विकिरण
प्रभाव एवं स्रोत

विकिरण क्या है?
विकिरण का हम पर क्या प्रभाव होता है?
विकिरण कहाँ से आता है?

अंतरीक्ष यात्री का डोज़ (4 महीने)
उदर का सी दी लीन
नाश्किय उद्योग के कर्मचारियों का रोज़ (1 वर्ष)
छाती का एक्स-किरण या उड़ान (20 घंटे)
दांत का एक्स-किरण
ब्राजील का बादाम (30 ग्राम)

विकिरण चित्र में प्रयुक्त डोज़
>1.000 mSv
100 mSv
10 mSv
1 mSv
0.1 mSv
0.01 mSv
0.001 mSv

संयुक्त राष्ट्र पर्यावरण कार्यक्रम

UNEP
विकिरण क्या है?
विकिरण का हम पर क्या प्रभाव होता है?
विकिरण कहाँ से आता है?

संयुक्त राष्ट्र पर्यावरण कार्यक्रम
अधिकारत्याग निवेदन

यह प्रकाशन काफी हद तक 'परमाणुविक्रिया' विषयक पंजीकृत संयुक्त राष्ट्र बैठक के सदस्यांतर्गत संगठन (UNSCEAR) की जांच पड़ताल के निष्कर्षों पर आधारित है, जो संयुक्त राष्ट्र महासभा के अन्तर्गत काम करने वाला संघटन है और जिसके सचिवालय की व्यवस्था संयुक्त राष्ट्र पर्यावरण कार्यक्रम (UNEP) द्वारा की गयी है। यह प्रकाशन UNSCEAR या UNEP के विचारों का प्रतिनिधित्व करता है, यह जरूरी नहीं है।

इस प्रकाशन में प्रमाणें लाभार्थी का सामग्री प्रस्तुत करने के लिए उपयोग किए गए, जो संदर्भात्मक उद्देश्य, बशतते उसमें मूलस्रोत का मूलस्रोत उहॊ प्रकाशन है।

इस प्रकाशन को लाभार्थी या उसका मूलस्रोत अंग्रेजी उद्देश्यों के लिए उपयोग, UNEP की रूपरेखा नहीं है।

UNEP, वैश्विक तथा अपने निजी स्तर के क्रियाकलापों में पर्यावरण पूरक प्रभावों को बढ़ावा देता है। इस प्रकाशन का मुद्रण उसके कार्यवाहीकरण का कार्यक्रम पूरा करने का उद्देश्य है।
विकिरण
प्रभाव एवं स्रोत

विकिरण क्या है?
विकिरण का हम पर क्या प्रभाव होता है?
विकिरण कहाँ से आता है?

संयुक्त राष्ट्र पर्यावरण कार्यक्रम
आभार

यह पुस्तिका काफी हद तक 'परमाणुविक्रियाओं के प्रभावों पर गठित संयुक्त राष्ट्र वैज्ञानिक समिति' (UNSCER) की जोच पड़ताल के सिद्धांतों तथा संयुक्त राष्ट्र पर्यावरण कार्यक्रम (UNEP) के प्रकाशन विकरण: मात्रा, प्रभाव, जीविका जिसका संपादन पहले जॉफरी लीन ने वर्ष 1985 और 1991 में किया था, पर आधारित है।

यह पुस्तिका मूल रूप से अंग्रेजी में प्रकाशित हुई थी। अनुवाद की व्यवस्था भाभा परमाणु असंगति अलीम अनुसंधान केंद्र, मुंबई (भारत) द्वारा की गई थी। किसी भी विभेदकता के मामले में, मूल भाषा मान्य होगी।

तकनीकी संपादक: माल्कम ब्रिक और फेरिंड शर्नोन

लेखक सामग्री संपादक: सुसान कोहेन - अमेवर और एहन एवरेस्टके

आलेख तथा आकृतिविध: अलेक्जेन्द्रा डिस्टर-कुएफेर

इनके अलावा निम्नलिखित व्यक्तियों ने इस पुस्तिका में बहुमूल्य योगदान दिया और दिए गए प्रदान की हैं:

लीरा एंड्रसन, जॉन कृपर, सुसान कुएटरो-हबेरस्टर, एमीली वैन डेवेनटर, मिलियान हिंड्ज, डेविड किनले, व्लादिस्लाव कलेनर, क्रिस्टिन लैसेन, कैरीना तवरातीलोवा-रोबेन्स्का, जया मोहन, तुल्करंग-उल्लरिच मुलर, मारिया पेरेज़, शिल्ला संगूसा, बर्ट्रांड बेरिकोल्ल, हिरोशी यसुदा, और एंथोनी ब्रिशमन।
प्रस्तावना

हिरोशिमा, नागासाकी, श्री माइल आइलैंड, चेनोबिल एवं फुजुशिमा-दाइसी यह नाम या तो नागरिकीय अवृत्तों के प्रयोग या नागरिकीय विकिरण संदर्भों में घटी दुर्घटनाओं के कारण, लोगों के मन में बसे हुए विकिरण के डर के साथ जुड़ चुके हैं। वास्तव में, ऐसे और बहुत सारे अन्य शोंत हैं, जिनमें बातचीत करते जमीन और विकिरण तथा उद्योगों में इस्तेमाल होने वाले मौल भी शामिल हैं, जो लोगों को काफी मात्रा में विकिरण आप दिन देते रहते हैं।

सन 1955 में, नागरिकीय अवृत्तों के परिक्षणों से, लोग परमाणुविकिरण के विकास, पानी तथा खाद्य पदार्थों पर होने वाले प्रभावों के बारे में संशय हो उठे। जिससे परिपरमाणु संयुक्त राष्ट्र महासभा ने विकिरण उद्देश्य के मात्रा तथा उनके प्रभावों की जानकारी इकट्ठा करने एवं उसका युक्तिकर्त्तव्य करने हेतु परमाणुविकिरण के प्रभावों में संबंधित 'संयुक्त राष्ट्र वैज्ञानिक समिति' (UNSCEAR) का गठन किया। इस समिति की सर्वसीमा रिपोर्ट ने उन वातावरणों को एक वैज्ञानिक नीति प्रदान की जिसके आधार पर सन 1963 में आंशिक परमाणु परीक्षण प्रतिबंध संधि के बारे में विचार-विमर्श हुआ जिसमें नागरिकीय अवृत्तों के बातचीत में किये जाने वाले परीक्षणों पर रोक लगा दी। तब से यह समिति विकिरण और लोगों पर होने वाले उनके प्रभावों के बिषय में उद्वेग श्रेणी की तथा अन्यतर उपयोगी रिपोर्ट निरंतर प्रस्तुत करती आ गई है। जिनमें चेनोबिल तथा फुजुशिमा-दाइसी नागरिकीय विकिरण संदर्भों में घटी दुर्घटनाओं की रिपोर्टें भी शामिल हैं। इस समिति ने हमेशा ही वैज्ञानिक समुदाय तथा नीति निर्धारणकर्ताओं के लिए बहुमूल्य समाधान दिया है।

वैज्ञानिक समुदाय ने विकिरण शोक तथा उनके प्रभावों के बिषय में विस्तृत पैमाने पर जानकारी प्रकाशित की है। परंतु इस जानकारी का स्वरूप तकनीकी ही रहा है। जिसके कारण इस जानकारी को समझना आम लोगों के लिए शायद इतना पतीक्षा हो गया है कि प्रायः लोगों में जानकारी के बजाय भावना फैल चुकी है। मतलब, दशकों पहले से अस्तित्व में आये हुए यह हर एवं भावना अभी तक काम है। यह प्रकाशन, विकिरणों के प्रकाश, उनके शोक तथा मानव एवं पर्यावरण पर होने वाले उनके प्रभावों के बारे में, UNSCEAR से प्राप्त हुई नवीनतम वैज्ञानिक जानकारी का विस्तृत विवरण सरल व सुगम भाषा में सर्वसामान्य पाठकों के सामने प्रस्तुत करके, इस समस्या का समाधान करता है।

आज UNSCEAR सत्रिवालय 'संयुक्त राष्ट्र पर्यावरण कार्यक्रम' (UNEP) के तत्वाधान में कार्यरत है जो पर्यावरण की दृष्टि से अनुकूल नीतियों तथा क्रियाकलापों को संचालित करने में बिन्दुमात्र देखने की मदद करता है। आम जनता को विकिरण को समझने, तथा यह विकिरण हमारी जीवनशैली को बेहतर प्रभावित करता है, इससे अवगत करना, UNEP के मूल कार्यक्षेत्र से पूर्णता: सुरक्षित हो।
मुझे, उन सबका जिन्होंने इस प्रकाशन में अपना योगदान दिया है तथा समिति के उन सभी सदस्यों तथा उनके दलों का जिन्होंने पिछले छह दशकों से इन पेचीदा समस्याओं पर जी तोड़ मेहनत की है, अभिनन्दन करने में बहुत खुशी हो रही है।

अबीम स्टाइर
UNEP कार्यकारी निदेशक एवं
अवर महा-सचिव, संयुक्त राष्ट्र
अनुक्रमणिका

परिचय

1. विकिरण क्या है?
 1.1. इतिहास के कुछ प्रमेय
 1.2. विकिरण की मूलभूत जानकारी
 रेडियोमेट्रिक क्षय व अर्धयुक्त
 विकिरण की इकाइयाँ
 1.3. विकिरण की व्याख्या क्षमता

2. विकिरण का हम पर क्या प्रभाव होता है?
 2.1. मानव जाति पर प्रभाव
 स्वास्थ्य पर शीघ्र प्रभाव
 स्वास्थ्य पर विलम्बित प्रभाव
 अगली पीढ़ी पर होने वाले प्रभाव
 2.2. प्राणियों तथा पौधों पर प्रभाव
 2.3. विकिरण डोज़ एवं प्रभावों में संबंध

3. विकिरण कहाँ से आता है?
 3.1. प्राकृतिक स्रोत
 ब्रह्मांडीय स्रोत
 भूस्तरीय स्रोत
 और और पौधों में विकिरण के स्रोत
 3.2. कृत्रिम स्रोत
 नामित्सीय अनुप्रयोग
 नामित्सीय अन्वेषण
 नामित्सीय परिपटें
 औद्योगिक तथा अन्य अनुप्रयोग
 3.3. सर्वाधिकारण तथा कर्मचारियों को मिलने वाली औसतन विकिरण मात्रा
परिचय

सबसे पहले हमें आयनकारी तथा आयनकारी विकिरण में क्या फरक होता है, जो जानना जरूरी है। आयनकारी विकिरण में इतनी ऊर्जा होती है कि उन परमाणुओं से इलेक्ट्रॉनों को अलग करने और इस प्रकार उन पर धन आवेश उत्पन्न करने के लिए पर्याप्त होती है और जो विकिरण, जैसे कि प्रकाश की किरणें, रेडियो तरंग एवं परा-बैंग्यिक किरण, ऐसा नहीं कर सकते उन्हें अनायनकारी विकिरण कहते हैं। यह प्रकाशन, प्राकृतिक तथा मानव निर्मित (कृतिम) दोनों प्रकार के विकिरण श्रोतों से होने वाले प्रभावों में संबंधित है। लेकिन इस प्रकाशन में विकिरण शब्द का प्रयोग सिर्फ आयनकारी विकिरण के लिए ही किया गया है।

बिकिरण के विशिष्ट अनुप्रयोगों के उदाहरण

आज विकिरण के खिलाफ तथा उनके प्रभावों के विषय में हमारी जानकारी प्रायः किसी भी अन्य खबरों का माध्यम बन सकता बाली चीजों में अधिक है और वैज्ञानिक समुदाय इसे निरंतर अवधी संदर्भ बना रहता है तथा उसका विश्लेषण करता रहता है। विकिरण का उपयोग नामितक उद्योगों में आधारित विभिन्न उद्योग तथा विकिरण में होता है, इस बात से तो ज्ञानदाता लोग परिचित होते हैं लेकिन नामितक तकनीकों का इस्तेमाल उद्योगों, कृपिया, निर्माण कार्य, वैज्ञानिक शोधकार्य तथा अन्य कार्यक्षेत्रों में भी होता है। इसके बारे में जानकारी प्रायः किसी भी भी होती है। जो पाठक किसी इस विषय के बारे में पहली बार ही कुछ पढ़ रहे हैं, उन्हें इस बात की हैरानी होगी कि जो विकिरण के खिलाफ आम लोगों को सर्वाधिक विकिरण देते हैं उनकी तरफ लोगों का ज्ञानदाता ज्ञाना ही नहीं है। सब तो यह है कि हमें सर्वाधिक विकिरण उन प्राकृतिक बौद्धि कों से मिलता है जो पर्याप्त विषय में इसे वैज्ञानिक ही मौजूद रहते हैं और मानव निर्मित शौरों के कारण मिलने वाली विकिरण डोज़ में उन विकिरण शौरों का योगदान मुख्य रूप से है कि दृष्टिकोण में विकिरण के क्षेत्र में इस्तेमाल किये जाते हैं।
इतना ही नहीं हमारे रोजमर्रा के व्यवहार, जैसे हवाई जहाज की यात्रा तथा दुनिया के कुछ हिस्सों में बनाए जाने वाले अन्दरी तरह से ताप अवरोधित घरों में निवास करने से भी हमें विकिरण की काफी मात्रा मिलती है।

यह प्रकरण संयुक्त राष्ट्र पर्यावरण कार्यक्रम (UNEP) एवं परमाणु विकिरण के प्रबंधकों से संवर्धित संयुक्त राष्ट्र वैज्ञानिक समिति (UNSCEAR) के सचिवालय द्वारा की गई एक कोशिश है जिसका उद्देश्य आयनकारी विकिरण के विभिन्न रूपों, उनकी मात्रा तथा प्रभावों के बारे में आम लोगों को अवगत कराना तथा इन सबके बारे में उनकी जानकारी बढ़ाना है। सन 1955 में संयुक्त राष्ट्र महासंघ ने अपने 27 सदस्य देशों के गणमान्य वैज्ञानिकों को आमंत्रित कर राष्ट्रीय विकिरण की मात्रा, उनके प्रभाव एवं जोखिमों का मूल्यांकन करना है। विशेष रूप से यह वैज्ञानिक जानकारी स्तर पर विकिरण की मात्रा, उनके प्रभाव एवं जोखिमों का मूल्यांकन करती है, बल्कि यह तो वैज्ञानिक जानकारी उपलब्ध कराती है जिससे राष्ट्र के नियंत्रकों तथा अन्य संस्थाओं को ऐसा करने में मदद मिल सके। इस प्रकार हमें सहायता मिल सके। पिछले साठ वर्षों में UNSCEAR द्वारा किये गए वैज्ञानिक मूल्यांकन इस प्रकाशन हेतु जानकारी के प्रमुख स्रोत हैं।
1. विकिरण क्या है?

विकिरण की मात्रा तथा उसके प्रभावों एवं समस्याओं खोजने पर वात करने से पहले विकिरण विज्ञान के मूलभूत तथ्यों के बारे में जानकारी लेना जरूरी है। रेडियोसक्रियता और विकिरण इन दोनों का अभिप्रेत तो तत्त्व से चला आ रहा है जब इस पृथ्वी पर जीवन ही नहीं था। सज्ज भाव तो यह है कि यह दोनों अंतरिक्ष में बढ़ावा की उपस्थिति के समय से ही मौजूद हैं इसलिए रेडियोसक्रिय दर्शन पृथ्वी के निर्माण से ही उसका अभिप्रेत हिस्सा बन गए हैं। लेकिन इस मूल, धार्मिक परिघटना की खोज मानवजाति की मात्र उद्धीश्वरी सुदी के आखिरी सालों में ही हो पायी और हम आज भी उसके इस्तेमाल के नये-नये तरीकों के बारे में जानने की कोशिश में लगे हुए हैं।

1.1. इतिहास के कुछ पाठे

विकिरण की खोज एक जर्मन भौतिकविद् बेल्म कॉनराड रोन्टगन ने सन 1895 में की जिन्होंने उसका नाम एक्स-किरण रखा। इस एक्स-किरणों के कारण ही मानव जीवन के अंतर्न्तर अतुलिय की रणनीतियों की देखभाल का निकटस्थ उपोक्त से आगे आया। रोन्टगन की उनकी मानव जाति की इस अतुलिय से तम्म में 1901 का भौतिक लोकप्रिय नोबेल पुरस्कार प्रदान किया गया। रोन्टगन की इस खोज के एक साल बाद की आवश्यकता, एक फ्रेंच वैज्ञानिक हेनरी बेकुरल ने छायाचित्रण में नाम आने वाली खुद पृथ्वी के दर्शन के साथ राशि में दूसरी खंडों के माय की तक। उन्हें इन लेखों पर विकिरण के प्रभावों के देखकर हैरानी हुई। जिस प्रक्रिया से यह षड्योग हो पाया उसे रेडियोसक्रियता कहा जाता है। रेडियोसक्रियता का कारण है रसायनों के विकिरण कृतियों के स्वरूप और उसे दीर्घकाल और आज इसे जीवन रेडियोसक्रियता बढ़ा उपयोग किया। रेडियोसक्रियता का कारण है रसायनों का वापसी विद्युत कारण और उसे दीर्घकाल और आज इसे जीवन रेडियोसक्रियता बढ़ा उपयोग किया। 1898 में उन्होंने और उनके पति पियरे क्वूरी ने यह खोज की, कि दूसरी खंडक्रिया देखा हुए रहस्यमय तरीकों से दूसरे तत्त्वों में तदनादुस्त हो जाता है इसने से इस तत्त्व का नाम उन्होंने मरी क्वूरी की रचनात्मक पौरोड के समान में दूसरे तत्त्व का नाम रखा गया ‘रेडियम’ यानि “तदनादुस्त” तत्त्व। वर्ष 1903 का भौतिक नोबेल पुरस्कार मरी क्वूरी को पियरे क्वूरी तथा हेनरी बेकुरल के
साथ साझा तौर पर प्रदान किया गया। मेरी क्षूरी ऐसी प्रथम महिला थी जिन्हें उनके विकिरण रसायन में की गई खोजों के कारण, 1911 में दूसरी बार नोबेल पुरस्कार से सम्मानित किया गया।

1.2. विकिरण की मुलभूत जानकारी

वैज्ञानिकों की यह जिजामा रही है कि वे परमाणु को विशेषकर उसकी संरचना को जानने। अब हमें मालूम हो चुका है कि परमाणु में एक अतिमुख धन आवेशित नामिक होता है जो क्षण आवेशित इलेक्ट्रॉनों के बादल से घिरा होता है। नामिक आकार में परमाणु से लगभग एक लाख गुणा घटोगा होता है, लेकिन वह इतना घना होता है कि परमाणु का लगभग संपूर्ण द्रव्यमान अपने अंदर समेटे रहता है।

परमाणु का नामिक, कणों का एक समूह होता है जिसमें प्रोटॉन एवं न्यूट्रॉन एक दूसरे से तीव्र आकर्षण बलों के कारण मजबूती से जुड़े होते हैं। प्रोटॉन धन आवेशित होते हैं जबकि न्यूट्रॉन आवेश रखते होते हैं। रासायनिक तत्वों की व्याख्या उनके परमाणुओं में जितने प्रोटॉन मौजूद हैं उस पर निर्भर होती है (जैसे बोरॉन के परमाणु में 5 प्रोटॉन तथा यूरेवि्यम के परमाणु में 92 प्रोटॉन होते हैं)। जिन तत्वों के परमाणुओं में प्रोटॉनों की संख्या मानना होता है लेकिन न्यूट्रॉनों की संख्या भिन्न होती है उन्हें सम्पूर्णता कहते हैं (जैसे यूरेवि्यम-235 और 238 के परमाणुओं के नामिकों में 3 न्यूट्रॉनों का अंतर होता है)। सामान्यतः परमाणु में जितने धन आवेशित प्रोटॉन होते हैं उनमें ही क्षण आवेशित इलेक्ट्रॉन भी होते हैं जिसके कारण परमाणु न तो धन आवेशित होता है, न ही क्षण आवेशित।
विकिरण क्या है?

