

**European Union** 





## Technical Assistance Models for Greening the Manufacturing Sect

LETITIA ABRA-KOM NYAABA

**Ghana National Cleaner Production Centre** 

Switch Africa Green Regional Sector Meeting on Green Manufacturing 26<sup>th</sup> -27<sup>th</sup> September 2019, Entebbe Uganda









## Content

- 1. Brief Background on Project
- 2. Summary of Project Implementation
- 3. Successes and Results
- 4. Challenges
- 5. Opportunities
- 6. Case Study

## Background of project

- The industrial symbiosis is multi-country project implemented in six African countries namely: Burkina Faso, Ghana, Mauritius, Kenya, South Africa and Uganda.
- The Project commenced on January, 2016 and ended on 30<sup>th</sup> June, 2018.
- The project implementing agency/grantee is the Ghana National Cleaner Production Center, GNCPC and the partner is ARSCP
- Total budget: USD203,147.40.

## Objectives



## Overall Objective:

Promote resource efficiency and environmental performance in MSMEs in Ghana through the concept of industrial symbiosis

## Specific Objectives

- Improved resource productivity and competitiveness in MSMEs
- Reduced cost of production
- Reduced industrial pollution
- Creation of 'green' jobs
- Improved revenue of the MSMEs
- Informed policy makers triggering policy reforms
- Improved environment for local communities

Drivers of Industrial Symbiosis for Integrated Waste Management

- Disposal Costs
- Environmental regulations/performance
- Pressure on Landfill sites
- Improper waste disposal by collectors

## Industrial Symbiosis Delivers

- Resource efficiency
- Demand-led innovation
- SME engagement
- Landfill diversion
- Water savings
- Carbon emissions reduction
- Virgin material savings
- Jobs
- Cascading of best practice Increased
- Reduced production costs (Profits)
- leading to tax revenues
- Energy savings
- Improve community relations/public image

6

## Locations of MSMEs





## Implementation

- R & D Support
  - component analysis
  - new product formulation
- Downstream market linkages



## KEY PROJECT OUTCOMES





**GHG Emissions Saved** 



## 98,107.18 tonnes

Landfill Diversion





**Cost Savings** 



Jobs Created

## Other Outcomes

- 100
- 3 new SMEs starting up in the aluminium scrap sector
- 8 new product lines including biomass-to-energy within some plants
- Draft National IS Policy & National Implementation Strategy

## Challenges

- Frequent non-availability of MSME key staff during audits
- MSME initial unwillingness to engage
- High Key staff turn-over in most MSMEs on programme
- Lack of funds to implement options
- Lack of data from MSMEs (not accurate & reliable if any)
- Reluctance to disclose transaction values (volume/money)
- Distance constraints
- Legal and contractual constraints confidentiality and nondisclosure issues

## Opportunities

Application of IS principles and methodologies has led to the attainment of a 'greener' venture through the following ways:

- Costs savings
- Increased profitability
- Employment opportunities
- Improved material security
- Improved resource productivity and competitiveness
- Reduced industrial pollution
- Access to innovation
- Introduction of new product lines
- Reduced risk due to diversification
- Support development of local technological innovations

## Case Study-Pioneer Food Cannery



# PFC UTILITIES REDUCTION

2020





### **Company Profile**



Source of Raw Material Local and Imported

MEMBER OF Dow Jones Sustainability Indices in Collaboration with RobecoSAM 📀

Canned precooked tuna, canned raw packed tuna, bagged precooked tuna loins, Fish meal, Fish oil.

