Last updated: 2024-10-27

Metadata: Energy Footprint

1. Definition, concepts, and classifications

1.a. Definition

Energy Footprint (EF) is the attribution of global primary energy production to the domestic final demand of a country. The total energy footprint is the sum of the energy footprint for coal and peat, oil and natural gas, nuclear, solid biofuels, captured energy and heat.

1.b. Concepts

EF reports primary energy production across the whole supply chain to service final demand.

1.c. Unit of measure

ΤJ

2. Methodological considerations

2.a. Description of the footprint calculation methodology

An Energy Footprint *EF* measures the primary energy production directly and indirectly associated as a result of economic activities of final demanders, that is households, the government and the capital sector. EF includes primary energy production from the entire upstream supply chains underlying these economic activities. It is derived from input-output data¹ according to:

$$EF = DE + \mathbf{my},$$

where DE are households- associated primary energy production, \mathbf{m} is a 1×N vector of energy multipliers for a range of economic sectors, and \mathbf{y} is an N×1 vector of final demand of products made by these sectors.

2.b. Multi-regional input-output (MRIO) framework

The System of National Accounts ([1], §28.37) states the fundamental input-output relationship as:

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{y},$$

where $\mathbf{x} = \mathbf{T}\mathbf{1}^{\mathrm{T}} + \mathbf{y}\mathbf{1}^{\mathrm{y}}$ denotes a vector of sectoral *total output*, \mathbf{T} is an $N \times N$ intermediate demand matrix, \mathbf{y} is an $N \times M$ final demand matrix, $\mathbf{1}^{\mathrm{T}} = \{\underbrace{1, ..., 1}_{N}\}$ and $\mathbf{1}^{\mathrm{y}} = \{\underbrace{1, ..., 1}_{M}\}$ are summation operators,

I is an $N \times N$ identity matrix, and $\mathbf{A} = \mathbf{T} \hat{\mathbf{x}}^{-1}$ holds $N \times N$ intermediate input coefficients. The $N \times N$ matrix $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1}$ is called the *Leontief inverse* (see §28.38 in [1] and §20.F in [2]), which facilitates the

¹ Representing the economy as *N* intermediate sectors (eg agriculture, forestry, fishing, mining, manufacturing, utilities, construction, trade, transport, services), and *M* final demanders (households, the government and the capital sector).

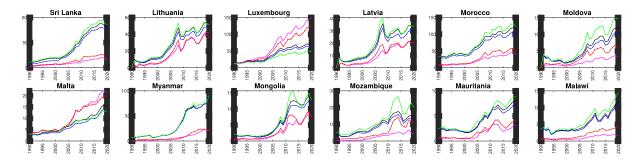
analytical power of input-output analysis for the purpose of enumerating footprints. T, y and x are standard components of any official national or global input-output database, and A and C are derived from these. The Global Footprint Tool makes use of global, multi-regional input-output (MRIO) data (see [3] and §17 in [2]).

In compliance with the System of Environmental-Economic Accounting (see §29.105 in [1] and §13 in [2]), energy data distinguishing K energy types are arranged into a so-called *satellite account* \mathbf{Q} , sized $K \times N$. The combination of energy and monetary input-output data enables the calculation of embodied energy footprints [4]. Pre-multiplying the fundamental input-output relationship with energy *intensities* $\mathbf{q} = \mathbf{Q}\hat{\mathbf{x}}^{-1}$ yields energy footprints MF as:

$$qx = q(I - A)^{-1}y =: my = EF.$$

The energy multipliers are $\mathbf{m} = \mathbf{q}(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{q}\mathbf{L}$, and – as with the Leontief inverse $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1}$ – incorporate the entire supply-chain network underpinning the production of goods and services ultimately consumed by final demanders (§20.K in [2]).

For the attribution of the Energy Footprint of final demand in the Global Footprint Tool, global multi-regional input-output (MRIO) analysis and data are employed (§17 in [2]). The MRIO data are taken from the GLORIA MRIO database [5]. The primary data underlying this database are described in the GLORIA Release Notes. These notes also contain explanations of GLORIA's multi-region Supply-Use structure (see §17.B in [2]), detailed descriptions of compilation procedures, a visualisation of Energy Footprint trends for all 164 regions and countries, as well as a plain-English short philosophy of MRIO-building and a plain-English explanation of MRIO-based footprinting.


2.c. Description of the data forecast methodology

Most primary data underlying the GLORIA MRIO database are up-to-date until 2021. The forecast of all monetary tables starting 2022 until 2028 is based on GDP projections by the International Monetary Fund [6] and the World Bank [7]. Satellite entries are forecast by extrapolating a linear fit of the 1990-2021 data.

2.d. Validation

The GLORIA Release Notes contain a number of validation visualisations, for example through a country-by-country comparison of GLORIA aggregates (GDP, value-added, imports, exports, labour wages) with corresponding values in the United Nations SNA Main Aggregates database [8] and the ILO labour database [9]. These comparisons illustrate the adherence of GLORIA data and national accounts aggregates.

