

PROGRAMME DES NATIONS UNIES POUR L'ENVIRONNEMENT PLAN D'ACTION POUR LA MEDITERRANEE

15 avril 2022 Français Original: Anglais

Réunion du groupe de correspondance de l'approche écosystémique sur la surveillance des déchets marins

Vidéoconférence, 31 mai 2022

Point 4 de l'ordre du jour : Elaboration de lignes directrices pour la surveillance des apports fluviaux de déchets marins

Projet de lignes directrices pour la surveillance des apports fluviaux de déchets marins

Pour des raisons environnementales et économiques, ce document est imprimé en nombre limité. Les délégués sont priés d'apporter leurs exemplaires aux réunions et de ne pas demander d'autres exemplaires.

Note du Secrétariat

La 19^e Réunion des Parties contractantes à la Convention de Barcelone a adopté en 2016 le Programme de surveillance et d'évaluation intégrées de la mer et des côtes méditerranéennes et les critères d'évaluation connexes (IMAP) (Décision IG. 22/7). En outre, la feuille de route et l'évaluation des besoins pour le Rapport sur l'état de la qualité de la Méditerranée ont été adoptées en 2019 lors de la COP 21 (Décision IG.24/4) et leur mise en œuvre a été détaillée par la 8^e Réunion du Groupe de coordination de l'approche écosystémique du 9 septembre 2021 (UNEP/MED WG.514/3).

Le 10° Objectif écologique (OE 10) de l'IMAP est consacré aux déchets marins et comprend deux indicateurs communs et un indicateur candidat. L'Indicateur commun 22 porte sur les déchets marins sur les plages, l'Indicateur commun 23 concerne les déchets sur les fonds marins et les déchets marins flottants, y compris les microplastiques, tandis que l'Indicateur candidat 24 est consacré à l'effet des déchets marins sur le biote marin, en particulier leurs effets (c'est-à-dire l'ingestion et l'emmêlement) sur les tortues marines

Les cours d'eau constituent les principales voies de communication entre les sources terrestres et les milieux marins et côtiers, avec des impacts particulièrement évidents pour les grands fleuves, ainsi que pour les petites rivières, les torrents saisonniers et les flux d'eau, ce qui est le cas pour la Méditerranée. Les apports fluviaux de déchets marins n'ayant pas été correctement pris en compte par l'IMAP, même pas dans le cadre du Plan régional actualisé sur la gestion des déchets marins en Méditerranée, ce dernier a été récemment mis à jour en décembre 2021 afin d'aborder également les dispositions pertinentes.

Le Secrétariat met également en œuvre le projet Marine Litter MED II financé par l'UE, qui vise en partie à faire progresser les travaux relatifs à la surveillance des apports fluviaux de déchets marins en Méditerranée, en vue d'introduire cet aspect dans le cadre d'un indicateur de l'IMAP nouveau ou actualisé. À cet égard, plusieurs pilotes sont en cours dans deux pays (Israël et le Maroc) pour acquérir des ensembles de données à utiliser lors de la préparation du MED QSR 2023.

Compte tenu de la nécessité de combler les lacunes méthodologiques sur les différents aspects de la surveillance des déchets marins, le PNUE/PAM entend introduire à travers le présent document une première approche pour l'élaboration de lignes directrices pour la surveillance des apports fluviaux de déchets marins. Le présent document est basé sur le Rapport 2020 du PNUE intitulé « Monitoring Plastics in Rivers and Lakes: Guidelines for the Harmonization of Methodologies » (« Surveillance des plastiques dans les rivières et les lacs : lignes directrices pour l'harmonisation des méthodologies ») et prend également en considération les initiatives existantes (par exemple, le Projet RIMMEL du CCR de l'UE), y compris les premières expériences tirées de la mise en œuvre des projets pilotes susmentionnés. Le document aborde également les différentes méthodes de surveillance des apports fluviaux de déchets marins, notamment : i) l'observation visuelle, ii) le déploiement de filets, iii) l'utilisation d'applications existantes pour smartphone et iv) les méthodes avancées de virement de bord.

Bien que l'utilisation des deux premières méthodes (à savoir l'observation visuelle et le déploiement de filets) semble mieux convenir aux besoins et aux caractéristiques de la Méditerranée, le présent document est soumis à la Réunion du CORMON sur les déchets marins pour examen en vue d'une orientation et d'une élaboration plus poussées, dans le but ultime d'une approbation pour soumission aux réunions ultérieures du CORMON sur les déchets marins et des Points focaux du MED POL prévues respectivement en 2022 et à la mi-2023.

Table des matières

1.	Introduc	tion	1
2.	Apports	fluviaux de déchets marins	1
3.	Méthode	s de surveillance des apports fluviaux de déchets marins	2
4.	Observat	ion visuelle	3
	4.1 Séle	ection et préparation des sites	3
	4.2 Dur	ée et fréquence d'échantillonnage	4
	4.3 Col	lecte de données	4
	4.4 Mét	adonnées	5
5.	Déploier	nent de filets (neuston limnologique, filets à plancton et chalut manta)	5
		ston limnologique, filets à plancton	
	5.1.1	Taille des mailles du filet à plancton :	5
	5.1.2	Utilisation de filets à plancton limnologiques :	7
	5.1.3	Collecte et traitement des données - échantillonnage in situ :	7
	5.1.4	Métadonnées:	7
	5.1.5	Réplicats:	7
	5.1.6	Calcul des zones étudiées :	7
	5.2 File	ts manta	
	5.2.1	Dimensions du chalut :	8
	5.2.2	Taille des mailles :	
	5.2.3	Durée et fréquence de l'échantillonnage :	
	5.2.4	Conception d'une campagne de surveillance	
	5.2.5	Collecte de données :	
6.	Utilisatio	on d'applications pour smartphone	10
7.		s de suivi avancées	
8.		onnage des sédiments dans les cours d'eau	
	8.1 Éch	antillonnage des sédiments	
		aception d'une campagne de surveillance	
9.		on des échantillons pour l'analyse des microplastiques	
		antillons d'eau	
		antillonnage des sédiments	
		égories de tailles et de morphologies	
		es de polymères	
		ntification des particules de plastique	
	9.5.1	À base de plastique :	
	9.5.2	Analyse chimique :	
R	éférences	Error! Bookmark not define	ed.

Annexe I: MED POL List for Beach Marine Litter Items

Liste des abréviations / acronymes

DCSMM Directive-Cadre Stratégie pour le Milieu Marin

IMAP Programme intégré de surveillance et d'évaluation de la mer et des côtes

méditerranéennes et critères d'évaluation connexes

PNUE Programme des Nations Unies pour l'environnement

PNUE/PAM Programme des Nations Unies pour l'environnement / Plan d'action pour la Méditerranée

PVC Chlorure de polyvinyle

QSR Rapport sur l'Etat de la Qualité de la Méditerranée TGML Groupe Technique TGML pour les Déchets Marins

VAP Véhicule aérien sans pilote

UE Union européenne

1. Introduction

- 1. Le présent projet de lignes directrices est élaboré dans le cadre du <u>Projet Marine Litter MED II</u> financé par l'UE. Le Projet Marine Litter MED II aborde les défis et les solutions en ce qui concerne les aspects opérationnels et les processus de surveillance de la mise en œuvre du Plan régional 2021 sur la gestion des déchets marins en Méditerranée. Le projet prévoit d'étendre les efforts de surveillance et d'évaluation des déchets marins aux apports fluviaux, en mettant l'accent sur le comblement des lacunes en matière de connaissances et de données par l'élaboration d'une ligne directrice pour la surveillance et l'évaluation des apports fluviaux de déchets marins. Il entend également faire le point sur les efforts et initiatives en place (par exemple, PNUE¹, Projet RIMMEL du CCR² et Groupe technique sur les déchets marins de la DCSMM de l'UE) et vise à les adapter aux besoins de la Méditerranée.
- 2. Le projet de Lignes directrices pour la surveillance des apports fluviaux de déchets marins vise à compléter, à soutenir et à enrichir le <u>Programme de surveillance et d'évaluation intégrées de la mer et des côtes méditerranéennes et les critères d'évaluation connexes (IMAP)</u>. Les données acquises grâce aux présentes lignes directrices prépareront le terrain pour l'élargissement des Indicateurs communs sur les déchets marins sous les auspices de l'IMAP, afin d'inclure également de nouveaux indicateurs tels que les apports fluviaux, et contribueront à la préparation du Rapport sur l'état de la qualité de la Méditerranée (MED QSR) 2023.
- 3. Les lignes directrices décrivent les méthodologies d'échantillonnage des macrodéchets et des microdéchets, et en particulier les matières plastiques, provenant des cours d'eau du pourtour méditerranéen. Elles définissent et décrivent également les techniques de laboratoire et les analyses pertinentes pour l'identification, la caractérisation et la quantification des macrodéchets et des microdéchets dans le but de fournir des orientations techniques et des approches harmonisées aux Parties contractantes à la Convention de Barcelone, y compris pour l'élaboration de programmes nationaux de surveillance spécifiques.

