This initial quantification of conflict generated debris in Aghdam is derived from official building footprint data provided by the Ministry of Economy/ State Committee on Property of Azerbaijan along with satellite imagery. This data was combined with an above surface height model, derived from the difference between a Digital Terrain Model (SRTM) and a Digital Surface Model (ALOS World 3D).

For visualization and modeling purposes, results were aggregated into an H3 hexagonal grid where each cell is 1.5 hectares wide.

----- Routes leading from debris to disposal site

Estimated debris quantities (tonnes)

SCENARIO 1 - ALL TO DISPOSAL Debris Management Outputs

Time to clear (months)	18
Time to recycle (months)	0
Total time to clear and recyle (months)	18
Total cost to clear (US\$)	4,100,000
Revenue from recycling (US\$)	0
Cost less revenue (US\$)	4,100,000
Total distance covered (km)	4,325,000
CO2e from trucking (tCO2)	8,000
Cost of haulage (US\$)	4,100,000
Material recovered for reconstruction (tonnes)	0
Material recovered for reconstruction (%)	0
Cost of processing of debris (US\$)	0
Value of recovered material in market (US\$)	0
Total cost of natural raw materials substituted (US\$)	0
Material disposed (tonnes)	2,998,755
Material disposed (%)	100
Total space required for disposal (ha)	37.5
Value of land taken by debris disposal (US\$/year)	43,000

The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.

Page 2/5

This initial quantification of conflict generated debris in Aghdam is derived from official building footprint data provided by the Ministry of Economy/ State Committee on Property of Azerbaijan along with satellite imagery. This data was combined with an above surface height model, derived from the difference between a Digital Terrain Model (SRTM) and a Digital Surface Model (ALOS World 3D).

For visualization and modeling purposes, results were aggregated into an H3 hexagonal grid where each cell is 1.5 hectares wide.

Crushers and recycling depots ----- Routes leading from debris to

disposal and recycling sites

The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.

SCENARIO 2 50% DECENTRALIZED RECYCLING Debris Management Outputs

Time to clear (months)	13
Time to recycle (months)	16
Total time do clear and recycle (months)	16
Total cost to clear (US\$)	5,600,000
Revenue from recycling (US\$)	2,600,000
Cost less revenue (US\$)	3,000,000
Total distance covered (km)	2,730,000
CO2e from trucking (tCO2)	2,100
Cost of haulage (US\$)	2,600,000
Material recovered for reconstruction (tonnes)	1,499,377
Material recovered for reconstruction (%)	50
Cost of processing of debris (US\$)	3,000,000
Value of recovered material in market (US\$)	2,600,000
Total cost of natural raw materials substituted (US\$)	4,334,000
Material disposed (tonnes)	1,900,000
Material disposed (%)	50
Total space required for disposal (ha)	24
Value of land taken by debris disposal (US\$/year)	28,000

Page 3/5

UN 🎯 environment programme

This initial quantification of conflict generated debris in Aghdam is derived from official building footprint data provided by the Ministry of Economy/ State Committee on Property of Azerbaijan along with satellite imagery. This data was combined with an above surface height model, derived from the difference between a Digital Terrain Model (SRTM) and a Digital Surface Model (ALOS World 3D).

For visualization and modeling purposes, results were aggregated into an H3 hexagonal grid where each cell is 1.5 hectares wide.

Disposal site

— Routes leading from debris to disposal/recycling site

Estimated debris quantities

Datum: WGS 1984 Coordinate System: Universal Transverse Mercator 38N

SCENARIO 3 50% CENTRALIZED RECYCLING Debris Management Outputs

Time to clear (months)	17
Time to recycle (months)	41
Total time to clear and recycle (months)	41
Total cost to clear (US\$)	6,400,000
Revenue from recycling (US\$)	2,600,000
Cost less revenue (US\$)	3,800,000
Total distance covered (km)	4,325,000
CO2e from trucking (tCO2)	8,000
Cost of haulage (US\$)	3,500,000
Material recovered for reconstruction (tonnes)	1,499,377
Material recovered for reconstruction (%)	50
Cost of processing of debris (US\$)	2,998,755
Value of recovered material in market (US\$)	2,600,000
Total cost of natural raw materials substituted (US\$)	4,334,000
Material disposed (tonnes)	1,900,000
Material disposed (%)	50
Total space required for disposal (ha)	24
Value of land taken by debris disposal (US\$/year)	28,000

The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.

Page 4/5

UN 🎯 environment programme

The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.

SCENARIO 4 75% CENTRALIZED RECYCLING **Debris Management Outputs**

Time to clear (months)	17
Fime to recycle (months)	62
otal time to clear and ecycle (months)	62
Fotal cost to clear (US\$)	7,600,000
Revenue from recycling US\$)	3,900,000
Cost less revenue (US\$)	3,700,000
īotal distance covered km)	4,325,000
CO2e from trucking tCO2)	8,000
Cost of haulage (US\$)	3,100,000
Material recovered for econstruction (tonnes)	2,250,000
Material recovered for reconstruction (%)	75
Cost of processing of debris (US\$)	4,500,000
/alue of recovered naterial in market (US\$)	3,900,000
Total cost of natural raw naterials substituted US\$)	6,500,000
Material disposed tonnes)	1,400,000
Material disposed (%)	25
otal space required for disposal (ha)	18
/alue of land taken by tebris disposal	20,000

(US\$/year)

generated debris in Aghdam is derived from official building footprint data provided by the Ministry of Economy/ State Committee on Property of Azerbaijan along with satellite imagery. This data was combined with an above surface height model, derived from the difference between a Digital Terrain Model (SRTM) and a Digital Surface Model (ALOS World 3D).

For visualization and modeling purposes, results were aggregated into an H3 hexagonal grid where each cell is 1.5 hectares wide.

Disposal site

— Routes leading from debris to disposal/recycling site

Estimated debris quantities

Datum: WGS 1984 Coordinate System: Universal Transverse Mercator 38N

environment programme

This initial quantification of conflict generated debris in Aghdam is derived from official building footprint data provided by the Ministry of Economy/ State Committee on Property of Azerbaijan along with satellite imagery. This data was combined with an above surface height model, derived from the difference between a Digital Terrain Model (SRTM) and a Digital Surface Model (ALOS World 3D).

For visualization and modeling purposes, results were aggregated into an H3 hexagonal grid where each cell is 1.5 hectares wide.

industrial park

----- Routes leading from debris to disposal/recycling site

Estimated debris quantities

Datum: WGS 1984 Coordinate System: Universal Transverse Mercator 38N

The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.

SCENARIO 5 75% INDUSTRIAL PARK RECYCLING Debris Management Outputs

Time to clear (months)	14
Time to recycle (months)	62
Total time to clear and recycle (months)	62
Total cost to clear (US\$)	6,900,000
Revenue from recycling (US\$)	3,900,000
Cost less revenue (US\$)	3,000,000
Total distance covered (km)	3,067,000
CO2e from trucking (tCO2)	5,600
Cost of haulage (US\$)	2,500,000
Material recovered for reconstruction (tonnes)	2,250,000
Material recovered for reconstruction (%)	75
Cost of processing of debris (US\$)	4,500,000
Value of recovered material in market (US\$)	3,900,000
Total cost of natural raw materials substituted (US\$)	6,500,000
Material disposed (tonnes)	1,400,000
Material disposed (%)	25
Total space required for disposal (ha)	18
Value of land taken by debris disposal (US\$/year)	20,000