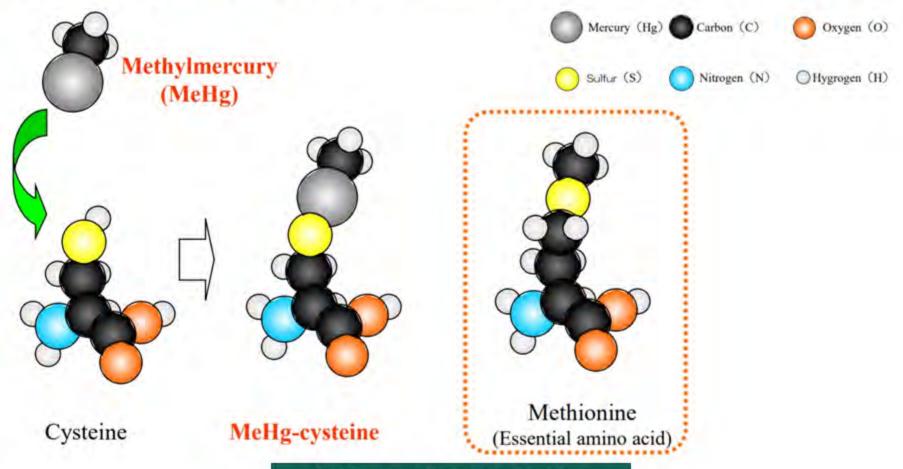


PHYSICAL AND CHEMICAL PROPERTIES, USAGE, AND **ENVIRONMENTAL BEHAVIOUR**

PHYSICAL AND CHEMICAL PROPERTIES OF MERCURY

Physical Properties of Mercury Element


- Next to Gold (79) ☐Atomic number: 80
- □Atomic weight: 200.59
- ■Melting point: -38.8 °C
- ☐Boiling point: 356 °C
- □Specific gravity: 13.6 at 0 °C
- ☐Thermal conductivity: 8.3 W/m°C
- High vapour pressure ■Saturated vapour concentration: 13.2 mg/m³ at 20 °C
- ■Abundance in Earth's crust: 0.05 0.08 ppm •
- □Emission spectrum at ultra-violet band: 254 nm (UV-C)
- ☐ Forming amalgam with many metallic elements

Physical and Chemical Properties, Usage, and Environmental Behaviours

Physical and Chemical Properties of Mercury

Mechanism of Methylmercury Assimilation

Amino-acid transportation mechanism

Human tissues (protein)

Source: Japan, National Institute for Minamata Disease (2013). Mercury and health V4.1.

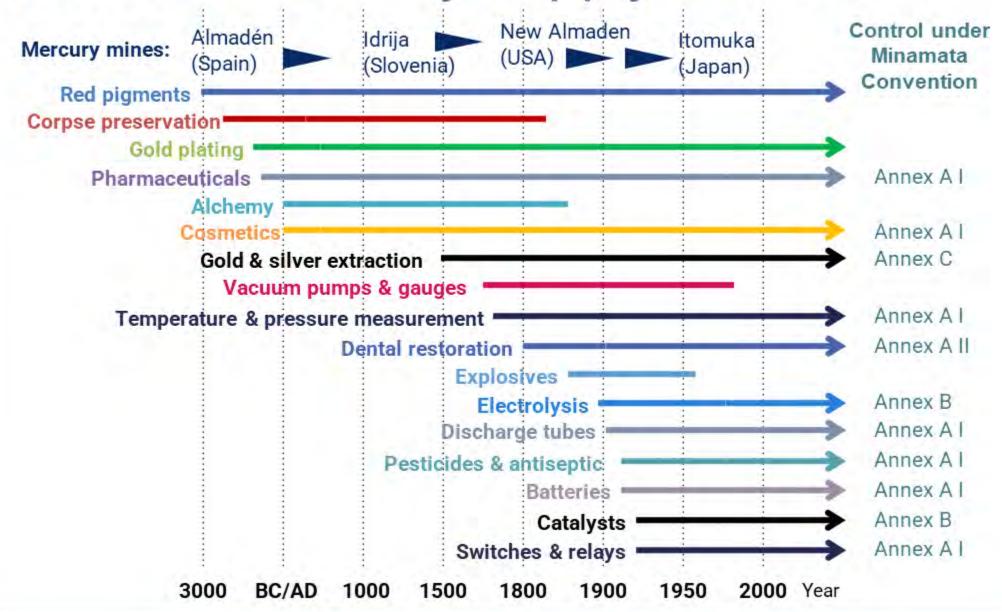
Physical and Chemical Properties, Usage, and Environmental Behaviours

