

Mercury and Hydroquinone Analysis for Skin Lightening Cosmetics

Dr. Chacriya Malasuk IDEA R&D Center, Asian Institute Technology (AIT), Thailand

Enhancing collaboration and communication among mercury analytical laboratories | 20 February 2025

BACKGROUND

The Regional Resource Centre for Asia and the Pacific (RRC.AP) of the Asian Institute of Technology (AIT), jointly with the Regional Office for Asia and the Pacific (ROAP) of the United Nations Environment **Program (UNEP) and collaboration with IDEA consultants Inc., is** organizing a Training Program #5 entitled "Laboratory operation for methylmercury analysis in human hair, total mercury analysis in human hair and skin lightening products, and hydroquinone analysis in skin lightening products", to be held on 13 to 17 January 2025 at the IDEA EEM laboratory, AIT, Pathum Thani, Thailand.

OVERVIEW

- Introduction of total Mercury analysis
 Introduction of Hydroquinone analysis
 for skin lightening cosmetics.
 for skin lightening cosmetics.
- Methodology for pretreatment sample
- Operation procedure of Hg analyzer
 Operation
- Conclusion
 Conclus

3

Methodology for pretreatment sample

ion procedu	ure	of	╒┠	łΡ		•	•	•			•	•	•	•	•	•
				٠	•	•	•	•	•	•	•	•	•	•	•	
sion				٠	۰	٠	•	•	•	•	•	•	•	•	•	
				٠	٠	•	•	•	•	•	•	•	•	•	•	
				۰	۰	٠	•	•	•	•	•	•	٠	•		
				٠	۰	٠	•	•	•	٠	•	•	•	•	•	
				٠	۰	٠	•	•	٠	•	•	•	•	•	•	
									•	•	•	•	•	•	•	•

- Mercury (Hg) is one of the hazardous substance that mostly illegally add into skin lightening cosmetics while are hazardous and cause major health problems.
- Hg can inhibit the function/activity of Tyrosinase enzymes thus melanin generation which related to skin pigments is blocked.

Chemical Society, 67(3), 5615-5622. https://dx.doi.org/10.4067/S0717-97072022000305615

- Mercury in skin products (inorganic-Hg) can damage the skin, cause rashes, and discolor the skin. Mercury can also cause more serious health problems, including damage to the nervous system and kidneys.
- Al-Saleh et al. (2005) found elevated levels of Hg in cosmetics from many countries, with samples from Thailand, Lebanon, and England having the highest amounts ranging from 1,281 to 5650 ppm.
- Uram et al. (2010) observed irregular labels and descriptions on the cosmetic products made in Mexico.

IDEA R&D Center | 2025

- MINAMATA CONVENTION ON MERCURY amended its Annex A text and removed the I ppm limitation for skin lightening cosmetics. Each country can set different values depending on the local situation. Such amendment become effective in 2025.
- The maximum permissible limit for Hg set by the US FDA and WHO in cosmetics is also I ppm (mg/kg).
- This study aims to develop the analysis method of total mercury by NIC Mercury analyzer MA3000 which is convenience, short analysis time and simple sample preparation method.

MERCURY ANALASIS LITERATURE REVIEWS

©DM GraphicDesk

- > Restriction for screening analysis

- **Requirement of sample digestion/pretreatment**
- **Consumption of chemicals**
- Time-consuming method

Test kit/Strip test/Paper-based devices

- Low sensitivity
- Low precision and accuracy
- **Cold Vapor Atomic Absorption Spectrometry (CVAAS)**
- Inductively Coupled Plasma-Mass Spectrophotometry (ICP-MS)

MERCURY ANALYZER

Nippon Instrument Cooperation (NIC) Mercury Analyzer WA-5A and MA-3000

WA-5A Dual-step Gold Amalgamation, Atomic Spectroscopy Detection Comply with standard method ; ASTM 5954, ISO 6978, ISO 20552, JLPGA-S-07 Basic features : Innovative dual-cell Tri-Detector with Dual step Gold-Amalgamation Using for gas/vapor samples

MA-3000 Thermal Decomposition (CVAAS)

Comply with standard method; USEPA 7473, ASTM D6722-01, D6723-10 **Operating Principle: Thermal Decomposition, Gold-Amalgamation,** Cold-Vapor Atomic Absorption Spectroscopy (CVAAS) Using for solid/liquid samples

STANDARD PREPARATION

• Stock Mercury Standard (10, 0.1 ppm)