विकिरण परमाणु की ऊतक घोली होते हैं जब कि अन्य अस्थिर होते हैं। कुछ परमाणु जिनका नाभिक अस्थिर होता है, वह खुद ही अपनी ऊर्जा की विकिरण के रूप में उत्सर्जित करते रहते हैं। उन्हें रेडियोस्क्रिय नाभिक कहा जाता है। यह ऊर्जा परस्पर प्रभाव से दूसरे परमाणुओं को आवश्यक कर सकती है। अधीनस्तिक यह प्रक्रिया है जिससे परमाणु इलेक्ट्रॉनों को खोकर या पाकर धन या ऊर्जा आवश्यक करते हैं। आधिकारिक विकिरण में इतनी मात्रा में ऊर्जा होती है कि वह परमाणुओं के इलेक्ट्रॉनों को उनकी कधा से बाहर निकाल कर परमाणुओं को आवश्यक बना सकती है जिन्हें आयन कहते हैं। ऐसी प्रक्रिया जिसमें रेडियोस्क्रिय परमाणु के नाभिक से दो प्रोटॉन और दो न्यूट्रॉन बाहर निकलते हैं उसे अल्फा घट्ट कहते हैं। बीटा घट्ट यह प्रक्रिया है जिसमें रेडियोस्क्रिय नाभिक से इलेक्ट्रॉन बाहर निकलते हैं। प्रायः इन कणों के उद्जोन के बावजूद रेडियोस्क्रिय नाभिक अपनी ऊर्जा का स्तर इतना कम नहीं कर पाता है जितना स्थिरता प्राप्त करने के लिए आवश्यक होता है। ऐसी स्थिति में नाभिक अपनी ऊर्जा को विकिरण चुम्बकीय तरंगों के रूप में उत्सर्जित करता है, जिन्हें गामा किरण कहते हैं।

एक्स-किरण, गामा किरणों की तरह ही विकिरण चुम्बकीय तरंगें होती हैं, लेकिन उनके फोटोनों
की ऊर्जा कम होती है। एक्स-किरणों का स्पेक्ट्रम तब तैयार होता है जब कैथोड से निकला हुआ इलेक्ट्रॉन किरण पुंज धन आवश्यक अनोड से डराता है। यह सब एक निर्विवाद वक्ता निलका में होता है। एक्स-किरणों का स्पेक्ट्रम इस बात पर निर्भर होता है कि एनोड किस पदार्थ से बना हुआ है साथ ही ऊर्जा की तास मात्रा पर भी निर्भर करता है जिसमें इलेक्ट्रॉन पुंज त्वरित किया जाता है। इस क्रम में एक्स-किरणों को हमारी जरूरत के संबंध में अनुसार जब बांधे तैयार किया जा सकता है जो कि अधिकांश तथा चिकित्सीय अनुप्रयोगों में इलेक्ट्रोलॉं के लिए काफी फायदेमंद साबित होता है।

एक्स-किरण निलका

चिकित्सा क्रिया है?
रेडियोसक्रिय क्षय व अर्थायु

हालांकि सभी विकिरणिममी नाभिक अस्थिर होते हैं पर कुछ विकिरणिममी नाभिक अन्य नाभिकों ने अधिक अस्थिर होते हैं। जैसे कि यूरेनियम-238 का नाभिक (जिसमें 92 प्रोटॉन और 146 न्यूट्रन होते हैं जो मूर्धन्य का ही वहाँ दक्षा रह पाते हैं), इसलिए वह नाभिक 2 प्रोटॉन और 2 न्यूट्रन के पुंज को अपना रूप में त्याग देता है और थोरियम-234 (जिसमें 90 प्रोटॉन और 144 न्यूट्रन होते हैं) में परिवर्तित हो जाता है। लेकिन थोरियम-234 भी अस्थिर होता है, और परिवर्तन के अन्तर्गत थोरियम-234 का नाभिक उज्ज उर्जा के इलेक्ट्रॉनों का उत्सर्जन बीटा कणों के रूप में करता है और एक न्यूट्रन का रूपांतर प्रोटॉन में भी कर देता है। इसके फलस्वरूप थोरियम-234, प्रोटॉक्लियम-234 बन जाता है जिसमें 91 प्रोटॉन और 143 न्यूट्रन होते हैं। यह प्रोटॉक्लियम भी बहुत ज्यादा अस्थिर होते के कारण यूरेनियम-234 बन जाता है।

इस तरह यह परमाणु विविभक्त कणों का उत्सर्जन करते हुए अपने आपको तब तक परिवर्तित करता रहता है जब तक कि वह लेड-206 नहीं बन जाता जिसमें 82 प्रोटॉन और 124 न्यूट्रन मौजूद होते हैं और वह स्थिर होता है। परिवर्तनों की ऐसी अनेक श्रृंखलाएं पाई जाती हैं जिन्हें रेडियोसक्रिय क्षय कहा जाता है। जिस समय में किसी तत्व के आप ग्रहण के क्षय हो जाता है, उसे अर्थायु कहते हैं। एक अर्थायु के बाद, 10 लाख परमाणुओं में से 5 लाख परमाणु रेडियोसक्रिय क्षय द्वारा किसी तत्व में परिवर्तित हो जाएंगे। उसकी अन्य अर्थायु में 2.5 लाख परमाणुओं का धरण हो जाएगा और यह मिलिमिला तब तक जागरह रहेगा जब तक कि उसे गतिविधियों का क्षय नहीं हो जाए। 10 अर्थायु के बाद प्रारंभिक 10 लाख परमाणुओं में से तकरीबन 1000 परमाणु (लगभग 0.1 प्रतिशत) ही बचकर बच जाते हैं। पूर्वोक्त उदाहरण में एक मिनट से कुछ ही ज्यादा
समय में प्रोटॉक्सिनियम के आधे परमाणुओं का ध्यान U-234 में हो जाता है। इसके ठीक विपरीत U-238 के आधे परमाणुओं का ध्यान-234 में होने में लगे चार अरब (4,500,000,000) वर्ष का समय लग जाता है। यद्यपि गौर करने वाली बात यह है कि कुछ पिने चुने रेडियोसंक्रियता तत्त्व ही ऐसे हैं जो पयांवर्यन में प्राकृतिक रूप से मौजूद होते हैं।

विकिरण की इकाइयाँ

आज हमें इस बात की जानकारी है कि विकिरण सजीव ऊतकों को तुकसान पहुंचा सकता है और ऊतकों में जमा विकिरण की ऊर्जा की मात्रा को जिस डोज़ में व्यक्त किया जाता है, उसे डोज़ कहते हैं। विकिरण डोज़ हमें किसी एक या उससे अधिक रेडियोसंक्रिय नाभिकों के कारण मिल सकती है। यह नाभिक धनरी के बाहर होते हुए अथवा धनम-मार्ग या धनम-मार्ग द्वारा धनरी के अंदर पहुंचकर भी विकिरण डोज़ देते हैं। विकिरण डोज़ को विभिन्न तरीकों से व्यक्त किया जाता है और ये तरीकों डोज़ किस प्रकार के विकिरण से तथा धनरी के जिन से और कौनसे हिस्सों में नियत है, जिन नीदर तक मिली (उदाहरण के लिए तीव्र विकिरण मात्रा) और उससे प्रभावित व्यक्तियों की संख्या, इन सब बातों पर निर्भर होते हैं।

उत्तर सीलो के प्रति किलोग्राम भार द्वारा अवशोषित विकिरण ऊर्जा को अवशोषित डोज़ कहा जाता है जिसे Gy (ग्य) डोज़ में व्यक्त किया जाता है। इस डोज़ का यह नाम अंग्रेजी भौतिकविद्या एवं विकिरण जीववात्विक प्रेम अन्तर्गत है। इसका उपयोग के सम्मान में रखा गया है। लेकिन इस डोज़ से विकिरण और उसके प्रभावों की पूरी तस्वीर साफ उभरी करने के लिए अंतर्क्रम द्वारा शरीर के अंदर प्रवेश करते हैं। जैसे कि अल्फ़ा डोज़ उसी ऊर्जा की तरह से बनी रहती है, जो ज्यादा ज्यादा दूर तो दूर होती है। इसलिए इनके द्वारा होने वाले तुकसान के विषय में इनकी तुलना भरोसे होगी जब, उससे अवशोषित ऊर्जा का विकिरण प्रभाव गुणांक से गुणांकित किया जाता है। इस तरह संबंधित किये हुए डोज़ को समतुल्य डोज़ कहा जाता है।

इसकी डोज़ का नाम सीवेंट (SV) है, जो स्वीडिष बैंग्नार्क रॉल्फ सीवेंट के सम्मान में रखा गया है। इसका उपयोग 1000 millisieverts के बराबर होता है और उससे संबंधित संख्या के लिए मीटर 1000 millilitres या एक मीटर 1000 millimeters के बराबर होता है।

इस बात पर भी ध्यान देना होगा कि विकिरण से धरी के बचत हिस्सों से इसे नियमित तरीके से दूर होना है। जैसे कि एक ही समतुल्य डोज़ की मात्रा से बचत की अपेक्षा फेफड़ों में कई संख्या पैदा होने की संभावना अधिक है और संभावित आनुवांशिक प्रभावों की दृष्टि से प्रजनन संबंधी अंगों पर विशेष ध्यान देना जरूरी होता है। परिणाम स्वरूप, एक ही समतुल्य डोज़ का विकिरण अन्य-अन्य अंगों एवं विकिरण क्या है?
उत्किंगों को अलग-अलग मात्रा में प्रभावित करता है। इसलिए एक ही समतुल्य डोज द्वारा विकिरण से होने वाले संभवित खतरे का अनुमान तभी मुमकिन है जब उनका गुणान ऊतक भार गुणांक से निर्णय जाये। इस प्रकार से संतुलित किये हुए डोज को प्रभावी डोज कहते हैं जिसकी इकाई भी सीवर्ट (Sv) होती हैं। हालांकि प्रभावी डोज, कम मात्रा के विकिरण में कर्करोग तथा आनुवंशिक परिणामों की संभावना का मूल्य होता है और अंधिक डोज में इसका उद्देश्य इन प्रभावों की तीव्रता का मापन ही हैं।

विभिन्न विकिरण मात्राओं की यह कार्यप्रणाली सरल तो नहीं है, लेकिन जरूरी है क्योंकि, वह इन सब परियोजनों को सूचनाजनक रूप से साखरत ती और एक प्रभावी जैसा प्रमूहत करती है जिसके कारण विकिरण संरक्षण विशेषज्ञ हर किसी व्यक्ति को मिले हुए विकिरण डोज को न केवल सूचना डोज से नाप सकते हैं बल्कि उनकी आपस में तुलना भी कर सकते हैं। ऐसा करना उन लोगों के लिए बहुत महत्वपूर्ण है जो विकिरण के साथ काम करने वाले व्यवसायिक विकिरणकार्यों हैं और इस कारणवश उन्हें विकिरण डोज अनिवार्य रूप से मिली ही रहती है।

<table>
<thead>
<tr>
<th>विकिरण मात्राएँ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>वैश्विक मात्रा</td>
<td></td>
</tr>
<tr>
<td>विकिरणधर्मीता</td>
<td>सम्पन्न की प्रति इकाई में होने वाले ऊजाया की नामक्रिय परिवर्तनों की संख्या। इसे अभयर्थ हस्ते में नापा जाता है और इस इकाई का नाम ब्रूफर्ल (Bq) है।</td>
</tr>
<tr>
<td>अभिमोहित डोज</td>
<td>विकिरण द्वारा पदार्थ संसार में उपित्त ऊजाया। इसे ये (Gy) में अभिव्यक्त किया जाता है, जो जूल प्रति किलोग्राम के बारे में होती है।</td>
</tr>
<tr>
<td>परिश्रमित मात्रा</td>
<td></td>
</tr>
<tr>
<td>समतुल्य डोज</td>
<td>अभिमोहित डोज का विकिरण प्रभाव गुणांक (WR) से गुणान करने से, जो कि अलग-अलग प्रकार के विकिरण किस तरह ऊतकों या अवयवों की जैविक असर पहुचाते हैं इसका निर्णय करता है। यह सीवर्ट (Sv) में अभिव्यक्त होता है जो जूल प्रति किलोग्राम के बारे में होता है।</td>
</tr>
<tr>
<td>प्रभावी डोज</td>
<td>समतुल्य डोज का ‘अवयव गुणांक’ (WT) से गुणान करने से, जो कि विभिन्न अवयवों के अवयव संबंधित तत्त्वों का हिसाब करता है। यह सीवर्ट (Sv) में अभिव्यक्त होता है, जो जूल प्रति किलोग्राम के बारे में होता है।</td>
</tr>
<tr>
<td>सामूहिक प्रभावी डोज</td>
<td>विकिरण द्वारा उद्भवित जनसंख्या या समूह के प्रभावी डोजों का जोड़। यह मैन-सीवर्ट (man Sv) में अभिव्यक्त होता है।</td>
</tr>
</tbody>
</table>
विकिरण क्या है?

लेकिन विकिरण निर्धारण के यह सब परिमाण किसी व्यक्ति को मिले हुए डोज़ की ही जानकारी देते हैं। इसलिए जब हम हर एक व्यक्ति के प्रभावी डोज़ को जोड़ते हैं और उसका जो नतीजा सामने आता है उसे सामूहिक प्रभावी डोज़ या केवल सामूहिक डोज़ कहा जाता है। सामूहिक डोज़ की इकाई man Sv होती है। उदाहरण के तौर पर पूरी दुनिया के लोगों की वार्षिक सामूहिक डोज़ 19 मिलियन man Sv होगी जो प्रतिवर्ष वार्षिक औसत डोज़ 3 mSv के बराबर है।

1.3 विकिरण की वेधन क्षमता

संक्षेप में देखा जाए तो विकिरण, कण (अल्फा, बीटा और न्यूट्रॉन) या विद्युत चुम्बकीय तरंगों (गामा किरण और एक्स-किरणों) के स्वरूप में होता है। जिनकी ऊर्जा अलग-अलग होती है, अतः उनकी वेधन शक्ति भी अलग-अलग होती है। इसके कारण सजीलों पर उनके प्रभाव भी अलग-अलग होते हैं। इसलिए अल्फा कण अधिक याद आवश्यक प्रोटॉन और दो न्यूट्रॉन से बनते हैं, अतः वह सभी प्रकार के विकिरणों में सबसे ज्यादा आवश्यक बनते हैं। इस तरह आवश्यक रहने की वजह से उनकी आस-पास के परमाणुओं के साथ होने वाली अनुपात ही ज्यादा होती है। इस तीव्र अनुपात क्रिया के परिणामस्वरूप अल्फा कणों की ऊर्जा धीर ढ़ेर में कम हो जाती है और इस कारणवश अल्फा कणों की वेधन क्षमता भी कम होती है। उदाहरण के तौर पर अल्फा कण महज एक कागज़ के पत्रों से भी रुक जाते हैं। बीटा कण जो की क्रम आवश्यक इलेक्ट्रॉनों से बनते हैं अतः उनके कम आवश्यक कारण उनकी वेधन क्षमता (अल्फा कणों की तुलना में) याद भी होती है। इसलिए बीटा कणों की ऊर्जा धीर ढ़ेर में कम हो जाती है। एक्स-किरणों तथा गामा किरणों की वेधन क्षमता अधिक होती है। इसलिए उन्हें रोकने के लिए लोटेल्स में मोटे अवरोध (प्लेट) का इस्तेमाल करना पड़ता है। परमाणु विकिरण या नामीकीय परिमाण के कारण अधिक हुए नामीकों में क्षुद्र न्यूट्रॉन बाहर निकलते हैं। प्राकृतिक तौर पर भी न्यूट्रॉन ब्रह्मांड़ी किरणों में पाए जाते हैं। चूँकि न्यूट्रॉनों
पर कोई आवेश नहीं होता इसलिए उनकी वेधन क्षमता भी बहुत अधिक होती है और वे पदार्थ तथा ऊजांस में अधिक गहराई तक जा सकते हैं।
विकिरण हम पर क्या प्रभाव होता है?

विकिरण हम पर जो असर करता है उसकी विस्तृत जानकारी लेने से पहले आदेश विकिरण विश्लेषण के कुछ अभ्यास और बैजनिकों के विचार को एक बार फिर से दोहराते हैं। रेडियोक्रिया की बोझ के तुरंत बाद हेनरी बेकर की विकिरण के हानिकारक पहलु का अनुभव हुआ। उन्होंने रेडियम से भरी एक शीशी अपने जेब में रखी और उसके कारण उनकी लच्छा को नुकसान हुआ।

विश्वेश्वर कॉनराड रोन्गन जिन्होंने 1895 में एक्स-किरणों की बोझ की थी, आंतों के कर्फूलों के कारण 1923 में चल बसे। बेरी बूरी, जिन्हें अपने सारे कार्यक्षेत्र में विकिरण की डोज़ मिलती रही, बुन की बीमारी के कारण 1934 में गुजर गयी।

ऐसी जानकारी मिलती है कि, 1950 के दशक के अंत तक कम में कम 359 शुरुआती विकिरण कर्मचारियों की, जिनमें व्यावहारिक ऑपरेटर और वैज्ञानिक थे और विकिरण से मृत्तिका की जानकारी के सम्बन्ध में अनजान थे, विकिरण डोज़ के कारण उनकी मृत्तिका हो गयी।

इसमें हैरानी की कोई बात नहीं कि विकिरणनिर्माणों की सुरक्षा के बारे में सर्वप्रथम सिफारिशें विकसित करने वाले बड़ी लोग थे जो अग्नि विद्युत युद्ध के लिए विकिरण का प्रयोग करते थे। मन 1922 में में रॉल्फ सीव्ट्ट के अंतरराष्ट्रीय रेडियोलॉजी सम्मेलन में ‘ध’ किरण एवं रेडियम सुरक्षा समिति का गठन किया गया। जिसमें विकास और अध्ययन के लिए रॉल्फ सीव्ट्ट का युद्ध हुआ। विद्वानों के बाद, वैज्ञानिक निष्कर्ष और विकास विकिरण के तने उपयोगों को ध्यान में रखते हुए, इस समिति का पूर्वस्थापन किया गया और साथ ही साथ उसका नाम यह व्यवस्थित किया गया, 'विकिरण सुरक्षा अंतरराष्ट्रीय आयोग' कर दिया गया। रॉल्फ सीव्ट्ट ने 1958-1960 के दौरान UNSCEAR के चौथे अध्यक्ष के रूप में, उस अध्यक्ष के दौरान भी आम किया था तब, जब परमाणु हथियारों के परीक्षण में निकलने वाले विकिरण से मानवों पर होने वाले प्रभावों के बारे में विशेष चिंता बनाती थी।

विकिरण से संबंधित जोखिमों के बारे में बहुत जागरूकता के कारण वीमरी तक दौरान विकिरण और उसके मात्र जाति तथा पर्यावरण पर होने वाले प्रभावों के बारे में गहन अनुसंधान कार्य का तेजी से विकसित हुआ है। जनसंख्या मृत्यू विकिरण के प्रभावों के मृत्युवंतक के संबंध में द्रीतीय विश्वयुद्ध (1945) के अंत में हिरोशिमा एवं नागासाकी में हुए परमाणु बमबारी से बर्बाद हुए लगभग 86,500 लोगों पर हुए विकिरण के प्रभावों का जोखि काफी महत्त्व रहती है। (इसके अलावा इस कार्यों में इन लोगों का उल्लेख परमाणु बमबारी उत्तरजीवी के रूप में किया जाएगा)। इसके अलावा हमें इस विषय में विश्वसनीय जानकारी मौजूद होगी विकिरण प्रभावित मरीज तथा किसी विकिरण दुर्घटना के शिकार (जैसे चीनी स्वायत्त नामीकृत विद्युत संयंत्र दुर्घटना) कर्मचारियों के अनुभवों से एवं प्राणियों तथा कोशिकों पर किये जा रहे विकिरण संबंधित प्रभावों से प्राप्त होती है।
UNSCEAR, विकिरण डोज़ के मानव स्वास्थ्य तथा त्योहार पर होने वाले प्रभावों के बारे में वैज्ञानिक जानकारी का मूल्यांकन करती है और उसमें जितना संभव हो सके उसकी विश्लेषणात्मकता के साथ यह पता लगाते हैं कि कौन से प्रभावों को विकिरण की विभिन्न मात्राओं के साथ जोड़ना जरूरी है। जैसा कि हम जानते हैं कि विकिरण कारक का प्रभाव विकिरण के प्रकार तथा जितनी संभव विकिरण के प्रकार पदार्थों पर विभिन्न हो सकते हैं। विकिरण डोज़ के मूल्यांकन के लिए फिल्डहाउस, UNSCEAR अल्प डोज़ मात्र का उपयोग, 100 mGy से कम लेकिन 10 mGy से अधिक डोज़ मात्राओं के लिए करती हैं। UNSCEAR ने 10 mGy से भी कम डोज़ का अत्यन्त डोज़ की संजा दी है।

UNSCEAR द्वारा उपयोग में लाये जानेवाले डोज़ के अंतराल

उच्च डोज़	~1 Gy से अधिक
मध्यम डोज़	~100 mGy से ~1 Gy
अल्प डोज़	~10 mGy से ~100 mGy
अत्यल्प डोज़	~10 mGy से कम

| संभीन विकिरण पर्याप्तताओं (उदा. चेनो-बिल दूरस्थता के अधिष्ठान कमी) |
| नैदानिक जांच |
| जीवकरण भाव के बारे में जानकारी के माध्यम परम्परागत रेडियोग्राफी (CT) स्कैन |
| बहु-कंप्यूटर टीमोग्राफी (CT) स्कैन के बगैर |
| बहु-कंप्यूटर टीमोग्राफी (CT) स्कैन के बगैर |
2.1. मानव जाति पर प्रभाव

विकिरण अनुसंधान, जिसकी शुरुआत विकिरण की बोध में ही प्रारंभ हो गयी थी, एक सदी से भी अधिक का समय अंतराल तय कर चुका है और इस अवधि के दौरान इस अनुसंधान में उन जैविक क्रियाविधियों के विषय में काफी विस्तृत जानकारी हासिल की गयी है जिनके द्वारा विकिरण हमारे स्वास्थ्य को तु斯基 खुशाल बनाता है। यह जात है कि विकिरण, कोशिका स्तर पर प्रभाव डाल सकता है जिससे या तो उनकी मौत हो जाती है या उनसे बदलाव आ जाता है। इसका कारण यह है कि विकिरण गुणसूत्रों में स्थित δी-ऑक्सी-राइबरोन््यूवक्लि एसिड (DNA) के रेशों को सीधे हानि पहुँचाता है। यदि ऐसी क्रियाविधियों की संख्या, जिसे विकिरण के कारण हानि पहुँची हो या जिनकी मौत हो गयी हो, अगर व्यक्ति है तो इसके परिणामस्वरूप उस व्यक्ति के अंग नाकाम हो सकते हैं और उस व्यक्ति की मौत भी हो सकती है। इसके अलावा DNA को विकिरण के कारण एक दूसरी वस्तु के संस्करण हो सकते हैं जिसमें कोशिकाओं की मृत्यु नहीं होती है। इस प्रकार की क्रिया आम तौर पर पूरी तरह से दीव भी हो जाती है। लेकिन यदि ऐसा नहीं हुआ तो DNA में आया हुआ बदलाव, जिसे क्रियाविधियाँ उत्पन्न करते हैं, सरकार रहता है और वह क्रियाविधियाँ की अगली पीढ़ियों में भी दिखाई देता है और अंततः इसका नतीजा दूसरी राशि हो सकता है। विकिरण के कारण अगर उन क्रियाविधियों में बदलाव आ जाता है जो अगली पीढ़ियों के लिए अनुवृत्त होता है, ता हमें व्यक्ति के बजाय में गड़बड़ी पैदा हो सकती है। ऐसी जैविक क्रियाविधियों तथा अनुवृत्त प्रभाव के विषय में जानकारी अन्य प्रयोगशास्त्रों में भी रहे अनुसंधान से प्राप्त की जाती है।

![क्रियाविधि की वर्गीकरण क्षिति](image)

