

Inventory enhancement for coal using the iPOG

Workshop to enhance inventories and strategies under Article 8 of the Minamata Convention in South Africa Eskom Megawatt Park, Sunninghill, Johannesburg Thursday 31st May 2024

Wojciech Jozewicz, PhD

Background

- iPOG is an interactive application for UNEP's POG
- Developed for UNEP Coal Partnership by Niksa Associates
- Tool to help determine approaches to Hg emission control and rank them for individual coal-fired units
- Tradeoffs were made to only include basic inputs at the expense of quantitative accuracy
- Allows for addition of flue gas cleaning approaches and systems according to BAT/BEP
 - Improved fuel quality and blending
 - PM, SO₂, and NO_X control systems for co-benefit
 - Dedicated Hg control technology
- Follows "Decision Tree" logic from the POG

iPOG "Decision Tree" Structure

iPOG Calculations Tab - Example

ck Mercury Emilesions: ck Mercury Speciation: ncury Removal:	2.4ar-000 +/ 2.7 +/ Oxidized (%) Elemental (%) Hg Removal Efficiency (%)	3.6e+000 0.4 72 +/ 28 +/ 7.0 +/	g/h g/7J 10.9 4.1 1.1
ck Mercury Speciation: ncury Removal:	Disidized (%) Elemental (%) Hg Removal Efficiency (%)	72 +/ 28 +/ 7.0 +/	10.9 4.1 1.1
ncury Removal:	Hg Removal Efficiency (%)	7.0 +/	1.1
			→
1	7 ; e-001	7) e-001	7 ; e-001

- Final tab to initiate calculations sequence
- In this example: older but well-controlled 500 MW, wall-fired boiler, burning low-S coal, cold-side ESP
- Essentially no Hg removal predicted (<10%)
- Estimated Hg emissions of 24 g/h or up to about 0.2 ton Hg/year

Data Quality Very Important

- Stakeholders should ensure that any missing data are obtained directly from the plant considered for the project rather than by the proxy calculations
- Unit details: generating capacity, commissioning date, planned retirement
- Unit performance: operational load, utilization, gross efficiency, coal consumption, LOI
- Coal quality: calorific value, ash-S-Hg-Cl content
- Emissions controls: PM, FGD, Hg controls
- Quality data in Quality results out!

Variability Examples

ATLANTIC ENERGY ASSOCIATES

State-of-the-art Unit

our compassion controls	Mercury Controls	Single Coal Properties	Coal Blend Properties	Furnace Conditions	Mercury Control Parameters	Calculate
Mercury Mass Flow Dia	gram (g/h)		Stack Me	rcury Emissions:	1.0e+002 +/- 1.5e+001	g/h
1.2e+002				[4.9 +/- 0.7	g/TJ
			Stack Me	rcury Speciation:	Oxidized (%) 2 +	/- 0.3
		FGD Inlet Oxidized Hg (%):	i	Elemental (%) 98 +	/- 14.7
M		15.4 +/- 2.3	Mercury I	Removal:	Hg Removal Efficiency (%) 17.2 +	/- 2.6
						1
2						
		>				→ []

- 800 MW unit with ESP and wet FGD
- Only about 17% Hg removal; emissions 98% of Hg0 and 2% of Hg++
- More mercury removal could be accomplished with more efficient Hg0 oxidation

Strategy for Improvement

	ury Controls Single Coal Properties Coal	Blend Properties Furnace Condition	ons Mercury Control Parameters	Calculate
Mercury Mass Flow Diagram (g/h)	Stack Mercury Emissions:	4.2e+001 +/- 6.3e+000	g/h
Furnace Mercury Input:	FGD Inlet Oxidized Hg (%):	Stack Mercury Speciation:	2.1 +/- 0.3 Oxidized (%) 15 +/- Elemental (%) 85 +/-	g/TJ 2.2 12.8
N V	68.0 +/- 10.2	Mercury Removal:	Hg Removal Efficiency (%) 65.1 +/-	9.8
				Î
				1001
	_	*	*	→[]

- Over 65% removal with addition of 250 ppm of Br to coal
- Some other options
 - Activated carbon injection upstream of the ESP
 - SCR- expensive

Another Strategy

Post-Combustion Controls Mercury Controls Si	ingle Coal Properties Coal Blend Properties Furnace Conditions Mercury Control Parameters Calculate
Mercury Mass Flow Diagram (g/h)	Stack Mercury Emissions: 1.9e+002 +/. 2.9e+000 g/h
Furnace Mercury Input: 6.8e+001	<u> </u>
	Stack Mercury Speciation: Oxidized (%) 22 +/- 3.3
	Elemental (%) 77 +/- 11.5
~	Mercury Removal: Hg Removal Efficiency (%) 71.9 +/- 10.8
2	
-Hg (%): 0.5 +/- 0.1	

 Addition of 0.02 g/m3 of activated carbon upstream of the baghouse increases Hg removal to 72%

Summary

- Only limited application of FGD throughout the country
- Data quality very important for accurate predictions
- Compliance and improvement strategies for units of varying size and age
- However,
 - Growth projected for power demand
 - Ambitious renewable energy goals

Thank you!

ATLANTIC ENERGY ASSOCIATES

Mercury emission inventory enhancement for the coal sector

PROF LESLEY SLOSS

June 2024

Improving data quality and applicability in the coal sector

Creating enhanced emission factors

Improving activity data

Focussing on the important differences

Ranking the results

Emission factors for coal

$\mathsf{EMISSION} = \mathsf{EF} \times \mathsf{RF} \times \mathsf{AV}$

Approach	Emission Factor, EF	Retention factor, RF	EF x RF	Activity value	Comments
	Relates to the mercury content of the coal	Subtracts mercury that ends up in ash etc	Estimates the amount of mercury released per unit of coal fired	Multiplies to cover all coal used in each source	
UNEP Toolkit*	Generic – 0.05 g/kg	Generic - minus 10%	0.045 g/kg	Coal burn, t	Assumes all plants and coals are identical. Targets busier units, often unfairly
2017 UNEP Project	Coal analyses Results averaged across the fleet	iPOG [#] model of generic national plant	Convert to g/TJ Applies to all plants and takes average plant efficiency into account	Coal burn, t	EF and RF are now more accurate for the national coal fleet BUT still assumes all plants and coals are identical
Advanced projects (eg Indonesia)	Coal analysis on a unit- by-unit basis	iPOG analysis on a unit-by-unit basis	Unit-specific emission factor	Unit-specific plant activity	Produces a unit- specific emission estimate
		(\mathbf{f})	<u></u>	····	

<u>* https://web.unep.org/globalmercurypartnership/mercury-emissions-coal-fired-power-plants-indonesia</u> # https://web.unep.org/globalmercurypartnership/interactive-process-optimization-guidance-ipog%E2%84%A2

Plant sampling for EF and RF

SAMPLES TAKEN AT PLANTS IN INDONESIA

Coal

Ash

Stack

- Sampling of coal as delivered and as fed into the boiler
- Coal samples from numerous mines were analysed and results collated
- Monitoring and mass balances are challenging but are still more useful than generic emission factors

Emission factor in g/GJ vs g/kg

A SLIGHT MODIFICATION TO THE EF UNITS CAN INCREASE VALUE

EF in g/GJ

Average mercury contents in coal give an EF of around 0.05 g/kg but mercury contents of coal can vary significantly, even from seam to seam

When we multiply the EF by the amount of coal burned, we get a total emission based on coal consumption.

