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Step-by-step Guidance 

Calculator for the estimation of adverse health outcomes and associated productivity losses resulting 
from chemicals exposure.   

Integrated Health and Environment Observatories for the Sound Management of Chemicals 
and Waste in Africa (GEF ID 9080) 

       

Summary 

The purpose of this guidance is to assist users in completing the ChemObs Economic Calculator. The 

calculator uses existing environmental exposure data to approximate attributable disease and productivity 

losses. The guidance is not intended to be overly descriptive. For more detailed information on the 

underlying assumptions and calculations refer to the associated methods document.  

 

Steps 

Step 1. Assemble data sources 

The first step in the process is to gather necessary data on exposures. This could include both the grey 

literature and peer-reviewed publications. What is needed are the results of environmental analyses of a 

chemical in a human exposure pathway (i.e. water, soil, dust or dietary; the calculator does not assess air 

exposure). Utilise only trusted sources and do not use data that are more than 5 years old.  

 

Step 2. Extract and organize data 

The second step is to extract the study results and organize them in a useful way. Specifically, users should 

identify or calculate the central tendency (e.g. median, mean) of analysis results for chemicals in a human 

exposure pathway.  

 

Step 3. Enter data in the calculator 

Begin on the ‘Summary’ sheet. Choose the country for which you are using the calculator. Then move to 

any of the other sheets and enter the data you have assembled. Each exposed group should be entered on 

a separate row. Try to be as specific as possible. At a minimum, children and adults should be entered on 

separate rows. Groups with higher or lower exposures – where known – could also be entered on separate 

rows.  

 

Step 4. Assess the results 

After all the available data have been entered, refer back to the ‘Summary’ sheet. Are the results tallying 

correctly? Do the amounts shown seem to make sense with the information you have entered? Go through 

each step in the process and check for any possible errors. 

 



 

 

 
 
 

Version 1 May 2021 
2 

Step 5. Communicate the results 

Communicate the results of your research to policy makers and colleagues. Discuss the results with other 

researchers. The ‘Primer on Costs of Inaction’ includes useful information on understanding the results of 

your work and how best to communicate that information to different audiences.  

 

Inputs 

The calculator relies on the inputting of environmental analysis data. This section describes some select 

parameters in the calculator’s different worksheets.  

 

If environmental analysis data are available, the user enters them in the appropriate worksheet following 

the guidance given below and in the step-by-step for each exposure pathway (Dietary, Soil, Dust and 

Water). The tables below list select parameters and describe the required inputs.  

Dietary Worksheet 
Food Weight ingested 

(kilos) 
Frequency Population Adult or Child Chemical Concentration 

(mg/kg) 

Broccoli 0.125 Daily medium Child (0-7 years) Chlorpyrifos 70 

Enter the 
food for 
which 
chemical 
analysis is 
available  

Enter the amount 
of the relevant 
food ingested in a 
single meal by the 
specified 
population (adults 
or children). 

Pull down menu. 
Choose the 
frequency with 
which the mean 
is eaten: daily, 2-
3 times per 
week, or 1-2 
times per week.  

Pull down menu. 
Select the population 
of children or adults 
exposed to soil with 
this concentration 
daily (small, medium, 
large, very large). 
Refer to the 
population guidance 
for assistance. 

Pull down menu.  
Select the 
appropriate age 
group. 

Pull down 
menu. Select 
the chemical for 
which analysis 
information is 
available.   

Enter the central 
tendency available 
for analysis. Mean 
preferred.  

 

Soil Worksheet 
Sirte name 
 

Latitude Longitude Population Concentration 
(mg/kg) 

Adult or Child Chemical Estimated Dust 
Concentration (mg/kg) 

East side 
dumpsite 

-1.43 33.9432 medium 400 Child (0-7 
years) 

Chlorpyrifos 290.7 

Enter the 
common 
name for 
the site 

Enter 
latitude in 
decimal 
degrees 
(from -90 to 
90) 

Enter longitude 
in decimal 
degrees (from -
180 to 180) 

Pull down 
menu. 
Select the 
population 
of children 
or adults 
exposed to 
soil with this 
concentratio
n daily 
(small, 
medium, 
large, very 
large). Refer 
to the 
population 
guidance for 
assistance. 

Enter the 
central 
tendency 
available for 
analysis. 
Mean 
preferred. 

Pull down 
menu.  
Select the 
appropriate 
age group. 

Pull down 
menu. Select 
the chemical 
for which 
analysis 
information is 
available.   

Populates automatically 
following USEPA 
Integrated 
Environmental Uptake 
Biokinetic Model 
guidance. 
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Dust Worksheet 
Sirte name 
 

Population Concentration 
(mg/kg) 

Concentratio
n (mg/kg) 

Adult or Child Chemical Estimated Soil 
Concentration (mg/kg) 

Smith town medium 400 400 Child (0-7 years) Chlorpyrifos 560.7285714 

Enter the 
common 
name for 
the site 

Pull down menu. Select 
the population of 
children or adults 
exposed to soil with this 
concentration daily 
(small, medium, large, 
very large). Refer to the 
population guidance 
for assistance. 

Enter the 
central 
tendency 
available for 
analysis. Mean 
preferred.   

Enter the 
central 
tendency 
available for 
analysis. 
Mean 
preferred.   

Pull down 
menu. Select 
the chemical for 
which analysis 
information is 
available.   

Pull down 
menu. Select 
the chemical for 
which analysis 
information is 
available.   

Populates automatically 
following USEPA 
Integrated 
Environmental Uptake 
Biokinetic model 
guidance. 

 

Water Worksheet 
Water Volume 

ingested daily 
(liters) 

Population Adult or Child Concentration (ppb) 

Smith 
town 

0.125 large Child (0-7 years) 70 

Enter the 
common 
name for 
the site 

Enter the 
amount of the 
relevant food 
ingested daily 
by the 
population 
(adults or 
children). 

Pull down menu. Select the 
population of children or 
adults exposed to soil with 
this concentration daily 
(small, medium, large, very 
large). Refer to the 
population guidance for 
assistance.   

Pull down menu. 
Select the chemical 
for which analysis 
information is 
available.   

Enter the central tendency 
available for analysis. Mean 
preferred.  

 

Determining the size of the exposed population and frequency of exposure 

The model utilizes environmental sampling data to approximate the level of exposure (i.e. dose) of a given 

chemical to an individual. In all cases – with the exception of dietary sources – the frequency of exposure 

is set to daily. In the case of dietary exposures, the user must determine how frequently receptors (i.e. 

humans) ingest the contaminated food. Three options are provided: daily, 2-3 times per week, and 1-2 

times per week. Once the exposure is quantifier, the appropriate dose response relationship is then applied 

to estimate the attributable disease burden for an individual. Population wide impacts are simply the 

product of the individual disease burden multiplied by the population. Thus a key challenge for the 

individual user of the model is to identify the number of people potentially exposed at the specified dose.  

 

For example if the user enters a certain organophosphate pesticide sampling result for a given food 

available at a market – say dimethoate on spinach in a market in Dar es Salaam – he or she must determine 

the number of people eating that particular spinach and the quantity they are consuming at the level of 

frequency specified.  Likewise, if the user enters a certain soil lead concentration for a residential area, the 

user must enter the number of people likely to be exposed to that soil on a daily basis.  

 

This parameter introduces a large amount of uncertainty to the model. Early testing found that individual 

users’ estimates varied widely from those of other uses for similar exposure scenarios. In some cases, entire 
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national populations were entered as the exposed population. This resulted in a both over- (and in some 

cases under-) estimations of the disease burden that undermined the integrity and usefulness of the model. 

Recognizing these challenges, the available inputs for this parameter have been restricted. Users are now 

asked to select from a simple list of exposed populations defined as small, medium, large. The text below 

provides guidance on these options: 

 

• Small. This selection uses a default value of 100 people exposed. Small groups could be those living 

near contaminated playgrounds, confined worker exposures in smaller settings, or remote lakes 

where fish are consumed only by local populations. 

• Medium. This selection uses a default value of 1,000 people exposed. Medium groups might be 

entire neighbourhoods or sections of an informal settlement where hazardous chemicals are being 

handled, larger occupational settings, or markets in medium-sized towns selling vegetables with 

high levels of pesticides.  

• Large. This selection uses a default value of 10,000 people exposed. Large groups might be 

individuals residing in an industrial neighbourhood or around a large open dumpsite. People 

consuming spinach purchased at a large city market where multiple samples have shown elevated 

levels of a given pesticide might also be in this category.  

• Very Large. This selection uses a default value of 100,000 people exposed and should rarely be 

selected. Very large groups might represent a regional population consuming mercury-

contaminated fish or cities built around mining-smelting complexes 

Additional information 

Refer to the associated methods document to better understand the underlying assumptions and 
calculations. Contact Africa Institute, WHO, or UNEP for more information or further assistance. Contact 
details in the table below. 

Pierre Quiblier (UNEP) pierre.quiblier@un.org 

Cynthia Davis (WHO) daviscy@who.int 

Thabo Moraba (Africa Institute) tmoraba@environment.gov.za 
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Methods for Underlying Calculations  

Calculator for the estimation of adverse health outcomes and associated productivity losses resulting 

from chemicals exposure.   

Integrated Health and Environment Observatories for the Sound Management of Chemicals 
and Waste in Africa (GEF ID 9080) 
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INTRODUCTION 

Summary 

This document and the accompanying ‘step-by-step’ and economic calculator are intended for use by 

environmental and health professionals to rapidly characterise economic costs associated with chemicals 

exposures in the project countries. Results could be used in concert with other studies and observations to 

inform decisions relating remedial options and regulatory policy, among other applications.  
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The purpose of the model is to estimate attributable Disability Adjusted Life Years (DALYs), Full Scale 

Intellectual Quotient (IQ) decrement, and associated economic costs resulting from chemicals exposure. 

The model is intended to accept different types of data inputs form multiple environmental media. To allow 

for this level of flexibility in the model, a number of assumptions are employed at different stages. The 

assumptions are based on existing studies, surveys, reports, or expert opinion.  

 

The model is integrated into an accompanying Microsoft Excel workbook which automates the 

calculations.1 The model can also be used manually following the guidance presented here. The model was 

initially developed by Pure Earth in 2019 under contract with the United Nations Environment Programme 

and later modified by PAN-UK under contract with Africa Institute in 2021. Resources for the Future 

supported the development of the underlying economic model.  

 

The model is not intended to produce a definitive calculation of health and economic outcomes, but rather 

an indicative estimate based on the best available information. Estimates are static and represent a 

snapshot in time. Future efforts might consider refining and improving the methods presented here. Future 

efforts might consider refining and improving the methods presented here. Given the paucity of efforts in 

this area, the model is intended as a ‘proof of concept’ of a tool that – following further improvement, 

review and testing – could be used in addressing a significant and credible health risk.  

 

The purpose of this document is to outline the steps in the model and underlying assumptions. This 

document is accompanied by an Excel calculator and ‘step-by-step’ guide for employing the model in 

testing.  

 

Sources of Data 

The equations embedded in the calculator rely on known concentrations of chemicals in various media. 

Users enter concentrations of multiple chemicals in four different media (soil, dust, water, food) in either 

ppm (all media but water) or ppb (water). Sources of data could include government monitoring reports or 

peer-reviewed literature. In some cases reputable NGO data could also be considered. The Toxic Sites 

Identification Programme of the NGO Pure Earth offers one possible source.2 In the absence of site specific 

information, other inputs can be approximated based on third party information. Dietary information from 

the Food and Agriculture Organisation of the United Nations could provide useful guidance as could 

population density data from CIESEN, for instance.3  

 

 
1 Microsoft Corporation, ‘Microsoft Excel for Mac 16.9’. 
2 Pure Earth, ‘No Title’ (2018) <https://www.pureearth.org/projects/toxic-sites-identification-program-tsip/> accessed 19 February 2018. 
3 FAO, ‘Home | Food-Based Dietary Guidelines | Food and Agriculture Organization of the United Nations’ 
<https://www.fao.org/nutrition/education/food-dietary-guidelines/home/en/> accessed 3 May 2022; Center for International Earth Science 
Information Network-CIESIN-Columbia University and Centro Internacional de Agricultura Tropical- CIAT, ‘Gridded Population of the World, 
Version 3 (GPWv3): Population Density Grid’ <http://dx.doi.org/10.7927/H4XK8CG2>. 
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Metrics 

The disability adjusted life year (DALY) is a metric developed by the World Bank in the 1990s and widely 

employed in burden of disease studies.4 A DALY represents a productive year of life lost either due to 

morbidity or mortality. It is the sum of two separate metrics, years lived with disease (YLD) and years of life 

lost (YLL). YLD is calculated by multiplying the duration (in years) of an adverse health outcome by its 

sequalae-specific disability weight ranging from 0–1, with 0 representing perfect health and 1 representing 

death. The Institute for Health Metrics and Evaluation (IHME) is the global leader in calculating burden of 

disease estimates, releasing annual reports in the medical journal The Lancet and sharing detailed results 

on their website (http://ghdx.healthdata.org/gbd-results-tool). Since 2018, they have done so jointly with 

the World Health Organization. IHME’s list of disability weights is the most comprehensive that exists and 

is based on surveys of individuals’ perceptions of the severity of a given health outcome.5 The economic 

cost of a DALY in this model could be understood as an annual cost, or rate.  

 

Full scale intelligence quotient (IQ) is a measure of intelligence and cognitive ability most commonly 

assessed in children with the Wechsler Intelligence Scale for Children. In any given population, IQ is normally 

distributed with a mean of 100 and a standard deviation of 15. Economic costs for IQ decrement in this 

model are quantified as a percentage of lifetime earnings. They represent an assessment of the cost at any 

one point in time. They therefore cannot be summed with costs associated with DALYs, which represent an 

annual rate. 

Interpreting Results 

The results of the calculator are intended to be indicative first pass estimates that could be refined through 

further effort. Each step in the model contains assumptions and uncertainties. Results should not be 

interpreted as definitive.  Annex 1 (Primer on Costs of Inaction) includes a detailed discussion on the 

interpretation and communication of the results of this sort of analysis. Annex 2 (Summary of underlying 

assumptions) outlines key steps in the model and an assessment of the strength of evidence.  