विकिरण डोज़ मिलने के बाद सेहत पर होने वाले प्रभावों को सामने आने में जो समय लगता है उसके ध्यान में रखते हुए, स्वास्थ्य प्रभावों को दो भागों में बटा जाता है। वीर्य स्वास्थ्य प्रभाव एवं विलम्बित स्वास्थ्य प्रभाव। आम तौर पर वीर्य स्वास्थ्य प्रभाव व्यक्तित्व रोग सहलिश्चरणों की नैदानिक विकसिता से पता चल जाते है। विलम्बित स्वास्थ्य प्रभाव, जिसे कर्नेल के बारे में
महामारी रोगविज्ञान और जनसंख्या अध्ययनों से पता चलता है जिनमें विशिष्ट रोगलक्षणों के
जनसंख्या में दिखाई पड़ने के अवसरों की बढ़ी हुई मात्रा की जांच होती है। खासकर उसमें बच्चों,
जून तथा गर्मियों शियां और आनुवंशिक प्रभावों और विशेष ध्यान दिया जाता है।

स्वास्थ्य पर शीघ्र प्रभाव

शीघ्र स्वास्थ्य प्रभावों का कारण है, बड़े पैमाने पर कोशिकाओं की अध्ययन या उनकी मृत्यु होना।
उदाहरण के तौर पर चमचा का जल जाना, वातावरण का झड़पा और प्रजातियों या जस्ते उपलब्ध नहीं है।
जिन स्वास्थ्य विकिरण डोज़ सीमा के आंक ये प्रभाव दिखाई देने लगते हैं जो आम डोजों की तुलना में
अधिक होती है और जब यह डोज़ सीमा कम समय में पार हो जाती है तब ये प्रभाव दिखाई देते हैं।
इस डोज़ सीमा को पार करने के पश्चात विकिरण डोज़ की मात्रा जरूरी तथा अधिक बढ़ती है
वैसे इन परिस्थितियों की तीव्रता भी बढ़ती जाती है।

साधारणतया उड़ विकिरण डोज़ को 50 Gy से स्वास्थ्य होते हैं उनके कारण केंद्रीय संक्रमण के तरीके
इससे बुरी तरह से अवकरण हो जाता है कि सरीज की कुछ दिनों में ही मृत्यु हो जाती है। यहाँ तक
कि विकिरण डोज़ जब 8 Gy में कम होती है तब भी लोगों में विकिरण समस्या के लक्षण दिखाई देते हैं,
जिन्हें तीव्र विकिरण रोगलक्षण भी कहा जाता है। ऐसे लक्षण उदय करते, जलकर, उत्तर, पेट में एंट्स,
लार गिराना, लिजियोकरण, यथार्थ, उदासीनता, परिस्थिता, बुखार, एसिड और तितर
ज्ञात कुपोषण के सिर में हो सकते हैं। यहाँ यह बात ध्यान में रखना जरूरी है कि 'तीव्र विकिरण रोग
लक्षण', उन विकिरणीय समस्याओं को समाप्ति करता है जो तुरंत ही विकसित हो जाती है ना कि
बीच समय के बाद। हालांकि यह संभव है कि विकिरण ग्रस्त व्यक्ति कुछ देर के लिए बच भी जाए
लेकिन एक या दो हफ्तों के बाद जटरात्रिय अवधि के कारण उसकी मौत हो जाए। इससे कम मात्रा
के डोज़ जटरात्रिय नुकसान भरे ही न करें लेकिन दूर भी वो विकिरण ग्रस्त व्यक्ति की मौत (जो

चिकित्सा में आक्रमिक उद्धार

रेडियोथेरापी में रोगियों को उड़ डोज़ दिया जाता है।
इसलिए, तीव्र प्रभाव की रोकथाम एक प्रामाणिकता है।
विकिरण का हम प्रयास प्रभाव होता है?

कुछ महीने बाद हो सकती है) का कारण बन सकते हैं जो मुख्यतः विकिरण द्वारा लाल अस्थिमाजा को पहुँचाते गए तुक्सन की बजह में होती है। विकिरण डोज जब इसमें कम होते हैं तब उनके द्वारा होने वाली बीमारी की शुरुआत देरी से होती है और उनके कारण पैदा होने वाले लक्षणों की तीव्रता भी कम होती है। जिन्हें 2 Gy की विकिरण डोज़ मिली हो उनमें से लगभग आधे लोगों को तीन घंटे के बाद उल्टी होती है। लेकिन जिन्हें 1 Gy से भी कम विकिरण डोज़ मिली हो उनमें इसकी संभावना बहुत कम होती है।

यह सौभाग्य की बात है कि लाल अस्थिमाजा तथा अग्नि रक्त तैयार होने वाली प्रणाली को 1 Gy से कम डोज़ मिलने पर,उनका पूर्वजीवित होने की विशेषता का कारण भी अपना काम कर देता है। एक ऐसी परिस्थिति में उस व्यक्ति में कूच वर्ग के बाद ल्यूकेमिया (एक प्रकार का रक्त कर्करोग) होने की संभावना ज्यादा हो जाती है। अगर हमारे शरीर का कूच हिस्सा ही विकिरण से प्रभावित होता है तब सामान्यतः व्यायाम के लाल अस्थिमाजा बच ही होती है जो विकिरण के कारण होने वाली बीमारी को ठीक कर देती है। जंतुओं पर किये गए प्रयोगों से पता चला है कि उनकी जिन्तीगी अस्थिमाजा का मात्र दसवें हिस्सा भी अगर विकिरण से बच जाता है तब भी जीवित बचने की संभावना लगभग 100 प्रतिशत होती है।

विकिरण सीधे कोशिकाओं के DNA को तुक्सन प्रभावित है। इस तथ्य को ध्यान में रखते हुए विकिरण का उपयोग कर्करोग कोशिकाओं को नष्ट करने के लिए सुनिश्चित रहिए में दिया जाता है, जिसे विकिरण विकिरण कहते हैं। रेडियोथेरपी में विकिरण को कितनी मात्रा में इस्तेमाल किया जाएगा ये कर्करोग के प्रकार तथा कर्करोग कि अक्षमता तक पहुँच चुका है इस पर निर्भर करता है। आम तौर पर ट्यूमर के रेडियोथेरपी उपचार में डोज़ की मात्रा 20-80 Gy होती है। यदि वह डोज़ एक ही बार में मरीज को मिलती है तो इसमें उसकी जान को क्षति हो सकता है। इसलिए मरीज के लिए अवश्यक डोज़ मात्रा का निर्धारण उसे भाग में बोत देने के लिए किया जाता है कि किसी भी भाग में मरीज की 2 Gy से ज्यादा डोज़ ना मिल पाए। ऐसे डोज़ नियोजित की बहुत से उलटों की उस सामान्य कोशिकाओं को ठीक होने के लिए जरूरी समय मिल जाता है, जो कर्करोग से प्रभावित नहीं होती है। जब वह डोज़ मिलने वाले डोज़ कर्करोगों के प्रस्तुत कोशिकाओं की कार्यगतता में कभी होने के कारण भो अपने आप को डंग से ठीक नहीं कर पाती है और नष्ट हो जाती हैं।

स्वास्थ्य पर विल्यमिट प्रभाव

विल्यमिट प्रभाव डोज़ मिलने के काफी समय बाद ही सामने आते हैं। आम तौर पर व्यक्ति में जो विल्यमिट प्रभाव समस्त बाद ही सामने आते हैं उन्हें प्रसाधन प्रभावों की श्रेणी में रखा जाता है। व्यक्तियों में ऐसे प्रभावों के प्रकट होने की संभावना, मिलने वाली विकिरण की मात्रा पर निर्भर करती है। ऐसा समझा जाता है कि इस तहत के प्रभाव कोशिकाओं के ग्यूमोडो में विकिरण के कारण आये हुए बदलाव की बजह से होते हैं। विल्यमिट प्रभावों के उदाहरण हैं - विकिरण डोज़ से प्रभावित व्यक्तियों में होने वाले ट्यूमर और ल्यूकेमिया तथा ऐसे व्यक्तियों की आत्मी पीढ़ी में ग्यूमोडो में बदलाव के कारण पाली जाने वाली आपूर्तिक अनियमिताएँ। ऐसे देखने में आया है कि एक जनसंख्या में, इन विल्यमिट प्रभावों के पाये जाने की संभावना, मिले हुए विकिरण डोज़ के साथ बढती है पर इन प्रभावों की गंभीरता में वृद्धि नहीं होती है।

विल्यमिट प्रभावों को समझने में महामारी विज्ञान अध्ययनों की काफी सहीत होती है। ऐसे अध्ययनों में मान्यतीय पद्धतियों इस्तेमाल में लाई जाती हैं। जिनमें विकिरण डोज़ में वंचित जनसंख्या समूह की तुलना में डोज़ प्राम करने वाले समूह में अगर विकिरण से होने वाले बिंतव्य

विकिरण का हम प्रयास प्रभाव होता है?

विकिरण का हम प्रयास प्रभाव होता है?
विलबित प्रभावों (जैसे कि कर्करोग) में पर्याप्त वृद्धि पायी जाती है तो उसका संबंध, संभवतः पूरे समूह को मिले हुए डोज़ के साथ जोड़ा जा सकता है।

विकिरण उद्भासित जनसंख्या समूह का सबसे महत्वपूर्ण दीर्घकालीन मूल्यांकन है, परमाणु बमबारी के उत्तर-जीवियों का महामारी बिजाना अध्ययन। क्योंकि मूल्यांकन के लिए उपउपचर बड़ी संख्या में लोग, जो जनसंख्या समूह का सही मायने में प्रतिनिधित्व करते हैं, जिनके शरीर के सभी हिस्सों पर काफी समान रूप से वितरित विकिरण डोज की विभिन्न मात्राएँ प्राप्त हुई हैं, इन सब पहलुओं के कारण यह अध्ययन आज तक के सबसे व्यस्त अध्ययन है। इस समूह को भी मिली हुई डोज के अनुसार के बारे में भी अपेक्षाकृत अच्छी जानकारी उपलब्ध है। इस अध्ययन द्वारा, अब तक, विकिरण उद्भासित जनसंख्या समूह में, यदि उन्हें विकिरण नहीं मिलता तो संभावित कर्करोग के मरीजों की तुलना में, कुछ सदृश अधिक कर्करोग के मरीजों का पता चला है। बूंदि परमाणु बमबारी के उत्तर-जीवियों में से कई लोग अब तक जिन्दा हैं अतः मूल्यांकन को पूरा करने की दृष्टि से यह अध्ययन अभी भी चल रहा है।

कर्करोग

आयुर्विज्ञानी दृष्टि से उर्वर देशों में होने वाली मौतों में से 20 प्रतिशत मौतों के लिए कर्करोग जिम्मेदार है और उदय रोग के बाद, मौतों का मुख्य कारण भी है। एक आम जनसंख्या समूह को विकिरण से कोई भी डोज़ न मिलकर की अवस्था में भी, इस समूह के दस में से लगभग चार लोगों को, उनके जीवनकाल में, कर्करोग होने की संभावना होती है। हाल ही के वर्षों में पुरुषों में सामान्य तौर पर पाए जाने वाले कर्करोग में पफ्फ्रेड, पुरस्यान्ऱ्ड, कोलोरेक्टम, उदर एवं यकृत और महिलाओं में स्तन, कोलोरेक्टम, पफ्फ्रेड, गर्भाशय ग्रीवा तथा उदर के कर्करोग शामिल हैं।

विकिरण उद्भास और कर्करोग का प्रगति
विकिरण की उपयोग का एक जंगल प्रक्रिया है, जिसमें बहुत सारी अवधारणाएं निहित होती हैं। ऐसा देखने में आया है कि एक शुरुआती पदना संभवतः अनेकी कोशिका पर अभाव करके इस प्रक्रिया को आरंभ कर देती है, लेकिन ऐसी कोशिका के पात्रक बन जाने तथा गाठ के तैयार होने से पहले दूसरी कई सारी पदनाओं का क्रम से घटता होना आवश्यक प्रतीत होता है। कर्करोग का पता इस आरंभिक शर्ति के होने के कारण समय बाद ही जलता है जो कि कर्करोग की सूचना आवश्यक होती है। विकिरण डोज़ मिलने के बाद कर्करोग होने की संभावना एक बहुत चिंता का विषय है। एक जनसंख्या समूह को उस हज़ार तक डोज़ मिलने के बाद, जिसमें उस समूह में अभाव कर्करोग की पदनाएं उस मात्रा में बढ़ जाती हैं जो मानचित्रकता तथा अन्य दूसरी अभिविन्यासों से परे होते ही तब जिसे कर्करोग की संभावना का निर्धारण किया जा सकता है। तथापि कर्करोग के होने में विकिरण की वास्तविक मूल्यमान क्या है, इसका नाम अभी भी नहीं हुआ है।

बिकिरण द्वारा बैद्धिक प्रचार पाने वाले, व्यासावधान विकिरण कार्यकर्ताओं और सबसे अधिक बारों में प्रभावित उपचार या उपचार हुई तथा बारों में संबंधित उपचार और कर्करोग के संबंध के विषय में हमारी जानकारी को वैज्ञानिक आधार प्रदान किया है। यह जानकारी में ऐसे सारे बारों में सामाजिक स्थिति तथा सामाजिक मूल्यांकन के अनुसार कर्करोग के जनसंख्या की आधुनिक तिथि और दृष्टि के अनुसार उपचार के लिए निर्देश दर्ज किया है।

इस अध्ययन के विषय में इसमें उपचार और मूल्यांकन समस्या यह है कि इसमें से लघुभार सारी अवधारणाओं से प्रकट नहीं किया गया है, लेकिन ऐसे बहुत सारे बारों में काम करने के लिए इसके तत्वों को निहित है। बिकिरण के डोज़ का मात्रा मात्रा में और लंबे अंतराल के लिए मिलने से होने वाले विकिरण के विषय में बहुत ही कम जानकारी उपलब्ध है - जो कि कुछ ही संयुक्त अध्ययनों द्वारा मिली है जो बास्कर उन लोगों के बारे में है जिनका जीवनसमय ही विकिरण से जुड़ा हुआ है। लेकिन उन विकिरण डोज़ के विषयों में तो कोई भी प्रश्न जानकारी उपलब्ध नहीं है जो विकिरण समस्याधारण जनता को आये दिन मिलते रहते हैं। इसलिए ऐसे अध्ययनों की जरूरत है जिनमें बड़े जनसंख्या समूह पर विकिरण डोज़ का एक लंबे अंतराल के लिए परीक्षण किया गया हो। इसके विषय में बहुत सारे बारों में विकिरण धारण करने वाले वालों में अभाव ही सावधान रही थी।

UNSCAR ने विकिरण उद्देश्यों से जनसंख्या समूह में कर्करोग के पाए जाने के विषय में बड़े पैमाने पर विश्लेषण करते हुए जिनमें यह आकलन किया गया है कि 100 mSv से अधिक डोज़ के कारण, कर्करोग से मृत्यु होने की संभावना में 3 से 5% प्रति Sv की वृद्धि होती है।
स्वास्थ्य पर अन्य प्रभाव

हृदय को उड़ा डोंग मिलने से हृदय विकार होने की संभावना बढ़ जाती है। ऐसी डोंग मरीज को रेडियोथेरपी के दौरान मिल सकती है। हालांकि आजकल की प्रगत विधाओं के कारण अब रेडियोथेरपी में हृदय को मिलने वाली डोंग कम हो गई है। यद्यपि ऐसा कोई वैज्ञानिक सबूत मौजूद नहीं है जिससे यह निष्कर्ष निकाला जा सकता है कि अल्प डोंग के कारण हृदय विकार हो सकता है।

UNSCER ने इस बात पर ध्यान दिया है कि चेनोबिल आपातकालीन बचाव दल के कर्मचारियों में मोतियाबिंद होने में पाई गई वृद्धि का सम्बन्ध सम्बन्धित उड़ विकिरण डोंग से हो सकता है। इसके अलावा, UNSCEAR ने विकिरण डोंग के कारण मानव प्रतिरोध तंत्र पर होने वाले प्रभावों के विषय में, परमाणु बमबारी के उतरजीवियों, चेनोबिल नाभिकीय विकृति संबंध के आपातकालीन बचाव दल के कर्मचारियों तथा रेडियोथेरपी द्वारा इलाज करने वाले मरीजों का अध्ययन भी किया है। विकिरण डोंग से प्रतिरोध तंत्र पर होने वाले प्रभावों का मुख्य कारण कोशिकाओं की संख्या में होने वाले बदलाव का अनुमान लगा जाता है। विकिरण का उड़ा डोंग उच्च तथा तंत्रिक डोंगों को नुकसान पहुँचाने का प्रतिरोध तंत्र को कम करने का कारण है। इसलिए, भारी डोंग मिलने के बाद उनकी संख्या में उप्युक्त कमी का उपयोग, डोंग की मात्रा निर्धारण हेतु पूर्वसुचक तौर पर वर्तमान में हो रहा है।

अगली पीढ़ी पर होने वाले प्रभाव

अगर विकिरण डोंग के कारण होने वाला नुकसान प्रजनन कोशिकाओं या शुद्ध अंदरूनी अंगों में पाया जाता है तो इससे व्यक्ति की अगली रीति पर आत्मविश्वास प्रभाव हो सकता है। इसके अलावा विकिरण डोंग सीधे सर्व या गर्भाशय में विस्तार हो रहे शिशु को हानि पहुँच जाता है। वयस्क व्यक्ति, बच्चे तथा गर्भाशय प्रभावित कर उससे विकिरण डोंग के कारण तंत्रिक डोंगों में अंतर का ध्यान रखना महत्वपूर्ण है। UNSCER ने इस सभी बातों में, विकिरण डोंग के स्वास्थ्य प्रभावों जिनमें आत्मविश्वास प्रभाव भी शामिल है, पर्यायों के विषय में बड़े पैमाने पर विस्तृत समीक्षा की है।

बच्चों पर विकिरण डोंग का प्रभाव

विकिरण डोंग के स्वास्थ्य पर होने वाले प्रभाव बहुत भारी और शरीरिक घटकों पर प्रभावित करते हैं। बच्चों और वयस्कों में बीमार संरचना तथा शरीर विकास विभिन्न विभागों के कारण विकिरण डोंग का उप पर प्रभाव भी अधिक-अधिक होता है। दूसरे बाद में, बच्चों के वयस्क का आकार छोटा होता है और उन पर उत्तर की आकृति में वयस्कों की तुलना में हल्का होता है। इसलिए, बच्चों के लिए बड़ी डोंग मिलने पर बच्चों के अंदर अंगों को मिलने वाली डोंग की मात्रा वयस्कों से ज्यादा होती है। इसके इलावा, बच्चों के कद और तीव्रता कम होने के कारण उन्हें जमीन पर फैले हुए विकिरणधारी नाभिकीय बहु संरचन के तुलना में ज्यादा डोंग पहुँचने का कारण उन्हें जमीन पर फैले हुए विकिरणधारी नाभिकीय के तुलना में, ज्यादा डोंग पहुँचने का कारण उन्हें जमीन पर फैले हुए विकिरणधारी नाभिकीय के तुलना में, ज्यादा डोंग पहुँचने का कारण उन्हें जमीन पर फैले हुए विकिरणधारी नाभिकीय के तुलना में, ज्यादा डोंग पहुँचने का कारण उन्हें जमीन पर फैले हुए विकिरणधारी नाभिकीय के तुलना में,
ज्यादा विकिरणिममी करते हैं। व्यक्ति की उम्र से संबंधित और भी कई पटक होते हैं जो चयापत्रय रूप में किया एवं शरीर किया से संबंधित रहते हैं और जिनके कारण विभिन्न उद्ध के व्यक्तियों के डोज़ में लक्षणिय फर्क पड़ता है। बहुत सारे विकिरणशील नामिक चूना है जिन पर बच्चों के अंदरुनी वस्तु की दृष्टि से विशेष ध्यान देना आवश्यक है। ऐसी दुर्घटनाएँ जो रेडियोसैक्सियाआयोडीन-131 के सुकु ल बनाए होने से संबंधित हैं, थायरॉइड ग्रंथि को विकरण डोज मिलने का महत्वपूण नोट हो सकती है। विकिरणशील नामिक की एक सुनिश्चित मात्रा के अंतर्राष्ट्रीय से एक नवजात शिशु की थायरॉइड को मिलने वाली डोज़ वस्तु की तुलना में नौ गुणा अधिक होती है। सेंट्रिक दुर्घटना के अध्ययनों ने थायरॉइड कर्करोग का आयोडीन-131 से सम्बंधित होने की पुष्टि की है जो ज्यादा तर थायरॉइड ग्रंथि में दक्षा होता रहता है।

महामारी विज्ञान अध्ययनों ने यह दिखा दिया है कि 20 साल से कम उम्र के युवा लोगों में, वस्तुक की तुलना में, दोनों को एक ही डोज मिलने के बावजूद लुकेमिया होने की संभावना, वस्तुक में दुपनी होती है। इसके अलावा यह भी पाया गया है कि 10 साल से कम उम्र के बच्चों से ज्यादा आसानी से प्रभावित हो जाते हैं। जैसे कि कुछ अन्य अंतर्राष्ट्रीय सुचित करते हैं कि उनकी लुकेमिया में मुंह रूप होने के संभावना वस्तु में तीन ने चार गुणा अधिक होती है। अन्य अंतर्राष्ट्रीयों में यह भी पता चला है कि बच्चों के 20 साल की उम्र में बढ़ते हैं वस्तु में स्तन कर्करोग होने की संभावना वस्तु होने की तुलना में दुपनी होती है। बच्चों में वस्तु की तुलना में डोज़ मिलने के बाद कर्करोग होने की संभावना ज्यादा होती है। लेकिन कर्करोग का प्रादुर्भाव उनमें संभवतः उस आयु में होता है जिसमें कर्करोग सामान्य तौर पर ही दीखा देता है।