BUT

This assumes that all coals have the same mercury content AND that all coal burns the same

If we know the amount of energy (gigajoules) of energy produced by each tonne of coal, then we can estimate mercury emissions by power output – g/GJ

This allows us to determine when plants are either firing poor-quality coal or running inefficiently

This allows us to see which plants are "cleaner" – that is, which plants produce more power whilst burning less coal. This information is not available with a g/kg emission factor

Creating the dataset

REAL DATA FROM PLANTS MISSING DATA ESTIMATED THROUGH PROXY CALCULATIONS

Unit/plant details	Unit performance	Emission controls	Fuel quality
Unit and plant name	Operational load	Flue gas desulphurisation	Calorific value
Location	Utilisation/capacity factor	In boiler additives	Mercury content
Generating capacity	Specific energy consumption	NOx burners or SCR	Chlorine content
Certified operating and commissioning date	Annual coal consumption	PM controls	

Using the iPOG

INTERACTIVE PROCESS OPTIMISATION GUIDANCE TOOL

The second s		_
2 E 1		
Mercury Mass Row Diagram (g/h)	Stock Mercury Emilations	
Fumoce Mercury Input	3.3 s/- 0.5 g/7/	
[Struck Mercury Speciation: Chaldred (%) 16 1/- 2.4	
	Elemental (%) 84 _ s/- 12.6	
A	Manuary Removal My Removal 1.5 4/- 0.5	
T		
	1	
· · · · · · · · · · · · · · · · · · ·		
Ţ	Ţ	
¥94¢ os +∕ az	8.0 +1 0.4	
(g/S): 1.5e-001 a/. 2.2e-002	3.0e-003 s/. 2.9e-004	

- Input unit-specific data
- RF estimated from plant configuration, coal chemistry and control technologies in place
- Results based on extrapolation and modelling of data from thousands of real data sets
- Used to focus on RELATIVE emission rates, not "actual"
- Image

Demonstration to follow

Creation of the dataset

LIVING DOCUMENT TO BE UPDATED REGULARLY PROVENANCE OF DATA TO BE RECORDED

No	Power unit	2020	Capacity (MW)	2020	2020	Total electricity production/gross (U/Wh)*	installed	2020 Purnomo			Annual operating hours (hour/year)		2020 Purnomo + Baruya	2020 Purno mo + Baruya	2020 Purno mo * Baruya	Stack Mercury Emission				
	Power unit	WEPP UNIT NAME	installed	Commissio ning Date (WEPP)	Remaining life as of 2020 (40yr life)	Total electricity production/gross (MWh)*	Annual utilisation	Operational load	Fuel Consumptio n (ton/year)	Specific Fuel Consumpt ion (ton/MVh)			coal mercury content	coal Sulphur content	coal chlorine content	Check If IPOG7	Annual Hg Emission . coal input, kg	Hg Emission Intensity, g/MWh	Annual Hg Emission, iPOG prediction, kg	Remaining Plant Life Hig Emission, Hig
No	Power unit	WEPP UNIT NAME	installed	Commissio ning Date (WEPP)	Remaining life as of 2020 (40yr life)	Total electricity production/gross (MWh)*	Annual utilisation	۰.	Fael Consumptio n (Ion/year)	Specific Fael Consumpt kon (Ion/MW =	hours/y	SOx control (WEPP)	ugikg		8	Result (gh)				
	PLTU Celukan Bawar	CELUKAN BAWANG	142	2015	35	274,827.90	22.09	89.20	150,000.00	0.546	7,970	SWFGD	44.6	0.79	0.023	2.4	6,690	24	360	12,600
	PLTU Celukan Bawar	CELUKAN BAWANG	142	2015	35	274,827.00	22.09	89.20	150,000.00	0.546	7,970	SWFGD	44.6	0.19	0.023	24	6,690	24	360	12,600
	PLTU Celokan Bawar	CELUKAN BAWANG	10	2015	35	274,827.00	22.09	89.20	150,000.00	0.546	7,970	SWEGD	44.6	0.19	0.023	2.4	6,690	24	360	12,600
	PLTU Patton Unit 5	PAITON-II NO 1	610	2000	20	3,549,546,25	66.42	100.00	1,618,332	0.456	6,416	SWFOD	26	0.19	0.024	5.5	42,077	12	8,901	178,017
	PLTU Paton Unit 6	PAITON N NO 2	610	2000	20	3,549,546,25	66.42	100.00	1,618,332	0 456	6,699	SWFGD	26	0.19	8.024	5.5	42,677	12	₩,901	178,017
	PLTU Paton Unit 7	PAITON-INO †	615	1999	19	3,584,327,53	66.53	106.52	1,947,206	0.543	6,146	SWFGD	40.99	0.118	0.0078	12	79,621	22	23,366	443,963
	PLTU Padon Unit 8	PAITON I NO 2	615	1999	19	3,584,327.53	66.53	106.03	2,218,145	0.619	7,025	SWEGD	40.69	0.118	0.0078	м	90,700	25	31,054	590,027
	PETU TJE Unit t	TANJUNG JATI-B NO	710	2006	26	4,469,025.09	71.85	93.07	1,826,044	0.409	7,619	WLST	13.3	0.7	0.023	24	24,296	5	4,380	113,045
	PLTU TJB Unit 2	TANJUNG JATI-B NO	710	2006	26	4,879,123.00	78.45	93.07	1,944,636	0.399	8,215	WLST	13.3	07	0.023	2.3	25,864	6	4,473	116,289
	PLTU TJB Unit 3	TANJUNG JATI-B NO	721,0	2011	31	4,563,987.90	72.18	91.59	1,780,111	0.290	R.411	WLST	27.6	0.52	0.026	3.2	48,953	- 11	5,696	176,587
	PLTU TJB Unit 4	TANJUNG JATI-B NO	721.8	2012	32	4,201,636.40	66.45	91.59	1,679,439	0.400	7,807	WL57	27.5	0.52	0.026	3.4	45,185	11	5,710	182,723

Thank you

LESLEY.SLOSS@MQ.EDU.AU

www.mq.edu.au

Using enhanced data to rank sources and create a cost-effective targeting strategy

PROF LESLEY SLOSS

June 2024

Informed ranking of data

Selecting appropriate ranking criteria

Examples of ranking results

Informing a strategic approach to emission reduction

Changing the input

Plant	Emissions, g	EF, g/kg	RF, %	AV, t
A	90	1	10	100
В	90	1	10	100
С	90	1	10	100

Plant B has higher mercury coal

Plant	Emissions, g	EF, g/kg	RF, %	AV, t
A	90	1	10	100
В	180	2	10	100
С	90	1	10	100

Plant C has higher ash retention

Plant	Emissions, g	EF, g/kg	RF, %	AV, t
A	90	1	10	100
В	180	2	10	100
С	50	1	50	100

The total coal burned is the same in all assumptions All plants are NOT the same

Emission factor in g/GJ vs g/kg

A SLIGHT MODIFICATION TO THE EF UNITS CAN INCREASE VALUE

EF in g/GJ

Average mercury contents in coal give an EF of around 0.05 g/kg but mercury contents of coal can vary significantly, even from seam to seam

When we multiply the EF by the amount of coal burned, we get a total emission based on coal consumption.