- Pipette 100 μ L of Mercury standard 1,000 ppm and dilute in 10 mL of 100 mg/L of L-Cysteine in 0.2% HNO₃ for stock Hg 10 ppm
- Pipette 100 μ L of the diluted standard 10 ppm and dilute in 10 mL of 100 mg/L of L-Cysteine in 0.2% HNO₃ for stock Hg 0.1 ppm

Dilution series of standard solution (0.1-2,000 ppm)

- Pipette 1, 3, 20, 50, and 100 µL of the stock standard 0.1 ppm in sample holder (boat) with purged 100 mg of additive B for low Hg concentration range (0.1-10 ng)
- Pipette 10, 50, 100, and 200 µL of the stock standard 10 ppm in sample holder (boat)) with purged 100 mg of additive B for high Hg concentration range (100-2,000 ng)

Ne	AE A C	SAMPLE	NAME	STD		LOW		
INO.	/IE/Ac	No.	INAIVIE	[ng]	AREA[ON]	MEAS[ng]	DEV[%]	OX
4		3	STD	0.300	0.20345	0.279	7.0	0
5		3	STD	2.000	1.58011	2.166	8.3	0
6		1	STD	5.000	3.78035	5.182	3.6	0
7		2	STD	10.000	7.20568	9.877	1.2	0
8		3	STD	500.000	58.64040	80.377	83.9	х
9		1	STD	1000.000	68.00622	93.214	90.7	х
10		2	STD	2000.000	80.87222	110.850	94.5	х
11		0	STD					
12		6	STD	20.000	11.94176	16.368	18.2	х
13		7	STD	20.000				
14		8	STD	40.000	21.46490	29.421	26.4	х
15		9	STD	40.000	21.91747	30.042	24.9	х
16		7	STD	20.000	12.73248	17.452	12.7	х
17		0	STD					

	•	•	•	•		•		
	•	•	•	•	•	•	•	
	٠	•	•	•	•	•	•	
	•	•	•	•	•	•		
	•	•	•	•	•	•		
	•	•	•	•	•	•		
	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	

SAMPLE SCREENING AND PREPARATION

• Sample screening

Use the toothpick to pick small amount of sample (cream) and then put/tab in sample holder (boat)

Sample preparation

Low amount of T-Hg sample

I. Add IOO mg of Additive B into the boat and purge

2. Weight 50-100 mg of sample into the boat

• High amount of T-Hg sample

1. Weigh 10 mg of sample and dissolve in 100 mL of 100 mg/L

of L-Cysteine in 0.2% HNO₃ (10,000 times of dilution)

2. Homogeneously mix/sonicate the sample solution

3. Add 100 mg of Additive B into the boat and purge

4. Pipette 10 or 100 μL of diluted sample into the boat

CREAM SAMPLE MEASUREMENT

Using method in MA3Win program of NIC MA-3000 Mercury Analyzer that is:

<<Method No.I: ORGANISM(SOLID)>>

Sample heating furnace Hg²⁺ ATOMIZE-1 = 0 °C/0 sec/0 L/min Decomposition furnace Hg⁰ ATOMIZE-2 = 180 °C/120 sec/0.4 L/min Mercury collect Hg⁰ ATOMIZE-3 = 850 °C/120 sec/0.4 L/min Mercury purify Hg⁰ for CVAAS ATOMIZE-4 = 0 °C/0 sec/0 L/min

Each sample was measured in double. Measurement time is 5 min.

IDEA R&D Center | 2025

DILUTED SOLUTION SAMPLE MEASUREMENT

Using method in MA3Win program of NIC MA-3000 Mercury Analyzer that is:

<<Method No.6: WASTEWATER>>

Sample heating furnace Hg²⁺ ATOMIZE-1 = 150 °C/ 60 sec/ 0.4 L/min Decomposition furnace Hg⁰ ATOMIZE-2 = 180 °C/ 120 sec/ 0.4 L/min Mercury collect Hg⁰ ATOMIZE-3 = 850 °C/ 120 sec/ 0.4 L/min Mercury purify Hg⁰ for CVAAS ATOMIZE-4 = 0 °C/ 0 sec/ 0 L/min

Each sample was measured in double. Measurement time is 7 min.