UNSCER ने वैज्ञानिक सामग्री की समीक्षा की है जो यह सूचित करती है कि बच्चों में कर्करोग वस्तुक की तुलना में ज्यादा प्रभावित होता है और बच्चों के प्रकार, बच्चों की उम्र तथा लिंग पर निर्भर करता है। विकरण संवेदनशीलता विकरण प्रतिरोध कर्करोग के संबंध में, दुर्घटना एवं पतझड़ होने की गति को सूचित करती है। वस्तुक तथा बच्चों की विकरण संवेदनशीलता में भिन्नता के विपरीत पर किये गए अंतर्राष्ट्रीयों में यह पता चलता है कि बच्चों थायरॉइड, मस्तिष्क, त्वचा तथा अन्य मंजिल के वहाँ उन्हें लुकेमिया और कर्करोग का लक्षण होने की संभावना बढ़ाने के लिए अंतर्राष्ट्रीय उपचारों की आवश्यकता है।

बच्चों में विशेष रूप से रेडियो संवेदनशील अंग

मस्तिष्क

थायरॉइड

स्तन

त्वचा

अन्य मंजिल

बच्चों में विशेष रूप से रेडियो संवेदनशील अंग

बिकरण का हम पर क्या प्रभाव होता है?
स्तनों के कर्करोग एवं ल्युकेमिया के प्रति अधिक संबंधित होते हैं।

उद्धारण के तौर पर जो डोज़ विकिरण उपचार पद्धति में मिलती है) मिलने से बड़ी होने वाले श्रीमतभ्रमाओं में जो विकिरण होती है वो काफी जटित होती है और उसका स्पष्टीकरण उत्तर्दां एवं धैर्यक विस्तारितियों की एक दृष्टि के साथ होने वाली अन्योन्य प्रतिक्रिया द्वारा हो सकता है। कुछ प्रभाव (जैसे कि मस्तिष्क विकार, मोतियाविद एवं थायरॉइड की गांठ) पीड़ितत्व की तुलना में बच्चन में विकिरण डोज़ मिलने से अधिक मात्रा में नजर आते हैं और ऐसे कुछ प्रभाव (उदाहरण के तौर पर फेकड़े और ओंडाश्य पर पाए जाने वाले प्रभाव) भी हैं जिनका मुकाबला बड़ी होने उत्कृष्टों की तुलना में, अधिक कारगर होते हैं।

गर्भस्थ शिशु पर प्रभाव

एक भूण या गर्भस्थ शिशु की विकिरण की डोज़ या तो अपनी माँ के शरीर में, खाने या पीने के जरिए विकिरणधर्मी पद्धतियों के पहचान में आतान्तरिक उद्धारण या सीधे माँ के शरीर के बाहर से बाहुल उद्धारण द्वारा मिलती है। अधिकांश विकिरण उद्धारण पहचान में, गर्भाशय के कारण भूण के सुरक्षित होने से उसे मिलने वाली डोज़ की मात्रा उसके मां को मिलने वाली डोज़ की मात्रा से प्रयोजनीत होती है। लेकिन डोज़ की जिस मात्रा के कारण मां पर तुरंत असर होता है, उसमें कम मात्रा वाली डोज़ मां के भूण और गर्भ पर, उनकी विकिरण संबंधितता या जोड़ होने के कारण, संरचनात्मक अनियमितताएं, मस्तिष्क के कार्यकालापों में बाधा तथा कर्करोग शामिल हैं।

स्तनधारी जीवों की गर्भ में विकास की मोटी तीर पर तीन अवस्थाएं होती हैं। यह जान है कि विकिरण डोज़ अगर प्रथम अवस्था में मिल जाता है, जो मात्र में गर्भधारण के पहले दो सप्ताहों से उस बक्त तक चलती है जब तक गर्भ गर्भधारण की दीवार पर अपनी आप को सुस्थापित कर लेता है,
तो वह डोज़ गर्म को गर्माशय में ही मार सकता है। इस अवस्था में क्षा-क्षा होता है इसका अध्ययन करना तो बहुत मुश्किल होता है लेकिन उस जानकारी से, जो ज्यादा तर दूसरे प्राणियों पर किये गए प्रयोगों में हासिल हुई है, इस बात की पुष्टि हुई है कि एक विकिरण डोज़ सीमा से ज्यादा डोज़ मिलने से प्रारंभिक भूषण पर होने वाले प्रभाव का अंजाम उसकी मौत हो सकती है।

अगली अवस्था के दौरान, जो मनुष्य के गर्माशय के दूसरे समाह में आठवें समाह तक रहती है, गर्म को विकिरण डोज़ मिलने पर, प्रमुख खतरा यह होता है कि उसके कारण विकसित हो रहे अवयवों में संरचनात्मक अनियमितताएँ पैदा हो जाती है, जिससे शायद जन्म होते ही भूषण की मृत्यु हो जाती है। दूसरे प्राणियों पर किये गए प्रयोगों से यह पता चला है कि कुछ अंग (जैसे कि आँख, मस्तिक एवं हंडियों का डंडा) विकास की आरंभिक अवस्था में विकिरण मिलने पर संरचनात्मक अनियमितताओं को दृष्टि से ज्यादा संबंधती होते हैं।

ऐसा जाना हुआ है कि विकिरण डोज़ के कारण सबसे अधिक तुरंतान्तरी तंत्रिका तंत्र को होता है जब यह डोज़ आठ समाह के बाद गर्माशय की तीसरी और अंतिम अवस्था शुरू होने पर मिलती है। शिशु के जन्म से पूर्व ये भुले डोज़ मिलने से उसके मस्तिक पर होने वाले प्रभावों को समझने में काफी प्रश्न उठते हैं। उदाहरण के तौर पर परमाणु बमबारी के उत्तरीजीविों के 1600 बच्चों, जिन्हें जन्म तक उसकी गर्माशय में 1 Gy विकिरण डोज़ मिला था, उनमें से 30 बच्चों को तीन वैदिक दुबयालता की समस्या थी।

गर्माशय में विकिरण डोज़ मिलने के कारण क्या उस व्यक्ति को आगे चलकर जंगली में कर्करोग हो सकता है, इस विषय पर सबसे जानकारी नहीं है। अन्य प्राणियों पर किये गए प्रयोग, गर्माशय में भूषण को मिलने वाले विकिरण डोज़ और कर्करोग के बीच विशिष्ट संबंध स्थापित करने में सफल नहीं हुए हैं। UNSCEAR ने शिशु के, उसके जन्म से पूर्व अवस्था में प्राप्त हुए विकिरण से होने वाले बहुत मारे संबंधित जोखिमों, जैसे मौत, संरचनात्मक अनियमितताएँ, वैदिक दुबयालता तथा कर्करोग के बारे में अनुमान लगाने का प्रयास किया है। इसके फलस्वरूप UNSCEAR को यह बता देता है कि अपने सामान्य रूप में जन्मे हर 1000 बच्चों में, जिन्हें गर्माशय के दौरान 1 Gy के सीधे हिस्से जितना 0.01 Gy विकिरण डोज़ मिला था, ज्यादा से ज्यादा 2 बच्चे विकिरण डोज़ से प्रभावित हो सकते हैं। उदाहरण के तौर पर बच्चों को कोई भी विकिरण डोज़ न मिलने की संभावितता में भी 6% (1000 में 60) इन्हीं प्रभावों में, प्राकृतिक रूप से ही प्रभावित हो सकते हैं।

आनुवंशिक प्रभाव

विकिरण उन कोशिकाओं में बदलाव ला सकता है जो अगली पीढ़ी की आनुवंशिकता से संबंधित जानकारी पहुँचाती है और इस बदलाव के कारण अगली पीढ़ी में आनुवंशिक विकार पैदा होने की संभावना होती है। इस प्रकार का विकार का अध्ययन मुश्किल होता है क्योंकि विकिरण के कारण कंबाश को किस प्रकार की तरह होती है इस विषय में बहुत कम जानकारी उपलब्ध है और वह कुछ हद तक इसलिए कि आनुवंशिक प्रभावों का लेखा जोखिम लेने में पीड़ियों गुजर जाती हैं और कुछ हद तक इसलिए भी कि ये प्रभाव (उदाहरण के लिए कर्करोग) व्यक्ति में विकिरण के अलावा दूसरे और बच्चे से भी हो सकता है और ऐसी स्थिति में व्यक्तियों में प्रभावित करने के कारण ही हुआ है या किसी और बच्चे से, यह तय करना सम्भव नहीं होता।

विकिरण का हम पर क्या प्रभाव होता है?
बिकिरण डोज के कारण दूरी तरह से अतिग्रस्त गर्भ एवं धूर्णों में से बहुत सारे धूर्ण और गर्भ बच नहीं पाते। ऐसा अनुमान लगाया गया है कि गर्भपात हुए लगभग आधे गर्भों की बंधाणु संचरण में असामान्यताएँ होती हैं। ऐसे गर्भ अगर पैदा होने तक बच भी जाते हैं तो ऐसे पिछुओं की, जिनमें आनुवंशिक बिकार मौजूद हैं, उनके पौंचों जननविद से पहले ही गुजर जाने की संभावना सामान्य पिछुओं की तुलना में पांच गुना अधिक होती है।

आनुवंशिक प्रभाव मुख्यतः दो प्रकार के होते हैं। पहला गुणसूत्रों में विपथि जिन में गुणसूत्रों की संख्या या उनकी संचरण में बदलाव आ जाते हैं और दूसरा स्वयं बंधाणु में ही उत्परिवर्तन हो जाता है। ये प्रभाव बाद की पीढियों में भी दिखाई देते हैं। लेकिन उनका दिखाई देना जरूरी हो, ऐसा नहीं है।

परमाणु बमबारी के उत्तरजीवियों के बच्चों पर किये गये अध्ययन, उनमें किसी आनुवंशिक प्रभाव को देख पाने में असफल रहे हैं। इसका मतलब यह नहीं है कि बिकिरण डोज के कारण कोई बदलाव नहीं हुई है। विलक्षण सिफर यह है कि एक तुलना में कड़ी जननविद समूह को एक सीमित बिकिरण डोज मिलते से उस पर कोई सूक्ष्म असर नहीं होता है। वर्तमान पीटों और प्राणियों पर किये गए अध्ययनों से यह साफ पता चलता है कि उइ बिकिरण डोज मिलते से उनमें आनुवंशिक प्रभाव प्रदर्शित होते हैं। मनुष्य इसका आभार हो ऐसा असंभव है।

UNSCEAR ने अपना ध्यान सिफर गंभीर आनुवंशिक प्रभावों पर ही केंद्रित किया है और अनुमानित किया है कि इन प्रभावों के पावन जाने की कुल आंक 0.3 से 0.5 प्रतिशत प्रति Gy होती है। जो बिकिरण डोज मिलने के बाद अगली पीढ़ी में जन्माने का करण हो जाएगा।

2.2. प्राणियों तथा पीढियों पर प्रभाव

प्राणी तथा पीढियों पर बिकिरण डोज के प्रभावों पर आज कल पहले से ज्यादा ध्यान दिया जा रहा है। पीछले कुछ दशकों में यह साफ चल रही थी कि अगर मनुष्य को बिकिरण से समुच्चित रूप से संरक्षण दिया गया तो उसमें पीढियों और प्राणियों का भी संरक्षण हो जाएगा। UNSCEAR ने बिकिरण डोज के प्राणी तथा पीढियों पर होने वाले प्रभावों का पुनःनिर्माण किया है और पाया कि 1-10 Gy की सैद्धांतिक डोज का पीटों और प्राणियों के समस्त संसूचि प्रभावित होता है। जो बिकिरण डोज जिनके समस्त संसूचि के स्तर पर महत्वपूर्ण होने की संभावना होती है, उसमें प्रजननक्षमता, मृत्यु की संभावना और गुणसूत्रों में उत्परिवर्तनों का प्रेरित होना शामिल है। प्रजनन से संबंधित बदलाव जैसे 'अगली पीढ़ी' की संख्या यह 'मृत्यु दर' की तुलना में बिकिरण डोज में होने वाले प्रभावों का अधिक संबंधित संसूचि है।
विकिरण का हम पर क्या प्रभाव होता है?

रेडियो लाइट, विकिरण के वह डोज़ होते हैं जिन्हें मिलने से जनसंख्या समूह के 50 प्रतिशत सदस्यों की मृत्यु हो जाती है। उन पौधों में, जिन्हें विकिरण डोज़ बहुत कम समय में मिला है (नीचे विकिरण), घातक डोज़ की सीमा 10 Gy में कम मात्राओं में लूटे 1000 Gy तक पायी गई है। आम तौर पर बड़े पौधे छोटे पौधों की तुलना में, अधिक विकिरण संबंधित होते हैं।

छोटे स्तनधारी प्राणियों के लिए घातक डोज़ की मात्रा 6-10 Gy तक होती है और बड़े स्तनधारी प्राणियों के लिए यह 2.5 Gy के आस-पास होती है। कुछ कीट, जीवाणु तथा विशाल 1000 Gy से भी अधिक डोज़ को सहन कर पाते हैं।

कुछ जंतुओं एवं पौधों हेतु तीन घातक डोज़ों का पराम

नेनोबिड नामकीन विक्रिय विद्युत संयंत्र के आस-पास के क्षेत्रों में प्राणियों तथा पौधों को मिलने हुए विकिरण डोज़ का निर्देशन जानकारी का एक प्रमुख बोतल रहा है। विभिन्न संभाव्य परिस्थितियों का, जिनके कारण पर्यावरण को विकिरण डोज़ मिला था, UNSCEAR ने, मूल्यांकन किया है और इस डोज़ के संघर्ष प्रभावों के निर्धारण के तरीकों का विकास किया है।

हाल ही में, UNSCEAR ने फुकुशिमा-काइची नामकीन विद्युत केंद्र के बाद चुनिन्दा प्राणियों तथा पौधों पर विकिरण डोज़ के प्रभावों का आकलन किया है और यह निष्कर्ष निकाला है कि डोज़ की मात्रा बहुत कम होने की बजह से, आम तौर पर ये गंभीर प्रभावों का कारण नहीं बन सकती। तथापि जैविक चिन्हों, जो खाम तौर पर स्तनधारी प्राणियों में विशिष्ट रोग या एक जीव की शारीरिक क्रिया अन्वेषण की दशातिं हैं, में बदलाव से इंकार नहीं किया जा सकता, तबकि जनसंख्या समूह की समग्र मात्रा को प्रदर्शित करने में उन जीवों की सार्थकता के बारे में सुस्पष्टता नहीं है।

यहाँ आप वात का ध्यान रखना जरूरी है कि मानव को मिलने वाले विकिरण डोज़ को कम करने के लिए जो रख्तात्मक एवं उपचारात्मक कार्यक्रम की जाती है इसका महत्त्वपूर्ण एवं व्यापक प्रभाव
होता है। उदाहरण के लिए, ऐसी कार्यवाही पर्यावरणीय संपत्ति और सेवाएं और उन संसाधनों पर जो कृप्ति, वानिकी, मस्ति पान एवं परम्पराम इस्तेमाल होते हैं, तथा उन मुख-मुख्य विधियों पर जो आध्यात्मिक, सांस्कृतिक एवं मनोरंजनात्मक गतिविधियों में इस्तेमाल होती हैं, को प्रभावित कर सकती है।

2.3. विकिरण डोज एवं प्रभावों में संबंध

विकिरण डोज़ और उनके स्वास्थ्य विषयक प्रभावों के सम्बन्ध को संशोधन के साथ-साथ तत्त्व में प्रस्तुत करते समय UNESCEAR ने इस बात पर बत दिया है कि विकिरण डोज़ मिले हुए जनसंख्या मुख्य में माझून जमा स्वास्थ्य प्रभाव और सैद्धांतिक दृष्टिकोण है जिसमें संभाव्य वाणिज्यिक स्तरों में फर्क करना बहुत महत्वपूर्ण है। इस तथापति परिस्थितियों में सांस्कृतिक विवेचन में, विकिरण मापनों में या किसी अन्य परिस्थितियों में जो अनिश्चितताएँ और गलतियाँ होती हैं उन्हें ध्यान में रखना जरूरी है।

वर्तमान में उपलब्ध जानकारी के अनुसार, व्यक्तियों में पाए गये स्वास्थ्य प्रभावों को हम पूरे विवाहार के साथ विकिरण से जोड़ सकते हैं अगर उन व्यक्तियों में, उज्ज डोज़ 1 Gy से अधिक मिलने पर होने वाले न्याय प्रभाव (उदाहरण के तौर पर लग्ज का जल जाना) नजर आते हैं। ऐसे डोज़ विकिरण दुष्परस्त वाणिज्यिक मिल जाते हैं जैसे कि चार्जिंग नाइट्रोजन विश्लेषण स्तर संबंधित दुष्परस्त के दौरान आपात्स्थिति बचाव दल कर्मियों को निम्न थे वा विकिरण उपचार पद्धति के दौरान होने वाली दुष्परस्ताओं में मरीजों को मिल जाते हैं।

यह संभव है कि, महामारी-विज्ञान तरीकों को इस्तेमाल करके एक जनसंख्या मुख्य में विकिरित स्वास्थ्य प्रभावों (जैसे कि कर्क्रोग) में हुई वृद्धि को उसे मिली हुई नीमित मात्रा के विकिरण डोज़ से जोड़ा जाए, यह तभी संभव है जब विकिरित स्वास्थ्य प्रभावों में हुई वृद्धि सभी अनिश्चितताओं से परे हो। तथापि ऐसे कई भी जैव-सूक्ष्म फिल्हाल उपलब्ध नहीं हैं जो बता पाएँ कि कर्क्रोग विकिरण डोज़ में हुआ है या नहीं।

जहाँ विकिरण उद्वास्तन का स्तर निम्न या अनिश्चित स्तर पर था जैसे कि व्यादरत पर्यावरणीय या व्यापक विकिरण उद्वास्तन में होता है, विकिरित स्वास्थ्य प्रभावों में बदलाव की पृथि सांख्यिकी तथा दूसरी अनिश्चितताओं के बढ़ते नहीं है कि जा सकती। हालांकि ऐसे प्रभावों को नकारा नहीं जा सकता।

जहाँ तक भविष्य में होने वाले संभावित प्रभावों की बात है, उद्व और मध्यम डोज़ के लिए, इस प्रभावों की संभावना का आकाश नैसर्गिक है कि जो इसकी जानकारी प्रश्न ऐसे किया जाये इसकी जानकारी उपलब्ध है। यद्यपि अन्य और अन्य स्तर पर कुछ चीजों को मान्य करना आवश्यक है और गणितीय मॉडलों का इस्तेमाल करके किसी भी स्वास्थ्य प्रभावों की, संभावनात्मक आकाश करने पर जो नतीजे मिलते हैं वह बहुत अनिश्चित होते हैं। इसके विरामस्थल अन्य अर्थ और अन्य विकिरण डोज़ के लिए UNESCEAR ने इसने हेतुपूर्वक इस्तेमाल नहीं किया है। उदाहरण के लिए चार्जिंग वार फुडेशिया-वार दुष्परस्ताओं में स्वास्थ्य प्रभावों या माता के आंतर्गते के अनुमान तथा में अन्य-कार्य अनिश्चितताएँ पायी गई हैं। इसके वाक्य इसके गंभीर रूप स्वास्थ्य तथा तुलनाओं में या विकिरण संरचन प्रयोजनों के लिए ये अनुमान काम आ सकते हैं हर बार इन अनिश्चितताओं का ध्यान रखा जाए और उनकी एवं उनकी सुसंगत व्याख्या दिया जाए।
विकिरण का हम पर क्या प्रभाव होता है?

जलन, विकरण, आग्ने, और मृत्यु

विकरण डोज़ और स्वास्थ्य संबंध

100%

0%
3. विकिरण कहाँ से आता है?