BUT

This assumes that all coals have the same mercury content AND that all coal burns the same

If we know the amount of energy (gigajoules) of energy produced by each tonne of coal, then we can estimate mercury emissions by power output – g/GJ

This allows us to determine when plants are either firing poor-quality coal or running inefficiently

This allows us to see which plants are "cleaner" – that is, which plants produce more power whilst burning less coal. This information is not available with a g/kg emission factor

Fleet emission intensity

Changing the emission factor from g/kg to g/GJ

Amount of Hg (g) emitted per GWh of electricity produced – indication of "cleaner" burning plants.

No indication of size-related intensity of Hg emissions for units >100 MW

SOME UNITS EMIT AN ORDER OF MAGNITUDE MORE MERCURY PER GWh OF POWER PRODUCED THAN OTHERS

Predicted annual emissions from Indonesian coal plants

MACQUARIE University

Bringing in plant lifetime

IMMEDIATELY BRINGS IN COST-EFFECTIVENESS

Current method	Add in capacity factor/remaining lifetime
Identifies plants which emitted the most mercury in the last operating year	Removes older plants which will slow down or close soon.
BUT assumes all plants are the same age	Allows focus for intervention on plants where control technologies may be effective in the long-term

Units which will emit >1t Hg over their remaining lifetime (Indonesia)

ASSUMING PLANTS RUN UNTIL THEY ARE 40 YEARS OLD

The top 10 units in Indonesia (out of 111 units) emit around 50% of the total emissions from the entire fleet

Mercury emissions over remaining fleet lifetime

MACOUARIE

- Over 110 units analysed
- The top 10 units emit around 50% of the total emissions from the entire fleet

This provides valid science for an informed and strategic emission reduction strategy

Simple method to rank data

тс	TOP 10 UNITS >15 years old													
U U N M T T N M A A E E 1 2	CAPACIT Y MW	Remaini ng life as of 2020 (40yr life)	Operatio nal load	Fuel Consum ption (calculat ed)	Gross unit efficienc y	SOx control (WEPP)	Coal Hg content	Coal S content	Coal Cl content	Annual Hg Emission s, coal input, kg	Hg Emission s Intensity , g/MWh	Annual Hg Emission s, iPOG predictio n, kg	Remaini ng Plant Life Hg Emission s, kg	Total Score
PL SI	4.0	2.0	5.0	3.0	4.0	5.0	4.0	5.0	3.0	5	4.0	5	4	53.0
PL SI	4.0	2.0	5.0	3.0	4.0	5.0	4.0	5.0	3.0	5	4.0	5	4	53.0
PL SI	4.0	2.0	5.0	3.0	4.0	5.0	4.0	5.0	3.0	5	4.0	5	4	53.0
PL B/	4.0	3.0	5.0	3.0	4.0	5.0	4.0	5.0	3.0	4	3.0	4	5	52.0
PL CI	4.0	3.0	5.0	3.0	4.0	5.0	3.0	2.0	3.0	5	3.0	5	5	50.0
PLITE	1.0	4.0	5.0	1.0	5.0	5.0	5.0	2.0	5.0	3	5.0	3	2	46.0
PLTE	1.0	4.0	5.0	1.0	5.0	5.0	5.0	2.0	5.0	3	5.0	3	2	46.0
PL P/	2.0	3.0	5.0	3.0	4.0	5.0	4.0	3.0	2.0	4	2.0	4	4	45.0
PL P/	2.0	3.0	5.0	3.0	4.0	5.0	4.0	3.0	2.0	4	2.0	4	4	45.0
PL RI	2.0	3.0	5.0	3.0	2.0	5.0	3.0	3.0	5.0	4	2.0	4	4	45.0

Two major forms of mercury

THE CHEMISTRY IS AFFECTED BY COAL TYPE, ASH CONTENT, CHLORINE CONTENT ETC – IT IS COMPLEX!

Oxidised mercury	Elemental mercury				
 Soluble and sticky Easy to capture in solutions, ash or sorbents 	 Not soluble and not sticky Hard to capture Can be oxidised by chemicals such as chlorine and bromine 				
Hg2+	Hg0				

Mercury flow through a coal plant

"Co-benefit effects"

If you can control mercury, you can also control acid gases and particulates

and

if you control acid gases and particulates, you also control mercury

Flow chart for technology selection

INCLUDED IN THE UNEP BAT/BEP GUIDANCE FOR COAL

Coal cleaning* and blending

*CHEMICAL COAL CLEANING HAS YET TO PROVE COST-EFFECTIVE FOR MERCURY CONTROL

	Selecting coal type	Blending	Strategic blending
•	US sub-bituminous coals tend to contain less chlorine and can be high in calcium	Coal plants blend coals to maintain the characteristics required for efficient combustion	 Study in a US plant firing sub- bituminous coal – mercury emissions remained high, even though the plant was fitted with a flue gas
•	Many US plants firing sub- bituminous coals found mercury reduction a challenge as most	 Low-quality coals can be mixed with higher-quality coals to keep costs down 	 desulphurisation system Blending with bituminous coal helped to oxidise the mercury
•	Oxidation with halogen addition was proven to work, but so was	 Low sulphur coals can be mixed with high sulphur coals to keep emissions down 	 By blending in 15% bituminous coal in with the sub-bituminous coal, mercury emissions could be reduced by up to 80%
	coal-blending	 Coal blending for emission control of anything other than sulphur is not a common strategy but theoretically it is possible 	

Co-firing biomass

- Most vegetation for co-firing will be low in mercury content. Reducing the mercury input in the total fuel will reduce the mercury input to the plant and thus reduce overall emissions
- The chlorine and ash contents of biomass can be higher than coal. This can help mercury oxidation and capture.

Figure 15 Variation of mercury emission during cofiring of subbituminous coal and biomass (Cao and others, 2008)

Particulate controls and mercury

VARIES WITH COAL AND PLAN TYPE

Particulate control systems can reduce PM emissions by >99.99%

Particulate control systems can capture mercury – oxidised mercury will stick to unburnt fly ash (sorbents can be added)

Mercury capture in ESP is generally lower (10-30%) than in fabric filters/baghouses (40-70%)

Emission values must be established for each site, due to potential variations in coal chemistry

NOx controls and mercury

VARIES WITH COAL AND PLANT TYPE

NOx burners do not have a significant effect on mercury emissions

Selective catalytic reduction technologies fitted upstream of particulate controls can oxidise mercury and lead to increased mercury capture in the ash

BUT: Mercury can contaminate and shorten the life of catalysts.