2. Apports fluviaux de déchets marins

- 4. Plusieurs études ont été consacrées à la documentation et à l'évaluation des apports fluviaux de déchets marins entrant dans le milieu marin (van der Wal et al., 2015 ; González et al., 2016 ; Schirinzi G.F. et al., 2020). Toutes concluent que les systèmes fluviaux jouent un rôle majeur dans le transport des déchets plastiques terrestres vers les océans du monde (van Emmerik, T. et al., 2020). Une fois que les matières plastiques entrent dans l'estuaire, la combinaison de la dynamique fluviale et de la dynamique des marées détermine leur sort et leur entrée dans le milieu marin. Les cours d'eau ont été identifiés comme des voies majeures qui relient les sources terrestres de plastiques aux milieux marins.
- 5. Les masses d'eau douce telles que les lacs, les réservoirs et les rivières sont impactées par la contamination par les plastiques de la même manière que le milieu marin. Bien que ces éléments soient pertinents, la compréhension actuelle des processus de transport, des charges et des impacts des déchets marins dans les masses d'eau douce s'avère limitée, principalement en raison du manque de données et du fait que la plupart des données publiées sur les plastiques d'eau douce proviennent de projets individuels qui appliquent des techniques d'échantillonnage et d'analyse différentes. Ce manque d'harmonisation entrave la comparaison et, en définitive, la synthèse des données.

¹ <u>United Nations Environment Programme (2020). Monitoring Plastics in Rivers and Lakes: Guidelines for the Harmonization of Methodologies. Nairobi</u>

² https://mcc.jrc.ec.europa.eu/main/dev.py?N=simple&O=380&titre_page=RIMMEL&titre_chap=JRC%20Projects

3. Méthodes de surveillance des apports fluviaux de déchets marins

6. Les embouchures des cours d'eau peuvent fournir des informations substantielles sur l'accumulation et la composition des déchets qui entrent dans l'écosystème marin. Cependant, en raison des différentes caractéristiques des zones fluviales (par exemple, la saisonnalité des eaux, les zones d'échantillonnage sûres et fiables, la vitesse du débit, etc.), l'échantillonnage directement à l'embouchure du cours d'eau peut ne pas fournir les résultats escomptés. Par exemple, dans les deltas de cours d'eau, il est recommandé de choisir un emplacement un peu plus en amont de la section deltaïque. L'emplacement idéal pour l'échantillonnage (figure 1) dépend des informations disponibles qui seront en place concernant la zone du site et les possibilités d'échantillonnage, comme la présence de ponts, de pontons ou de toute zone surélevée qui facilite l'observation des déchets et le déploiement des dispositifs d'échantillonnage. Si l'embouchure du cours d'eau ne peut pas être choisie comme lieu d'échantillonnage, il est très important de mesurer la distance entre la zone d'échantillonnage et l'embouchure du cours d'eau.

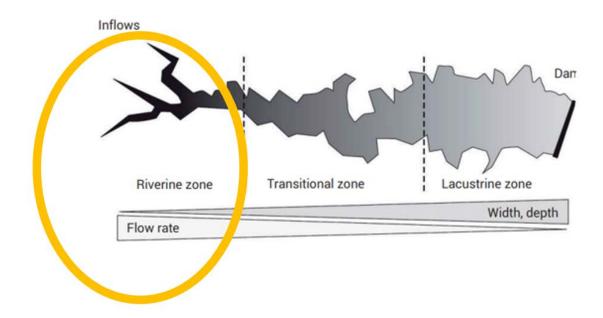


Figure 1 : Lieu d'échantillonnage fluvial (Adapté d'Uhlmann et al. (2011) et PNUE 2020).

- 7. L'utilisation des métadonnées disponibles (par exemple, le débit fluvial, les populations de poissons typiques, etc.) permet d'élaborer un plan adéquat et efficace basé sur les ressources de surveillance disponibles. Les informations sur les activités les plus courantes menées autour de la zone d'échantillonnage peuvent également fournir des renseignements importants sur le type de déchets que l'on devrait trouver et sur la zone (par exemple, zones agricoles, infrastructures urbaines, industries, etc.) qui serait pertinente pour les mesures de gestion de la mise en œuvre. En outre, il convient d'accorder de l'importance aux frontières administratives entre les districts pour éviter tout désaccord éventuel.
- 8. Les zones riveraines sont soumises à une dynamique de débit complexe et sont influencées par les marées et les débits d'eau douce. La vitesse et la direction du débit peuvent changer sur des échelles horaires, ce qui influence à son tour le transport et l'exportation des déchets et du plastique vers le milieu marin. Idéalement, la surveillance devrait être axée sur un suivi relativement fréquent et à long terme dans un nombre restreint d'endroits, plutôt que sur un échantillonnage sporadique en plusieurs endroits.

- 9. Trois catégories fondamentales de stratégies de surveillance peuvent être appliquées pour les macrodéchets à la surface de l'eau : i) les méthodes d'observation visuelle, ii) les méthodes de filets d'échantillonnage (van Emmerik et al. 2018) et iii) les méthodes avancées utilisant un drone et des caméras automatisées (Tramoy et al. 2020).
- 10. Un aperçu des méthodes susmentionnées est présenté ci-dessous en mettant l'accent sur les méthodes cohérentes, largement utilisées et d'un bon rapport coût-efficacité que les Parties contractantes pourraient envisager d'utiliser à cette fin.

4. Observation visuelle

- 11. Dans le milieu marin, des méthodologies et des protocoles d'observation visuelle en mer ont été proposés par plusieurs institutions et groupes de recherche scientifique tels que la Commission européenne (CCR, 2013), le Programme sur les débris marins de la NOAA (NOAA, 2013) et le PNUE/PAM (2016). Le comptage visuel des déchets plastiques peut s'effectuer dans les environnements marins et d'eau douce. Il consiste en une méthode assez simple visant à déterminer le transport des déchets. Malgré les lacunes que l'observation visuelle peut imposer (par exemple, les objets flottants immergés ne sont pas visibles dans les rivières turbides et les objets ne peuvent être identifiés que pendant le temps où ils flottent), il s'agit d'une option peu coûteuse qui permet une surveillance à haute fréquence dans de nombreux sites.
- 12. Pour obtenir des données plus précises sur la composition et le transport de masse des matières plastiques, il est conseillé d'effectuer également des échantillonnages physiques afin de convertir le transport mesuré en éléments par unité de temps en transport de masse réel.
- 13. Le Centre commun de recherche (CCR) de la Commission européenne, dans le cadre du <u>projet RIMMEL</u>, a élaboré une approche collaborative harmonisée utilisant une application sur tablette pour la collecte de données dans les estuaires fluviaux. La méthodologie est basée sur des observations visuelles à l'aide d'une liste commune convenue d'éléments de déchets et de catégories de tailles. L'application RIMMEL permet l'acquisition de données en temps réel pendant les sessions de surveillance, fournissant ainsi un outil pour la collecte et la communication de données.
- 14. Une méthode semblable d'observation et de collecte d'informations pourrait être harmonisée par l'élaboration de modèles pertinents de communication de données convenus à l'échelle régionale. L'utilisation d'une application pour smartphone est une option qui pourrait être développée ultérieurement de manière à faciliter la collecte et l'harmonisation des données.

4.1 Sélection et préparation des sites

15. Il est recommandé de choisir une position en hauteur pour commencer les observations visuelles (p. ex. ponts, jetées, pontons). En tenant compte de la largeur du cours d'eau et du nombre de personnes impliquées dans l'échantillonnage, la zone d'échantillonnage doit être divisée en sections respectives. La définition de la largeur de la section d'observation (c'est-à-dire la section que l'observateur utilise pour identifier les éléments de déchets) permettrait d'estimer les flux de déchets par rapport à la largeur totale de la section du cours d'eau (autrement dit la distance entre les deux bordures au niveau de la surveillance). La hauteur et la largeur du lieu d'échantillonnage influencent la largeur de la section qui peut être observée confortablement. C'est pourquoi il est généralement recommandé une largeur égale à la hauteur d'observation.

- 16. Les méthodologies d'observation visuelle présentent certaines limites telles que les conditions météorologiques, l'orientation du soleil, la hauteur du site d'observation (c'est-à-dire depuis les ponts ou la distance verticale), ainsi que les caractéristiques des déchets (à savoir la couleur, la taille, la forme et la flottabilité).
- 17. Dans le cadre de la Directive-cadre « stratégie pour le milieu marin » (DCSMM) de l'UE, la surveillance des macrodéchets flottants porte sur des éléments >2,5 cm, en raison de leurs propriétés de flottabilité et de leur capacité à flotter ou à se suspendre à la surface des cours d'eau. Par conséquent, la hauteur du site d'observation sélectionné (c'est-à-dire la distance verticale entre les yeux de l'observateur et la surface du cours d'eau) doit permettre la détection d'éléments de déchets jusqu'à 2,5 cm (limite inférieure pour les macrodéchets). L'utilisation de jumelles peut aider à l'identification des déchets si nécessaire. Néanmoins, comme les caractéristiques les cours d'eau et des ponts varient considérablement d'un endroit à l'autre, le protocole déployé doit toujours être adapté aux besoins et aux spécificités du site.
- 18. Lors de la conception d'une campagne ou d'un programme de surveillance, il convient de tenir compte de l'emplacement du site observé. Par exemple, il est plus facile de visualiser les macrodéchets depuis des ponts et l'idéal serait que l'enquêteur soit situé aussi près que possible de l'embouchure du cours d'eau.