Physical and Chemical Properties of Mercury

Exposures, Symptoms and Treatments

UN®	
environment programme	

	Elemental Mercury	Inorganic Mercury	Methylmercury
Exposure pathway	Inhalation (75-85 %), ingestion (0.01 % or less).	Ingestion (5-10 % or less), dermal (not expected to be high).	Ingestion (90 % or more).
Behaviour and fate	Unoxidized form passes through blood-brain barrier (diffusion). Gradually oxidized to divalent inorganic mercury.	Excreted in urine.	Passes through blood-brain and placenta barrier (amino acid transportation). Gradually oxidized to divalent inorganic mercury.
Symptom	Respiratory distress. Central nervous system effects: tremor, personality change, tooth pain, excessive salivation. Referred to as 'mad-hatter's disease.	Corrosion in digestive tract: vomiting, chest pain, abdominal pain, and bloody diarrhoea. Kidney damage. Renal insufficiency.	Central nervous system effects: sensory nerve dysfunction, ataxia, and constriction of visual field. Fetal: non-specific cerebral palsy-like features.
Treatment	Stimulation of mercury excretion.	Gastric lavage, excretion with chelating agent.	No effective treatment.

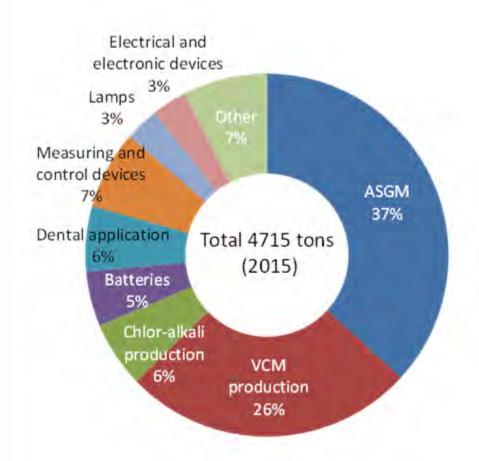

Physical and Chemical Properties, Usage, and Environmental Behaviours

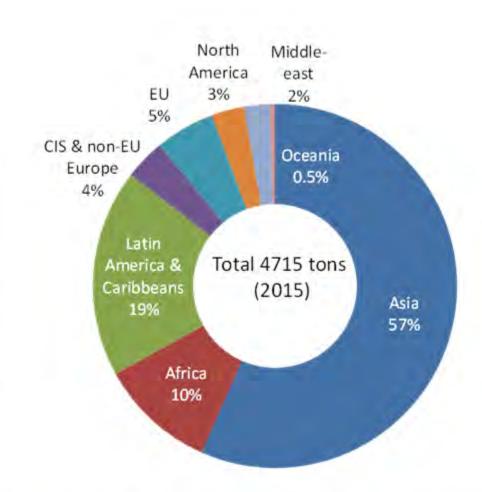
Physical and Chemical Properties of Mercury

MERCURY PRODUCTS AND USES

=

Historical Mercury Supply and Use




Physical and Chemical Properties, Usage, and Environmental Behaviours

Mercury Products and Uses

Global Mercury Uses

Physical and Chemical Properties, Usage, and Environmental Behaviours

Mercury Products and Uses

Source: UNEP (2017). Global mercury supply, trade and demand.

USE OF ELEMENTAL MERCURY

Measuring Devices

Туре	Theory / Principle	Application	Remarks
Measuring devices	☐ High density liquid.	 Manometer (pressure in system, facility, etc.). Barometer (atmospheric pressure). Sphygmomanometer (blood pressure). 	 □ No electric supply required. □ No equivalent alternative for high temperature devices. □ Extensively used for measuring blood pressure.
Measuring devices	Liquid in wide temperature range.High thermal conductivity.	 □ Thermometer (temperature). □ Hygrometer (wet bulb, relative humidity). 	 □ No electric supply required. □ Quick response. □ No equivalent alternative for high temperature devices.

