CHEMOBS SYNTHESIS REPORT

Results of Calculators Pilot Testing

Integrated Health and Environment Observatories for the Sound Management of Chemicals and Waste in Africa (GEF ID 9080)

Contacts: Dr S Willis <u>sheila@pan-uk.org</u> Dr B Ericson <u>bret.c.ericson@gmail.com</u>

> Pesticide Action Network UK is a registered charity and a company limited by guarantee Company No: 2036915 Charity No: 327215

Contents

Executive Summary	3
Introduction	3
Purpose of the calculators	4
Purpose of the economic calculator	4
Purpose of the Risk and Vulnerability Calculator	5
Calculator Development and Implementation	6
Summary	6
Peer Review	7
Methodology	8
Economic Calculator	8
Risk and Vulnerability Calculator	9
Resources	14
Country Level Reporting	14
Results	16
Results of Risk and Vulnerability Calculations	16
Results of economic calculations	
Lessons Learned	25
Data availability and access	25
Technical limitations	25
National capacity to complete calculations	
Conclusions	26
Annex 1. Summary results of data assessments in participating countries	28
Annex 2 Peer Review of Economic Calculator	33
Terms of Reference Peer review of ChemObs risk calculators and associated guidance	33
Review comments on the ChemObs environmental health economic calculator	35
Responses to Peer Reviewers' Comments on the Economic Calculator and Associated Guidance	39
Annex 3. Peer review of the Risk and Vulnerability Calculator and associated guidance	
Terms of Reference	
Results of Peer Review of the PAN-UK Risk & Vulnerability Calculator	44
Review by Wouter Pronk	

Review by Russell Cobban	50
Response to review	52
Annex 4. The weighting of different variables in the Risk and Vulnerability Calculator	55
Annex 5. Calculations for the Risk and Vulnerability Calculator	57
Annex 6. Site Questions Sheet for the Risk and Vulnerability Calculator	60
Annex 7. List of chemicals added to the Risk and Vulnerability Calculator	63
Annex 8. Kenya Results of Risk and Vulnerability Calculations	64
Annex 9. Ethiopia Results of Risk and Vulnerability Calculations	67
Annex 10. Gabon results of risk and vulnerability calculations	68
Annex 11. Senegal Results of Risk and Vulnerability Calculations	68
Annex 12. Zambia Results of Risk and Vulnerability Calculations	72
Annex 13. Mali Results of Risk and Vulnerability Calculations	73
Annex 14. Madagascar Results of Risk and Vulnerability Calculations	75
Annex 15. Zimbabwe Results of Risk and Vulnerability Calculations	77

This report was written by Dr Bret Ericson and Dr Sheila Willis for PAN-UK. It covers the reporting period 17^{th} August $2021 - 30^{th}$ April 2022.

Executive Summary

The report describes the development, implementation and results of two calculators developed as part of the ChemObs project (GEF ID 9080). The first calculator – Risk and Vulnerability – accepts site specific information for contaminated areas and outputs a relative ranking of ecological and human health risks. The second – Economic – accepts chemicals exposure data for different populations and outputs estimated attributable productivity losses in 2019 USD.

The calculators were developed by the NGOs PAN-UK and Pure Earth over the period 2017–2022 and utilised by national consultants in 9 different African countries. Calculator development was based on the findings of country visits and regional workshops. Implementation was supported through a series of guidance documents, seminars and online tutorials. Revisions were made in an iterative process over the project period in response to field trials and to the comments of independent peer-reviewers.

Of the 9 project countries, 8 submitted at least one completed calculator. Six countries in total managed to complete both calculators. In general, the results show the existence of adequate data and technical expertise at the country level to support the robust calculation of health and ecological risks attributable to chemicals. Challenges encountered include those related to operational considerations and data availability.

Introduction

The overall Objective of the ChemObs project (GEF ID 9080) is '[t]o contribute to improved health and environment through strengthening national and regional institutions, and implementing priority chemicals and waste related interventions in nine targeted African countries: Ethiopia, Gabon, Kenya, Madagascar, Mali, Senegal, Tanzania, Zambia, Zimbabwe. The project is structured around four overarching components: (1) Strengthening capacity [for chemicals management]; (2) Action plan development; (3) Plan implementation; and (4) Monitoring and evaluation. The work described in this report relates to Component 2, specifically Output 2.2: Identification of population sub/vulnerable group needs that are particularly exposed to chemicals and Output 2.3: Benefits and cost of action to mitigate risks and specific interventions are defined and compared to the estimated costs of inaction.

Two international NGOs, PAN-UK and Pure Earth (USA), were contracted to develop a relative ranking tool to assess the vulnerability of populations living near hazardous waste sites (PAN UK) and a tool to calculate chemicals attributable productivity losses (Pure Earth). These two tools – the 'risk and vulnerability' and 'economic' calculators are described in more detail below. The purpose of this report is to finalize both calculators and synthesize project results. It is not intended as a detailed technical manual or description of the tools, which is provided separately as 'User Manuals.¹

¹ Available at the following link: https://1drv.ms/u/s!AjyKoJoBZuIC0QDI-Q2wVsadVeeR?e=6U14Ki

Purpose of the calculators

Given the paucity of work in this area, these models are intended as a 'proof of concept' of tools that – following further improvement, review and testing – could be used in addressing significant and credible risk to human health and the environment.

Purpose of the economic calculator

The purpose of the economic calculator is to approximate the Cost of Inaction associated with chemicals exposures in the 9 project countries. In the current approach this is done through the estimation of attributable Disability Adjusted Life Years (DALYs), Full Scale Intellectual Quotient (IQ) decrement, and associated economic costs resulting from chemicals exposure.

The calculator assesses chemicals exposure across four different pathways: dietary, dust, soil and water. Users enter known chemicals concentrations for different exposed populations, along with other descriptive characteristics such as age, geography and certain intake parameters (e.g. diet and water consumption). The calculator then uses these inputs to approximate attributable disease and associated productivity losses.

The cost of DALYs is quantified as the annual cost of lost productivity due to morbidity attributable to chemicals exposure. Put differently, it represents lost earnings due to sick days or due to working while sick in a given year. The cost of IQ decrement is quantified as the total future productivity losses attributable to chemicals exposure. Put differently, the value represents decreased productivity and therefore lost earnings across the entirety of one's life because of reduced intellectual capacity.

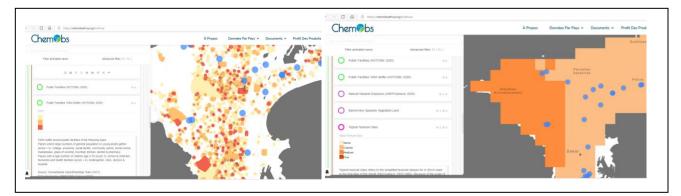
Lost productivity due to DALYs thus represents a rate, analogous to a 'flow' in economics or 'incidence' in public health. Lost productivity due to IQ represents a snapshot of estimated future losses at a given point in time, analogous to a 'stock' in economics or 'prevalence' in public health. The two are therefore fundamentally different, cannot be summed, and must always be reported separately.

The calculator accepts different types of data inputs, including environmental and biological sampling data. To allow for this level of flexibility in the model, a number of assumptions are employed at different stages. The assumptions are based on existing studies, surveys, reports, or expert opinion. The model is integrated into an accompanying Microsoft Excel workbook which automates the calculations. Associated methods and step-by-step guidance documents are provided separately².

The calculator is not intended to produce a definitive calculation of health and social consequences of chemicals exposure. Rather it presents an indicative estimate based on the best available environmental analysis data, established dose response relationships and standard approaches to economic valuation.

² Available at the following link: https://1drv.ms/u/s!AjyKoJoBZuIC0QDI-Q2wVsadVeeR?e=6U14Ki

Purpose of the Risk and Vulnerability Calculator


The Risk and Vulnerability Calculator is a decision-making tool designed to support national authorities to prioritise certain contaminated sites for risk reduction. It can support broader policy decisions concerning chemicals management and it would be of value to project managers who are engaged in planning risk reduction interventions at contaminated sites. It is designed to draw on a wide range of publicly available data about the contaminated sites in order to improve the quality of the calculations without increasing the burden of data collection for countries. It also offers countries the opportunity to incorporate their own more recent / accurate data, if available.

The target audience is expected to have concerns about one or a series of sites varying from inadequately contained chemicals stocks that are stored in poorly maintained stores, to sites that clearly show signs of soil contamination. A novel use has been added to the calculator to include pesticides in use, but this part is more experimental at this stage.

Only the minimum of data concerning the type, quantity and condition of the data needs to be gathered at national level. The remaining information required for the calculations can be drawn from publicly available sources. The calculator is supported by the MAPX UNEP/GRID-Geneva web mapping platform system which offers a rich array of data relevant to the sites as well as a display of summary results.

The tool is not designed to support the site assessment process. Existing tools are already available for this purpose e.g. FAO Environmental Management Toolkit for Obsolete Pesticides³

Figure 1. Examples of types of data made available in MAPX showing proximity of contaminated sites (marked in blue) to high risk public buildings, left, and soil type , right

³ Obsolete Pesticides: Resources (fao.org)

The calculator is explicitly not intended to produce a definitive calculation of health or environmental risk, but rather is intended to provide a relative calculation of risk based on the best available information. It is expected that higher scoring sites will be prioritised for action.

Although the calculator provides summarised scores for risks to human health or environment in order to aid simple prioritisation for intervention, it also brings together a wide range of information about the contaminated sites and the pollutants that could add value to the assessment and planning process. It helps to identify stores where repacking of chemicals is a priority and others where flooding is a risk, for example.

The calculator could also be used as a monitoring tool to track the reduction in risk scores resulting from interventions, or to predict the impact on risk score from a particular intervention. It also allows decision makers to look at summary information across a range of sites to identify common patterns. The calculator can help to identify recurrent scenarios at multiple sites that may require a common approach to reduce risks and develop prevention measures (see results from Senegal and Kenya for examples).

Calculator Development and Implementation

Summary

The calculators were developed and refined over the period 2017–2022. The process involved substantial engagement with the countries through regional workshops, country visits and online seminars and meetings. The main purpose of country visits was to identify and characterise sources of data that could be used subsequently in the calculators (see Annex1). The calculators were utilised by national consultants from December 2019 – December 2021 with the support of international experts. The results of those calculations are presented in this report. The international consultants have made themselves available to national staff and consultants for individual online support and discussion throughout the term of this consultancy. All countries have availed themselves of this support. Peer review by external experts was carried out in parallel. Comments from the reviewers and national consultants were integrated through an iterative process.

The international consultants presented the tools to a wider audience in the Pesticide Discussion Forum run by the University of Cape Town.

Figure 2. Calculator Development Process

Workshops

2017-19

Consultations with stakeholders and sharing early calculator designs / concepts

Country visits

to Gabon, Kenya, Mali, Senegal, Tanzania, Zambia, and Zimbabwe in 2019 to undertake data assessments

Peer review

In 2021 independent experts reviewed all outputs. Feedback was integrated into the calculators and guidance resources

Online coordination

Regular online coordination meetings and individual online engagement thoughout

Peer Review

Economic calculator

Two Economists from the Swedish NGO Environment for Development (EfD) were engaged for the purpose of reviewing the economic calculator. EfD is a global network of environmental economics research centres founded in 2007 and currently comprised of more than 200 economists based in the Global South. For the purpose the review, Daniel Slunge (University of Gothenburg) and Richard Mulwa (University of Nairobi) were engaged. Both individuals had been consulted by Pure Earth during the development of the economic calculator and were familiar with the project. The reviewers were tasked with evaluating the economic calculator and supporting documentation in the style of an academic journal review. Thus comments were organized from general to specific. The consultant ToR, peer review, and formal response are attached as Annex 2. In general comments were supportive of the overall approach, underlying assumptions and presentation.

Risk and Vulnerability Calculator

PAN-UK engaged two experienced international consultants in chemicals management to review the Risk & Vulnerability calculator and associated guidance documents. The review provided an independent assessment of whether the tool was effective for the intended purpose, whether it adds valuable functionality compared to existing tools, to validate the calculations themselves and suggest improvements either to the calculator or associated guidance resources.

The consultants considered that calculations are sound and based on established methodology. They perceived added value for the tool and considered that it could be of value to international agencies as well as national decision makers and project managers. New features / content were proposed for both

the calculator and the guidance, as a result of which seven new chemicals were added to the calculator along with new features to aid interpretation and new guidance resources.

The reviewers noted that the manual completion of the calculator is time consuming and considered that it would be much more likely to be used if it was automated in the MAPX system (this had already been proposed by the international consultant and the GRID/MAPX team developed outline plans and budgets for this in 2020).

It was pointed out that each chemical at a site is treated separately and then a total score for each site is a simple summation of scores for individual chemicals. An increasing body of evidence shows that mixtures of chemicals can interact and increase risks even further. While it would be straightforward to increase the risk score where certain combinations of chemicals are present, unfortunately the underlying interactions and impact on risks are complex and poorly understood and so this issue has not been addressed in the calculator at this time.

The consultant ToR, peer review, and formal response are attached as Annex 3.

Methodology

Economic Calculator

The economic calculator assesses chemicals exposure across four different pathways: dietary, dust, soil and water. Users enter known chemicals concentrations for different exposed populations, along with other descriptive characteristics such as age, geography and certain intake parameters (e.g. diet and water consumption). The calculator then uses these inputs to approximate attributable disease and associated productivity losses.

The cost of DALYs is quantified as the annual cost of lost productivity due to morbidity attributable to chemicals exposure. Put differently, it represents lost earnings due to sick days or due to working while sick in a given year. The cost of IQ decrement is quantified as the total future productivity losses attributable to chemicals exposure. Put differently, the value represents decreased productivity and therefore lost earnings across the entirety of one's life because of reduced intellectual capacity.

Lost productivity due to DALYs thus represents a rate, analogous to a 'flow' in economics or 'incidence' in public health. Lost productivity due to IQ represents a snapshot of estimated future losses at a given point in time, analogous to a 'stock' in economics or 'prevalence' in public health. The two are therefore fundamentally different, cannot be summed, and must always be reported separately.

The calculator accepts a variety of data inputs, including environmental and biological sampling data. To allow for this level of flexibility, a number of assumptions are employed at different stages in the model. The assumptions are based on existing studies, surveys, reports, or expert opinion. The model is

integrated into an accompanying Microsoft Excel workbook which automates the calculations. Associated methods and step-by-step guidance documents are available separately⁴.

Risk and Vulnerability Calculator

The calculator uses the common model of Source-Pathway-Receptor as the basis for understanding and assessing risks at a site. This model is consistent with risk screening approaches used internationally (by USEPA, WHO, FAO and others).

Three tools were used as a basis for developing the Risk and Vulnerability Calculator:

- The Blacksmith Index for contaminated sites⁵
- The FAO EMTK methodology for contaminated sites⁶
- The Toxic Load Indicator for pesticides in use⁷

A comparison of these tools with the R&V calculator is provided in the 'Note to Project Managers'⁸. The OECD working paper titled 'Chemical risk assessment and translation to socio-economic assessments'⁹ also informed this process.

We have added new variables that have not been used by existing methodologies, where data sets are relevant, available and are compatible with MAPX. This combination with MAPX offers some powerful possibilities in terms of mapping the relative risks in future and automating the bulk of the calculation process.

The calculator is organised into the following sets of information, which is summarised in Figure 3:

- **Source** information identifies the chemical pollutant(s) and an estimation of the scale of release of the chemical into the environment. The data required includes the volume, concentration, conditions of storage and size of contaminated area. This information is drawn from location-specific site questions . In an experimental use of the calculator we considered pesticides in use as well as obsolete chemical pollutants.
- Intrinsic properties that relate to the hazard from each chemical are included in the 'data sheet' in the calculator. They include measures of chronic impacts on health (carcinogenicity, reproductive and developmental toxicity) as well as acute toxicity. In addition, the calculator includes toxicity to honeybees and aquatic species. Physical properties are addressed e.g. solubility, persistence, volatility. All parameters can be reviewed in the 'data' page of the calculator.

⁴ Available at the following link: https://1drv.ms/u/s!AjyKoJoBZuIC0QDI-Q2wVsadVeeR?e=6U14Ki

⁵ The Blacksmith Index; Caravanos, Jack & Gualtero, Sandra & Dowling, Russell & Ericson, Bret & Keith, John & Hanrahan, David & Fuller, Richard. (2014). A Simplified Risk-Ranking System for Prioritizing Toxic Pollution Sites in Low- and Middle-Income Countries. Annals of Global Health. 80. 10.1016/j.aogh.2014.09.001.

⁽PDF) A Simplified Risk-Ranking System for Prioritizing Toxic Pollution Sites in Low- and Middle-Income Countries (researchgate.net)

⁶ FAO Environmental Management Toolkit for Obsolete Pesticides (EMTK) series (later adapted by UNEP/GRID-Geneva) <u>http://www.fao.org/3/i0473e/i0473e.pdf</u>

⁷ The Toxic Load Indicator by Lars Neumeister

https://www.researchgate.net/publication/319259870_Toxic_Load_Indicator

⁸ Available at the following link: <u>https://1drv.ms/u/s!AjyKoJoBZuIC0QDI-Q2wVsadVeeR?e=6U14Ki</u>

⁹ Chiu, W. (2017), "Chemical risk assessment and translation to socio-economic assessments", OECD Environment Working Papers, No. 117, OECD Publishing, Paris. http://dx.doi.org/10.1787/a930054b-en

- **Pathway** The pathway describes the route to exposure to the chemical, either directly when handling it or in soil, dust, water or air. By separating the calculations into different 'pathways' we are able to combine relevant indices in the final calculations e.g. For the water pathway, proximity to open water sources and annual precipitation are included. In the final calculation they are combined with relevant intrinsic properties, such as solubility (see above), to contribute to a final score.
- **Receptor** information concerns the population at risk of being exposed to pollution from the site. The calculator separates the human population into three groups; people working directly on the site; people living within 100m of the site perimeter; people living 100-500m from the site. These are further disaggregated according to age and gender and contribute to the 'health score'. Receptors also include other key species, which are included in the 'environmental score'; in this case we considered aquatic organisms (*Daphnia* spp) and honeybees. These were chosen on the basis that data is available for these organisms for a wide range of chemicals. Also, a strong correlation exists between Daphnia species (mostly *Daphnia magna*) and both fish species (mostly rainbow trout [*Oncorhynchus mykiss*] and bird toxicity (mostly *Colinus virginianus*).