Inputs 

If environmental analysis data are available, the user enters them in the appropriate worksheet following 

the guidance given below and in the step-by-step for each exposure pathway (Dietary, Soil, Dust and 

Water). The tables below list select parameters and describe the required inputs.  

Dietary Worksheet 
Food Weight ingested 

(kilos) 
Frequency Population Adult or Child Chemical Concentration 

(mg/kg) 

Broccoli 0.125 Daily medium Child (0-7 years) Chlorpyrifos 70 

Enter the 
food for 

Enter the amount 
of the relevant 

Pull down menu. 
Choose the 

Pull down menu. 
Select the population 

Pull down menu.  Pull down 
menu. Select 

Enter the central 
tendency available 

 
4 Christopher JL Murray and Alan D Lopez, ‘Measuring the Global Burden of Disease’ (2013) 369 New England Journal of Medicine 448 
<http://www.nejm.org/doi/abs/10.1056/NEJMra1201534> accessed 26 September 2016. 
5 IHME, ‘Global Burden of Disease Study 2017 (GBD 2017) Disability Weights | GHDx’ <http://ghdx.healthdata.org/record/ihme-data/gbd-2017-
disability-weights> accessed 30 October 2021. 
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which 
chemical 
analysis is 
available  

food ingested in a 
single meal by the 
specified 
population (adults 
or children). 

frequency with 
which the mean 
is eaten: daily, 2-
3 times per 
week, or 1-2 
times per week.  

of children or adults 
exposed to soil with 
this concentration 
daily (small, medium, 
large, very large). 
Refer to the 
population guidance 
for assistance. 

Select the 
appropriate age 
group. 

the chemical for 
which analysis 
information is 
available.   

for analysis. Mean 
preferred.  

 

Soil Worksheet 
Site name 
 

Latitude Longitude Population Concentration 
(mg/kg) 

Adult or Child Chemical Estimated Dust 
Concentration (mg/kg) 

East side 
dumpsite 

-1.43 33.9432 medium 400 Child (0-7 
years) 

Chlorpyrifos 290.7 

Enter the 
common 
name for 
the site 

Enter 
latitude in 
decimal 
degrees 
(from -90 to 
90) 

Enter longitude 
in decimal 
degrees (from -
180 to 180) 

Pull down 
menu. 
Select the 
population 
of children 
or adults 
exposed to 
soil with this 
concentratio
n daily 
(small, 
medium, 
large, very 
large). Refer 
to the 
population 
guidance for 
assistance. 

Enter the 
central 
tendency 
available for 
analysis. 
Mean 
preferred. 

Pull down 
menu.  
Select the 
appropriate 
age group. 

Pull down 
menu. Select 
the chemical 
for which 
analysis 
information is 
available.   

Populates automatically 
following USEPA 
Integrated 
Environmental Uptake 
Biokinetic Model 
guidance. 

 

Dust Worksheet 
Sirte name 
 

Population Concentration 
(mg/kg) 

Concentratio
n (mg/kg) 

Adult or Child Chemical Estimated Soil 
Concentration (mg/kg) 

Smith town medium 400 400 Child (0-7 years) Chlorpyrifos 560.7285714 

Enter the 
common 
name for 
the site 

Pull down menu. Select 
the population of 
children or adults 
exposed to soil with this 
concentration daily 
(small, medium, large, 
very large). Refer to the 
population guidance 
for assistance. 

Enter the 
central 
tendency 
available for 
analysis. Mean 
preferred.   

Enter the 
central 
tendency 
available for 
analysis. 
Mean 
preferred.   

Pull down 
menu. Select 
the chemical for 
which analysis 
information is 
available.   

Pull down 
menu. Select 
the chemical for 
which analysis 
information is 
available.   

Populates automatically 
following USEPA 
Integrated 
Environmental Uptake 
Biokinetic model 
guidance. 

 

Water Worksheet 
Water Volume 

ingested daily 
(liters) 

Population Adult or Child Concentration (ppb) 

Smith 
town 

0.125 large Child (0-7 years) 70 

Enter the 
common 
name for 
the site 

Enter the 
amount of the 
relevant food 
ingested daily 
by the 

Pull down menu. Select the 
population of children or 
adults exposed to soil with 
this concentration daily 
(small, medium, large, very 

Pull down menu. 
Select the chemical 
for which analysis 
information is 
available.   

Enter the central tendency 
available for analysis. Mean 
preferred.  
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population 
(adults or 
children). 

large). Refer to the 
population guidance for 
assistance.   

ESTIMATION OF HEALTH OUTCOMES 

Lead 

Introduction and underlying assumptions 

The biokinetics of lead are relatively well understood. In the present model, USEPA tools (i.e. IEUBK and 

ALM) are used to approximate biological concentrations of lead (blood lead level; BLL) based on 

environmental sampling data. 6  These results are in turn used to estimate adverse health outcomes 

associated with elevated BLLs. Specifically, the calculator approximates attributable IQ decrement in 

children and cardiovascular disease in adults. IQ decrement calculations follow Budtz-Jørgensen, et. al 

(2013).7 Cardiovascular disease calculations follow Fewtrell (2003). The specific steps in the method are 

given below.  

 

Method 

Determining Blood Lead Levels from Soil and Dust Concentrations 

For children, the USEPA Integrated Environmental Uptake Biokinetic (IEUBK) model is used to estimate 

blood lead levels (BLLs) associated with soil and dust lead concentrations ranging from 0–10,000 mg/kg.8 

Users input data on soil or dust lead concentrations (in the Soil or Dust Worksheet) from available sources 

as well as an estimated size of the exposed population.  

 

The accompanying Excel calculator allows users to enter either values for soil or dust lead concentrations.  

Where dust concentrations are entered into the Soil and Dust Worksheet, they are converted to soil lead 

concentrations using IEUBK guidance.9 The soil lead value is then used in subsequent equations based on 

the IEUBK model. 

 

BLLs are calculated for each one-year interval of age for children age 0–7 years. The average of these values 

is then taken and used for subsequent calculations. The following assumptions are made while using the 

IEUBK:  

• Soil values are rounded to the closest 100 mg/kg increment;  

• All other exposure sources are zeroed out in the IEUBK;  

• The upper bound intake of 135 mg/ day is used for all age groups. 

 
6 OSRTI US EPA, OSWER, ‘Lead at Superfund Sites: Software and Users’ Manuals’ <https://www.epa.gov/superfund/lead-superfund-sites-
software-and-users-manuals> accessed 13 August 2016. 
7 Esben Budtz-Jørgensen and others, ‘An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in 
Children’ (2013) 33 Risk Analysis 450. 
8 US EPA, OSWER (n 6). 
9 OSWER, ‘Guidance Manual for the IEUBK Model for Lead in Children’ (1994) <https://semspub.epa.gov/work/HQ/176284.pdf> accessed 1 
January 2018. 
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For adults and foetuses, the USEPA Adult Lead Methodology (ALM) is used to calculate blood lead levels 

associated with soil concentrations from 0–10,000 mg/kg. 10 As above for children users input data on soil 

or dust lead concentrations (in the Soil or Dust Worksheet) from available sources as well as an estimated 

size of the exposed population. 

 

As above, the accompanying Excel calculator allows users to enter either values for soil or dust lead 

concentrations which are then converted to soil lead concentrations using IEUBK guidance.11 Also as above, 

the soil lead value is then used in subsequent equations based on the ALM model. 

 

Dietary Ingestion 

Blood lead levels attributable to diet are calculated for adults and foetuses following the Adult Lead 

Methodology in increments of 5 μg/ day. Children’s dietary ingestion were calculated using the IEUBK in 5 

μg/ day increments and averaged for age 0–7 years as above for soil. 

 

Converting Blood Lead Level to Burden of Disease 

 
Figure 1. Simple flow chart of steps in the model to calculate the burden of disease in children 

attributable to soil, dust or dietary lead exposure.  

 

For children, IQ decrement is calculated first, then attributable DALYs are calculated for intellectual 

disability only. IQ decrement is calculated for each BLL increase using values from Budtz-Jorgensen et al.12 

which assumes a log-linear distribution of IQ decrement (proportionally more IQ points are lost at lower 

BLLs). The resulting IQ points lost are multiplied by the exposed population (entered in the Soil or Dust 

Worksheet) and summed to arrive at the total IQ points lost. 

 

To determine the DALYs associated with IQ decrement, the attributable increase in intellectually disabled 

children is calculated and multiplied by a given disability weight. Specifically, the increased proportion of 

children with borderline, mild, moderate, severe, and profound intellectual disability is determined. These 

groups are associated with the following IQ intervals: 70–89, 50–69, 35–49, 20–34, and < 20, respectively. 

These IQ intervals are in turn associated with the following IHME disability weights:  0.0034, 0.127, 0.293. 

0.383, and 0.444, respectively.  

 

Thus to determine the increased proportion of children in a given group, a normal distribution of IQ with a 

mean of 100 and an SD of 15 is assumed. The influence of population-wide shifts in IQ are then modelled 

for IQ losses ranging from ~1 to ~9 points. The increased proportion of children in each interval is 

 
10 US EPA, OSWER (n 6). 
11 OSWER (n 9). 
12 (2013) 

Soil or dietary 
concentration 

(mg/kg or 
mg/day)

BLL (µg/dL)

(IEUBK) 

IQ decrement

Budtz-
Jorgensen 

(2013)

Intellectual 
Disability 
Incidence

Fewtrell (2003)

DALYs

IHME disability 
Weights
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determined as a percent and multiplied by the exposed population and appropriate disability weight. 

Additional adjustments are made following WHO guidance on regional adjustment ratios.13 

 

By way of example, in a given population approximately 2.8 % of children have an IQ below 70. If population-

wide IQ is lowered by 5 points due to lead-exposure, this value increases to 4.8 %. In the model this 2 % 

increase is captured at the lead-attributable disease burden.  

 

 

 

Figure 2. Simple flow chart of steps in the model to calculate the burden of disease in adults attributable 

to soil and dust lead exposure.  

 

For adults, a log-linear distribution of BLLs is assumed. The mean BLL calculated from the ALM and the 

standard deviation of 1.6 are used.14 The distribution of BLLs within the following intervals is calculated: 5–

10, 10–15, 15–20, >20 µg/dL. The percentage increase in each interval is then multiplied by its respective 

relative risk (Following Fewtrell, 2003) for four types of cardiovascular disease: ischaemic, hypertensive, 

cerebrovascular and other.15 No sex disaggregation is conducted. Relative risk is averaged across sexes, 

resulting in an underestimate of cardiovascular disease. This value is then used in the following Equation 1 

from Fewtrell et al. (2003) to calculate attributable fraction:  

𝐴𝐹 =  
∑ 𝑃𝑖𝑅𝑅𝑖 − 1

∑ 𝑃𝑖𝑅𝑅𝑖
 

  (1) 

Where:  

AF=Attributable fraction  

Pi=proportion of the population at exposure interval i  

RRi=relative risk at exposure interval i, compared to the reference level.  

 

The resulting attributable fraction for each type of cardiovascular disease is then multiplied by the total 

DALYs and deaths calculated by IHME for that type of cardiovascular disease in 2017. Where IHME does not 

calculate DALYs for a given cardiovascular disease, the attributable fractions are summed and multiplied by 

the DALYS for the category ‘other cardiovascular diseases. 

 

 
13 Lorna Fewtrell, Rachel Kaufmann and Annette Prüss-Üstün, Lead: Assessing the Environmental Burden of Disease at National and Local Levels 
(World Health Organization 2003) <http://www.who.int/quantifying_ehimpacts/publications/en/leadebd2.pdf?ua=1> accessed 10 October 2016. 
14 SD of 1.6 taken from IEUBK 
15 Fewtrell, Kaufmann and Prüss-Üstün (n 13). 

Soil concentration 
(mg/kg)

BLL (µg/dL)

(ALM) 

Cardiovascular 
Disease Attributable 

Fraction

Fewtrell (2003)

DALYs and Deaths

IHME
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The attributable fraction of DALYs and deaths for each type of cardiovascular disease is then multiplied by 

the population entered in the Soil and Dust Worksheet to calculate total attributable DALYs and deaths for 

a given cardiovascular disease. All DALYs from all three types of cardiovascular disease (ischaemic, 

hypertensive, and other) are then summed to calculate total attributable DALYs.’ 

 

Organophosphate Pesticides 

Introduction and underlying assumptions 

 
Figure 3. Simple flow chart of steps in the model to calculate the burden of disease attributable pesticides 

exposure 

 

The model calculates IQ decrement in children and attributable Disability Adjusted Life Years (DALYs). The 

literature on organophosphate (OP) pesticides exposure and IQ decrement is less robust than that for lead 

and mercury. Bouchard, et. al (2011) and Engel, et al (2011) evaluated urinary metabolites of dialkyl 

phosphate (DAP) in pregnant women living in agricultural areas.16 The researchers found decrements of 

1.39 (Bouchard) and 5.6 (Engel) IQ points in children of prenatally exposed women associated with a 10-

fold increase in DAP. Bellinger 2012 pooled and employed a sample-weighted 4.25 IQ point decrement 

associated with a 10-fold increase in DAP to determine the number of IQ points lost in children due to 

pesticides exposure in the US.17 He accomplished this by calculating a slope of -0.01 IQ points/nmol/L DAP 

in urine for concentrations > 50 nmol/L DAP. Put differently, Bellinger (2012) assumed every one nmol/L 

increase (above 50 nmol/L) in DAP metabolites in urine would result in a 0.01 decrease in IQ. He then 

applied that slope to data from the US National Health and Nutrition Examination Survey (NHANES) (1994–

2004) to calculate the total IQ points lost for the population.  