Chemical
Properties,
Usage, and
Environmental
Behaviours

Use of Elemental Mercury

Discharge Tubes

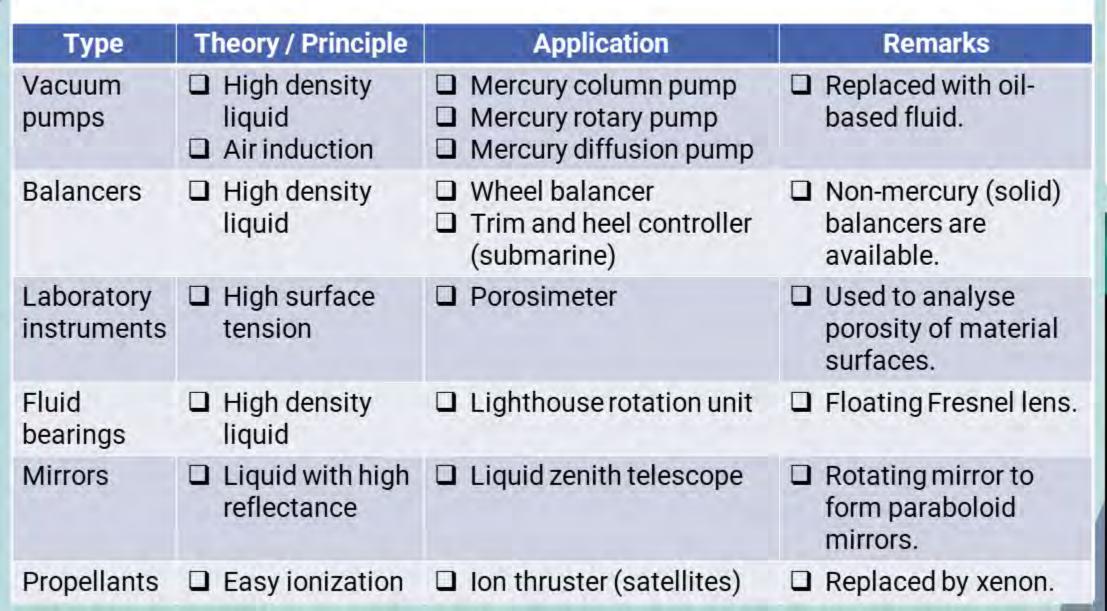
Type	Theory / Principle	Application	Remarks
Discharge tubes	□ Electric valve effect.	☐ Mercury arc rectifier (rectifying high voltage AC to DC).	 Large power supply capacity for industries requiring DC. Largely replaced by power semiconductors.
Discharge tubes	☐ Emitting UV-C (254 nm).	 Neon lamp (signage, display). Fluorescent lamp (lighting). High pressure discharge lamp (projection, lighting, headlamp of vehicle). Low pressure mercury vapour lamp (disinfection). 	 □ No filament in bulb, long life. □ UV-C emitting efficiency is higher than LED.

Physical and Chemical Properties, Usage, and Environmental Behaviours

Use of Elemental Mercury

Switches, Relays, Batteries

Туре	Theory / Principle	Application	Remarks
Switches and relays	□ Electrically conductive liquid. □ Wetting effect on the contact surface.	 □ Tilt switch/alarm (activating lights for boot lids of vehicle). □ Acceleration censor (antilock braking systems). □ Mercury-wetted relay. 	 Low resistance and no chattering at contact surface. Allows high frequency switching.
Electric conductors	☐ Electrically conductive liquid	☐ Slip ring (360° rotation)	☐ Brushless contact.
Batteries	☐ Hydrogen overpotential.	■ Button cell (preventing hydrogen gas generation at zinc anode).	Lithium coin cell does not use water; thus no mercury is added.



Physical and Chemical Properties, Usage, and Environmental Behaviours

Use of Elemental Mercury

Abnormal: $Zn + 2UH^2 \rightarrow ZnU + H_2U + 2e^2$ Abnormal: $Zn + 2H_2U \rightarrow Zn^{2+} + 2UH^2 + H_2\uparrow$

Other Purposes

Physical and Chemical Properties, Usage, and Environmental Behaviours

Use of Elemental Mercury

USE OF AMALGAM

7.