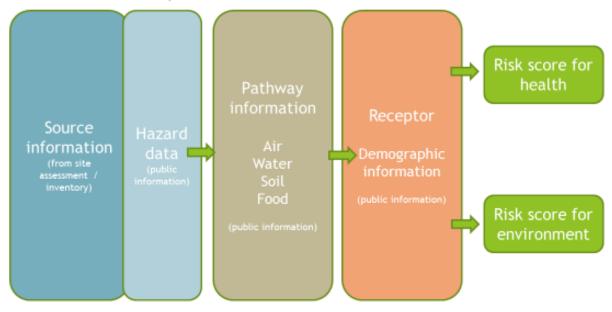

Along with numerical values for each variable, they are assigned a weighting in order to reflect their contribution to risk in the final score e.g. children and women of reproductive age are weighted more heavily because of their greater vulnerability to health impacts from chemical pollutants. The full list of variables and their weightings are provided in Annex 4. A full description of each calculation is provided in Annex 5

Figure 3. The structure of the Risk and Vulnerability Calculator

The Risk and Vulnerability Calculator

A tool for environmental management planning and understanding the relative risk of different sites and pollutants

Sources of information for the R&V calculations

Site Questions

A minimum set of information is required from each site in order to run the calculator. An understanding of the volume and concentration of the chemical is needed either from labelled containers or sample analysis. This minimum information is compiled in a single **'Site Questions' sheet**, which can easily be distributed to project managers and other project staff, provided in Annex 6. The necessary information must be collected locally or drawn from grey literature from trusted sources e.g. university studies, government inventories. An important source in this case proved to be the Toxic Site Identification Program (TSIP) database developed by the US NGO, Pure Earth. The TSIP data is now integrated into the MAPX system and made available to end users.

MAPX

<u>MapX</u> is an open source web mapping platform developed by UN Environment, the World Bank and the Global Resource Information Database (GRID-Geneva) dedicated to data sharing, dissemination and visualization. The goal of MapX is to ensure that different stakeholders have access to the best available data to improve mapping, monitoring and decision-making processes related to the sustainable management of natural resources. For the purpose of the Risk and Vulnerability Calculator, MapX makes available a wide variety of geospatial data, including relevant indices such as land use, soil type and proximity to open water sources. The information is arranged in a similar order to the calculator with menu options for different pathways (air, water, soil) and demographic data under 'receptors'. This minimises the information needed directly from the site, but can be replaced if more accurate/recent

data is locally available, giving local stakeholders more control of the process and a means to progress even when access to data is minimal.

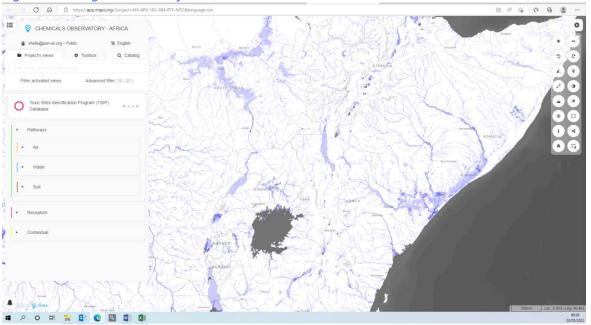


Fig. 4. Showing ChemObs Africa data in MAPX

The panel on the left of Fig. 4 is arranged with pathway and receptor information ordered in a similar way to the calculator. In this example the map is showing information about areas prone to flooding in Kenya, which is selected from the water pathway menu on the left.

Outputs from the R&V calculator

Scores

The primary results from the R&V calculator are two scores, one concerning risk to human health and the other concerning risk to the environment. These are relative score with no units. They are used to compare one site with another in a very summarised way in order to support prioritisation. The scores could be used to compare individual sites or to compare one group of sites with another e.g. lead contaminated sites with pesticide contaminates sites or to compare sites in different geographical areas.

Comparison with benchmark site

There are no threshold values in the calculator. However, to help compare site scores with a site that is considered relatively low risk, we have added a fictional 'benchmark' site in the calculator. The full information about this site is found in the 'Benchmark site' tab of the calculator. The benchmark site is a site with 5000l of each of two hazardous pesticides, DDT and Alachlor, stored in good condition in a sparsely populated area. The site scores relatively low for risk to human health and environment.

Red flags

A calculation represents a compilation of a wide range of data concerning a particular site. In order to help with the interpretation, a 'red flag' feature has been added which highlights certain features of the sites which may be of particular importance. Of course, the end users does not need to be limited to this information if other features are of particular importance or interest.

Figure 5 Table summarising 'red flag', 'people at risk' and hazard information

F	ed flags due to s	ite conditions		People at risk			Hazard (score 1-10 with 10 being the highest hazard level)				
Poor / very poor container condition	Flood risk?		High risk public building <100m	On site	<100m	100-500m	Acute toxicity to mammals	High chronic toxicity to	Toxicity aquatic organisms	Toxicity bees	Persistence
yes	-	-	-	2	23	292	5	TRUE	5	1	1
	* Chronic toxicity combines scores for cancer, mutagenicity and reprotoxicity. If any of these parameters scores 7 or more then the box will ind							these			

parameters scores 7 or more then the box will indicate 'True', a score of 6 or under for all three parameters reads 'False'

If the container condition is poor or very poor, then this will be flagged red to indicate that an important action to reduce risk at the site would be to repack the chemicals into safer containers. This should be done with caution, following relevant guidelines. If the site is prone to flooding or natural disasters then this will also be flagged red. Finally, we have provided a red flag where high risk public buildings are within 100m of the site. These include schools, hospitals, churches, markets, social venues and other sites where a large number of the public gather, particularly vulnerable people such as children and medical patients.

People at risk

The calculator separates the human population into three groups; people working directly on the site; people living within 100m of the site perimeter; people living 100-500m from the site. Summary information on the number of people in these three groups is provided alongside the 'red flag' information in both the 'calculator' and 'summary results' tabs of the calculator. These groups are further disaggregated according to age and gender within the calculator.

Hazard data

The full range of hazard information used in the calculator is provided in the data sheet of the calculator. At present, the calculator includes 16 industrial chemicals and 80 pesticides (provided in Annex 7) For the acute toxicity scores (for mammals, bees and aquatic organisms) scores of 7 or higher are flagged red. The chronic health effects score is drawn from the scores for carcinogenicity, mutagenicity and reprotoxicity. If any one of these scores 7 or higher then the box will indicate 'true' in red as shown.

How the R&V calculations were completed

In order to use the calculator, national consultants were tasked with collecting data concerning sources of chemical pollution that met the minimum requirements to complete the basic 'site questions'. Consultants were advised to focus on data that was under five years old. If the chemical pollutants at these sites were not already available in the calculator data sheet, the consultant was asked to alert the PAN-UK team so that they could be added. Several of the national consultants struggled to access much data. The primary sources were the Pure Earth Toxic Sites Identification Programme (which has been linked to the MAPX system to make the data available to consultants and national teams), government inventories of pesticide stocks and Minimata assessments or artisanal mines.

National consultants were invited to collect any additional and relevant information that was available for the identified sites to use in the pathway and receptor questions. Where the information was lacking to complete the later questions, consultants were advised to access the information in the MAPX system. The consultants were then tasked with running the calculations in order to obtain the scores and they were asked to save their calculations for future reference.

Resources

The following resources have been developed to assist use of the two calculators:

Calculator	Resources	Date of latest version
R&V Calculator	Updated PAN R&V calculator (EN)	29 th March 2022
	A note to project managers and decision makers concerning	29 th March 2022
	the purpose of the 'R&V Calculator'	
	and the interpretation of results (FR/EN)	
	'R&V Calculator' A user manual (FR/EN)	16 th March 2022
	Video R&V scores (EN)	16 th March 2022
	Video Using the summary results tab in the R&V calculator (ChemObs) (EN)	16 th March 2022
	Video tutorial 'Completing the R&V Calculator Parts I & II (EN)	29 th March 2022
Economic calculator	Updated Economic Calculator (FR/EN)	1 May 2022
	Updated Methods document (FR/EN)	1 May 2022
	Updated Step-by-Step (FR/EN)	1 May 2022
	Video Tutorial (3 videos) (EN)	14 March 2022

Table 1. Resources developed to support the two calculators

Calculators and guidance available here: <u>https://ldrv.ms/u/s!AjyKoJoBZuIC0QDI-Q2wVsadVeeR?e=Boh5sq</u>

Country Level Reporting

Each of the countries involved in the project submitted reports to the Executing Agencies at different stages of the project which were in turn shared with the international consultants. These included a baseline report during the project preparation phase and progress reports submitted in 2020. Most countries submitted either economic or risk and vulnerability calculations. Six countries (Ethiopia, Kenya, Madagascar, Senegal, Zambia and Zimbabwe) submitted both. These reports were shared in various stages of completion with some of the more comprehensive submissions (e.g. Kenya, Senegal) including multiple sites presenting different contaminants in different regions. Other countries developed less rigorous submissions, including some having been completed with a single site example.

In addition to operational reports and completed calculators, a number of supplemental narrative reports were drafted and submitted by countries. There was some variation between these reports on theme and

scope, though all related to chemicals and health in the target countries. Despite that variation, the net result of these submissions is a fairly comprehensive review of the thematic area.

	r		1								
	Baseline Report	Progress Report	Economic Calculator	R & V Calculator	Cost benefit	Data survey	Vulnerability	Policy and action plan	Theory of change	Guidedev	Additional reports
Ethiopia											Prioritisation scoping; Situation assessment, Stakeholder mapping
Gabon											
Kenya											
Madagascar											
Mali											Monitoring and evaluation report
Senegal											
Tanzania											
Zambia											
Zimbabwe											Prioritisation mapping, Project proposal
Total	8	2	6	4	6	6	4	3	5	3	

Table 2. Summary of the documents received and reviewed for this report, organized by project country.

<u>Baseline Report</u> – General information on chemicals and health organized during the Project Preparation Grant Phase <u>Progress Report</u> – Operational report on work conducted

Economic Calculator – Completed Excel document with site specific information entered

R & V Calculator - Completed Excel document with site specific information entered

<u>Cost benefit report</u> – Assessment of cost of inaction on chemicals pollution. Sometime relying on, other times referencing the Economic Calculator.

Data survey - Report of available environmental and health data identified by national consultants

Vulnerability report – assessment of a country's vulnerability to human health effects of chemical pollution

Policy and action plan - review of relevant national laws, regulations and programmes

<u>Theory of change report</u> – a narrative description of the current institutional context for the project and possible levers for precipitate action on chemicals and health

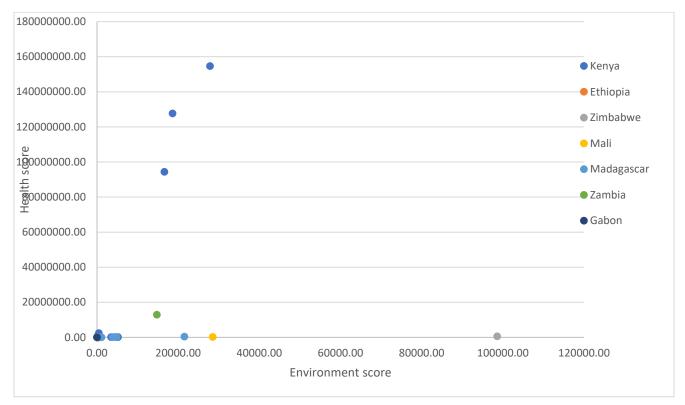
Guidedev reports - a review of existing national regulatory framework relating to chemicals management

The present report is restricted the use of risk and vulnerability and economic calculators only. Thus, while the other reports mentioned above provide important contextual information, they are not synthesized or assessed here. An exception is when these reports include information relating specifically to the use of the risk and vulnerability and economic calculators. A separate exception is when countries have opted to develop their own methods to reach the ends of the calculator, as Gabon has done for the cost of inaction. In both of these cases, the presented data are reviewed and summarized below.

Results

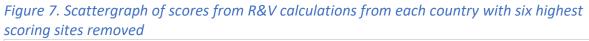
Results of Risk and Vulnerability Calculations

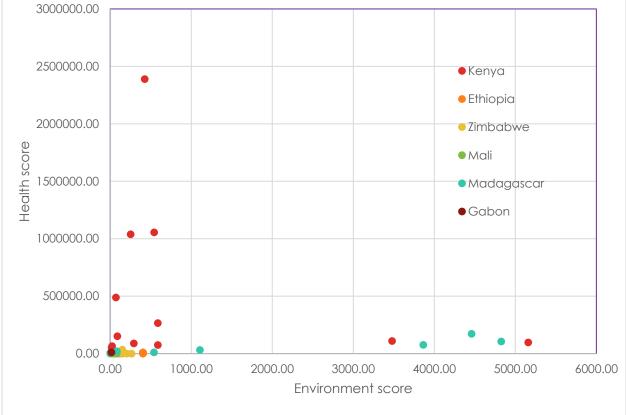
The results show that the number of sites and the type of chemicals for which data was available varied greatly from country to country. The final calculations can only reflect sites for which data was available of course and these may not represent the full range of chemical pollutants and sites in the country. More detailed results for each country are provided in annexes 8 - 15.


Table 3. Summary	results b	y country
------------------	-----------	-----------

Country	Data used in calculator	Key Findings and Recommendations
Senegal	32 lead contaminated sites 9 pesticide stores / contaminated sites 33 mercury contaminated sites	Two sites identified with extremely high risk scores Pesticide store (chlorpyrifos) belonging to DPV in Dakar Group of garages (lead) in Dakar Both lead and chlorpyrifos affect neurodevelopment and are disproportionately harmful to children. Both priority sites are located in highly populated areas After these two sites, the next highest risk group of sites are garages contaminated with lead Artisanal mines have been identified that are contaminated by mercury. The relatively low average score for the sites may mask very high risk for individuals working directly at the site Additional data concerning workers at the site and contamination of water and food would be advisable
Madag- ascar	1 lead site 3 mercury sites 3 chromium sites 3 PCB sites 1 locust control area – pesticides in use	 Work ongoing. Report should clarify findings and discuss recommendations. Additional resources have been provided to support data analysis and interpretation (March 2022). Difficulties accessing quality data Relatively high-risk site identified at Andralanitra (lead) Ambalavato sud, Antsirabe and Ambohimanambola are priority sites for PCBs Chlorpyrifos at several sites (pesticide used in locust control and for other crop pests) Andralanitra reported lead, mercury, arsenic and chromium contamination
Gabon	1 site of lead pollution 7 sites PCBs 4 sites pesticides in use Manganese Asbestos	Lack of data A high priority site for PCBs at an equipment store identified in Libreville Lack of data on lead. One contaminated site with relatively high risk identified at Mindoube The pesticide sites were for <u>pesticides in use</u> and lower risk within the limited scale of the sites identified Manganese and asbestos were not available in the calculator (asbestos has been added)

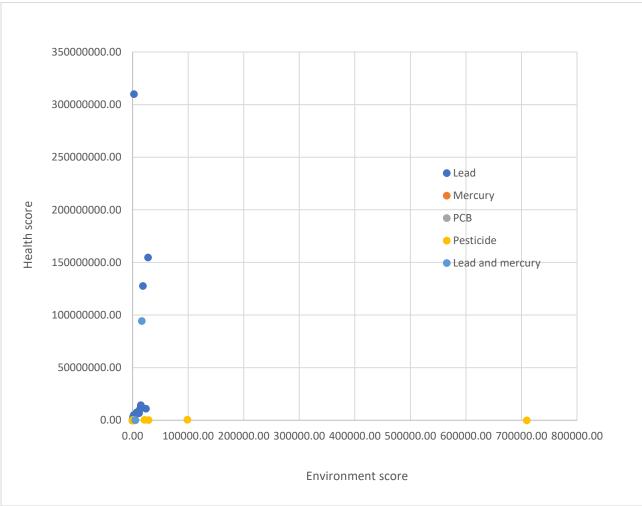
Mali	A questionnaire was used to access data for 6 contaminated sites, pesticides	A site at Niono scored much higher for risk than other sites identified. Parathion (OP, class 1a), chlorpyrifos profenofos Lack of data; recommendations made concerning improving data collection for chemicals and accessing such data as exists Communications being prepared to raise awareness of risks with focus on gender Lack of suitable storage for chemicals
Ethiopia	35 DDT stores	 10 high priority sites identified, mainly health services stores Issues identified include: Lack of monitoring and enforcement Lack of disposal facilities Lack of coordination on chemicals issues
Kenya	32 sites contaminated with lead and mercury, DDT and PCBs	3 sites emerged as very high risk in terms of exposure to lead poisoning. These sites included Kayole Informal ULAB Recycling Area, AP Lead Acid Battery Recycling Company and Dandora Municipal dumpsite Despite having been decommissioned, the Kitengela Obsolete chemicals storage site had a high risk score, ranked fourth out of the 10 most polluted sites
Tanzania	Failure to access suitable data prevented the use of the calculator	The reports reference useful local studies on artisanal mining and mercury; sources of lead pollution, pesticides in foodstuffs including a useful review by Kwango in Dar on vegetable residues. TSIP data is available but was not used in the calculations
Zambia	2 DDT sites 2 lead sites 1 deltamethrin site	Calculations and interpretation missing from report Kabwe lead mine was identified as a high risk scoring site An interesting use of the calculator for indoor residual spraying of DDT Additional material gathered e.g. on skin lightening creams, poisoning incidents, household pollution
Zimbabwe	9 pesticide stores 1 site with pesticide- contaminated soil Some assumptions were made due to missing details	Pesticide-contaminated sites were prioritised based on data from 2016, which showed sites with high contamination including with POPs The results have been used to develop a proposal to update / validate the available data and safeguard obsolete pesticide stocks


Figure 6. Scattergraph of scores from R&V calculations from each country


The graph shows that three sites in Kenya scored extraordinarily highly for risk to human health. These sites are Kayole Informal ULAB Recycling Area, AP Lead Acid Battery Recycling Company and Dandora Municipal dumpsite. They are all located in densely populated urban areas where there is open access and large numbers of waste pickers / workers. At Dondora, for example, estimates of numbers of waste pickers living and working on the site range from 3000 – 9000. The team used the higher end estimate in the calculations. More work is needed to determine a more accurate figure. There is a wider difficulty in sites such as open dump sites and artisanal mines that are open access, since the numbers living and working at the sites are rather fluid and difficult to obtain. Notwithstanding this caution over the numbers, there does appear to be a significant risk at large dumpsites in densely populated, urban areas with a highly vulnerable population living and working in and around some of these sites. Zambia has a very high scoring and extensive site at Kabwe mine, which is heavily contaminated with lead.

The site scoring highest for risk to environment was at Gwebi Agricultural College, where m² of soil is heavily contaminated with fenitrothion. Mali also had a very high scoring site at Niono which is contaminated with parathion, chlorpyrifos and profenofos while in Madagascar a site at Ambohibao contaminated with chlorpyrifos also scored highly.

If the seven highest scoring sites are removed from the graph, one has a better view of the spread of scores for the remaining sites.



This graph shows that Kenya has many of the highest scoring sites, although this may be a function of the number of sites for which data was available for the calculations. Madagascar had several high scoring sites for risk to environment including two sites contaminated with PCBs (JIRAMA Ambohimanambola and Ambalavato sud Antsirabe) and one site contaminated with lead and mercury (Andralanitra). Madagascar is currently compiling new data and it would be interesting to see what it reveals in the calculations.

Comparing scores for different chemical pollutants

Looking at scores across all sites for the different pollutants, the data we have indicates that many lead contaminated sites in particular pose a high risk to human health, while there are two pesticide-contaminated sites which score very highly for risk to the environment.