4.2 Durée et fréquence d'échantillonnage

- 19. La vitesse de l'eau à la surface du cours d'eau doit être mesurée pour établir la durée de l'échantillon ainsi que pour le calcul ultérieur du débit de surface. Pour les cours d'eau dont la vitesse de débit varie considérablement, comme les zones riveraines (figure 1), il est recommandé de prendre des mesures au moins une fois par heure.
- 20. La charge du transport des déchets influencera la durée optimale d'observation. Pour les cours d'eau avec plus de 1 000 éléments par heure, il est recommandé de mesurer une ou deux minutes par section. Pour les cours d'eau avec moins de 100 éléments par heure, il est recommandé de mesurer au moins 15 minutes par section (PNUE 2021). La durée de chaque mesure doit être égale à une heure divisée par le nombre de sections. De plus, des échantillonnages fréquents fourniront une variabilité temporelle élevée attendue dans les charges de déchets. Il est donc recommandé d'effectuer des observations hebdomadaires ou bihebdomadaires (CCR 2018).

4.3 Collecte de données

- 21. Chaque morceau de plastique visible flottant et superficiellement immergé doit être compté, indépendamment de sa taille. Une estimation de la taille moyenne minimale des débris plastiques doit être prise en compte et en cas d'incertitude sur la description de l'article, il est recommandé de ne pas le compter comme plastique.
- 22. Les déchets comptés doivent être standardisés dans le temps et l'espace pour obtenir un profil de transport du plastique sur la largeur du cours d'eau et le transport total de plastique en éléments de temps (éléments par heure). Le nombre d'éléments par heure et par section fournit la variation spatiale sur la largeur du cours d'eau, et la somme des sections fournit le nombre total de morceaux de plastique flottants par heure sur toute la largeur du cours d'eau.
- 23. Pour classer les éléments observés, la liste commune convenue pour les éléments de déchets marins sur les plages (Indicateur commun 22 de l'IMAP) pourrait être utilisée après une éventuelle

adaptation pour réduire les options disponibles en fonction des éléments qui sont pour la plupart enregistrés dans les zones riveraines respectives (annexe I).

4.4 Métadonnées

- 24. La vitesse du débit à la surface du cours d'eau doit être mesurée plusieurs fois pendant l'enquête et certainement chaque fois qu'une altération est observée. L'évaluation de la surface du cours d'eau (par exemple, la turbulence et la présence de mousse naturelle), la direction et l'intensité du vent, les nuages ou la pluie, la luminosité (par exemple, les réflexions, la direction du soleil et les ombres), les conditions de marée et la visibilité (par exemple, le brouillard) doivent également être enregistrés.
- 25. Pour chaque section observée, les coordonnées GPS (degrés et millièmes, GG, GGGGG) doivent être enregistrées dans le système géodésique mondial WGS 84/UTM 32.

5. Déploiement de filets (neuston limnologique, filets à plancton et chalut manta)

- Afin de déterminer la composition plastique, différents filets peuvent être déployés à des fins d'échantillonnage. Les méthodes varieront en fonction des caractéristiques de la zone fluviale et des ressources disponibles. Le neuston limnologique, les filets à plancton et le chalut manta font partie des options disponibles, les deux premières semblant être préférables dans le cas de la Méditerranée. Les différents types de filets peuvent être déployés à l'aide de bateaux, de grues de levage sur des ponts, ou directement depuis les berges ou les ponts. Un chalut nécessite en principe des sacs de filet qui sont placés à la surface de l'eau ou dans la colonne d'eau pour capturer les particules flottantes qui entrent dans l'océan par l'embouchure du cours d'eau. Les chaluts sont souvent appelés « engins remorqués ou engins traînés » et sont couramment utilisés pour la pratique de la pêche.
- 27. Les approches à base de filets à plancton sont des techniques courantes utilisées pour l'échantillonnage de la colonne d'eau et de la surface des cours d'eau, tandis que les filets manta ont été utilisés occasionnellement pour l'échantillonnage stationnaire, attachés à des structures fixes sur le cours d'eau (par exemple, des ponts) (Faure et al., 2015). Les filets à main fixes ou les grues sont également des méthodes utilisées pour échantillonner les microplastiques dans les zones fluviales (Moore et al., 2011).
- 28. Les filets à plancton ou à neuston sont conçus pour collecter des échantillons en surface, mais peuvent également être utilisés pour un échantillonnage horizontal et vertical. Le choix des filets dépendra des caractéristiques du cours d'eau et des ressources disponibles.

5.1 Neuston limnologique, filets à plancton

29. Le filet à plancton (figure 2) consiste en un dispositif métallique circulaire³ auquel est fixé un filet conique, ayant une poche de collecte finale (ou tout autre équipement de collecte pertinent) à son extrémité, où les microplastiques et les matières organiques sont collectés. Un débitmètre mécanique est également fixé à l'ouverture du filet (Baini M. et al. 2018; Abeynayaka A. et al., 2020).

5.1.1 <u>Taille des mailles du filet à plancton :</u>

30. Pour choisir le maillage du filet de plancton, il est conseillé de faire un compromis entre le seuil inférieur de taille des particules et le risque de colmatage dû à la présence de sédiments en suspension et de matières organiques telles que le plancton et les feuilles.

³ Des formes rectangulaires sont également utilisées à plusieurs reprises.

- 31. La taille de maille standard pour un filet à plancton limnologique ciblant le phytoplancton est de 55 μ m, mais des filets encore plus fins sont disponibles (PNUE 2021). La plupart des échantillons de filets à plancton sur les microplastiques se concentrent sur les grandes fractions de microplastiques, et la plupart des études utilisent une taille de maille comprise entre 300 et 500 μ m (Hidalgo-Ruz et al., 2012 ; Moore et al., 2011 ; Hohenblum et al., 2015). Cependant, de petites fractions de microplastique nécessiteraient des techniques qui traitent de manière appropriée d'autres tailles et donc des mailles plus petites doivent être utilisées.
- 32. Le filet conique fixé au dispositif métallique doit être constitué d'un filet d'une maille d'environ 300 µm. Il est important de vérifier constamment l'efficacité de l'échantillonnage pour éviter les problèmes de régurgitation à la suite d'un colmatage, notamment dans les eaux eutrophes.

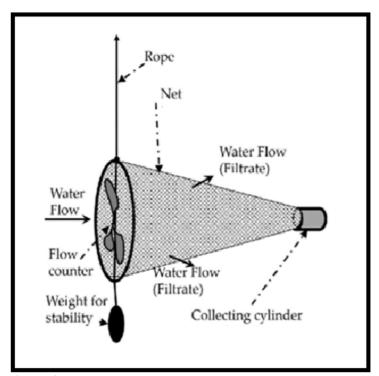


Figure 2: Filet à plancton (adapté d'Abeynayaka A et al., 2020).

- 33. Le diamètre de l'ouverture du filet déterminera la profondeur de la couche de surface échantillonnée (par exemple, un filtre à filet conique mesurerait les 0,5 m supérieurs de la colonne d'eau). Certains auteurs font état d'éléments par surface, mais la configuration du filet inclut également les particules flottantes et en suspension, en fonction de la profondeur d'immersion du filet.
- 34. Afin de garantir la cohérence et l'harmonisation des méthodes d'échantillonnage, il est recommandé d'utiliser un maillage de $300~\mu m$.

- 35. La surveillance peut être effectuée du dessus d'un pont, où le filet à plancton est abaissé, et au moins deux personnes sont nécessaires. En fonction des caractéristiques fluviales et des zones d'échantillonnage, le filet peut être fixé dans des structures sur le cours d'eau ou à l'aide d'un bateau.
- 36. La conception d'une campagne de surveillance nécessite de définir le lieu d'échantillonnage optimal qui doit être aussi proche que possible de l'embouchure du cours d'eau. La vitesse et la direction du débit peuvent changer sur des échelles horaires, ce qui influence à son tour le transport et l'exportation du plastique vers la mer. Dans le cas de fortes variations horaires, il est recommandé de planifier plusieurs sessions d'échantillonnage à haute fréquence, par exemple, des mesures horaires pendant un cycle complet de marée.

5.1.3 Collecte et traitement des données - échantillonnage in situ :

37. Une fois le matériau collecté, on ne peut pas le laisser sécher, il faut le couvrir pour le transport et les analyses ultérieures. De l'eau filtrée et des récipients en verre sont nécessaires. Le contenu du filet ou du tamis, collecté pendant l'échantillonnage, doit être versé dans un récipient en verre contenant de l'eau filtrée. Il est préférable d'utiliser des récipients en verre pour éviter toute contamination par des microplastiques. Il est crucial d'effectuer plusieurs collectes et étapes de rinçage pour un tamis. Le volume final de l'échantillon doit rester faible et si le biote doit être analysé, l'échantillon final doit être conservé ou refroidi.