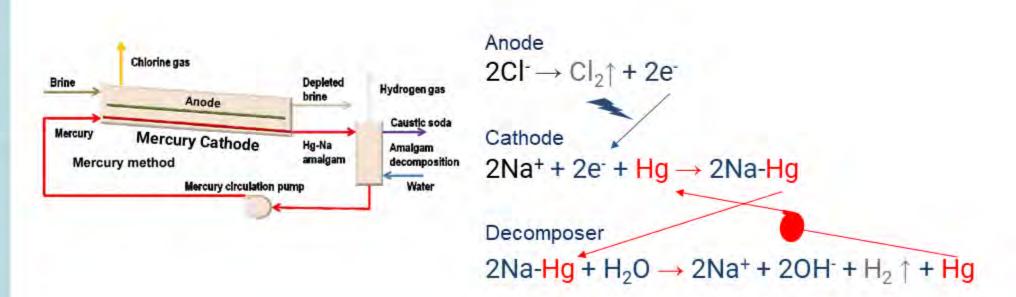
Dental Treatment, Surface Treatment

Туре	Theory / Principle	Application	Remarks
Dental treatment	☐ Gradually hardening after mixing.	☐ Dental cavity restoration (filling silver tin amalgam into dental cavities).	 No electric supply required. Mercury waste is released into drainage. Mercury is gradually vapourised in the mouth.
Surface treatment	☐ Gradually hardening after mixing.	 Mirror (tin amalgam forms the reflective surfaces) 	☐ Replaced by silver mirror reaction.

Physical and Chemical Properties, Usage, and Environmental Behaviours

Gold/Silver Extraction/Plating

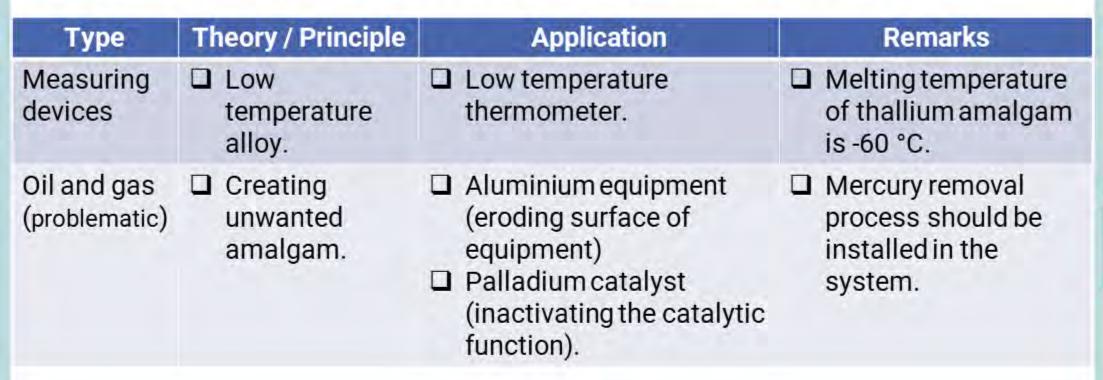
Туре	Theory / Principle	Application	Remarks
Gold/ silver industry	 □ Absorption of metallic elements. □ Low boiling point. 	☐ Gold/silver extraction (predominantly used for ASGM). ☐ Gold plating (gold amalgam is smeared on metallic surface and then heated).	 □ Workers are exposed to mercury vapour. □ Cyanide method is an alternative for extraction but requires higher management skill.


- Cupellation method (lead)
 - Invented in ancient (the BC era) Mesopotamian.
- The amalgamation method
 - Invented in the 16th century to cope with large demand in Latin America.
- The cyanide method
 - Invented in late the 19th century.

Physical and Chemical Properties, Usage, and Environmental Behaviours

Electrolysis

Туре	Theory / Principle	Application	Remarks
Electrolysis	☐ Absorption of metallic elements.	☐ Chlor-alkali production (separating sodium from brine after electrolysis).	☐ Ion exchange membrane process is an alternative with a higher energy efficiency.



Physical and Chemical Properties, Usage, and Environmental Behaviours

Special Applications, Amalgam Trouble

Physical and Chemical Properties, Usage, and Environmental Behaviours

Pigments and Colours

Compound	Theory / Principle	Application	Remarks
Mercury sulphide/ cinnabar	 Low solubility and stable chemical form. Reddish colour. 	□ Red pigment (vermillion refined from cinnabar or synthesised from mercury and sulphur).	☐ Iron oxide (brownish red ochre) and lead oxide (bright orange red) have also been used.
Mercury (II) iodide	☐ Thermo- chromism	☐ Thermochromic paint	Alters crystal structure at certain temperature.