हमें बहुत सारे बीमारियों से विकिरण निरंतर मिलता रहता है। पृथ्वी पर सभी प्रजातियों का प्रादूर्भाव एवं विकास ऐसे पर्यावरण में हुआ है जिसमें उन्हें प्राकृतिक पृथ्वीभूमिक विकिरण से डोज़ मिलती रही है। वर्तमान समय में मानव एवं अन्य जीवों को क्रृत्रिम विकिरण बीमारियों से भी डोज मिलती है जिनका विकास पिछली सदी में या उसके आस-पास हुआ है। हमें जो डोज़ मिलती है उसकी 80% से अधिक डोज प्राकृतिक बीमारियों के कारण हैं और सिक्के 20% मानवीय अर्थव्यवस्था क्रृत्रिम विकिरण बीमारियों के कारण हैं, जो मुख्यतः विकिरण के उन उपयोगों में मिलती है जो विकिरण के क्षेत्र में इस्तेमाल होते हैं। इस प्रकार में विकिरण उद्देश्य का क्रियान्वित उन बीमारियों के आधार पर – विशेषकर उन बीमारियों पर ध्यान केंद्रित रख कर किया गया है, जिसमें विविध प्रकार की बीमारियों का डोज़ मिलती है। विकिरण नियम (उद्देश्य के लिए विकिरण संरक्षण) के उद्देश्य से विकिरण उद्देश्य को विभिन्न समूहों के सम्प्रति में परिभाषित किया जाता है। इसी कारणवश, इस प्रकार में उन मरीजों के बारे में अवरोधक जानकारी दी गई है जिन्हें विकिरण के विभिन्न समुदाय के उपयोग के कारण डोज़ मिलती है और उन लोगों के बारे में भी जिन्हें अपने कार्यस्थल में विकिरण डोज़ मिलती है।

विकिरण उद्देश्य का क्रियान्वित का एक अन्य तरीका इस बात पर निर्भर करता है कि विकिरण हमें किस प्रकार से किरण तितर रहा है। विकिरणधम्म विकास तथा विकिरण जो पथर्यावरण में बहुत हैं, शरीर का वाहार की तरफ से यानु वहीं गति दे सकते हैं। अतः हो सकता है कि विकिरणधम्म पथर्यावरण हवा से ध्रुव द्वारा, अर्थ या पानी के निगलने से या व्यक्त तथा अच्छी द्वारा उनके अर्थव्यवस्था से शरीर के अंतर प्रवेश कर जाए और उसके पथफार बीमारि से स्वस्थ भीतर से यानु अन्तर्गत विकिरण डोज़ देते रहें। बैठिक स्थान पर देखा जाए तो बहरौं और अन्तर्गत विकिरण से मिलने वाली डोज़ की मात्रा भी लगभग वराहर होंगी है।
3.1. प्राकृतिक स्रोत

पृथ्वी के निर्माण के समय से ही इसके पर्यावरण को अंतरिक्ष तथा पृथ्वी की सतह एवं उसकी तह में मौजूद विकिरणधारी पदार्थों के कारण डोज़ मिलती आ रही है। इन प्राकृतिक स्रोतों में मिलने वाली डोज़ से प्रभावित होती है और सच सो यह है कि वन्धु की जनसंख्या को ज्यादा और दोज़ इसकी स्रोतों के कारण मिल रही है। वैज्ञानिक आंकन प्राप्त होने के प्राकृतिक प्रभाव ध्वनि 2.4 mSv होती है जो लोगों के रहने के स्थान के द्वार विस्तार से, 1 से लेकर 10 mSv में भी अधिक की डोज़ सीमा में होती है। इमारतों के अंदर, विशेषकर एक विकिरण गैस टैंक के रूप में आने के कारण, वह स्थान की गई समस्या में ही रेडियोन्यूक्लाइड की मौजूदगी के कारण विकिरण उद्धारण में कुछ ही तक प्रदर्शित हो सकता है। यद्यपि यह स्रोत प्राकृतिक है फिर भी उनसे मिलने वाली डोज़ में, हमारे विकल्पों के चयन, जैसे हम कैसे और कहाँ रहते हैं, क्या खाते और क्या पीते हैं, के अनुसार बदलता आ सकता है।

ब्रह्मांडीय स्रोत

ब्रह्मांडीय किरणें बहिंत विकिरण डोज़ का एक प्रमुख स्रोत हैं। इनमें से ज्यादातर किरणें सुरू अंतराक्षणीय अंतरिक्ष से और कुछ सौर विविधता के दौरान सूर्य के सुरूवातिक स्रोतों से उत्पन्न होती हैं। ये पृथ्वी को सीधे तौर पर विकिरणशील करते हैं तथा वायुमंडल के साथ अन्य प्रकस्तियों का क्रांतिक विकिरण विकिरणधारी पदार्थ पैदा करते हैं। अंतरिक्ष में विकिरण तक प्रकाश विकिरण के यही प्रमुख स्रोत हैं। जबकि पृथ्वी का वायुमंडल तथा चुम्बकीय क्षेत्र ब्रह्मांडीय विकिरण को काफी हद तक कम कर देते हैं, पृथ्वी के कुछ हिस्सों को अन्य दुर्लक्षणों के कारण दोनों में अधिक डोज़ मिलती है। चूंकि ब्रह्मांडीय विकिरण चुम्बकीय क्षेत्र के कारण उत्तर तथा दक्षिण ध्रुवों की तरफ मोड़ दिये जाते हैं, इससे इन्हें चिन्हक विकिरण की तुलना में अधिक विकिरण डोज़ मिलती है।

ब्रह्मांडीय विकिरण से वार्षिक डोज़*

- **अंतरिक्ष यान** ~350 दिमी, माउंट एवरेस्ट 8.8 दिमी, जंगल बेंट ~10 दिमी
- **पृथ्वी तल** 0 दिमी
- **जनसंख्या** 1.8 mSv
- **मौट ब्लाक** 4.8 दिमी, ल्हासा तिब्बत 3.7 दिमी, मेंहिलियो 2.3 दिमी, एम्पायर स्टेट 0.5 दिमी
- **अंतरिक्ष लैंड** 300 mSv, मॉट ब्लाक 4.8 दिमी, ल्हासा तिब्बत 3.7 दिमी, मेंहिलियो 2.3 दिमी, एम्पायर स्टेट 0.5 दिमी

* इन स्थानों पर वर्षभर के उद्दाहरण के मायने में आधारित।
विकिरण डोज़ की मात्रा उच्चाई के साथ बढ़ती है क्योंकि अधिक उच्चाई पर हमारे आस-पास की हवा कम होती जाती है इसलिये उसमें मिलने वाले विकिरण संरक्षण में कमी आ जाती है। इस प्रकार, समुद्र सतह पर रहने वाले लोगों को ब्रह्मांडीय बोतलों से मिलने वाली औसतन वार्षिक प्रभावी डोज़ 0.3 mSv के आस-पास होती है जो कि प्राकृतिक बोतलों से मिलने वाली कुल डोज़ का लगभग 10 से 15% होती है। जो लोग 2000 मीटर से अधिक उच्चाई पर रहते हैं उन्हें इससे कई पुनः ज्यादा डोज़ मिलती है। हवाई जहाज के यात्रियों को तो इससे भी ज्यादा डोज़ मिलती है क्योंकि ब्रह्मांडीय बोतलों से मिलने वाली डोज़ सिर्फ़ ऊचाई पर ही नहीं बल्कि हवाई यात्रा की अवधि पर भी निर्भर करती है। मसलन अपनी उड़ान की ऊचाई पर 10 घंटों की हवाई उड़ान के कारण मिलने वाली औसतन प्रभावी डोज़ 0.03 से 0.08 mSv होती है। इसलिए अंतरिक्ष के परिस्कर्ता में हवाई यात्रा के दौरान यात्री को मिलने वाली विकिरण डोज़ लगभग 0.05 mSv होती है। इस डोज़ लगभग उस प्रभावी डोज़ के बारेमें है जो एक सामान्य एक्स-किरण द्वारा छाती के परीक्षण के दौरान मरीज को मिल सकती है। हालांकि अनुमानित प्रभावी डोज़ जो वैज्ञानिक पैमाने पर यात्रियों को मिलती है काफी कम है लेकिन सामूहिक डोज़ काफी ज्यादा होती है क्योंकि दुनियाभर में यात्रियों और उड़ानों की संख्या बहुत ज्यादा है।

कार्यस्थल में मिलने वाली विकिरण डोज़

ब्रह्मांडीय बोतलों से मिलने वाली डोज़ विशेषकर उन लोगों के लिए महत्वपूर्ण हैं जो बार-बार हवाई यात्रा करते हैं उदाहरण के तौर पर हवाई जहाज के चालक और दूसरे विमानकर्मी जिन्हें मिलने वाली वार्षिक औसतन प्रभावी डोज़ 2 से 3 mSv होती है। बहुत सारे अंतरिक्ष अभियानों में भी विकिरण डोज़ का मापन किया गया है। विवरणों में पता चलता है कि कम अवधि के अंतरिक्ष अभियानों में मिलने वाली विकिरण डोज़ सूरज की गतिविधियों पर निर्भर करती हैं और जो 2 से 27 mSv की डोज़ सीमा के अंदर होती है। तथापि एक अंतरिक्षयात्री को, अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर, जो पृथ्वी के 350 कि.मी. दूर रहने पर का फलन है, चार महीनों के अभियान के दौरान मिलने वाली प्रभावी डोज़ लगभग 100 mSv होती है।

भूस्तरीय बोट

मिटी

हर किसी चीज में, जो पृथ्वी के सतह पर या अंदर होती है, आकृतिक रेडियोनुक्लाइड मोजुद होते हैं। ये अर्थात् दीर्घकालीन रेडियोनुक्लाइड जमीन में पाए जाते हैं। जैसे कि प्रोटीशन-40, गूर्णियम-238 तथा धोरियम-232 और इसके साथ यों रेडियोनुक्लाइड भी होते हैं जिनमें इनका अधिकांश होता है जैसे कि रेडियम-226 और रेडियन-222, ये पृथ्वी के अपना वर्तमान रूप पाने के पहले से ही विकिरण का उत्सर्जन करते आ रहे हैं। UNSCEAR ने यह हिसाब लगाया है कि दुनिया के हर व्यक्ति को मिलने वाली औसतन वार्षिक प्रभावी डोज़ 0.48 mSv के आस-पास होती है जो उसे भूस्तरीय विकिरण बोटों से बहिर्गत विकिरण डोज़ के जरिये मिलती है।

विकिरण कहाँ से आता है?
एक स्थान पर मलने वाली वहांगत विकिरण डोज़ दूसरे स्थान के वहांगत विकिरण डोज़ से काफी अलग होती है। उदाहरण के तौर पर फ्रांस, जमीनी, इटली, जापान तथा संयुक्त राज्य अमेरिका में किये गये अध्ययन सुनित करते हैं कि उनकी लगभग 95% आबादी उन इलाकों में रहती है जहाँ पर के बाहर मलने वाली औसत वार्षिक डोज़ 0.3 से 0.6 mSv तक होती है। हालांकि इन देशों में कई जगहों पर लोगों को मलने वाली यह वार्षिक डोज़ 1 mSv से अधिक भी हो सकती है। दुनिया में दूसरी कई जगहें ऐसी हैं जहाँ भूस्तरीय विकिरण स्रोतों के कारण मलने वाली विकिरण डोज़ इसमे भी ज्यादा होती है। उदाहरण के लिए भारत में केरल के दक्षिण-पश्चिम क्षेत्र पर स्थित 55 कि.मी. की लंबाई की आबादी जस्ते क्षेत्र में, जमीन में प्रचुर थर्यम रेत के होने के कारण, वहाँ के निवासियों को सालाना औसत 3.8 mSv की डोज़ मिलती है। दूसरे अन्य इलाके में भूस्तरीय विकिरण डोज़ के कारण दूसरे विकिरण डोज़ मिलती है, ब्राजील, चीन, इरान, इस्लामिया गणराज्य, मेडागास्कर एवं नाइजीरिया में पाए गये हैं।

रेडॉि गैस

रेडॉि-222 एक विकिरणधमी नामिक है जो गैस अवस्था में होता है और स्वाभाविक रूप से मिट्टी से बाहर आता है। यह गैस जमीन की मिट्टी और चट्टानों में मौजूद थर्यम-238 की क्षत्र बृहदता से उत्पन्न होती है। थर्यम द्वारा शरीर के अंदर पहुँचते पर रेडॉि के कुछ अपार शरीर उत्पाद बाहर निकल पोलोनियम-218 एवं 214 फ्लोट्रोड के जमाने होते हैं और ध्वसन मार्ग की कारकियतों को अन्तम करते हैं विकरिनित करते हैं। इसलिए रेडॉि ध्रुपािन करने एवं न रखने वाले दोनों भाग के ज्वटियों में फ्लोट्रोड के कर्मों का मुख्य कारण है। फ्लोट्रोड और रेडॉि उद्वासन के बीच प्रचुर औसत प्रतिलिपियाँ के फ्लोट्रोड ध्रुपािन करने वाले व्यक्ति, इसका वहाँ आसानी से शिकार बन सकते हैं।

बायुमंडल में रेडॉि हर कहीं मौजूद होता है और बह इमारतों के भीतर स्रोत तथा तनों से रिस कर पहुँच जाता है, जहाँ उसकी सांद्रता और इसके कारण उसकी रेडक्यांड्यमीति की मात्रा, यानी हवा के एक मूल्यित आयतन में होने वाले क्षयों की प्रति सेकंड संख्या, भी बढ़ सकती है। विशेषता में जब पर गुम्ल होते हैं तब हवा छतों, खिड़कियों तथा और अन्य जगहों से बाहर निकल जाती है जिससे तब तक एवं भूमि के कम दबाव वाला क्षेत्र व्यावहारिक हो जाता है। इसके परिणामस्वरूप रेडॉि का, मिट्टी की निचली सतह की दरारों से तथा दूसरी जगहों से (जैसे कि उन द्वंदों के आस-पास से जिनमें में विष्क के साेयद जी तक मिलते हैं) जो पर के निचले हिस्से में होती है, सक्रिय प्रश्रोषण हो जाता है।

दुनियाभर में रेडॉि की अंदर के भीतर पानी जाने वाली औसत सांद्रता लगभग 50 Bq/m3 होती है। लेकिन यह औसत सांद्रता, स्थानों के हिस्सों में अत्यधिक परिवर्तनशील होती है। सामान्य तौर पर रेडॉि की राष्ट्रीय औसत सांद्रता में काफी अंतर पाया जाता है। जैसे सागर, मिट्टी एवं क्षुद्र भूमि में इसकी सांद्रता 10 Bq/m3 से कम होती है और चेक गणराज्य, फ्लोट्रोड तथा लक्सेम्बुर्ग में यह 100 Bq/m3 से भी अधिक है। कुछ देशों जैसे कनाडा, स्वीडन एवं विएन्जरल्ड के घरों में तो यह सांद्रता 1000 से 10,000 Bq/m3 के बीच होती है। हालांकि रेडॉि की इतनी उच्च स्तरीय सांद्रता वाले घरों का स्वास्थ्य बहुत भी विरोध्य है। स्वास्थ्य सम्बन्धी संस्थान, मिट्टी की रेडॉि के लिये पारंपरिक घरों की निर्माण सामग्री तथा घरों का संवाद, ये कुछ घटक हैं जिनके कारण रेडॉि की सांद्रता में यह परिवर्तन होता है।
इसमें विशेष रूप से, संशोधन जो जलवायु पर निर्भर करता है, सबसे मुख्य घटक है। अगर इमारतों की संवादन व्यवस्था सही है, जैसे कि ऊष्मा उन्नयन जलवायु वाले प्रदेशों में होती है, तो उनमें रेडॉन के काफी मात्रा में इकट्ठा होने की संभावना बहुत कम होती है। लेकिन समस्याओं और क्रिया क्षेत्र जलवायु वाले प्रदेशों में, संवादन में कुछ कमी की होती है जिसके कारण रेडॉन की सांद्रता काफी हद तक बढ़ जाती है। इस प्रकार ऊर्जा-कुशल इमारतों के अभिकल्पन में, समिति संवान का प्रभाव महत्वपूर्ण होता है। अनेक देशों में, विस्तृत पैमाने पर (विकिरण) मापन के कार्यक्रम चलाए गए हैं, जो इमारतों के अंदर रेडॉन की सांद्रता को कम करने के उपायों के कार्यान्वयन का आधार है।

पानी में रेडॉन का स्तर आम तौर पर काफी कम होता है। लेकिन कुछ जलबोधों में, उदाहरण के लिए इंडिया, भूतरंग एवं ज़मींदारी के गहरे िुँए और अर्चनाता, अमेरिका के गम्म पानी के वर्गों में रेडॉन की सांद्रता काफी ज्यादा होती है। पानी में मिली हुई रेडॉन, हवा में रेडॉन की सांद्रता को बढ़ा सकती है, जब तौर पर खान करने वाले स्वास्थ्य विषय खाने में। तथापि UNSCEAR ने यह निष्कर्ष निकाला है कि, पानी पल द्वारा भी शरीर के अंदर पहुंची हुई रेडॉन से निकलने वाली विकिरण की मात्रा भ्रमन द्वारा शरीर के अंदर पहुंची हुई रेडॉन से मिलने वाली विकिरण की मात्रा के तुलना में कम होती है। UNSCEAR ने यह आकलन किया है कि रेडॉन के कारण मिलने वाली औसत वार्षिक प्रभावी डोज़ 1.3 mSv है जो सभी प्राकृतिक श्रों में जनता को मिलते वाली विकिरण डोज़ के लगभग आधे हिस्से के बराबर होती है।
खाद्य और पीने पदार्थों में विकिरण के स्रोत

खाने और पीने की चीजों में, आदिकालीन तथा कुछ अन्य विकिरणधारी नाभिक मुख्य रूप से प्राकृतिक स्रोतों की बजह से मौजूद हो सकते हैं। ये विकिरणधारी तत्व मिट्रित तथा पानी में मौजूद पदार्थों एवं खाद्यों से, व्यापकतासे और उसके बाद प्राणियों में स्थानांतरित हो सकते हैं। इस प्रकार विकिरण डोज़ की मात्रा में परिवर्तन हो सकता है जबकि यह विकिरणधारी नाभिकों की उस सांद्रता पर है जो खाद्य और पीने पदार्थों में होती है, तथा उस जगह के लोगों की खान-पान की आदतों पर निर्भर करता है।

उदाहरण के लिए, मछली तथा कवचकार समुद्र में लेड-210 और पोलोनियम-210 की सांद्रता अपेक्षित अधिक होती है। इसलिए जो लोग अन्य स्रोतों में मौजूद खाद्य पदार्थों का इस्तेमाल करते हैं उनके सर्वाधिक जनता की तुलना में लेड-210 और पोलोनियम-210 की सांद्रता अपेक्षित अधिक होती है, जो उस लोगों में रेनिडर का मौस खाते हैं। आंकितक प्रदेश के रेनिडर में पोलोनियम-210 की सांद्रता अपेक्षित अधिक होती है, जो उस लोक क्षेत्र में संचित होती है जिसे वे रेनिडर करते हैं। UNSEAR ने यह अनुमान लगाया है कि खाने और पीने पदार्थों में मौजूद प्राकृतिक स्रोतों के कारण मिलने वाली ऊजाया में संवच्यता दोज़ 0.3 mSv होती है जो प्रमुख रूप से पोलोनियम-40 एवं प्यूरेवियम-238 तथा बरोयम-232 श्रेणी के विकिरणधारी नाभिकों के कारण मिलती है।

खान-पान की चीजों में प्राकृतिक खोटों में आने वाले विकिरणधारी नाभिकों के अनुसार यो विकिरणधारी नाभिक भी मौजूद हो सकते हैं जो कुृतिम विकिरण खोटों से आते हैं। हालांकि इन कुृतिम विकिरणधारी नाभिकों के पर्यवेक्ष में प्राधिकृत निम्नरेखन द्वारा मिलने वाली विकिरण डोज़ की मात्रा आम तौर पर बहुत ही कम होती है।

3.2. कुृतिम स्रोत

पिछले कुछ दशकों में विकिरण के जनसंख्या अनुप्रयोगों में महत्वपूर्ण वृद्धि हुई है। वैज्ञानिकों ने विद्युत उद्देश्यों के लिए, जैसे कि सैन्य उपयोगों में लेकर विकिरणधारी उपयोगों (उदाहरण के लिए कंकरों का उपयोग) और विद्युत उत्पादन में लेकर खरूतु उपयोगों (उदाहरण के लिए धूम समुद्रक) तथा परमाणु उद्देश्यों के इस्तेमाल का ज्ञान हासिल कर लिया है। अत: ये और ऐसे अन्य दूसरे कुृतिम खोटों, प्राकृतिक खोटों के साथ मिलकर दोनों व्यक्तिगत तौर पर तथा वैथिक जनसंख्या को मिलने वाली विकिरण डोज़ में बढ़ती रहते हैं।
विकिरण ढोंगों से मिलने वाले वैज्ञानिक डोंग में काफी विविधता पाई जाती है। अधिकांश लोगों को, इन ढोंगों से मिलने वाली डोंग, अपेक्षाकृत कम होती है लेकिन कुछ लोगों को तो इनसे मिलने वाली डोंग स्वीकार करने के लिए सीमित होती है। विकिरण के कुल ढोंग, विकिरण संरक्षण उपायों की वजह से, आम तौर पर सूचित किया जाता है।

चिकित्सीय अनुप्रयोग

कुछ लोगों के निदान तथा उनके इलाज में विकिरण का उपयोग इतनी अहम भूमिका निभाता है कि अब यह विश्व भर में कुल विकिरण ढोंगों से मिलने वाली डोंग का प्रमुख ढोंग बन गया है। आस्तिन सभी कुल विकिरण ढोंगों से मिलने वाली डोंग में इस विकिरण का अंश 98 प्रतिशत होता है और प्राकृतिक ढोंगों के बाद, जनसंख्या समूह के वैज्ञानिक स्तर पर डोंग देने वाले यह दूसरा सबसे बड़ा कारक है, जिसकी भारी वृद्धि कुल डोंग के लगभग 20 प्रतिशत के बराबर है। ज्यादातर चिकित्सीय विकिरण डोंग औद्योगिक दृष्टि से विकसित ढोंगों में रहने वाले लोगों को मिलती है, जहां चिकित्सीय उपायों के लिए अधिक संभावना उपलब्ध होने के कारण विकिरण आधारित उपकरणों का इस्तेमाल भी व्यापक हो उठता है। इसके परिणाम स्वरूप कुछ ढोंगों में तो विकिरण के चिकित्सीय उपयोगों के कारण मिलने वाली वार्षिक औसत भारयामक डोंग, प्राकृतिक ढोंगों से मिलने वाली डोंग के समक्ष घूम गयी है।

चिकित्सीय विकिरण डोंग और दूसरी ढोंग के विकिरण ढोंग में स्पष्ट तथा गहरा अंतर होता है। चिकित्सीय विकिरण डोंग सामान्य तौर पर शरीर के किसी एक ही हिस्से से संबंधित होती है जब कि दूसरे ढोंगों के विकिरण ढोंग पूरे शरीर से संबंधित होते हैं। इसके अलावा चिकित्सीय

![संयुक्त राज्य में प्रति व्यक्ति औसत प्रभावी डोंग (2007)](image_url)
डोज़ पाने वाले मरीजों की आयु आम तौर पर सामान्य जनसंख्या समूह की आयु से ज्यादा ही होती है। इतना ही नहीं, चिकित्सात्मक चिकित्सा डोज़ से मरीज को सीधा फायदा होता है, अतः इससे निम्न के चिकित्सा डोज़ के साथ इसकी तुलना पूरे प्राकृतिक से करना चाहिए।

बढ़ता हुआ शहरीतूना और उसके साथ-साथ रहन-सुख में धीरे-धीरे हो रहा सुधार का अपरिवर्तन मतलब यह है कि अन्य अधिक संख्या में लोग आरोपी संवैधानिक सुविधाओं को पा सकते हैं। इसके परिणामस्वरूप, तूनिया में लोगों को, चिकित्सात्मक चिकित्सा के कारण मिलने वाली डोज़ में लगातार वृद्धि हो रही है। UNSCEAR नियमित रूप से, नैदानिक तथा चिकित्सात्मक प्रक्रियाओं के विषय में जानकारी इकट्ठा करता रहा है। इसके द्वारा 1997 से 2007 की अवधि के दौरान किये गये सर्वेक्षण के अनुसार, बिन्दु भर में लगभग 3.6 अरब चिकित्सात्मक चिकित्सा प्रक्रियाओं का प्रतिवर्ष इस्तेमाल किया गया, जबकि इसकी तुलना में इसके पहले के सर्वेक्षण अवधि 1991-1996 में यह संख्या 2.5 अरब प्रतिवर्ष थी, यह वृद्धि करीब-करीब 50 प्रतिशत है।

