SPANISH TECHNOLOGICAL DEVELOPMENTS ON Hg STABILIZATION AND Hg CONTAINING WASTES

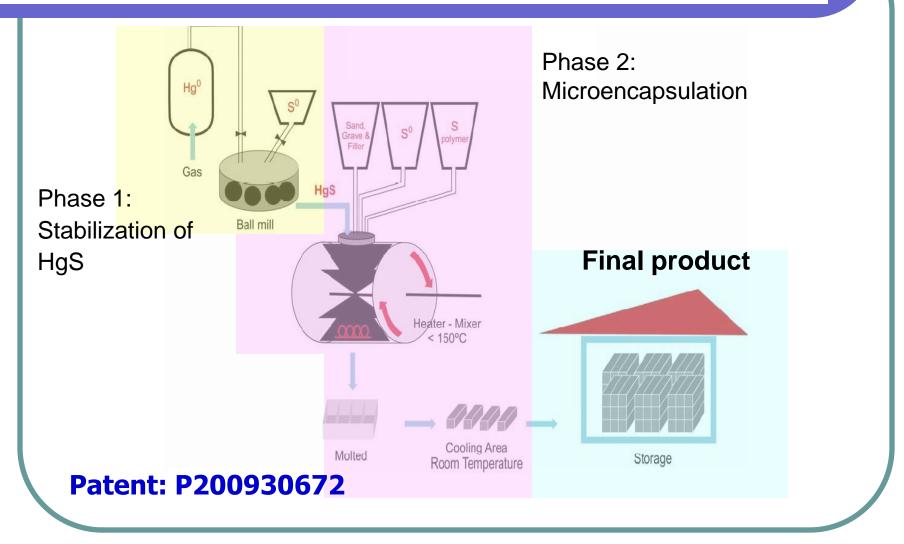
WORKSHOP ON MERCURY MANAGEMENT IN THE LATIN AMERICA AND CARIBBEAN REGION

Brasilia, 21st / 22nd May 2012

MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

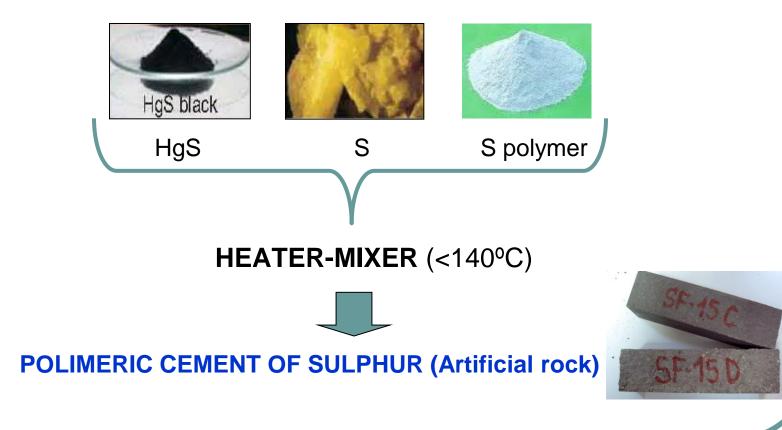


MERSADE Project main tasks (2006-2010):


1. Container for the safe temporary storage of metallic mercury

2. Stabilization / Microencapsulation technique.

Brasilia, 21st / 22nd May 2012


Obtaining mercury sulphide:

Metallic Hg + Elemental sulfur particles (< 60 µm) react in a ball mill to obtain HgS (Cinnabar)

Microencapsulation in a sulphur matrix:

ADVANTAGES AND GUARANTEES :

- Inert solid, more resistant than concrete, with low porosity and impermeable.
- No emissions to atmosphere . The final product has 100-150 times lower emissions than mercury sulphide (natural cinnabar ore).
- Safer product and easier to handle: its environmentally sound management is easyer, safer and less expensive as well.
- During the process, 100% of Hg is transformed.
- Low energy consumption.
- No water consumption, and neither effluents nor wastes are generated
- Ordinary, abundant and affordable reagents

- The estimated cost of the stabilization process is around 2,000 €/t of metallic mercury
- The CTNDM has experts to carry out a safe and environmentally sound comprehensive management of mercury (including collection, transport, temporary storage and disposal).
- Facilities for the environmentally sound permanent storage with absolute environmental guarantees already exist in Almaden.

¿ what 's next step ?

...from results and keeping as main TARGET:

TO DEVELOP TECHNOLOGICAL SOLUTIONS

FOR MERCURY ISSUES...

