Marine Litter – where are we?

Dr Peter J. Kershaw

GESAMP

(Joint Group of Experts on Scientific Aspects of Marine Protection an Inter-Agency body of the United Nations)

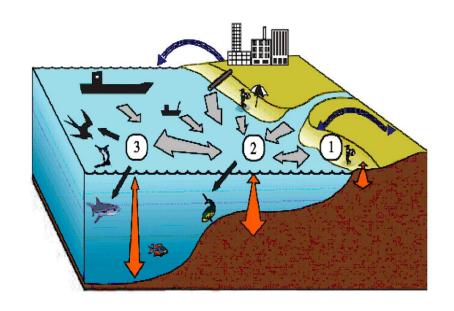
www.gesamp.org

peter@pjkershaw.com

Marine litter – a definition

'any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment'

UNEP 2010


Metal, glass, fabric, plastic, ceramic/brick, ropes

Land-based

- Coastal tourism/recreation
- Population centres
- Poorly controlled/illegal waste sites
- Industrial sites
- Agriculture

Sea-based

- Merchant shipping
- Cruise ships
- Fisheries/aquaculture
- Recreational boating
- Offshore oil & gas platforms

(Peter Ryan)

Why is marine litter a priority issue?

- ➤ Sources of marine litter poorly controlled currently lack of effective mechanisms for effective waste management
- ➤ Plastic-based litter predominates & most plastics do not completely degrade in the marine environment; i.e. total inventory increasing
- Sufficient evidence to suggest significant social, economic and ecological harm, but needs to be better quantified
- Increasing coastal population, increasing per capita consumption, increasing global trade, increasing coastal tourism; i.e. Pressures increasing
- ➤ Global, cross-sector & trans-boundary issue, requiring new approaches & mechanisms
- Litter is one of many pressures on marine environment potential for cumulative effects

What is known about marine litter – sources and types

- ➤ It comes in many shapes and sizes (tens of metres to nanometres)
- It is not a new phenomenon
- ➤ It is a trans-boundary/global issue
- Some comes from land-based activities
- > Some comes from sea-based activities
- ➤ There are large regional differences in the relative importance of different sources, and the quantities released
- Most litter, other than from natural disasters, arises because of inadequate waste management, on land and at sea
- Some may be accidentally lost (e.g. ship's cargo) or deliberately dumped (e.g. unwanted fishing gear)

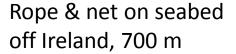
A long history – accidental loss 2000 years ago

Amphorae on the seabed of the Mediterranean Used for transporting oil & wine

A long history – accidental loss in 21st century

Increase in scale, and variety of materials, with population growth and globalisation of trade

Deliberate dumping of hazardous waste – legacy issues


Discarded 20th century munitions

Accidental loss or deliberate disposal of fishing gear

FAO/IOC, 2009

Recovery of derelict fishing gear, Korea (UNEP)

Riverine inputs

Algalita

Aftermath of catastrophic natural disasters

- Storms Katrina, super storm Sandy
- Earthquakes
- Tsunamis Indian Ocean 2003, Japan 2011
- River flooding/inundation –Thailand 2011

Japanese tsunami debris on US west coast

NOAA Marine Debris Program

What is known about marine litter - effects

- ➤ Some types of litter can have significant direct impacts on individual biota (e.g. entanglement/ingestion by cetaceans, turtles & birds)
- > Some types of litter can cause a navigation hazard and social & economic harm
- Litter can become colonised and act as a vector for nonindigenous species
- Some plastics contain additives (e.g. flame retardants) that have the potential to adversely effect biota
- Plastics will tend to absorb organic contaminants (e.g. PCBs, DDT) from seawater
- ➤ The distribution of litter is influenced by ocean currents, so concentrations are not uniform in space or time

