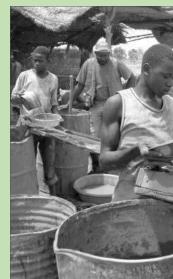


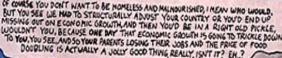
Africa Mining Vision (AMV), African Minerals Governance Framework (AMGF) and African Green Minerals Strategy (AGMS)

Mkhululi Ncube,

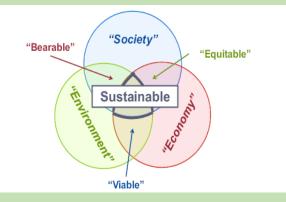

AMDC Programmes Officer

Regional Stakeholders Consultative Workshop on Environmental and Social Aspects of Critical Energy Transition Minerals (Green Minerals) and THE African MINING VISION Holiday Inn, KORA ROOM NAIROBI, KENYA

8 November 2024

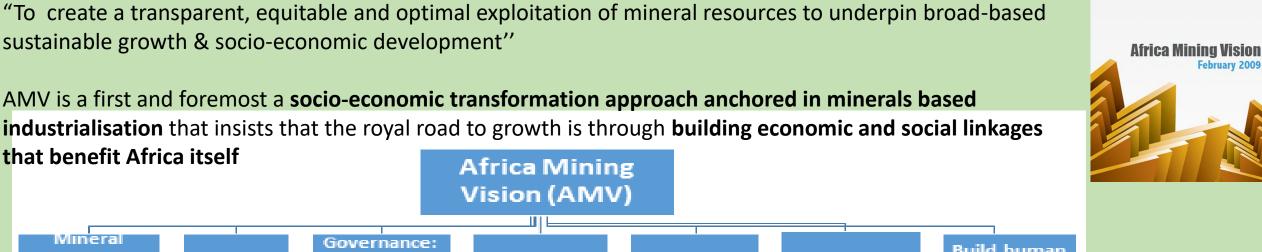

The road to the Africa Mining Vision (AMV): Accessing Africa's resources

- Extraction of mineral resources linked to Africa's history
 - Africans acquired skills to smelt and produce alloys and forge metal to produce utilitarian objects, jewelry and ornaments (ISG 2011)
- Before Independence
 - Mineral resources in Africa were extracted and transported to the exclusive benefit of Western countries
 - This created mineral **enclaves** with very few linkages with the local economy, except for some infrastructure (especially railways and ports) built to export minerals from the continent to outside
- After Independence- 60s and 70s
 - Nationalization and establishment of SOEs to maximize local retention. Mixed results
 - SOEs underperformed and the hope that they would be the engines for growth and resource-driven industrialisation did not materialise.
 - A wave of privatisations followed.



The road to the Africa Mining Vision: Accessing Africa's resources

- The 80 and 90s: Mineral reforms and structural adjustment
- The WB's "Strategy for Africa Mining", intervened in the African mineral sector with a series of policy packages aimed at reducing state participation and attracting private sector investment
- Early 2000s: The boom years and the birth of "development mining"
- The 2000s were "mining years: prices reached historically high levels; CSOs gained voice and space and started to influence mineral policy formulation and practices on the ground; the concept of social license to operate gained traction; and, in addition to financial returns and maximisation of shareholder value, environmental and social value dimensions were introduced to measure success, the triple bottom line approach.
- The Africa Mining Vision was born in this environment of optimism and super cycle euphoria.



The Africa Mining Vision (AMV): A New Social Contract

poverty. The AMV is holistic.

It is Africa's own response to tackling the paradox of great mineral wealth existing side by side with pervasive

Mineral Governance: **Build human** resources Accountabilitytr and Formalistion revenues ansparency institutional Diversified of ASM management Geological Communities & capacities Environmental and ASM to citizens & mining Policies, competitive and socialy Knowledge (including contribute to informatio regulations to responsibility industry; economy at rural women) n systems ensure participate in all levels of development Linkages economic and assets mining value social Equity in chain development distribution of benefits

AMV is a first and foremost a socio-economic transformation approach anchored in minerals based

industrialisation that insists that the royal road to growth is through **building economic and social linkages** that benefit Africa itself

African

February 2009

Historical Evolution of the AMDC – Milestone Timeline

U N D P

2009 – Africa Mining Vision Launched

- **2013** Launch of AMDC to provide strategic operational support and coordination for the implementation of the AMV and its Action Plan initially situated as **a project in UNECA**.
- **2013-2018** AMDC as a project makes significant strides, as it becomes the repository of knowledge on matters relating to the AMV and succeeded in securing global recognition of the AMV. **AMV implementation instruments were developed**
- **2016**-Statute establishing the AMDC was adopted by the Twenty-Sixth Ordinary Session of the African Union Assembly (Assembly/AU/Dec.589(XXVI)).
- **2018** AU Assembly endorses the Republic of Guinea's bid to host the AMDC through a competitive bidding process
- **2019** The AMDC project at UNECA officially handed over to the AU
- 2021 Country Host agreement signed with Guinea

