

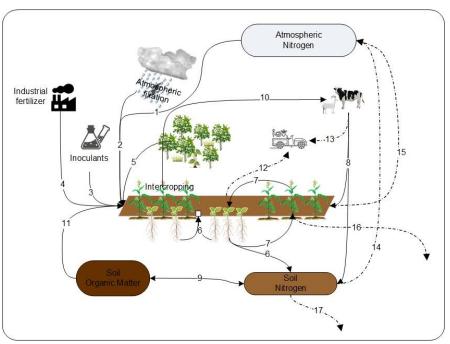
Nitrogen budgets and flows in African smallholder farming systems; ORM4Soil and SysCom projects, Kenya

Milka Kiboi, milka.kiboi@fibl.org, GPNM Webinar, 18.06.2024

Introduction

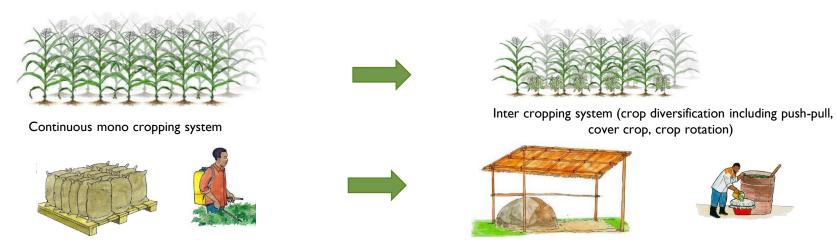
- Declining soil fertility in Africa; low soil nutrient, limited use of soil inputs, nutrient mining
- Nitrogen (N);
- most limiting nutrient crop production in smallholder farms in Africa
- Responsible for crop growth and yields

Challenges of N balances at farm level in Africa



- N highly susceptibility to; denitrification, Leaching, volatilization, runoff or erosion, overgrazing
- Land degradation; Continuous monocropping, limited land sizes, climate change
- High population; farming marginal lands
- Limited use of mineral fertilizer; access, cost
- ❖ 18 kg/ha in 2020 nutrients to 54 kg/ha by 2034
- ❖NUE to at least 60% to support profitable farming and environmental sustainability
- Promote organic agriculture practices to improve soil health (AFSH summit, 2024)

Nitrogen flows and balances at farm level in Africa


Nitrogen Flows								
Inputs	Output							
Organic inputs (Manures, Composts, Crop residue retention)	Crops harvested							
Biomass transfer	Crop residues removal							
Biological N fixation (Legume intercrop, Inoculant application	Leaching below the root zone							
Mineral fertilizers	Runoff and erosion							
Atmospheric N	Gaseous losses-Volatilization, Denitrification							

Kiboi et al. (2019) Nitrogen budgets and flows in African smallholder farming systems (aimspress.com)

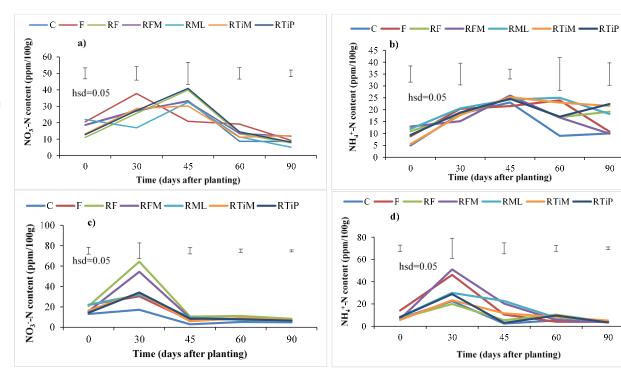
Organic farming systems for improved N balance

High quality organic inputs (use of local renewable resources; manure, compost, Tithonia, plant extracts)

Inadequate management skills- limited knowledge

Low-quality inputs (synthetic, unaffordable)

Farmer groups - Knowledge sharing, Training



Mineral N response to various soil fertility resources

Long rain season

Zambia Mali Ghana

C= Control; F=mineral fertilizer; RF=crop residue + mineral fertiliser; RFM=crop residue + mineral fertilizer+ animal manure; RML=crop residue+ animal manure + legume intercrop; RTiM=crop residue + Tithonia diversifolia + animal manure, RTiP=crop residue + Tithonia diversifolia + phosphate rock

90

I

90

Time (days after planting)

45

Time (days after planting)

Nitrogen balances in different farming systems and crop rotation

Kenya				
Bolivia				
India				

	Chuka				Thika			
N input (kg ha ⁻¹)	Conv-high	Org-high	Conv-low	Org-low	Conv-high	Org-high	Conv-low	Org-low
N in Org inputs	357	1201	147	118	564	1644	125	158
N in mineral fertilizer	414	0	61	0	414	0	61	0
N in wet deposition	15	15	15	15	10	10	10	10
Total N fixation by legumes	81	43	43	77	40	213	18	20
Total Inputs (kg ha-1)	867 ^d	1359 ^b	266e	211e	1028 ^c	1867a	214e	188e
N output (kg ha ⁻¹)								
Total N export	856 ^a	562bc	525 ^{bc}	546 ^{bc}	1035a	604 ^b	343°	326 ^c
Soil surface N balance (kg ha ⁻¹)								
N balance	Hc	797 ^b	-259 ^{cd}	-335 ^d	-40 ^{cd}	1263 ^a	-134 ^{cd}	-11 7 ^{cd}

Conv-Low conventional low input system, Conv-High conventional high input system, Org-Low organic low input system, Org-High organic high input system N in organic inputs includes N from FYM in conventional systems; Mucuna biomass, tithonia applied as mulch or plant tea, crop residues and mulch

N in mineral fertilizer includes N applied as diammonium phosphate and calcium ammonium nitrates

Calculated as N deposit from rainfall

N fixation from French bean in conv-High; Mucuna and French bean in Org-High and common beans in Conv- and Org-Low

Lessons Learned for successful Organic farming systems

- Input preparation —Time & labour management (mechanization)
- Inputs availability, application timing & quality- good management
- Bolster knowledge and capacity building
- Soils N improvement need long-term research

Take-home message

Organic farming promotes lower nutrient losses (N leaching, N₂O & NH₄ emission) hence positive N budgets – good management of organic inputs

 Intensive research on up-scaling methods and accurate estimation of N flows

 Integration of policies; agricultural, environmental and socioeconomic

FiBL, 2024 Cultivating change with agroecology and organic agriculture in the tropics (fibl.org)

FiBL online

www.fibl.org

www.bioaktuell.ch

<u>fiblfilm</u>

@fiblorg

@FiBLaktuell

linkedin.com/company/fibl

Contact

Research Institute of Organic Agriculture FiBL Ackerstrasse 113, Box 219
5070 Frick
Switzerland

Phone +41 62 865 72 72 Fax +41 62 865 72 73

info.suisse@fibl.org www.fibl.org