Entanglement & ingestion

Turtle in Caribbean (UNEP-CAR/RCU

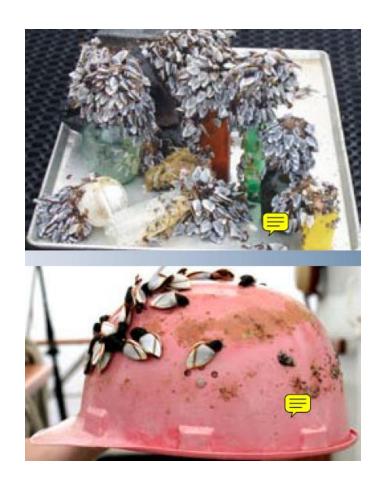
Seal in NE Atlantic(de Wolff, ECOMARE NL)

Laysan albatross, Kure Atoll, Pacific (Vanderlip & Algalita)

Minke whale, Mediterranean (Mauger & Kerleau, GECCF F)

Ingestion by cetaceans

Ingestion of plastics from large-scale horticulture and general household waste, by Sperm whale in Mediterranean



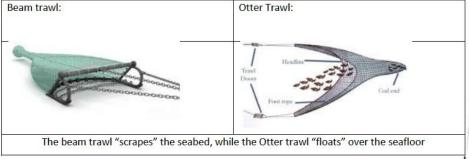
De Stephanis et al., 2013

Marine litter as a vector for non-indigenous species

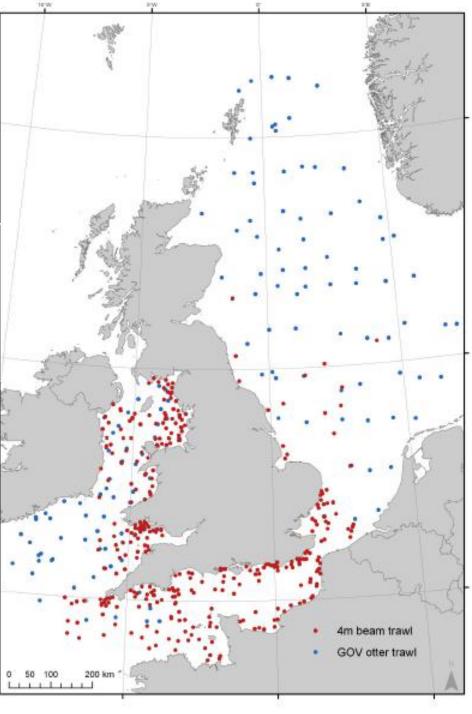
What is unknown about marine litter

- ➤ The quantities entering from land-based and from seabased activities — by country or in total
- The comprehensive and quantitative distribution of litter on shorelines, the sea surface, the water column, the seafloor and in biota
- The long-term fate of litter, including times for 'degradation', especially for plastics
- ➤ The degree of ecological harm due to physical impacts at a population level
- ➤ The extent of ecological harm due to ecotoxicological/chemical impacts at a population level
- The extent of economic impact to different sectors (e.g. shipping, fisheries, coastal tourism)
- The extent of social harm (e.g. injury or loss of life, loss of enjoyment)

Marine litter on beaches/shoreline



South Soko, Korea


Marine litter on the seabed

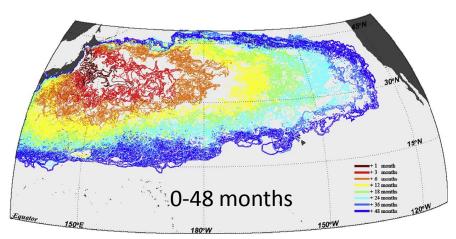
Opportunistic sampling – using existing fish stock assessment cruises for seabed litter monitoring

'sediment' sample from the deep Mediterranean

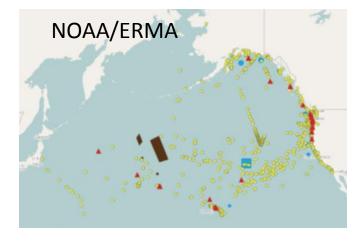
Marine litter recorded during fish stock assessment surveys

Floating litter offshore

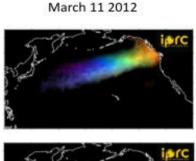
Straits of Malacca, Ryan 2013

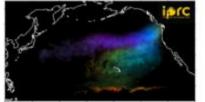


16km offshore

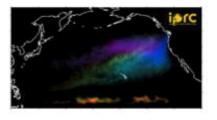

48km offshore

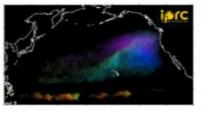
GEF Transboundary Waters Assessment – indicators of floating plastic in the ocean. Conducted by GESAMP on behalf of IOC Reporting December 2014