• 2022- Under the <u>ACP-EU development minerals program</u>, UNDP successfully recruits Interim Secretariat

Africa Mining Vision (AMV) implementation tools

AMV implementation instruments developed by AMDC:

- 1. The Africa Minerals Governance Framework (AMGF);
- 2. AMV-Private Sector Compact;
- 3. Country Mining Vision (CMV) guidebook;
- 4. Africa Minerals and Energy Classification Framework (AMREC);
- 5. Pan-African Resources Reporting Code (PARC)
- 6. PARC training guidelines

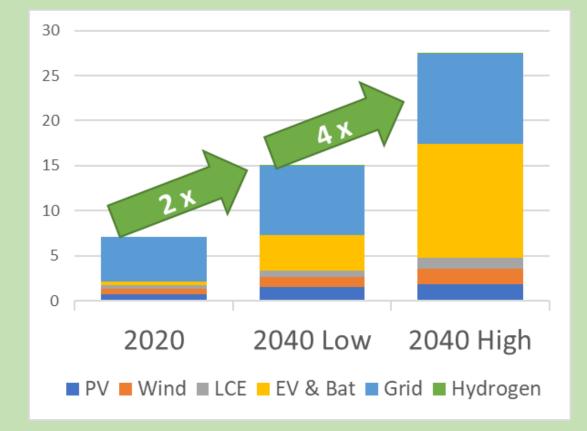
AGMS Vision statement:

An Africa that harnesses green mineral value-chains for industrialisation and electrification, creating green technologies and sustainable development to enhance the quality of

life of its people.

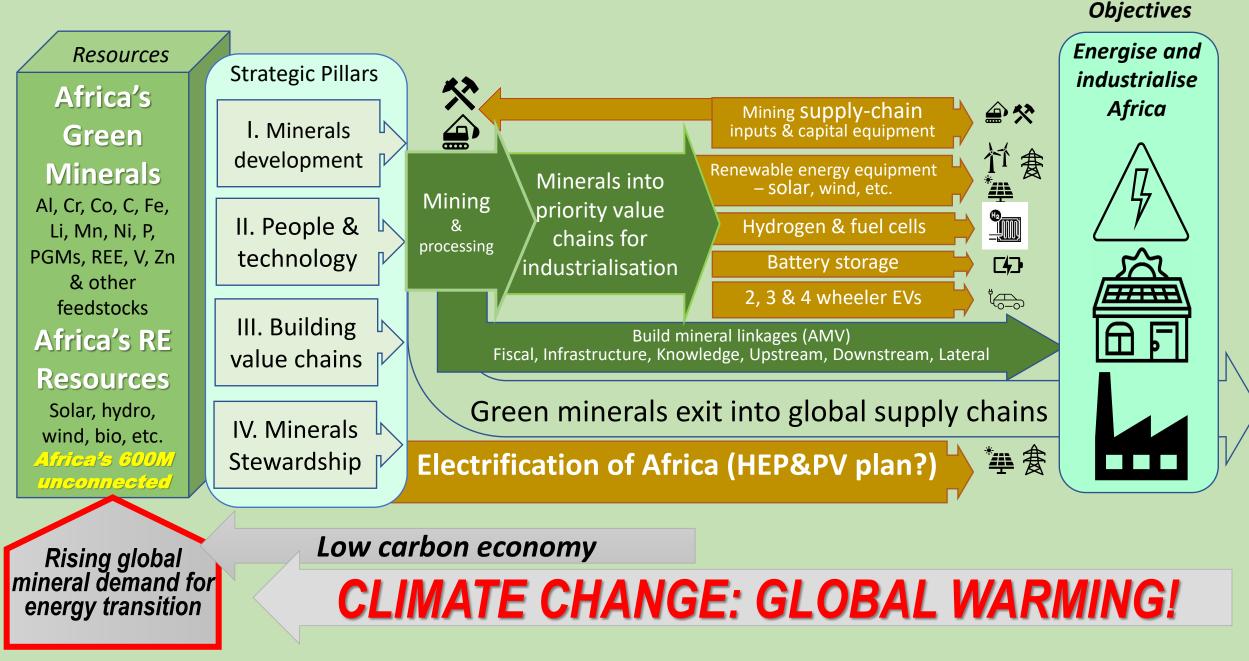
Critical Minerals are critical for who?