चिकित्सा शाखा के प्रमुख सामान्य श्रेणियों जिसमें चिकित्सा का उपयोग होता है, वो चिकित्सा रोग चिकित्सा (प्रतिबंधात्मक पद्धतियाँ भी शामिल), नैदानिक औपचारिक तथा रेडियोथरेपी हैं। चिकित्सा के अन्य उपयोग जिनका UNSCEAR के नियमित मूल्यांकनों में समावेश नहीं होता है, उनमें स्वास्थ्य स्तर प्रताप कार्यक्रम एवं चिकित्सात्मक, जैव-चिकित्सात्मक, नैदानिक अन्य चिकित्सात्मक अनुसंधान कार्यक्रमों में लोगों का स्वैच्छिक सहभागी होना शामिल है।

चिकित्सा आधारित चिकित्सा निदान-शाखा उन तस्किरों का विश्लेषण करता है जो एक्स-किरणों का इस्तेमाल कर के बैठी जाती है, जैसे कि बुनियादी रेडियोग्राफी (उदाहरण के लिए सीटों तथा दांत के एक्स-किरण तस्किरों) प्रति-सिशुत्वता आधारित निर्माण (उदाहरण के लिए वर्तमान खुलाकर तथा उदसरक्षक) एवं कंप्यूटर टोमोग्राफी। निर्माण की बुनियादी जिनमें स्नातकारी चिकित्सा का इस्तेमाल होता है जैसे कि पराध्यालय या चुम्बकीय अतुलना आधारित रेडियोग्राफी, UNSCEAR के कार्यक्षेत्र में शामिल नहीं है। हस्तथापीय चिकित्सा रोग चिकित्सा-शाखा में तस्किरों द्वारा मिले हुए वार्तविराम के इस्तेमाल पर आधारित न्यूनतम अतिरिक्त द्वारा रोगों का निदान तथा उपचार किया जाता है (जैसे रक्त बाह्यिकों में विश्लेषण नोलिका को दाखिल कर देना)।

सी.टी. स्कैन के बढ़ते हुए इस्तेमाल और उसके प्रयोग परिधान में मिलने वाली उल्लेखनीय डोज के परिणामस्वरूप चिकित्सा आधारित रोग निदान तथा उपचार से मिलने वाली बैठिक औषधित्व प्रभावी डोज 1988 में 0.35 mSv के स्तर से बढ़कर 2007 में 0.62 mSv वाली लघुगाम दुपुरी हो गयी। UNSCEAR के हाल ही में किये गए एक सर्वेक्षण के अनुसार सी.टी. स्कैन के कारण मिलने वाली डोज चिकित्सा आधारित चिकित्सा के कारण मिलने वाली कुल सामूहिक डोज के 43% के बराबर होती है। ये अधिक क्षेत्र-क्षेत्र बदलते रहते हैं। चिकित्सा आधारित चिकित्सा की कुल विधियों का लघुगाम दो मिलाकर हिस्सा सुनिया की उस 25% जनसंख्या पर इस्तेमाल होता है जो औद्योगिक हिस्से से निर्दिष्ट देशों में रहती है। दुनिया की बाकी 75% जनसंख्या में इन विधियों के इस्तेमाल में, यह तो कि दांतों की साधारण एक्स-किरण चिकित्साओं में भी, कोई व्यापक बदलाव नहीं आया है।
विकिरण कहाँ से आता है?

नाभिक औषधियों में बिना सील किये विकिरणधम्म पदार्थों को, जो पुरतयशील और कटच रहित होते हैं, शरीर के अंदर पहुँचाया जाता है, ज्यादातर इसलिए कि उनके कारण वो चिंत्र प्राप्त हो जाते हैं जिसमें उस अवयव की संरचना या क्रियाकलापों के बारे में जानकारी हामिल हो सके एवं कमी कमार इसलिए भी, कि कुछ खास रोगों का जैसे थायरॉइड ग्रंथि की उच्च क्रियाशीलता एवं थायरॉइड ग्रंथि के कर्कों का इलाज हो सके। आम तौर पर, विकिरणधम्म पदार्थों की संशोधन

नाभिकीय औषधि से वाक्किरण उद्धार (1988–2008)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>सामूहिक औषधि होने (1000 man Sv)</td>
<td>74</td>
<td>160</td>
<td>150</td>
<td>202</td>
</tr>
</tbody>
</table>

उन्सेअर संशोधन

विकिरण कहाँ से आता है?
करके उससे विकिरणधार्मी नामीकी भेजज को तैयार किया जाता है जिसे सामान्यतः रक्त नलिकाओं या मुख के द्वारा शरीर के भीतर दाखिल किया जाता है। इसके बाद विकिरणधार्मी नामीकी भेजज का शरीर में प्रसार हो जाता है जो उसके भौतिक और रामायणिक गुण विकसित नहीं हो सकता करता है, जिसके कारण विकिरण संभव हो पाता है। इस प्रकार विकिरणधार्मी नामिके से शरीर के भीतर रहने वाले विकिरण उत्सर्जन के विश्लेषण से जिस तैयार किया जाता है जिससे रोग निदान में सहायता मिलती है या उस विकिरण उत्सर्जन से रोग का उपचार किया जाता है।

दुनिया भर में विकिरण आधारित निदान विधाओं की संख्या जो 1988 में 240 लाख थी, 2007 में 330 लाख हो गयी इसके परिणामस्वरूप वार्षिक सामूहिक प्रभावी डोज़ में 74,000 से 202,000 man Sv की उन्नती की। आधुनिक नामीकी चिकित्सा-शाखा में विकिरण आधारित रोग निदान विधाओं के उपयोगों की संख्या भी बढ़ रही है। जिन्होंने इस्तेमाल दुनिया भर में हर साल 9 लाख मरीजों के फायदे के लिए हो रहा है। अन्य विधाओं की तरह नामीकी चिकित्सा-शाखा का इस्तेमाल भी एक समान नहीं है, इससे संबंधित 90% परिश्रम तो वैद्यकीय दृष्टि से विकसित देशों में ही पाए गए हैं।

विकिरण आधारित रोग निदान-शाखा (जिसे रेडियोथेरेपी भी कहते हैं) में विकिरण का इस्तेमाल विविध रोगों के, आम तौर पर कर्करोग प्रभावित गाँठों और सामान्य गाँठों के निदान के लिए भी होता है। बहराइंत रेडियोथेरेपी में मरीज का उपचार उसके शरीर के बाहर रखे हुए विकिरण स्रोत का इस्तेमाल करके किया जाता है जिसे सुदृढ़ विकिरण आधारित रोग निदान कहते हैं। यह उपचार एक वंतु द्वारा किया जाता है जिसमें या तो उच्च रेडियोसक्र्य चौत (सामान्यतः कोबाल्ट-60) होता है या उच्च विद्युत विभि द्ध्यंत्र होता है जिसका उपयोग पेदर किया जाता है (जैसे रेडियप ल्यरक)। विकिरण उपचार में धालीय या सीलबंद विकिरण स्रोत को, मरीज के शरीर में कुछ समय के लिए या सदा के लिए रख कर भी इलाज किया जा सकता है जिसे ब्रैकीथेरेपी कहते हैं।

दुनिया भर में रेडियो-थेरेपी का इस्तेमाल करके 1997–2007 की अवधि में प्रयोक्त वर्ण लगभग 51 लाख मरीजों का उपचार किया गया। इस संख्या हर वर्ष 1988 की अनुमानित 43 लाख मरीजों की संख्या की तुलना में काफी अधिक पायी गई। लगभग 47 लाख मरीजों का टेलीथेरेपी और 4 लाख मरीजों का ब्रैकीथेरेपी द्वारा इलाज किया गया। दुनिया भर में रेडियोथेरेपी द्वारा किये गये उपचारों में से 70 प्रतिशत तथा ब्रैकी-थेरेपी द्वारा किये गए कुल उपचारों में से 40 प्रतिशत उपचार उस 25 प्रतिशत जनसंख्या में किये गये हैं, जो वैद्यकीय दृष्टि से विकसित देशों में रहती है।

कार्यस्थलों में विकिरण डोज़

पिछले दशकों में विकिरण पर आधारित चिकित्सा विधाओं की संख्या में हुई उन्नती इसके कारण उससे जुड़े स्वास्थ्य कामयाबी की संख्या भी 70 लाख में अधिक हो गई है जिनके ऑस्ट्रियाल वार्षिक प्रभावी डोज़ लगभग 0.5 mSv प्रति कर्मचारी मिलती है। प्रैक्टिशनरीक विकिरण रोग चिकित्सा एवं नामीकी औधित के चिकित्सीय कर्मचारियों को तो औसत डोज़ से भी अधिक डोज़ मिलना संभव है।
विकिरण के चिकित्सीय उपयोगों में दुर्घटनाएँ

विकिरण के कुछ चिकित्सीय उपयोग (जैसे रेडियोथेरापी, विकिरण आधारित प्रतिबंधात्मक रोग चिकित्सा एवं नाभिकीय शीघ्रप्रेरण) ऐसे हैं जिनमें मरीजों को उज्ज्वल विकिरण डोज़ देनी होती है। यह डोज़ अगर टीक से नहीं दी गई तो गमरी अधिक हो सकती है यहाँ तक कि मौत भी हो सकती है। जिनको इस खतरे का सामना करना पड़ सकता है, उनमें सिर्फ़ गमरीज ही नहीं बल्कि मरीज के आस-पास रहने वाले जैचकक्ष डाक्टर और दूसरे कर्मचारी भी शामिल होते हैं। माननीय गतिविधियों, इन दुर्घटनाओं का समस्या आम कारण होती हैं। उदाहरणों में, उपचार नियोजन में गतिविधियों के कारण गुण गति डोज़ का दिया जाना, उपकरणों की टीक में इलेमेन न कर पाना एवं गलत अंग या कभी-कभी तो गलत मरीज को डोज़ देना भी शामिल है।

हालांकि गमरीज क्रिया के रेडियोथेरापी दुर्घटनाएँ कभी-कभी कमर ही घटती हैं फिर भी सभी से अधिक ऐसी दुर्घटनाएँ दर्ज की जा चुकी हैं। 1967 से UNSCEAR ने ऐसी 29 दर्ज की हुई दुर्घटनाओं की समीक्षा की है जिनके कारण 45 मौत हुई हैं एवं 613 लोग घायल हुए हैं। हालांकि यह भी संभव है कि कुछ मौत और घायल होने की वह दुर्घटनाएँ दर्ज नहीं की गई हों।

सिर्फ़ उल्लिखित मात्रा से अधिक डोज़ देने से ही नहीं बल्कि मरीज को एक जान लेवा बीमारी के डायग्नोस्टिक दौरान जस्ते कम डोज़ देने से भी गमरीज परिस्थिति हो सकते हैं। ऐसी दुर्घटनाओं के खतरे को कम से कम करने के लिए तथा प्रचलित पद्धति के उद्देश्य से सुसंगत मानकों को बनाए रखने में गुणवत्ता निर्धारण कार्यक्रम मदद करते हैं।

नाभिकीय अश्व

1945 में, दूसरे विश्वयुद्ध के अंतिम चरण में दो परमाणु बम जापान के शहरों, 6 अगस्त को हिरोशिमा एवं 9 अगस्त को नागाञ्जी, पर मिलाए गये। इन दो बमों के धमाके ने करीब 130,000 लोगों की जाने वाली लूटी। इतिहास में यह दो घटनाएँ ऐसी हैं, जिनमें नाभिकीय अश्व का लगाई के मैदान में इलेमेन दिया गया था। लेकिन 1945 के बाद, अधिकांशतः उत्तरी गोलार्ध में, बहुत सारे नाभिकीय अश्वों के परिक्षण वातावरण में किये गये। परमाणु अश्वों के परीक्षणों की दृष्टि से 1952 से 1962 के बीच का कालबंद सर्वाधिक सक्रिय परिक्षण काल रहा। कुल मिलाकर 500 से अधिक परीक्षण किये गए, अंतिम परीक्षण 1980 में हुआ, इसका गुणित उच्च परीक्षण 430 मेगाट्यून टाटल (TNT) के समतुल्य था। पूरी दुनिया के लोगों को इन परीक्षणों के परीक्षणस्वरूप निकलने वाले विकिरण से डोज़ मिली। विकिरण डोज़ के मूल्यों को पर्यावरण पर होने वाले परिस्थितियों के विषय में व्यापक जिंका की जांच से 1955 में UNSCEAR की स्थापित की गयी।

इन परमाणु बमों के वातावरण में परीक्षणों के परिस्थिति स्वरूप निकलने वाली विकिरणाधिक रेखा में भिड़ने वाली वायुस्थिक औसतन प्रभावी डोज़ 1963 में अपनी चरमसीमा पर 0.11 mSv थी और तब तक नव और अपने लागभग 0.005 mSv तक कम होती गयी। इस विकिरण डोज़ का लोह, मुख्य रूप में दीर्घजीवी विकिरणाधिक कार्बन-14 नाभिक होने की बजाय से, भविष्य में यह बहुत ही हीमे धीमे कम होगी।
भूपृष्ठों पर किये गए परमाणु अस्त्रों के परीक्षणों के परिणामस्वरूप 50 प्रतिशत से भी अधिक नामिति अवपात, परीक्षण स्थल के 100 कि.मी. के अंदर परिषिमित रूप में जमा हो गया था। इस प्रकार परीक्षण स्थलों के आस-पास रहने वाले लोगों को ज्यादातर ढोंढ़ इस स्थानीय विकिरण उत्सर्जन के कारण मिली थी। लेकिन चूँकि ये परीक्षण अपेक्षाकृत सुदूरवर्ती क्षेत्रों में किये गये थे, अतः स्थानीय जनसंख्या समूह जिन्हें इसके कारण ढोंढ़ मिली थी, आकार में छोटे थे, जिससे उनका वैधिक सामूहिक ढोंढ़ में उल्लेखनीय योगदान नहीं रहा। लेकिन बावजूद इन सबके जो लोग उन इलाकों में रहते थे जहाँ परीक्षण स्थलों की ओर से ढोंढ़ का प्रवाह आता था, उन्हें औसत ढोंढ़ में कहीं अधिक ढोंढ़ मिली थी।

1958 में UNSCEAR की पहली रिपोर्ट ने उस वैज्ञानिक नींव को कैसियर कर दिया जिसके आधार पर नामिति-अस्त्रों के वातावरण, अंतरिक्ष एवं पानी में परीक्षणों पर प्रतिबंध के लिए संधि के रूप में विचार-विचार्त मूल्य शुरू हुआ। इस आधिक परीक्षण प्रतिबंध संधि पर 1963 में हस्ताक्षर होने के पश्चात 1990 के दशक तक लगभग 50 परीक्षण जमीन के अंदर किये गये, कुछ एक परीक्षण उसके बाद भी किये गये। इनमें से ज्यादातर परीक्षणों की नामिति विस्फोट क्षमता बातचीत में किये गये परीक्षणों की तुलना में काफी कम थी और इनका विकिरणग्रीव नदिया आम तौर पर जमीन के अंदर ही दबा रहा, सिवाय उन परिस्थितियों के जिनमें बादु के कुहार या रिसाव द्वारा बातचीत में उत्सर्जन हो गया हो। हालांकि इन परीक्षणों के परिणामस्वरूप बहुत बड़ी मात्रा में विकिरणग्रीव अपशिष्ट उत्पन्न हुआ लेकिन उसके जमीन के भीतर काफी गहराई में दबे होने तथा बड़ने के साथ उसका अन्यरों से संबंध होने के कारण, इस अपशिष्ट से लोगों को ढोंढ़ मिलने की अपेक्षा नहीं की जा सकती है।

चूँकि इन नामिति परीक्षण स्थलों में से कुछ स्थलों पर भूमि अधिग्रहण होने लगा है, अतः उन स्थलों के पुनःउपयोग (उद्देश्य के लिए पशुपालन या कृषि व्यवसाय हेतु) के विषय में चिंता हो रही है। कुछ स्थलों जैसे समीपतनिक परीक्षण स्थल, जो आज के कजाखस्तान में है, उसके
विकिरण कहाँ से आता है?

कुछ स्थानीय क्षेत्रों में विकिरणधर्मी अपशिष्ट के कारण मिलने वाली डोज़ विचारणीय हो सकती है। जबकि अन्य परीक्षण स्थलों जैसे प्रेंश पार्टीनियशिया में स्थित मुरूरजा एवं फॅक्टोवा प्रावकों में इस डोज़ का योगदान सामान्य पृष्ठभूमीक विकिरण डोज़ के एक अंश मात्र में अधिक नहीं होगा जो अंततः उस भूमि पर रहने वाले जनसंख्या समूह को मिलेगा। अन्य दूसरे परीक्षण स्थलों के लिए जैसे अमेरिका ने माशली नदी तथा ब्रिटेन ने मारांचपा में अपने अपने कुछ परीक्षण किये थे, वहाँ के जनसंख्या समूहों को मिलने वाली डोज़ उनके वाण-पाण्त तथा जीवन-शैली पर निर्भर हो सकती है।

नाभिकीय रिएक्टर

जब यूरेनियम या यूटेनियम के विषय समस्थानों पर न्यूट्रॉन टकराते हैं तब परमाणु का नाभिक किस्सा प्रक्षेपण से दो छोटे नाभिकों में विभाजित हो जाता है तथा उजाया एवं दो से संयोजित न्यूट्रॉन का उत्भरन होता है। उसे नाभिकीय विखंडन कहते हैं। ये उत्सर्जित न्यूट्रॉन, यूरेनियम या यूटेनियम के कुछ नाभिकों से टकरा कर उन्हें भी विभाजित कर सकते हैं एवं उनसे और अंततः उस न्यूट्रॉन उत्सर्जित कर सकते हैं, जो आगे और नाभिकों को विखंडित कर सकते हैं। इसे शुरुआत अभिव्यक्ति कहते हैं। आम पौरुष पर, वे समस्थानिक नाभिकीय रिएक्टर में ईंधन के रूप में इस्तेमाल किये जाते हैं, जहाँ इस शृंखला अभिव्यक्ति को नियंत्रित किया जाता है।

नाभिकीय विखंडन उत्पन्न की उपयोग नाभिकीय विखुत संयंत्रों में बिजली उत्पादन हेतु किया जा सकता है। यद्यपि कुछ अनुसंधान रिएक्टर भी हैं जिनका उपयोग नाभिकीय ईंधन तथा विखंडन प्रकार के पदार्थों के परीक्षण के लिये, नाभिकीय विखण तथा जीव-शास्त्र में संबंधित अनुसंधानों में और उन विकिरणधर्मी नाभिकों के उत्पादन के लिए होता है जिनका आयतिकेर रूप में तथा उद्धों में इस्तेमाल किया जाता है। हालांकि इन दो किस्मों के रिएक्टरों में फूर्क होता है लेकिन इन दोनों के किस्मों के लिए अंदोषीय क्रियाओं की आवश्यकता होती है जैसे कि यूरेनियम धन और विकिरणधर्मी अपशिष्ट का निष्पादन जिनके कारण व्यवसायिक लोगों एवं सामान्य जनसंख्या समूह को विकिरण डोज़ मिल सकती है।

नाभिकीय विखुत संयंत्र

दुनिया का पहला औदोषीय स्टर पर काम करने वाला व्यवसायिक नाभिकीय विखुत संयंत्र कोल्डर हॉल था, जिसका निर्माण 1956 में इंग्लैंड में हुआ था और तब से नाभिकीय विखुत संयंत्रों द्वारा विखुत उत्पन्न के उत्पादन में उल्लेखनीय बढ़ितरी हुई है। कुछ ज्यादातर नाभिकीय विखुत संयंत्रों के बंद होने के बावजूद नाभिकीय रिएक्टरों द्वारा विखुत उत्पादन में वृद्धि हो रही है। वर्ष 2010 के अंत तक 29 देशों में लगभग 440 नाभिकीय विखुत संयंत्र कार्यबाध्य थे और उनके द्वारा बिजली का उत्पादन, विख्यात कुल विजली उत्पादन का लगभग दस प्रतिशत था और 240 अनुसंधान रिएक्टर दुनिया के 56 देशों में स्थापित हो चुके थे।

हालांकि नाभिकीय उत्पादन के स्थान द्वारा विखुत का उत्पादन अक्सर ही विचारदायक रहा है, परन्तु नाभिकीय विखुत संयंत्र अपने सामान्य प्रचालन में वैधिक विकिरण डोज़ में बहुत ही कम मात्रा में बढ़ितरी करता है। जैसे विकिरण डोज़ की मात्रा में, एक संयंत्र से दूसरे किस्म के संयंत्र में, अलग-अलग जगहों पर, तथा समय के साथ-साथ काफी परिवर्तन हो सकता है।
नामिकीय रिएक्टरों से होने वाले सामान्य विकिरण उत्सर्जन द्वारा मिलने वाली कुल डोज़ की मात्रा में, विज्ञानी के उपयोग में बढ़ती होने के बावजूद कभी आई है। यदि कभी कुछ हद तक प्रौद्योगिकी में सुधार के कारण और कुछ हद तक विकिरण संरक्षण के उपयोग में और सफली आने के कारण हुई हो। आम तौर पर नामिकीय इकाइयों से विकिरण उत्सर्जन के कारण विकिरण डोज़ में होने वाली बढ़ती बहुत ही कम होती है। नामिकीय विद्युत रणियों के आस-पास रहने वाले लोगों को मिलने वाली वापसी सामूहिक मात्रा में दो अंतर के आस-पास रहने वाले लोगों को मिलने वाली आपसी वापसी तथा प्रभावी विकिरण डोज़ 75 man Sv अनुमानित की गयी है। इस कारण, विद्युत रणियों के आस-पास रहने वाले व्यक्तियों को मिलने वाली आपसी वापसी प्रभावी विकिरण डोज़ लगभग 0.0001 mSv होती है।

नामिकीय उदारों से संबंधित क्रियाकलापों से मिलने वाली विकिरण डोज़ में सबसे प्रमुख साइटों में संबंधित क्रियाकलापों से मिलने वाली विकिरण डोज़ में सबसे प्रमुख साइटों में संबंधित क्रियाकलापों से मिलने वाली विकिरण डोज़ में सबसे प्रमुख साइटों में संबंधित क्रियाकलापों से मिलने वाली विकिरण डोज़ में सबसे प्रमुख साइटों में संबंधित क्रियाकलापों से मिलने वाली विकिरण डोज़ में सबसे प्रमुख साइटों में संबंधित क्रियाकलापों से मिलने वाली विकिरण डोज़ में सबसे प्रमुह का सर्वसाधारण साइट है। यूरेवियम का सर्वसाधारण साइट है।

विकिरण कहाँ से आता है?