•Application of the stabilization/encapsulation technique to Hg containing wastes

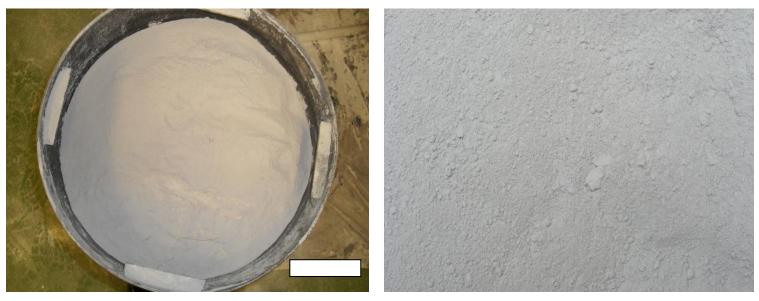
• to improve the technique: i.e. non addition of aggregates.

INDUSTRIAL SECTORS AS Hg WASTE PRODUCERS:

- ***** i. Hg fluorescent dust (FD) from the recycling plants.
- * ii. Hg wastes from the Zn primary production industry.
- * iii. Hg wastes from the AI primary production industry.
 - iv. Hg wastes from the Cu primary production industry.
 - v. Hg from Gold mining industry.
 - vi. Wastes from dental amalgams.

vii. ... //

Works to show now



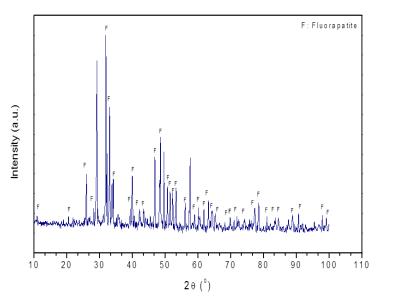
Providing cooperation:

CTNDM

an Spanish association / recycling plant

Appearance of fluorescent dust (FD)

Density: 3.05 gr / cm³


Ø size: < 40 µm

	% weight	error %
CaO	40,67	0,24
P_2O_3	15,93	0,18
SiO ₂	10,28	0,15
Al ₂ O ₃	7,53	0,13
F	3,46	0,26
Na ₂ O	2.65	0,08
MgO	0,83	0,04
HgO	0,03	0,00
Others (SO3, Cl, K2O,MnO,etc)	Up to 99.98	-

Chemical semiquantitative composition by FXR

(in % oxide)

RX diffraction diagram of fluorescent powder

Providing cooperation:

CTNDM - an Spanish primary Zn producer

-Electrolitic Zn production from Zn concentrate ore.

-By oxidation of zinc sulfide in fluidized bed at 950°C.

-Zn & Hg have similar atomic size.

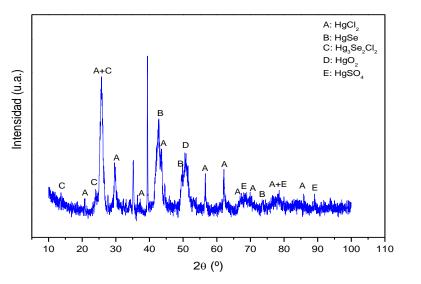
-Pending from origin, Hg content in concentrates ores is <>

-Hg with many others impurities: F, CI, Se, Pb,...are remobilized to the gas phase.

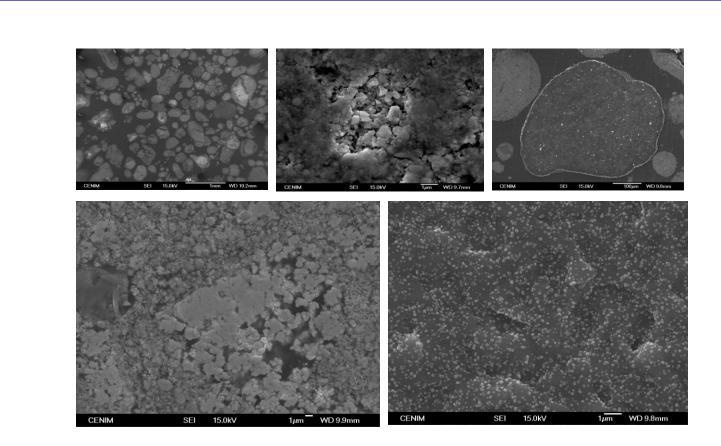
From the wet gas cleaning process, the waste obtained is

a thick, heavy mud with high water content.