 

Urinary concentrations of pesticide metabolites can be used to calculate dose by correcting for creatinine 

and determining the concentration of the metabolite’s parent chemical in the pesticide.18 Fenske (2000) 

measured the presence of the DAP metabolites dimethyl thiophosphate and dimethyl dithiophosphate and 

estimated daily OP pesticides exposure levels for children of farmworkers as well as a control group.19 The 

study found daily doses of 0–72 µg/kg/day and seasonal doses of 0–36 µg/kg/day. These values are 

 
16 Maryse F Bouchard and others, ‘Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children’ [2011] Environmental Health 
Perspectives; Stephanie M Engel and others, ‘Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood’ 
(2011) 119 Environmental Health Perspectives 1182. 
17 David C Bellinger, ‘A Strategy for Comparing the Contributions of Environmental Chemicals and Other Risk Factors to Neurodevelopment of 
Children’ (2012) 120 Environmental Health Perspectives 501. 
18 Richard A Fenske and others, ‘Biologically Based Pesticide Dose Estimates for Children in an Agricultural Community’ [2000] Environmental 
Health Perspectives; David T Mage and others, ‘Estimating Pesticide Dose from Urinary Pesticide Concentration Data by Creatinine Correction in 
the Third National Health and Nutrition Examination Survey (NHANES-III)’ 457. 
19 Fenske and others (n 18). 
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significantly higher than doses in the general population. Mage, et al (2004) for instance calculated a median 

exposure to chlorpyrifos of 0.134 µg/kg/day for the US based on NHANES data and a maximum exposure 

of 4.38 µg/kg/day.20   

 

Different pesticides have different metabolites, and few have been evaluated for their relationship with IQ. 

Bouchard, et al. (2001) note that the most commonly used pesticides in their study area were chlorpyrifos, 

diazinon, malathion and oxydemeton-methyl, though did not endeavour to determine the individual effect 

of each on IQ.  

Method 

The present model calculates IQ decrement attributable to exposure to a range of OP pesticides. However 

the impact of most pesticides on IQ remains poorly characterized. In the absence of pesticide-specific dose 

response information, the calculator assumes a uniform impact of all OP pesticides on brain development. 

The values from the commonly used pesticide dimethoate are used in all cases.  

 

Dimethoate has a molecular mass of 229.26 g/mol. Estimates of absorption rates for ingested dimethoate 

range from 60–90 %.21 The calculator assumes that a) 75% of dimethoate is absorbed, that b) all absorbed 

dimethoate is excreted from the body as the metabolite DAP, and that c) all ingested dimethoate is excreted 

from the body within 24 hours of ingestion. Thus to determine the daily urinary excretion rate of DAP, the 

following equation (2) derived from Rigas et al., 200122 is used:  

 

𝑈𝐸𝑅𝑚𝑔 = (1 ∗ (0.75 ∗  𝐼𝑚𝑔)) 

   (2) 

Where:  

UERmg = urinary excretion rate (mg/day) 

Img = ingestion (mg/day) 

 

 

The resulting urinary excretion rate (mg/day) is converted to nmols/day using the molecular mass of 

dimethoate in Equations 3 and 4, thus: 

 

𝑈𝐸𝑅𝑛𝑚𝑜𝑙 =  
𝑈𝐸𝑅𝑚𝑔 ∗  0.001

229.26
∗  1𝑒9  

(3) 

Where:  

UERnmol = urinary excretion rate (nmol/day) 

 

 
20 Mage and others (n 18). 
21 National Center for Biotechnology Information, ‘Dimethoate, CID=3082’ (PubChem Database, 2019). 
22 Marc L Rigas, Miles S Okino and James J Quackenboss, ‘Use of a Pharmacokinetic Model to Assess Chlorpyrifos Exposure and Dose in Children, 
Based on Urinary Biomarker Measurements’ (2001). 
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𝐶 =  
𝑈𝐸𝑅𝑛𝑚𝑜𝑙

2
 

(4) 

Where:  

C = concentration DAP in urine (nmol/L) 

 

The concentration of DAP in urine above 50 nmol/L is then multiplied by -0.01 following Bellinger (2012) to 

estimate IQ points lost for an individual. Bouchard, et al. (2011) found a relationship between urine 

concentrations of pregnant women and the IQ decrement in their children (age 7 years). Thus the algorithm 

utilizes modelled adult urinary concentrations and applies the resulting IQ decrement to all children age 0–

7 in the population. The inclusion of all children 0–7 years effectively presupposes that the same level of 

exposure has occurred over the previous 7 years. Once IQ decrement is determined, DALYs are calculated 

as above for lead. 

 

 

Mercury 

Introduction underlying assumptions and method 

Methyl mercury exposure is associated with IQ decrement in children.23 In the calculator IQ decrement is 

calculated based on dietary concentrations of methyl mercury following Spadaro and Rabl (2008).24 The 

study includes a comprehensive model that calculates IQ decrement from dietary exposure to methyl 

mercury. This is distinct from methods presented above where different models are linked together to 

develop a functional dose (mg/kg)–response (IQ decrement) model. The underlying equation is as follows:  

 

𝐼𝑄 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 0.036 𝑥 𝐼 

(5) 

Where:  

I = ingestion (µg/day) 

 

 

Dietary calculations are calculated by the user utilizing environmental sampling data. Soil and dust 

concentrations are calculated as above for lead. After IQ decrement is calculated, DALYs are calculated as 

above for lead and OP. 

(5) 

 
23 Daniel A Axelrad and others, ‘Dose-Response Relationship of Prenatal Mercury Exposure and IQ: An Integrative Analysis of Epidemiologic Data’ 
(2007) 115 Environmental Health Perspectives 609. 
24 Joseph V. Spadaro and Ari Rabl, ‘Global Health Impacts and Costs Due to Mercury Emissions’ (2008) 28 Risk Analysis 603 
<http://doi.wiley.com/10.1111/j.1539-6924.2008.01041.x> accessed 16 August 2019. 
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Carcinogens (including organochlorine pesticides)  

Introduction and underlying assumptions 

The USEPA maintains a database of slope factors for the increased risk associated with exposure to 

carcinogens in the form of the Integrated Risk Information System (IRIS). 25  The linear slope factors 

contained in IRIS are based largely on animal studies and calculate increased cancer risk for different 

exposure routes. Oral (mg/kg/day), water (µg/L), and air (µg/m3) concentrations are considered for most 

chemicals. In the present effort, only oral (i.e. ingestion) concentrations are used. Increased risk is taken to 

be analogous with increased incidence. While the calculator focuses on organochlorine pesticides, multiple 

non-pesticide carcinogens can also be assessed.   

 

The Institute for Health Metrics and Evaluation (IHME) calculates different disability weights for multiple 

adverse health outcomes to capture the perceived severity of each. In the case of cancers, each cancer site 

is given a different disability weight, as are different phases of the cancer (i.e., diagnosis, metastasis). For 

each cancer, disability weights for the ‘diagnosis’ phase range from 0.1 to 0.5; for ‘metastasis’ they are all 

set at the same value of 0.451. In the present effort all cancers are given the uniform disability weights of 

0.2 for diagnosis and 0.451 for metastasis. Cancers are assumed to endure 5 years, with 3 years being in 

the diagnosis phase and 2 years being in the metastasis phase. The 5-year survival rate for all cancers is 

assumed to be 50 %. In practice survival rates for different cancers vary widely but are generally below 20 

% in Africa.26 Thus the use of 50 % is intended to be conservative, meaning the overall number of deaths is 

likely underestimated.  

Method 

First the environmental concentration of a given carcinogen is entered in mg/kg in the Dietary and Soil or 

Dust Worksheet. The concentration is taken from environmental sampling data. The ingestion rate is 

calculated by the user for the dietary spread sheet. For soil and dust, this calculation is automated as above 

for lead. 

𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐷𝑜𝑠𝑒 =
𝐶 ∗  𝐼𝑅 ∗  𝐸𝐹

𝐵𝑊
  

(6) 

Where:  

C = concentration (mg/kg) 

IR = ingestion rate (mg/kg/day) 

EF = exposure factor (set to 1 assuming complete absorption) 

BW = body weight (kg) 

 

Once the ingestion exposure dose is calculated, increase cancer risk is calculated as follows: 

 

 
25 US EPA, ‘Integrated Risk Information System’ (2016) <https://www.epa.gov/iris> accessed 26 September 2016. 
26 R Sankaranarayanan and others, ‘An Overview of Cancer Survival in Africa, Asia, the Caribbean and Central America: The Case for Investment in 
Cancer Health Services.’ [2011] IARC scientific publications 257. 
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𝐶𝑎𝑛𝑐𝑒𝑟 𝑅𝑖𝑠𝑘 =
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑑𝑜𝑠𝑒 ∗  𝑠𝑙𝑜𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗  𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

70 𝑦𝑒𝑎𝑟𝑠 (𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒)
  

(6) 

 

Lifetime cancer risk is then divided by 11 to determine the likelihood of a case of cancer occurring within 

the 5-year duration evaluated by the calculation, assuming a life expectancy of 70 years and an equal chance 

of cancer occurring from age 15 to 70 years. The disability weights for diagnosis, metastasis and mortality 

are applied to the number of cancer cases. As noted above, the diagnosis phase is assumed to be 3 years 

with a disability weight of 0.2 and the metastasis phase is assumed to be 2 years with a disability weight of 

0.451. Also as noted above, death is expected to occur in 50 % of all cases within 5 years and have a disability 

of 1.  

 

Determining the size of the exposed population and frequency of exposure 

The model utilizes environmental sampling data to approximate the level of exposure (i.e. dose) of a given 

chemical to an individual. In all cases – with the exception of dietary sources – the frequency of exposure 

is set to daily. In the case of dietary exposures, the user must determine how frequently receptors (i.e. 

humans) ingest the contaminated food. Three options are provided: daily, 2-3 times per week, and 1-2 time 

per week. Once the exposure is quantifier, the appropriate dose response relationship is then applied to 

estimate the attributable disease burden for an individual. Population wide impacts are simply the product 

of the individual disease burden multiplied by the population. Thus a key challenge for the individual user 

of the model is to identify the number of people potentially exposed at the specified dose.  

 

For example if the user enters a certain organophosphate pesticide sampling result for a given food 

available at a market – say dimethoate on spinach in a market in Dar es Salaam – he or she must determine 

the number of people eating that particular spinach and the quantity they are consuming at the level of 

frequency specified.  Likewise, if the user enters a certain soil lead concentration for a residential area, the 

user must enter the number of people likely to be exposed to that soil on a daily basis.  

 

This parameter introduces a large amount of uncertainty to the model. Early testing found that individual 

users’ estimates varied widely from those of other uses for similar exposure scenarios. In some cases, entire 

national populations were entered as the exposed population. This resulted in a both over- (and in some 

cases under-) estimations of the disease burden that undermined the integrity and usefulness of the model. 

Recognizing these challenges, the available inputs for this parameter have been restricted. Users are now 

asked to select from a simple list of exposed populations defined as small, medium, large. The text below 

provides guidance on these options:  

 

• Small. This selection uses a default value of 100 people exposed. Small groups could be those living 

near contaminated playgrounds, confined worker exposures in smaller settings, or remote lakes 

where fish are consumed only by local populations. 
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• Medium. This selection uses a default value of 1,000 people exposed. Medium groups might be 

entire neighbourhoods or sections of an informal settlement where hazardous chemicals are being 

handled, larger occupational settings, or markets in medium-sized towns selling vegetables with 

high levels of pesticides.  

• Large. This selection uses a default value of 10,000 people exposed. Large groups might be 

individuals residing in an industrial neighbourhood or around a large open dumpsite. People 

consuming spinach purchased at a large city market where multiple samples have shown elevated 

levels of a given pesticide might also be in this category.  

• Very Large. This selection uses a default value of 100,000 people exposed and should rarely be 

selected. Very large groups might represent a regional population consuming mercury-

contaminated fish or cities built around mining-smelting complexes.  

ESTIMATION OF COSTS OF INACTION 

Introduction and underlying assumptions – valuation of YLDs and deaths 

The economic costs of adverse health outcomes calculated below reflect the loss in output during the year 

in which people are ill, measured by YLDs, and the loss in the present value of output when people die 

prematurely. 

 

The value of a YLD is calculated as the average value of output per worker in the country, multiplied by the 

probability that a person is working. We refer to this as the expected value of market output. If the 

probability of working varies by age, the expected value of market output will vary by age. Average output 

per worker—which is assumed the same for workers of all ages—is calculated by multiplying a country’s 

GDP by labour’s share of GDP and dividing by the number of workers employed.   

 

This value could be modified to allow for the value of non-market output by adding the average value of 

non-market output (multiplied by the probability that a person is not working) to market output. The 

average value of non-market output has been estimated for several countries (see Appendix), and is usually 

expressed as a fraction (e.g. 0.3) of average output per worker, based on GDP. The expected value of market 

plus non-market output is multiplied by the number of YLDs to calculate the cost of morbidity, measured 

in terms of lost output. 

 

If a person dies prematurely due to pollution, their market and non-market output is lost for the remainder 

of their life. To illustrate, if a person dies at age 20 the output lost by his or her death is the present 

discounted value of what he or she would have produced over the remainder of his or her working life. 

Output at each age is weighted by the probability that a 20-year-old survives to each future age, times the 

probability that he or she is working at that age. This flow of output is discounted to the present at an 

appropriate rate of interest (r). In the calculations presented below, average output per worker in the 

current year is calculated as above (for YLD), but is assumed to grow at a rate (g) that reflects the projected 
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growth in future labour productivity (For details, see the Appendix). Average worker output can, as above, 

be modified to include expected non-market output. 

 

To provide an illustration of the magnitude of output losses associated with a YLD, as well as the present 

value of output lost due to premature mortality, Tables 1-3 show the expected loss in output (both market 

and non-market), by age, for 2019, as well as the present value of the loss in output, beginning at the same 

ages, for the project countries. All values are expressed in 2019 USD. They can be converted to international 

(PPP) dollars by multiplying by an appropriate factor.  

 

The values for a YLD reflect GDP and employment in 2019, as well as estimates of labour’s share of GDP for 

2019.27 Labour force participation rates, by age, are from the International Labour Organisation.28 In all 

cases, the non-market output produced by an adult who is not working is assumed to equal 0.3 times the 

average output per worker. 