नामिकीय उद्योगों में, यूरेवियम की जमीन के अंतर्गत स्थित खदानों में रेडियन का उत्सर्जन व्यापक विकिरण डोज़ में अधिक योगदान करता है। उन विकिरण के तरक्की उत्पादन एवं संरक्षण, जिनमें विकिरण की उत्पत्ति का उद्देश्य विकिरण वापसी के कारण प्राप्त होता है। विकिरण उद्योगों के अधिकारियों को मिलने वाली औपचारिक प्रभावी प्रभावी विकिरण डोज़ प्रतिवर्ष कितने से ज्यादा हो सकता है। यह मुख्य रूप से, यूरेवियम की खुदाई में उल्लेखित ग्रावट और व्यापित खबर या क्रम द्वारा हो सकता है। इस कारण, विकिरण उद्योगों के कारण विकिरण डोज़ की तकनीकी और वापसी प्रभावी विकिरण डोज़ 75 man Sv अनुमानित की गयी है। इस कारण, विद्युत रणियों के आस-पास रहने वाले व्यक्तियों को मिलने वाली आपसी वापसी प्रभावी विकिरण डोज़ लगभग 0.0001 mSv होती है।
नामिकीय उद्योग की प्रमुख प्रक्रियाएं

पुष्पांजलि, संचारण एवं परिस्करण
यूरेनियम को ईर्दग लावक तैयार करता है

ईर्दग संचारण में ईर्दग ड्रग का निर्माण होता है। मामल्लय-यूरेनियम से जो दो छाँटी की नालियों में बंद लिपिदिक सुटियाओं में झटकी है।

पुरुषप्रस्तरण और यूरेनियम के संशोधन एवं प्लूटोनियम का रूपांतरण एवं संशोधन कर ईर्दग के बी भाग में पुनःनकरण किया जाता है।

उपत्यकाएं और ऊजार संयोजन, जहां यूरेनियम परमाणु के प्रमुख खंडक तथा प्रवेशम विकसित होते हैं, जिसका उपयोग जल गमन करने के लिए होता है।

रेडियो सूत्रक उत्पाद के कारण संशोधन की दक्षता घट जाती है। 12-24 महीने के बाद पुरुषप्रस्तरण को संशोधन से हटाया जाता है।

अतलस्पष्ट और मध्यम-प्रस्तरण का निपादन मुख्यतः सतही भूमि स्तरों पर निपामल जोभी शेष है।

अतलस्पष्ट पुरुषिक निकायागार
तात्त्विक भूमि स्तर भंडार
उपनी एवं मध्यम पहाड़
नामकीय सुविधाओं में दुर्घटनाएँ

नामकीय उद्योग की अर्थात सुविधाओं के सामान्य क्रियान्वयन के दौरान मिलने वाली विकिरण डोज बहुत ही कम होती है। तथापि इसमें ऐसी हुई गंभीर दुर्घटनाएँ, हुई हैं जिन्होंने अपनी तरफ लोगों का बहुत बड़े पैमाने पर ध्यान आकर्षित किया है और जिनके परिणामों की समीक्षा UNSCEAR द्वारा की गई है। ऐसी दुर्घटनाओं के उदाहरणों में, 1958 की तक्षालीन गूमोल्नाथिया में स्थित बिंदा अनुसंधान सुविधा में हुई दुर्घटना, 1979 की अमेरिका की श्री माइल आइलैंड नामकीय बिज्ञत्-संरचन में हुई दुर्घटना एवं 1999 की जापान के टोक्याइ-सुरा ईधन रूपांतर सुविधा में हुई दुर्घटना शामिल है।

1945 से 2007 के दौरान, नामकीय सुविधाओं में घटित गंभीर विकिरण दुर्घटनाओं के परिणामस्वरूप 34 कर्मचारियों की मृत्यु हुई या गहरी चोटें आई हैं एवं सात दुर्घटनाओं के कारण सुविधाओं के बाहर विकिरणधम्मी पदार्थों का उत्सर्जन हुआ है और जनसंख्या की संख्या में बहुत व्यापक वृद्धि होती है। गंभीर रूप की दृष्टि में अनुसंधान दुर्घटनाएँ नामकीय अतिक्रमणों से संबंधित सुविधाओं में घटी थी। 1986 के चेन्नाविल एवं 2011 की पूर्वकुशीमा-दाइची दुर्घटनाएँ जिनकी चर्चा आगे गई है।

चेन्नाविल दुर्घटना 26 अप्रैल 1986 की चेन्नाविल नामकीय बिज्ञत्-संरचन दुर्घटना नामकीय ऊजाया यह सबसे बड़ी दुर्घटना थी। इसमें घटनाओं की एक श्रृंखला के फलस्वरूप रिएक्टर का सबसे अंदरूनी हिस्सा कोर अंशतः पिघल गया था। इस दुर्घटना के कारण वातावरण रिएक्टर कोर से संरचना भवन में परमाणु बिज्ञत क्रियाएं के उत्पाद एवं विकिरणधम्मी नामिकों का काफी मात्रा में उत्सर्जन हुआ, लेकिन इसकी तुलना में प्यायारण में होने वाला उत्सर्जन कम था और उसके फलस्वरूप लोगों को प्रभावित वाली विकिरण डोज भी काफी कम थी।

चेन्नाविल नामकीय बिज्ञत्-संरचन दुर्घटना

2007 के चेन्नाविल नामकीय बिज्ञत्-संरचन दुर्घटना, नामकीय ऊजायों के अर्थात सुविधाओं यह संरचन की दृष्टि में सबसे बड़ी दुर्घटना थी। इसमें परिणामस्वरूप 34 कर्मचारियों की मृत्यु हुई या गहरी चोटें आई हैं एवं सात दुर्घटनाओं के कारण सुविधाओं के बाहर विकिरणधम्मी पदार्थों का उत्सर्जन हुआ है और जनसंख्या की संख्या में बहुत व्यापक वृद्धि होती है।

इसके तात्कालिक दुर्घटनाओं के समस्याओं के कारण अनेक कर्मचारियों की मृत्यु हो गई एवं 134 लोग तीव्र विकिरण संलक्षणों से प्रभावित हुए, जिनमें से 28 लोगों के लिए यह जानलेखा सावित हुआ। बचे हुए लोगों में श्रेणी की क्षति एवं विकिरण से संबंधित मोटियाबंद यह मुख्य समस्याएं थी। आपत्तिकारी श्रेणी कर्मचारियों के अन्य लोग दुर्घटना के बाद की मदद कर्मचारियों में शामिल थे। जिन्हें 1986 एवं 1987 में उझ मजा की डोज़ निम्न थी, उनमें ल्यूसेमिया तथा मोटियाबंद होने की स्थाय बदोलती के अन्य इस समूह में अनेक तक विकिरण से संबंधित अन्य स्वास्थ्य प्रभावों के बारे में कोई भी सुसंगत प्रमाण नहीं मिले हैं।

विकिरण कहां से आता है?
इस दुर्घटना के कारण पर्यवेक्षण में जो अनियंत्रित विकिरण उत्सर्जन हुआ था, अब तक दर्ज किये गए किसी भी असरकारी परिस्थिति में होने वाले विकिरण उत्सर्जन से अंधकार था, जिससे बालावरण में लगभग इस दिन तक विकिरणधारी पदार्थों का भारी मात्रा में उत्सर्जन हुआ। वह विकिरणधारी बादल, जो इस दुर्घटना के कारण पैदा हो गया था, पूरे उतरी मोलार्ड पर फैल गया और उससे तत्कालीन सोशियल यूनियन के बड़े भू-भाग तथा वैज्ञानिक के अन्य हिस्सों में काफी मात्रा में विकिरणधारी पदार्थों से जमा हुए हैं; जिसके कारण मौजूदा बेलारूस, रशियन संघर्ष एवं यूक्रेन की जमीनी तथा पानी में विकिरणीय रूप से संदेखूत हो गए, जिसके फलस्वरूप यह आबादी के कई बड़े हिस्सों को गहरी सामाजिक तथा आर्थिक अनुभवों का सामना करना पड़ा।

तत्कालीन सोशियल रूप के उत्तरार्ध हिस्सों में, ताजे खंड में अल्पश्रीवार विकिरणधारी नामित आरोडी-131 (जिसकी अर्थात आठ दिन की होती है) द्वारा संदेखूत तथा तत्कालीन प्रतिवेदनात्मक उपयोजनाओं में अभाव के कारण वायरोडीड प्रक्षिप्त की, खास करे वजन्हें, काफी बड़ी मात्रा में डोज़ मिल गयी। सोशियल संघर्ष एवं बेलारूस, यूक्रेन तथा चीन और प्राक्तन भू-भागों में, 1990 के दशक में इसकी शुरूआत तथा समय से, उन लोगों में वायरोडीड कर्फ्यूल के पाप ज्ञात में बड़ी दशक हुई है जिन्हें 1986 में अपनी दशक अनन्तर अवस्था में विकिरण डोज़ मिली थी।

1991 से 2005 तक की नागरिकता में इसमें पीड़ित 6000 रोगी दर्ज हुए जिनमें से 15 व्यक्तियों की मौत हो गई।

दीघातिालीि कालावधि में सर्वभावनीय जनसंख्या को भी विकिरण डोज़ मिली जो दोरस्तर वाणी बाहर से विकिरणधारी निकेकरों के कारण थी तथा अंदर में मुख्य रूप से सीजियम-137 (जिसकी अर्थात 30 वर्ष है) द्वारा संदेखूत खाद्य पदार्थों के सेवन के कारण थी। हालांकि इसके विकिरणधारी रूप मिलने वाले दीघातिक्षीन सोशियल विकिरण डोज़ की मात्रा तुलना की दृष्टि से कम थी, 1986 से 2005 की कालावधि में, बेलारूस के विकिरणधारी भू-भाग, सोशियल संघर्ष तथा अमेरिकन विकिरण प्रभावी डोज़ 9 mSv थी। इस डोज़ के कारण सामान्य जनसंख्या समूह पर बहुत अधिक प्रतिकृत स्वास्थ्य प्रभावों के होने की खगोल नहीं है। यद्यपि इस दुर्घटना के कारण जो गंभीर कट्टा अवस्था पैदा हुई उनके फलस्वरूप प्रभावित जन समूहों पर गहरा सामाजिक तथा आर्थिक असर हुआ एवं उन्हें तीव्र सदमा पहुँचा।

UNSCEAR ने इस दुर्घटना के विकिरण-शास्त्रीय परिणामों का अध्ययन अंतरराष्ट्रीय रिपोर्टों में बारीकी से किया है। अंतरराष्ट्रीय समुदाय, जो इस दुर्घटना के सर्वभावनीय तथा विकिरण शिक्षात्मक क्षेत्रों में होने वाले परिणामों के कारण तथा उनकी विचित्रताओं के आकर्षण के लिए अभूतपूर्व योगदान किये हैं ताकि इस दुर्घटना के विकिरण-शास्त्रीय परिणामों के बारे में समझ बेहतर हो एवं उनके शिक्षा में मदद मिले।

वर्ष 1986 से किये गये अभ्यासों के सारांश यह दर्शाते हैं कि, वे व्यक्ति जिन्हें आरोडी-131 की डोज़ तब मिली जब वो बंधे थे तथा आपत्तिकाल एवं बचाव परिस्थिति, जिन्हें उस्के विकिरण डोज़ मिली थी, उनमें विकिरण प्रेरित परिणामों का बताता अर्थ है। हालांकि वहाँ के अधिकांश निवासियों को अप विकिरण डोज़ ही मिली थी जो वाणी प्राकृतिक पुष्टीमात्रिक विकिरण के वराया या उससे कुछ ही गुना अधिक थी।
चेनोबिल नाभिकीय ऊर्जा संयंत्र दुर्घटना के उपरांत औसत थायरॉयड डोज़
पूर्वी जापान में 11 मार्च 2011 को आये तीर्थ भूकंप, जिसकी तीव्रता का परिमाण 9.0 था और उत्तरी जापान के पूर्वी समुद्र तट पर आयी सूक्ष्माके प्रभाव पूर्वी-दाइची नामकीय विद्युत संयंत्र दुघयाटिा पूर्वमी जापान में 11 माचया 2011 तीरि भूिं प, वजसिी तीरिता िा पठरमाण 9.0 ्था और उतिरी जापान िे पूिमी समुद्र तट पर आ्यी सुिामी िे पचिात फ ुिुवशमा-दाइची िावभिी्य विद्ुत सं्यंत्र गंभीर रूप से क्वतग्स्त हुआ और विकिरणिममी पदा्थषों िा प्यायािरण में उत्सजयाि हुआ। 11 से 15 माचया के दौरान एक एहवत्याती उपाय के रूप में, नामकीय विद्युत संयंत्र के 20 कि.मी. के क्षेत्र में रहने वाले लगभग 85,000 निवासियों को सुरक्षित स्थान पर ले जाया गया जब कि संयंत्र से 20 से 30 कि.मी. के दूरी में बसे लोगों को, उनके अपने घरों में पनाह दी गई। इसके बाद अप्रैल 2011 में संयंत्र के आगे उत्तर-पूर्व में रहने वाले और 10,000 लोगों को विकिरणधारी परमाणु नामिकियों के जमीनी सतह पर वढ़े हुए तलर के कारण, निकायी की सलाह दी गयी। इन निकायों के कारण, दुघयाटिा से भाग्यित लोगों को मिलने वाली डोज़, उस मात्रा में जो उन्हें मिल सकती थी, काफी कम हो गयी। लोगों को मिलने वाली विकिरण डोज़ को कम करने के लिए पानी तथा विशिष्ट बाह्य पदार्थों के सेवन पर कुछ समय के लिए वित्रोध किया गया। नामकीय विद्युत-संयंत्र दुघयाटिा ने देखा कि आपात-तत्स्थिति के प्रबंधन के दौरान, परिचालन तथा आपत्तकालिन प्रतिक्रिया दलों के कुछ कर्मचारियों को डोज़ मिली थी।

UNSCEAR ने विकिरण डोज़ एवं उनसे संबंधित स्वास्थ्य तथा पर्यावरण पर होने वाले प्रभावों के मूल्यांकन का संचालन किया। पूर्वी-दाइची नामकीय विद्युत-संयंत्र दुघयाटिा के बाद डोज साल के दौरान परिश्रम तथा अन्य गतिविधियों में लगभग 25,000 कर्मचारी शामिल थे। इस कारण के लिए इन कर्मचारियों को मिली हुई आपत्ति प्रभावी डोज़ थी जिसे 12 mSv तथापि 6 कर्मचारियों को मिली संयंत्र कुल डोज़ 250 mSv से अधिक थी; एक कर्मचारी के लिए दो ग्रेग दो महीने अधिक कुल डोज़ थी 680 mSv जो मुख्य रूप से अंदरूनी विकिरण (लगभग 90%) से मिली थी। 12 कर्मचारियों की आकलन थायरोड्ड डोज़ 2-12 Gy की डोज़ सीमा में थी। इन कर्मचारियों में त्वरचतन से निकलने वाले विकिरण से संबंधित मौतें या अभिलाभकारिक रोग नजर नहीं आये।

फुकुशिमा प्रांत के बाहरी कराये गये क्षेत्रों के व्यस्क व्यक्तियों को दुघयाटिा के बाद पहले साल में मिली आपत्ति प्रभावी डोज़ 1 mSv से उत्क्रास 10 mSv की डोज़ सीमा में थी। एक साल के नवात इनकों के लिए आकलन प्रभावी डोज़ इससे लगभग दो गुनी अधिक थी। पूर्वी जापान के जो क्षेत्र बाहरी नहीं कराये गये थे तथा उनके पड़ासम प्रतियों में डोज़ और भी कम थी।

जिन्हें अधिकतम डोज़ मिली है, जो कि मुख्य रूप से आयोडीन-131 के कारण मिली है, उनमें बत्वस्कों के लिए आकलन आपत्ति थायरोड्ड डोज़ की सीमा 35 mGy तक तथा 1 साल के नवात इन्द्रों के लिए 80 mGy तक रही है। मुख्य रूप से बाहर प्राकृतिक विकिरण पोर्टों में थायरोड्ड को मिलने वाली वार्षिक डोज़ आम तौर पर 1 mGy की कोटी की होती है। UNSCEAR ने इस मैदानिक संबंधवा को स्पष्टता प्रदान किया है कि उन व्यक्तियों के समूह में जिन्हें अधिकतम डोज़ मिली है, थायरोड्ड कर्करोग का जोखिम बढ़ सकता है। तथापि व्यस्क व्यक्तियों में, थायरोड्ड कर्करोग यदि-कदा होने वाला रोग है इसलिए इस समूह में सांख्यिकीय न्यूनता से महत्वपूर्ण प्रभावों का अपेक्षा नहीं है।

पूर्वी-दाइची नामकीय विद्युत संयंत्र दुघयाटिा
विकुलित िहाँ से आता है?
50–70 mGy
30–50 mGy
10–30 mGy
<10 mGy

फुकुशिमा-दाईची नामिकीय ऊर्जा केंद्र दुर्घटना के उपरांत शिशुओं को औसत थायरॉयड डोज़
फुकुशिमा-दाइची नामितक विष्णु संयंत्र दुघयाटिा की तुलना चेनोबिल आपड़ा से की जाती है, जब कि यह दुघयाटिा रिक्कर्ड के प्रकार, दुघयाटिा के घटनाक्रम, उत्सर्जित विकिरणधमी नामितकों के अभिलक्षण, उनका अभिलक्षण तथा की गई संरक्षक वार्षिकी, इन विभिन्न मायाओं में यस्तीत अर्ना थी। इन दोनों सुरंगों में आयोडीन-131 एवं सीजियम-137 का, वो नामितक दुघयाटिा के बाद विकिरण डोज़ के तथ्यों के बिस्दे से दो सबसे महत्त्वपूर्ण विकिरणधमी नामितक हैं, बड़ी मात्रा में पर्यावरण में उत्सर्जित हुआ। फुकुशिमा-दाइची दुघयाटिा के कारण होने वाले आयोडीन-131 एवं सीजियम-137 के उत्सर्जन की मात्रा चेनोबिल की तुलना में क्रमशः लगभग 10 एवं 20 प्रतिशत जितनी है।

आयोत्रिक तथा अन्य अनुप्रयोग

विकिरण ढोज़ों का विशिष्ट प्रकार के उद्योगों में उपयोग किया जाता है। इनमें आयोत्रिक विकिरण जिनका उपयोग चिकित्सा तथा भेदज उद्योगों के बीटादुग्लान, खाद्य पदार्थों के परिपक्वतात्मक या कीटों के संक्रमण की हटाने के लिए होता है; विकिरण आधारित आयोत्रिक चिन्हण जिनका उपयोग धातुओं के स्वच्छ किये हुए ढोज़ों के द्रोप परीक्षण के लिए होता है; अल्फ़ा तथा बीटा उत्सर्जन ढोज़ जिमनका उपयोग उन यमिनों को चमकीला बनाने के लिए होता है जो बंदूकों में लक्ष्य साधने में मदद करने वाले उपकरणों एवं निकास मार्गदर्शिकों में कम रोशनी वाले प्रकाश ढोजों के तौर पर होता है; विकिरण ढोज या छोटे आकार के एक्स-किरण ढोज जो उन कूडों को तैयार करने के दौरान खोदे हुए नलिका कुएं के ज्यों यमिनों के माप पर स्वाभाविक होते हैं जो कुएं बनिए, ैल या गैस के भंडारों की खोज में जाम आते हैं; विकिरण ढोज जिनका उपयोग उन उपकरणों में होता है जो परतों की मोटाई, आदित्यता, पदार्थों के गलतात्व एवं स्तर का मापन करते हैं और अन्य सीवर्किक विकिरण ढोज जो अनुसंधान में उपयोग होते हैं, ये सब शामिल हैं।

यद्यपि आयोत्रिक एवं चिकित्सीय इस्तेमाल के लिए विकिरणधमी नामितकों का उपयोग बड़े पैमाने पर होता है तथापि उसमें आम लोगों को मिलने वाली विकिरण ढोज़ बहुत ही कम मात्रा की होती है। हालांकि दुघयाटिाओं की स्थिति में, सीमित क्षेत्र में संदूर्ण के कारण, उनसे मिलने वाली विकिरण का स्तर अधिक हो सकता है।

कार्यस्थलों में विकिरण ढोज़

विकिरण के आयोत्रिक उपयोगों से संबंधित कर्मचारियों की संह्या इक्सीसीवी सदी के पहले दर्द के पूर्व काल में लगभग 10 लाख थी और उनकी वार्षिक औसत प्रभावी ढोज़ ग्राहक कर्मचारी 0.3 mSv थी।
प्रकृति में पाए जाने वाले विकिरणधार्मिक पदार्थ

दुनिया भर में ऐसी बहुत सारी किंमत की सुविधाओं में मौजूद है, जो नामिकीय ऊर्जा के उपयोग से संबंधित न होने के बावजूद, अपने औद्योगिक उद्देश्यों में, उप-उत्पादों में एवं अपरिश्चिप में प्रकृति में पाए जाने वाले विकिरणधार्मिक पदार्थों (NORM) की बढी हुई सांद्रता के कारण आम लोगों को विकिरण डरोज़ दे सकती हैं। इन सुविधाओं में सबसे महत्त्वपूर्ण सुविधा खदानों तथा खनिजों के प्रसंस्करण से संबंधित है।