Sulphur controls and mercury

VARIES WITH COAL AND PLANT TYPE

IF mercury is in the oxidised form, it will be trapped in most FGD systems:

- Wet FGD systems will dissolve oxidised mercury
- Dry FGD systems will capture oxidised mercury in the dry sorbent
- Seawater FGD systems will dissolve oxidised mercury but may release it into the local water body

Mercury capture in any FGD system can be enhanced by converting elemental mercury to oxidised mercury by adding an oxidant such as bromine

Mercury-specific control options

Many mercury-specific control systems have been developed and some are commercialised

Most plants see these systems as a "last-resort" to reducing emissions due to the cost

System	Format	Demonstration status	Marketed by
WESP	Wet ESP	Full scale at many plants	Various
COHPAC [®] ESP plus fabric filter or pulse-jet fabric filter		1700 MW installed on coal plant and waste to energy incinerators	EPRI, via Babcock and Wilcox, Hamon Research-Cottrell
TOXECON [™]	Sorbent, and pulsed-jet fabric filter (COHPAC plus sorbent)	Fitted in 8 plants in USA	EPRI, via Babcock and Wilcox, Hamon Research-Cottrell
EFIC, electrostatic fabric integrated collector	Similar to COPAC with pulse-jet fabric filter	50 units currently in operation	China Fujian Longking
ESFF, ESP-FF hybrid system	Split level filters either integrated or separated	3 plants in China and 1 in India	Zheijian Feida Environmental Science and Technology Co
ECO** Technology	Dielectric barrier discharge, ammonia based scrubber, and WESP	Sip-stream demonstration	Powerspan
ReACT**	Regenerative activated coke technology	Full scale – Isogo, Japan; Weston, USA; industrial plants in Germany	J-Power, Haldor Topsoe
SNOX**	Dry catalyst/reactors with ammonia addition	Full scale, Nordjyllandsværket, Denmark, plus industrial sites	Haldor Topsoe
SNRB™ (SOX-NOx-Rox-Box)	Alkali sorbent injection and high temperature fabric filter	Demonstration	Babcock and Wilcox
Airborne ^{7*} Process	Sodium bicarbonate injection with wet sodium scrubbing and oxidation	Pilot and small scale	Airborne Clean Energy
Neustream [®] Technology	Dual-alkali FGD with upstream ozone injection	Pilot scale	Neumann Systems Group
Gore mercury and SO ₂ control modules	Passive, modular, fixed absorption media modules	2100 MW installed in coal-fired power plants in the USA and demonstration pilots in European plants	Gore
Skymine** Process	Electrochemical sodium hydroxide scrubbing	Pilot scale	Skyonic Corporation
Tri-Mer**	Modular ceramic catalyst	Pilot scale	Tri-Mer

Decision tree

This is a simple flow diagram which allows the user to work through the BAT/BEP (best available technology/best environmental practice) to choose an option which will work best with different plant configurations.

Using the iPOG as a predictor

THE IPOG CAN HELP DETERMINE THE APPROACHES MOST LIKELY TO SUCCEED

Conclusions

Information and data = power

- The Minamata convention only requires a total sectoral inventory. However, an enhanced inventory could inform a significantly more costeffective reduction strategy
- Creating an enhanced inventory takes time but, once established can simply be updated annually to monitor trends in emissions
- Use a ranking approach, considering plant-specific factors including remaining operating lifetime, to determine where action will achieve the greatest results
- It is possible and even likely that acting on a few plants could achieve faster and more cost-effective emission reduction than a blanket requirement for action across all plants

Thank you

LESLEY.SLOSS@MQ.EDU.AU

www.mq.edu.au

Funded by the European Union

Non Ferrous Metals in Article 8 Minamata Convention

- Smelting and Roasting only
- Metals:
 - Copper
 - Lead
 - Zinc
 - Industrial Gold

Non Ferrous Metals – Strong Growth

17 13 17 3, 24 +x + 0145 + × S Emission Estimation

Or (DG)-

2 00 Va'+ b' = x 2

Yease 86

22 10-1-1

X-2-[984+X9+8-5

5=9+x+++

Tools for Inventory Development

Inventory Level 2 (IL2)

- a detailed mercury inventory tool
- all factors adjustable to national or local conditions.
- default estimation factors are pre-entered
- requires more reading and experience
- high level of accuracy, provided that the data needed for this are available

Other resources – Study Report on Non Ferrous Metals

Identified uncertainties and knowledge gaps

- Hg content in ores and concentrates, at plant and country level
- Hg air emissions test data
- Hg concentrations in reject material
- Hg distributions between emissions and other releases
- Activity data (amounts of ores and concentrates processed)
- Effects of pollution control technologies, incl. on distribution of Hg between emissions to air, and capture in solid and liquid waste
- Additional quantitative information on how mercury deports to emissions and releases to air, land, water, waste and by-products

DATA REQUIRED FOR BETTER EMISSION ESTIMATES

Mercury variability in ores

Number of mines and the reported Hg concentrations in

- a) Cu concentrates
- b) Pb concentrates
- c) Zn concentrates

Improving emissions estimations

Improved data (mercury in ore and concentrates, activity data, control technologies and their effectiveness,...)

Individual plant data (<u>but</u> a large task; 70 gold mines are in South Africa, according to GlobalData's mines database)

Harmony Gold Mining, Anglo Gold Ashanti, and Gold Fields made up about 50% production in 2021

Better understanding of ore characteristics

Gold is typically recovered from ores containing only traces of the metal main challenge is concentrating

- Techiques:
 - Cyanide leaching; gold must be available for leaching
 - Mercury amalgamation largely now only used in ASGM
 - Refractory ores hard to leach ultra-fine mercury; requires pre-treatment (roasting, oxidation, ...)

Reducing mercury emissions

BAT/BEP Reduction of Hg emissions

- Boliden-Norzink process
 - $\begin{array}{rl} & \text{Hg + HgCl}_2 \rightarrow \text{Hg}_2\text{Cl}_2 \\ & \text{(calomel)} \end{array}$
- Selenium filter
 - $\hspace{0.1in} \text{Se + Hg} \rightarrow \text{SeHg}$
- Activated carbon
- Co-benefits of air pollution
 abatement technologies
 - Particulate matter, SO₂, NO_x

FIGURE 1: EXAMPLE OF GOLD PRODUCTION PROCESSING*

Case Study: Nevada Gold Plant

- Controls employed:
- Cyclone separation
- Gas Quench
- Venturi gas scrubbing
- Gas condenser
- Wet electrostatic precipitator (ESP)
- Calomel scrubber

