The Health Impacts of Lead Exposure

Module B-1

Toolkit for establishing laws to eliminate lead paint

Second Edition
Outline

• Background
• Pathways and Routes of Exposure to Lead and Lead Paint
• Health Effects of Exposure
• Who is at Risk?
• Societal, Economic and Health Impacts of Control Measures
• Benefits of Action
• Summary
Background

• Lead is a versatile and widely used naturally occurring element

• Human activities result in environmental contamination:
 ➢ Mining and smelting, manufacturing, use, recycling and disposal of products made with lead

• Lead compounds can be used in the manufacture of paint to give properties e.g. colour, rapid drying, corrosion resistance; continue to be used in some countries (see Module A-3)

• Lead is a human health hazard

• Lead paint is a significant source of human exposure
Sources and Routes of Exposure to Lead from Paint

- Paint manufacture
- Paint application & removal
- Decaying paint
- Lead-painted surfaces, incl. toys, furniture

- Lead in air
 - Inhalation
 - Health outcomes e.g. reduced IQ, abdominal colic, anaemia; renal and cardiovascular diseases in adults.

- Lead in soil & dust
 - Ingestion
Two Main Routes of Exposure to Lead Paint

- Individuals can become exposed to lead from paint through environmental and occupational sources.

- The most important routes of exposure are:
 - **Ingestion** of dust and paint chips – the main route of children’s exposure
 - **Inhalation** of fine particles and fumes – the main route of occupational exposure.

A Major Source of Exposure: Lead in Dust

- Isotopic studies confirm that lead in paint contributes to lead in dust
- Deteriorating lead paint is associated with higher amounts of lead in household dust and soil
- Lead content in paint correlates with lead content in dust:
 - 50% increase in window paint lead was associated with a 5% increase in floor dust lead (Dixon 2007)
 - exterior railings with a lead loading of ≥2.6 mg/cm² associated with approx. 50% higher lead loading in household dust (Lucas 2014)

Photo credit: WHO/Yoshi Shimizu
Lead in Dust Associated with Increased Blood Lead

- Pooled analysis of 12 studies showed lead-contaminated house dust is major source of intake for children with blood lead concentration of 10-25 µg/dL

(Lanphear et al., 1998)

Health Effects of Lead Exposure

- Lead is a multi-system toxicant. No known level of exposure without harmful effects.
- Mimics calcium and iron in the body so has effects in multiple body systems.
- Accumulates in bone.
- Long-term effects include reduced IQ, antisocial behaviour, cardiovascular & renal disease in adults.
- Often onset of symptoms are insidious, such as anaemia, colic, etc.
Lead Accumulates in the Body

- Lead binds to red blood cells and distributes to soft tissues, e.g., brain and kidneys, and bone.

- Lead absorption is increased when there is nutritional deficiency e.g., calcium or iron deficiency.

- Lead is stored in bone for many years (half-life = 10–25 years)
 - In adults 90% of body burden may be in bone.

- Lead in bone provides a store from which lead can move back into blood and to target organs.
 - Lead can remobilize from bone during pregnancy, lactation and the menopause.
Low-Level and Chronic Exposure

- Low-level exposure – features of poisoning may be subtle e.g., reduced IQ, impaired hearing, increased risk of hypertension.
 - Features of overt poisoning include: anorexia, abdominal colic, constipation, fatigue, mood changes, anaemia and developmental regression in young children.
 - Lead poisoning may be misdiagnosed e.g., as appendicitis, psychiatric illness.
 - Low-level and chronic exposure is often the type of exposure caused by lead paint.
Acute and Sub-Acute Lead Poisoning

- High dose acute/sub-acute exposure can cause lead encephalopathy with irritability, ataxia, coma, convulsions, death:
 - e.g. >400 children have died in NW Nigeria from environmental exposure to lead.

- Severe lead poisoning is possible from repeated ingestion of lead paint chips (pica).
 - Note: pica is a syndrome of an appetite for non-nutritional substances

Who Is At Risk?

• Children are especially vulnerable due to greater exposure risks from:

 ➢ Spending more time on the ground and in contact with contaminated soil and dust,

 ➢ Hand-to-mouth activity, mouthing,

 ➢ Absorbing 4–5 times more lead from the gut than adults, and

 ➢ All children have nutritional deficiency (e.g. calcium, iron) which increases bioavailability of lead.

• Exposure may already occur through maternal cord blood (in utero)

Who Is At Risk? (Continued)

- The foetal period and early childhood are critical periods for neurological and organ development
- Damage to the neurological system may be irreversible
 - Reduced potential for intellectual development
 - Increased likelihood of behavioural disorders
- Children can even express long-term effects in adulthood

Pregnant Women Are Also Vulnerable

- Pregnancy mobilizes lead stored in bone, releasing it back into blood where it can be circulated to maternal tissues and the fetus

- Lead exposure may cause reduced fetal growth

- Lead exposure in pregnancy increases risk of complications e.g., hypertension, premature birth
Workers Also Need Protecting

- Study in Kenya found significant lead exposure in workers making paint
 - 78% of air samples exceeded US 8-hour permissible exposure limit (50 µg/m³)
 - 75.6% of blood samples >30 µg/dL lead
- Workers spraying and stripping lead paint, as well as home renovators can have high exposures

Lead Exposure Causes Significant Burden of Disease

Estimates from Institute for Health Metrics and Evaluation (IHME), 2019 data:

• 0.90 million deaths from long-term effects
• 21.7 million disability adjusted life years (DALYs) lost
• Estimated to account for:
 ➢ 62.49% of the global burden of idiopathic developmental intellectual disability
 ➢ 7.19% of the global burden of ischaemic heart disease
 ➢ 8.21% of hypertensive disease
 ➢ 5.65% of the global burden of stroke

Source: Estimates from Institute for Health Metrics and Evaluation – Reference 10
A 5-point loss in IQ (intelligence quotient) might not affect the ability of an individual to live a productive life. But if that loss is experienced by a large proportion of a population, the implications for that society could be profound.