IDEA R&D Center | 2025

0\2024\202	24-07-10\Hair s	ample_M	uldives_QC-	1.MA3																
				FERE OF PL																
				PERC	J.															
					_				1											
	0				_	-			٩.,											
1 52	V2	_																		
mid	15 (1)	0 °	15 De	tector		V3		/												
150	7 H4			000 001		Samp	le Inlet													
	210/	210	(NAMACA																	
	Merc	ury	279/2	80 618/	620 145	/ 150	<i>MA</i>													
	Colle	ct	H	12	HI															
			-	ecomposi	ng Samp	ple	- Wh													
	0.0	0		unace	Furn	ace														
FI	ow Contro	ller E																		
													•	•	•	•	•	•	•	
												•	•	•						
NAME	SVOL	VDD.STI		AREA		MEAS	CONC	ECOVER	ох	RANGE	DATE									
	fort	[Ug]	1 000	0.29611	0.00090	0.405	tuanat	[70]	0	LOW	2024/09/05 09:34									
	100.000		1 000	6 89829	0.03243	9 4 5 5	0.095		0	LOW	2025/02/13 12:07									
	100,000		1.000	9.79030	0.04662	12.008	0,120		0	HIGH	2025/02/13 12:15									
	100.000		1.000	6.26037	0.02898	8 581	0.086	- 23	0	LOW	2025/02/13 12 43									
	100,000		1.000	4.76992	0.02209	6.538	0.065		0	LOW	2025/02/13 12:51									
	100 000	-	1.000	49.71255	0 47240	155 112	1.551	- 22	0	HIGH	2025/02/13 12:23									
	100 000		1 000	49 52187	0 45950	154 137	1.541		0	HIGH	2025/02/13 12:59					-				
	100.000		1.000	50 06300	0 48272	158 580	1 586		0	HIGH	2025/02/13 13:07	•								
	100 000		1 000	26.33669	0 15122	47 164	0 472		n n	HIGH	2025/02/13 12:35									
	100.000	5	1,000	28 38052	0 16878	53.066	0.531		0	HIGH	2025/02/13 13:15									
	100.000		1 000	22 85311	0 12642	38 829	0 388		C	HIGH	2025/02/13 13-24	•								
	100.000		1 000	0.67/193	0.00231	0.925	0.000		0	LOW	2025/02/13 11:47								-	
			1 000	1 33797	0.00642	1 834			0	LOW	2025/02/13 14:02									
		-	1.999	1.00101	0.00UTL	1.004		55		2.000	2720702 10 17.VZ	•	•	•						
					SMP															
					SMP	* 														
					SMP					-		•	•	•	•		•	•	•	

CALCULATION AND EVALUATION

Sample calculation

- Perform Hg standard calibration curve from I-10 ng (low conc. range) and IO-2,000 ng (high conc. range) done automatically by the Mercury Analyzers MA-3000
- Input weight of each sample in mg unit and Hg concentration (ppm) was calculated automatically by the Mercury Analyzers MA-3000

Evaluation method (Quality control)

- Check Limit of Detection (LOD) and calibration curve with CRM NIMD-01 material (Certified standard human hair, 0.794 ±0.05 mg/kg).
- Double check 10% of the total samples (random) to ensure no bias at 90% confidence interval.

R² CRN LOD LOC

Parameter	Value	•	٠	•
	>0.999	•	٠	٠
И (3 trials)	0.762 ± 0.002 mg/kg	•	٠	•
)	0.05 ng		٠	•
2	0.16 ng	•	٠	٠
V	<10%	÷	٠	•

- Hydroquinone (HQ) is an aromatic organic compound and a potent inhibitor of melanin production used in the treatment of melasma, pigmented acne scars, post-inflammatory hyperpigmentation, and skin discoloration.
- Kojic acid, azelaic acid, glycolic acid, retinoids, salicylic acid, and especially hydroquinone remains the most effective lightening agent for treating common hyperpigmentation disorders.

- Hydroquinone is a widely used skin-lightening agent, it is characterized by several adverse effects such as carcinoma, irritative dermatitis, melanocyte destruction, contact dermatitis, and ochronosis. The skin was discolored when consistently applied for a long period of time.
- The hydroquinone metabolites p-benzoquinone and glutathione conjugates are frequently linked to the development of cancer. When hydroquinone-containing cosmetics are used topically over an extended period,
- p-Benzoquinone and hydroquinone conjugates with glutathione may accumulate and cause DNA damage and mutation.