खनिजों के निकर्षण एवं प्रसंस्करण से संबंधित गतिविधियों से भी NORM की सांद्रता का स्तर बढ़ सकता है। इन गतिविधियों में यूरेवियम का खनन एवं फिशियम; धातुओं का खनन एवं पिघलना; फॉस्फेट का उत्पादन; कोयले का खनन तथा उसे जलाकर विद्युत उत्पादन; तेल एवं गैस का खनन; रेकर अर्थ एवं टैंपायिमियम ऑक्साइड उद्योग; जिरकोनियम एवं सिर्फमित उद्योग और जो अनुप्रयोग जिन में NORM (आंतरिक रूप से रेडियम एवं ध्यायिम के समस्तांतिक) का इस्तेमाल होता है, ये सब शामिल हैं।

उदाहरण के तौर पर कोयले में आदिकालीन विकिरणधार्मीक नामिक अल्प मात्रा में मौजूद होते हैं। कोयले द्वारा से यह विकिरणधार्मीक नामिक वातावरण में उत्सर्जित हो जाते हैं जहाँ से ये लोगों को विकिरण डोज़ दे सकते हैं। इसका मतलब यह है कि विद्युत ऊर्जा का प्रयोक्त गीथा बॉट वर्ष, जिसका उत्पादन दुनिया के कोयले कल्चर ऊर्जा संयंत्र करते हैं, उसमें विद्युत की जनसंख्या के सामूहिक डोज़ में 20 man Sv वार्षिक बढ़ोतरी का आकलन किया गया है। इसके अलावा फ्लाई ऐश (जो कि कोयले के जलने के कारण उत्पन्न अन्यित्स गैस है) जिसका उपयोग गड्ढों को भरने के लिए तथा रास्तों के निर्माण के लिए किया जाता है, लेकिन, इसका इस्तेमाल भवनों के निर्माण में करने से, प्रत्यय विकिरण एवं रेडाइन के ख्यात इन दोनों तरीकों से विकिरण डोज़ मिलती है।

विकिरण कहाँ से आता है?
स्तर बढ़ जाता है।

आम लोगों को विकिरण मिलने का एक और श्रौत है, भूगृहतापीय ऊर्जा उत्पादन। इसमें जमीन के भीतर स्थित भाग एवं गर्म पानी के बंदरों के इस्तेमाल विज्ञवी उत्पादन या भबनों को गर्म करने के लिए किया जाता है। इस प्रौद्योगिकी के इस्तेमाल के कारण मिलने वाली विकिरण दोज़ के बिश्वय में इटली तथा अमेरिका में चिह्नित गर्लाव आकालन यह संभवत होते हैं कि इससे सामूहिक दोज़ में होने वाली वरीयतिरी, कोयला चलने ऊर्जा संयंत्रों द्वारा उत्पादित विचुत ऊर्जा के प्रति मिथुन्वोट वर्ष के होट़ की लक्षण दम प्रतिशत होती है। फिलहाल भूतापीय ऊर्जा की दुनिया के कुल ऊर्जा उत्पादन में साझेदारी, तुलनात्मक कृति से कम होने के कारण, विकिरण दोज़ में होने वाली वरीयतिरी भी कम ही है।

अन्य विविध मानबीय क्रियाकलापों के कारण जैसे कि जल उपचार के अपशिष्ट का खेतीवादी में इस्तेमाल के द्वारा भी, लोगों को NORM संबंधित विकिरण दोज़ मिल सकती है। तथापि आम लोगों को मिलने वाली यह दोज़ अत्यंत ही कम यानी सालाना एक mSv के कुछ हजारवें हिस्से से भी कम कोटी की होती है।

यूरेनियम के संबंधन का एक उपोद्दाद होता है, अवश्यक यूरेनियम जो प्राकृतिक यूरेनियम से कम विकिरणधम्री होता है। कई वर्षों से अवश्यक यूरेनियम, अस्तः तथा सैन्य कार्यों के लिए इस्तेमाल होता आ रहा है। इसके उद्देश्य के कारण इसका इस्तेमाल विकिरण से बचाव के लिए या विमानों में भार संतुलन के लिए, खोज जाता है। सैन्य कार्यों में (विशेष कर डैक्ट्री अभियंताओं में) इसके इस्तेमाल के कारण अवश्यम संयंत्र के बारे में आशंका हो गई है। कुछ खास परिस्थितियों जैसे कि दीर्घकालीन हल्कन को छोड़कर अवश्यक यूरेनियम से मिलने वाली दोज़ बहुत ही कम होती है। सच तो यह है की
इसकी रासायनिक विया कता ही इसका सबसे खतरनाक अवसंैन है।

उपभोक्ता उत्पाद

उपभोक्ताओं द्वारा अपने रोजाना इस्तेमाल के लिए बेरीदे जाने वाले ऐसे बहुत सारे उत्पाद हैं जो सुनियोजित तरीके से ग्राहकों ने अल्प सन्दर्भ विकिरण जोड़ देने वाले विकिरणधारी परमाणु नामकों का उपयोग करते हैं, ताकि उनके रासायनिक तथा विकिरणधारी गुणों का फायदा उन उत्पादों को हो सके। ऐतिहासिक दृष्टि से, रेडियम-226 सबसे महत्वपूर्ण विकिरणधारी परमाणु नामक था जो चमकने वाले उत्पादों में इस्तेमाल किया जाता था। यह इस्तेमाल कई दशकों पहले ख़त्म हो गया जब रेडियम की जगह प्रोमाइथियम-147 और हाइड्रोजेन-3 (ट्रिशियम) ने ती जिनकी विकिरण-विया कता कम थी। फिर भी उन वातावरणों तथा हाय-वातियों में से जिनमें ट्रिशियम के भौतिक मौजूद थे, ट्रिशियम का कुछ रिसाव संभवतः पाया गया हो जिसका कारण ट्रिशियम की उद्द चलनशीलता है। हालांकि ट्रिशियम बहुत कम ऊर्जा वाले वीटा कणों का उत्साधन करता है जो ल्यूमा को भेद नहीं सकते, इसलिए ट्रिशियम से डोज़ सिर्फ तभी मिलती है जब वो शरीर के अंदर पहुंचता है।

कुछ आधुनिक ध्रुव संसूचकों में आयनकारी कोष होता है जिसमें अमरेवश्यम-241 की पतली पतली होती है जो अल्फा कणों का उत्साधन करती है और आयनों की एक स्वरूप धारा का निर्माण करती है। परिक्षण वायू के संसूचकों में मुक्त रूप से दाखिल होने दिया जाता है और जब वाहर से बाहर अंदर आता है तो वह नियम धारा में वाधा पड़ता है जिसमें संकेतक क्रियान्वित हो जाता है और खतरे का संकेत देता है।

ध्रुव संसूचकों में जो अमरेवियम फोट होता है उसकी विकिरणधारिता काफी कम होती है। अमरेवियम का विकिरणधारी अपशव काफी धीरे होता है और उसकी अर्धसमय लगभग 432 साल
होती है। इसका मतलब है कि एक संसूचक दस साल के इस्तेमाल के बाद भी अपनी शुरुआती विकिरणधमिता को बनाए रखता है। जब तक अमरेवश्य स्रोत संसूचक के अंदर रहता है तब तक उसमें मिलने वाली विकिरण न के बाराबर होती है। हालांकि संबंधशील उपकरण से उसका संमूचन हो सकता है तो विकिरण डोज़ बहुत ही कम होती है। एक व्यक्ति अगर संसूचक से 2 मीटर दूरी पर रोजाना 8 घंटे खड़ा रहता है तो उसे मिलने वाली वार्फिक डोज़ का आकलन 0.0001 mSv से भी कम किया गया है।

औद्रोगिक दुर्घटनाएँ

उद्रोगों में घटते वाली ऐसी दुर्घटनाओं की संख्या जो विकिरण स्रोतों से संबंध रखती हैं, नामिकीय विक्षेपियों में फटने वाली दुर्घटनाओं से ज्यादा होती हैं। फिर भी आम तौर पर इसकी तरफ ध्यान ही नहीं जाता वावजूद इसके कि ऐसी दुर्घटनाओं के कारण विकिरणकमी तथा सर्वसामान्य जनता दोनों को, काफी बड़ी मात्रा में डोज़ मिल सकती है।

वर्ष 1945 और 2007 के दौरान, उन औद्रोगिक संस्थाओं में जहाँ विकिरण ब्लॉक, ल्यरक तथा एक्स-किरण उपकरणों का उपयोग होता है, लगभग 80 दुर्घटनाएँ दर्ज की गई हैं। इन दुर्घटनाओं के विवरण में 9 कर्मचारियों की मृत्यु तथा 120 को धारय दर्ज किया गया है। कुछ धारय कर्मचारियों में तीव्र विकिरण संक्षेप विकसित हो गए थे। विकिरण डोज़ मुख्यतः हाथ पर लगी थी और बहुत बार इसे कार देना पड़ा। UNSCEAR इस बात की संभावना व्यक्त करता है कि औद्रोगिक संस्थाओं में चट्टी कुछ दुर्घटनाएँ, जिनमें मौत है और लोग पायल हुए हैं, जर्ज नहीं की गई होंगी।

ऐसी दुर्घटनाओं के कारण तथा प्रभाव बहुत सारे हैं तथा उनमें भिन्न है। यहाँ सिर्फ दो उदाहरण दिए गए हैं। लुसियाता, अमेरिका में, 1978 में एक औद्रोगिक रेडियोफारे जब एक नाव पर काम कर रहा था, तब संबंध-विकिरणमापी के सुचारू रूप से काम न करने के कारण उसका वांछा हाथ इरीडिम-192 (3.7 TBq) स्रोत के विकिरण डोज़ के कारण धारय हुआ। लगभग तीन दिनों के बाद उसके हाथ का रंग नाला हो गया और उसमें फूल आ गई, उसके बाद त्याने पर छाले दिखाई दिये जो 5-8 हफ़तों के बाद ठीक हो गए। तब तक छह महीने के बाद उसकी ताजी उंगली को अंततः काट देना पड़ा। इसके उपरांत शावमल चीनी की एक औद्रोगिक संस्था में 1980 में, अर्थशास्त्री विकिरण संरक्षण उपयोग कर्मचारी के कारण मौत कर्मचारियों को कोबायट-60 स्रोत से विकिरण डोज़ मिली, एक कर्मचारी की, जिसकी अनुमान विकिरण डोज़ 12 Gy थी, डोज़ मिलने के 25 दिनों में मौत हो गई। दूसरे कर्मचारी की जिसकी अनुमानित विकिरण डोज़ 11 Gy थी, डोज़ मिलने के 90 दिनों में मौत हो गई। अन्य 5 कर्मचारियों जिनें अनुमानित विकिरण डोज़ 2-5 Gy मिली थी, विकिर्बिय उपचारों के बाद फिर से स्वस्थ हो गए।

परिपत्र विकिरण ब्लॉक

वर्ष 1966 से 2000 के दौरान 31 दुर्घटनाएँ उन ब्लॉकों के कारण घटित हुईं जो या तो चुराए गए थे या थी, जैसे कि फेक दिया गया था - इन्हें अनाथ ब्लॉक भी कहते हैं। ऐसी जानकारी मिली है कि यह दुर्घटनाएँ सर्वसाधारण जनता के 42 सदस्यों की मौत का कारण बन चुकी हैं जिनमें बड़ी भी शामिल हैं। इसके अलावा, तीव्र विकिरण संक्षेप, भूमी विद्युक गधा, आतंकी संदूर्पण या मनोवैज्ञानिक समस्याओं के कारण, सेंड्डो लौगों को विकिरणविभ कम देना आवश्यक हो गया था। इनमें से छह दुर्घटनाएँ परिपत्र विकिर्न संक्षेप उपचार उपकरणों से संबंधित थी।
विकिरण सुदूर उपचार उपकरण जिसमें एक उद्भव विकिरणधारी (50.9 TBq) सीज़ियम-137 ब्रोन्युलेशन हुआ था, चूरा निकाय गया और उसने अपने क्षेत्र की तौलसंख्या को बढ़ा दिया गया। अगले दो सालों में घमन्त्री लीजियम क्लोराइड जीवन पूरे क्षेत्र, ब्राज़ील में फैल गया। बहुत से मामलों में बीमारी के लक्षण और तब राखा दिखाया और 110,000 लोगों का विकिरण संदर्भ मानद ठहराकर संभालने पर जुटे। हालांकि जिनमें बहुत से लोगों को सीज़ियम-137 से कारण आत्महत्या की भी होती थी। इस दुर्घटना के कारण चार लोगों की मौत हो गयी जिनमें एक ब्राज़ील भी शामिल था।
3.3. सर्वसाधारण जनता तथा कर्मचारियों को मिलने वाली औसतन विकिरण मात्रा

आम तौर पर सर्वसाधारण जनता को मिलने वाले कुल विकिरण में प्राकृतिक शोतों से मिलने वाली डोज़ का योगदान प्रमुख होता है। UNSCEAR ने एक व्यक्ति को मिलने वाली औसतन वार्षिक प्रभावी विकिरण डोज़ का आकलन किया है जो लगभग 3 mSv के बराबर है। प्राकृतिक शोतों से मिलने वाली औसतन वार्षिक विकिरण डोज़ 2.4 mSv होती है, जिसका दो तिहाई (2/3) हिस्सा उन विकिरणधारी पदार्थों से मिलता है जो उस हार्मोन में मौजूद होते हैं, जिसमें हमारे गैंस की दवाएं तथा आपसी दवामें, उस अंश में जिसे हम बायोट हैं और उस पानी में जिसे हम पीते हैं। कृत्रिम विकिरण शोतों से मिलने वाली विकिरण डोज़ का मुख्य शोत चिकित्सात्मक विकिरण होता है, जिसके अन्तर्गत प्रतियांत औसत वार्षिक प्रभावी डोज़ 0.62 mSv होती है। चिकित्सिय विकिरण डोज़ में क्षेत्र, देश और स्वास्थ्य-नीति प्रणालियों के हिस्से में भिड़ता होता है। UNSCEAR के आकलन के मुताबिक विकिरण के

चिकित्सिय अनुप्रयोगों से मिलने वाली औसतन वार्षिक प्रभावी डोज़ ओप्टियोलिक देशों में 1.9 mSv तथा गैं-ओप्टियोलिक देशों में 0.32 mSv पायी गयी है। हालांकि इन ऑक्ट्रों में निश्चित रूप से काफी विविधता है (उदाहरण के तौर पर अमेरिका में यह ऑक्ट्रा 3 mSv जबकि फ्रांस में यह सिर्फ 0.05 mSv है)।

1990 के दशक तक कर्मचारियों को मिलने वाली विकिरण डोज़ के विषय में पूरा ध्यान कृत्रिम शोतों पर ही एक्सकिउटिव जाता था। लेकिन हाल ही में इस बात का मतलब चला है कि बड़ी संख्या में ऐसे कर्मचारी हैं जो मुख्य रूप से बनने उद्देश्यों से सम्बन्धित हैं, जिन्हें प्राकृतिक रूप से विकिरण डोज़ मिलती हैं। बनने क्षेत्र के कुछ व्यवसाय ऐसे हैं जहां विकिरण डोज़ मिलने का मुख्य कारण

विकिरण शोतों द्वारा औसत जन उद्देश्य*
रेडॉक्स वायू का भ्रमण है। जबकि गुलियम की भूमिगत खदानों में रेडॉक्स वायू का बाहर निकलना, नाभिकीय उद्योग में संबंधित लोगों में व्यावसायिक विकिरण डोज़ की काफी मात्रा में बढ़ोतरी करता है। फिर भी नाभिकीय उद्योग के कर्मचारी को मिलने वाली वापसी औसतन प्रभावी डोज़ 1970 के दशक में 4.4 mSv थी आज चटकर लगभग 1 mSv रह गई है। हालांकि कीर्तिऔरे के खदान के कर्मचारी को मिलने वाली वापसी औसतन प्रभावी डोज़ अभी भी 2.4 mSv तथा दूसरी अन्य खदानों के कर्मचारियों के लिए यह लगभग 3 mSv है।

मौजूदा अनुमान के अनुसार दुनिया भर में विकिरण परिक्षण किये जाने वाले कर्मचारियों की संख्या 230 लाख है और उनमें से 100 लाख कर्मचारियों को कृत्रिम विकिरण बोतलों से डोज़ मिलती है। उन कर्मचारियों में से, जिन्हें कृत्रिम विकिरण रोगों से डोज़ मिलती है तीन खिचाई कर्मचारी चिकित्सीय-क्षेत्र में काम करते हैं और उन्हें 0.5 mSv जितनी वापसी प्रभावी डोज़ प्रति व्यक्ति मिलती है। प्रति व्यक्ति औसतन वापसी प्रभावी डोज़ के रूपांतरण का मूल्यांकन यह दर्शाता है कि प्राकृतिक बोतलों में मिलने वाली विकिरण की मात्रा बढ़ रही है, जिसका कारण है खनन उद्योग; और कृत्रिम बोतलों से मिलने वाली विकिरण डोज़ कम हो रही है, जिसका कारण है विकिरण संरक्षण विधियों का सफलता पूर्वक क्रियान्वयन।

<table>
<thead>
<tr>
<th>कर्मचारियों को मिलने वाली वापसी विकिरण मात्रा के रूपांतरण (mSv)*</th>
<th>1970</th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>प्राकृतिक</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>हवाई जहाजकर्मी</td>
<td>—</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>कीर्तिऔरे खदान</td>
<td>—</td>
<td>0.9</td>
<td>0.7</td>
<td>2.4</td>
</tr>
<tr>
<td>अन्य खदान**</td>
<td>—</td>
<td>1.0</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>विविध</td>
<td>—</td>
<td>6.0</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>कुल</td>
<td>—</td>
<td>1.7</td>
<td>1.8</td>
<td>2.9</td>
</tr>
<tr>
<td>कृत्रिम</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>चिकित्सीय उपयोग</td>
<td>0.8</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>नाभिकीय उद्योग</td>
<td>4.4</td>
<td>3.7</td>
<td>1.8</td>
<td>1.0</td>
</tr>
<tr>
<td>अन्य उद्योग</td>
<td>1.6</td>
<td>1.4</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>विविध</td>
<td>1.1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>कुल</td>
<td>1.7</td>
<td>1.4</td>
<td>0.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*एक वर्ष में प्रति कर्मचारी औसतन प्रभावी विकिरण मात्रा का अनुमान।
** कृत्रिम की खदानों नाभिकीय उद्योगों में शामिल है।
अपनी स्थापना के समय से UNSCEAR ने 25 से अधिक महत्वपूर्ण रिपोर्ट और 100 से अधिक वैज्ञानिक/पूरक अंशों को प्रकाशित किया है, जो परमाणु अवश्य से परीक्षणों से, परमाणु विद्युत संयंत्रों से, विकिरण के विद्यमान उपयोगों से, व्यावसायिक विकिरण स्रोतों से, तथा प्राकृतिक खोजों से मिलने वाली विकिरण डो़ज़ के जोच पड़ताल के आधिकारिक मूल्यांकनों के स्वतंत्र न्याय खोजों के संख्यावर्धन के रूप में जाने जाते हैं। इसके अलावा UNSCEAR विकिरण प्रेरित कर्मचारी द्वारा आत्मनिर्वाचित रोगों के विषय पर अध्ययन भी करता है और विकिरण दुर्घटनाओं के स्वास्थ्य एवं पर्यावरण पर होने वाले प्रभावों का निर्धारण भी करता है। UNSCER की रिपोर्टें एवं उसके वैज्ञानिक बूफेट अंशों को संयुक्त राष्ट्र संघ के विक्रय प्रकाशित के रूप में (unp.un.org) और उसकी इलेक्ट्रॉनिक प्रतिलिपियों को (unscear.org), संयुक्त राष्ट्र संघ के सदस्य देशों के वैज्ञानिक समुदायों तथा सर्वसमान जनता को उनकी जानकारी के लिए निःशुल्क दिया जाता है ताकि उनके निष्कर्षों को इन सब के फायदे के लिए उन तक पहुँचा जा सके।

आपकी राय तथा टिप्पणियों का हम स्वागत करते हैं जिनका इंतजार इस पते पर रहेगा:

UNSCEAR सचिवालय
सियांगा अंतर्राष्ट्रीय केंद्र
P.O. Box 500
1400 विएिा, ऑवस्ट्रिया
E-mail: unscear@unscear.org
वर्ष 1955 में, आयनकारी विकिरण के स्तर और उनके प्रभावों के विषय में जानकारी को इकट्ठा करने तथा उसका मूल्यांकन करने के लिए संयुक्त राष्ट्र आम सभा ने परमाणुविक विकिरण के प्रभावों के विषय में संयुक्त राष्ट्र वैज्ञानिक समिति (UNSCEAR) का गठन किया।

ऐसा, आयनकारी विकिरणों के मनुष्य के स्वास्थ्य तथा पर्यावरण पर होने वाले प्रभावों के बारे में चिंता के कारण किया गया क्योंकि उस समय नाम्निकीय अस्त्रों के वातावरण में किए गए परीक्षणों से निकलने वाला विकिरण हुआ, पानी तथा अन्न के माध्यम से लोगों तक पहुँच रहा था। UNSCEAR की पहली रिपोर्ट ने वह वैज्ञानिक आधार प्रदान किया जिस पर 1963 में आंशिक परीक्षण प्रतिबंध संधि पर समझौता हुआ था, जिसमें परमाणु अस्त्रों के वातावरण में किए जाने वाले परीक्षणों पर रोक लगने पर विचार किया गया।

इस प्रकाशन में विकिरण के स्तर और उनके प्रभावों के विषय में प्रासंगिक जानकारी को वस्तुनिष्ठ तरीके से इस प्रकार से प्रस्तुत करने की कोशिश की गयी है जो सर्वसामान्य पाठकों को सुगम और सुलभ हो। यह प्रकाशन UNSCEAR के वैज्ञानिक रिपोर्टों पर आधारित है जिनका उपयोग इस प्रकाशन हेतु जानकारी के प्रमुख स्रोत के रूप में किया गया है।