Figure 8. Scattergraph comparing R&V scores for each type of chemical pollutant across all countries

Results of economic calculations

This section summarizes the results of the use of the economic calculator by country. In most cases a summary of the work conducted and the major results are presented. In the case of Gabon, an alternative approach is summarized. In the cases of Ethiopia and Mali insufficient data were shared with the international consultants to calculate productivity losses. Table XX presents a summary of the productive loss estimations by country and other general descriptive information.

	DALYs (USD)	IQ decrement (USD)	Total Exposed Population	Total Exposure Scenarios	Exposure Pathways Assessed
Ethiopia					
Gabon	515,500		150,000	3	Soil
Kenya	14,501,630	258,603,464	1,001,800	111	Dietary, Dust, Soil, Water
Madagascar	212,675	56,778,396	540,000	18	Soil, Water
Mali					
Senegal	177,000	43,000,000	24,600	84	Soil
Tanzania	21,246,040	0	992,700	90	Dietary, Dust, Soil, Water
Zambia	20,844	11,000,000	8,000	8	Dietary, Soil
Zimbabwe	13,474,294	120,091,020	1,970,600	99	Dietary, Dust, Soil, Water

Table 4. Productivity loss estimations by country

Gabon

At the request of Gabon, during the period covered by the report the international consultants developed a crude preliminary method for the calculation of productivity losses associated with Manganese soil exposure. The values presented by Gabon in their cost of inaction report are presented in that model in Table 5. No other chemical exposure data was presented by Gabon.

Table 5. Preliminary values for productivity losses associated with Manganese exposure in Gabon.

Exposure scenario	Soil concentration	Per capita losses (USD)	Exposed population	Associated productivity
			(Children 0-7 years)	losses
Low	< 10,000 mg/kg	0	0	
Moderate	10,000 – 20,000 mg/kg	2.50	0	
High	> 20,000 mg/kg	3.43	150,000	USD 515,500

Kenya

Kenya completed and submitted one of the more comprehensive economic calculators in the project. The

national consultants entered data across three major exposure pathways: soil, dietary and water. In total 111 different exposure scenarios comprising over a million people were entered. Contaminants assessed include aldrin, alpha and beta Hexachlorocyclohexane (HCH), chlorpyrifos, dieldrin, dimethoate, heptachlor, lead, malathion and p,p'dichlorodiphenyltrichloroethane (DDT). The

	DALYs	IQ decrement
Dietary	569	103,412
Soil	5,836	125,718
Dust	0	491
Water	40	9,261
Total	6,444	238,881
Cost per DALY Cost per IQ point	2,250 1,083	
Cost of DALYs (USD) Cost of IQ decrement (USD)	14,501,630 258,603,464	Economic Inputs

completed calculator represents a substantial effort to aggregate and standardize data collection in the country. These data were initially entered into the beta version of the calculator which contained multiple syntax errors and as such presented unrealistic and unreliable results. Importantly however, the Kenyan national consultants entered data meticulously and accurately. Thus when the syntax errors were repaired in the calculator, a revised estimation of productivity losses was easily calculated. The same data could continue to be used as updates are made to future versions of the calculator.

Chemical exposures in Kenya were found to result in a total of 6,444 DALYs and 238,881 lost IQ points. These losses were valued at USD 12 million and USD 258 million respectively.

Madagascar

Madagascar's completed economic calculator included two exposure pathways: water and soil. In total the completed calculator characterizes 18 different exposure scenarios comprised of 540,000 people. The consultants assessed three different chemicals: arsenic, lead and mercury. All data reported in Madagascar were taken exclusively from government

	DALYs	IQ decrement
Dietary	0	0
Soil	459	284,062
Dust	0	0
Water	0	0
Total	459	284,062
Cost per DALY Cost per IQ point	463 200	
Cost of DALYs (USD) Cost of IQ decrement (USD)	212,675 56,778,396	Economic Inputs

reports. This is distinct from all other countries participating in the project which relied heavily on the peer-reviewed literature.

Senegal

Senegal completed one of the more comprehensive calculators as part of the project. Using data primarily collected by the US NGO Pure Earth, the consultant entered site specific soil contamination data for 84

different exposure scenarios comprising 24,600 people. include aldrin, chlordane, chlorpyrifos, dieldrin, dichlorvos, lead, mercury and p,p'dichlorodiphenyltrichloroethane (DDT). No data were entered for either water or dietary exposure pathways. This was likely due to the near exclusive use of Pure Earth's dataset, which tends to focus on soil

	DALYs	IQ decrement
Dietary	0	0
Soil	107	37,173
Dust	0	0
Water	0	0
Total	108	37,173
Cost per DALY Cost per IQ point	1,651 1,173	
Cost of DALYs (USD) Cost of IQ decrement (USD)	177,518 43,617,444	Economic Inputs

contamination. A more rigorous review might also consider the peer-reviewed literature and government sources.

In total the chemical exposures assessed by the calculator in Senegal amounted to USD 43 million in productivity losses from IQ decrement and USD 177 thousand in losses attributable to DALYs.

Tanzania

Tanzania's completed economic calculator included three exposure pathways: dietary, water and soil. In total the completed calculator characterizes

90 different exposure scenarios comprised of 992,000 people. Assessed contaminants include aldrin, alpha and beta Hexachlorocyclohexane (HCH), dieldrin, heptachlor epoxide, lead, mercury, and p,p'-Dichlorodiphenyl dichloroethane (DDD). Importantly, Tanzania's calculator characterizes adult exposures only. Children (0-7 years) have not been considered in any

	DALYs	Q decrement
Dietary	5	0
Soil	18,297	0
Dust	0	0
Water	1	0
Total	18,303	0
Cost per DALY Cost per IQ point	1,161 562	
Cost of DALYs (USD) Cost of IQ decrement (USD)	21,246,040	Economic Inputs

of the exposure scenarios. Thus productivity losses are calculated for carcinogens and heart disease attributable DALYs only. If the calculator were expanded to also include entries for children the total cost would be substantially larger than the present estimate.

Zambia

Zambia's economic calculator included two exposure pathways at a single site, the Chowa neighbourhood of the city of Kabwe. Lead contamination resulting from a mining-smelting complex has been well characterized in the city of Kabwe, which has been the subject of multiple peer reviewed journal articles and two World Bank supported projects to mitigate the contamination. If the calculator were expanded beyond this single neighbourhood, the total cost would be substantially larger than the present estimate. The current version of the Zambia calculator includes 8 exposure scenarios comprised of 8,000 people

that include both adults and children. The total cost in DALYs for community was estimated at USD 20,844 and in IQ points as USD 11 million.

Zimbabwe

The consultants from Zimbabwe completed one of the more comprehensive calculators received by the

international consultants. The calculator utilizes all four available pathways and considers 99 exposure scenarios comprised of nearly 2 million people. Both adults and children were considered as were a range of contaminants, including arsenic, dimethoate, lead, mercury, and p,p'-Dichlorodiphenyltrichloroethane

(DDT). In nearly all cases the source of data

	DALYs	IQ decrement
Dietary	166	155,573
Soil	132	97,304
Dust	1	972
Water	11,611	52,198
Total	11,910	306,046
Cost per DALY Cost per IQ point	1,131 392	
Cost of DALYs (USD)	13,474,294	Economic Inputs
Cost of IQ decrement (USD)	120,091,020	

was cited, allowing entries to be independently confirmed. Several of the initial population estimates exceeded realistic scenarios and were scaled back to more conservative estimates. The total costs of chemicals exposures in Zimbabwe were estimated to be USD 13 million form disability adjusted life years and USD 120 million from IQ point decrement.

Lessons Learned

Data availability and access

With regard to environmental monitoring data, the existent data varied substantially in geographic and chemical scope. In general reasonably recent and comprehensive government data on effluent and point source air emissions were available on large industrial installations in most countries. Municipal drinking water in large cities was also reasonably well monitored. By contrast data on informal industry or contaminated sites tended to be more ad hoc having been collected by academics, NGOs or UN agencies. TSIP data, POPS assessments and mercury assessments under Minamata were useful sources of data for the R&V calculations.

With regard to availability, environmental data held by government agencies could almost universally not be accessed. In some cases this was due to logistical challenges. Data were rarely networked; information tended to be stored on single computers as either Excel spreadsheets or, more commonly, as PDFs, Word documents, or similar. In many cases, only hard (i.e. paper) versions of results were available. Administrative challenges also existed. Procedures to access were unclear and there was limited willingness at the agency level to make data available. By contrast, data from academics, NGOs, and UN Agencies was generally readily available.

With regard to health monitoring data, in general data does seem to exist in each country. These data are typically stored in a regularly updated health information system (HIS) database that is regularly updated. However, data on incidents of poisoning recorded by the HIS system is seemingly very limited Like government environmental monitoring data, these data were not readily available to international consultants. Annex 1 reports on the results of country visits carried out by the consultants.

Mercury use in artisanal mines is a concern in several countries and the calculator has been used with soil data from these sites. Of course, it can be extremely locally concentrated and average levels over a site may mask significant variation and fail to take sufficient account of the extreme risk of individuals directly handling the mercury at the site. Landfill sites for mixed waste are important source of pollution but difficult to assess with this method due to wide variety of pollutants and variability in time and space. It can be difficult to get accurate estimates of people working directly at both these types of sites since they are informal workplaces and open access. Numbers can be rather fluid.

Technical limitations

At present the R&V calculator does not include risk of fire or flammability of the materials.

The pathway data is fairly laborious to collect from MAPX. The hope is that this will be automated in future, making the calculator much quicker to complete

Interactions between chemical pollutants can increase risk. It would be technically straightforward to adjust the calculations scores according to different pollutants present but their interactions are complex and poorly understood, so it was felt that this was beyond the scope of the current exercise

National capacity to complete calculations

Eight of the nine countries completed either a Risk and Vulnerability or Economic Calculator as part of the project. Of these, six managed to complete both. There was substantial variation between the quality and comprehensiveness of the submitted data. In the more successful cases a large amount of site data was entered correctly allowing for subsequent calculations. In the less successful cases more limited site data was entered and often in the wrong format. In general the barriers to completing robust calculations were more closely related to data access or operational considerations than to technical challenges. Data access issues are described above.

Operational challenges included a lack of synchronisation between national and international consultant contracts over the 5-year project time frame and multiple challenges of operating during the COVID-19 pandemic. Of note, field trials for both calculators were mostly carried out in 2020. This lack of synchronisation resulted in the occasional absence of technical support for national consultants and – perhaps most significantly – substantial delays in correcting syntax issues with the economic calculator.

Technical challenges encountered by the national consultants were relatively small in number. To some extent this confirms that the calculators and associated guidance are organized in a logical and intuitive manner. It was also likely due in part to the overlapping 'belt and suspenders' approach to project implementation. Specifically, the project developed multiple guidance documents and instructional videos to facilitate independent learning of the tools. These were supported by in person and online trainings as well as through pre-recorded video instruction. Finally, the ChemObs tools were integrated into a certificate course at the University of Cape Town in which several country representatives and national consultants were enrolled.

The lack of technical challenges can also be attributed to the high capacity of the national consultants engaged. In general, the consultants possessed a professional level of knowledge on issues of chemicals and human health and maintained robust networks.

Conclusions

The results of the project varied substantially across the targeted countries. In the least successful cases, adequate data could not be identified or accessed by national consultants resulting in incomplete or nonexistent calculations. In the more successful cases, a large amount of data on multiple chemical exposures sources were identified, accessed and organized. In these cases different exposure pathways were considered. Reasonable estimates of costs of inaction were developed and sites were evaluated for their relative risk to the human health and the environment. The calculators were then revised in an iterative process and refined based on user feedback. The result is a set of calculators that could be readily employed in future projects. They have been externally reviewed and received broadly positive endorsement.

All data collection and calculations were completed by national consultants or country representatives. This is distinct from previous similar efforts which have often relied more heavily on international consultants.

A significant challenge for many of the countries was accessing suitable data, as described in the previous section. While many studies of chemical pollution have been done by various institutions in most of the countries, it is not collected or listed centrally in any of them and data is rarely networked or stored in a format that could be easily collated. Administrative challenges also existed between different ministries and institutions. By contrast, data from academics, NGOs, and UN Agencies was generally readily available. This, perhaps, points to the value of having an institutional role for bringing such data together, which would offer opportunities to better identify and address gaps as well as ensuring consistent and compatible methodology so that such resources as there can be better used. Access to data in the MAPX system proved to be a very valuable resource for the R&V calculations and, beyond that, it would be valuable for project managers and planners working as well as policy makers..

It is worth noting that the results of the calculations at the national level reflect some of the challenges encountered by the international consultants during country visits. Specifically, the calculations in the economic calculator universally rely on peer-reviewed studies rather than government monitoring data. It is likely that this reflects challenges related to availability rather than the existence of data. The R&V calculations are also limited to sites where the minimum data is made available. In Ethiopia, for example, calculations were limited to government DDT stores but other types of chemical pollutants do exist in the country.

The R&V calculations identified a widespread and significant risk to human health from lead pollution in particular. The problem of waste dumps and recycling facilities with high levels of lead contamination, often located in densely populated areas with open access, represent a particular problem across multiple locations. Some heavily contaminated sites with pesticides also scored very highly. These latter sites are often government-owned pesticide stores.

The R&V calculator was tested on data for pesticides in use and indoor residual spraying. This rather innovative use of such a tool seems to be worthy of further testing and development.

Annex 1. Summary results of data assessments in participating countries

*Data assessment was not undertaken by the international consultants in Ethiopia and Madagascar

Type or source of data	Kenya	Tanzania	Zambia	Zimbabwe	Ethiopia	Gabon	Madag- ascar	Mali	Senegal
HIS	> 85 % capture of cases presenting at medical services	Exists % capture unknown	Exists, extent unknown	> 90 % coverage		Exists diseases registered in health structures across the country		Exists diseases registered in health structures across the country	Exists Diseases registered in health structures across the country
Ambient Air Quality Monitoring	1 regular ambient air monitor (Nairobi). AP monitoring done as part of GMP	Limited air monitoring as part of GMP but no data in the GMP data warehouse - recetox	2 regular ambient air monitors (Lusaka and Copperbelt). AP monitoring done as part of GMP	None		None. Pilot project with Oregon University		None. AP monitoring done as part of GMP and MONET Africa at Sotuba	Regular ambient air monitor at Dakar. AP monitoring done as part of GMP (at Ngoye)
Point source air monitoring	Unknown	None	Unknown	Quarterly monitoring of 2000 sources. Stored in Excel		None		None	None

									PESTICIDE ACTION NETWORK UK
Type or source of data	Kenya	Tanzania	Zambia	Zimbabwe	Ethiopia	Gabon	Madag- ascar	Mali	Senegal
Surface and groundwat er monitoring	Regular, comprehensive monitoring of major rivers by WARMA. NEMA take the lead on effluent monitoring.	Water testing is funding- dependent, data difficult to access and not digitised	Unknown	Monthly monitoring of 364 points nationally. Stored in Excel.		Monitor major rivers and ground water by Directorate of water resources		Monitoring of major rivers and groud water	Monitoring of major rivers and groud water (DGPRE)
Drinking water monitoring	Unknown	See above	Done by private providers. Chemicals analysis in Copperbelt only.	< Semiannual sampling of municipal water supplies annually. 2000 samples total stored in hard copy		Done by private providers		Laboratoire national des eaux	Done by private providers
Other chemicals imports	Unknown	Types Quantities tbc Held by GCLA	Unknown	Types and quantities		Unknown		Unknown	Unknown
Pesticide register	Yes	Yes HHPs being identified	unknown	unknown		Unknown		unknown	Unknown
Pesticides imports and exports and domestic	Types and Quantities import and export data held by PCPB database.	Types and quantities held in digitized form (tbc). Apparently no pesticides are exported.	Types	Types and quantities		Unknown		Types and quantities held by National Directorate of Agricultue (tbc).	Types and Quantities import held by DPV. Export data held by SPIA (pesticide

									PESTICIDE ACTION NETWORK UK
Type or source of data	Kenya	Tanzania	Zambia	Zimbabwe	Ethiopia	Gabon	Madag- ascar	Mali	Senegal
production / formulatio n	Empty container problem.	TPRI test pesticide quality, issue import licenses and hold data.						No pesticides formulation in the country. Empty container problem	company). Empty container problem
Farming systems (distributio n of crops and large vs small farms)	Unknown Approx. 40 pesticides distribution companies	Unknown	Exists, extent unknown	Unknown		Exists, extent unknown		Exists, extent unknown	Exists, extent unknown
Pesticides residue in food	Exports assessed by parastatal lab KEPHIS. Domestic food not assessed	TFDA conduct routine residue analysis for export crops. GCLA conduct analysis for disputes / verification.	Not assessed	Not assessed		Labs exists. Lack resources. No systematic analysis		Central veterinary laboratory (GMP lab) routine residue analysis. No systematic.	Ceres Locustox (GMP Lab) conduct some residue analysis in vegetables, water, soils.

									PESTICIDE ACTION NETWORK UK
Type or source of data	Kenya	Tanzania	Zambia	Zimbabwe	Ethiopia	Gabon	Madag- ascar	Mali	Senegal
Toxic Sites Identificati on Program	126 sites	170+ sites	2 sites	17 sites		None		Unknown	21 sites identified by Pure Earth
Monitoring industrial facilities	Environmental audits online. 2000 facilities checked for effluent water quality. New regulations in draft. Inventorising industrial chemicals and enterprises has started in 4 counties.	EIAs hard copy only. A limited database at NEMC lists locations and sector of facilities that have an EIA.	Unknown	Unknown		None		Unknown	Environmental audits and control by DEEC.
Global Monitoring Program	Yes Conducted by the University of Nairobi	Yes. See air quality monitoring	Yes	No		None		Yes. Conducted by CVL and Health directorate coordinated by DNACPN	Yes Conducted by Ceres Locustox and Poison Center coordinated by DEEC
Waste (all types)	Significant problem all kinds of waste	Very significant problem				Significant problem all kinds of waste		Significant problem all kinds of waste	Significant problem all kinds of waste

									PESTICIDE ACTION NETWORK UK
Type or source of data	Kenya	Tanzania	Zambia	Zimbabwe	Ethiopia	Gabon	Madag- ascar	Mali	Senegal
	and concern regarding incineration facilities. Data unknown.	Individual studies show high levels of contamination at recycling facilities in urban areas				and concern regarding incineration facilities. Data unknown.		and concern regarding incineration facilities. Data unknown.	and concern regarding incineration facilities. Data unknown.
Baselines assessment for Minamata	Unknown	Yes	Unknown	Completed by consultant. Submitted to Africa Institute		Yes in progress		Yes in progress	Yes.Done
Demograp hic and social data	Yes A new census by KNBS due 2019 (last one 2009) See also <u>Kenya</u> <u>Demographic</u> <u>and Health</u> <u>Survey</u> 2014 <u>http://statistics.k</u> <u>nbs.or.ke/nada/i</u> <u>ndex.php/catalo</u> <u>g/74</u>	Yes National household surveys conducted by NBS. Data available online.	Unknown	Unknown		Yes. Some data available online with General Directorate of Statistics		Yes. No specific data on chemicals.National household surveys conducted by National Institute of Statistics.Some data available online.	Yes. Statistics relevant for regional level in the country By National Agency for Statistics and Demography

Annex 2 Peer Review of Economic Calculator

Terms of Reference Peer review of ChemObs risk calculators and associated guidance

Objectives

The ultimate objective of this Terms of Reference is the peer-review of the economic and vulnerability calculators developed as part of the project 'Integrated Health and Environment Observatories and Legal and Institutional Strengthening for the Sound Management of Chemicals in Africa (African ChemObs)' (GEF ID 9080). The specific services required are described below in 'Provision of Services Required.'