THERAPEUTIC CHEAT SHEET

HYDROQUINONE FOR **MELASMA**

- Concerns over the safety issues surrounding the use of hydroquinone have led many countries around the world, including the UK, EU, US, Australia, Asia, Africa, and others to prohibit the use of hydroquinone in cosmetics.
- Thailand, US, UK, and EU instituted regulations with a 2% limit for cosmetic products and a 4% limit for topical preparations intended for dermatological use.
- Japan still allowed to trade hydroquinone as quasi-drug.
- This study aims to develop the analysis method of hydroquinone by HPLC method which is high sensitivity, high accuracy, and excellent precision.

IDEA R&D Center | 2025

HYDROQUINONE ANALASIS LITERATURE REVIEWS

IDEA R&D Center 2025

Agarwal, N., Rai, A.K. & Singh, S.P. Biotransformation of hydroquinone into α -arbutin by transglucosylation activity of a metagenomic amylosucrase. 3 Biotech II, 362 (2021). https://doi.org/10.1007/s13205-

- > Restriction for qualitative analysis Low sensitivity \geq

- **Requirement of sample digestion/pretreatment** \succ
- High Limit of Detection (LOD)
- Moderate precision and accuracy

17

Test kit, Thin Layer Chromatography (TLC)

- Low precision and accuracy
- **UV-Vis Spectrophotometry**

High Performance Liquid Chromatography (HPLC)

- > High Sensitivity
- > High Precision and accuracy
- > High reliable equipment (acceptable

for method validation ISO 17025)

STANDARD PREPARATION

Stock hydroquinone solution (1,000 ppm)

Weight 25 mg of hydroquinone standard and dilute in 25 mL of Milli-Q water

Dilution series of standard solution (I-100 ppm)

Solution	Volume of pipette (μ L)	Total volume (mL)
	10	10
	50	10
Stock solution	100	10
1,000 ppm	250	10
	500	10
	1,000	10

Concentration (ppm)
1
5
10
25
50
100

						•	•	•	•	•	•	
	٠	٠	٠	•	•	•	•	•	•	•	•	
•	٠	•	٠	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•		
•	٠	•	•	•	•	•	•	•	•	•		
			٠	٠	•	٠	•	•	•	•	•	

SAMPLE PREPARATION

- I. Weight 0.1-0.2 g of sample in 25 mL- or 50 mL-beakers
- 2. Add 10 mL of AR grade methanol 99.5% into the beaker
- 3. Mix and stir at 60 °C for 10 min using hotplate and magnetic bar
- 4. Filter the sample through 100 mL-volumetric flask by No.1 Whatman filter paper
- Make volume of the sample to IO0 mL by adding Milli-Q water to IO0 mL-volumetric flask
- 6. Filter I mL of the sample to HPLC vial by 0.2 μM nylon syringe filter

SAMPLE MEASUREMENT

<<Method Reversed phase HPLC)>> Shimadzu HPLC-20A series LabSolutions LC Program

- *Shim-pack GIS Cl8 column 5 μm*, *150 mm x 4.6 mm*
- Column temperature : RT, ~25 °C
- Mobile phase : water to methanol 70 : 30
- Flow rate : 0.8 ml/min, ~ 1,000 psi
- Injection Volume : 20 μL
- Absorption wavelength : 290 nm