 

The present value of lost output is calculated using survival rates estimated using current life tables for each 

country and the same labour force participation rates, by age, used to calculate the expected loss in output 

associated with a YLD.29 The effective annual rate at which future output is discounted (see Appendix) 

equals (1+g), where g is the rate of growth average output per worker, divided by (1+r), where r is the social 

discount rate. Following the Lancet Commission Report on Pollution and Health, we present the present 

value of future output using two assumptions about (1+g)/(1+r).  In Table 2 we assume that (1+g)/(1+r) = 

1/(1.015). In Table 3 we assume that (1+g)/(1+r) = 1/(1.03).30      

 

Introduction and underlying assumptions – IQ approach 

Estimates of the present value of output lost due to premature death can also be used to estimate the 

value of a loss in IQ points once the link between IQ and lifetime earnings (output) has been established. 

If x represents the fraction of lifetime earnings (output) lost due to the loss of one IQ point, then the 

monetary value of this loss equals the present value of lifetime earnings (output) multiplied by x. To 

illustrate, if exposure to pollution at age 5 reduces IQ and, subsequently, lifetime earnings, by 2%, the 

value of this could be estimated by multiplying the present value of lifetime earnings in Table 2 

discounted to age 5 by 0.02. To illustrate, in Kenya this would be 0.02 x USD 63,255 or, in PPP terms, 0.02 

x USD 63,255 x 2.08 International Dollars. 

 

 

 

 
27 Robert C Feenstra and Marcel P Inklaar, Robert C., Robert Timmer, ‘The Next Generation of the Penn World Table’ (2015) 105 American 
Economic Review 4 <https://www.rug.nl/ggdc/productivity/pwt/?lang=en> accessed 14 November 2021; ILO, ‘ILO Data Explorer’ 
<https://ilostat.ilo.org/data/> accessed 13 November 2021. 
28 ILO (n 27). 
29 WHO, ‘GHO | By Category | Life Tables’ WHO. 
30 Philip J Landrigan and others, ‘The Lancet Commission on Pollution and Health’ [2017] The Lancet 
<http://linkinghub.elsevier.com/retrieve/pii/S0140673617323450> accessed 22 October 2017. 
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Tables for estimation of costs of inaction 

Table 1. Values per YLD in 2019 USD  
Ethiopia Gabon Kenya Madagascar Mali Senegal Tanzania Zambia Zimbabwe 

< 1  0 0 0 0 0 0 0 0 0 

1-4 0 0 0 0 0 0 0 0 0 

5-10 0 0 0 0 0 0 0 0 0 

10-15 0 0 0 0 0 0 0 0 0 

15-19 691 4,911 2,099 393 920 2,037 1,004 941 981 

20-24 795 5,648 2,414 451 1,058 2,342 1,155 1,082 1,128 

25-29 824 5,851 2,500 468 1,096 2,427 1,196 1,121 1,169 

30-34 835 5,931 2,535 474 1,111 2,460 1,213 1,137 1,185 

35-39 859 6,102 2,608 488 1,143 2,531 1,247 1,169 1,219 

40-44 847 6,017 2,572 481 1,127 2,496 1,230 1,153 1,202 

45-49 850 6,034 2,579 482 1,130 2,503 1,234 1,156 1,206 

50-54 849 6,032 2,578 482 1,130 2,502 1,233 1,156 1,205 

55-59 837 5,945 2,541 475 1,114 2,466 1,215 1,139 1,188 

60-64 817 5,802 2,479 464 1,087 2,406 1,186 1,112 1,159 

65+ 692 4,912 2,099 393 920 2,037 1,004 941 981 

 

Note:  These calculations are based on the Appendix. All figures reflect labour force participation rates from 

the International Labour Organization and assume that non-market output equals 35% of each country’s 

GDP. All figures are in 2019 USD. 
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Table 2. Present Discounted Value of Lifetime Output per person in 2019 USD, Low Discount Rate  
Ethiopia Gabon Kenya Madagascar Mali Senegal Tanzania Zambia Zimbabwe 

< 1  22,040 137,897 58,682 10,712 25,083 63,507 30,175 22,675 20,967 

1-4 23,220 144,421 61,583 11,278 27,106 66,661 31,780 24,064 22,211 

5-10 23,917 148,331 63,255 11,614 28,536 68,532 32,746 24,924 22,931 

10-15 24,416 151,357 64,547 11,918 29,371 69,961 33,504 25,475 23,396 

15-19 24,907 154,680 65,816 12,189 30,068 71,338 34,125 25,966 23,906 

20-24 23,431 145,611 62,020 11,478 28,337 67,112 32,123 24,503 22,585 

25-29 21,613 134,546 57,347 10,613 26,211 61,956 29,672 22,722 20,984 

30-34 19,649 122,587 52,324 9,678 23,921 56,370 27,039 20,804 19,249 

35-39 17,587 110,141 47,134 8,696 21,516 50,501 24,290 18,829 17,469 

40-44 15,391 96,986 41,691 7,649 18,941 44,226 21,359 16,749 15,620 

45-49 13,173 83,761 36,219 6,596 16,317 37,885 18,386 14,666 13,809 

50-54 10,859 69,949 30,434 5,492 13,550 31,251 15,253 12,440 11,876 

55-59 8,427 55,242 24,113 4,330 10,620 24,307 11,925 10,006 9,739 

60-64 5,830 39,070 17,036 3,069 7,442 16,889 8,315 7,215 7,169 

65+ 2,970 20,429 8,850 1,617 3,862 8,673 4,275 3,848 3,909 

 

Note: These calculations are based on the Appendix, assuming that the discount rate (r) is 1.5 percentage 

points higher than the rate of growth in output per worker (g). All figures are in 2019 USD.  

 

 

Table 3. Present Discounted Value of Lifetime Output per person in 2019 USD, High Discount Rate 
 

Ethiopia Gabon Kenya Madagascar Mali Senegal Tanzania Zambia Zimbabwe 

< 1  18,909 117,607 50,149 9,184 22,073 54,284 25,880 19,597 18,088 

1-4 19,764 122,577 52,272 9,598 23,581 56,633 27,061 20,597 18,950 

5-10 20,475 126,925 54,128 9,994 24,630 58,668 28,096 21,363 19,620 

10-15 21,196 131,629 56,008 10,372 25,587 60,707 29,039 22,096 20,344 

15-19 20,234 125,743 53,557 9,912 24,470 57,955 27,740 21,159 19,503 

20-24 18,940 117,904 50,254 9,300 22,969 54,293 26,002 19,911 18,388 

25-29 17,473 109,012 46,530 8,606 21,272 50,127 24,045 18,501 17,117 

30-34 15,871 99,391 42,534 7,847 19,416 45,572 21,920 16,992 15,764 

35-39 14,094 88,814 38,178 7,005 17,346 40,500 19,559 15,338 14,304 

40-44 12,241 77,837 33,658 6,129 15,163 35,206 17,085 13,629 12,832 

45-49 10,240 65,963 28,699 5,179 12,778 29,470 14,383 11,731 11,199 

50-54 8,064 52,863 23,075 4,143 10,163 23,260 11,412 9,576 9,319 

55-59 5,661 37,941 16,543 2,980 7,227 16,400 8,075 7,006 6,962 
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60-64 2,927 20,132 8,721 1,594 3,806 8,547 4,213 3,792 3,852 

65+ 18,909 117,607 50,149 9,184 22,073 54,284 25,880 19,597 18,088 

 

Note: These calculations are based on the Appendix, assuming that the discount rate (r) is 3 percentage 

points higher than the rate of growth in output per worker (g). All figures are in 2019 USD.  

 

Method 

The underlying method for the economic valuations is attached as an Annex. Certain assumptions are worth 

outlining here. YLD values are calculated for the population as whole using labour participation rates for all 

5-year age groups age 1–64 and are not discounted. Results of YLD calculations represent lost productivity 

for a single year.  

 

Productivity losses attributable to IQ decrement are calculated as 2 % of present value discounted lifetime 

earnings for a 5 year old. The higher of the two discount rates given above is used.  

 

ANNEXES  
Annex 1: Primer on Costs of Inaction  

Annex 2: Summary of underlying assumptions 

Annex 3: Manganese supplement 
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1.  Introduction 

To support the African ChemObs project (the Integrated Health and Environment 

Observatories and Legal and Institutional Strengthening for the Sound Management 

of Chemicals in Africa), we provide a critical review of methodologies for valuing the 

health damages from policy inaction associated with chemical exposures. In 

particular, we discuss how disability-adjusted life years (DALYs) and IQ loss should 

be valued. We conclude by providing advice on communicating the costs of inaction 

and the benefits and costs of action to policymakers. 

By the social costs of inaction, we mean the private or market costs, as well as the 

external costs, from pollution exposures compared with no exposure. Knowledge of 

these damages can then lead to policies designed to force investment and operating 

decisions in the market to account for (internalize) such costs/damages. The costs 

of inaction can be distinguished from the benefits and costs of action. The benefits 

of action are the value of, for example, the health improvements from regulations or 

other forms of action. These actions usually come with a cost of resources to bring 

about such actions. The net benefits to society of an action are the benefits minus 

the costs of action. In general, as regulations of chemicals rarely eliminate all 

exposures, the costs of inaction generally exceed (in absolute terms) the benefits of 

action. 
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2.  Approach 

The material in this report is based on a review of the available conceptual and 

empirical literature on social cost estimation—in the context of health—to identify 

the strengths and weaknesses of the various methods used to estimate these costs. 

Advice on how to communicate results draws from a different literature on 

communicating costs and benefits to policymakers—in the United States, in other 

developed countries, and in developing countries—as well as our own experience 

and the experiences of ChemObs team members. We considered use of this report 

by project developers, planners, research analysts, and government policymakers. 
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3.  Health Valuation 

3.1.  Overview of Approaches 

The standard approach to estimating the health effects of environmental pollution is 
the damage function approach. Epidemiologists estimate the association between 
pollution and premature mortality, morbidity, or other health effects, such as the 

impact of pollution on cognitive development or functioning. These impacts may, in 
turn, be valued using either the cost-of-illness or willingness-to-pay approach.  

The cost-of-illness (COI) approach to health valuation measures the direct medical 
expenditures associated with disability or illness, including hospital, physician, and 
medication costs, as well as long-term rehabilitation costs. The indirect costs of 

illness include time lost from work due to illness and the value of caregivers’ time 
(Landrigan et al. 2018). It also includes losses in productivity over an individual’s 

lifetime due to chronic medical conditions or a loss in cognitive function. When 
properly measured, these costs include out-of-pocket costs borne by affected 

individuals, as well as costs reimbursed by insurance or paid for by the government. 
When a person dies prematurely due to pollution, the COI approach measures this 

loss in human capital by the individual’s lost output. For workers, this output is their 
earnings over the remainder of their working life. For people not in the workforce, 
there are approaches to measuring their “earnings,” such as using market wages for 

providing services in the home (e.g., child-rearing services).  

The COI approach does not capture the discomfort caused by illness, including the 

physical burden borne by people who do not receive treatment for their condition. 
The COI approach also fails to capture the anxiety and loss in enjoyment that a 

person facing death risks suffers, as well as losses by family members related to 
these risks are after his death.  

The willingness-to-pay (WTP) approach is the theoretically correct approach to 
measure preferences of people to avoid being ill or dying prematurely. There are 
revealed preference approaches to capture these preferences through statistical 

analyses of individual behavior (such as by estimating the wage premium paid to 
workers in more risky jobs) and stated preference approaches, which use survey 

techniques to elicit and monetize preferences for improved health by posing 
hypothetical questions (Cropper et al. 2011). These approaches can, in principle, 

capture the pain, suffering, and loss of enjoyment that the COI approach cannot 
capture. An individual’s WTP is, however, necessarily limited by income. Taking the 

distribution of income as a given is consistent with measuring the benefits to society 
of improving health (under modern welfare economics), but this caveat is important 

for understanding the context of such metrics. The WTP approach also may fail to 
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capture costs that a person does not pay for, such as the cost of treatment in a 
government clinic.  

3.2.  Valuing Mortality 

Epidemiological studies often link pollution exposures to mortality rates; for 

example, they may estimate how risk of death, by age and cause, is increased by 

exposure to ambient air pollution (PM2.5), relative to some minimum level of exposure 

(GBD 2017 Risk Factor Collaborators 2018). The damages attributable to the current 

level of air pollution in a city (i.e., the costs of inaction) can be expressed as the 

number of deaths, by age and cause, attributable to current air pollution levels. 

These deaths can be expressed as death rates, such as 10 in 10,000 people in a city. 

The WTP approach asks how much people would pay to reduce their risk of death 

from this baseline. 

The WTP approach estimates what a person would pay for a reduction in risk of 

death—for example, for a reduction in risk of death from 10 in 10,000 to 9 in 10,000. 

It sums these WTPs across individuals to determine what 10,000 people would pay 

for risk reductions that sum to one “statistical life.” This sum, termed the value of a 

statistical life (VSL), is multiplied by the number of statistical lives associated with 

air pollution to determine the cost of premature mortality associated with, for 

example, current PM2.5 levels using the WTP approach. To illustrate, if each person in 

the city were willing to pay $25 to reduce the risk of death from 10 in 10,000 to 9 in 

10,000, 10,000 people together would pay $250,000 for risk reductions that sum to 

one statistical life being saved. This implies a VSL of $250,000. 

The COI approach, in contrast, would value the statistical lives lost due to pollution 

by the loss in output associated with each death. This would, in general, vary with 

age at death and would be measured by the present value of future output lost when 

a person dies prematurely.  

3.2.1.  The WTP Approach 

In the mortality context, stated preference studies confront respondents with 

hypothetical situations asking them, for example, what they would pay for a 

medicine that would reduce the risk of death from 10 in 10,000 to 9 in 10,000 over 

the coming year. The revealed preference literature infers WTP from studies of wage 

differentials in the labor market that indicate how much workers must be paid to 

work in jobs carrying higher risks of death (Cropper et al. 2011).  
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Although dozens of WTP studies to value mortality risks have been conducted in 

Organisation for Economic Co-operation and Development (OECD) countries, fewer 

studies have been conducted in low- and middle-income countries (LMICs). While in-

country studies are preferred, the lack of such studies implies that it is often 

necessary to transfer VSL results from high- to low-income countries. The most 

prevalent approach is to adjust the VSL according to per capita income (Robinson, 

Hammitt, and O’Keeffe 2019; Narain and Sall 2016). The VSL used by the OECD, 

$3.83 million (2015 US$), is approximately 100 times per capita income. The official 

VSL of the US Environmental Protection Agency (EPA), $9.4 million (2015 US$), is 

approximately 160 times per capita income. The ratio of the VSL to income, divided 

by 100, represents the fraction of income that would be given up for a 1 in 10,000 

reduction in risk of death. EPA’s VSL implies that a 1 in 10,000 reduction in risk of 

death is worth 1.6 percent of income; the OECD value implies that it is worth 1 

percent of income (see Appendix B). Well-executed studies of the VSL in LMICs 

imply that the ratio of the VSL to per capita income falls as per capita income falls 

(Hammitt and Robinson 2011).  