**Installed Capacity and Markets** 

Tuna Processing Factory-250MT per day, Local and Export

### **Green Manufacturing Potential Saving, 2016-2018**

### Fishmeal





Fishmeal from fish scraps- for agri-business. ➤ Avg. US\$ 1,098 /Ton FG







Organic fertilizer for mulch and biogas culture ➤ Exploring for markets

### **Green Manufacturing Practice and Processe(s)**





Use of Sky lighters



WWTP Biogas Production-Flaring



Effluent Treatment- Explore Return of Water Treated for Use





Use of LED lights (at 90% throughout the factory)

Photocell lighting systems



Water Pressure Guns, Water sensing taps and washrooms



### Green Manufacturing Potential Saving, 2016-2018

0.63

2018

Achieved Target Reduce but not achieve target Not Reduce





(kg/Ton FG)

### **GHG INITIATIVES**

Avg. 9.3

€ / ton FG

DHG

Air compressor segregation and control (Ring main & receivers)

-1.61 %

0.62

2017

(Ton CO<sub>2</sub>/Ton FG)

- Redesigning the steam distribution system
- Automatic switch system for lights & A/Cs in new office
- Phase 2- LED light replacement, sky lighters
- Installation of new electricity meters

0.62

2016

- VSD control on some refrigeration compressors and evaporator fans
- Condensate return system and treatment from retorts.

### WATER INITIATIVES

15.40

2016

Water

Avg. 2.6

€ / ton FG

- Replacement of rusted pipes
- Replacement of precook & Chiller nozzles

21.31%

13.24

2018

12.55

2017

(m<sup>3</sup>/Ton FG)

- Replacement of PRC cooling tower
- Reuse of retort make-up water
- Water consumption monitoring system per section
- □ Water saving campaign

### **SOLID WASTE INITIATIVES**

- D Metallic scraps, plastics recycling
  - by approved EPA vendors.
- Investment to procure industrial
  - papers shredders and recyclables
  - sold to paper factories.
- Organic sludge waste use as fertilizers

### WATER



#### Implemented Initiatives:

- Flood valves can washer
- PRV cookers
- New pump for PRC
- New water spray standard time cookers
- Panel control for chillers
- Water saving campaign
- Night sanitation monitoring

### Metering and daily management (32 meters) – 85% of consumption covered



YTD CONSUMPTION (M3)

### WATER CY18 CAR

#### **NEW INITIATIVES :**

| Action                           | Actual<br>consumption<br>[M3/year] | Actual<br>cost | Future<br>consumption<br>[M3/year] | Future<br>cost    | Investm<br>ent | Saving | Saving /<br>year | Pay<br>bac<br>k |
|----------------------------------|------------------------------------|----------------|------------------------------------|-------------------|----------------|--------|------------------|-----------------|
| Replacement of rusted pipes      | 5,864                              | \$10,555       | -                                  | \$0               | \$60,000       | 5,864  | \$10,555         | 5.7             |
| Replacement of cookers nozzles   | 30,185                             | \$54,333       | 22,639                             | \$40,750          | \$20,000       | 7,546  | \$13,583         | 1.5             |
| Replacement Chillers<br>nozzles  | 13,433                             | \$24,179       | 10,075                             | \$18,135          | \$15,000       | 3,358  | \$6,045          | 2.5             |
| Replacement of PRC cooling tower | 19,727                             | \$35,509       | 14,795                             | \$26,632          | \$60,000       | 4,932  | \$8,877          | 6.8             |
| Thawing water recycling          | 25,927                             | \$46,669       | 18,149                             | \$32 <i>,</i> 668 | \$70,000       | 7,778  | \$14,001         | 5.0             |

| Environn | nental Goals 20 | 020       |
|----------|-----------------|-----------|
| Year     | Target          | YTD       |
| 2016     | 11.0            | 12.0      |
| 2017     | 10.3            | 11.6      |
| 2018     | 13.2            | 13.3 Mar. |
| 2019     | 12.5            |           |
| 2020     | 12.5            |           |

#### ELECTRICITY

|    |           | (ELECTRI | CITY kWh | / Nwt) |     |                                       | YEARLY RE   | DUCTION |
|----|-----------|----------|----------|--------|-----|---------------------------------------|-------------|---------|
| 40 | 33        | 35       |          |        |     | · · · · · · · · · · · · · · · · · · · | 2016        | 6%      |
| 20 | <b>17</b> | 3        | 07       |        |     |                                       | YTD 2017    | -8%     |
| 80 |           |          | 4        | 252    | 62  |                                       | Target 2018 | -10%    |
| 40 |           |          |          |        | 24! | 9                                     | Target 2019 | -5%     |
| 20 | 115 200   | 16 VTD   | 2017     | 110    | 202 | 0                                     | Target 2020 | -5%     |