Analysis time is 10 min Retention time of HQ is around 3.7 min

IDEA R&D Center | 2025

				1				<u> </u>							
					LC	Read	ly								
Jame	Sample ID	Sample Tupe	Method File	Data File	PDA	Read	ly								
- Cline	odalpie ib	1.Standard	HOTest br	(Auto Filer				16							
	-	1:Standard	HQTest.cm	(Auto File)											
		1:Standard	HOTestion	(Auto Filer			1 1 12								
		1 Standard	HQTestion	(Auto Filer	Detai	-									
		1:Standard	HOTesticm	(Auto Filer	Deta										
		1:Standard	Holesticm	(Auto Filer	Item	Value	Setting Un	ts							
	-	D: Unk nown	HOTest Icm	Auto Filer	Mode	Lowpress									
		0: Inknown	HQTestion	(Auto Filer	Pump	Lon provi	mL/r	in l							
	-	D:Unknown	Hülesticn	Auto Filer	Pump		2 nsi								
		0:Unknown	HQTest.cm	Auto Filer	Pump	-9	5 kPa	100							
	-	0: Inknown	HOTesticm	(Auto File)	OvenT	22	9 0 C								
		0: Unknown	HOTestion	(Auto Filer	Tempe	8	5 85 0								
	-	0: Inknown	HQTesticm	(Auto Filer	Vial N										
				() INTO 1 HOL	Interno	-	S	- 3							
					Overla		Off								
					TotalFl	0.800	0 0.8000 mL/n	in							
					B.Conc	70	0 70.0 %								
					C Conc	0	0 00 2								
					D.Con	0									
											•	•	•	•	
													_	-	-
									•						
															-
											-				
									•						
										-	-	-			
									•						
				*											
				VS. U.											
					1.				-						
			10010 (11000 C	Pac	T										
			Date	Tim	6	Code		_ *							
	Sub Message														
	Sub Message		18/2/2568	11:08:40		0x5434	System Administrat	1C			_				
	Sub Message		18/2/2568	11:08:40 11:10:23		0x5434 0x5434	System Administral System Administral	Tic Tic	•						
	Sub Message		18/2/2568 18/2/2568 18/2/2568	11:08:40 11:10:23 11:10:45		0x5434 0x5434 0x5434	System Administrat System Administrat System Administrat	10 10 10	•	•					
	Sub Message		18/2/2568 18/2/2568 18/2/2568	11:08:40 11:10:23 11:10:45		0x5434 0x5434 0x5434	System Administral System Administral System Administral	10 10 10 10	•	•	•	•			
	Sub Message	ш	18/2/2558 18/2/2558 18/2/2558	11:08:40 11:10:23 11:10:45		0x5434 0x5434 0x5434	System Administral System Administral System Administral	10 10 10	•	•	•	•			
	Sub Message	Ш	18/2/2568 18/2/2568 18/2/2568	11:08:40 11:10:23 11:10:45		0x5434 0x5434 0x5434	System Administrat System Administrat System Administrat	n n n n n n n n n n n n n n n n n n n	•	•	•	•	•	•	•
	Sub Message	II	18/2/2568 18/2/2568 18/2/2568 18/2/2568	11:08:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administrat System Administrat System Administrat ee NUM		•	•	•	•	•	•	•
	Sub Messago	II	18/2/2568 18/2/2568 18/2/2558	11:08:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administral System Administral System Administral ee NUM		•	•	•	•	•	•	•
	Sub Messago	IT	16/2/2568 16/2/2568 18/2/2568	11:08:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administral System Administral System Administral ee NUM		•	•	•	•	•	•	•
	Sub Messago	Ш	18/2/2568 18/2/2568 18/2/2568	11:03:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administrat System Administrat System Administrat ee NUM		•	•	•	•	•	•	•
	Sub Message	Ш	18/2/2568 18/2/2568 18/2/2568	11:03:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administrat System Administrat System Administrat ee NUM		•	•	•	•	•	•	•
	Sub Mossago	17	16/2/2568 18/2/2568 18/2/2568	11:03:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administrat System Administrat System Administrat ee NUM		•	•	•	•	•	•	•
	Sub Message	Ш	18/2/2568 18/2/2568 18/2/2568	11:03:40 11:10:23 11:10:45	D:	0x5434 0x5434 0x5434 418GB Fr	System Administrat System Administrat System Administrat ee NUM		•	•	•	•	•	•	•

CALCULATION AND EVALUATION

3000000

2500000

2000000

1500000

1000000

500000

0

1

Peak Ai

Sample calculation

- Perform HQ standard calibration curve from I-I00 ppm with peak area
- Calculate HQ concentration in percentage from ppm unit using linear regression with total volume of sample solution and weigh of sample

Evaluation method (Quality control)

Check Linearity by R²>0.99 350000 Linear regression equation 300000 Check Limit of Detection (LOD) and Limit of Quantification (LOQ) 250000 = 3 SD of blank and 10 SD of blank 200000 mAU **Check precision by %RSD** 150000 100000 $(SD / Ave. sample conc.) \times 100 \% \le 10\%$ 50000 **Check accuracy by %Recovery** 0 $80\% \leq \{(Csp - Cs)/Ca\} \times 100 \leq 120\%$

22

Retention time (min)

CONCLUSION

- Total mercury analysis for skin lightening cosmetics was determined by specific and direct method of NIC Mercury analyzer MA3000 with simplicity, short analysis time, and high sensitivity.
- Hydroquinone analysis for skin lightening cosmetics was determined by highly sensitive method of reversed phase Shimadzu HPLC with reliability, great precision, and excellent accuracy.