A recent Gates Commission study, after reviewing the international VSL literature, 

suggests transferring EPA’s VSL to LMICs using an income elasticity of 1.5 

(Robinson et al. 2019; Robinson, Hammitt, and O’Keeffe 2019). Table 1 shows the 

ratio of the VSL to per capita income implied by this approach. It presents gross 

national income (GNI) per capita in international (purchasing power parity, or PPP) 

dollars, as well as the VSL in international (PPP) dollars. The ratio of the VSL to per 

capita income (Y) is 21 times per capita income for a country with a per capita GNI of 

$1,000 international dollars, 48 times per capita income for a country with per capita 

income of $5,000 international dollars, and 67 times per capita GNI for a country 

with per capita GNI of $10,000 international dollars. Note that once the VSL/Y ratio 

is determined, it can easily be used to solve for the VSL at market exchange rates, 

since the VSL/Y ratio is identical in PPP and market exchange rate (MER) terms. 

Applying this transfer implies a VSL/Y ratio of 43 for Ghana, 42 for Zambia, 39 for 

the Côte d’Ivoire, and 37 for Kenya. 

3.2.2.  The COI Approach (also called the human capital approach) 

The cost-of-illness approach uses forgone earnings, rather than the VSL, to measure 

the value of premature mortality. This is often referred to as the human capital 

approach, since an individual’s output (or income) is often used as a measure of the 

person’s human capital, or accumulated skills and knowledge. To illustrate, if a 

person dies at age 25, the output lost by his death is the present discounted value of 

what he would have earned (produced) over the remainder of his working life. 
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Earnings (output) at each age is weighted by the probability that a 25-year-old 

survives to each future age, times the probability that he is working at that age. This 

flow of output is discounted to the present at an appropriate rate of interest. (For 

details, see Appendix A.) 

One way to measure earnings at each age is to use results from a national survey 

that records labor earnings; however, such data may not be available for all 

countries. In the Lancet Commission report (Landrigan et al. 2018), earnings per 

worker were approximated by output per worker, calculated by multiplying labor’s 

share of gross domestic product (GDP) by GDP and then dividing by the number of 

workers employed. This number can also be adjusted to reflect the value of 

nonmarket output produced by labor, as described in Appendix A. 

The value of the human capital lost when a person dies clearly depends on age at 

death. Other things equal, the output lost when a 60-year-old dies is less than the 

output lost when a 25-year-old dies: the human capital measure of mortality varies 

with age at death. Does this also hold for the VSL? Whether WTP to reduce risk of 

death varies with age is an empirical question—it depends on the utility people 

receive from living longer, as well as their wealth. How the VSL varies empirically 

with age is not well established (Krupnick 2007). For this and other reasons, 

policymakers in the United States (and other countries) apply the same VSL to 

deaths of all ages.  

3.2.3.  International Examples 

The Global Burden of Disease program at the Institute for Health Metrics and 

Evaluation regularly publishes, by country, estimates of deaths associated with 

environmental risk factors, including outdoor air pollution, household air pollution, 

unsafe water and sanitation, and exposure to lead (GBD 2017 Risk Factor 

Collaborators 2018). The Lancet Commission report (Landrigan et al. 2018) valued 

the mortality burden associated with these pollution sources, by country, using both 

the human capital and VSL approaches to value damages. Table 2 shows the human 

capital losses as a percentage of GDP, aggregated by World Bank Income Group. 

Table 3 shows mortality losses, valued using the VSL, as a percentage of GNI, 

aggregated by World Bank Income Group.  

A comparison of Tables 2 and 3 highlights the difference between the two 

approaches. For low-income countries, aggregating across pollutants, human capital 

losses range from 1.33 to 1.9 percent of GDP, depending on the rate used to discount 

future earnings to the present. The corresponding figure for mortality losses valued 

using the VSL is 8.33 percent of GNI. Two factors explain the differences: human 
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capital losses last only over a person’s working life, whereas the same VSL is applied 

to premature deaths at all ages. Table 2 uses the International Labour Organization’s 

definition of working life as 15 to 64 years. A high percentage of deaths from 

environmental exposures occurs among persons over 65. The second factor is that 

because the VSL captures losses beyond productivity (i.e., earnings) losses, the VSL 

is a multiple of forgone earnings at all ages.  

3.3.  Valuing Morbidity 

The difficulty in valuing morbidity lies in finding epidemiological studies linking 

pollution to specific illnesses and then valuing the consequences of these illnesses 

using COI or WTP studies. This is made difficult by the large number of illnesses 

associated with pollution and, for a given illness, variation in the severity and 

duration of the illness relative to the small number of valuation studies available.  

One solution is to translate illness into years lived with disability (YLDs). Disability 

weights measure the level of disability associated with a particular disease (or 

condition), where a disability weight of 0 indicates no disability and a disability 

weight of 1 equals death (Salomon 2010). Equivalently, (1 – disability weight) 

indicates the fraction of a year in good health lost due to the disease. For example, a 

case of mild chronic obstructive pulmonary disease (COPD) might have a disability 

weight of 0.46; a severe case of COPD, a disability weight of 0.77. The Global Burden 

of Disease (GBD) estimates the YLDs, by age and gender, associated with 354 

diseases for 195 countries. The GBD also estimates the fraction of YLDs, by disease 

and country, associated with various environmental risk factors (GBD 2017 Risk 

Factor Collaborators 2018). 

One approach that has been taken to valuing YLDs is the human capital approach 

(see Appendix A). This assumes that the value of a YLD equals the average value of 

income (or output) per worker in the country, multiplied by the probability that a 

person is working. For example, the value of a YLD experienced by a 60-year-old 

would equal average labor income (output) multiplied by the probability that a 60-

year-old is working. This value could be modified to allow for the value of nonmarket 

output (see Appendix A). This approach assumes that disability weights reflect an 

inability to work or productivity lost while working. 

The human capital approach to valuing YLDs simplifies the valuation of illness but 

has limitations. It does not capture the medical expenditures (direct costs) 

associated with illness, nor does it capture pain and suffering. To estimate medical 

costs requires attributing medical costs to specific illnesses, and then attributing 
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these illnesses to pollution. The GBD study provides a link between YLDs and 

pollution but does not provide an estimate of medical costs by country and disease. 

Such estimates may be available for some countries based on survey or 

administrative data. For example, estimates are available for the United States (Dunn 

et al. 2015) and other OECD countries (OECD 2013). Estimates of hospitalization 

costs, by disease, are available for India (Kastor and Mohanty 2018) and may be 

available for other countries. 

3.3.1.  Valuing DALYs 

In describing the burden of ill health associated with pollution and other risk factors, 
YLDs are often added to years of life lost (YLLs) to calculate disability-adjusted life 

years (DALYs) lost. YLLs are measured by remaining life expectancy, based on life 
tables for the country in question. For example, a person who dies in India at age 25 
has a remaining life expectancy of 48 years; hence his death is associated with 48 

YLLs. To illustrate the calculation of DALYs, in India in 2017 the GBD estimates that 
5.4 million YLDs and 1.24 million deaths were associated with particulate air pollution 

(both ambient and household air pollution). The 1.24 million deaths resulted in 31 
million YLLs, implying that air pollution was associated with 36.4 million DALYs in 

India in 2017, about 8 percent of all DALYs (India State-Level Disease Burden 
Initiative Air Pollution Contributors 2018).  

How should DALYs be monetized? If a human capital approach is used to value 
premature mortality and also YLDs, then by adding the monetized value of YLDs to 

the value of premature deaths, measured by the present value of lost output, one 
has valued DALYs. Using the approach described in Appendix A, in India, the present 
value of output (human capital) lost due to premature mortality associated with 

particulate air pollution was US$20.27 billion. The value of output lost due to YLDs 
was US$8.17 billion, implying a total loss of US$28.44 billion, or about 1.2 percent of 

India’s GDP.  

How can DALYs be valued using a WTP approach? It has been suggested that 

DALYs should be valued by apportioning the VSL into a value per statistical life year 
(VSLY) and using the VSLY to value each DALY. In practice, the VSLY is computed 

based on the mean age of respondents in a stated preference survey or the mean 
age of workers in a compensating wage study. The VSL is divided by the 
(discounted) remaining life expectancy of a person of the mean age to produce the 

VSLY. For example, if the VSL is $1,200,000 and the discounted remaining life 
expectancy of the average worker in the compensating wage study is 30 years, the 

VSLY is $40,000. A premature death at any age is then valued by multiplying the 
YLLs lost by the VSLY. A 25-year-old with 52 life years remaining would be assigned 

a value of 52 times the VSLY ($2,080,000), whereas a 75 year-old with 11 life years 
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remaining would be assigned a value of $440,000. YLDs are valued by multiplying 
each YLD by the VSLY.  

There are several issues with this approach. Valuing premature mortality using the 
VSLY implies that the value of a premature death declines with age, since the VSLY 

is constant and remaining life expectancy (YLLs) declines monotonically with age. 
The main criticism of this method of valuing premature mortality is lack of evidence 

that WTP to reduce risk of death declines monotonically with age (Krupnick 2007). 
To value YLDs using a metric that measures WTP to avoid risk of death is 

problematic, given that YLDs measure morbidity rather than mortality.  

3.4.  Valuing Cognitive Impairment 

Much of the ChemObs project focuses on exposures to heavy metals. Some of these, 

such as lead, but also air pollutants such as fine particles (PM2.5), can affect cognitive 

development, lower IQ, and reduce a child’s potential for learning (Brockmeyer and 

D’Angiulli 2016). For lead, there is a literature linking blood lead levels to test scores 

and performance on IQ tests (Grosse et al. 2002; Lanphear et al. 2005). IQ, in turn, 

has been shown to affect lifetime earnings. Other costs associated with lead 

exposure include the costs of treatment to reduce high blood lead levels (chelation 

therapy) and the costs of additional schooling for children with high blood lead 

levels.  

In the literature linking lead exposure to future earnings through its effect on IQ, 

there are at least two channels of effects: the effect of IQ on earnings and on the 

amount of education attained. Studies in the United States suggest that the total 

impact of a 1-point reduction in IQ is to reduce annual earnings between 0.75 and 0.9 

percentage points for people in their early 30s and by about 1.4 percentage points 

for people in their early 50s (Grosse 2007). This, of course, reflects outcomes in US 

labor markets. A recent expert elicitation of US and Canadian labor economists to 

estimate the effect of IQ on earnings in India (Lutter et al. 2017) found that a 2-point 

decrease in IQ was associated with a 2 percentage point reduction in earnings each 

year from age 25 to age 60. 

The above results suggest that a rough estimate of the impact of an IQ point on 

future earnings is about 1 percentage point. This can be applied to estimates of 

future earnings computed using the methods for estimating the present value of 

future earnings described in Appendix A. 
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4.  Communicating to Policymakers 

It is one thing to generate technical documents on the costs of inaction or the costs 

and benefits of possible government actions to reduce pollution. It is quite another 
to successfully communicate those results to appropriately and persuasively 

influence policymakers, who may lack economics training and are subject to tight 
timelines and influences from many sides. This section of the primer offers our 

thoughts on communication challenges and strategies, developed from interviews, 
our experiences, and what literature is available. 

4.1.  Prerequisites  

It should go without saying that the analyses need to be on point, methodologically 
sound, transparent, and clearly written, and they should have executive summaries 
with clear headlines that can appeal to policymakers who may be unable to read the 

entire analysis. In addition, important assumptions need to be highlighted for 
transparency.  

Also, the baseline must be clear and reasonably accurate. This is true both for a 
study that is describing the costs of inaction—the damages that will occur if 

pollution is not remediated—and for cost-benefit analyses (CBAs) that describe the 
costs and benefits of policies to reduce pollution. The baseline is what changes as a 
result of a rule or other government action. Costs and benefits are measured from 

the policy or activity-induced change to the baseline. The current baseline is factual 
and therefore can be checked (although a future baseline is obviously not 

observable). Errors in characterizing the current situation can seriously damage a 
study’s credibility with decisionmakers. 

4.2.  What to Communicate 

In this section, we consider the substantive issues of effectively communicating a 
study of the costs of inaction, a CBA, or other forms that a policy analysis might 

take.  

In communicating pollution damages in a cost-of-inaction study, or benefits (i.e., 
reduced damages) in a CBA, damages (or benefits) should first be described in 

physical terms. This might include morbidity, mortality, impacts on IQ, or other 
impacts. It is useful to present physical impacts (when appropriate) by age, gender, 

and the geographic region in which they occur. When valuing these impacts, it may 
be prudent to present both conservative estimates of damages—e.g., estimates of 

the costs of illness associated with morbidity and earnings losses associated with 
premature mortality—as well as what economists call welfare benefits, which include 
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what people would pay to reduce both the monetary and nonmonetary costs of 
illness, such as pain and suffering. 

When estimating welfare benefits, such as what people would pay to reduce their 

risk of dying, it is often necessary to transfer estimates from other countries to the 

country where the CBA is being conducted—that is, to use benefits transfer. 

Benefits transfer (Johnston and Rosenberger 2009; Czajkowski et al. 2017) refers to 

using analyses, data, or results from one setting to apply to another setting or 

context. A widely practiced benefits transfer is to apply a value of statistical life 

(VSL) estimated from one country, such as the United States, adjusted for income 

differences, to an analysis in a country that does not have studies estimating the 

VSL for its own population. Multicountry comparisons of the burden of disease and 

health impacts of pollution (Narain and Sall 2016; Landrigan et al. 2018) use such 

income elasticities to make these transfers.  

