UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT

2024 Digital economy report

Shaping an environmentally sustainable and inclusive digital future

Digital Day, UNEP HQs, Nairobi

Torbjörn Fredriksson Head, E-commerce and Digital Economy Branch 19 November 2024

Rapid growth of the digital economy calls for more attention to its environmental impact

Sources: Richardson et al. (2023), ITU (2023), IPCC (2023), Ookla (2024).

> Environmental impacts are generated along the entire digitalization life cycle

...

Environmental footprint of ICT

Environmental risks and opportunities vary for different components of the ICT sector

Higher CO2 emissions from use phase across ICT infrastructure

Life-cycle greenhouse gas emissions, by ICT infrastructure type, megatons of CO2 equivalent emissions, 2020

Production phase 📃 Use phase

Source: UN Trade and Development (UNCTAD), based on Malmodin et al. (2024)

Source: UNCTAD, based on Pohl and Hinterholzer (2023)

Saping digital and e-commerce divides...

Uneven increases in e-commerce adoption across regions Share of population (aged 15+) shopping online, by regions and country groupings (in %) 2017 2021 24 World 39 54.6 **Developed economies** 61.6 4.1 Developing - Africa 6.6 20.7 Developing - Asia and Oceania 38.1 Developing -12 Latin America and the Caribbean 27 2.4 LDCs 5.8 22.9 SIDS 25.2 4.1 LLDCs 7.9

Source: UN Trade and Development (UNCTAD), based on ITU (2023).

Source: UN Trade and Development (UNCTAD), based on World Bank Global Findex 2021.

Production phase: Digitalization has a heavy material footprint

- Heavy reliance on raw materials, including minerals and metals, plastics, glass and ceramics
- Complexity of devices is increasing more elements from the periodic table used
 - Phones: 10 elements used in 1960, 27 in 1990 and 63 in 2021
- Challenge: low-carbon and digital technologies largely compete for the same minerals
 - Material resource extraction could increase 60% between 2020–2060
 - Demand for cobalt, graphite and lithium is expected to increase by 500% until 2050

Supply response pushes the mining frontier

High growth in ICT demand and Internet use pushes the environmental footprint

Source: UN Trade and Development (UNCTAD) calculations based on Cisco. *Note:* Country groups are those of the source.

Source: UN Trade and Development (UNCTAD), based on Ericsson Mobility Visualizer. *Note:* Country groupings are as defined by the source.

Use phase: Data centres have both global and local impacts

Data centres globally consume an estimated 460 TWh of electricity – similar to all of France's

Data centre energy consumption is expected to more than double by 2026

Pressure on local electricity grids is growing

- Ireland: 18% of total electricity consumption
- Singapore: 7%

Other local impacts

- Water use for cooling and energy generation
- Noise

Electricity use by 13 of the world's largest data centre operators more than doubled between 2018 and 2022

Annual electricity consumption by selected data centre operators, terawatt hours, 2018–2022

Source: UN Trade and Development (UNCTAD), based on company reports. *Note:* Other includes: Apple, Baidu, Chindata, GDS, Tencent, VNET.

Digitalization-related waste is growing, with uneven regional implications

Regional disparities are significant and mirror digital divides

Challenges in developing countries

- Limited recording and documenting of waste flows
- Lack of formal collection systems
- Only 1 in 4 have relevant waste management legislation

Solution Growth of digitalization-related waste is set to continue

Programmed obsolescence

(e.g., slowing smartphones, ink cartridges, phasing out software support, rapidly changing models)

Banned in

- France
- Quebec (Canada)

Civil society demands to address the situation

- Laws against planned obsolescence
- Minimum durability criteria
- Product lifetime labelling
- Affordable and accessible repairs
- Right-to-repair legislation
- Monitoring of trends in product lifetime and
- Consumer education and information

Shifting towards a circular digital economy for inclusive and sustainable development

Business opportunities from a shift to a circular digital economy

- Global market for electronics recycling estimated to grow from \$37 billion to \$108 billion (2022–2030)
- Value of refurbished electronics estimated to increase from \$85.9 billion to \$262.2 billion (2022–2032)
- Global consumer electronics repair and maintenance industry generated \$15.3 billion in 2021 and is expected to generate \$21.6 billion by 2031
- Second-hand electronics product market in Europe was valued at \$78.9 billion in 2022 and is expected to reach \$225.5 billion by 2031

A new policy mindset is required to address key challenges

Innovative approaches needed

Embrace new business models and strategies that maximize digitalization's positive impacts while minimizing the negatives

Reduce consumption to

optimize scarce resource use without harming future generations

Cut carbon emissions to prevent catastrophic climate change

Leverage digitalizationrelated waste to transform waste into opportunities for recovery, recycling and reuse within a circular economy

Addressing the double bind of developing countries

Developing countries bear the **brunt of the costs of digitalization**

- Raw material extraction
- Digital waste
- Climate vulnerability
- Digital divide

Developed countries capture most benefits

Common but differentiated responsibilities

Policy implications

Digitally-developed countries should

- **lead** the shift to an inclusive and sustainable digital future
- **support** developing countries in building capacities to harness digitalization

Bold action needed at national and international level

National level

Integrate digital, economic and environmental sustainability strategies

Focus on reducing GHG emissions, water use and waste by using digital solutions, while being mindful of digital footprint

International level

Strategies and policies that recognize countries' diverse needs and priorities, recognizing opportunities especially for developing ones

Development partners should reinforce support to low-income countries to strengthen capabilities for digitalization and sustainability

Upcoming policy dialogues

- Harness the UN SG's Panel on Critical Minerals to ensure a just and sustainable lowcarbon and digital transition
- Harmonize reporting standards and improve data transparency regarding environmental impacts of the ICT sector
- Include ICT sector in NDCs related to GHG emissions
- Strengthen regulations on energy and water consumption for data centres
- Expand international support to strengthening e-waste legislation and management systems in developing countries
- Build on the GDC to align digital and environmental policies at all levels
- Recognize disparities in living standards and resource use within and between countries at different levels of development

A just and sustainable digital economy requires just and sustainable policies

> António Guterres Secretary-General United Nations

For more information

unctad.org/der2024