Background

The overall objective of the African ChemObs Project is to contribute to improved health and environment protection through strengthening national and regional institutions, developing country owned plans of action and implementing priority chemicals and waste related interventions. The project seeks to develop a prototype of a national integrated health and environment observatory, including a core set of indicators enabling data aggregation, to provide timely and evidence-based information to predict, prevent and reduce chemicals risk to human health and the environment. More specifically, it addresses the necessary improvements to be made in the fields of awareness, knowledge, information management and communication on chemicals to support and provide an enabling framework for measures and actions to be taken.

Its implementation by project countries will contribute to improving capacity for data collection throughout the life cycle of chemicals; establishing an integrated health and environmental monitoring and surveillance system; reducing risks posed by chemicals and raising community awareness; a formal mechanism for intersectional coordination for health and environment; and improved understanding of the link between health and environment issues, to facilitate effective policymaking.

This project proposes to support the development of national observatories, capacity building of staff, support to identify causal pathways, risk ranking and priority settings, and activities to break links in causal pathways, thereby improving health and environment outcomes. The project has three components, which consist of the activities indicated below. Each component includes information on project activities, outcomes and outputs.

Component 1

Is focused on strengthening capacity of selected existing relevant national government departments and institutions to monitor pollution, prioritize areas for intervention as well as plan and implement solutions through active involvement of local communities.

Component 2

Is focused on the development of broad-based action plans to promote sound chemicals management and reduce negative impacts on health and the environment.

Component 3

This component will focus on the support for the sound management of chemicals in African countries to reduce risks from chemicals and wastes identified as posing specific risks to public health and environment.

Major headways were achieved on enhancing and strengthening institutional capacities for chemicals control and in term of risk and economic calculations. First Chemical Risk and Vulnerability Calculator coupled with economic valuation calculator have been developed to offer new tools to support national authorities towards a better estimation of the chemical risks prioritizing actions to be taken and estimation of the costs of certain chemicals on human health and the environment and support evidence-based decisions in chemicals management. The Chemical Risk and Vulnerability Calculator is designed to provide a relative risk assessment of different chemical pollutants, from point source (e.g. stores and contaminated sites) through pathway (water, soil, air, workplace) to receptors (population on site, public facility etc..). They are being tested and applied in nine African countries (Ethiopia, Gabon, Kenya, Madagascar, Mali, Senegal, Tanzania, Zambia, Zimbabwe).

A prototype version of the ChemObs portal has been developed by UNEP MapX to help communicate the impact of interventions in a visually compelling way based on dynamic maps and dashboards.

These outcomes aim at providing an information and data management system that is making the best use of existing information while breaking new ground in combining available information in the most innovative and scientifically reliable manner. These Tools and methodologies will support UN Country teams and the countries to link environmental and chemicals management aspects into social and economic dimensions of SDGs. With the full integrated guidance being delivered, their testing in countries and first business cases for investment to prevent and reduce chemicals risks are now expected to be delivered in 2021.

Institutional Arrangement and Project delivery Process

The World Health Organization and Africa Institute serve as executing agencies for the implementation of the Africa ChemObs project in Ethiopia, Gabon, Kenya, Madagascar, Mali, Senegal, Tanzania, Zambia and Zimbabwe.

Provision of Services Required

General Requirements

Pesticides Action Network, United Kingdom (PAN-UK) seeks a consultant to peer-review the Economic Calculator and associated guidance developed as part of the UNEP implemented project 'Integrated Health and Environment Observatories and Legal and Institutional Strengthening for the Sound Management of Chemicals in Africa (African ChemObs)' (GEF ID 9080). The consultant should have extensive relevant technical expertise.

Specific Deliverables and Proposed Timeline

The consultant will be responsible for delivering the following outputs by 1 December 2021. • Consolidated comments (General and specific) on the economic calculator and associated guidance documents;

Remuneration

The contract includes two lump sum payments of equivalent amounts totalling USD 5,000. The first payment will be made upon signature. The second will be made upon acceptance of all deliverables.

Milestone	Payment
Signature of agreement with PAN-UK	USD 2,500
Acceptance of all deliverables by PAN-UK	USD 2,500
Total	USD 5,000

Evaluation Criteria

Summary

Potential consultants will be evaluated against a short list of criteria provided below. These include minimum qualifications and 'additional criteria,' which will be evaluated on a relative basis.

Required minimum qualifications:

- Relevant PhD, DrPH, MD or equivalent;
- Experience working in low- and middle-income country context (minimum 10 years);
- Track record of published original research (minimum 5 publications);
- Experience as a peer-reviewer (minimum 5 years);
- Ability to provide 3 references. Additional evaluation criteria
- Experience with burden of disease calculations (# years);
- Experience with burden of disease valuations (# years);
- Experience working on contaminated land issues (# years);
- Experience with GEF projects or UN organizations (# projects).

Review comments on the ChemObs environmental health economic calculator **December 10, 2021**

We have with great interest followed the development of the environmental health economic calculator which is one of the outputs of the ChemObs Africa project. As the health costs associated with environmental pollution commonly are not fully recognized, we welcome the intention of the ChemObs project to develop tools that can estimate the magnitude of these costs in order for them to be taken into account in decision-making processes.

In accordance with the contract between PAN UK and Daniel Slunge (November 16, 2021) we hereby provide our comments and suggestions on the Environmental health economic calculator developed as part of the project "Integrated Health and Environment Observatories for the Sound Management of Chemicals and Waste in Africa" (GEF ID 9080), "ChemObs". These comments have been written by Dr. Daniel Slunge, Sweden and Dr. Richard Mulwa, Kenya. Both reviewers are active researchers within the Environment for Development Initiative (www.efdinitiative.org).

Our comments are based on a review of the excel-based "Calculator for the estimation of adverse health outcomes and associated productivity losses resulting from chemicals exposure" (Nov. 16) and the accompanying word files "Methods for Underlying Calculations " (Nov. 16) and "Step-bystep Guidance" (Nov.16). Besides reading the documents we have also tested the excel calculator by imputing different numbers

In this report, we first address some issues relating to the intended use of calculator and then proceed with comments on the content of the calculator and supporting documents as well as on the interpretation of the generated results. We also provide some detailed comments on the three documents reviewed.

General comments

1. Comments on the purpose and the intended use of the calculator

<u>Elaborate on who will use the calculator and when the calculator may be used</u>: The step-by-step guidance takes the user of the calculator through five steps. However, we think there is a need to clarify a few more basic things either in the introduction to the calculator or in an accompanying document: Who will use the calculator? In which situations? For which purposes? Without a clear purpose and knowledge about the intended user and use-situations it is difficult to assess the appropriateness of the current design.

<u>Add further guidance on how to use the calculator</u>. The current methods and step-by step documents are rather technically oriented. We think this information need to be complemented by a text on the background, different potential uses of the calculator, what to think of when collecting and using input data and, not least, how to interpret and communicate the results generated. Some information on communication and uncertainty is included in an appendix, but we fear that this may be too complicated for the intended users.

<u>Focus on estimating cost of inaction for specific problems rather than country wide assessments of multiple</u> <u>pollutants:</u> We strongly suggest that the calculator should primarily be used to estimate cost of inaction related to specific problems, such as lead polluted sites in a certain region, or effects of pesticide polluted diets by children in a certain city. Given the many assumptions in combination with low quality input data, makes the adding up of multiple estimates of multiple pollutants less 2 useful, as estimates become very uncertain. This is in line with the statement (which we endorse) "The model is not intended to produce a definitive calculation of health and economic outcomes, but rather an indicative estimate based on the best available information. Future efforts might consider refining and improving the methods presented here. Given the paucity of efforts in this area, the model is intended as a 'proof of concept' of a tool that – following further improvement, review and testing – could be used in addressing a significant and credible health risk."

<u>Pilot testing of the calculator</u>. As the calculator is a novel tool, we strongly recommend that the launching of the calculator takes place in phases. This would include one or several pilots, trainings for those using the calculator, evaluation and learning, before the use of the calculator is scaled up for use in all of the ChemObs countries. The over estimations reported from the early testing of the calculator supports the need for a process oriented approach.

<u>Make sure the calculator can be easily updated and revised</u>: As the calculator is produced by external consultants it is important that there is also clear guidance on how to update and revise the calculator. The input data will need not only to be updated, but also revised based on lessons learned from applying the calculator. We suggest that a specific guidance on how to update and revise the calculator be developed including a clear description of the data-sources used, also for the sheets "hidden" in the calculator.

2. Comments on the content of the calculator and the supporting documents

<u>Merge the methods and the step-by step guidance?</u> Both the methods and the step by step document include an identical section "Inputs" explaining the sheets in the calculator. Also the section "Determining the size of the exposed population and frequency of exposure" is identical in the two documentsWe think these short documents would benefit from being merged and expanded with some further background and advice into a more thorough guidance document.

<u>Add some explanatory information to the excel calculator</u>. Also the excel calculator would benefit from some additional information and clarifications to assist the user. Some suggestions for such additions and clarifications are included in the detailed comments below.

<u>The quality of input data needs to be explicitly discussed</u>. The quality of the output of the health economic calculator of course depends on the quality of the input data. However, a well-known problem regarding environmental pollution, not least in African countries, is the lack of good data. There is currently no quality criteria for studies and data used as input to the calculator. The calculator would clearly benefit from adding a discussion of what type of studies and data may be used as an input to the calculator. Also, the studies used should be clearly cited so that the user of the calculator, or a reviewer of the results, has the possibility to assess the quality of the data.

<u>The size and age of the exposed population</u>: Besides the concentration of the pollutants in the different environmental media, the person running the calculator is also expected to add information about the size and age of the exposed population. As rightly pointed out, this introduces a large amount of uncertainty to the estimates. One way to address this could be to include a possibility to give a lower and a higher bound estimate. Currently there is a possibility to choose if the population is "child 0-7 years" or "adult >15 years". The age group 8-15 years is missing. Why? Also, it would be desirable to further specify the Adult category as we know that disease outcomes can be highly correlated with age.

<u>Modelling assumptions</u>: The modelling assumptions for moving from the input data on environmental pollution to estimated DALYs and IQ loss are succinctly described in the methods document. As economists, it is beyond our area of competence to scrutinize the validity of the assumptions used. As we think that many of those using the calculator will have difficulties in understanding and assessing these assumptions, we suggest that some further information on the assumptions used is included. For example, in the description of the assumptions used in relation to Carcinogens (including the organochlorine pesticides) on page 5 it is stated that "the use of 50 % is intended to be conservative...". Similar remarks on the implications" of the different assumptions would be useful in order for the user to know if estimates are likely to be on the lower or upper end etc. For example, how should the user or decision maker interpret the bold assumption of "a uniform impact of all OP pesticides on brain development", based on values from the commonly used pesticide dimethoate.

<u>The model is static rather than dynamic</u>: While the assumptions made in the model are many and sometimes sophisticated, it is important to underline the static nature of the model. By for example assuming a uniform exposure to a population of a specific pollutant (mean value) the model fails to take into account the effect of protective behaviour which may greatly reduce exposure and cost of inaction. On the other hand, if it is peak exposure, not mean exposure, causing most harm, the calculator may underestimate the cost of inaction.

<u>Need for region specific data on values of DALY and IQ loss</u>. Ideally there would be African data underpinning the calculation of disability weights as well as productivity losses. More data collection and analysis will be required to create a more representative analysis.

<u>Is there an urban bias?</u> There is a special paucity of good data in rural areas in African countries why the application and interpretation in these areas should come with special caveats concerning the quality of input data

3. Comments on the presentation of modelling results.

<u>Present data sources, summary graphs, sensitivity tests and benchmarks</u>: Given the large uncertainties involved in estimating the health economic costs from environmental pollution it is crucial that the results are presented in a sensible way. The calculator would benefit from including the following elements in a results presentation:

- A clear description of the data sources on pollution, including references to relevant studies
- A summary (perhaps a flowchart?) of how the modelling was conducted.
- Illustrative diagrams of key results templates could be created in additional excel sheets in the calculator
- A sensitivity test so it is clear to the reader what drives the results. "Tornado diagrams" could be used to illustrate a simple one-way sensitivity test.

It could also be useful to include some benchmark values from previous studies on the economic costs of different forms of pollution. This would help both the analyst and the decision makers to understand if the presented figure represents a very high cost or not.

<u>Facilitate the presentation of monetary estimates alongside damages in physical terms.</u> The Appendix "Primer on Costs of Action/Inaction and Communication to Policymakers" states that "In 4 communicating pollution damages in a cost-of-inaction study, or benefits (i.e., reduced damages) in a CBA, damages (or benefits) should first be described in physical terms. This might include morbidity, mortality, impacts on IQ, or other impacts. It is useful to present physical impacts (when appropriate) by age, gender, and the geographic region in which they occur." We endorse this and suggest that either (i) the excel calculator be complemented by additional sheets where the physical damages are more clearly presented, or (ii) the guidance document accompanying the calculator be expanded with advice and examples on how the physical data can be presented alongside the monetary estimates.

<u>Elaborate on how to communicate uncertainties and limitations associated with the data.</u> The Primer on Cost of Inaction states that "when valuing these impacts, it may be prudent to present both conservative estimates of damages—e.g., estimates of the costs of illness associated with morbidity and earnings losses associated with premature mortality—as well as what economists call welfare benefits…". We note that other calculators (for example the Burden of disease toolkit of the European Centre for Disease Control, https://www.ecdc.europa.eu/en/publications-data/toolkitapplication-calculate-dalys) allow for parameter uncertainty by including both mean values and confidence intervals from the input data. This limitation of the current version of the health economic calculator should be explicitly recognised.

Detailed comments

Excel calculator

- The name of the country for which the calculation is being made should be clearly stated on each sheet of the calculator
- Include a weblink to the associated guidance documents on each sheet of the calculator.
- It would also be user friendly to have a short instruction on each sheet. For example, on the sheet "Economic Inputs" it says "If country specifc data are available they can be entered here", but further information is needed to explain where to get this data. It would also be useful to include a short explanation telling the user that "Data for "Country" has been inputed from source x,y z"
- Dietary sheet:

- Food: The information needed here is clear and straight forward, but we recommend the scientific name be included. For the calculator to be more user friendly, the list can be made available in the calculator.
- Weight ingested daily (kilos): Not really clear how the user should go about this? Maybe the calculator can recommend sources of information and provide links. There are different sources of dietary guidelines, with some more region specific such as the dietary guidance for Americas (https://www.hhs.gov/fitness/eathealthy/dietary-guidelines-for-americans/index.html). Another is http://www.fao.org/nutrition/education/food-dietary-guidelines/home/en/.

Step-by-Step Guidance

- Reference is repeatedly made to the "Population guidance" for assistance. We could not find this guidance in the documentation. Please clarify.

Methods document

- Small errors in the example sheets on page 3. For dietary it says "exposed to soil", should be food (same for Water); The chemical exemplifies in the Dust and soil sheets is Chlorpyrifos. Perhaps clearer if you exemplify with lead?
- Some references are missing, e.g. Spadaro and Rabl (2008). We suggest that a full list of references is included.

Responses to Peer Reviewers' Comments on the Economic Calculator and Associated Guidance

General comments	Response			
1. Comments on the purpose and the intended use of the calculator				
Elaborate on who will use the calculator and when the calculator may be used:	Added the following text to the introduction of the methods document: "This document and the accompanying 'step-by-step' and economic calculator are intended for use by environmental and health professionals to rapidly characterize economic costs associated with chemicals exposures in the project countries. Results could be used in concert with other studies and observations to inform decisions relating remedial options and regulatory policy, among other applications."			
Add further guidance on how to use the calculator.	The method introduction has been expanded to include intended users and interpretation of results.			
Focus on estimating cost of inaction for specific problems rather than country wide assessments of multiple pollutants:	Columns have now been added to present the site specific cost.			
Pilot testing of the calculator.	We have tried to do this as much as possible within the brief time frame of the project (Nov 21 - March 22). Multiple calls have been organized with all participating countries. as have calls with individual national consultants in Gabon, Kenya, Mali, Senegal, Tanzania and Zimbabwe.			

Need for region specific data on values of DALY and IQ loss.	IQ and DALY economic values have been calculated for each country based on 2019 country specific economic values. We agree that more study on the economic value of an IQ point (assumed here to be 2 % of lifetime
The model is static rather than dynamic:	The following text has been added to the methods introduction: 'Estimates are static and represent a snapshot in time.'
Modelling assumptions:	
	The reviewers fightight a humber of concerns with how the exposed population is characterized in the calculator. These include comments regarding age and population size. With regard to the population size, this is a known source of uncertainty in the model. This has been made clear in the methods document and associated major assumptions annex. In addition the introduction of pre- defined population sizes and expanded guidance is intended to improve estimations. With regard to age, a conservative approach has been taken in quantifying IQ decrement. Specifically, while there exists some evidence that IQ decrement attributable to chemicals exposure can accrue into adolescence, most studies evaluate the period 0-5 or 0-7 years only. Because intellectual disability is the only sequalae assessed by the calculator, the age of a child is conservatively capped at 7. With regard to adults, the underlying methods make no distinction between age groups into adulthood relating to disease incidence. Thus any additional granularity in the calculator would not affect the results. Future efforts might endeavour to calculator more age specific sequalae.
The size and age of the exposed population:	The reviewers highlight a number of concerns with how
The quality of input data needs to be explicitly discussed.	A section has been added to the methods document discussing sources of data
	by-step and methods documents. In addition a recorded tutorial (English only) was produced as part of the effort.
Add some explanatory information to the excel calculator.	As an alternative to providing more guidance in the Excel calculator, users are encouraged to reference the step-
Merge the methods and the step-by step guidance?	We are thankful for the observation but will opt to continue offering these as two separate documents based on input from the national consultants.
2. Comments on the content of the calculator and the supporting documents	
Make sure the calculator can be easily updated and revised	The method document outlines the underlying assumptions and base equations. Using this document alone, a technical user should be able to run the calculations independent of the Excel document. Within the Excel document, hidden sheets can be accessed without a password, data are labelled, and references are provided in most cases. Additionally, certain cells have been described in additional detail with notes that can be viewed by rolling the mouse pointer over the cell. We agree that a second and more formal incarnation of this pilot product could benefit from a more standardized approach to updating and modifying equations.

	earnings) and disability weights in this region would be				
	beneficial. This is however outside the scope of the				
	current effort.				
3. Comments on the presentation of modelling results.					
Present data sources, summary graphs, sensitivity tests and benchmarks:					
	This has been included in the newly added 'major				
 A clear description of the data sources on pollution, including references to relevant studies 	This has been included in the newly added 'major assumptions' annex.				
- A summary (perhaps a flowchart?) of how the	Basic flowcharts are presented in the methods				
modelling was conducted.	document.				
 Illustrative diagrams of key results – templates could be created in additional excel sheets in the calculator 	This is an excellent suggestion. The spreadsheets have already been revised substantially under this phase of the project. Additional changes would be complicated to complete within the project's limited timeframe.				
- A sensitivity test so it is clear to the reader what drives the results. "Tornado diagrams" could be used to illustrate a simple one-way sensitivity test.	It is agreed that this would be a useful exercise though is however outside the scope of this effort.				
Facilitate the presentation of monetary estimates alongside damages in physical terms.	Physical damages are presented here vis a vis DALYs and IQ points. Future efforts could extract and present data on incidence of a given disease.				
Elaborate on how to communicate uncertainties and limitations associated with the data.					
Detailed comments					
The name of the country for which the calculation is being made should be clearly stated on each sheet of the calculator	This has been added and populates automatically based on the selection on the first page.				
Include a weblink to the associated guidance documents on each sheet of the calculator.	Agreed. However, the documents are not currently hosted online.				
It would also be user friendly to have a short instruction on each sheet.	This has been integrated into the step-by-step				
Dietary sheet: Food	We agree that a field for the scientific name - which could reference a pre-populated list of items - could be useful for future efforts. We feel that in the current context, the free text field allows for necessary flexibility.				
Dietary sheet: Weight ingested daily	Thank you. Reference to the FAO guidance has been included in the methods.				
Step-by-Step Guidance					
"Population guidance"	Thank you. Population guidance has now been included.				
Methods document					
Small errors in the example sheets on page 3.	Thank you. These issues have now been corrected.				
	Thank you. These issues have now been corrected.				