Physical and Chemical Properties, Usage, and Environmental Behaviours

Cosmetics

Compound	Theory / Principle	Application	Remarks
Mercury sulphide/ cinnabar	☐ Reddish colour.	☐ Bodypainting (ancient indigenous custom).	☐ Iron oxide (brownish red ochre) have also been used.
Mercury (I) chloride / calomel	☐ White colour.	☐ White face powder.	☐ Lead white (lead poisoning), talc (contaminated with asbestos).
Ammoniated (II) mercury	☐ Bleaching effect.	☐ Skin whitening cream (bleaching melamine).	■ Widely used in developing countries.

Physical and Chemical Properties, Usage, and Environmental Behaviours

Biocides, Preservatives

Compound	Theory / Principle	Application	Remarks
Phenyl- mercury	☐ Bactericidal & fungicidal actions.	 Fungicide (seed dressing against rice blight). Preservative (for latex paint, pulp & paper). 	☐ Widely used in paddy fields.
Mercury (II) chloride	☐ Bactericidal & fungicidal actions.	 ☐ Fungicide (wood preservation, seed dressing). ☐ Preservative (pulp & paper). 	
Mercury (II) oxide (Red)	☐ Biocidal action.	Antifouling ship paint for ship's bottom.	Replaced with copper-based ship paint.
Thiomersal	☐ Bactericidal action.	☐ Preservative (vaccines and eye area cosmetics).	☐ Vaccines can be stored at normal temperatures.

Physical and Chemical Properties, Usage, and Environmental Behaviours

7

Pharmaceutical

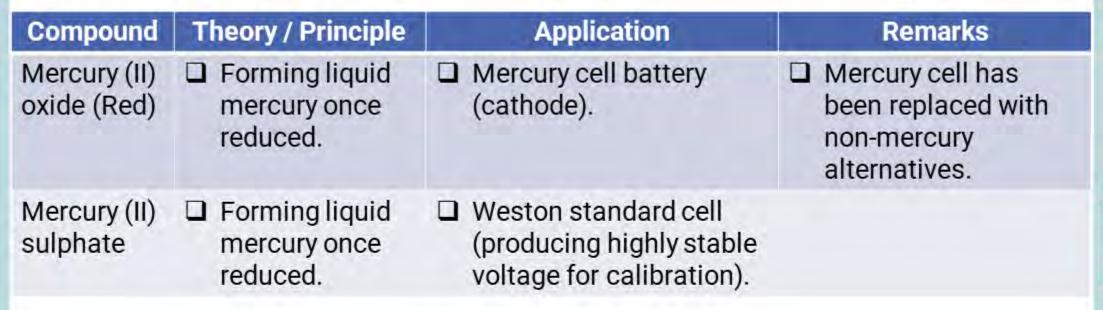
Compound	Theory / Principle	Application	Remarks
Mercury (I) chloride / calomel	☐ Bactericidal & fungicidal actions.	☐ Pharmaceuticals (syphilis).	
Merbromin	Inhibition of bacterial growth.	Mercurochrome (topical antiseptic for minor wounds).	Less absorbed from skin surface.
Mercury (II) iodide	☐ Inhibition of bacterial growth.	☐ Topical antiseptic ointment.	
Ammoniated (II) mercury	Inhibition of bacterial growth.	☐ Topical antiseptic ointment.	

Physical and Chemical Properties, Usage, and Environmental Behaviours

Catalysts

Compound	Theory / Principle	Application	Remarks
Mercury (II) chloride	☐ Forming intermediate with acetylene.	Catalyst (vinyl chloride monomer production).	
Mercury (II) sulphate	☐ Forming intermediate with acetylene.	☐ Catalyst (acetaldehyde production).	□ Acetylene-based acetaldehyde production has been replaced with ethylene-based system.
Phenyl- mercury	☐ Initiating polymerization reaction	☐ Latent catalyst (polyurethane elastomer)	

 $CH = CH + HgSO_4 + H_2O \rightarrow CHHg = CHOH^+ + H^+ + SO4^{2-} \rightarrow CH_2 = CHOH + HgSO_4$



