and thers
follows a brief listing of the main papers and books
thatcan be consulled for further detal];sufthemeﬂmds
and analyscs of each Chnpl:er

Chapter 1: PFramewark. The categorization hereis an
extension of thal given by Warwick [1988a). The
Frierfjord macrofaung dits and analyses (Tables 1.2 &
1.6 and Fige. 1.1, 1.2 & 1.7} art extracted and redrawn
from Bayrwe ef al. (1988), Cray of al. (1988) and Clarke
and Green (19%88), the Loch Linnhe macrofauna data
{Table 1.4 and Fig. 1.3) from Pearson {1975}, and the
ABC curves from Warwick [1986). The species
abundance distribution for Garroch Head macrofauna
(Fig. 1.6 is fivst found in Pearson e al. (1983}, and the
multivariate inking to environmental variables (Fig.
149 in Clarke and Ainsworth (1953), The Solbergs—
trand mespoosm data and anadysis (Table 1.7 and Fig,
1.10) are extracted and redrawn frora Cee cf gl (1985).

Chapters 2 and 3: Similarity and Clustering. These
methodsoriginated in the 1950 s and 60's (e.g. Flarek e
k., 1951: Sneath, 1957; Lance and Williams, 19%7). The
deseripiionhere iz a widening of the diseusionin Feld
e al. (1582), wilh some points faken fom the
recommended general texts of Everitt (T98() and
Cormack (1971). The dendrgram of Frietfjord
macrofaunal samples (Fig. 3.1} is vedrawn from Gray et
al. {1958), and the zooplankion example (Fles. 3.2 &
3.3} from Collins and Willlams {1952).

Chapter & Ordination by PCA. This is one of the’
founding kechnigues of multivariate statistics; stah-
dard mwdeen tees include Chatfield and Colling
{1960) and Everitt (1978). The concluding example
(Figs. 4.2) is from Warwick ef of. (1988).

Chapter 5 Ordination by MDS, Mon—metric MDS
wirs introduced by Shepard (1962) and Kruskal (1964)
standard texts are Kruskal and: Wish (1978) and

Schiffrian ef &, (1981}, Here, the exposition parallels

 that in Pick ¢t 4l, (1952) and Clarke {1993); the Exe

nomatode praphs (Figs. 5.1-5.4) are redeawn from the
former. The dosing experiment (Fig. 5.5) is discussad
in Warwick et ol (1985).

Chapter 6: Testing. The basic permutation test and
simulation of signiflcano: levels can be traced o
Mankel (1967} and Hope [1968), respectively. In this
context (e.g. Figs. 6.2 & 63 and equation .1) if Is
described by Clarke and Green (1932). A fuller
discussion of the exknsion to 2-way nestad and
crossed ANOSIM tests (including Figs. 6.4 & 6.6} is in
Clarks {1993) (wilh 2o asyanplotic results in Clarka,
1988); the coral analysis (Fig. 6.5) ie discussed in
Warwick ¢f af. (1990b), and the Tasmanian meiofaunal
MDS (Fix. 6.7) i3 in Warwick of gf, (1990a), The 2—way
crossed design without raplication (Figs. 6.5-6.12) s
tackled in Clarke amd Warwick {1994); see alsg Austen
and Warwick (in press).

Chapter 7 Species analyses. Clustering and
ordinabion of species similaritics is a5 illustrated in
Ficld of of. (1932), for the Exenematode data (Figs 7.1 &
7.2, redrawn); see also Clifford and Stephenson{1975).
Tha SIMPER ("sirnilarity percentages”) procedure I3
described in Clarke (1993}

Chapter 3: Univariate/graphical analyses. Piclou
(1975), Heip & af. (1988} and Magiorran (1991} are

“uselful texts, sunumarising a vast literature om a varigty

of diversity indices and ranked specics abundance
plots. The diversity exampleshere (Figs. 8.1 &8.2) are
discussed by Warwick efel (19900, 1990b respectively?
and the Cagwell V' computabions (Table 8.1} arve from
Warwick ct al. (18%0c). The Garroch Hoad spectes
abundance distribulions (Fig. B4) are first found in
Pearsan ¢! al. (1983); Fig. 8.3 §5 redravwn from Pearson
and Blackstock (1984). Warwick (1938) introduced
Abundance—Bigmass Comparisen curves, and the
Loch Linnhe and Garroch Head illusirations {Figs. 8.7
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