5.1.4 <u>Métadonnées</u>:

- 38. La vitesse du débit à la surface du cours d'eau doit être mesurée chaque fois qu'une section est échantillonnée. L'évaluation de la surface du cours d'eau (par exemple, la turbulence et la présence de mousse naturelle), la direction et l'intensité du vent, les nuages ou la pluie, la luminosité (par exemple, les réflexions, la direction du soleil et les ombres), les conditions de marée et la visibilité (par exemple, le brouillard) doivent être enregistrés.
- 39. Pour chaque zone d'échantillonnage, les coordonnées GPS (degrés et millièmes, GG°, GGGGG) doivent être enregistrées dans le système géodésique mondial WGS 84/UTM 32.

5.1.5 Réplicats:

40. En raison de la variabilité de la répartition des microparticules flottantes, il est nécessaire d'augmenter la représentativité des données. Pour ce faire, il est recommandé de prélever trois réplicats à partir d'un même point d'échantillonnage.

5.1.6 Calcul des zones étudiées :

41. Le calcul de la quantité de microplastiques doit être exprimé en nombre de particules de microplastiques par mètre carré sur la base de l'approche méthodologique suivante où la surface de l'eau étudiée (S) est calculée à l'aide de la formule ci-après :

[D : débitmètre | W : largeur de l'embouchure du filet]

5.2 Filets manta

42. Le filet manta, ou chalut manta, est l'équipement d'échantillonnage le plus couramment utilisé pour surveiller les microplastiques flottants en mer (figure 3). Cet outil est spécialement conçu pour prélever des échantillons de la couche superficielle de la mer. L'utilisation d'un filet manta permet de prélever de grands volumes d'eau de mer, tout en conservant le matériau ciblé (c'est-à-dire les microplastiques). Cependant, son application dans les cours d'eau est plus compliquée en raison du risque de colmatage.

Figure 3 : Filet manta utilisé en mer calme, en dehors de la vague d'étrave causée par la rotation de l'hélice (Photo : © Christos Ioakeimidis, PNUE/PAM).

5.2.1 <u>Dimensions du chalut</u>:

- 43. Les dimensions comprennent la hauteur et la profondeur du cadre du chalut, la profondeur d'immersion du cadre, la longueur du filet et la taille des mailles du filet. La profondeur de déploiement et la profondeur à laquelle le cadre est immergé influencent les résultats de l'échantillonnage.
- 44. Un chalut utilisé pour échantillonner les 40 cm supérieurs de la colonne d'eau doit avoir pour dimensions H67 × L50 cm, avec des filets de 2 m de longs attachés. Toutefois, d'autres dimensions sont

également utilisées dans la documentation scientifique (par exemple, 1,0 x 0,5 m² dans la Rivière de Saïgon au Vietnam (van Emmerik et al. 2018); 0,6 x 0,3 m² et 0,6 x 0,6 m dans le Danube en Autriche (Hohenblum et al. 2015); 0,5 x 0,15 m² dans le Tamar, au Royaume-Uni (Sadri et Thompson 2014); et 0,27 x 0,105 m² dans des cours d'eau du Chili (Rech et al. 2014)).

45. La longueur du filet détermine la force de traînée sur le filet et la capacité maximale de collecte des déchets. Pour les cours d'eau ayant de fortes concentrations de déchets et/ou des vitesses de débit élevées, il est recommandé d'utiliser une longueur de filet plus petite, surtout si les filets sont déployés depuis des ponts sans équipement supplémentaire. Cela implique que la durée de l'échantillonnage doit être plus courte, car la capacité maximale sera atteinte plus rapidement. Des filets plus longs sont conseillés lorsque la durée d'échantillonnage est plus longue et lorsque, par exemple, des grues ou un plus grand nombre de personnes sont disponibles pour récupérer les filets.

5.2.2 <u>Taille des mailles</u>:

46. La taille des mailles influence la limite inférieure de la taille des éléments qui peuvent être collectés. Pendant les périodes où la vitesse de débit est élevée, une maille trop petite peut entraîner une courbe de reflux devant l'ouverture du filet. Par conséquent, les déchets peuvent dévier du filet et l'échantillon devient moins représentatif. Une taille de maille de 2,5 cm est conseillée dans le cadre de la DCSMM car la surveillance des macrodéchets flottants porte sur des éléments >2,5 cm. Toutefois, une optimisation entre la fraction de taille souhaitée du plastique et l'adaptabilité du chalut aux forces de traînée sans affecter l'échantillon doit également être envisagée. Pour éviter que le filet ne traîne dans l'eau et pour en augmenter la flottabilité et la stabilité, des bouées horizontales doivent être fixées de chaque côté du cadre du filet.

5.2.3 Durée et fréquence de l'échantillonnage :

- 47. Près de l'embouchure du cours d'eau, la dynamique du débit est influencée à la fois par le débit d'eau douce et la marée, ce qui peut entraîner des changements de vitesse et de direction du débit plusieurs fois par jour. Dans le cas de fortes variations horaires, il est recommandé de prélever des échantillons dans différentes conditions de débit et de planifier plusieurs sessions d'échantillonnage à haute fréquence, par exemple, des mesures horaires pendant un cycle complet de marée.
- 48. La durée du déploiement doit être ajustée pour chaque lieu de prélèvement, pour chaque variation de vitesse du débit et pour chaque variation de charge plastique. Le temps de déploiement doit être suffisamment long pour saisir le matériau, tout en étant suffisamment court pour éviter le colmatage total ou le blocage de l'ouverture du filet.

5.2.4 <u>Conception d'une campagne de surveillance</u>

- 49. La conception d'une campagne de surveillance d'échantillonnage nécessite de définir le lieu de déploiement optimal qui doit être aussi proche que possible de l'embouchure du cours d'eau, compte tenu de la sécurité et des conditions réalisables pour effectuer l'échantillonnage.
- 50. Le transport et l'exportation du plastique vers le milieu marin peuvent changer à l'échelle de l'heure ; par conséquent, il convient d'envisager une surveillance à haute fréquence pendant des périodes ciblées.

5.2.5 Collecte de données :

- 51. Les chaluts peuvent être déployés par deux ou plusieurs personnes qui se tiennent de chaque côté du chalut. Les chaluts peuvent également être placés dans des grues de levage, abaissés depuis des ponts, des berges ou par des bateaux. La méthode de déploiement dépend fortement de la disponibilité de sites de déploiement sûrs sur des ponts ou des berges accessibles (Rech et al. 2015). Le volume et la masse d'échantillonnage sont également limités par la charge maximale que les filets peuvent supporter, qui est généralement de l'ordre de plusieurs kilogrammes pour les vitesses de débit.
- 52. Pour catégoriser les éléments observés, la liste commune convenue pour les déchets marins sur les plages (Indicateur commun 22 de l'IMAP) pourrait être utilisée après une éventuelle adaptation (annexe I).
- 53. La vitesse du débit à la surface du cours d'eau doit être mesurée chaque fois qu'une section est échantillonnée. L'évaluation de la surface du cours d'eau (par exemple, la turbulence et la présence de mousse naturelle), la direction et l'intensité du vent, les nuages ou la pluie, la luminosité (par exemple, les réflexions, la direction du soleil et les ombres), les conditions de marée et la visibilité (par exemple, le brouillard) doivent être enregistrés.
- 54. Pour chaque chalut, les coordonnées GPS (degrés et millièmes, GG°, GGGGG) doivent être enregistrées dans le système géodésique mondial WGS 84/UTM 32.

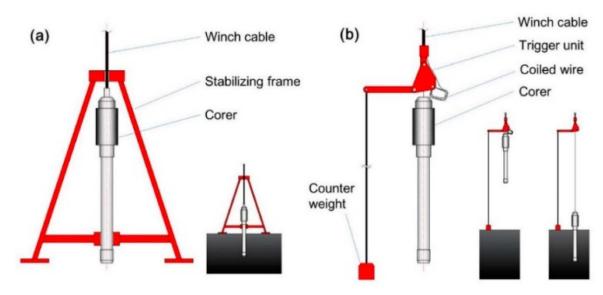
6. Utilisation d'applications pour smartphone

- 55. Le Centre commun de recherche (CCR) de la Commission européenne a entrepris un projet de recherche exploratoire intitulé RIMMEL (de nov. 2015 à oct. 2017). Dans le cadre du projet RIMMEL, l'application de surveillance des déchets flottants appelée RIMMEL a été développée avec pour objectif de quantifier les charges de macrodéchets flottants à travers les cours d'eau jusqu'aux eaux marines, par la collecte de données existantes et le développement d'un réseau européen d'observation.
- 56. Par ailleurs, le projet a élaboré la méthodologie RiverLitterCam qui fournit un outil innovant pour la surveillance et l'évaluation des déchets dans les milieux d'eau douce ou estuariens. Le projet RIMMEL a pour objectif de permettre une meilleure compréhension de la dynamique des déchets des eaux douces vers les milieux marins, en contribuant à l'identification et à la quantification des sources, et en aidant ainsi les décideurs politiques à améliorer les options de gestion.
- 57. Pour commencer, l'application permet de sélectionner les modes « mer » ou « cours d'eau » de surveillance des déchets. En sélectionnant le mode de surveillance « cours d'eau », l'on accède à un menu de paramètres de métadonnées, dans lequel il faut ajouter des informations spécifiques sur la configuration de l'observation.
- 58. Un menu permet d'accéder à une liste de macrodéchets flottants, organisée par matériaux. Cette liste est basée sur la « liste de référence des catégories d'éléments de déchets » du « Guide sur la surveillance des déchets marins dans les mers européennes » (CCR, 2013) et comprend tous les éléments décrits comme des déchets flottants. Cependant, il est également possible de créer une liste d'éléments favoris qui permettra un accès plus rapide aux éléments courants trouvés dans la zone de surveillance. En outre, une section des classes de gammes de tailles est également fournie. Toutes les informations sont enregistrées avec la position GPS et l'heure, dans un fichier de données préalablement défini avec le nom de l'observateur et son institution.