Physical and Chemical Properties, Usage, and Environmental Behaviours

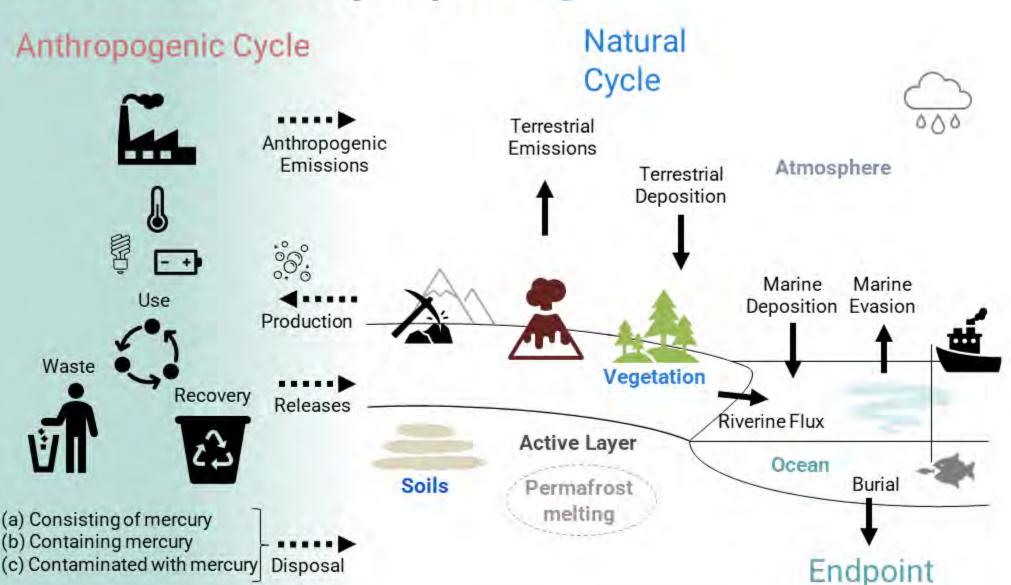
Use of Mercury Compounds

Batteries

Physical and Chemical Properties, Usage, and Environmental Behaviours

Other Purposes

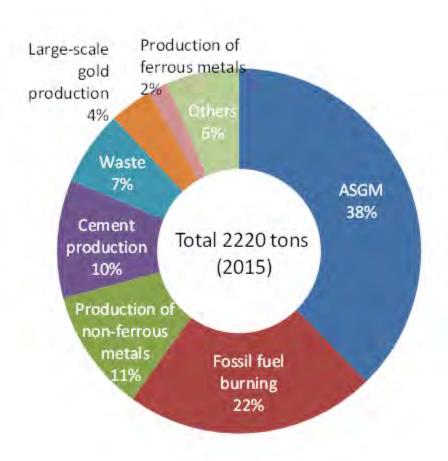
Compound	Theory / Principle	Application	Remarks
Mercury (II) nitrate	☐ Fulling fur	Carroting (preparation of felt)	☐ Extensively used for hat making in the 19 th century.
Mercury (II) fulminate	☐ Explosiveness	 Detonation cap (blasting dynamite, bullet cartridge) 	☐ Replaced by DDNP.
Mercury (II) chloride	□ Reducing silver halide (photo)□ Water solubility	 □ Push-processing for photo □ Standard solution (mercury analysis) 	
Mercury (I) chloride / calomel	☐ Stable electrode potential	☐ Saturated calomel electrode	☐ Silver chloride reference electrode is an alternative.
Mercury sulphide	Low solubility and stable chemical form.	☐ Waste mercury (stabilisation for final disposal).	

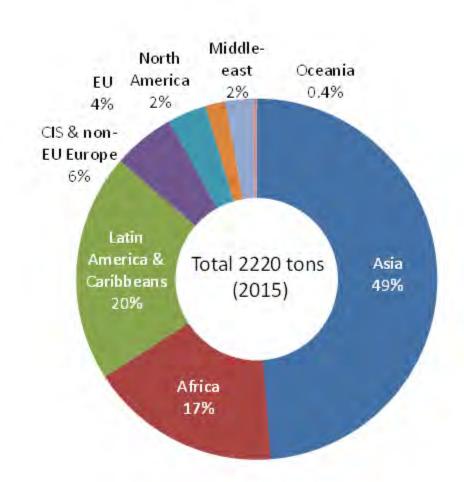


Physical and Chemical Properties, Usage, and Environmental Behaviours

THE GLOBAL MERCURY CYCLE AND EMISSIONS

Global Mercury Cycling


Physical and Chemical Properties, Usage, and Environmental Behaviours


Global Mercury Cycle and Emissions

7

Global Mercury Emissions

Physical and Chemical Properties, Usage, and Environmental Behaviours

Global Mercury Cycle and Emissions

Source: UNEP (2019). Global mercury assessment 2018.