One way to avoid monetizing the benefits of a policy, especially when they can be 

expressed using a single metric, such as lives saved or DALYs avoided, is to use 

cost-effectiveness analysis (CEA). CEA divides the costs of the policy by a measure 

of effectiveness, such as lives saved, to obtain a cost per life saved. When computed 

for different options of an action or across several actions, one looks for the option 

with the lowest cost per effectiveness metric. This is consistent with a Eurocentric 

point of view that starts with setting targets for environmental improvements and 

then seeks to meet those targets at the lowest possible cost.  

But this focus comes with several disadvantages. The main advantage of CBA is that 

it provides the net benefits of an action. Actions with positive net benefits improve 

social welfare—in other words, the efficiency of the allocation of resources. CEA 

lacks this normative element, although cost-effectiveness targets or benchmarks 

appear in the literature, along with the recommendation to reject options that fail to 

meet the target. But such targets are generally arbitrary. The second disadvantage 

is the construction of the effectiveness measure. Government actions usually deliver 

benefits over a number of physical endpoints, such as premature deaths and a 

variety of morbidity effects. Standard practice is to pick the most important 

endpoint as the effectiveness measure, but this leaves out the other endpoints. Seen 

in this light, the advantage of a CBA is that all the endpoints, in principle, are 

included, weighted by their monetary value. When a policy, action, or rule has one 

major metric, such as CO2 emissions, and targets are set for that metric, then CEA 

can be used to identify the lowest-cost way to meet the target.  

The rate of return (ROR) on investment is another popular metric. The rate of return 

is calculated to be consistent with the interest earned (i.e., the benefits realized) 
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from costs “invested” in the policy. This type of metric may appeal to finance 

ministries more than a CEA or net benefit metric, but it is just another way of 

expressing net benefits. A further advantage is that the ROR on a government action 

can be readily compared with that of private projects or returns on financial 

investments, such as bonds, to help benchmark the efficacy of government actions.  

Another issue is whether, and how, to communicate uncertainties in an analysis. It is 

a perennial complaint in reports from the U.S. National Academy of Sciences that 

government CBAs should do more to address uncertainties in benefits and costs 

(Abt et al. 2010). EPA’s Council for Regulatory Environmental Modeling (CREM) has 

initiated several projects with implications for the treatment of uncertainty in 

regulatory impact analysis (RIA), such as a draft guidance document on 

environmental models (Gaber et al. 2009), an online Models Knowledge Base, and a 

series of regional seminars. 

The first question an analyst must address is whether to present uncertainties in 

damages (benefits) and costs at all because of the complexities this adds to the 

narrative. The alternative is to present only best estimates, or perhaps to present 

uncertainty analyses in appendixes, where they can be ignored if desired. The latter 

approach emphasizes the analyst’s best judgment but forecloses the judgment of 

the decisionmaker over uncertain outcomes. For instance, it is sometimes observed 

that decisionmakers are risk averse, meaning, by one interpretation, that they want 

to make the decision on the basis of a worst-case set of assumptions or forecasts. 

Such an approach is foreclosed unless uncertainty distributions are provided.  

If uncertainties are to be presented, the next question is which type of uncertainties. 

There are both quantifiable uncertainties, which include statistical and model 

uncertainties, and unquantified uncertainties, which can be described qualitatively. A 

useful set of qualitative descriptors is provided by the Intergovernmental Panel on 

Climate Change (IPCC; Mastrandrea et al. 2010).  

Statistical uncertainties refer to the error bounds around estimated relationships; 

these can also be error bounds around collections of study results, as in a meta-

analysis. Model uncertainties refer to differences in results from different 

approaches taken to a problem. For instance, a concentration-response relationship 

could be estimated using a variety of assumptions for the shape of that relationship. 

While the results from each assumed shape (e.g., linear, log-linear, quadratic) can be 

described with their statistical errors, the differences in results across these 

assumed shapes can be described as model uncertainty.  
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Given that uncertainties of various types are to be presented, another question is in 

what form they should be presented. This issue is taken up below in the section on 

“How to Communicate to Decisionmakers.” 

4.3.  With Whom to Communicate 

Our interviews reveal that when groups outside of government are performing CBAs 

and other analyses, a local champion—a person with credibility and access to the 

senior decisionmakers relevant to the analyses in question—is needed.  

Even so, based on our own experience, we have found that it is far easier to gain 

access to the top bureaucrats (i.e., civil servants) than to the political appointees at 

the top of an agency. The top bureaucrats typically have long tenures and are 

therefore more likely to be in networks both inside and outside the government. 

They also tend to be more technically oriented than their political bosses and thus 

more skilled at understanding analyses. In addition, such civil servants will rise to 

positions of importance in an agency precisely because they are good at 

communicating to political appointees above them. Depending on the government’s 

norms, such top bureaucrats may also be able to consult on outside projects.  

CBAs are often performed within agencies, as well. For instance, the US government 

requires that all major proposed and final rules be accompanied by a RIA, which 

includes a CBA. Trained economists often develop the RIAs and have direct access 

to the top civil servants and political appointees in their agencies. Access to ultimate 

decisionmakers may be limited, however, particularly for major controversial actions 

that are decided at the highest levels of the government. 

Government decisionmakers are, of course, not the only group with which to 

communicate. Legislators who may be writing bills on the topic are an equally 

important audience. And public opinion, particularly in democratic systems, can 

provide leverage for implementing a policy. Thus a media strategy may be needed. 

Our interviewees recommended op-eds and news stories using various digital media 

platforms and covering all the major languages in a country. Meeting local editors 

will aid in getting pieces published, as will coauthoring such pieces with local 

champions of the work or local writers.  

4.4.  When to Communicate  

For in-house CBAs, governments with extensive administrative procedures will have 

schedules for making the rules (whether in proposed or final form public, schedules 
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for developing CBAs for rules or other actions, and possibly opportunities for public 

comment, setting their scheduling vis-à-vis the overall regulatory process.  

Institutions or individuals offering analyses from outside the government should 

want those analyses made available as early in the regulatory process as possible to 

help shape decisions. But not all analyses are of single rules or actions. For instance, 

the Copenhagen Consensus Center (2017) offers estimates of the return on 

investments for a large list of possible actions a government could take. Such 

analyses are designed to help a government set priorities. Thus ideal timing for 

these priority-setting CBAs is at the start of new government leadership that is 

seeking to set its priorities or when new planning cycles begin, such as China’s Five-

Year Plans. Our interviewees advise that one avoid releasing and pushing such 

analyses in the lead-up to a leadership change, as the work and findings could 

become politicized or simply get lost in the politics leading up to an election or other 

political transition.  

4.5.  How to Communicate to Decisionmakers 

We have already discussed some of the technical issues in communicating analytical 

information to policymakers evaluating prospective government policies, actions, 

and rules. This section provides some conclusions about communicating complex 

analyses to decisionmakers.  

The form of the information, the relevance of the material to the expressed interests 

of the decisionmaker, and the uncertainty tied to the findings are all aspects to 

consider when addressing decisionmakers. While relevance can seem self-evident 

from the point of view of the scientist, the manner in which the information’s 

importance is conveyed can influence the decisionmaker’s acceptance of the 

information. Research in the medical field on translating scientific discoveries into 

public policy has highlighted the importance of getting the attention of and evoking 

interest in policymakers in order to convey significance (Brownson et al. 2018). One 

study emphasizes the effectiveness of story-focused briefings based in evidence 

and personalized in context, as compared with data-focused briefings, in getting 

policymakers to grapple with the relevance of a discovery in certain scenarios 

(Brownson et al. 2011). 

4.6.  Uncertainty 

Much of the literature covers communicating about uncertainties. This section is 

based on Krupnick et al. (2006). Although a great deal of research has been 
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conducted on the communication of uncertainty and risk, little attention has been 

focused on the means of communicating the results of such analyses to 

policymakers. Instead, the orientation has been toward understanding how to 

present uncertainty to lay audiences and help them put low‐probability risks in 

appropriate context. The issue of communicating uncertainties associated with 

climate change to policymakers has been garnering increasing attention, with a 

focus on high‐consequence outcomes (Webster 2003). But the issue of 

communicating uncertainty in a typical regulatory decisionmaking process remains 

less unexplored (van der Bles et al. 2019).  

Experiments on the interpretation of standardized uncertainty language in IPCC 

reporting by nonprofessional participants suggest that jargon and discrepancies in 

understanding of probabilities are significant obstacles in disseminating uncertain 

information to those outside of the academic arena (Patt and Schrag 2003; Budesen 

et al. 2009). One study by van der Bles et al. (2019) proposes that while potential 

sources of uncertainty can be broadly broken into four categories—sample 

variability, measurement inadequacy, knowledge limitation, and expert 

disagreement—the independent effects of these different sources of uncertainty on 

audience understanding are not yet understood. Further, the issue of communicating 

uncertainty specifically in the regulatory decisionmaking process is underexplored. 

Psychological research on decisionmaking under uncertainty has uncovered 

numerous instances in which decisions are influenced simply by the manner in which 

a problem is presented. Because decisionmakers (and even experts) are just as 

susceptible to these cognitive biases as the general population, the data analyst’s 

choice of presentation format could influence a policymaker’s decision. Furthermore, 

some evidence suggests that as the emphasis on uncertainties increases, so does 

the probability that decisionmakers will lose confidence in the overall analysis.  

Ways to convey the importance of uncertain variables is one emerging area of 

interest. Some research has emphasized that the most effective means of 

communicating information and the associated uncertainties is largely dependent on 

the type of decisions facing the decisionmaker regarding the topic (Fischhoff and 

Davis 2014). Research on the effectiveness of different graphic techniques in 

communicating uncertainties has demonstrated that box‐and‐whisker plots, 

probability density functions, and cumulative density functions perform relatively 

well in allowing a well-educated audience to accurately extract quantitative 

information. Beyond standard tornado graphs, novel approaches such as radar 

graphs, cobweb plots, and pairwise scatterplots offer ways to present large amounts 

of information in an economical manner, although these approaches might be too 
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complex for a nontechnical audience. Area and volume presentations can be 

misleading and cause viewers to underestimate large magnitudes and thus should 

be avoided. 

We conducted in‐depth interviews with seven former EPA assistant or deputy 

administrators in which we presented the basic results of the case study we 

conducted on tightening the US cap on power plant NOx emissions. Using alternative 

metrics and graphics, we then solicited their opinions about these presentations. 

From their responses, a number of observations can be made. First, the interviewees 

were rather heterogeneous in backgrounds and in their interest in and familiarity 

with uncertainty assessments. This heterogeneity no doubt led to differences in the 

ease with which they interpreted alternative metrics and graphics portraying the 

results of our case study. Therefore, we found it difficult to generalize about the 

techniques used and challenges encountered in communicating these types of 

results. Nevertheless, even with the limited sample, interviewees were most 

comfortable with the use of probability density functions (PDFs) and simple tabular 

formats, rather than the complex graphics more commonly used by analysts (and 

favored by us), such as box‐and‐whisker plots, cumulative density functions, and 

circle charts. We conjecture that as the number of variables considered increases, 

the box‐and‐whisker plot would be increasingly useful and the PDFs less so.  

Beyond PDFs and simple tabular formats, the former decisionmakers also favored 

other graphics. For example, they were particularly interested in the graphic 

displaying the relative importance of the various factors considered in the 

uncertainty analysis (Figure 1). On several occasions, they specifically asked about 

relative importance even before the graphic was presented. The interviewees also 

were interested in identifying any factors for which uncertainty might be an 

important issue but that had been excluded from formal uncertainty analysis.  
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6.  Tables and Figures  

Figure 1. Relative Importance of the Factors Considered in the 
Uncertainty Analysis 

 

 

Table 1. Examples of Extrapolated VSL Estimates Using an 
Income Elasticity of 1.5 to Transfer the US VSL 

 

Approach 

GNI per capita (2015 international dollars) 

$1,000 $5,000 $10,000 $15,000 $20,000 $25,000 

Reference VSL = 
$9.4 million 

Elasticity = 1.5 

$0.021 million 

(21*GNI per 
capita) 

$0.24 million 

(48*GNI per 
capita) 

$0.67 million 

(67*GNI per 
capita) 

$1.2 million 

(83*GNI 
per capita) 

$1.9 million 

(95*GNI 
per capita) 

$2.7 million 

(110*GNI 
per capita) 

 

Source: Robinson et al. (2019a).  
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Table 2. Productivity Losses as a Percentage of GDP by 
Pollutant and Income Group 

World Bank 
Income region 

World Bank 
Income region 

UW and US 
combineda 

Lead exposure Total 

High income 
0.044% 

(0.048%) 

0.0028% 

(0.0033%) 

0.0027% 

(0.0029%) 

0.050% 

(0.054%) 

Upper-middle 
income 

0.13% 

(0.15%) 

0.019% 

(0.027%) 

0.0054% 

(0.0059%) 

0.15% 

(0.18%) 

Lower-middle 
income 

0.32% 

(0.40%) 

0.28% 

(0.40%) 

0.012% 

(0.013%) 

0.61% 

(0.82%) 

Low income 
0.62% 

(0.86%) 

0.70% 

(1.03%) 

0.012% 

(0.013%) 

1.33% 

(1.90%) 

World 
0.092% 

(0.11%) 

0.033% 

(0.047%) 

0.0042% 

(0.0046%) 

0.13% 

(0.16%) 

Source: Landrigan et al. (2018). 

Note: Results in parentheses discount future output at the rate of growth in per capita GDP 
plus 1.5%. Base case results (those without parentheses) discount future output at the rate of 
growth in per capita GDP plus 3%. 

a Includes no handwashing with soap. 
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Table 3. Welfare Damages in Billions of Dollars and as a 
Percentage of GNI by Pollutant and Income Group (2015 US$) 

World Bank 
Income region 

World Bank 
Income region 

UW and US 
combineda 

Lead exposure Total 

High income 
1,691 

(3.52%) 

159 

(0.33%) 

303 

(0.63%) 

2,153 

(4.48%) 

Upper-middle 
income 

1,691 

(8.37%) 

89 

(0.44%) 

118 

(0.59%) 

1,898 

(9.40%) 

Lower-middle 
income 

367 

(6.38%) 

143 

(2.49%) 

28 

(0.49%) 

538 

(9.36%) 

Low income 
18 

(4.83%) 

12 

(3.30%) 

0.740 

(0.20%) 

31 

(8.33%) 

Total 
3,767 

(5.06%) 

404 

(0.54%) 

451 

(0.61%) 

4,622 

(6.21%) 

Source: Landrigan et al. (2018). 