- 59. À la fin de l'observation ou de l'échantillonnage, les données sont sauvegardées dans un format de fichier individuel « .csv » et sont stockées dans la mémoire de la tablette. Les informations peuvent être envoyées directement de l'application vers une boîte aux lettres ou copiées sur un ordinateur. L'utilisation d'un format de données simple et harmonisé permet d'importer les données directement dans la base de données du projet.
- 60. L'application (version 2.0) a été développée pour les tablettes électroniques équipées du système d'exploitation Android. La tablette doit avoir une fonctionnalité GPS pour permettre le suivi de la position.

7. Méthodes de suivi avancées

- 61. La mise à l'échelle des observations visuelles peut être facilitée par l'utilisation d'outils de surveillance automatisés. Des méthodes basées sur des drones ont récemment été utilisées pour surveiller les cours d'eau et ont démontré que les variations dans le temps et l'espace peuvent être bien quantifiées à partir d'images de caméras fixées sur des drones (Geraeds et al., 2019). La recherche s'est également concentrée sur l'utilisation de drones pour la collecte de données à long terme, avec l'utilisation de caméras pour la surveillance automatisée du plastique (van Lieshout et al 2020, projet Counter Measure).
- 62. La surveillance par drone est une alternative prometteuse aux techniques et approches actuellement disponibles pour surveiller les apports fluviaux de déchets marins, en particulier dans les zones éloignées et inaccessibles (Geraeds et al., 2019). Cependant, elle nécessite encore des développements supplémentaires afin de devenir une norme pratique pour les programmes de surveillance (CCR, 2013).


8. Échantillonnage des sédiments dans les cours d'eau

- 63. La benne en acier est un outil couramment utilisé pour échantillonner les sédiments en vue d'analyser les contaminants organiques ou inorganiques, ainsi que pour la collecte de microplastiques.
- 64. La dynamique du débit des cours d'eau est la principale force motrice qui affecte l'accumulation de mésodéchets et de microdéchets sur les berges et les rivages des cours d'eau. Cela dépend également des caractéristiques de la bordure (par exemple, lorsque du sable et de la végétation existent, on trouve moins de déchets marins sur les rochers) et des conditions hydrologiques. La présente méthodologie est très comparable aux approches utilisées pour la surveillance des microplastiques sur les plages et dans les sédiments peu profonds en mer.

8.1 Échantillonnage des sédiments

- 65. Il existe différentes méthodes d'échantillonnage qui peuvent être choisies en fonction du but de l'échantillonnage, du lieu et des caractéristiques du sédiment. Le dispositif d'échantillonnage utilisé pour collecter les mésoplastiques et les microplastiques doit être conçu pour obtenir un volume et une surface spécifiques, une profondeur spécifique du flux et, très important, il doit protéger l'échantillon de toute contamination extérieure, de préférence sans plastique.
- 66. L'échantillonnage des sédiments peut être effectué à l'aide de carottiers à gravité (Naidoo et al., 2015) et de bennes (Castañeda et al. 2014) (figures 4 et 5); les échantillons collectés sont constitués de mésodéchets et de microdéchets. La principale différence entre les deux dispositifs est le matériau de construction, la méthode d'extraction et la profondeur de déploiement pour la collecte de l'échantillon.

- 67. Les bennes Ekman actionnées par une tige ou un câble sont généralement extraites à 15 cm de long. Elles peuvent fournir une grande quantité de matériau d'échantillon en une seule étape. Les bennes peuvent causer des perturbations à la surface des sédiments. Par conséquent, la profondeur exacte de la benne peut être difficile à déterminer.
- 68. On peut également utiliser le carottage par gravité pour l'échantillonnage des sédiments. Les carottiers par gravité existent en différents diamètres. Naidoo et al. 2015 ont utilisé un diamètre de 50 mm et une longueur de 10 cm. Les carottiers sont généralement fabriqués en polymères plastiques transparents tels que le polychlorure de vinyle (PVC) qui peuvent contaminer l'échantillon et ne sont donc pas recommandés. Les carottiers manuels en acier inoxydable sont disponibles depuis peu et doivent être envisagés lors de la collecte d'échantillons de microplastiques.

Figure 4 : Schémas de structure et de fonction des carottiers conventionnels avec (a) un cadre de stabilisation et (b) un système de déclenchement en surplomb ; les tailles radiales (150 à 600 cm) de ces carottiers ont un diamètre beaucoup plus grand que celui qui permet d'accéder aux trous de forage à l'eau chaude (10 à 60 cm) (Adapté de Gong et al., 2019⁴).

⁴ Gong, Da, Xiaopeng Fan, Yazhou Li, Bing Li, Nan Zhang, Raphael Gromig, Emma C. Smith, Wolf Dummann, Sophie Berger, Olaf Eisen, Jan Tell, Boris K. Biskaborn, Nikola Koglin, Frank Wilhelms, Benjamin Broy, Yunchen Liu, Yang Yang, Xingchen Li, An Liu, and Pavel Talalay. 2019. "Coring of Antarctic Subglacial Sediments" Journal of Marine Science and Engineering 7, no. 6: 194. https://doi.org/10.3390/jmse7060194

Figure 4 : Benne pour la collecte d'échantillons de sédiments de fond pour des études biologiques, hydrologiques et environnementales⁵.

8.2 Conception d'une campagne de surveillance

- 69. La surveillance des éléments déposés sur les sédiments s'appuie souvent sur des transects du rivage couvrant une distance déterminée parallèlement au rivage, par exemple, un site d'échantillonnage de 10 à 15 m où un certain nombre de zones d'échantillonnage doivent être choisies au hasard (par exemple, 40). Le dispositif utilisé pour collecter les échantillons donne la surface des échantillons collectés et leur profondeur, par exemple 30 cm² et 2 cm de profondeur (Worch et Knepper, 2015). La longueur, la largeur et la profondeur du transect sont des facteurs importants.
- 70. Une fois collectés, tous les échantillons doivent être assemblés et homogénéisés pour obtenir un échantillon ayant approximativement le même poids. Il convient d'envisager l'enregistrement des éléments suivants : l'évaluation de l'état de l'eau du cours d'eau (par exemple, la turbulence et la présence de mousse naturelle), le vent, les nuages ou la pluie, la luminosité (par exemple, les réflexions, la direction du soleil et les ombres) et la visibilité (par exemple, le brouillard).
- 71. Pour chaque zone d'échantillonnage, les coordonnées GPS (degrés et millièmes, GG°, GGGGG) doivent être enregistrées dans le système géodésique mondial WGS 84/UTM 32.

9. Préparation des échantillons pour l'analyse des microplastiques

72. La préparation des échantillons nécessite l'organisation du matériel qui sera utilisé lors de l'échantillonnage a priori dans le laboratoire. Plusieurs aspects doivent également être pris en considération, notamment les vêtements que le personnel du laboratoire portera pendant l'analyse des échantillons afin d'éviter toute contamination éventuelle. Il est conseillé d'utiliser du coton pour éviter

⁵ https://www.kc-denmark.dk/products/sediment-samplers/van-veen-grab/van-veen-grab-2500-cm% C2% B2.aspx

toute possibilité de contamination par des particules microplastiques. Le matériel qui sera utilisé pour stocker les échantillons doit être en acier ou en verre et être rincé à l'eau distillée avant l'échantillonnage et couvert pour éviter toute contamination par des matières plastiques.

9.1 Échantillons d'eau

- 73. Une fois les échantillons d'eau collectés, il est important de ne pas les laisser sécher. Les échantillons doivent être rincés à l'eau distillée dans un tamis en acier inoxydable dont les mailles sont déjà définies dans le protocole de surveillance. Pour préparer les échantillons pour l'analyse des microplastiques, il faut d'abord trier les particules > 500 µm, manuellement ou à l'aide d'un stéréomicroscope. Pour les particules restantes, il est recommandé de diviser l'échantillon en utilisant une maille de 500 µm et de le diviser en sous-échantillons, puis d'appliquer le protocole de purification enzymatique, qui est le moyen le plus sûr d'obtenir des échantillons microplastiques représentatifs (Löder et al., 2017). La procédure doit être adaptée à la composition de l'échantillonnage (Löder et al. 2017, complément d'information).
- 74. L'élimination des composés organiques peut également être réalisée à l'aide d'acides, de bases et d'oxydants (Devriese et al., 2015 ; Cole et al., 2014 ; Tagg et al., 2017). Cependant, il est important de ne pas détruire les fibres et fragments de polymère en utilisant des réactifs forts.
- 75. Après la purification enzymatique et en fonction du nombre de particules plastiques dans l'échantillon, la séparation par densité doit être appliquée. La solution de séparation par densité peut être préparée à l'aide de solutions concentrées ou de solutions salines saturées. L'utilisation de chlorure de sodium (NaCl) est actuellement recommandée par la Directive-cadre « stratégie pour le milieu marin » (DCSMM) et d'autres chercheurs (Galgani et al., 2013 ; Rødland et al., 2020), car il s'agit d'une solution non toxique, sûre et largement disponible (UNEP, 2020). Cependant, seuls les polymères légers peuvent être récupérés de manière fiable.

