Implementation of circular economy policies in the manufacturing sector - A case study of Sugar Corporation of **Uganda** Limited

Muwonge Timothy

Objectives

- To demonstrate the need of C.E policies
- To demonstrate how the policies inform the industries' strategies and self regulating policies & environmental legal framework
- Government involvement through lead

agencies.

Why CE policies in the Manufacturing sector

- Increases uptake of industrial symbiosis among enterprises.
- Provides a favourable enabling environment for adoption of industrial symbiosis.

Introduction

- Sugar Corporation of Uganda Limited
- Started in 1926
- Part of Mehta Group Of Companies
- Produces Sugar, ENA and Carbon-dioxide from Sugarcane.

• ISO 9001, 14001 and 45001 certified.

Preserve & extend what is already made

• The objective is that while resources are in use, manufacturers will maintain, repair and upgrade their systems to maximize their lifetime through take-back strategies.

- This will require the industry not to be satisfied with what is already in place but extend the opportunities available.
- In some cases this may require legislation and regulation depending on the expected outcomes of the extension.

BAGASSE

- Originally a waste, with impacts to air and soil
- Now a source of fuel to the boilers to generate steam and electrical power for internal use.
- A 15MW co-generation project is being set up to generate power for sale to the National Grid.

Use of Waste as a resource.

• The aim is to Utilise waste streams as a source of secondary resources and recover wastes

- Manufacturers can set up internal systems whereby the waste streams are managed.
- An alternative could be by industrial symbiosis which can be internal or external depending on the extent.
- Frameworks should be set up to link the different actors to get this mutual benefit.
 - " By Products" not "Wastes"

MOLASSES

- Previously a waste and was being sold locally to local distillers.
- Social ills as well as pollution in cases of excesses that could not be controlled.

nfo

SOLUTION 1

- Installation of a 30,000 litre distillery to produce Extra neutral alcohol.
- Processes involved

Dilution

Fermentation

FERMENTATION PROCESS

- Produces Carbon-dioxide which is a green house gas.
- CO₂ is captured, purified to make food-grade CO₂ and dry ice.

The plant is FSSC certified as well as ISO 22001 certified.

CO2 gas & Dry ice Production

DILUTION PROCESS

- Initially, dilution of molasses was done with demineralised water – i.e. a DM plant was installed.
- The distillation rectification columns produce spent lease.
- This is a mixture of aromatics which was formerly sent to the ETP as waste.

- It is now being used as the diluter for the fermentation process.
- There is a savings in water being used.
- This is one of the interventions from SAG project

Loss of spent lease cubic meters per annum	18,921
Cost of pumping DM water \$	6650
Cost of implementing changes \$	50
Savings in water use	18,921
	19

DISTILLATION - 1

- Distillation produces spent wash.
- High BOD, COD, Colour, TDS and organics.
- Highly dangerous to soil and water.
- Many technologies not successful by many distilleries using molasses.

- Anaerobic treatment of spent wash t produce methane.
- Methane gas is burnt in a boiler to produce steam.
- Steam in turn runs the distillation plant.

- There is a saving in steam from the factory.
- The distillery becomes self sufficient.
- This is a CDM project and SCOUL earns carbon-credits.

Bio-digester & Boiler

DISTILLATION - 2

- The treated spent wash together with the filter mud from the sugar factory and boiler ash is used to make a manure – Bio-compost.
- It takes about 30 days to get a good compost.
- The manure is then fed back into the sugarcane fields.

• Research with an enzyme is on going.

Sugar Corporation of Uganda Limited

Sugar Corporation of Uganda Limited

- SCOUL has achieved a zero discharge of the effluent.
- The is less pressure to acquire more land for expansion.

WATER - more SAG interventions

- SCOUL abstracts water from a nearby river.
- At the same time SCOUL discharges the treated effluent to the same river.
- This was not a comfortable situation.

Intervention 1 - Recycling

- Mills, air compressors, sugar drier, Instrumentation equipment, vacuum pumps.
- All had a one-through cooling system.
- This is now collected and recycled.

Intervention 2 –

- Maintenance/Housekeeping
 Too much washing of the factory was being done due to leakages, spillages, overflows.
- Maintenance of equipment esp. pumps.
- Installation of suitable instrumentation.
- Installation of steam ejectors for quick efficient recovery.

WATER ABSTRACTION

Waste water Discharge Rate

Series 1

Indicators	Change (%)	Indicators	Change
Water productivity	1.36	BOD5 Load (X103)	-13.94
Variation from Benchmark	12.12	COD Load (X103)	-59.24
Waste-Water Intensity	-66		
Water productivity/change in product output	0.26		
OTHERS			
Total Investment		29,000,000	UGX
Total Annual Vol of Water Saved		14,893	m3

- Improvement in discharge quality
- Lower costs of pumping
- Reduction of permit fees
- Improved housekeeping

Recognition

Water sector

- Government though the lead agencies DWRM has put up permits for abstraction, use, and discharges.
- These state what should/should not be done.
- Inspections and interactions are thus carried out.

• UCPC – through arrangements like SAG, tackles directly the issues to do with efficiencies & utilization – recycling, reuse.

• Water audits are also carried out to make a thorough assessment.

- The permits are mandatory, but the interventions, which go on to achieve the objectives are optional to the manufacturer.
- Policies are required to marry the two.
- Policies that require the manufacturer to utilize the resources efficiently to achieve the standards embedded in the regulations.

That is to say, C.E. to be a component of the permits.

Legislation & Regulations

- Environment Act Part IV Environment Planning
- Parts VI,VII & VIII on control of pollution, manage, control of products & minimize wastes and hazardous wastes
- Regulation 52/1999 Waste Management Cleaner production methods

Design for the future

- The starting point should be in the set-up plans and arrangements for the manufacturer.
- Incorporation of C.E. in the EIAs, permits and licences or at least the elements.
- For those already in operation, C.E. can be introduced in form of improvement notices.

CONCLUSION

- In most cases the industries have worked under the stick (regulations, fines, shutdowns etc).
- But where is the carrot?

- If the stick is the only option, there will be slow progress as far as C.E is concerned.
- The manufacturer will follow the "polluter pays" principle and will make provision of the fees in his budget.
- In addition, the manufacturer will opt for the licensed transporter of the waste.

ΔΔ

Conclusion

• There is indeed a need for Circular economy policies in the manufacturing sector and it will take the active participation of all stakeholders to achieve this goal.

nfo

SPECIAL RECOGNITION

Uganda Cleaner Production Centre

Sugar Corporation of Uganda Limited

Thank you!

- Muwonge Timothy
- timothym@mehtagroup.com
- <u>t1muwonge@yahoo.com</u>