Note: Results in parentheses discount future output at the rate of growth in per capita GDP 
plus 1.5%. Base case results (those without parentheses) discount future output at the rate of 
growth in per capita GDP plus 3%. 

a Includes no handwashing with soap.  
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Appendix A.  Measurement of Output 
Losses due to Pollution 

This appendix describes methods for measuring output losses associated with 

pollution morbidity (years lived with disability, or YLDs) and mortality (deaths 

associated with pollution) in a given year (e.g., 2017), following the human 

capital/cost-of-illness (COI) approach. It is assumed that the user has YLDs and 

premature deaths associated with pollution by age. Premature mortality is often 

measured using years of life lost (YLLs); however, the human capital approach calls 

for valuing the present value of output loss associated with each death, which will 

vary with age at death, rather than valuing YLLs. Valuing disability-adjusted life 

years (DALYs) using the human capital/COI approach thus calls for valuing YLDs 

and premature deaths separately.  

The present value of lifetime earnings for a person of a given age represents the 

output lost if the person dies prematurely. It can also be used to value the impact of 

a decrement in IQ, if the loss in IQ points is expressed as a percentage reduction in 

earnings. This is discussed in section A.4. 

A.1.  Output Losses Associated with Pollution 
Mortality 

We begin by estimating the present discounted value of the loss in gross domestic 

product (GDP) attributable to mortality associated with pollution in 2017. The loss in 

GDP in country i in 2017 if a worker dies is equal to labor’s share of GDP (α) 
multiplied by GDP (Yi), divided by the number of persons who are employed (Li). We 

assume that workers of all ages in a country produce the same output per worker. 

Because not all persons of age j are working, the expected value of GDP per worker 

for a person of age j (Wij2017) is equal to (αYi/Li) times the ratio of the number of 

workers of age j, Lij, to the population of age j, Nij,  

Wij2017 = (αYi/Li)*(Lij/Nij)       (1) 

In our calculations below, we assume that labor’s share of GDP (α) is constant over 

time. We also assume that the ratio of Lij/Nij remains constant over time. 

To calculate the loss in market and nonmarket output in 2017, we modify equation 

(1) to allow for household production. The US Bureau of Economic Analysis 
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estimates that household production equals 25 percent of GDP (BEA 2019). The 

comparable estimate for Ghana is 35 percent (Ofosu-Baadu 2015) and for India is 30 

percent (Pandey 2001). We therefore calculate W'ij2017 as 

W'ij2017 = (αYi/Li)*(Lij/Nij) + λj(αYi/Li)*[1-(Lij/Nij)],     (1') 

where λj represents the fraction of output attributable to nonmarket production for a 

person of age j. For children and the elderly, (Lij/Nij) = 0, so the first term in (1′) is 

zero. We also assume that nonmarket output is zero for children and the elderly. This 

implies, for example, that λj = 0 for j < 15 and j > 84, and λj > 0 for 10 < j < 85. 

If a person of age j dies in the current year, her contribution to GDP will be lost for all 

future years of her working life. To compute the value of GDP lost in future years, we 

assume that GDP per worker in country i grows at rate gi. If labor’s share of GDP and 

the fraction of population of working age (Lij/Nij) remain constant for all i and j, this 

implies that lost GDP at age t of a person currently of age j will equal 

(αYi/Li)*(Lit/Nit)*(1+gi)t-j. This must be weighted by the probability that an individual 

would have survived to age t, where πij,t is the probability that a person of age j in 

country i survives to age t. We therefore weight the loss in GDP in future years by 

the probability that an individual who dies this year would have survived to each 

future year of his working life. We discount the value of GDP lost in the future at the 

annual rate ri.  

Given the previous assumptions, the present discounted value of lost market and 

nonmarket output for a person of age j in country i who dies in 2017, PVij, is 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝑖𝑖𝑖𝑖,𝑡𝑡
84
𝑡𝑡=𝑖𝑖 ��𝐿𝐿𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖𝑖𝑖
� �𝛼𝛼𝛼𝛼𝑖𝑖

𝐿𝐿𝑖𝑖
� + 𝜆𝜆𝑡𝑡 �1 − 𝐿𝐿𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖𝑖𝑖
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𝑡𝑡−𝑖𝑖

.        (2) 

In practice, equation (2) would be calculated for j = 0, . . . , 84. The value of λt would 

presumably equal 0 for small children (e.g., t = 0, . . . . , 14) and would be set equal to 

a positive value (e.g., 0.3) for larger values of t. 

The total output lost due to pollution is the product of PVij and Dij, the number of 

deaths due to pollution in 2017 of persons of age j in country i, summed over all j.  
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A.2.  Output Losses Associated with Pollution 
Morbidity 

We compute the lost output due to morbidity associated with pollution in 2017 by 

multiplying the number of YLDs associated with pollution in 2017 by the expected 

loss in output per person, which is given by equation (1'). YLDs associated with 

pollution are assumed to be available by country i and age j, YLDij. The output loss 

associated with morbidity in 2017 for persons of age j in country i, Mij is given by 

Mij = W'ij2017*YLDij .       (3) 

A.3.  Data 

To compute GDP per worker, gross domestic product (Yi) (World Bank 2019) is 

divided by the size of the labor force in country i (Li) (World Bank 2019) to compute 

(Yi/Li). Labor’s share of GDP (α) can be obtained from Penn World Table (Feenstra et 

al. 2015) or the International Labour Organization (ILOSTAT 2019). 

Other parameters that vary by country include the ratio of worker to total population 

and survival rates. The ratio of worker to total population (Lij/Nij) for each country 

and age group can be obtained from ILOSTAT (2019). Because only aggregate data 

are reported for ages 65 and older, (Lij/Nij) can be estimated for each age over 65 by 

assuming that the worker-population ratio declines linearly from age 65 to age 85, 

becoming zero at age 85. The annual survival rate from age j to age t in each state, 

πij,t, can be computed from life tables provided by the Global Burden of Disease 

Study (GHDx 2019).  

The present value of lost output depends on the rate of growth in output per worker 

(gi) and the discount rate (ri). As equation (2) indicates, it is the ratio of (1+gi)/(1+ri) 

that determines the present discounted value of future earnings. Determining 

appropriate values of ri and gi for each country is difficult. Should this not be 

possible, a default is to use the assumptions underlying the Lancet Commission 

report (Landrigan et al. 2018)—in other words, that the discount rate exceeds the 

rate of growth in output per worker by (a) 1.5, (b) 3.0 percentage points. This implies 

that the term [(1+gi)/(1+ri)]t-j in equation (2) is replaced by [1/(1+d)]t-j, where d = 

.015 or .03. 
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A.4.  Valuing Output Losses due to Reductions in 
IQ  

An extensive literature links the impact of lead exposure in children to IQ loss (see 

main text) and values the loss in IQ by its impact on lifetime earnings. If the total 

impact of the loss of one IQ point is to reduce lifetime earnings by, for example, 1 

percent, then the present value of lifetime earnings (equation (2)) can be multiplied 

by .01 times the number of IQ points lost. An important question is the timing of the 

earnings loss. One approach is to calculate the loss discounted to the beginning of 

an individual’s working life (i.e., to age 15). Exposure to lead may, however, occur 

earlier (e.g., between ages 0 and 7), which raises the question of whether the 

earnings loss should be discounted to the time of exposure. Attina and Trasande 

(2013) discount lifetime earnings to age 5. 
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Appendix B.  Willingness to Pay to 
Avoid Premature Mortality 

B.1.  Methodology 

The willingness-to-pay (WTP) approach captures individuals’ preferences for 
avoiding increases in risk of death by analyzing their behavior in risky situations (the 

revealed preference approach) or in hypothetical choice situations involving 
changes in their risk of death (the stated preference approach) (Cropper et al. 2011). 
An example of the former approach is a labor market study of jobs with different 

mortality risks, in which the analyst uses knowledge of those different risks and the 
wages that different jobs command to derive a wage premium (the willingness to be 

paid) for bearing extra risk (Viscusi and Aldy 2003). A good example of the latter is a 
survey that asks participants to choose among several hypothetical situations where 

mortality risks can be reduced at a cost (Lindhjem et al. 2011).  

Either of these approaches yields values consistent with the centrality of individual 

preferences in modern welfare economics, in contrast to the human capital approach 
discussed in Appendix A, which is regarded as embedded in WTP values. The 

amount that a person would pay (or accept) in exchange for a small change in risk of 
death should reflect losses in output when the individual dies—losses that may 
exceed the person’s contribution to gross domestic product (GDP). WTP should also 

reflect the utility received from living and should therefore exceed the value of 
output losses.   

The value of mortality risk reductions is typically expressed in terms of the value per 
statistical life (VSL)—the sum of what people would pay for small risk reductions 

that sum to one statistical life saved. To illustrate, if each of 10,000 people were 
willing to pay $25 over the coming year to reduce their risk of dying by 1 in 10,000 

during this period, on average, one statistical life would be saved and the VSL would 
equal $25 × 10,000, or $250,000. To evaluate WTP to reduce risk of death by 1 in 
10,000, one would multiply the VSL by .0001.  

A large body of literature has used revealed and stated preference approaches to 
estimating the VSL, primarily in Organisation for Economic Co-operation and 

Development (OECD) countries but also in middle-income countries (Lindhjem et al. 
2011; Hammitt and Robinson 2011). Because many countries have no studies 

representing preferences of their population toward reducing risk of death, analysts 
typically transfer estimates from one country (a base country) to other countries, 

adjusting for differences in per capita income (Hammitt and Robinson 2011). This 
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adjustment is made using the following equation, where Y denotes per capita income 

and ε denotes the elasticity of the VSL with respect to income: 

VSLTransfer = VSLBase*(YTransfer/YBase)ε     (B.1) 

The base value is typically selected based on VSL values in OECD countries. In the 

Lancet Commission report (Landrigan et al. 2018), a base VSL was selected based on 

a meta-analysis of stated-preference studies reported by the OECD (2012). This 

meta-analysis forms the basis of the VSL used by the OECD for policy analysis and is 

also the basis of VSL transfers by the International Monetary Fund in its 

computation of health-based fuel taxes (Parry et al. 2014). It is the same baseline 

value used in the Institute for Health Metrics and Evaluation (IHME)–World Bank 

study The Cost of Air Pollution (World Bank 2016). The base VSL is $3.83 million 

2015 international dollars. In a recent Gates Commission study (Robinson et al. 2019), 

benefits transfers were based on the US Environmental Protection Agency’s (EPA’s) 

VSL of $9.4 million 2015 US$ (equivalent to $9.4 million 2015 international dollars). In 

transferring the VSL to other countries, per capita income is usually measured in 

international (i.e., in purchasing power parity, or PPP) dollars. This implies that the 

VSL is also measured in PPP terms. 

What income elasticity (ε) should be used in transferring the base VSL? The 

elasticity of the VSL with respect to income (ε) represents the percentage change in 

the VSL for a 1 percent change in income (Y). If the VSL were proportional to income 

(i.e., if ε = 1), then the ratio of the VSL to income (Y) would be the same in all 

countries. Using the OECD VSL as a base value implies a ratio of VSL/Y of ~ 96:1. 

Studies in low- and middle-income countries (LMICs), however, suggest that the 

ratio of the VSL/Y falls as per capita income falls (Hammitt and Robinson 2011), 

implying a value of ε > 1.  

The exact value of ε to be used should be guided by information on the VSL/Y ratio 

at different income levels. The ratio of the VSL to income, divided by 100, represents 

the fraction of income that would be given up for a 1 in 10,000 reduction in risk of 

death. EPA’s VSL implies that a 1 in 10,000 reduction in risk of death is worth 1.6 

percent of income; the OECD value implies that it is worth 1 percent of income. Well-

executed studies of the VSL in LMICs imply that the ratio of the VSL to per capita 

income falls as per capita income falls. To achieve a target value of the VSL/Y at a 

particular income level, the value of ε must increase with the size of the base VSL. 

The Lancet Commission report used a value of ε = 1.2 in transferring the OECD VSL 

to low- and low-middle-income countries. The Gates Commission report (Robinson 

et al. 2019), using the EPA VSL as a base, recommends a value of ε = 1.5. 
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B.1.1.  Treatment of Age 

Both the Lancet Commission (Landrigan et al. 2018) and Gates Commission 

(Robinson et al. 2019) reports use the same VSL irrespective of age at death and use 

the same VSL for children as for adults. The age distribution of deaths associated 

with pollution varies widely, raising the question of whether the same VSL should be 

used to evaluate the deaths of children and the elderly, who lose very different 

numbers of life years. There is limited and contradictory evidence that VSLs are 

lower for elderly people than for younger adults (Krupnick 2007). In the case of 

children, the VSL should be based on parents’ WTP to reduce their children’s risk of 

death. There is a growing literature on parents’ WTP; however, it consists primarily 

of studies in high-income countries (Alberini et al. 2010). Because of the lack of 

studies in low- and middle-income countries and differences in child mortality 

between high- and low-income countries, we do not recommend transferring studies 

of parents’ WTP to reduce child mortality to low- and middle-income countries.  
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Annex 2: Summary of underlying assumptions 

Assumption Strength of 
evidence 

Sources Reference 

Contaminant soil 
concentration 

moderate Laboratory analysis -- 

Contaminant dust 
concentration 

moderate Laboratory analysis -- 

Contaminant water 
concentration 

moderate Laboratory analysis -- 

Contaminant food 
concentration 

moderate Laboratory analysis -- 

Exposed population low Assessor estimate -- 

Dietary intake low Assessor estimate -- 

Geometric mean 
blood lead level 
children 

high USEPA IEUBK used to 
calculate BLLs for a range 
of different exposures 

OSRTI US EPA, OSWER, ‘Lead at Superfund Sites: Software and Users’ Manuals’ 
<https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals> 
accessed 13 August 2016. 