Mercury Removal Technology	Process Conditions	Advantages	Disadvantages	
Carbon Filter beds	Efficiency = 99%	Effectively removes mercury chloride	 Untreated carbon ineffective in removing elemental mercury 	
Fixed activated carbon filter beds	Efficiency = 90%	 Sulfur-impregnated activated carbon is commercially available Removes Hg⁰ and other species Low potential for leaching of mercury from spent carbon 	 Spent carbon requires disposal in landfill 	
Activated carbon injection	Efficiency = 90-95%	 Sulfur-impregnated activated carbon is commercially available Removes Hg⁰ and other species Low potential for leaching of mercury from spent carbon 	 Spent carbon requires disposal in landfill 	
Lime/limestone scrubbing	Efficiency = 10-84%	Effective for water soluble species	 Ineffective for elemental mercury Wastewater requires treatment prior to disposal 	
Selenium filters	Efficiency = 99.6% Max Hg _{IN} = 9 mg/m ³ Max Hg _{OUT} = 40 μ g/m ³	 Successful installation at metallurgical plants 	 Limited inlet mercury concentration Ineffective for species other than elemental mercury Spent filter requires disposal in landfill 	
Boliden-Norzink process	Efficiency = 99% Max Hg _{IN} = 5-80 mg/m ³ Max Hg _{OUT} = 20-50 μ g/m ³	 Widely demonstrated Mercury removed as marketable product 	 Removes only elemental mercury Complicated flowsheet Chlorine gas handling 	

Introduction: Minamata Convention on Mercury, Article 8, emissions inventories

Workshop to enhance inventories and strategies under Article 8 of the Minamata Convention in South Africa, 31 May 2024

Alexander Romanov, UNEP-GEF Chemicals and Waste (<u>alexander.romanov@un.org</u>) on behalf of the Secretariat of the Minamata Convention on Mercury

Minamata Convention of Mercury

- Objective: to protect the human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds.
- Adopted in October 2013, entered into force in August 2017.
- Mercury is a chemical of global concern owing to its:
 - Long-range atmospheric transport,
 - Persistence in the environment once anthropogenically introduced,
 - > Ability to bioaccumulate in ecosystems, and
 - Significant negative effects and human health and the environment.
- Recognizes the lessons of Minamata Disease, in particular the serious health and environmental effects from mercury pollution.

Why develop an international treaty on mercury?

The Miniamuta Convention on Mercury was the first new global Convention on environment and health adopted for close to a decode. It is named after the place in Japan where, in the mid-20th certary, mercury-tartist industrial wastewater poisoned thousands of people, leading to origining symptoms that became known as the "Miniamata disease".

Mercury is a highly toocheaw metal that poses a global threat to human health and the environment. Together with its various compounds, it has a range of severe health impacts, including damage to the contral nervous system, thyraid, kidneys, tangs, immune system, eyes, gums and skin. Victims may suffer memory loss or language-impiamunt, and the damage to the boars connot be reversed. There is no known safe exposure sixed for elemental mercury in humans, and effects can be seen even at very low levels. Fetuses, newborn babas and children are amongst the most witherable and sensitive to the adverse effects of mercury. Mercury is transported amount the globe through the environment, so its emissions and releases can affect human health and environment even in remote locations.

No country can control transboundary effects of memory alone. It can be effectively tackled only through international cooperation. With the adoption of the Minamata Convention, Governments from around the world have taken a major step in dealing with worldwide emissions and releases of memory, which threaten the environment, and the bealth of millions.

Why is mercury present in our environment and how are we exposed to it

Mercury is a naturally occurring element. It can be released to the environment from natural sources – such as weathening of mercury-containing rocks, forest fires, volcarse eruptions or geothermal activities – but also from human activities. Of the estimated 5560-8000 fore of mercury currently emitted and is-emitted each year to the atmosphere, only about 10 per cent is accounted to be from natural sources¹.

Due to its unique properties, mercury has been used in vencous products and processes for hundreds of years. Currently, it is mostly utilised in industrial processes that produce chiorine and sodium hydroxide (mercury chior-alkali platts) or why chioede monomer for polyknyl chioride (PVC) production, and polykeethane eleatomets. It is extensively used to extract gold from one in artisenal and small scale gold mining. It is contained in products such as electrical switches lincluding themostats), relays, measuring and control equipment, energy-efficient fluorescent light bubbs, harteries and dental amalgam. It is also used in laboratories, cosmitics, pharmaceuticals, including in veccines as a preservative, paints, and jewellery.

UNEP, Global Mentury Assessment 2013; Sources, Emissions, Releases, and Environmental Transport

DISC MARCE. We observations contained in the document as animetered to internation proposes code and abox one createriates of of the length of the Ministeria Convention on Ministery by OVMET and the International Online Ministeria Convention on Ministery by OVMET and the International Convention on Ministery by OVMET and the International

GMA 2018 - Update on global Hg pools and cycles

Parties to the Minamata Convention

For most recent list of parties, see <u>UN Treaties Section website</u>

inductory to		- neurosini, i	The second second	176-149-1 10 10 10 1 10 10 10 10 10 10 10 10 10		
United Treaty C	Nations Collection	181	5	and a second		
	Tegatorica & P		-	n territor		
1				(Transcription of the second second		
<u>0</u>						
10.	courtph series	 E. (107) 	(4)			
Autors		111				
a post	COMPLEX ANY					
P. CHINA CONTRACTOR	ENVIRONMENT					
	17 Minute Constitute of Manual					
an biates	LT. West as control of Network					
of (cristed interest			Contraction, Of Little			
al giber berane	Being mits freez. This logger 1000, is not construct with the method 1000, the Unpresented and the term to freeze the construction during the during of logger of the terms to an end the terms to an end the construction. As and that we required a construction equipment of the filteration equipment of the construction of the section of the end terms of the terms of the term of the term of the term of the term of the end terms of the terms of the terms of the terms of the term of the term of the term of the terms of th					
	Septem	16 August 2011, No. Name				
	twee	Spatienes (128-74-94	- 15			
	No. Orthomator					
		control futures. Nany research time, the start of the start future boots of the design of the start of the spectra start of the spec				
	Sciel.	The Conversion Act adopted in 10 Dicker (001 of Konversion) applied on the exception of the conference of Presignated acts on the Minameter Conversion of the result of the Conversion of the Co				
		medicarter of the t	rit and it process 2554	CL and, the netter, at the transitioner		
	Person -		Section 1	Approval MJ, Acceptored KJ, Recordshill, Refficulture		
	den son			1999/017#		
	Aturia		0.002014	36 kmp 2008		
	segui.		21:047.3503			
	Antigue and East			-11 Sec (211) 4		
	area and		30 (24 2011	20.5m 2017		
	SCHOOL SC		10,0014044	1126(20)		
	-legentin-		30.5++3033	7/0+211		
	(NUTT)		90.044 5077	- H 8#3003		
	earlana.		-	31 100 2020 #		
	Amer.			8.NE-301.9		
	Desglattare		30.054 2010			
	anti-		31366,0111	and and		
	Descent.		period parts	The state		
	and the second	Contraction (0.01.00			
	1000	10,000,00				
	1		and a little	1.000		
			Acres 1972	() () () () () () () () () ()		

10 Apr 1812

6-tap 2021 2019/04/2021

of the DOA

12 200. 2011

DBCAUMER The economic or contracted in this document is an exercised for continuous purposes any and does not dependent as interpretation of the test of the Maintainst Conversion or Maintainst by UMP or interest Secondard of the Maintainst Conversion is does not accentism the origing putterity, tests of the Conversion as deposited with the Secondard Conversion is does not accentism the contract as second with the Maintainst Conversion and accenters of the Maintainst Conversion is does not accent