Density: 6,15 gr / cm³ Ø size: < 40 μm Humidity: 33,2 %



	% peso	error %
HgO	45,60	0,25
SeO ₂	15,79	0,18
Re ₂ O ₇	10,59	3,22
Fe ₂ O ₃	7,85	0,13
SO ₃	5,99	0,12
PbO	5,22	0,11
ZnO	1,83	0,22
SiO ₂	1,54	0,06
Others (Mn,Cu, Br,etc)	4,60	-


 $\label{eq:chemical semiquantitative composition by \ensuremath{\mathsf{FXR}}$

(in % oxide)

RX diffraction diagram of zinc waste

• Different SEM pictures of Zn wastes

Providing cooperation:

CTNDM 🕂 an Spanish Al producer

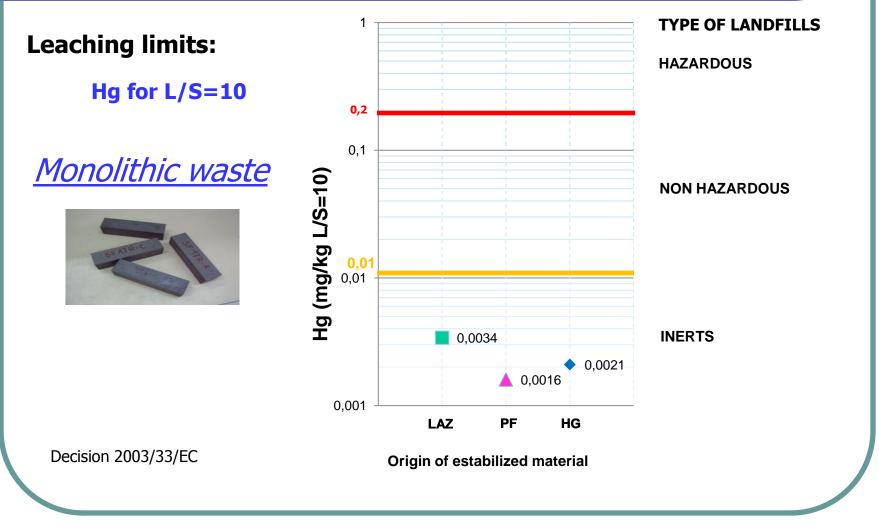
 $-AL_2O_3$ production from bauxite as first steep of Al production. By mixing with caustic soda and increasing T^a.

- Pending from origin, Hg content in bauxite is <>. (X = 0,11 ppm average)

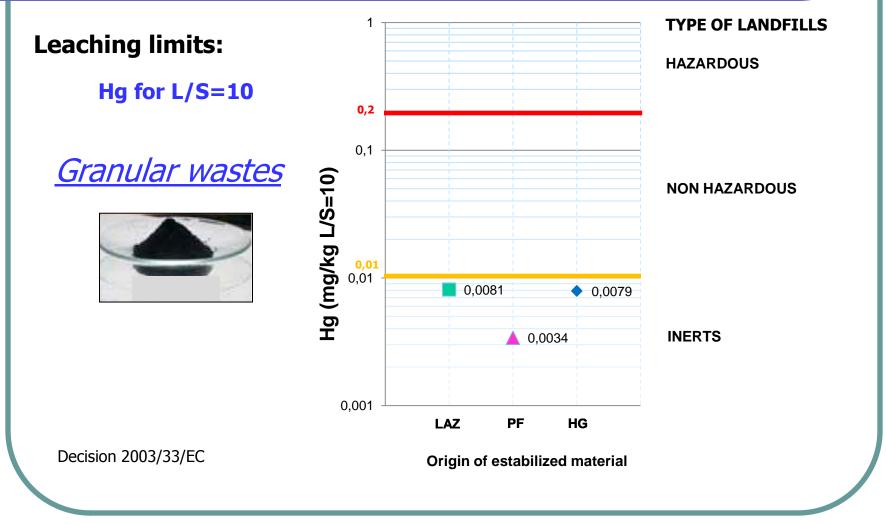
- Hg vapor in gases from process.

- Hg extracted from gas treatment system and obtained as metallic mercury (99 to 99,9 %) by condensation.

Hg estabilized (65 % Hg)



European leaching limits values as acceptance criteria:


Leaching columns according to Standard CEN/TS 14405:2004 - (UNE-EN-12457)

Steep in progress: CONSTRUCTION

"PILOT PLANT OF ESTABILIZATION FOR MERCURY AND MERCURY CONTAINING WASTES."

- 2,5 t Hg / day treatment capacity.
- Treatment of different wastes but same plant.
- Plants at lower scales for "in situ" applications.

THANK YOU FOR YOUR ATTENTION

mramos@ctndm.es