Annex 3. Peer review of the Risk and Vulnerability Calculator and associated guidance

Terms of Reference

Objectives

The ultimate objective of this Terms of Reference is the peer-review of the economic and vulnerability calculators developed as part of the project 'Integrated Health and Environment Observatories and Legal and Institutional Strengthening for the Sound Management of Chemicals in Africa (African ChemObs)' (GEF ID 9080). The specific services required are described below in 'Provision of Services Required.'

Background

The overall objective of the African ChemObs Project is to contribute to improved health and environment protection through strengthening national and regional institutions, developing country owned plans of action and implementing priority chemicals and waste related interventions. The project seeks to develop a prototype of a national integrated health and environment observatory, including a core set of indicators enabling data aggregation, to provide timely and evidence-based information to predict, prevent and reduce chemicals risk to human health and the environment. More specifically, it addresses the necessary improvements to be made in the fields of awareness, knowledge, information management and communication on chemicals to support and provide an enabling framework for measures and actions to be taken.

Its implementation by project countries will contribute to improving capacity for data collection throughout the life cycle of chemicals; establishing an integrated health and environmental monitoring and surveillance system; reducing risks posed by chemicals and raising community awareness; a formal mechanism for intersectional coordination for health and environment; and improved understanding of the link between health and environment issues, to facilitate effective policymaking.

This project proposes to support the development of national observatories, capacity building of staff, support to identify causal pathways, risk ranking and priority settings, and activities to break links in causal pathways, thereby improving health and environment outcomes. The project has three components, which consist of the activities indicated below. Each component includes information on project activities, outcomes and outputs.

Component 1

Is focused on strengthening capacity of selected existing relevant national government departments and institutions to monitor pollution, prioritize areas for intervention as well as plan and implement solutions through active involvement of local communities.

Component 2

Is focused on the development of broad-based action plans to promote sound chemicals management and reduce negative impacts on health and the environment.

Component 3

This component will focus on the support for the sound management of chemicals in African countries to reduce risks from chemicals and wastes identified as posing specific risks to public health and environment.

Major headways were achieved on enhancing and strengthening institutional capacities for chemicals control and in term of risk and economic calculations. First, a Chemicals Risk and Vulnerability Calculator and an Economic Calculator have been developed to offer new tools to support national authorities towards a better estimation of the chemical risks prioritizing actions to be taken and estimation of the costs of certain chemicals on human health and the environment and support evidence-based decisions in chemicals management. The Chemical Risk and Vulnerability Calculator is designed to provide a relative risk assessment of different chemical pollutants, from point source (e.g. stores and contaminated sites) through pathway (water, soil, air, workplace) to receptors (population on site, public facility etc..).

The calculators are being tested and applied in nine African countries (Ethiopia, Gabon, Kenya, Madagascar, Mali, Senegal, Tanzania, Zambia, Zimbabwe). A prototype version of the ChemObs portal has been developed by UNEP MapX to help communicate the impact of interventions in a visually compelling way based on dynamic maps and dashboards.

These outcomes aim to provide an information and data management system that is making the best use of existing information while breaking new ground in combining available information in the most innovative and scientifically reliable manner. These Tools and methodologies will support UN Country teams and the countries to link environmental and chemicals management aspects into social and economic dimensions of SDGs. With the full integrated guidance being delivered, their testing in countries and first business cases for investment to prevent and reduce chemicals risks are now expected to be delivered in 2021.

Institutional Arrangement and Project delivery Process

The World Health Organization and Africa Institute serve as executing agencies for the implementation of the Africa ChemObs project in Ethiopia, Gabon, Kenya, Madagascar, Mali, Senegal, Tanzania, Zambia and Zimbabwe.

Provision of Services Required

General Requirements

Pesticides Action Network, United Kingdom (PAN-UK) seeks a consultant to peer-review risk and vulnerability calculators and associated guidance developed as part of the UNEP implemented project 'Integrated Health and Environment Observatories and Legal and Institutional Strengthening for the Sound Management of Chemicals in Africa (African ChemObs)' (GEF ID 9080). The consultant should have extensive relevant technical expertise.

Specific Deliverables and Proposed Timeline

The consultant will be responsible for delivering the following outputs by 1 December 2021. Consolidated comments (General and specific) on the risk and vulnerability calculator and associated guidance documents;

Suggested corrections made in the calculator;

Remuneration

The consultant will receive remuneration for time spent up to a maximum of three days' work at USD \$420/day. Payment will be made upon acceptance of all deliverables.

Milestone	Payment
Acceptance of all deliverables by PAN-UK	
Max. Total	\$1260

Evaluation Criteria

Potential consultants will be evaluated against a short list of criteria provided below. These include minimum qualifications plus experience, which will be evaluated on a relative basis.

Required minimum qualifications

Relevant PhD, DrPH, MSc or equivalent; Experience working in low- and middle-income country context (minimum 5 years); Experience working on contaminated land issues (5 years); Experience with GEF projects or UN organizations Track record of relevant, published research or guidance; Experience as a peer-reviewer

Results of Peer Review of the PAN-UK Risk & Vulnerability Calculator

Summary by PAN UK

PAN-UK engaged two experienced international consultants in chemicals management to review the Risk & Vulnerability calculator and associated guidance documents. The purpose of the review was to provide an independent assessment of whether the tool was effective for the intended purpose, whether it adds valuable functionality compared to existing tools, to validate the calculations themselves and suggest improvements either to the calculator or associated guidance resources. The consultants considered that calculations are sound and based on established methodology. They could see added value for the tool and considered that it could be of value to international agencies as well as national decision makers and project managers. They suggested new features / content for both the calculator and the guidance, which would increase the number of chemicals addressed and better support the interpretation of the data. In response, seven new chemicals have been added to the calculator along with new features to aid interpretation and new guidance resources.

The reviewers noted that the manual completion of the calculator is time consuming and considered that it would be much more likely to be used if it was automated in the MAPX system (this was also proposed by PAN-UK to UNEP in 2020).

It was pointed out that each chemical at a site is treated separately and then a total score for each site is a simple summation of scores for individual chemicals. An increasing body of evidence shows that mixtures of chemicals can interact and increase risks even further. While it would be straightforward to increase the risk score where certain combinations of chemicals are present, unfortunately the underlying interactions and impact on risks are complex and poorly understood and so this issue has not been addressed in the calculator at this time.

Report by Wouter Pronk and Russell Cobban, December 2021

Introduction

The Risk & Vulnerability calculator for the estimation of relative risks and vulnerabilities of contaminated sites, designed by PAN UK, was developed as part of the project *'Integrated Health and Environment*

Observatories and Legal and Institutional Strengthening for the Sound Management of Chemicals in Africa (African ChemObs)' (GEF ID 9080). The project is a partnership between UNEP, WHO and the Africa Institute.

The overall objective of the African ChemObs Project is to contribute to improved health and environment protection through strengthening national and regional institutions, developing country owned plans of action and implementing priority chemicals and waste related interventions.

The project seeks to develop a prototype of a national integrated health and environment observatory, including a core set of indicators enabling data aggregation, to provide timely and evidence-based information to predict, prevent and reduce chemicals risk to human health and the environment.

More specifically, the project addresses the necessary improvements to be made in the fields of awareness, knowledge, information management and communication on chemicals to support and provide an enabling framework for measures and actions to be taken and substantiate the ability to prioritize chemicals and waste management in the decision making process and facilitate integration into the national development plans and processes. ChemObs decision-making tools and processes include:

- The Economic Cost of Inaction Calculator (Pure Earth) to calculate the cost of inaction on chemicals management, with resulting units in DALYs.
- Risk & Vulnerability Calculator (PAN-UK) to calculate proportionate risk of chemicals exposure with site-level data, and to prioritize sites for intervention.
- MapX: a UNEP/GRID-Geneva web mapping platform to display results in the form of dashboards, and to assist pilot countries in calculations.

Nine pilot countries have been engaged in the project: Kenya, Tanzania, Senegal, Gabon, Ethiopia, Madagascar, Zimbabwe, Zambia, and Mali. (For more information see: <u>https://chemobsafrica.org/</u>)

Aims of the Peer review

For purposes of quality control PAN-UK has engaged two international consultants to review the Risk & Vulnerability calculator and provide consolidated comments (General and specific) on the calculator itself and associated guidance documents and suggest possible corrections and or improvements to be made in the calculator. To structure the review a series of twenty questions was provided by PAN-UK as shown in Table 1 below. It was, however, explicitly not the intention to limit the review to the provided set of questions. Comments on any aspect of the calculator and guidance was welcomed.

Overview of questions to structure the review

Is the purpose of the R&V tool clear?
Is it clear who the R&V tool is designed for?
Is the tool effective for the intended purpose?
Does the tool add any functionality compared to existing tools? How valuable do you think this
functionality would be in practice?
Can you suggest any changes to the tool that would improve its functionality?
How easy is it to use the tool?
How likely is it that the tool will be used in practice? Who by / in what context?
Can you suggest ways to make the calculator easier to use?
How clear is the guidance?
Does the guidance provide the right level of support to the new user?
Please provide any specific suggestions and identify any omissions to the guidance document
 Please address corrections in the guidance document (track changes / comments)

Is the language in the calculator clear? Is the meaning of each question clear? Do the fixed responses make sense? Any missing? Does the weighting of different criteria in the calculator make sense? Any suggested changes? Are the calculations correct? Is it clear how the final scores are derived? Is it clear how scores for a whole site should be calculated? Is it clear how results can be used / interpreted? Any other comments or suggestions most welcome

Review by Wouter Pronk

Based on thematical interlinkage, the provided questions are sometimes combined in one section in the text below and as a result numbered differently.

Is the purpose of the R&V tool clear? / Is it clear who the R&V tool is designed for?

The user manual developed for the R&V tool clearly defines the purpose of the tool by stating 'We envisage that it will be used by national authorities to determine which sites / sources of chemical pollution to prioritise for risk reduction activities and for broader policy decisions concerning chemicals management.' The manual also states that the calculator tool makes use of a robust list of indicators covering important aspects of the potential environmental and social impacts of key chemical pollutants and is explicitly not intended to produce a definitive calculation of health or environmental risk, but rather intended to provide 'a relative calculation of risk based on the best available information.'

The statement that in the development of the calculator indices that can be derived from published data are prioritised (e.g. the open source web mapping platform MapX, developed by UNEP) and that data required from site visits, which is often lacking, are minimised, further explains the approach to create a widely applicable tool that can be already used when detailed site investigations have not (yet) been carried out.

However, as demonstrated in e.g. Site Question 9, Source Question 9 some basic forms of sampling analysis needs to be carried out. (Concentration of chemical (mg/kg) in contaminated land). Please note that contradictory to the intention that the calculator should run on public available data, the user manual assumes that some form of inventory and or analysis is already available. "This information usually comes from an inventory or assessment of a contaminated site." (Please see Section *Navigating the Calculator, page 6*)

The explanation of the tool's Source-Pathway-Receptor approach clearly illustrates that the R&V tool uses a common model of internationally best available practises of risk based site assessments. At the ChemObs project website, where the calculator is introduced, the target audience of 'national authorities that want to determine which sites / sources of chemical pollution to prioritise,' is less clearly explained.¹⁰ The guidance video provided at the site also dives directly into a technical explanation and maybe should have briefly mentioned the intended target audience, assuming that many internet users start watching available video content before downloading a user manual.

Is the tool effective for the intended purpose? / Does the tool add any functionality compared to existing tools? How valuable do you think this functionality would be in practice? To answer the question whether the tool is effective for the intended purpose and adds functionality to existing tools, one should clearly focus on the target audience and its needs to have a better understanding of

¹⁰ <u>https://chemobsafrica.org/guidance/risk-and-vulnerability-calculator/</u>

the risks of a particular site (or a series of sites) for public health (focussing on vulnerable groups within affected communities) and the environment.

As mentioned in the user manual, the calculator is designed for national authorities who want to determine which sites / sources of chemical pollution to prioritise for risk reduction activities and for broader policy decisions concerning chemicals management. The sites may have the character of a point source pollution (e.g. stores and contaminated sites) and or the character of more diffuse pollution (e.g. pesticides in use, mercury in artisanal mining).

The target audience is explicitly not the national agency responsible for carrying out a national POPs pesticides inventory. For them FAO Environmental Management Toolkit for Obsolete Pesticides methodology, referenced in the user manual, provides the Rapid Environmental Assessment (REA) to narrow down contaminated sites to be selected for site investigation and the Pesticide Stockpile Management System (PSMS), a web based application to be used by countries to record and monitor their inventories of pesticides and their usage, in order to assist them in managing the most efficient usage.¹¹

Although the calculator includes some tracking elements for pesticides in use, the target audience is also not explicitly organisations with the aim to reduce health and environmental risks from pesticides in actual farming practices, such as the Toxic Load Indicator for pesticides in use, referenced in the manual. However, an ambition to develop this direction further is indicated by PAN UK by asking stakeholders interested in tracking risks from actual use to contact the organisation.

Finally, the target audience is also not an governmental or civil society organisation focusing on a wide range of contaminants in contaminated land and the aim to quantify and rank toxic exposures in Low and Middle Income Countries worldwide, such as it is the case for the referenced Blacksmith Index for Contaminated Sites.

As a result the target audience is expected to have concerns about one or a series of sites varying from not properly contained pesticides stocks that are stored in not well maintained stores, to sites that clearly show signs of serious soil contamination. Furthermore, the target audience might have an interest to track risks from pesticides in use. The target audience is expected to have limited budgets available for sampling and analysis when the concerns about the site(s) are raised.

The R&V tool is expected to provide this target audience of national authorities with a valuable first indication on whether they should be concerned and look for possible resources to further research the contamination and possible ways for mitigating the risks for public health and the environment.

How easy is it to use the tool? / Can you suggest ways to make the calculator easier to use? / Does the guidance provide the right level of support to the new user?

Based on the explanations in the user manual and the guidance video available from the ChemObs website, the tool is easy enough to use. It should be mentioned, however, that user identification procedures of MapX were rather unclear. Furthermore, it is not very convenient that the user has to open MapX for data collection next to the calculator, instead of being linked to the intended section of MapX directly from the calculator, when filling in the data. Direct links from the calculator to MapX when MapX data are required are expected to make the calculator easier to use. Real integration of the calculator with MapX in the future would further strengthen the user friendliness.

¹¹ In recent years there was some unclarity about FAO's future plans with PSMS and the web based version from the tool is currently not available on the internet.

How likely is it that the tool will be used in practice? Who by / in what context?

With a clear target audience of national authorities from ChemObs countries, that are expected to have concerns about potentially contaminated sites in their countries and that are also expected to be wanting to determine which sites / sources of chemical pollution to prioritise for risk reduction activities, it seems fairly likely that the tool will be used in practice. However, in order to demonstrate the practical value of the calculator – and to draw lessons from actual practical use, it will be important to organise pilot (training) sessions with real national authorities from ChemObs project countries. An pilot with a large variety of national and maybe also local authorities will demonstrate how valuable and practical the real target audience the calculator will find.

Please provide any specific suggestions and identify any omissions to the guidance document / Please address corrections in the guidance document (track changes / comments)

The Key reference: <u>https://www.pureearth.org/wp-content/uploads/2014/12/Blacksmith-Index-An-Overview.pdf</u> does not work.

The User manual refers in the text to the "FAO EMTK methodology for contaminated sites". In the link the reader is forwarded to EMTK Volume 1., that is not about contaminated sites but about environmental risk tracking, prioritization of stores and about regional prioritization and risk tracking. Volume 1 describes, amongst others, the use of PSMS in support of obsolete pesticides national inventories, safeguarding and disposal activities. As PSMS is also a tracking tool, it is assumed that the reference to Volume 1 is correct and that the title in the manual should be corrected.

The guidance document is clear and easy to read. I have not "tracked" any comments or corrections.

Is the language in the calculator clear?/ Is the meaning of each question clear?/ Do the fixed responses make sense? Any missing?

In general the language in the calculator and the meaning of questions are clear. The explanatory notes in the explanation field support the understanding of the logic behind the calculator well.

A bit more consistency would strengthen the user friendliness. Suggestions where to find the relevant data are not always provided at the same place int the Excel sheet of the calculator. It will probably add to the user friendliness of the tool if you would consequently use the column **Data details / Units / Pull Down Menu Choices** to explain where you suggest that the data can be found e.g. MapX, Google Earth, local available data... and the column

Explanation to illustrate why the question is important and how it can affect risks.

Moreover, the indication that a cell should not be touched appears as both "Site question" and "RQ1 is a site question. Cells will fill automatically from site question sheet. Do not touch." at different places in the calculator. It will be probably clearer when you use one formulation, preferably the formulation with the most explanation and consequently used at the same place under the Explanation column.

If you want to include target audiences with no possibility to carry out any form of analysis, references in the site questions to inventories, sampling and analysis should be accompanied by a disclaimer like comment like "when available". Otherwise those target groups might decide that the tool is not designed for them.