Major obligations of the parties to the Minamata Convention

- Article 3: Not allow new mercury mines and close old ones in 15 years
- Article 3: Only export mercury with written consent of importing countries
- Article 4: Phase out listed mercury-added products by 2020 (2025 for newly-added product categories.
- Article 4: Take measures to phase down dental amalgam
- Article 5: Phase out listed mercury-using processes by 2018 or 2025, and take measures to restrict other listed processes
- Article 7: Develop and implement national action plans on artisanal and small-scale gold mining in 3 years

 Article 8: Take measures on new emission sources in 5 years and existing sources in 10 years. Establish emission inventory in 5 years

- Article 9: Identity relevant sources and take measures. Establish release inventory in 5 years
- Article 10: Take measures on interim storage
- Article 11: Manage mercury waste in an environmentally sound manner
- Article 12: Endeavour to develop strategies
- Article 21: Report on the implementation of the Convention

THE MINAMATA CONVENTION ON MERCUR

MINAMATA CONVENTION

Global Mercury Assessment 2018

- The predominant source sector is artisanal and smallscale gold mining (about 38%).
- It is followed by stationary combustion of coal (about 21%), non-ferrous metal production (about 15%) and cement production (about 11%).

Article 8 of the Minamata Convention

- Controls the emissions of total mercury to air from the following sources listed in Annex D:
 - Coal-fired power plants
 - Coal-fired industrial boilers
 - Smelting and roasting processes used in the production of non-ferrous metals (lead, zinc, copper and industrial gold)
 - Waste incineration facilities
 - Cement clinker production facilities.
- Parties with relevant sources shall take measures to control emissions and may prepare a national plan, which is to be submitted within 4 years after the entry into force if prepared.
- For new sources, each Party shall require the use of BAT/BEP to control and reduce emissions, as soon as practicable but no later than 5 years after the date of entry into force.
- For existing sources, each Party shall include in any national plan, and shall implement, one or more of the following measures, as soon as practicable but no more than 10 years after the date of entry into force:
 - A quantified goal
 - Emission limit values
 - The use of BAT/BEP
 - A multi-pollutant control strategy that would deliver co-benefits
 - Alternative measures to reduce emissions from relevant sources

Each Party shall establish, as soon as practicable and no later than 5 years after the date of entry into force of the Convention for it, and maintain thereafter, an inventory of emissions from relevant sources.

- Decision MC-1/4
- Adopted the <u>guidance</u> on BAT/BEP and on support for parties in implementing the measures
- Recognized that some of the measures described in the guidance may not be available to all parties for technical or economic reasons,
- Requested parties with experience in using such guidance to provide the secretariat with information on that experience, and the secretariat to compile such information and to update the guidance as necessary.
- Decision MC-1/16
- Adopted the guidance on criteria that parties may develop to identify emission sources, and on the methodology for emission inventories.

► UNEP's Toolkit for identification and quantification of mercury releases –aka UNEP Mercury Toolkit – is intended to assist countries to identify and quantify the sources of mercury emissions and releases, set priorities and reduction targets, enhance international cooperation, knowledge sharing, and enable targeted technical assistance.

Inventories from countries contribute to the Global Mercury Assessment, the hub of the scientific knowledge of worldwide mercury emissions and releases.

The Toolkit provides clear guidance on different stages of inventory development: identifying mercury sources, quantifying the consumption and calculating the final emissions and releases.

The Toolkit includes detailed manual, calculation spreadsheet and a standard template for reporting.

The Toolkit is one of the methods recommended in guidance from the Minamata Convention on preparing inventories of emissions pursuant to Article 8.
UNEP's Toolkit for identification and quantification of mercury releases

Inventory Level 1 (IL1) – simplified model based on default factors, requires national sectoral activity rate data; useful for first-time inventories, yet less accuracy of emission/release estimates should be expected

Inventory Level 2 (IL2) – detailed mercury inventory tool, all emission/release factors can be adjusted to national/local conditions (default factors are included), requires detailed national sectoral data to fully reflect mercury cycles

Inventory Level 3 (IL3) - integrates all mercury sources into their entire mass flow through and out of society to the environment linking different mercury sources and provides increased accuracy in estimations; most data- and expertise-intensive

UN@

UNEP's Toolkit for identification and quantification of mercury releases

Calculated Hg output, rce No. Source category Kgly Sector Total products ral specific releases by Wate and wast treatment/dis source Air Land Impurities . posal category 4 Extraction and use of 105 fuels/energy sources 99 0 1 5 2 Primary (virgin) metal 1,719 13,976 33,174 93,770 14,705 30,196 production . Production other minerals 166 237 and materials'1 71 41 . Intentional Hg in industrial 4 processes . 5 Consumer products (whole lifecycle) 3,164 288 3,219 6,190 0 12,861 . Other product/process 68 459 394 389 1,314 use*2 3 Production of recycled 36 37 36 109 metals . 8 Waste incineration and 12,815 12,815 burning 22 . 9 Waste deposition + waste 813 1,165 6,258 121 121 8,477 water treatm."3"4 10 :0 141 141 Crematoria and cemetaries SUM OF QUANTIFIED **RELEASES'3'4** 31,865 3,229 17,537 30,267 6,742 33,689 123,330

Minamata Initial Assessment Report for Zambia (2017)

Minamata Initial Assessment Report for South Africa (2021)

Category	Source category	Calculated. Hg input to society(Kg/y)	Percentages of Total	
5.1	Extraction and use of fuels/energy sources	38080	53.8	
5.2	Primary (virgin) metal production	12894	18.2	
5.3	Production of other minerals and materials with mercury impurities	803	1.1	
5.4	Intentional use of mercury in industrial processes	0	0.0	
5.5	Consumer products with intentional use of mercury	11726	16.6	
5.6	Other intentional product/process use	4346	6.1	
5.7	Production of recycled metals ("secondary" metal production)	1594	2.3	
5.8	Waste incineration*3	905	1.3	
5.9	Waste deposition/landfilling and wastewater treatment	408	0.6	
5.10	Crematoria and cemeteries	1250	1.8	

https://minamataconvention.org/sites/default/files/documents/minamata_initial_assessment/Zambia-MIA-2017.pdf

MercuryLearn Training

- In response to the increasing interest of countries to develop mercury emissions inventories and the subsequent high demand of guidance and training on this topic, UNEP and UNITAR decided to collaborate on developing an online training platform: MercuryLearn. The main component is the UNEP Toolkit for Identification and Quantification of Mercury Releases.
- This initiative has been funded by the European Commission and the government of Switzerland.

<u>https://mercurylearn.unitar.org/</u>

Online training modules on the UNEP's Toolkit for identification and quantification of mercury releases Inventory Level 1 and 2

Self-paced, available in English and Spanish

Inventory Level 1 Self-paced To-15 hours How to access How to access English Free course

Inventory Level 2 Self-paced O 10-15 hours Introductory video How to access English Free course

Nivel 1 del inventario

A su propio ritmo
 10-15 horas
 Video de introducción
 Cómo acceder
 Español
 Curso gratis

Nivel 2 del inventario

A su propio ritmo
 10-15 horas
 Video de introducción
 Cómo acceder
 Español
 Curso gratis

Minamata Convention Initial Assessments

- GEF enabling activities include the development of Minamata Convention Initial Assessments (MIA), which support countries to prepare to implement the obligations of the Minamata Convention as soon as possible.
- MIA may include:
 - National Mercury Profile, including identification of significant sources of emissions and releases
 - Overview of structures, institutions, and legislation already available to implement the Convention;
 - Challenges to implementation, including identification of legal and/or regulatory gaps to be addressed prior to ratification
 - Capacity building, technical assistance as well as other needs required for the implementation of the Convention.
- MIA reports are available on website.