- Recent Critical Minerals (CMs) lists drawn up by USA, EU, UK, Australia, India, Canada – [not "critical" feedstocks for African Development =AMV]
- Focus on minerals critical to energy transition, high tech and defence industries that have few producers and/or supply risks
- Access to critical minerals becoming an energy security issue
- CMs are critical to consumer countries seeking to secure their supply chains so often couched in geopolitical/ strategic terms
- Alternative view of an African Green Minerals Strategy for using Africa's green minerals to support its resource-based industrialisation and electrification!



Critical minerals are also **'green' minerals** selected for an African Green Minerals Strategy to realise the African Mining Vision

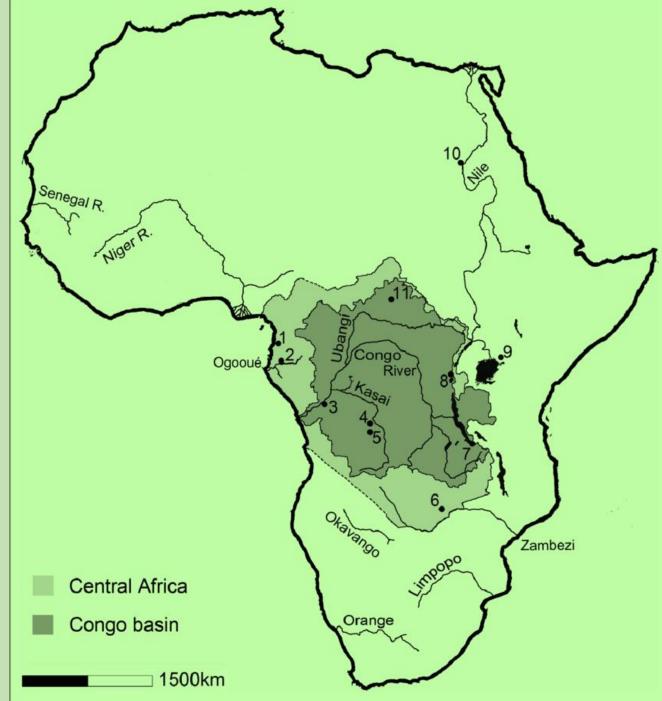
Mineral	Wind	Solar	CSP	Hydrogen	Energy	Hydro	Electric
		PV		& fuel cells	Storage	power	Vehicles
Aluminium	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Chromium	\checkmark		\checkmark	\checkmark		\checkmark	
Cobalt					\checkmark		\checkmark
Copper	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Graphite					\checkmark		
Iron/steel & Alloys	\checkmark						
Lithium					\checkmark		
Manganese	\checkmark				\checkmark		\checkmark
Nickel	\checkmark						
Phosphate					\checkmark		\checkmark
Platinum Group Metals				\checkmark			
Rare earth elements*	\checkmark					\checkmark	\checkmark
Titanium						\checkmark	
Vanadium					\checkmark		
Zinc	\checkmark	\checkmark					


Clean energy technologies – Wind, Solar, Electric Vehicles, switching fuels, grid expansion, hydrogen, low carbon energy sources, et.al.

Rate of increase in mineral demand depends on speed of transition to goal of Net Zero by 2050 / 2060 for developing countries

But traditional markets for metals still important except for Li, Co, REEs,

African Green Minerals Strategy on a page


Africa has HUGE RE potential (solar, hydro, et al), yet half its people are unconnected!

22734 387 Solar resource map -0 3031 Science PVOUT: Long-term average of PV power potential, period 1994-2020 (1999-2020 in the Middle East) 500 km Yearly totals: 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 Wh/kWp Daily totals: 4.38 4.65 4.93 5.20 5.48 5.75 3.01 3.29 3.56 3.83 4.11

Africa has massive solar potential

Congo River HEP estimated at 150-200GW = > double Africa's consumption

- 1. Angola
- 2. Gabon
- 3. Burundi
- 4. Cameroon
- 5. Central African Republic
- 6. Democratic Republic of the Congo
- 7. Republic of the Congo
- 8. Rwanda
- 9. Tanzania
- 10. Zambia

Viability of developing an African electrification strategy based on the Congo River hydropower and PV

Project development and governance models OPTIMAL RESOURCE MANAGEMENT DEEPENS REGIONAL INTEGRATION

- River basin organisations manage transboundary natural resources through multi-country governance organisations, e.g.
 - Congo, Nile, Lake Chad, Niger, Zambezi, Juba-Shibelli, Orange, Okavango et. al
- Shared watercourses logically make for shared asset ownership, for e.g. Rep. Zambia and Rep. Zimbabwe own Kariba dam via the Zambezi River Authority
- Multi country asset ownership models are also emerging, for e.g. Rusomo Falls Hydroelectric Project owned by Burundi, Rwanda and Tanzania built on Rwanda and Tanzania border downstream from Burundi

Thank you