Geometric mean 
blood lead level 
adults 

high USEPA ALM used to 
calculate BLLs for a range 
of different exposures 

OSRTI US EPA, OSWER, ‘Lead at Superfund Sites: Software and Users’ Manuals’ 
<https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals> 
accessed 13 August 2016. 

Geometric mean 
blood lead level 
foetus 

high USEPA ALM used to 
calculate BLLs for a range 
of different exposures 

OSRTI US EPA, OSWER, ‘Lead at Superfund Sites: Software and Users’ Manuals’ 
<https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals> 
accessed 13 August 2016. 

IQ decrement (Pb) high Peer-reviewed study Esben Budtz-Jørgensen and others, ‘An International Pooled Analysis for Obtaining a 
Benchmark Dose for Environmental Lead Exposure in Children’ (2013) 33 Risk Analysis 
45 

Incidence of 
intellectual 
disability  

moderate WHO report provides 
typical incidence of ID in 
a population 

Lorna Fewtrell, Rachel Kaufmann and Annette Prüss-Üstün, Lead: Assessing the 
Environmental Burden of Disease at National and Local Levels (World Health 
Organization 2003) 
<http://www.who.int/quantifying_ehimpacts/publications/en/leadebd2.pdf?ua=1> 
accessed 10 October 2016. 

Incidence of 
cardiovascular 
disease  

moderate WHO report provides 
associations of BLLs with 
CV disease rates 

Lorna Fewtrell, Rachel Kaufmann and Annette Prüss-Üstün, Lead: Assessing the 
Environmental Burden of Disease at National and Local Levels (World Health 
Organization 2003) 
<http://www.who.int/quantifying_ehimpacts/publications/en/leadebd2.pdf?ua=1> 
accessed 10 October 2016. 

Disability weights 
for intellectual 
disability and 
cardiovascular 
disease 

high IHME Disability Weights 
(from 2017 GBD) 

IHME, ‘Global Burden of Disease Study 2017 (GBD 2017) Disability Weights | GHDx’ 
<http://ghdx.healthdata.org/record/ihme-data/gbd-2017-disability-weights> accessed 
30 October 2021. 

IQ decrement (Hg) moderate Peer-reviewed study 
provides IQ decrement 
associated with Me-Hg 
ingestion 

Joseph V. Spadaro and Ari Rabl, ‘Global Health Impacts and Costs Due to Mercury 
Emissions’ (2008) 28 Risk Analysis 603 <http://doi.wiley.com/10.1111/j.1539-
6924.2008.01041.x> accessed 16 August 2019. 

Urinary 
concentration of 
dimethoate 

moderate Peer-reviewed study 
provides DAP urinary 
concentrations 
associated with different 
levels of exposure 

Marc L Rigas, Miles S Okino and James J Quackenboss, ‘Use of a Pharmacokinetic 
Model to Assess Chlorpyrifos Exposure and Dose in Children, Based on Urinary 
Biomarker Measurements’ (2001). 

IQ decrement 
pesticide exposure 

moderate Peer-reviewed study 
provides IQ decrement 
associated with different 
urinary DAP 
concentrations 

David C Bellinger, ‘A Strategy for Comparing the Contributions of Environmental 
Chemicals and Other Risk Factors to Neurodevelopment of Children’ (2012) 120 
Environmental Health Perspectives 501. 

Uniform impact of 
all OP pesticides on 
brain development 

low Assumption made in the 
absence of pesticide 
specific urinary DAP 
concentrations 

-- 

Cancer incidence 
from oral exposure 

moderate IRIS slope factors provide 
a slope to approximate 
risk with increased 
carcinogen exposure 

US EPA, ‘Integrated Risk Information System’ (2016) <https://www.epa.gov/iris> 
accessed 26 September 2016. 



Cancer mortality 
rates in Africa 

moderate Peer-reviewed study 
provides typical survival 
rates from multiple 
cancers in different 
African countries 

R Sankaranarayanan and others, ‘An Overview of Cancer Survival in Africa, Asia, the 
Caribbean and Central America: The Case for Investment in Cancer Health Services.’ 
[2011] IARC scientific publications 257. 

Disability weights 
for cancers 

moderate IHME Disability Weights 
(from 2017 GBD) 

IHME, ‘Global Burden of Disease Study 2017 (GBD 2017) Disability Weights | GHDx’ 
<http://ghdx.healthdata.org/record/ihme-data/gbd-2017-disability-weights> accessed 
30 October 2021. 

Gross Domestic 
Product 

high World Bank  https://data.worldbank.org/indicator/NY.GDP.MKTP.CD 

Labour's 
contribution to 
GDP 

high Penn World Tables  Robert C Feenstra and Marcel P Inklaar, Robert C., Robert Timmer, ‘The Next 
Generation of the Penn World Table’ (2015) 105 American Economic Review 4 
<https://www.rug.nl/ggdc/productivity/pwt/?lang=en> accessed 14 November 2021. 

Labour force 
participation 

high ILO ILO, ‘ILO Data Explorer’ <https://ilostat.ilo.org/data/> accessed 13 November 2021. 

Age specific death 
rates 

high WHO GHO WHO, ‘GHO | By Category | Life Tables’ WHO. 

Discount rates high Annex 1; Peer-reviewed 
study provides the 
underlying assumptions 
and discount rate 

Philip J Landrigan and others, ‘The Lancet Commission on Pollution and Health’ [2017] 
The Lancet <http://linkinghub.elsevier.com/retrieve/pii/S0140673617323450> 
accessed 22 October 2017. 

Overall method for 
the valuation of 
DALYs 

high Annex 1; Peer-reviewed 
study provides the 
underlying assumptions 
and required equations 

Philip J Landrigan and others, ‘The Lancet Commission on Pollution and Health’ [2017] 
The Lancet <http://linkinghub.elsevier.com/retrieve/pii/S0140673617323450> 
accessed 22 October 2017. 

 



Annex 3: Manganese supplement 
 

Context 

At the request of the Ministry of Water and Forests, the Sea and the Environment of Gabon, an effort 

was made to include manganese soil exposure into the economic calculator. A review of the 

epidemiological literature confirmed that the available data are not adequately robust for this chemical 

and exposure route to be fully integrated. As an alternative the crude model below is presented as an 

interim measure. Results should be taken as broadly indicative and are not immediately comparable 

with other results from the calculator.  

 

Exposure Model 

Manganese is a naturally occurring element typically found at < 900 mg/kg in surface soils. It is an 

essential nutrient, though elevated levels of exposure are associated with a number of adverse health 

outcomes, including Parkinsonism.1 There are multiple significant exposure routes to manganese 

including incidental soil and dust ingestion, inhalation of airborne particles, and deliberate ingestion of 

food and water.2 Of these, the inhalation dose-response has been most extensively evaluated. A study in 

Hamilton, Canada for instance found that the odds ratio for Parkinson’s disease increased by 3 % for 

each 10 ng/m3 increase in manganese particulate levels in ambient air.3 Oral exposure by contrast is 

much less well characterized. The USEPA maintains a no observed adverse effect level (NOAEL) for 

chronic oral exposure to inorganic manganese of 0.14 mg/kg-day, or 10 mg/ day for a 70 kg adult.4 

Though given the limited available data there is some uncertainty around this value, with adverse 

outcomes having been associated with chronic exposures as low as 0.103 mg/kg-day.5  

 

Manganese is ubiquitous in the environment. Elevated exposures typically result as the aggregate dose 

from multiple routes. This is somewhat distinct from other chemicals assessed by calculator, where a 

dominant exposure route can often be associated with an adverse response. In the case of lead, for 

example, exposure to relatively low soil concentrations (~400 mg/kg) alone can result in adverse health 

impacts. Manganese soil levels however would need to be exceptionally high for the associated dose to 

be considered elevated. To illustrate, soil and dust incidental ingestion rates are commonly 

approximated at 30–100 mg/day.6 Thus for exposure from this source alone to exceed the adult 

manganese NOAEL of 10 mg/ day, soil manganese levels would need to exceed 10 % (i.e. > 100,000 

mg/kg). Additional routes of exposure are therefore highly relevant. To further illustrate, typical dietary 

manganese exposures in England, the Netherlands and US have been estimated at 2.3–8.8 mg/ day.7 In 

 
1 Atsdr, ‘TOXICOLOGICAL PROFILE FOR MANGANESE’; Roberto G Lucchini, Christopher J Martin and Brent C Doney, ‘From Manganism to 
Manganese-Induced Parkinsonism: A Conceptual Model Based on the Evolution of Exposure’ (2009) 11 NeuroMolecular Medicine 311 
<https://link.springer.com/article/10.1007/s12017-009-8108-8> accessed 14 February 2022. 
2 Roberto Lucchini and others, ‘Manganese and Developmental Neurotoxicity’ (2017) 18 Advances in neurobiology 13 
</pmc/articles/PMC6057616/> accessed 14 February 2022. 
3 Murray M Finkelstein and Michael Jerrett, ‘A Study of the Relationships between Parkinson’s Disease and Markers of Traffic-Derived and 
Environmental Manganese Air Pollution in Two Canadian Cities’ (2007) 104 Environmental Research 420. 
4 Us Epa and Integrated Risk Information System Division, ‘Manganese (CASRN 7439-96-5) | IRIS | US EPA’. 
5 Atsdr (n 1); Vanita Sahni and others, ‘Case Report: A Metabolic Disorder Presenting as Pediatric Manganism’ (2007) 115 Environmental health 
perspectives 1776 <https://pubmed.ncbi.nlm.nih.gov/18087599/> accessed 14 February 2022. 
6 ‘About the Exposure Factors Handbook | US EPA’ <https://www.epa.gov/expobox/about-exposure-factors-handbook> accessed 14 February 
2022. 
7 USEPA, ‘Manganese CASRN 7439-96-5 |IRIS|US EPA, ORD’ <https://iris.epa.gov/ChemicalLanding/&substance_nmbr=373> accessed 14 
February 2022. 



this context, the incremental increase of exposure associated with living on moderately contaminated 

land becomes more important. Soil manganese concentrations of ~10,000 mg/kg for instance might 

result in a dose in exceedance of the NOAEL.  

 

Lucchini et al (2007) evaluated the prevalence of Parkinson’s in populations in Brescia, Italy where 

historical ferroalloy production resulted in elevated environmental manganese levels. The authors 

fiound the prevalence of Parkinson’s in the province as a whole to be 407/ 100,000 and within 

populations residing in the vicinity of ferroalloy plants to be 492/100,000. For comparison, the 

comparable rate for all Italians was 157.7/ 100,000.8 A related study assessed soil manganese 

concentrations in Brescia. The authors evaluated the distribution of manganese in surface soils (< 30 cm) 

in the municipality of Bagnolo Mella which contains an active ferroalloy plant.9 Surface soil manganese 

concentrations ranged from a mean of 693 mg/kg in their control area to a mean of 23,627 mg/kg in 

residential areas adjacent to the plant. The maximum concentration identified was 79,000 mg/kg.  

 

The proposed model crudely combines the data from the two Brescia studies to estimate an indicative 

number of excess cases of Parkinson’s disease associated with environmental soil manganese levels. As 

noted above, it is not assumed that soil manganese levels alone are adequate to explain the increased 

burden of disease. Rather the soil manganese level is employed here as an indicator of wider 

environmental contamination of various media (e.g. water, food, air). Three exposure scenarios are 

presented: low, moderate and high. 

 

As a base (low), the Italian prevalence of 157.7 cases per 100,000 population is taken as zero cases of 

excess Parkinson’s in the exposed population attributable to manganese. This value of zero excess cases 

is applied to any area with a mean soil manganese concentration of < 10,000 mg/kg. A second scenario 

(moderate) considers any area with a mean soil manganese concentration of 10,000–20,000 mg/kg and 

approximates prevalence of Parkinson’s at 407/ 100,000 or 0.002493 excess cases per capita (i.e. 

0.00407 minus 0.001577). Finally a third scenario (high) approximates prevalence of Parkinson’s at 492/ 

100,000 or 0.003343 excess cases per capita. Table 1 summarizes the theoretical scenarios.  

 

Exposure 
scenario 

Soil concentration  Approximate prevalence of 
Parkinsonism  

Excess Parkinsonism per 
capita 

Low < 10,000 mg/kg  157.7/100,000 0 

Moderate 10,000 – 20,000 mg/kg 407/100,000 0.002493 

High > 20,000 mg/kg 492/100,000 0.003343 

Table 1. Theoretical exposure scenarios and estimated excess cases of Parkinson’s disease 

 

Economic Valuation 

Following the approach used elsewhere in the calculator the IHME disability weight is employed. 

Because morbidity only is assessed the value of 0.267 for moderate Parkinson’s is taken as analogous to 

a disability adjusted life year (DALY). The economic calculations outlined elsewhere calculate the cost of 

a DALY in Gabon (2019 international USD) at USD 4,306. Thus the annual economic cost a single of 

 
8 Roberto G Lucchini and others, ‘High Prevalence of Parkinsonian Disorders Associated to Manganese Exposure in the Vicinities of Ferroalloy 
Industries.’ (2007) 50 American journal of industrial medicine 788. 
9 Marco Peli and others, ‘Profiles and Species of Mn, Fe and Trace Metals in Soils near a Ferromanganese Plant in Bagnolo Mella (Brescia, IT)’ 
(2021) 755 Science of The Total Environment 143123. 



manganese induced Parkinson’s would be valued at USD 1,150 in Gabon. The resulting calculation 

therefore is the total exposed population multiplied by the appropriate value for excess Parkinsonism 

from Table 1 and multiplied again by USD 1,150. By way of example the annual manganese attributable 

cost of Parkinson’s disease in a highly contaminated city of 100,000 people in Gabon would be USD 

384,445 (i.e. 100,000 x 0.002493 x 1,150). For a moderately contaminated city, the value would be USD 

286,695. For a low contamination city the associated cost would be USD 0. Table 2 presents the 

estimated per capita losses associated with these scenarios.  

 

Exposure scenario Soil concentration  Per capita losses (USD) 

Low < 10,000 mg/kg  0 

Moderate 10,000 – 20,000 mg/kg 2.50 

High > 20,000 mg/kg 3.43 

Table 2. Economic per capita losses associated with theoretical exposure scenarios 
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