See Convention website

Minamata Convention Initial Assessments (MIAs)

< 100 V

JN A 1

The investigation of Versients Conservation times presentation (Ver) (also escind and the second escind and the second escind es

The object of Development in Service proceeding or advanced by the service processing services the term the Mean Area Service and Termination of the Service Service and Service and Service S

Taxan I	flee	Test
these	D Carlos	210
integrated behavior	E Date	001
Append	12 famous	-
Arren .	D traine	1111
German .	Contraction of the local division of the loc	22.45
Bullation .	Constant -	1000

Minamata Convention Initial Assessments

MIA Mercury Inventory Dashboard by Mark Burton

G & F 🎗

https://public.tableau.com/app/profile/mark.burton.bri/viz/MIAMercuryInventoryDashboard/Main_Dashboard?publish=yes

Minamata (training) Tools

Developed with the generous support of the European Union as part of project "Support to the capacity-building and technical assistance programme of the Secretariat of the Minamata Convention on Mercury"

Register today!

SCAN ME

Minamata Convention on Mercury

Learning Path for National Focal Points

Self-paced

<u>https://www.unssc.org/courses/minamata-tools-0</u>

Minamata Online

Minamata Online series of virtual webinars on various topics related to the Minamata Convention on mercury since 2020

MINAMATA ONLINE SEASON 3 / 2023

BITLY/MOBSEP238

https://minamataconvention.org/en/meetings/upcoming-listview?field_event_type_target_id=287

Thank you for your attention

Secretariat of the Minamata Convention on Mercury United Nations Environment Programme 11-13, Chemin des Anémones - 1219 Châtelaine, Switzerland

WEB: https://minamataconvention.org/ MAIL: MEA-MinamataSecretariat@un.org TWITTER: @minamataMEA #MakeMercuryHistory

Using Inventory Data and Planned Policies to Inform Future Emission Scenarios in South Africa

EDWARD ARCHER

One-day working event on inventory production and compliance strategies for the South African Coal fleet under the Minamata Convention 30 May 2024

Project Outcomes

OUTCOME 1: Comprehensive coal sectoral analysis

Activities

- Review scientific data on mercury emissions from CFPPs
- Evaluate the impact of commitments and targets by UN Conventions on Hg/GHG/POP emissions from the coal sector
- Potential mercury reduction figures & scenarios from CFPPs produced
 - Expand to Coal-Fired Industrial Boilers (CFIB)

Global Mercury Assessment 2018

SOUTH AFRICA IN THE GLOBAL CONTEXT

Stationary Combustion of Coal at Power Plants 292 tons/year

China, India & South Africa = 47% - 59% global coverage

Stationary Combustion of Coal at Industrial Boilers 126 tons/year

China & India = 73% - 83% global coverage

Minamata Initial Assessment 2019

CFPPs:

Coal consumption:

• 77 million tonnes (washed/unwashed)

Input factor:

- 0,13-0,24 mg/kg (bituminous)
- 0,15 mg/kg (washed anthracite)
- 0,105 mg/kg (washed coal)

Emission to air:

• 18.096 tonnes / year

Important consideration - The mass balance of mercury in CFPPs (input-retention-emission-release)

Methodology – CFPP emissions

BASELINE DATA FROM THE GLOBAL ENERGY MONITOR

https://globalenergymonitor.org/projects/global-coal-plant-tracker/ https://globalenergymonitor.org/projects/global-coal-plant-tracker/methodology/

Country- & Unit-level information

- Capacity (MW)
- Start/Planned retirement year
- Combustion technology
- Coal type
- Heat rate (Btu/kWh) https://www.gem.wik
- Capacity factor Global average from Intern
- Remaining plant lifetime

E.g., Heat Rate (Btu per kWh) – South Africa units

Low – 8,409 High – 12,618

Methodology – CFPP emissions

BASELINE DATA FROM THE GLOBAL ENERGY MONITOR

Assumptions/uncertainties

- Default 40-year plant life expectancy (SA plants operating for >40yrs)
- New project start year (where not indicated) operational by 2030
- Mercury emissions
 - Defined APCD configurations (Garnham & Langerman, 2016, Clean Coal Journal, Vol 26, No 2)
 - Unit-level capacity factors
 - Unit-level GCV (kJ/kg coal) average levels per coal type based on Annex 28 of the Stockholm Convention Toolkit

GCV (kJ/kg coal)	Av	
Bituminous	29300	
Subbituminous	14500	Stockholm Co
Anthracite	30667	Annex 28 ave
Lignite	8583	
Unknown	25000	
Waste coal	25000	

- Mercury coal input factor 0,23 mg/kg Wagner and Hlatshwayo 2005, Int J Coal Geol 63:228–246; Tewalt et al. 2010, Open-File Report 2010–1196. United States Geological Survey, Reston; Bergh et al. 2011, Fuel Process Technol 92:812–816.
- Limitations: Additions of mercury-specific controls, Br additions, coal washing, Hg speciation, Cl content, coal blending/co-firing

CFPP capacity outlook

Faculty of Science and Engineering | School of Natural Sciences

Methodology – Mercury Emissions Estimate (UNEP toolkit)

Mercury emission (kg/year) = Coal consumption * [IF] * ((100 (RF)/100)

HRV / GCV * CAP * CF * 9.24E03

South African CFPPs = 76,740,000 tonnes / year

Mercury input factor by co	SGS default	
China	0,17	Liu et al., 2019
India	0,22	India country profile
Indonesia	0,06	BCRC-SEA, 2017
Vietnam	0,28	UNEP, 2017
Philippines	0,08	USGS
Thailand	0,14	USGS
Malaysia	0,08	USGS
South Africa	0,21	https://link.springer.o
REMAINING WORLD	0,15	<u>USGS</u>
Australia	0,08	<u>USGS</u>
United States	0,13	https://pubs.usgs.gov

Table 5-11 Mercury retention rates and application profile developed by UNEP/AMAP (2012).