#### **IMPLEMENTED INITIATIVES :**

- Phase 1 LED
- Atlantic Coldstore new condensor
- New air compressor for WWTP
- Production A/C better managed
- New panel to control the chiller room

### Metering and daily management (23 meters) – 91% of consumption covered

### PARETO ELECTRICITY CONSUMPTION



### **ELECTRICITY CY18 CAR**

#### **NEW INITIATIVES :**

|                                                                                                                               |                                     |                |                                     |                |            |                 |                 | · · · · · · · · · |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|-------------------------------------|----------------|------------|-----------------|-----------------|-------------------|
| Action                                                                                                                        | Actual<br>consumption<br>[kwh/year] | Actual<br>cost | Future<br>consumption<br>[kwh/year] | Future<br>cost | Investment | Saving<br>(kWh) | Saving/y<br>ear | Paybac<br>k       |
| Air compressor segregation and control (Ring main & receivers)                                                                | 1,090,249                           | \$231,133      | 981,224                             | \$208,019      | \$100,000  | 109,025         | \$23,113        | 4.3               |
| Phase 2- LED light replacement                                                                                                | 175,200                             | \$37,142       | 26,280                              | \$5,571        | \$50,000   | 148,920         | \$31,571        | 1.6               |
| Eextracting room upgrade (new fans controlled by VSD + probes)                                                                | 277,411                             | \$58,811       | 221,929                             | \$47,049       | \$30,000   | 55,482          | \$11,762        | 2.6               |
| Phase 2 Atlantic (Split evaporators<br>(room 1 & 3), Install VSD evaporative<br>condenser, Install VSD on evaporator<br>fans) | 1,192,639                           | \$252,839      | 1,073,375                           | \$227,555      | \$220,000  | 119,264         | \$25,284        | 8.7               |
| Automatic switch system for lights & A/Cs in new office                                                                       | 46,800                              | \$9,922        | 44,460                              | \$9,426        | \$10,000   | 2,340           | \$496           | 20.2              |
| Installation of new electricity meters                                                                                        |                                     |                | <del>.</del>                        |                |            |                 | <del>.</del>    |                   |
| Sensors to switch of lights                                                                                                   | -                                   | -              | -                                   | -              | -          | -               | -               | -                 |
| Environmental Goals 2020<br>Year Target YTD<br>2016 344 335                                                                   |                                     |                |                                     |                |            |                 |                 |                   |

| . can | 101900 |          |
|-------|--------|----------|
| 2016  | 344    | 335      |
| 2017  | 377    | 307      |
| 2018  | 425    | 466 Mar. |
| 2019  | 404    |          |
| 2020  | 404    |          |

#### RFO RFO (L / Nwt) **YEARLY REDUCTION** 139 140 2016 -16% 130 117 **YTD 2017** -10% 120 105 110 **Target 2018** -5% 100 97 95 100 **Target 2019** -2.5% 90 80 Target 2020 -2.5% 2015 2016 YTD 2017 2018 2019 2020 Implemented Initiatives: STEAM USAGE BY ZONE Mapping of fuel suppliers 5,000,000 Improve communication between internal customers 4,500,000 4,000,000 and boiler 3,500,000 Retort sensors for steam generation 3,000,000

3,500,000 3,000,000 2,500,000 1,500,000 1,500,000 MISC.STEAM TOTAL TOTAL TOTAL STM/FISH STM/PRECOOK STM/RETORT MEAL

70%

60%

50%

40%

30%

20%

10%

0%

STEAM CONSUMPTION % CUMUL

### **RFO CY18 CAR**

### **NEW INITIATIVES :**

- Conditioning monitoring of all steam traps and replacement
- Condensate return system and treatment from retort.
- □ Redesigning the steam distribution system by reducing pipe size from 6in to 4in
  - from the main manifold.