9.2 Échantillonnage des sédiments

- 76. En général, les échantillons de sédiments présentent un ratio important de particules naturelles et inorganiques. Par conséquent, la séparation par densité est requise par l'utilisation de solutions concentrées ou de solutions salines saturées. Comme indiqué ci-dessus, l'utilisation de chlorure de sodium (NaCl) est une option largement favorable et recommandée.
- 77. Le fractionnement granulométrique des échantillons est nécessaire, surtout lorsqu'il s'agit de microplastique de masse, par l'utilisation d'un tamisage humide avant la séparation par densité. Une certaine séquence de tailles de maille peut être établie comme suit : $500 \, \mu m$, $100 \, \mu m$, $50 \, \mu m$, $10 \, \mu m$ (Braun et al., 2018; UNEP, 2020). Des tamis en acier inoxydable doivent être utilisés pour la préparation de l'échantillonnage des microplastiques afin d'éviter toute contamination éventuelle.
- 78. D'autres solutions salines, en raison des contraintes liées aux coûts et aux déchets dangereux, nécessiteraient un recyclage par filtration à travers des tailles de pores plus petites que les particules de microplastiques ainsi qu'un ajustement de la densité (par exemple par évaporation) (PNUE 2020, Prata et al., 2019). Des méthodes alternatives de séparation par densité ont été mises au point par différents auteurs, comme la séparation par densité par aspiration (Worch et Knepper, 2015; Coppock et al., 2017) et un dispositif conçu pour la séparation des sédiments en plastique (Imhoff et al., 2012).
- 79. L'utilisation d'huiles pour séparer les microplastiques a également été étudiée comme une alternative aux solutions salines denses. Les caractéristiques lipophiles des plastiques les font passer

préférentiellement dans la phase huileuse. L'utilisation de l'huile de ricin (Mani et al., 2019) a montré qu'une épaisse couche d'huile entourait les microplastiques, facilitant sa récupération pour une analyse ultérieure, tandis que l'huile de colza produit un spectrogramme infrarouge qui, plus tard, peut limiter la détection et l'identification du microplastique (Crichton et al., 2017).

9.3 Catégories de tailles et de morphologies

- 80. L'analyse des échantillons consiste en une caractérisation physique et chimique. Les plastiques de plus de 5 mm sont considérés comme des macroplastiques, tandis que les microplastiques et les mésoplastiques sont séparés en différentes classes de tailles.
- 81. La morphologie et l'état de fragmentation ou de désintégration des débris plastiques sont des indicateurs importants de leurs origines. Les plus grandes particules peuvent souvent être reconnues en fonction de leur forme d'origine (par exemple, bouteilles, sacs en plastique, tasses, pailles, etc.). L'identification des macroplastiques peut s'effectuer lors des échantillonnages ou des observations, conformément à la catégorie du PNUE/PAM pour les déchets marins sur les plages (annexe I). Cette liste devrait servir de base pour commencer la surveillance des zones sélectionnées et pourrait être adaptée et éventuellement raccourcie avec les éléments les plus couramment trouvés dans les zones échantillonnées. Une telle modification facilitera la collecte de données à long terme.
- 82. Les particules plus petites de mésoplastiques et de microplastiques peuvent être identifiées en fonction de leur morphologie (par exemple, fragments, fibres, filaments, billes, sphères, feuilles mousse et pastilles). Les catégories pertinentes pour les mésoplastiques et les microplastiques sont présentées cidessous dans le tableau 1.

Tableau 1 : Catégorisation des déchets marins plastiques (adapté du PNUE 2020 et de Lusher et al., 2017).

Caractéristiques des Classe Description		Description
microplastiques		
	Méga	> 1 m
Taille	Macro	25 mm-1 m
Tame	Méso	5 mm-25 mm
	Micro	< 5 mm
	Fragments	Particules de forme irrégulière, cristaux, duvet, poudre,
		granulés, copeaux
	Fibres	Filaments, microfibres, brins, fils
Morphologie	Billes/sphères	Grains, microbilles sphériques, microsphères
	Films/feuilles	Polystyrène, polystyrène expansé
	Pastilles	Pastilles de résine, granulés, pastilles de préproduction,
		plumes

83. Les dimensions des débris plastiques peuvent être déterminées à l'aide d'un gravelomètre, conçu pour mesurer la taille des pierres (figure 3).

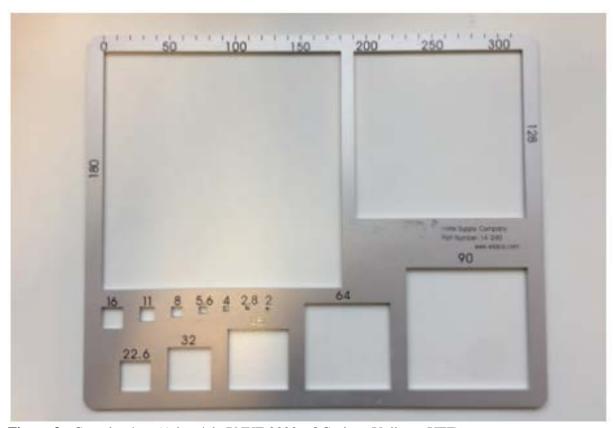


Figure 3 : Gravelomètre (Adapté du PNUE 2020 - ©Corinna Völkner, UFZ)

9.4 Types de polymères

84. Les plastiques sont constitués de différents types de polymères aux caractéristiques et composés chimiques spécifiques. Le tableau 2 présente les types de polymères les plus courants, leurs densités minimale et maximale, ainsi que leurs applications. Il est important de noter que les particules supérieures à 1g/cm³ sont susceptibles de couler (Schwarz et al. 2019, Borneman 2019, Plastic Europe). L'identification de la composition des matières plastiques fournit d'importantes informations sur les sources, les voies d'accès, la rétention, les possibles habitudes malsaines, le comportement des consommateurs et les pratiques de gestion des déchets.

Tableau 2 : Types de polymères les plus courants et applications (adapté par le PNUE 2020).

Polymère	Abréviations	Application principale
Polyéthylène	PE	Emballage
Polypropylène	PP	Nombreuses applications, mais principalement pour
		l'emballage
Polyester	PES	Textile
Polyéthylène téréphtalate	PET	Emballage
Polystyrène	PS	Emballage
Polystyrène expansé	EPS	Emballage alimentaire, matériaux de construction
Éthylène-acétate de vinyle	EVA	Équipements pour divers sports
Alkyde	Al	Peintures, fibres
Chlorure de polyvinyle	PVC	Bâtiment et construction
Polyméthacrylate de	PMMA	Électronique (par exemple, écrans tactiles)
méthyle		
Polyamide (nylon)	PA	Automobile, textile

Polyacrylonitrile	PAN	Textile
Alcool polyvinylique	PVA, PVOH	Textile
Acrylonitrile butadiène	ABS	Électronique
styrène		
Polyuréthane	PUR	Bâtiment et construction

9.5 Identification des particules de plastique

9.5.1 À base de plastique :

- 85. Les méthodes les plus utilisées pour identifier les polymères à base de particules plastiques sont la spectroscopie infrarouge à transformée de Fourier avec accessoire de réflectance totale atténuée (FTIR-ATR) et la spectroscopie Raman. Il s'agit de méthodes non destructives qui produisent un spectre basé sur l'interaction entre la lumière et les molécules de polymère présumées. Toutefois, il est recommandé, avant d'appliquer ces méthodes, de tester une partie des échantillons pour s'assurer du type de polymère qui sera testé.
- 86. En ce qui concerne les microplastiques, toutes les particules d'une taille comprise entre 20 et 100 μm doivent être analysées en plus d'au moins 10 % des particules comprises entre 100 et 5 000 μm. En revanche, l'extrapolation au nombre total de particules reste considérée comme incertaine (CCR 2013).
- 87. L'utilisation de méthodes peu coûteuses telles que l'aiguille chaude ou la coloration des particules à l'aide de colorants peut être appliquée dans la présélection des particules à analyser (PNUE, 2020). La coloration au rouge du Nil peut être utilisée avec du plastique altéré et fournit des taux de récupération élevés pour le plastique, ce qui permet une spectroscopie ultérieure pour confirmation (Maes et al., 2017).

