What's cooking?

An assessment of the potential impacts of selected novel alternatives to conventional animal products

Frontiers 2023

SPECIAL ISSUE 8

8 December 2023

Background

Partner in development UN G

Animal agriculture is an important source of nutrients for many communities.

There are important **regional differences** in current consumption, and **variations among different income groups.**

Global meat consumption is expected to grow by 50% or more by 2050.

High levels of animal source food consumption and production threaten SDGs related to climate, biodiversity, and health.

Region	OECD-FAO Outlook
World	34.7
North America	95.3
Oceania	70.7
Europe	64.8
Latin America and Caribbean	59.6
Asia	27.0
Africa	12.7

Source: (OECD and FAO 2022; FAO 2023a; FAO 2023b; UNDESA 2023)

Impacts of animal agriculture include

Major driver of climate change

- 60% of food-related emissions
- 14-20% of global emissions

Widespread environmental effects

- deforestation
- air and water pollution
- biodiversity loss
- soil degradation

Significant public health risks

Animal

welfare

concerns

- high intake of red and processed
 meats is associated with various
 NCDs
- zoonotic diseases
- antimicrobial resistance
- Tens of billions of animals are raised and killed for food annually, the vast majority in intensive farms

A range of interventions have been proposed to help reduce the environmental impact of animal agriculture.

So far, these **have not delivered change** at the scale and speed necessary.

Reducing food loss and waste

Smaller-scale, extensive or regenerative livestock farms

Reducing meat consumption in favour of whole plant proteins

Feed additives

Meat taxes

Three novel alternatives are examined in the report:

Novel plant-based foods: Replicate the sensory experience of animal products

Cultivated meat: meat produced directly from animal cells.

Fermentation-derived products:

foods produced using **biomass** and **precision** fermentation

Using microorganisms to make protein-rich food, **microorganisms are the primary ingredients.** Micro-organisms are used to produce specific ingredients (protein, flavour, vitamins).

Alternatives offer promise of reduced environmental impacts

Novel plantbased products

compared to conventional beef, offer reductions of:

- Land use: 86-97%
- GHG emissions: 67-89%

Compared to conventional pork and chicken:

- Substantial land use reductions
- Lower GHG emissions, if low-carbon energy is used.

Cultivated meat

could significantly reduce **land use** needs:

- Beef: 97–99% per kg
- Pork: 60-99% per kg
- Chicken: 43–98% per kg

Using low-carbon energy with the most carbon efficient production techniques, the GHG footprint of cultivated meat could be up to 40 times smaller than conventional beef and a quarter of conventional chicken and pork. Fermentationderived products

compared to ruminant meat, per unit, offer reductions of:

- Land use: 90%
- GHG emissions: 80%
- Water use: 90%

The environmental benefits of replacing pork and poultry with mycoprotein are less clear.

Other significant benefits for public health and animal welfare:

- reduced risks of zoonotic disease outbreak
- reduced risks of antimicrobial resistance
- reduced foodborne illnesses
- reduced animal welfare concerns associated with large-scale animal agriculture.

Forecasts for the size of market vary significantly

The degree of uptake will depend on:

- Bringing down the **cost**
- Improving taste
- Cultural acceptability
- Overcoming significant **technical challenges** (for cultivated meat) including bioreactor systems and growth media that can scale
- Regulatory developments

Research gaps

More open access research is needed to understand:

- Nutritional implications of regular consumption of alternatives
- Other socio-economic and health implications of their uptake in different regions, especially considering equity between different income countries, food security, and livelihoods of smallholder farmers.
- How to bring down the cost of novel alternatives

Policy landscape

Policy avenues

Current policies

- Funding open access research and/or research centres
- Funding industry or manufacturing
- **Regulation** (novel foods approval processes, labelling)
- Financial investments and instruments (tax exemptions, subsidies)
- Workforce development

Additional policy options available

- Further investments in **R&D and open access research**
- Support for commercialization
- Development of appropriate regulatory frameworks
- Incorporating environmental and health externalities in price of conventional ASF
- Just transition planning and support
- International collaboration

Conclusion

If supported by appropriate regulatory regimes and governance instruments,

Novel ASF alternatives can play an important role, likely with regional differences, in a shift towards food systems that are more sustainable, healthier and less harmful to animals.