The fixed responses work very well. No missing responses were found. PQ8, PQ9 and PQ10 miss some bold marked question dividing gridlines.

Does the weighting of different criteria in the calculator make sense? Any suggested changes? The weighing of different criteria throughout the calculator questions seem logical. The weighing criteria do increase in line with the expected increase in risks for health and the environment. The practical examples in the *Additional site info* tab work well and although a store stocked with containers that are in an excellent condition, is not expected to cause concern from national authorities, the example functions as a suitable reference point in the calculator.

Are the calculations correct?

No mistakes were found, when going through the calculations.

Is it clear how scores for a whole site should be calculated?

It is clear that for every chemical contaminant of concern a separate entry should be made. It is unfortunate the no account can be taken of possible interaction between the chemicals. If there is indeed ' a growing body of evidence that pesticides can become more harmful when combined'¹² (although the effect has not been studied in enough detail), one maybe could flag the cocktail effect in the calculator when more chemicals are entered for one site as an indication of expected higher risk.

Is it clear how results can be used / interpreted?

The fact that there is no reference parameter or an explanation of how one should interpret the results makes it difficult to evaluate the results of the calculation. The results are a calculated number for the *Relative risk to human health* and a calculated number for the *Relative risk to environment*. It is, however, difficult to understand how one should read those numbers apart from the relative risk positioning shown in the graph that is included in the summary results indicating: "Example site 2: highest risk for Health" and "Example site 3: highest risk for Environment."

It seems that the target group of national authorities would be better supported if they not only could prioritise between sites of concern, but also would obtain some more information on the risks from identified sites of concern for health and the environment.

If the calculator would produce a clearer indication that the identified site(s) pose risks to public health and the environment and that further investigations should be seen as a priority for the country to avoid higher costs in the future, the tool could function more effectively as a well accessible tool for policy making.

Would it be possible to flag or label the provided data in the Site questions tab as for instance for container condition:

A: "Moderate", **B: "Poor"** or **C: "Very poor"** with some following basic management instructions? **A:** Monitoring plan of stocks required to avoid future risk for health and the environment;

B: Monitoring plan of stocks and repackaging of leaking containers and packaging material required to avoid future risk for health and the environment;

C: Site investigations required to establish current risks for health and the environment and the development of an associated short and longer term management plan to remediate the site.

There are more places in the calculator where the provided data that for instance a **water well is present within 100 meter** could give a clear indication of potentially high risks. Would it be possible to flag that risk with a :

Own in ¹² https://www.pan-uk.org/the-cocktail-effect/

Urgent risk for drinking water pollution. Site investigations required to establish current risks for health and the environment and the development of an associated short and longer term management plan to remediate the site

If the inclusion of such labels in the calculator would be technically feasible without over complicating the existing design, it is expected to provide extra practical value to the target group of national authorities responsible for the issue that do not have large resources and extensive budgets to manage such sites.

Other comments or suggestions

It is suggested to use a decimal separator in the entire excel file of the calculator.

Review by Russell Cobban

Answers to the questions are provided in the table below, in addition to which comments and edits have been provided to the directly to the calculator spreadsheet and associated guide.

Is the purpose of the R&V tool clear?			
The guidance document could be more specific to users as opposed to project managers			
Perhaps insert into the guidance:			
Background			
Assume no previous knowledge of indicators or risk calculators. Guideline should focus on the			
user – less emphasis for justification for use to project manager. There should be a discussion			
of the tool's necessity. Some detail required of the other tools (Blacksmith, PSMS, REA etc.)			
and why they are not relevant / need improvement. Provide detail of the whole tool including			
the economic indicator.			
Objectives			
Audience			
Presentation			
Is it clear who the R&V tool is designed for?			
See above comments			
Is the tool effective for the intended purpose?			
Yes – potential uses could be more clearly defined in the guidance.			
Does the tool add any functionality compared to existing tools? How valuable do you think			
this functionality would be in practice?			
Yes, there is added functionality. REA and BI are focussed on contaminated sites. This tool,			
using the source / pathway / receptor model as a framework, is able to give an indication of			
risk to a wider range of media.			
Can you suggest any changes to the tool that would improve its functionality?			
Please read the attached comments on the spreadsheet. Also:			
Develop the tool with all ideal data fields for potential collection, including for example, field			
exposure measurements, environmental receptor data, environmental measurement data.			
This would make provision for data to be added when if it comes available.			
Calibrate the tool using developed world data or from an area in the world where there has			
been an extensive study for many years. Perhaps Agent Orange in Vietnam, for example?			
This site or study could be used as base comparison.			
Give an indication of how far every calculation is away from the ideal in terms of data			
completion.			

Note that more data does not mean higher risk – there is a need to be able to improve
granulation of data without necessarily increasing the risk.
Add more contaminants (for example):
Uranium
Arsenic
Tributyltin
Benzene
Total petroleum hydrocarbon (Aliphatic)
Total petroleum hydrocarbon (Aromatic)
All dioxin and furans
Cyanide
Link D7 pathway and source cells.
How easy is it to use the tool? At the moment it is not very practical. There are too many
fields to fill from different sources. An excel based tool / spreadsheet environment is difficult
to use.
How likely is it that the tool will be used in practice? Who by / in what context?
UN agencies or other organizations designing future projects
People undertaking Environmental Management Planning for substances for which there is
no existing assessment tool.
Personnel attempting to gauge the risk level of different pollutants
I am not sure that this is the best forum for the 'pesticide in use' calculation to demonstrate
pesticides in use as a cause for concern. Other stakeholders would argue that these chemicals
have been approved by Govt agencies and, therefore, require different treatment. This use
for such calculations is untested and the licencing and use of pesticides is beyond the scope of
this type of work.
Can you suggest ways to make the calculator easier to use?
Cascade the questions so that users can only see ones that are relevant.
Remove superfluous information that users don't understand or need immediately.
Remove users from the calculation element so that they only see a 'result'.
Change the medium of use to make it form based.
Insert a macro to clear all data instead of having to delete each relevant cell – this will also
help to eliminate data insertion errors.
How clear is the guidance?
Please see edits, particularly to the introduction.
Does the guidance provide the right level of support to the new user? See previous
comments, less focus needs to be made on justifying the work to project managers. Possibly
there might be a way of writing a 'quick start guide'. Have more detailed technical
information in an appendix.
Please provide any specific suggestions and identify any omissions to the guidance document
Please see edits, particularly to the introduction
Please address corrections in the guidance document (track changes / comments) – See
attached document
Is the language in the calculator clear? Is the meaning of each question clear? Some of the
variable names need to be changed to a question.
Do the fixed responses make sense? Any missing? Fixed responses should be removed.
Reference to the guidance could be added to explain weightings and any fixed responses.

Does the weighting of different criteria in the calculator make sense? Any suggested changes? Receptor scores for the environment need more emphasis
Are the calculations correct? Seemingly.
Is it clear how the final scores are derived? Yes.
Is it clear how scores for a whole site should be calculated? Yes, but as mentioned previously this is a bit convoluted.
Is it clear how results can be used / interpreted? Yes, once a library of assessments is available it will be easier to see which sites are low and high risk and therefore be easier to interpret. Stand-alone data results have no reference and therefore no / limited comparisons can be made.
Any other comments or suggestions most welcome As discussed during the meeting of 10/12/21, the summary spreadsheet could be adapted to highlight the main issues regarding each site. This sheet would also highlight any particular risks that have come to light, as suggested by Wouter.

Response to review

	Reviewer's comment	Response		
1	Please note that contradictory to the intention that the calculator should run on public available data, the user manual assumes that some form of inventory and or analysis is already available.	The guidance has been revised to make the intention clearer. The intention is not to base calculations entirely on publicly available data, since an understanding of which chemicals are present at a site and the potential scale of release into the environment are an essential minimum for any meaningful calculations. However, the calculator and the MAPX system pull together a wide range of information about the site from publicly available sources in order to significantly enhance a very basic minimum data requirement from the site		
2	it is not very convenient that the user has to open MapX for data collection next to the calculator, instead of being linked to the intended section of MapX directly from the calculator	Agreed. The automation of the system in MAPX would greatly enhance the efficiency of running calculations. This has been requested of UNEP.		
3	it will be important to organise pilot (training) sessions with real national authorities from ChemObs project countries.	This has been done		
4	Link to key reference does not work	Links and references amended in latest guidance		
5	A bit more consistency would strengthen the user friendliness	This has been addressed in the calculator		

6	It is unfortunate the parameters he takes of	True This is yong passible to incomparate			
6	It is unfortunate the no account can be taken of possible interaction between the chemicals	True. This is very possible to incorporate into the calculations. The limitation is the understanding of how the many possible combinations might impact risk. This was beyond the scope of the current exercise			
7	The fact that there is no reference parameter or an explanation of how one should interpret the results makes it difficult to evaluate the results of the calculation.	New guidance resources have been developed to address this			
8	Would it be possible to flag or label the provided data in the Site questions tab as for instance for container condition	Yes, very practical suggestion now done. See [17]			
9	The guidance document could be more specific to users as opposed to project managers	This has been addressed by developing a new document for project managers and removing some of the text from the user manual.			
10Develop the tool with all ideal data fields for potential collection, including for example, field exposure measurements, environmental receptor data, environmental measurement data. This would make provision for data to be added when if it comes available.This comes back to the questic integrating the calculation in N					
11	Calibrate the tool using developed world data or from an area in the world where there has been an extensive study for many years.	This would be very useful, but beyond the scope of the current project			
12	Add more contaminants	Done as suggested			
13	How easy is it to use the tool? At the moment it is not very practical. There are too many fields to fill from different sources. An excel based tool / spreadsheet environment is difficult to use.	See [2]			
14	Can you suggest ways to make the calculator easier to use? Cascade the questions so that users can only see ones that are relevant. Remove superfluous information that users don't understand or need immediately. Remove users from the calculation element so that they only see a 'result'. Change the medium of use to make it form based.	The calculator has been simplified to address this to the extent possible, but these issues would be entirely addressed by [2] Users do not engage with the calculation, but they can see how it was derived The format of the 'site questions' is form based as the only section requiring locally derived data. The rest of the calculator was			
15	Insert a macro to clear all data instead of having to delete each relevant cell – this will also help to eliminate data insertion errors.	intended to be integrated with MAPX Done			

16	Is it clear how results can be used / interpreted? Yes, once a library of assessments is available it will be easier to see which sites are low and high risk and therefore be easier to interpret. Stand-alone data results have no reference and therefore no / limited comparisons can be made.	Indeed. However, a fictional 'benchmark site' has been added in order to address this issue
17	As discussed during the meeting of 10/12/21, the summary spreadsheet could be adapted to highlight the main issues regarding each site. This sheet would also highlight any particular risks that have come to light, as suggested by Wouter.	Agreed. 'Red flag' issues are now highlighted in the calculator and added to the summary page (see [8])

Annex 4. The weighting of different variables in the Risk and Vulnerability Calculator

Each of the components of the source, pathway and receptor information is allocated a score in the calculator based on the numerical value multiplied by a weighting factor. Higher risk factors are weighted more heavily than lower risk ones, as shown in Table 6. The weightings were allocated based on similar scoring systems in existing tools, such as the Blacksmith Index and the Toxic Load Indicator, to the extent possible. There was no opportunity to validate assumptions and weightings with actual exposure data, but this would be a valuable next step. The reason children are weighted more heavily, for example, is because of their greater vulnerability to the health impacts of chemical exposure compared to adults. Women of reproductive age are weighted more heavily because of their greater vulnerability in pregnancy, the vulnerability of their child in utero and the greater burden of care if their child's health is adversely affected.

*Asterisked source variables are based on Toxic Load Indicators and the methodology for deriving the scores is described in the Risk and Vulnerability Guidance document and in the source material <u>Microsoft Word - Toxic</u> <u>Load Indicator methodology final 260617 (pestizidexperte.de)</u>. The basis for these are existing classifications by the WHO, GHS, the US EPA or classifications suggested by the Footprint Database Project. The scale ranges from 1 point to 10 points for the highest toxicity/strongest effect, with five different grades in the order 1-2-5-8-10. A score of five is used in case no data for the specific parameter is available (default value)

Table 6. Showing the weighting of different components of the calculation

Source variables	Weighting	Pathway variables	Weighting	Receptor variable		Weighting
The primary source information concerns the concentration of the chemical (whether contained, uncontained or in contaminated land). This is combined the following factors:		Workers on the site wear suitable PPE	1-3		Men (over 14 years)	3
Volume of contained chemical	1	Frequency of exposure of workers on the site	100-500	In direct contact with the	Women aged 14-45	6
Container condition (for stored chemicals)	0.5 – 1	For pesticides in use; application method	1-3	chemical at the site	Women aged over 45	3
Quantity of uncontained chemical	1	Rainfall	<50mm=1; 50-249=2; 250-499=3; 500-999=4; 1000- 2000=5		Children (under 14 years)	9
Area of contaminated land	1-5	Groundwater / shallow aquifer	1 or 3	Living within	Men (over 14 years)	2
The following scores which chemical is pre-		Flood plain?	0 or 2	100m of the site	Women aged 14-45	4
*Acute toxicity	1-10	Type of closest water body	1,3,5		Women aged over 45	2
*Carcinogenicity	1-10	Proximity of water body (within 100m or not)	0 or 3		Children (under 14 years)	6
*Mutagenicity	1-10	Topsoil type	1,2 or 3			
*Reprotoxicity	1-10	Land use	1,2,3,8			
*Acceptable Daily Intake	1-10	Type of public facility within 100m	0,2,3,4	Living 100-	Men (over 14 years)	1
*Toxicity aquatic organisms	1-10	Prone to natural disaster?	0.3	500m from the	Women aged 14-45	2
*Toxicity bees	1-10	% land covered in vegetation; Sparse (<15%) or >15%	1,2	site	Women aged over 45	1
*Bioaccumulation	1-10	Mean temp in degrees celsius Jan- March; Aug-Oct	0.5, 1,2		Children (under 14 years)	3
*Persistence	1-10	Land use attenuation factor, food	1,2,5	Recepto rs in the environ	Aquatic organisms	1
*Volatility	1-10			ment	Honeybees	1
*Half life on plants	1-10					
*Solubility in water	1-10					

Annex 5. Calculations for the Risk and Vulnerability Calculator

Table 7. Calculations for Relative Risk to Human Health

	Source	Toxicity	Physical props	Pathway	Receptor	Risk scores
Direct exposure pesticides in use	Volume x concentration x area sprayed	Sum of TLI scores for mammalian toxicity	Not included	Scores for PPE use and method of application	Scores for people spraying pesticide	Multiply each score in the row
Direct exposure contaminated sites or stocks	Container condition (volume x concentration) Area of contaminated land	See above	Not included	Scores for PPE use and frequency of occupational exposure	Scores for population on site in direct contact	Multiply each score in the row
Water	See above	See above	Score for leaching and persistence	Sum scores for rainfall, ground water, flooding, proximity of water body, topsoil	Sum of scores for people living within 100m and 100-500m	Multiply each score in the row
Soil	See above	See above	See above	Sum scores for land use, public facilities, natural disasters, % vegetation	See above	Multiply each score in the row
Air	See above	See above	Score for volatility	Score for mean temperature Jan-Feb and Aug-Sept	See above	Multiply each score in the row
Food	See above	See above	Scores for bioaccumulation and half-life on plants	Land use attenuation factor	See above	Multiply each score in the row
FINAL HEALTH RISK SCORE						Sum all risk scores x 0.00001

Table 8. The calculations for the Risk and Vulnerability Calculator relative risk to environment

	Source	Toxicity	Physical props	Pathway	Risk scores
Water	Scores for quantity of chemical (concentration x volume or land area) in containers, uncontained, contaminated land or sprayed pesticide	TLI score for toxicity to aquatic organisms	Score for leaching and solubility	Sum scores for rainfall, ground water, flooding, proximity of water body, topsoil	Multiply each score in the row
Soil	See above	TLI score for toxicity to honeybees	Score for leaching, persistence and solubility	Sum scores for natural disasters, % vegetation	Multiply each score in the row
Air	See above	TLI score for toxicity to honeybees	Score for volatility	Score for mean temperature Jan-Feb and Aug-Sept	Multiply each score in the row
FINAL ENVIRONMENT RISK SCORE					Sum all risk scores x 0. 001

Annex 6. Site Questions Sheet for the Risk and Vulnerability Calculator

			Site Que	
	This sheet d		ım informati	on that is required to run the calculations
ID	Variable Name	Data Details / Pull Down Menu Choices	Data input	Explanation
	GPS	Latitude	14.46166	Please use decimal degrees to at least 5 decimal places (3m).
Site Q1	coordinates of the site or target area	Longitude	28.42083	There are various free converters to be found online if you want to move from degrees, minutes and seconds to the decimal e.g. https://www.latlong.net/degrees-minutes-seconds-to-decimal-degrees.
	Site Name	Optional	Test	Use a unique identifier for the site.
SQ1	Chemical at the site	See Data sheet and drop down menu for the list of chemicals currently available in the calculator.	Dinoseb	
	Which category or categories	Stored chemical =A	yes	•A = For stored chemicals answer questions SQ3, SQ4, SQ5
	SQ2 best describe the chemical? Answer all that apply.	Uncontained chemical =B	no	•B = For uncontained chemical answer questions SQ6, SQ7
SQ2		Contaminated land = C	no	•C = Contaminated land answer SQ8 and SQ9
		Pesticide in use= D	no	•D = Pesticide in use on crops answer questions SQ10, SQ11, SQ12
SQ3	A: Quantity of chemical in containers	kg or litres	5000	
SQ4	A: Concentration of contained chemical	g/l or g/kg	0.05	
SQ5	A: Container	Excellent	0.1	See 'additional site info' tab for additional information on
	condition	Good	0.2	container condition
		Moderate	0.3	1
		Poor	0.8	1
		Very poor	1	
			0.2	
SQ6	Please skip this question, not relevant	kg or litres	0	See 'additional site info' tab for information on uncontained chemicals
SQ7	Please skip this question, not relevant	g/l or g/kg	0.001	This information would need to come from analysis of the uncontained chemical.