9.5.2 <u>Analyse chimique</u>:

- 88. L'analyse des produits chimiques dans les polymères plastiques nécessite une base de données de polymères connus pour référence⁶.
- 89. Récemment, un freeware pour l'identification rapide basée sur les spectres FTIR (spectres Raman en développement) a été fourni par l'Université d'Aalborg (Danemark) en collaboration avec l'Institut Alfred Wegener en Allemagne (https://simple-plastics.eu/). siMPle est un freeware pour la détection rapide des matériaux microplastiques dans les échantillons environnementaux. Son algorithme compare les spectres IR de l'échantillon à chaque spectre de référence de la base de données, puis leur attribue un matériau ainsi qu'un score de probabilité.

⁶ UNEP/MAP Monitoring Guidelines/Protocols for Floating Microplastics. Meeting of the Ecosystem Approach Correspondence Group on Marine Litter Monitoring (CORMON Marine Litter). 30 March 2021

Références

- Abeynayaka, A., Kojima, F., Miwa, Y., Ito, N., Nihei, Y., Fukunaga, Y., Yashima, Y., & Itsubo, N. (2020). Rapid sampling of suspended and floating microplastics in challenging riverine and coastal water environments in Japan. *Water* (*Switzerland*), 12(7).
- Baini, M., Fossi, M. C., Galli, M., Caliani, I., Campani, T., Finoia, M. G., & Panti, C. (2018). Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): The application of the MSFD monitoring protocol in the Mediterranean Sea. Marine Pollution Bulletin, 133, 543–552.
- Braun, U., Jekel, M., Gerdts, G., Ivleva, N., and Reiber, J. (2018). Discussion Paper Microplastics Analytics. Sampling, Preparation and Detection Methods. Retrieved from https://bmbf-plastik.de/en/publication/discussion-papermicroplastics-analytics.
- Cole, M., Webb, H., Lindeque, P. K., Fileman, E. S., Halsband, C., and Galloway, T. S. (2014). Isolation of microplastics in biotarich seawater samples and marine organisms. Scientific Reports, 4(1), 4528.
- Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L., et al. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin, 98(1), 179–187.
- Geraeds, M., van Emmerik, T., de Vries, R., and bin Ab Razak, M. S. (2019). Riverine Plastic Litter Monitoring Using Unmanned Aerial Vehicles (UAVs). Remote Sensing, 11(17).
- González, D., Hanke, G., Tweehuysen, G., Bellert, B., Holzhauer, M., Palatinus, A., Hohenblum, P., and Oosterbaan, L. (2016). Riverine Litter Monitoring Options and Recommendations. MSFD GES TG Marine Litter Thematic Report; JRC Technical Report; EUR 28307; doi:10.2788/461233.
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075.
- JRC, (2013). Guidance on Monitoring of Marine Litter in European Seas. Prepared by: Galgani F, Hanke G, Werner S, Oosterbaan L, Nilsson P, Fleet D, Kinsey S, Thompson RC, van Franeker J, Vlachogianni Th, Scoullos M, Veiga JM, Palatinus A, Matiddi M, Maes T, Korpinen S, Budziak A, Leslie H, Gago J, Liebezeit G. Scientific and Technical Research series, Luxembourg: Publications Office of the European Union, EUR 26113 EN.
- Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C., and Gerdts, G. (2015). Focal plane array detector-based micro-Fouriertransform infrared imaging for the analysis of microplastics in environmental samples. Environmental Chemistry, 12(5), 563–581.
- Löder, M.G.J., Imhof, H.K., Ladehoff, M., Loschel, L.A., Lorenz, C., Mintenig, S. et al. (2017). Enzymatic purification of microplastics in environmental samples. Environmental Science and Technology 51(24), 14283-14292. https://doi.org/10.1021/acs.est.7b03055. Accessed 13 January 2021.
- Maes, T., Jessop, R., Wellner, N., Haupt, K., and Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1), 44501.
- Marsalek J. (2003). Road salts in urban stormwater: an emerging issue in stormwater management in cold climates. Water Sci. Technol., 48 (2003), pp. 61-70.
- Rech, S., Macaya-Caquilpan, V., Pantoja, J. F., Rivadeneira, M. M., Campodonico, C. K., and Thiel, M. (2015). Sampling of riverine litter with citizen scientists findings and recommendations. Environmental Monitoring and Assessment, 187(6).
- Rødland E.S., Okoffo E.D., Rauert C., Heier L.S., Lind O.C., Reid M., Thomas K.V., Meland S. (2020). Road de-icing salt: Assessment of a potential new source and pathway of microplastics particles from roads. Science of The Total Environment, Vol. 738, 139352, https://doi.org/10.1016/j.scitotenv.2020.139352.

- Schirinzi, G. F., Köck-Schulmeyer, M., Cabrera, M., González-Fernández, D., Hanke, G., Farré, M., & Barceló, D. (2020). Riverine anthropogenic litter load to the Mediterranean Sea near the metropolitan area of Barcelona, Spain. Science of the Total Environment, 714.
- Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., and Ojeda, J. J. (2017). Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372–375.
- Tramoy, R., Gasperi, J., Dris, R., Colasse, L., Fisson, C., Sananes, S., et al. (2019). Assessment of the Plastic Inputs from the Seine Basin to the Sea Using Statistical and Field Approaches. Frontiers in Marine Science, 6, 151.
- Uhlmann, D., Paul, L., Hupfer, M., and Fischer, R. (2011). 2.08 Lakes and Reservoirs. In P. Wilderer (Ed.), Treatise on Water Science (pp. 157–213). Oxford: Elsevier.
- United Nations Environment Programme (2020). Monitoring Plastics in Rivers and Lakes: Guidelines for the Harmonization of Methodologies. Nairobi.
- van der Wal, M., M. van der Meulen, G. Tweehuysen, M. Peterlin, A. Palatinus, M. Kovač Viršek, L. Coscia and A. Kržan (2015). Identification and Assessment of Riverine Input of (Marine) Litter. Final Report for the European Commission DG Environment under Framework Contract No ENV.D.2/FRA/2012/0025 (SFRA0025).
- van Emmerik, T., Kieu-Le, T.-C., Loozen, M., van Oeveren, K., Strady, E., Bui, X.-T., et al. (2018). A Methodology to Characterize Riverine Macroplastic Emission into the Ocean. Frontiers in Marine Science, 5, 372. https://doi.org/10.3389/ fmars.2018.00372
- van Emmerik, T., Roebroek, C., de Winter, W., Vriend, P., Boonstra, M., and Hougee, M. (2020). Riverbank macrolitter in the Dutch Rhine–Meuse delta. Environmental Research Letters, 15(10), 104087.
- van Lieshout, C., van Oeveren, K., van Emmerik, T., & Postma, E. (2020). Automated River Plastic Monitoring Using Deep Learning and Cameras. Earth and Space Science, 7(8).

Annexe I Liste MED POL pour les déchets marins sur les plages

Annexe I: Liste MED POL pour les déchets marins sur les plages 7

Valeur	Description	Macro-catégorie
G1	Anses pour paquets de 4/6, porte-cannettes pour 6	Plastique/Polystyrène
G3	Sacs à provisions avec morceaux	Plastic/Polystyrene
G4	Petits sacs en plastique (par exemple des sacs de congélation, y compris les morceaux)	Plastic/Polystyrene
G5	La partie restante des sacs en plastique déchirés	Plastic/Polystyrene
G7/G8	Bouteilles de boissons	Plastic/Polystyrene
G9	Bouteilles et récipients plus propres	Plastic/Polystyrene
G10	Récipients pour aliments, y compris les récipients pour restauration rapide	Plastic/Polystyrene
G11	Bouteilles et récipients de cosmétiques liés à la fréquentation de la plage (par exemple, les écrans solaires)	Plastic/Polystyrene
G13	Autres bouteilles, fûts et conteneurs	Plastic/Polystyrene
G14	Bouteilles et conteneurs d'huile de moteur < 50 cm	Plastic/Polystyrene
G15	Bouteilles et récipients d'huile de moteur > 50 cm	Plastic/Polystyrene
G16	Jerrycans (récipients carrés en plastique avec poignée)	Plastic/Polystyrene
G17	Cartouches de pistolets d'injection (y compris les buses)	Plastic/Polystyrene
G18	Caisses et conteneurs/paniers (à l'exclusion des caisses à poissons)	Plastic/Polystyrene
G19	Pièces de véhicules (en polymère artificiel ou en fibre de verre)	Plastic/Polystyrene
G21/24	Bouchons et couvercles en plastique (y compris les bagues des bouchons et couvercles de bouteilles)	Plastic/Polystyrene
G26	Briquets	Plastic/Polystyrene
G27	Mégots et filtres à cigarettes	Plastic/Polystyrene
G28	Stylos et capuchons de stylos	Plastic/Polystyrene
G29	Peignes/brosses à cheveux/lunettes de soleil	Plastic/Polystyrene
G30/31	Paquets de chips/emballages de bonbons / bâtonnets de sucettes	Plastic/Polystyrene
G32	Jouets et accessoires de fête	Plastic/Polystyrene
G33	Tasses et couvercles de tasses	Plastic/Polystyrene
G34	Couverts, assiettes et plateaux	Plastic/Polystyrene
G35	Pailles et agitateurs	Plastic/Polystyrene
G36	Sacs à usage intensif (par exemple, sacs d'engrais ou d'aliments pour animaux)	Plastic/Polystyrene
G37	Sacs en filet (par exemple, légumes, fruits et autres produits) à l'exclusion des sacs en filet pour l'aquaculture	Plastic/Polystyrene
G40	Gants (pour la vaisselle)	Plastic/Polystyrene
G41	Gants (gants de caoutchouc industriels/professionnels)	Plastic/Polystyrene

⁷ UNEP/MED WG.490/6: Addendum to the MED POL Beach Marine Litter Item List and their Data Standards and Data Dictionaries to include Two New COVID-19 Related Items (Single-Use Plastic Masks & Gloves). Meeting of the Ecosystem Approach Correspondence Group on Marine Litter Monitoring (CORMON Marine Litter). Videoconference, 30 March 2021).