	Intermediate n tion rates, %, 1	Degree of application (%) by country group *1					
Air pollution controls	Hard coal	Brown coal	1	2	3	4	5
	bituminous)	bituminous,					
		lignite)					
Industrial use (combustion):							
Level 0: None	0.0	0.0			25	50	75
Level 1: Particulate matter simple APC: ESP/PS/CYC	25.0	5.0	25	25	50	50	25
Level 2: Particulate matter (FF)	50.0	50.0	25	50	25		
Level 3: Efficient APC: PM+SDA/wFGD	50.0	30.0	25	25			
Level 4: Very efficient APC: PM+FGD+SCR	90.0	20.0	25				
Level 5: Mercury specific	97.0	75.0					
Other coal combustion:							
Level 0: None	0.0	0.0	50	50	100	100	100
Level 1: Particulate matter simple APC: ESP/PS/CYC	25.0	5.0	50	50			

Energy Action Plan (2022)

Facilitated by the National Energy Crisis Committee (NECOM)

Actions:

1. Improve availability of existing supply

- Reduce unplanned outages & increased generation from renewables
- Debt relief package from the National Treasury investment in necessary maintenance, diesel supplies, OCGT load factor increase & expand transmission networks
- Eskom Generation Recovery Plan independent technical review
- Return Kusile & Medupi units to service
- Distribution Demand Management Programme energy savings incentives

2. Accelerate private investment in generation capacity

- E.g., Resource Mobilisation Fund (RMF) technical support
- E.g., Energy Council of South Africa engineering support
- Electricity Regulation Act, Schedule 2, amendments remove licensing thresholds for generation facilities
- Reduced time frame for regulatory approvals by energy projects
- Invest SA applications for renewable energy projects for authorizations
- Eskom-leased land for developers of private energy projects Phase 1 where transmission infrastructure is already available
- Power purchasing mechanism from private sector Standard Offer Programme & Emergency Generation Programme

Energy Action Plan (2022)

Facilitated by the National Energy Crisis Committee (NECOM)

Actions:

- 3. Fast-tract procurement of new generation capacity from non-fossil fuels
 - 14 GW of new wind/solar/battery storage procurement
 - Three projects from the Risk Mitigation Programme in construction
 - Power Purchase Agreements for 19 projects & additional new capacity construction 2,300 MW
 - Import power from neighboring countries, subject to transmission networks

4. Accelerate investment in rooftop solar (businesses & households)

- Special tax incentives for businesses & households installing solar
- Bounce-back loan scheme for small businesses going solar
- Progress in rooftop solar installments across the country
- 5. Fundamental transformation of electricity sector for long-term energy security
 - National Transmission Company of South Africa as independent entity for managing the national electricity grid (improved private sector participation)
 - New legislation for a competitive electricity market (i.e., Electricity Regulation Amendment Bill)

CFPP Mercury Emissions

BAU – Business as Usual

AERS – Early Retirement

- Subcritical CFPPs
- 5-yr/10-yr early retirement

CFS (Capacity factor scenario)

- 2024 0.53
- 2030 0.3
- 2050 0.2

RETROFIT scenario

RETROFIT scenario criteria									
20									
FF									
FF + FGD									
Operating									
2030									

Reduction in CFPP emissions reliant on alternative energy developments

Our World in Data

Faculty of Science and Engineering | School of Natural Sciences

South Africa NDC 2020/21

"The key challenge during the implementation periods of this first NDC (2021 to 2025, and 2026 to 2030) will be the *transition in the electricity sector*, seeking early investment in and preparing for mitigation in harder-to-mitigate sectors, and addressing the *economic and social consequences* resulting from this transition in coal-producing areas."

"... developing *labour and social plans* as and when ageing coal-fired power plants and associated coal production infrastructure are decommissioned."

"Over the next decade, the NDC will require a <u>much greater investment programme</u>, as specified in IPR 2019, of between R860 billion and R920 billion (in 2019 Rands; USD60-64 billion). The shift away from coal that IRP 2019 requires, will require support in the form of transition finance, and associated technology and capacity-building."

Draft IRP2023 Horizon 1 (2023 – 2030)

able 2: E	mergin	g Plan	from H	orizon	One A	nalysis									
	Coal	Gas – IPP Programme	Gas - Eskom	Dispatchable Capacity	Nuclear	Hydro	Pumped Storage	CSP	Solar PV	Wind	Hybrid IPP Programme	Distributed Generation*	BESS – IPP Programme	BESS - Eskom	Unserved Energy (TWh)
Current Base (MW)	38 800	1 005	2 825	14	1 860	1 600	2732	500	2 287	3 443		5 000	-	20	
2024	720		-11					100			150	900		199	13.06
2025	720	1.220	2		3.1b				2 115	644	476	900	513	141	7.63
2026					1. F	t.				140		900			7.66
2027		1 000	10 	2 ⁴ 0						684		900	2 000 615		4.55
2028		1.000	3 000						500			900	615		0.22
2029									500	1 500		900			0.25
2030		1.000		1 376					500	1 500		900	1		0.27
Additional New Capacity (MW)	1 440	4 2 20	3 000	1 376				100	3 615	4 468	626	6 300	3 743	360	
	Insta Cap Cap New Dist	alled Cap acity und acity pro v Capacit ributed C	bacity der const boured ty Generatio	ruction n Capacit	y for ow	n use									
	Uns	erved Er	nergy, pre	eferred as	low as p	oossible									

Draft IRP2023

5.2.1. Proposed Interventions

Intervention 1: As already identified and in progress as part of the Energy Action Plan interventions, the improvement of Eskom fleet EAF as per the Generation Recovery Plan is crucial and will make a significant contribution in restoring security of supply.

Intervention 2: In addition to non-dispatchable supply initiatives (business plus the State), the deployment of dispatchable generation options such as gas to power in line with Section 34 Ministerial Determinations must be accelerated as they will address the unserved energy risk and can be adapted to the power system requirements in a relatively short time. Intervention 3: Where technically and commercially feasible, delay shutting down coal fired power plants to retain dispatchable capacity. Intervention 4: Support and enable the development of the transmission grid as per the TDP 2023-2032 to enable connection of additional generation capacity initiatives by the public and private sector, Intervention 5: Manage the following emerging risks:

- Completion of Extension of the design life of Koeberg Power Station Completion of the planned life extension of the Koeberg nuclear power station should proceed with the necessary speed to mitigate against the loss of dispatchable 1 800 MW.
- Compliance with Minimum Emissions Standards

Resolving the challenges around compliance with the implementation of the Minimum Emissions Standards (MES) on coal fired power stations in terms of the National Environmental Management: Air Quality Act 39 (2004) is critical as it will drastically ensure capacity totalling 16 000 MW immediately and up to 30 000 MW in April 2025 is retained.

Horizon 2 (2031 – 2050)

- Renewable & clean energy beneficial for decarbonising the energy system, not for security & supply
 - Implement dispatchable technologies with high utilization factors.
- Large need for new capacity build programmes, including improved transmission networks
 - Need for technical analysis of power systems
 & regular adjustments of policies to ensure security of supply

Project Outcomes

Activities

- Synthesis of results from completed & ongoing CFPP projects
- Selection criteria: Future projects based on highest impact potential
 - Guidance on where to support large scale projects – Training/Capacity-Building
- Assist public and private sectors in their decision-making processes

OUTCOME 2: STRATEGY FOR THE COAL SECTOR'S EMISSIONS REDUCTION CONTRIBUTION TO STOCKHOLM AND MINAMATA CONVENTIONS

Thank you

CONTACT:

EDWARD ARCHER EARCHER@MQ.EDU.AU

PETER NELSON PETER.NELSON@MQ.EDU.AU