SQ8	Please skip this question, not relevant	<pre>•<100m2 = 1 •100 - 1,000 m2 = 2 •1,000 - 10,000 m2 = 3 •1 hectare - 5 hectares = 4 •> 5 hectares = 5 </pre>	5	For artisanal mines and industrial sites, the area of the site may be approximated from Google Earth images
SQ9	Please skip this question, not relevant	mg/kg	0	This needs to be a best estimate average for the contaminated area, based on sample analysis.
SQ10	Please skip this question, not relevant	litres or kg		These figures may not be availabe for the full range of pesticides on the market, but some valuable data may be available for certain crops e.g. procured by government departments or parastatals, often in relation to commodity crops e.g. coffee, cotton or outbreak pests, such as locusts, quelea or armyworm.
SQ11	Please skip this question, not relevant	g/l or g/kg		This information may be obtained from the product label and/or from the manufacturer or from sample analysis
SQ12	Please skip this question, not relevant	ha		For area under particular crops, estimates may be based on national data or FAO Agro-Maps. National data is often available for commodity crops, for example, where pesticide purchasing is done centrally and data on area under the crop, number of applications, distribution is available. Unfortunately, this data may only available for a limited number of crops, if at all, but it is valuable nonetheless.
PQ1	Do workers wear suitable PPE?	 Yes, all workers wear suitable PPE (1) More than 50% workers wear suitable PPE (2) Few workers wear 	1 2	
		any suitable PPE (3)	3	
			1	
	Frequency of workers' direct contact with chemical	Frequent contact due to regular, occupational use Occasional contact	500	
PQ2		due to accidental spills or infrequent use Rare contact due to	200	
		occasional handling or spills	100	
			100	
PQ3	For pesticide users, what is the most common application method?	•Tractor-mounted spray boom = 1 •Backpack sprayer =3 •Low volume sprayer (ULV / CDA)=2 •Improvised equipment=3		If you are not entering figures for a pesticide in use, you can skip this question. Don't worry about which value is in the box, as the figure will be multiplied by SQ10, which is zero in this case. Please note that the calculator is not yet developed for aerially sprayed pesticides.

		•Improvised equipment = 3		
RQ	Number of workers in direct contact with chemical e.g. store	Men (over 14 years) Women aged 14-45 Women aged over 45	2	THIS REFERS ONLY TO PEOPLE WORKING DIRECTLY IN CONTACT WITH THE CHEMICAL ON THE SITE
	workers, pesticide users, artisanal miners	Children (under 14 years)		

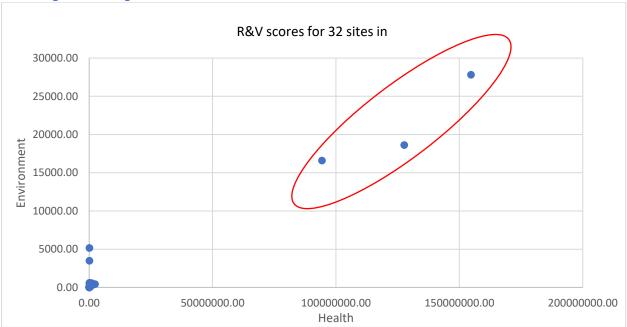
Industrial	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides
chemicals					
Asbestos	2,4,5-T	Carbosulfan	Dinoseb	Malathion	Pendimethalin
	2,4-D	Chlordane	DNOC	Mancozeb	Pentachloroph
Arsenic					enol
Benzene	Alachlor	Chlorfenvinphos	Edifenphos	MCPA	Phosphamidon
	Aldicarb	Chlormequat	Endosulfan	Mepiquat	Profenofos
Cyanide		chloride		chloride	
НСВ	Aldrin	Chlorpyrifos	Ethephon	Methamidop	Prometryn
(hexachlorobenze				hos	
ne),					
HCBD	Amitraz	Copper	Ethylene	Methiocarb	Propargite
(Hexachlorobutad		oxychloride	dibromide		
iene)					
Mercury methyl	Atrazine	Cyanide	Fenamiphos	Methomyl	Propoxur
	Bendiocarb	Cyhalothrin	Fenitrothion	Methyl	Tebupirimifos
Mercury metal				bromide	
	Benomyl	Cyhalothrin,	Fenthion	Metolachlor	Temephos
Lead		gamma			
РСВ	Bentazone	Cypermethrin	Fenvalerate	Metribuzin	Tetradifon
PCDD		DDT	Fluazifop-P-	Monocrotop	Thiodicarb
(polybrominated	_		butyl	hos	
dibenzo-p-dioxin)	Benzene				
PeCB	Binapacryl	Deltamethrin	Glyphosate	Nicosulfuron	Thiram
(pentachloro-					
benzene)	D 1	D			
Total petroleum	Bromoxynil	Diazinon	Hexchlorocycl	Paraquat	Toxaphene
hydrocarbon			ohexane		
(aliphatic)				Description	The stand second
Total petroleum	Captafol		Imidacloprid	Paraquat	Triadimenol
hydrocarbon		Disofal		dichloride	
(aromatic)	Carbarri	Dicofol	Lovebdc	Deveth :	
Duralusita	Carbaryl	Dieldrin	Lambda-	Parathion	Tuile studtio
Pyrolusite.	Carbafunan	Dimetheete	cyhalothrin	Dorothion	Tributyltin
Uranium	Carbofuran	Dimethoate	Lindane	Parathion-	Trifluralin
Uranium				methyl	

Annex 7. List of chemicals added to the Risk and Vulnerability Calculator

Annex 8. Kenya Results of Risk and Vulnerability Calculations

The Kenya consultants used data from 32 sites contaminated with lead and mercury, DDT and PCBs. Three sites emerged as very high risk scores for health and environment (circled in red in Figure x). These sites are Kayole Informal ULAB Recycling Area, AP Lead Acid Battery Recycling Company and Dandora Municipal dumpsite. They are all located in densely populated urban areas. Despite having been decommissioned, the Kitengela Obsolete chemicals storage site had a high risk score, ranked fourth out of the 10 most polluted sites.

Your name	Date	Site name	Latitude	Longi tude	Chem ical	Relative risk to human health, by chemical	Relative risk to environmen t, by chemical	Total site score for relative risk to human health	Total site score for relative risk to environ ment
Fred- rick	29/7/20	Rosterman Artisanal Goldmines	0.259444 4	34.73 6667	Merc ury metal	4736.78	0.18	4736.78	0.18
Fred- rick	30/7/20	Ndira Artisanal Goldmine site	0.051389	34.34 3427 8	Merc ury metal	2502.73	0.13	2502.73	0.13
		Rongo Artisanal Goldmines	- 0.746654	34.55 9592 6	Merc ury metal	1620.78	0.13	1620.78	0.13
		Voi Municipal Dumpsite	- 0.746654	38.46 0051	Merc ury metal	2867.43	135.86	2867.43	135.86
Fired	08/2/20	Osiri Artisanal Goldmines	- 0.988546	34.26 5813	Merc ury metal	5832.56	0.20	5832.56	0.20
Fred- rick	08/3/20	Sugar Factory & AgroChemicals, Muhoroni area	-0.15552	35.18 8	Lead	1435.38	9.22	1435.38	9.22
		Bungoma Municipal Dumpsite	-0.15552	35.18 8	Lead	647.15	0.16	647.15	0.16
		Gikomba Jua Kali Fabricators	-1.2897	36.84 14	Lead	1038283.87	251.51	1038283.8 7	251.51
		Olkaria Geothermal Power Plan	- 0.893676	36.30 8777	Lead	1804.60	1.75	1804.60	1.75
		Toi Market	-1.307	36.78	Lead	6944.65	6.68	6944.65	6.68
		Nzoia Sugar factory	0.56899	34.65 5	Lead	4632.28	20.36	4632.28	20.36


Table 8. showing results for sites in Kenya

		Mumico Currer						NETWORK UK	
		Mumias Sugar Company	0.35996	34.49 91	Lead	1436.53	0.45	1436.53	0.45
		Dandora Dumpsite	-1.25	36.90 0002	Lead	93105468.1 4	16537.70		
Fred- rick	08/4/20	Dandora Dumpsite	-1.25	36.90 0002	Merc ury metal	1203172.16	46.16	94308640. 30	16583.86
		AP Lead Acid Battery Recycling Company	- 1.313979	36.87 9564	Lead	127674775. 02	18628.51	127674775 .02	18628.51
		Korogocho lead-acid battery recyclers and metal smelters	- 1.429444	37.49 25	Lead	2389502.36	425.17	2389502.3 6	425.17
		Ganesh Informal ULAB Recyclers	- 0.785333	36.52 2366 7	Lead	97885.05	5159.23	97885.05	5159.23
		Pioneer jua kali	- 0.723642	37.16 3770 8	Lead	75405.83	587.22	75405.83	587.22
		Kariokor Elecronic Cable and Tire Burning Area	- 1.281915	36.83 2945	Lead	1055818.20	541.87	1055818.2 0	541.87
		Kayole Informal ULAB Recycling Area	- 1.267863	36.91 4993 3	Lead	154680384. 06	27824.12	154680384 .06	27824.12
		Kakamega Used Lead-Acid Battery Recycling Area	0.285365	34.75 1255	Lead	266063.74	586.84	266063.74	586.84
		Tononoka Jua Kali Artisans	- 4.051008	39.66 8785	Lead	65305.82	23.29	65305.82	23.29
		Gakoromone scrap metal recycling	0.04626	37.65 58	Lead	109116.73	3479.17	109116.73	3479.17
		Bangladesh Slums	-4.01162	39.63 3734	Lead	50955.20	17.23	50955.20	17.23
		Mwea (Ngurumbani) scraps metal recyclers	- 0.681101	37.35 8369 4	Lead	1504.21	111.90	1504.21	111.90
		Kerugoya dumpsite	- 0.501764	37.28 4884	Lead	88352.13	290.45	88352.13	290.45

						56	ACTION NETWORK UK	
	Kapsabet Informal ULAB Recycling Operation	0.20079	35.09 5613 3	Lead	7703.95	43.29	7703.95	43.29
	Nyeri dumpsite	-0.43139	36.96 2242 3	Lead	641.33	12.70	641.33	12.70
	Kamkunji Blacksmith	1.283333	36.81 6667	Lead	1714.13	0.27	1714.13	0.27
	Owino Uhuru Slum	-4.00772	39.61 576	Lead	152134.85	87.67	152134.85	87.67
	Hilton/Gioto dumpsite	-0.26882	36.04 817	Lead	3994.43	10.08	3994.43	10.08
	Kariobangi Light Industries	-1.26032	36.87 986	Lead	488105.58	69.60	488105.58	69.60

The national consultant's recommendation is to establish well contained and managed landfill and remediate Dandora. This is well supported by the findings from the calculations. The scores suggest that Kayole Informal ULAB Recycling Area and AP Lead Acid Battery Recycling Company should also be prioritised to reduce the risk from lead pollution.

Figure 9. Showing the risk and vulnerability site scores for 32 sites. Three (circled) are clearly much higher scoring than the rest.

PESTICIDE

Annex 9. Ethiopia Results of Risk and Vulnerability Calculations

Data was collected for 35 DDT stores. Ethiopia used the earliest iteration of the calculator. At that early stage we were using Log₁₀ of the results of the calculations to provide final scores (note we have used antilogs of these scores in order to compare with the results of other countries in the results section of the main document). This had the effect of grouping results into fewer categories and compressing the differences between them. Seventeen of the sites scored most highly for both human health and environment. These stores are largely under the control of the Ministry of Health in relation to mosquito control operations and strongly imply a need to improve the management of DDT stocks and the risks associated with them.

Site Name	Relative risk to human health	Relative risk to environment	Latitude (North), X	Longitude (East), Y
Ameya town	9	6	7.106	36.681
Arbaminch HC	8	6	6.035	37.561
Bench Maji ZHS	9	6	7	35.58333056
Kindokoysha HC	9	4	6.8528083	37.76096944
Sawla	9	6	6.2967667	36.88568028
Aby Adi	7	5	13.6216667	39.00138889
Alamata	6	4	12°25'10.81"N	39°33'13.24"E
Dewhan	9	6	14°32'47.06"N	39°26'19.43"E
Edaga Arbi	9	6	14.0383333	39.0675
Endabaguna	7	6	13.9513889	38.18638889
Abergele	9	5	13°5'44.63"N	38° 56'50.48"E
Debark WoHo Store	9	6	13°09'10" N	37°53'56" E
Durbetie HC	9	6	10.7070667	37.35103611
Jabi Tehnan	9	5	322122	1180244
North Wollo ZH Dpt.	8	6	565052	1307849
Boke	7	6	6.25	38.74972222
Guba Koricha	9	6	8.8333306	40.325
Habro	8	4	8.6666389	41.33333333
Obera HC store	9	6	9.525407	37.0404487
S/W Shewa ZH Store	7	4	8° 32'17.96"N	37°58'23.38"E
Aysha HS	6	4	10.6527306	42.61112222
Jgjiga city RHS	9	6	9.355	36.802
Amibara /Bertal/	6	4	9.286132	40.218048
Semera Regional lab 1	9	6	11.79644	41.004442
Semera Regional lab 2	9	6	11.795935	41.00529
Assosa zone	9	6	10.063129	34.566037
Dibati	7	4	10.778163	36.268027
Hamasha	8	6	10.317762	34.638511
Pawi	9	6	11°16'32.74"N	36°23'9.09"E
Wombera	6	4	10.625882	35.666361
Gambela Town	9	6	8° 14.49.88" N	34° 35.29.75"E

Table 9 showing results for sites in Ethiopia

				ACTION NETWORK UK
Itang	6	4	8.194	34.268
Punyido	6	4	8.0845806	34.37239444
Harari Regional HB Store B	9	6	9.3992278	42.12795
DD Sabian Hospital Store	9	6	9°36'3.15"N	41°51'0.51"E

Annex 10. Gabon results of risk and vulnerability calculations

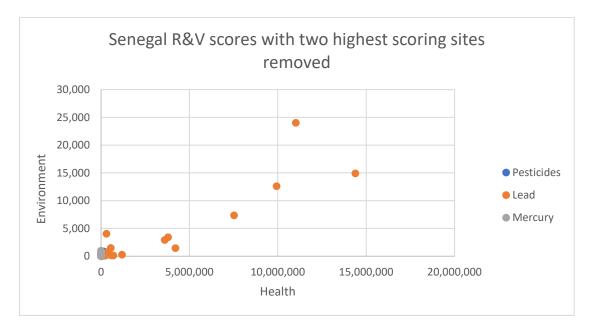
Seven sites were identified with PCBs. The site in Libreville was of particular concern. The Gabon team had difficulties accessing suitable data to run the R&V calculations. They ran calculations for one site, Décharge Mindoubé, which is a tyre storage and burning site that has lead contamination. It scored 10214.31 for health risk and 15.84 for environmental risk. While this is modest compared to sites in other countries, it still represents a risk to health for people living in close proximity. The team also used the calculator to assess three market gardening sites of fairly limited scale (7.0 ha, 1.3 ha and 2.7 ha) where pesticides paraquat and lambda cyhalothrin were in use and another rubber cultivation site using glyphosate. Score ranged from 7.68 to 90.75 for human health and scored less than 1 for environmental risk. This is an experimental use of the calculator and it would be interesting to explore its use on a larger scale and to collect empirical data alongside it.

Annex 11. Senegal Results of Risk and Vulnerability Calculations

There were two sites in particular which have extraordinarily high risk scores. These were a pesticide store containing chlorpyrifos, belonging to the DPV (Senegal's Plant Protection Services) and a group of garages highly contaminated with lead. Both sites are located in densely populated areas in Dakar and they merit urgent action to reduce the risk to local residents. The scores for remaining sites, without these two highest scoring ones, are shown in the figure below. By segregating the sites by type of pollutant the graph shows that the highest scoring remaining sites are contaminated with lead. The risk scores are high and there seems to be a common problem here of lead contamination of workshops and garages where lead batteries are being broken down. The majority of the highest risk sites are located in highly populated urban Dakar, but also in Thies and St Louis. These results would justify concerted action to address the lead pollution problem and to consider ways to prevent it.

Site name	Chemical	Relative risk to human health, by chemical	Relative risk to environment, by chemical	Total site score for relative risk to human health	Total site score for relative risk to environment
Pesticide storage site of the Directorate of Plant Protection (DPV) Dakar	Chlorpyrifos	991 485 290.65	709,478.40	991 485 290.65	709,478.40
Pesticide pollution from SDDR store in	Aldrin	131,872.23	146.08		
Diourbel	Endosulfan	61,183.07	86.9	193055.3	232.98
Pesticide storage site of the Regional Directorate of Rural Development, Diourbel	DDT	70347.74059	304.44	70347.74	304.44

Table 10 showing results for sites in Senegal


A PESTICIDE

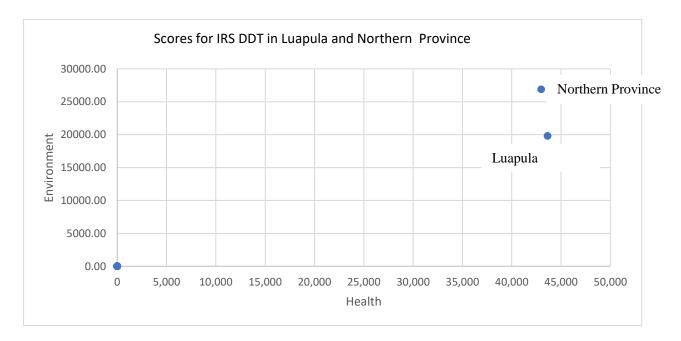
					PESTICIDE ACTION NETWORK UK
	Aldrin	5540.76	40.28		
Pesticide pollution from SDDR Mbaké	Chlordane	7569.28	21.12		
store, Diourbel	DDT	1188.43	4.72		
	Endosulfan	479.45	5.52	14777.92	7 1.64
Storage base of phytosanitay products	Dicofol	240.4	0.99		
for DPV of Sokone, Fatick	Dieldrin	82.32	0.07	322.72	1.06
Agricultural Warning Base (BAA) of Ogo / Matam region	Dieldrin	13,407.86	38.42	13,407.86	38.42
Pollution from Pesticide storage facility	Dieldrin	26,391.59	87		
at Saint-Louis airport	Fenthion	21032.65	98.94	47,424.24	185.94
	Dieldrin	4940.38	17.4		
DPV (ST Louis)	Fenthion	154,438.16	780.68		
	Chlorpyrifos	6816.23	71.4	166,194.77	869.48
	Dieldrin	63.1	0.18		
Pesticide storafge near Ziguinchor Airport	Dicofol	49.26	0.22		
	Fenthion	6224.25	29.95	6336.62	30.35
Lead pollution at Reubeuss battery repair and charging workshop, Dakar	Lead	6704969.7	11,668.09	6704969.7	11,668.09
Lead pollution by Credit Foncier Garage, Dakar	Lead	233898.76	104.79	233898.76	104.79
Lead pollution at Rue Armand Mangrand battery charging and repair site, Dakar	Lead	5122085.5	2102.5	5122085.5	2102.5
Mamadou Ndao workshop, storage and sale of batteries, Dakar	Lead	3,451,781.04	2603.23	3,451,781.04	2603.23
Lead pollution by vehicle repair shop on Rue Felix Eboué, Dakar	Lead	560157.45	423.17	560157.45	423.17
Mechanical repair garage for vehicles in the Stade Iba-Mar-Diop / RTS1 Dakar	Lead	3,542,755.66	1459.86	3,542,755.66	1459.86
Lead pollution by groups of Garages, Dakar	Lead	309992387	2439.92	309992387	2439.92
Lead pollution from Motor vehicle garages in Parc Ferraille Grand Yoff Bignona, Dakar	Lead	582086.19	182.1	582086.19	182.1
Lead pollution from mechanical garage at Beno Yoof, Dakar	Lead	398,118.52	771.68	398,118.52	771.68
Lead pollution at Aly Ndiaye Garage, Dakar	Lead	105331.52	111.02	105331.52	111.02
Lead pollution from motor vehicle garage, Damel Mixta Kambyeu, Dakar	Lead	205,123.07	100.34	205,123.07	100.34
Iron Recovery and Scrapyard at Patte d'Oie Damel, Dakar	Lead	325083.56	269.31	325083.56	269.31
Lead pollution from manufacture of utensils at Technopole, Cambérène, Dakar	Lead	133663.71	91.2	133663.71	91.2
Lead pollution by vehicle repair garage in Cité Bissap (HLM), Dakar	Lead	277,635.42	245.79	277,635.42	245.79
Vehicle repair and dismantling workshop at Bolo Dalifort, Dakar	Lead	3,605,463.85	2936.64	3,605,463.85	2936.64
Lead pollution by Pikine Icotaf vehicle repair garage, Dakar	Lead	699,920.07	145.93	699,920.07	145.93
Vehicle repair and battery recycling garage Guinaw rail sud (Alla Yana), Dakar	Lead	1,187,549.57	293.66	1,187,549.57	293.66
Lead pollution by Mechanical garage in Thiaroye Poste, Dakar	Lead	4,213,721.01	1472.5	4,213,721.01	1472.5
Former battery recycling site (Lunch service)	Lead	368412.7	459.27	368412.7	459.27