Last updated: 2024-10-27

Excerpt from the GLORIA – UN Main Aggregates comparison.

UN Main Aggregates solid lines, GLORIA dashed lines.

2.e. Quality assurance

The compilation of the GLORIA MRIO database includes a series of Quality Assurance (QA) diagnostics tests. These tests are offered alongside the data download [5] and as excerpts in the Release Notes. These diagnostics tests assure that GLORIA data:

- adhere as much as possible to primary data such as from the United Nations Statistics Division (UNSD), the OECD, the International Labour Organisation (ILO), the United Nations Food and Agriculture organisation (FAO), and the United Nations Industrial Development Organisation (UNIDO);
- yield realistic relationships with physical data; for example (a) dividing GLORIA's monetary wages and salaries data by ILO's employment statistics should yield realistic per-worker wages across various sectors and regions, and (b) dividing GLORIA's monetary household consumption data by FAOSTAT's food balances should yield realistic per-capita energy and macronutrient intakes across various sectors and regions.

3. Data sources

3.a. Data sources

Countries' primary energy production data are based on the 2020 version of the International Energy Agency's Extended World Energy Balances [10].

3.b. Data compilation methods

Constructing an energy satellite account (see Section 2.b) for the GLORIA MRIO database requires arranging primary energy data into *activities* (rows) and *emitting industry sectors* (columns).

Energy data in their primary form are mapped from their native regional and sectoral classifications to the 164 regions and 120 sectors adapted in the Global Footprint Tool. This mapping is achieved by using a concordance matrix, i.e. a binary matrix that bridges between two classifications, showing values of 1 wherever there is a connection between two regions/sectors from different classifications, and 0 otherwise.

Specifically, 21 different energy products were selected and allocated to specific sectors in the global input-output table. The products were then grouped into six groups to allow easier communication: (1) Coal and peat, (2) Oil and natural gas, (3) Nuclear, (4) Solid biofuels, (5) Captured energy (e.g.,

Last updated: 2024-10-27

Hydro, Geothermal, Solar), and (6) Heat. The allocation table between IEA energy products and the respective sectors in the GLORIA table can be found in Annex XI in the Technical documentation of the Sustainable Consumption and Production Hotspots Analysis Tool (SCP-HAT)[11].

4. Data availability and disaggregation

4.a. Data availability

The Global Footprint Tool allows to calculate the Energy Footprint indicator for 164 countries (see list of countries in Annex 1).

4.b. Time series

The Energy Footprint indicator can be calculated since 1990.

4.c. Disaggregation

The Energy Footprint indicator is disaggregated into 6 energy categories: (1) Coal and peat, (2) Oil and natural gas, (3) Nuclear, (4) Solid biofuels, (5) Captured energy (e.g., Hydro, Geothermal, Solar), and (6) Heat.

5. Comparability / deviation from international standards

The Energy Footprint is calculated in accordance with international standards, recommendations, and classifications such as the System of National Accounts 2008, the System of Environmental-Economic Accounting — Central Framework 2012, the Balance of Payments and International Investment Position, the International Standard Industrial Classification of All Economic Activities (ISIC), the Central Product Classification (CPC) and the Framework for the Development of Environment Statistics.

5. References

- [1] UN, System of National Accounts 2008, United Nations, European Commission, International Monetary Fund, Organisation for Economic Co-operation and Development, World Bank, New York, USA, 2009.
- [2] UNSD, Handbook on Supply, Use and Input-Output Tables with Extensions and Applications, United Nations Statistics Division, New York, USA, 2018.
- [3] W.W. Leontief, A.A. Strout, Multiregional input-output analysis, in: T. Barna (Ed.), Structural Interdependence and Economic Development, Macmillan, London, UK, 1963, pp. 119-149.
- [4] W. Leontief, D. Ford, Environmental repercussions and the economic structure: an input-output approach, Review of Economics and Statistics 52(3) (1970) 262-271.
- [5] M. Lenzen, M. Li, The GLORIA MRIO database, The University of Sydney, Sydney, Australia, 2023.
- [6] IMF, Gross domestic product, current prices, 2020-2028, International Monetary Fund, Washington, D.C., USA, 2023.
- [7] World Bank, Global Economic Prospects, World Bank,, Washington DC, USA, 2023.
- [8] UNSD, National Accounts Main Aggregates Database, United Nations Statistics Division, New York, USA, 2022.
- [9] ILO, ILOSTAT Statistics on employment, International Labour Organization, Genève, Switzerland, 2022. [10] IEA, 2020. Extended World Energy Balances. International Energy Agency. Paris.

[11] Lutter, S., Sevenster, M., Piñero, P., Giljum, S. (2021). Technical documentation of the Sustainable Consumption and Production Hotspots Analysis Tool (SCPHAT) Version 3.0. Commissioned by UN Life Cycle Initiative, One Planet Network, and UN International Resource Panel. Paris.