IDEA R&D Center | 2025

REFERENCES & ACKNOWLEDGEMENT

- Bamidele, O.D., Kayode, B.A., Eniayewu, O.I. et al. Quality assessment of hydroquinone, mercury, and arsenic in skin-lightening cosmetics marketed in Ilorin, Nigeria. Sci Rep 13, 20992 (2023). https://doi.org/10.1038/s41598-023-47160-2
- Ketkomol, P., Chongsa, W., & Punjanon, T. (2019). Qualitative and quantitative assessment of hydroquinone in skin whitening cosmetics in Pathum Thani Province, Thailand. Journal of 52(3), 170–174. Medical Sciences, retrieved Associated from thaijo.org/index.php/bulletinAMS/article/view/175445
- Muangchang, Rojanarata, Kwanrutai Waewsa-nga, Thanawit Theerasak Ratanakreethakul, Samarwadee Plianwong, Weerapath Winotapun, Praneet Opanasopit, and Tanasait Ngawhirunpat, Journal of Chemical Education 2016 93 (11), 1894-1899, DOI: 10.1021/acs.jchemed.6b00272
- N. Bunnaranurak and N. Tangtreamjitmun, "Determination of Mercury Contents in Facial Whitening Cream Samples by Direct Thermal Decomposition Mercury Analyzer", RMUTP Sci J, vol. 15, no. 2, pp. 14–23, Dec. 2021.

IDEA R&D Center | 2025

https://he0I.tci-

Pudinan

THANK YOU

	•	٠	•	•	•	•	•	•											
٠	٥	٠	•	•	•	•	•	•	•	•	•								
•	٠	٠	•	٠	•	٠	•	•	•	•	•								
•	۰	•	•	•	•	٠	•	•	•	•	•								
	٠	•	•	•	•	٠	•	•	•	•	•								
	•	•	•	•	•	٠	•	•	•	•	•						•	•	
					•	٠	٠	•	•	•	•	٠	•	•	•				

								•	٠	•	•	•	•	•	•	•	•	٠
			•	•	•	•	•	•	•	•	•	•						
		٠	•	•	•	•	•	•	•	•	•	•						
	•	٠	•	•	•	•	•	•	•	•	•	•	•					
		•	•	•	•	•	•	•	•	•	•	•	•					
		•	•	•	•	•	•	•	•	•	•	•	•					
		•	•	•	•	•	•	•	•	•	•	•	•					
			•	•	•	•	•	•	•	•	•	•						

Project for promoting Minamata Convention on Mercury

UNEP Networking Webinar #10 Enhancing collaboration and communication among mercury analytical laboratories

Toxicology Laboratory, School of Veterinary Medicine, Hokkaido University, Japan

February 20th 2025 Rio DOYA

Hokkaido University

Hokkaido University

- One of the oldest National Universities (Since 1876)
- Undergraduate students: 11 thousand
- Postgraduate students: 6.5 thousand

- School of Veterinary Medicine: Since 1910
- Laboratory of Toxicology: Since 1990
 - Interdisciplinary nature
 - Collaboration with overseas universities
 - Joint program with governmental researchers and international cooperation agencies

Current research target

- Pesticides
 - Neonicotinoids
 - Pyrethroids
 - Organic phosphorus/Organic chlorides
- Rodenticides
 - 1st & 2nd Generation of anticoagulant
- Micro/Nano plastic
- Heavy metal/Metalloids
 - Lead, Cadmium, Arsenic
 - Mercury

Chemical analysis : fundamental component

LC-MS, GC-MS

TDA-AAS

GLOBAL FACILITY CENTER 北海道大学グローバルファシリティヤンター

Biological response/toxicological effects

- Biochemical parameter
- RNA expression
- Epigenetic change
- Metabolome analysis
- Behavioral examination
- Socio-economic evaluation

Species Difference

- Phylogenetic analysis of genome
- Metabolic assay Evolution of Tolerance
- *in-silico* Docking simulation

Mercury research

Facility

- MA-3000 [Nippon Instruments]
 - Thermal decomposition amalgamation AAS

Application

- Environmental samples
 - Pollution from human activities
 - Post-disaster assessment
- Wildlife sample
 - Domestic & overseas
 - Combination with C/N stable isotope analysis
- Practical class
- UNEP-PT

New Project : ZAZINAMBO

Pre-kickoff Symposium in Botswana 2024 October 8-9th

Monitoring laboratory
 Network in Southern Africa

Thank you for your attention Contact: riodoya@vetmed.hokudai.ac.jp