Valeur	Description	Macro-catégorie
G42	Pots et bouchons pour crabes/homards	Plastic/Polystyrene
G43	Étiquettes (pêche et industrie)	Plastic/Polystyrene
G44	Pièges à poulpe	Plastic/Polystyrene
G45	Sacs en maille (par exemple, filets à moules, sacs en filet,	Plastic/Polystyrene
	filets à huîtres comprenant des morceaux et des bouchons en	
	plastique provenant des filières de moules)	
G46	Plateaux à huîtres (rond provenant de cultures d'huîtres)	Plastic/Polystyrene
G47	Bâche plastique issue de la mytiliculture (Tahitiens)	Plastic/Polystyrene
G49	Corde (diamètre supérieur à 1 cm)	Plastic/Polystyrene
G50	Ficelle et cordon (diamètre inférieur à 1 cm)	Plastic/Polystyrene
G53	Filets et morceaux de filet < 50 cm	Plastic/Polystyrene
G54	Filets et morceaux de filet > 50 cm	Plastic/Polystyrene
G56	Filets/cordes emmêlés	Plastic/Polystyrene
G57/G58	Caisses à poissons	Plastic/Polystyrene
G59	Ligne de pêche (emmêlée et non emmêlée)	Plastic/Polystyrene
G60	Bâtonnets lumineux (tubes avec liquide), y compris l'emballage	Plastic/Polystyrene
G62/G63	Bouées (par exemple, marquage des engins de pêche, des routes de navigation, des amarrages de bateaux, etc.)	Plastic/Polystyrene
G65	Seaux	Plastic/Polystyrene
G66	Bandes de cerclage	Plastic/Polystyrene
G67	Feuilles, emballages industriels, bâche plastique (c'est-à-dire emballages non alimentaires/emballages de transport) à l'exclusion des bâches d'agriculture et pour serres	Plastic/Polystyrene
G68	Objets et fragments en fibre de verre	Plastic/Polystyrene
G69	Casques	Plastic/Polystyrene
G70	Cartouches de fusil de chasse	Plastic/Polystyrene
G71	Chaussures et sandales en matière polymère artificielle	Plastic/Polystyrene
G73	Éléments en éponge mousse (c'est-à-dire matrices, éponge, etc.)	Plastic/Polystyrene
G75	Pièces en plastique/polystyrène 0 - 2,5 cm	Plastic/Polystyrene
G76	Pièces en plastique / polystyrène 2,5 cm > < 50 cm	Plastic/Polystyrene
G77	Pièces en plastique / polystyrène > 50 cm	Plastic/Polystyrene
G91	Conteneur de biomasse des stations d'épuration des eaux usées et de l'aquaculture	Plastic/Polystyrene
G253	Masques en plastique à usage unique (par exemple, utilisé pour la protection contre la COVID- 19)	Plastic/Polystyrene
G254	Gants en plastique à usage unique (par exemple, utilisé pour la protection contre la COVID- 19)	Plastic/Polystyrene
G124	Autres composants en plastique ou en polystyrène (identifiables), y compris les fragments	Plastic/Polystyrene
	Veuillez préciser les éléments inclus dans G124	Plastic/Polystyrene
G125	Ballons, rubans de ballons, ficelles, valves en plastique et bâtons pour ballons	Caoutchouc

Valeur	Description	Macro-catégorie
G127	Bottes en caoutchouc	Rubber
G128	Pneus et courroies	Rubber
G134	Autres pièces en caoutchouc	Rubber
	Veuillez préciser les éléments inclus dans G134	Rubber
G137	Vêtements / chiffons (par exemple vêtements, chapeaux, serviettes)	Tissu
G138	Chaussures et sandales (par exemple, en cuir, en tissu)	Cloth
G141	Tapis et ameublement	Cloth
G140	Sacs (grosse toile)	Cloth
G145	Autres textiles (y compris les morceaux de tissus, chiffons, etc.)	Cloth
	Veuillez préciser les éléments inclus dans G145	Cloth
G147	Sacs en papier	Papier/Carton
G148	Carton (boîtes et fragments)	Paper/Cardboard
G150	Cartons/Tetrapack Lait	Paper/Cardboard
G151	Cartons/Tetrapack (non laitiers)	Paper/Cardboard
G152	Paquets de cigarettes (y compris le revêtement transparent du paquet de cigarettes)	Paper/Cardboard
G153	Tasses, plateaux, emballages alimentaires, récipients pour boissons	Paper/Cardboard
G154	Journaux et magazines	Paper/Cardboard
G158	Autres éléments en papier (y compris les fragments non reconnaissables)	Paper/Cardboard
	Veuillez préciser les éléments inclus dans G158	Papier/Carton
G159	Bouchons	Paper/Cardboard
G160/161	Palettes / Bois transformé	Bois transformé/travaillé
G162	Caisses et conteneurs / paniers (pas les caisses à poissons)	Processed/Worked Wood
G163	Casiers à crabes/homards	Processed/Worked Wood
G164	Caisses à poissons	Processed/Worked Wood
G165	Bâtonnets de glace, fourchettes à frites, baguettes, cure-dents	Processed/Worked Wood
G166	Pinceaux	Processed/Worked Wood
G171	Autres bois < 50 cm	Processed/Worked Wood
	Veuillez préciser les éléments inclus dans G171	Processed/Worked Wood
G172	Autres bois > 50 cm	Processed/Worked Wood
	Veuillez préciser les éléments inclus dans G172	Processed/Worked Wood
G174	Industrie des aérosols et des bombes aérosol	Métal
G175	Boîtes de conserve (boisson)	Metal
G176	Boîtes de conserve (aliments)	Metal
G177	Emballages en papier, papier aluminium	Metal
G178	Bouchons, couvercles et capsules de bouteilles	Metal
G179	BBQ jetables	Metal
G180	Appareils électroménagers (réfrigérateurs, machines à laver, etc.)	Metal
G182	En rapport avec la pêche (poids, plombs, leurres, hameçons)	Metal
G184	Casiers à homards/crabes	Metal
G186	Débris industriels	Metal
G187	Fûts et barils (par exemple, pétrole, produits chimiques)	Metal
G190	Boîtes de peinture	Metal

Valeur	Description	Macro-catégorie
G191	Fil de fer, grillage, fil barbelé	Metal
G198	Autres pièces métalliques < 50 cm	Metal
	Veuillez préciser les éléments inclus dans G198	Metal
G199	Autres pièces métalliques > 50 cm	Metal
	Veuillez préciser les éléments inclus dans G199	Metal
G200	Bouteilles (y compris les fragments identifiables)	Verre
G202	Ampoules électriques	Glass
G208a	Fragments de verre > 2,5 cm	Glass
G210a	Autres éléments en verre	Glass
	Veuillez préciser les éléments inclus dans G210a	Glass
G204	Matériaux de construction (brique, ciment, tuyaux)	Céramique
G207	Pièges à poulpe	Ceramics
G208b	Fragments de céramique > 2,5 cm	Ceramics
G210b	Autres objets en céramique ou en poterie	Ceramics
	Veuillez préciser les éléments inclus dans G210b	Ceramics
G95	Bâtonnets de coton-tige	Déchets sanitaires
G96	Serviettes hygiéniques/couches/bandes de garniture	Sanitary Waste
G97	Désodorisants de toilettes	Sanitary Waste
G98	Couches	Sanitary Waste
G133	Préservatifs (y compris l'emballage)	Sanitary Waste
G144	Tampons et applicateurs de tampons	Sanitary Waste
G	Autres déchets sanitaires	Sanitary Waste
	Veuillez préciser les autres éléments sanitaires	Sanitary Waste
G99	Seringues/aiguilles	Déchets médicaux
G100	Récipients/tubes pour produits médicaux/pharmaceutiques	Medical Waste
G211	Autres articles médicaux (compresses, bandages, sparadraps, etc.)	Medical Waste
	Veuillez préciser les éléments inclus dans G211	Medical Waste
G101	Sac à déjections canines	Fèces
G213	Paraffine/Cire	Paraffine/Cire
Présence de granulés	Veuillez indiquer O ou N	
Présence de goudrons de pétrole	Please say Y or N	
Nombre d'éléments	Nombre d'éléments dans la catégorie exprimé en nombre d'objets / 100 m	