					PESTICIDE ACTION NETWORK UK
Lead pollution from Truck parking garage, Malians Mbao, Dakar	Lead	347,800.45	457.31	347,800.45	457.31
Lead Pollution at Bassirou Samb de Bargny battery repair and dismantling workshop, Dakar	Lead	554,479.78	1490.36	554,479.78	1490.36
Lead recycling and processing plant, Gravita, Sebikhotane, Dakar	Lead	304,606.53	4047.24	304,606.53	4047.24
Lead pollution from the ULAB Repair and charging workshop, Dakha Camara	Lead	185,799.77	250.85	185,799.77	250.85
Lead pollution from a garage in Adama Gaye, Diourbel	Lead	28009.73	131.2	28009.73	131.2
Lead pollution from battery repair and charging workshop, Touba, Diourbel	Lead	218,781.07	107.69	218,781.07	107.69
Lead pollution from Car Mechanic at Amadou Ndiaye Sokone, Fatick	Lead	11456.49	76.6	11456.49	76.6
Lead pollution from Mechanical welding workshop at Ablaye - Balacos, Saint Louis	Lead	11,018,148.43	24033.97	11,018,148.43	24033.97
Thiès bus station dismantling and battery repair site	Lead	14384328.44	14930.58	14384328.44	14930.58
Lead pollution from Cheikhou Mbaye Battery Repair Shop, Thiès	Lead	171,951.02	324.38	171,951.02	324.38
Lead pollution from battery charging and repair shops in Thiès	Lead	3798241.48	3440.43	3798241.48	3440.43
Lead pollution by Garage and battery repâir in Thies	Lead	7,521,632.62	7375- 2 3	7,521,632.62	7375-23
Lead pollution at Badara Dieng thies battery Repair Workshop, Thies	Lead	9931213.63	12605.93	9931213.63	12605.93
Artisanal and small-scale gold mining in Thiabédji, kédougou	Mercury methyl	2674.9	310.44	2674.9	310.44
Artisanal and small scale gold mining in Tinkoto, kédougou	Mercury methyl	4907.29	184.98	4907.29	184.98
Artisanal and small scale gold mining in Tomboronkoto, kédougou	Mercury methyl	4464.25	340.79	4464.25	340.79
Bantaco Mercury Concentration and Amalgamation Site, Kedougou	Mercury methyl	281.38	192.23	281.38	192.23
Artisanal and small-scale gold mining in Sansamba, Kédougou	Mercury methyl	3130.06	1005.43	3130.06	1005.43
Artisanal and small-scall gold mining in Baniomba, Kedougou	Mercury methyl	1210.94	357	1210.94	357
Artisanal and small scale gold mining in Laminia, kédougou	Mercury methyl	4364.78	356.38	4364.78	356.38
Artisanal and small scale gold mining in Samécouta, kédougou	Mercury methyl	2948.41	186.15	2948.41	186.15
Artisanal and small scale gold mining in Lafia, kédougou	Mercury methyl	2766.14	421.9	2766.14	421.9
Artisanal and small scale gold mining in Ngari, kédougou	Mercury methyl	692.78	93.06	692.78	93.06
Artisanal and small scale gold mining in Mako, kédougou	Mercury methyl	5300.48	52.31	5300.48	52.31
Artisanal and small scale gold mining in Dalakoye, kédougou	Mercury methyl	123.62	52.31	123.62	52.31
Artisanal and small scale gold mining at Kérekonko, kédougou	Mercury methyl	166.25	89.66	166.25	89.66
Artisanal and small scale gold mining in Kanoumering, kédougou	Mercury methyl	1,497.95	89.66	1,497.95	89.66
Artisanal and small scale gold mining in Massa Massa, kédougou	Mercury methyl	1584.03	459.08	1584.03	459.08
Artisanal and small scale gold mining at Mandacoly, kédougou	Mercury methyl	1229.78	110.49	1229.78	110.49
Artisanal and small-scale gold mining in Moussala, Kédougou	Mercury methyl	1416.6	565.07	1416.6	565.07
Artisanal and small scale gold mining in Guémédji, kédougou	Mercury methyl	4010.9	967.45	4010.9	967.45

	_	_	_		ACTION NETWORK UK
Artisanal and small scale gold mining in Gomba, kédougou	Mercury metal	45933.46	111.04	45933.46	111.04
Artisanal and small scale gold mining in Baitilaye, kédougou	Mercury metal	2511.75	125.09	2511.75	125.09
Artisanal and small-scale gold mining at Kolia, Kédougou	Mercury metal	1397.25	370.66	1397.25	370.66
Mercury pollution in Wanssangara Mining Site, Kédougou	Mercury metal	675.13	64.75	675.13	64.75
Artisanal and small-scale gold mining at Daloto, Kédougou	Mercury metal	662.58	62.25	662.58	62.25
Artisanal gold mining at Madina Baffé, Kedougou	Mercury metal	1051.55	146.74	1051.55	146.74
Mercury pollution in Khossanto, Kédougou	Mercury metal	9047.64	192.39	904 7 .64	192.39
Artisanal and small scale gold mining site iat Niamaya, kédougou	Mercury metal	449.1	26.52	449.1	26.52
Mercury pollution in Diakhaling, Kédougou	Mercury metal	1190.86	27.86	1190.86	27.86
Artisanal gold mining in Missira Sirimana, Kédougou	Mercury metal	940.94	60.93	940.94	60.93
Artisanal and small-scale gold mining at Balakonto, Kédougou	Mercury metal	1012.53	53.58	1012.53	53.58
Artisanal and small-scale gold mining at Nourang, Kédougou	Mercury metal	1200.94	37.68	1200.94	37.68
Mercury pollution in artisanal gold mine in Kharaheina, Kédougou	Mercury metal	481.65	127.53	481.65	127.53
Mercury pollution in Thiankoum Banssan, Kédougou	Mercury metal	505.75	249.68	505.75	249.68
Artisanal and small scale gold mining in Tenkoto, kédougou	Mercury metal	1312.76	81.06	1312.76	81.06

Figure 10. R&V Scores for sites in Senegal with the two highest scoring sites removed

A PESTICIDE


Annex 12. Zambia Results of Risk and Vulnerability Calculations

Poisoning data for 2017 from the Ministry of health indicates that pesticides are the primary cause and many of the incidents are of accidental exposure of children and self-harm. A number of other important sources of chemical exposure were identified that are, unfortunately, unsuitable for use in the R&V calculator. These include municipal waste, food residues, discarded pesticide containers, indoor air pollutants and mercury in cosmetics.

The international consultant supported calculations on a rather experimental use of the calculator for indoor residual spraying (IRS) of DDT as well as a large and complex site at Kabwe which are shared here. Data was gathered for four additional sites but the calculations / results have not been shared with the international consultant or included in the vulnerability report.

Indoor residual spraying of DDT

We did not have information about spray operatives so they were left out of the calculations. For families in IRS houses we assumed that the average household contained six persons and their level of exposure is equivalent to the exposure of someone working in a (very small) pesticide store with very poorly contained chemicals. We calculated the average amount of DDT sprayed in each household as 173.37g. We then calculated the score for each household and multiplied it by the number of households. The final scores and graph showing that the health risk score is similar in both provinces, but the environmental risk is somewhat higher in the Northern Province.

Figure 11. R&V Scores for IRS DDT in Luapula and Northern Province

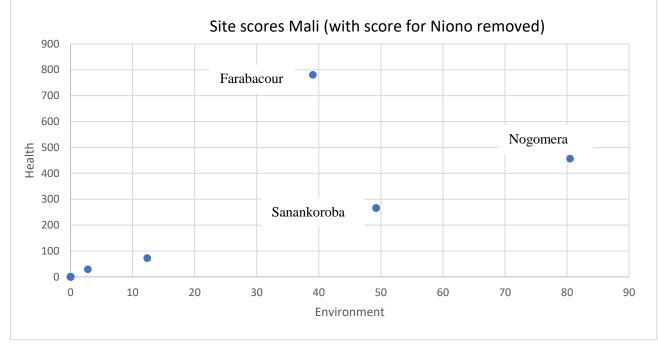
Calculating site scores for Kabwe Mine

Kabwe is a very extensive site with heavy lead contamination and residential areas on the perimeter. Soil testing found quite different levels of lead contamination in different parts of the site. For this

reason, the site was split into three with different risk score calculations in each, which were then summed. We were careful to calculate the surrounding population based only on the perimeter of the site that was not adjoining either of the other two sections of the site. The final risk score for health was 12876631.34 and the risk score for environment was 14759.2. These are high scores when compared with sites in other countries and would justify further action.

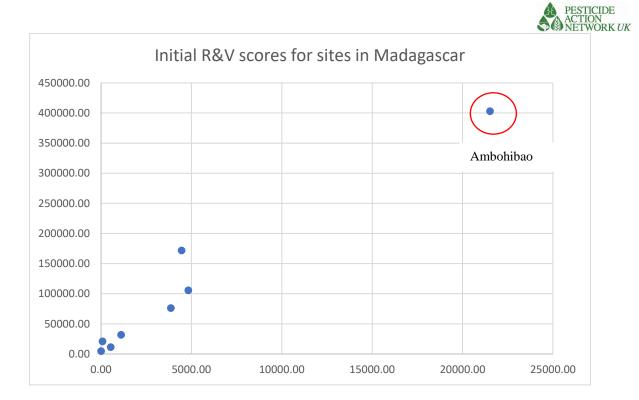
Annex 13. Mali Results of Risk and Vulnerability Calculations

The national consultant in Mali produced extensive reports with valuable information. Because of difficulty accessing the data, they distributed a questionnaire with the support of the relevant national authority, La Direction Nationale de l'Assainissement et du Contrôle de la Pollution et des Nuisances **(DNACPN)**. They were able to access data on some chemical storage sites and to reach some individual pesticides users (centralised data is lacking). The national consultant requested additional chemicals be added to the data sheet in the calculator (cyanide and pendimethrin) which was done.


Data was obtained for six sites with contaminated land. One site at Farabacoura was contaminated with mercury and the others with pesticides. A site a Niono, which is contaminated with parathion, chlorpyrifos and profenofos had very significantly higher scores than the other sites. Based on this limited information this would be the site that should be prioritised for action if the security situation allows. Of the lower scoring sites Nogomera scored highest for risk to environment and Farabacoura for risk to human health.

Your name	Date	Site name	Latitude	Longitud e	Chemical	Relative risk to human health, by chemical	Relative risk to environment, by chemical	Total site score for relative risk to human health	Total site score for relative risk to environment
AKK	31/03/2021	Dialakoroba	7,940173		Dieldrin	13,75	1,23		
		Dialakoroba	7,940173	12,253267	Endosulfan	33,35	6,72		
		Dialakoroba	7,940173	12,253267	Cypermethrin	25,44	4,40	72,54	12,35
AKK	31/03/2021	Niono	5,995682	14,251499	Parathion	22500,38	2236,55		
		Niono	5,995682	14,251499	Chlorpyrifos	807,80	74,91		
		Niono	5,995682	14,251499	Profenofos	158990,28	26208,00	182298,46	28519,46
AKK	07/04/2021	Sanankoroba	7,935425	12,361976	Parathion	174,49	38,89		
		Sanankoroba	7,935425	12,361976	Cypermethrin	91,56	10,35	266,05	49,24
AKK	07/04/2021	Farabacoura	8,253319	11,636481	Mercury methyl	780,63	39,04	780,63	39,04
AKK	07/04/2021	Niogomera	10,54916	15,103579	Dieldrin	273,67	29,29		
		Niogomera	10,54916	15,103579	Parathion	183,03	51,20	456,70	80,49
AKK	07/04/2021	Molodo	6,026481	14,236449	Parathion	9,70	1,55		
		Molodo	6,026481	14,236449	Dieldrin	19,72	1,25	29,42	2,80

Table 11 showing results for sites in Mali



The national consultant completed calculations for eight priority sites in August 2021. However, the national team has recently identified new data and are proceeding with additional analysis.

From the sites that have been considered so far, the site at Ambohibao contaminated with chlorpyrifos scores particularly highly for risk to human health and environment. This finding would support a prioritisation of this site based on the information provided. Other sites also score highly for risk to human health, while the risk scores to environment are more variable. The cause of pollution also ranges over a variety of chemicals including pesticides, PCBs, mercury and lead. The causes of these types of contamination also vary and will merit separate consideration. The chlorpyrifos stock is derived from locust control operations, for example, while the mercury is from artisanal mining.

Site name	Latitude	Longitude	Chemical	Relative risk to human health, by chemical	Relative risk to environment, by chemical	Total site score for relative risk to human health	Total site score for relative risk to environment
JIRAMA Ambohimanambola	18.54807	47.6	РСВ	105586.90	4826.10		
						105586.90	4826.10
Ambalavato sud Antsirabe	19.881	47.046	РСВ	76309.80	3864.50		
						76309.80	3864.50
llafy	18.855	47.565	РСВ	20954.40	81.40		
						20954.40	81.40
Ambohibao	18.503	47.283	chlorpyrifos	403135.90	21525.10		
						403135.90	21525.10
Andralanitra	18.54805	47.34721	Lead	161292.60	4374.53		
			Mercury	10674.74	86.16		
						171967.34	4460.68
Ampitambe Ambohibary			mercury	4589.00	0.40		
						4589.00	0.40
Imerinafovoany	18.504	47.28	Profenofos	11428.50	539.90		
						11428.50	539.90
Imerinafovoany (AGRICHEM)	18.504	47.28	Mancozeb	31833.90	1106.90		
						31833.90	1106.90

Table 12 showing results for sites in Senegal

The Risk and Vulnerability Calculator was used to estimate relative risks to human health and the environment from contaminated sites. 10 such sites were identified and used in the calculator, with nine of them being storage sites for obsolete pesticides, and one being a site where soil has been heavily contaminated with pesticide. From the calculations of relative risks, the sites with the highest risk, in order of decreasing severity were as shown.

- a. Gwebi Agricultural College, where 576 m² of soil is heavily contaminated with fenitrothion
- b. Nova Agro Pesticide Company holding at least 4 tonnes of obsolete pesticides, and being in an urban area
- c. Coffee Research Institute holding 800 litres of obsolete fenitrothion
- d. Matopos Research Centre holding 800 litres of the POP lindane, and 400 litres of EDB
- e. Tongaat Hulett holding at least 2.6 tonnes of obsolete pesticides
- f. ARDA Maphisa holding 191 litres of the POPs endosulfan and 1,5 tonnes of other obsolete pesticides
- g. Wattle Company holding one tonne of obsolete fenvalerate
- h. Mlezu Agricultural College holding 31 litres of the POP endosulfan
- i. Zimbabwe Sugar Association Experimental Station holding 550 litres of obsolete pesticides
- j. Chiredzi Research Station holding 200 litres of obsolete fenitrothion.

The listed sites were not the only ones that are known, but they were the ones with sufficient and usable data. It was therefore recommended that efforts be made to obtain data for the other known contaminated sites so that they can also be included in the calculator and prioritized accordingly.

The site at Gwebi scored very significantly higher than the other sites and, based on the information available, this would be a high priority for risk reduction measures. The site at Nova Agro also scored highly for risk to human health, being located in an urban area. This data and the information about other sites for which data is lacking raises questions about the broader issue of pesticide management. *Table 12 showing results for sites in Zimbabwe*

Site name	Latitude	Longitude	Chemical	Relative risk to human health, by chemical	Relative risk to environment, by chemical	Total site score for relative risk to human health	Total site score for relative risk to environment
Gwebi							
Contaminated Site	17.86667	30.68333	Fenitrothion	553656.26	98610.52		
						553656.26	98610.52
Mlezu Agric College	- 18.91858	29.82278	Endosulfan	99.33	2.08		
						99.33	2.08
ZSA Experimental							
Station	20.88361	31.62	Fenitrothion	44.81	23.68		
	20.88361	31.62	Chlorpyrifos	21.77	16.24		

						PESTIC ACTION NETWO	IDE N DRK <i>UK</i>
						66.58	39.92
Nova Agro							
Chemicals,	-						
Harare	17.88567	31.0045	Dimethoate	16438.46	87.51		
	- 17.88567	31.0045	Bromoxynil	17991.15	28.11	34459.57	148.36
ARDA	-						
Maphisa	21.06833	28.49667	Dimethoate	29.95	32.74		
ARDA	-						
Maphisa	21.06833	28.49667	Endosulfan	13.46	11.63		
ARDA	-						
Maphisa	21.06833	28.49667	Alachlor	29.50	5.60		
ARDA	-					246.41	134.67
Maphisa	21.06833	28.49667	Metolachlor	173.50	84.70		10
Matopos	-						
Research	20.38417	28.50806	Lindane	86.40	58.60		
Matopos	-		Ethylene				
Research	20.38417	28.50806	dibromide	317.50	144.70		
Matopos	-						
Research	20.38417	28.50806	Endosulfan	0.92	0.26		
						404.82	203.56
Coffee	_						
Research	20.23436	32.64806	Fenitrothion	1311.70	69.40		
						1311.70	69.40
Tongaat							
Hulett							
Triangle	-21.0227	31.44249	Chlorpyrifos	344.36	262.67		
Tongaat		0	ee.p.,ee	0			
Hulett			Fluazifop-P-			348.71	264.43
Triangle	-21.0227	31.44249	butyl	4.35	1.76		
Chiredzi							
Research							
Chiredzi	-						
Research	21.02024	31.57583	Fenitrothion	17.65	17.76		
						17.65	17.76
Wattle	-						
company	19.65828	32.70167	Fenvalerate	129.44	45.52		
Wattle	-			-			
company	19.65828	32.70167	Lindane	7.25	1.13		
						136.69	46.65