Annex 1: List of countries for which the Energy Footprint indicator can be calculated using the Global Footprint Tool

Region index	Region acronyms	Region full names
1	XAM	Rest of Americas
2	XEU	Rest of Europe
3	XAF	Rest of Africa
4	XAS	Rest of Asia-Pacific
5	AFG	Afghanistan
6	AGO	Angola
7	ALB	Albania
8	ARE	United Arab Emirates
9	ARG	Argentina
10	ARM	Armenia
11	AUS	Australia
12	AUT	Austria
13	AZE	Azerbaijan
14	BDI	Burundi
15	BEL	Belgium
16	BEN	Benin
17	BFA	Burkina Faso
18	BGD	Bangladesh
19	BGR	Bulgaria
20	BHR	Bahrain
21	BHS	Bahamas

22	ВІН	Bosnia and Herzegovina
23	BLR	Belarus
24	BLZ	Belize
25	BOL	Bolivia
26	BRA	Brazil
27	BRN	Brunei Darussalam
28	BTN	Bhutan
29	BWA	Botswana
30	CAF	Central African Republic
31	CAN	Canada
32	CHE	Switzerland
33	CHL	Chile
34	CHN	China
35	CIV	Cote d'Ivoire
36	CMR	Cameroon
37	COD	DR Congo
38	COG	Rep Congo
39	COL	Colombia
40	CRI	Costa Rica
41	CUB	Cuba
42	СҮР	Cyprus
43	CZE	CSSR/Czech Republic (1990/1991)
44	DEU	Germany
45	DJI	Djibouti
46	DYE	DR Yemen (Aden)
47	DNK	Denmark
48	DOM	Dominican Republic

49	DZA	Algeria
50	ECU	Ecuador
51	EGY	Egypt
52	ERI	Eritrea
53	ESP	Spain
54	EST	Estonia
55	ETH	Ethiopia/DR Ethiopia (1992/1993)
56	FIN	Finland
57	FRA	France
58	GAB	Gabon
59	GBR	United Kingdom
60	GEO	Georgia
61	GHA	Ghana
62	GIN	Guinea
63	GMB	Gambia
64	GNQ	Equatorial Guinea
65	GRC	Greece
66	GTM	Guatemala
67	HND	Honduras
68	HKG	Hong Kong
69	HRV	Croatia
70	нті	Haiti
71	HUN	Hungary
72	IDN	Indonesia
73	IND	India
74	IRL	Ireland
75	IRN	Iran

76	IRQ	Iraq
		Iraq
77	ISL	Iceland
78	ISR	Israel
79	ITA	Italy
80	JAM	Jamaica
81	JOR	Jordan
82	JPN	Japan
83	KAZ	Kazakhstan
84	KEN	Kenya
85	KGZ	Kyrgyzstan
86	КНМ	Cambodia
87	KOR	South Korea
88	KWT	Kuwait
89	LAO	Laos
90	LBN	Lebanon
91	LBR	Liberia
92	LBY	Libya
93	LKA	Sri Lanka
94	LTU	Lithuania
95	LUX	Luxembourg
96	LVA	Latvia
97	MAR	Morocco
98	MDA	Moldova
99	MDG	Madagascar
100	MEX	Mexico
101	MKD	Macedonia
102	MLI	Mali

103 MLT Malta	
104 MMR Myanmar	
105 MNG Mongolia	
106 MOZ Mozambique	
107 MRT Mauritania	
108 MWI Malawi	
109 MYS Malaysia	
110 NAM Namibia	
111 NER Niger	
112 NGA Nigeria	
113 NIC Nicaragua	
114 NLD Netherlands	
115 NOR Norway	
116 NPL Nepal	
117 NZL New Zealand	
118 OMN Oman	
119 PAK Pakistan	
120 PSE Palestine	
121 PAN Panama	
122 PER Peru	
123 PHL Philippines	
124 PNG Papua New Guine	1
125 POL Poland	
126 PRK North Korea	
127 PRT Portugal	
128 PRY Paraguay	
129 QAT Qatar	

130	ROU	Romania
131	RUS	USSR/Russian Federation (1990/1991)
132	RWA	Rwanda
133	SAU	Saudi Arabia
134	SDS	South Sudan
135	SEN	Senegal
136	SGP	Singapore
137	SLE	Sierra Leone
138	SLV	El Salvador
139	SOM	Somalia
140	SRB	Yugoslavia/Serbia (1991/1992)
141	SDN	Sudan/North Sudan (2010/2011)
142	SVK	Slovakia
143	SVN	Slovenia
144	SWE	Sweden
145	SYR	Syria
146	TCD	Chad
147	TGO	Тодо
148	THA	Thailand
149	TJK	Tajikistan
150	TKM	Turkmenistan
151	TUN	Tunisia
152	TUR	Turkey
153	TZA	Tanzania
154	UGA	Uganda
155	UKR	Ukraine
156	URY	Uruguay

157	USA	United States of America
158	UZB	Uzbekistan
159	VEN	Venezuela
160	VNM	Viet Nam
161	YEM	Yemen Arab Republic/Yemen (1990/1991)
162	ZAF	South Africa
163	ZMB	Zambia
164	ZWE	Zimbabwe