Small Average IQ Reduction Can Have Large Societal Impact (Notes, Slide 17)

- Professor Bernard Weiss, a behavioural toxicologist at the University of Rochester, New York, USA, examined the societal impact of seemingly small losses of intelligence. Imagine an unaffected population numbering 260 million people (such as that of the USA) with an average IQ of 100 and a standard deviation of 15 (left-hand graph). In that population there would be 6 million people with IQs above 130 and 6 million below 70.

- A decrease in average IQ of 5 points would shift the distribution to the left (right-hand graph). The number of people scoring above 130 would decline by 3.6 million while the number below 70 would increase by 3.4 million.

By Bruce Lanphear and the Canadian Environmental Health Atlas.
Economic Costs of Lead Exposure Are High

- Estimated economic losses due to reduced IQ is ~1.2% of global GDP (see Module B-3 for additional information)
 - Largest economic burden is borne by low- and middle-income countries – approx. $977 billion
 - Regional economic losses:
 - In Africa approx. $134.7 billion (4.03% of regional GDP)
 - In Latin America and the Caribbean approx. $142.3 billion (2.04% of regional GDP)
 - In Asia approx. $699.9 billion (1.88% of regional GDP).

Source: Attina TM, Trasande L. Economic costs of childhood lead exposure in low- and middle-income countries. Environ Health Perspect. 2013 Sep;121(9):1097-102 – Reference 12
Economic Benefits of Action Are Significant

• Banning lead paint now saves costs in future
 ➢ Avoids future costs of lead exposure resulting from use of lead paint now, such as cost of reduced IQ, cost of criminality
 ➢ Avoids future remediation costs
 o Estimated costs of remediating lead-painted homes:
 France: US$ 194 – 499 million
 USA: US$ 1 – 11 billion

The Lower the Lead Content, the Lower the Hazard

By reducing lead in paint, we can protect vulnerable populations and public health. For example:

• Children who eat flakes of lead paint can develop lead poisoning

• The lower the lead content the less likely a child will eat enough paint to cause harm

 ➢ 500 ppm of lead in paint – regular ingestion of 6-7 flakes of paint could reduce IQ

 ➢ 90 ppm of lead in paint – harmful dose is ~31 flakes

• Similar reasoning applies to lead in dust originating from paint
Lead Poisoning Prevention Policies Have Proven to Reduce Population Blood Lead Levels (USA)

Summary

• Lead exposure causes toxic effects in multiple body systems; some effects are irreversible; children, pregnant women and some occupational groups are particularly vulnerable.

• There is no known level of lead exposure without harmful effects.

• Lead exposure has both an individual and a societal impact.

• Lead poisoning is preventable: implementation of lead control measures has significantly reduced population-level blood lead concentrations in several countries.

• Removing lead paint as a source of exposure will have significant health and economic benefits.
More Details Are Available on the WHO Website in Six UN Languages

Policy Brief – Summary Information

Global elimination of lead paint
why and how countries should take action

Introduction

Lead has toxic effects on almost all body systems and is especially harmful to children and pregnant women. Lead paint is an avoidable source of exposure to lead. "Lead paint" or "lead-based paint" is paint to which one or more lead compounds have been intentionally added to the manufacture to obtain specific characteristics. One important way to prevent exposures is for countries to establish legally binding regulatory measures prohibiting the addition of lead to paint.

This policy brief summarizes key information explaining the background and rationale for eliminating lead paint, and describes what countries should do. More detailed information is available in the companion technical brief.

Internation efforts to eliminate lead paint have increased

Governments are working together to promote policy action at the national and regional level to protect human health from exposure to lead.

- In 2000, the second session of the International Environmental Programme (UNEP) and the World Health Organization (WHO). The primary goal of the Alliance is to promote the global phase-out of lead paint through the establishment of legally binding control measures in every country.
- In 2017, the World Health Assembly approved the Road Map to enhance health sector engagement in

https://www.who.int/publications/i/item/9789240005143

Technical Brief – Detailed

Global elimination of lead paint
why and how countries should take action

https://www.who.int/publications/i/item/9789240005143
References

References (Continued)

Additional References

Disclaimer

Toolkit for establishing laws to eliminate lead paint, second edition

ISBN 978-92-4-003455-6 (print version)

© World Health Organization 2021
Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).
Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”.

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.
Please contact the Chemicals and Health Branch of the United Nations Environment Programme and the Chemical Safety and Health team of the World Health Organization should you have any questions.

lead-cadmiumchemicals@un.org
noleadinpaint@who.int