Simulating the transport of the Japanese tsunami debris



Lebreton & Hafner, 2013


Observations – confirmed \triangle , potential \triangle

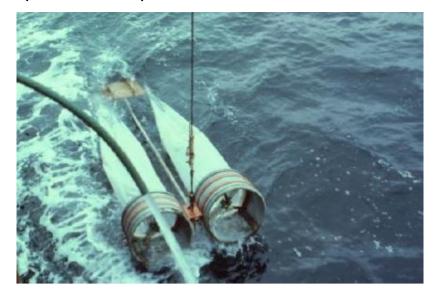

iprc

June 11 2012

ipro

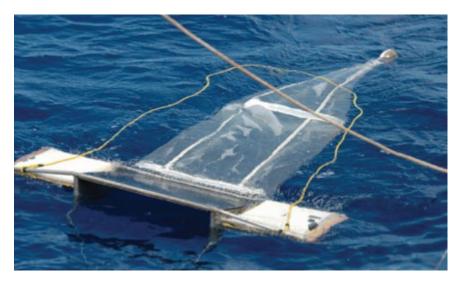
September 11 2012

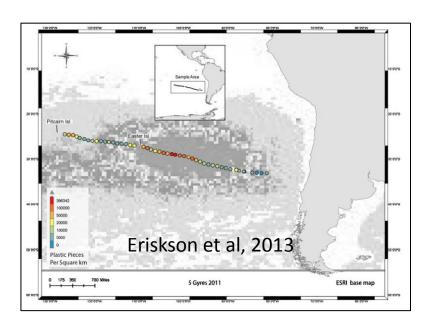
- Alert shipping
- Interpret observations
- Direct sampling/recovery

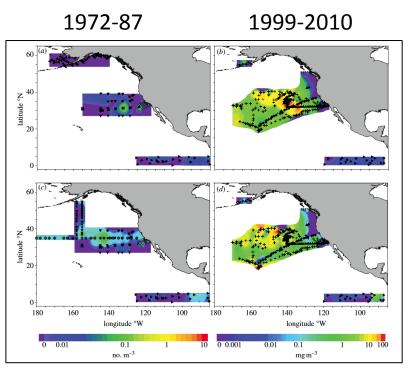

Maximenko & Hafner, IPRC Hawaii

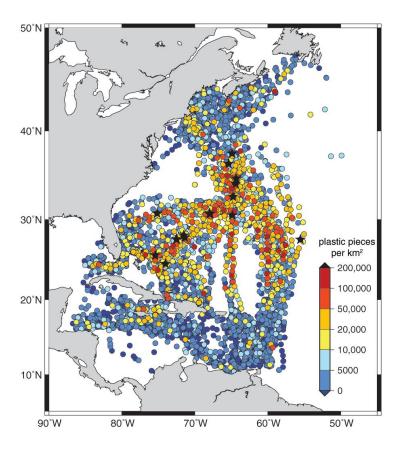

December 11 2012

March 11 2013

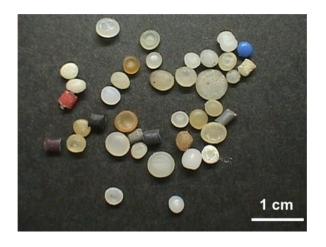

June 11 2013


Sampling for microplastics using a plankton net (300 micron)





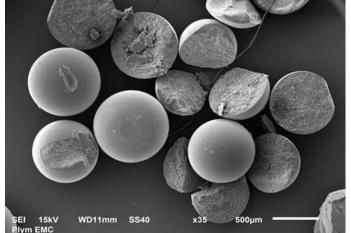
Distribution of floating microplastics


Law et al., NEA

Goldstein et al., 2012

What are microplastics?

Operational definition – particles < 5mm


'primary' & 'secondary' i.e fragmented

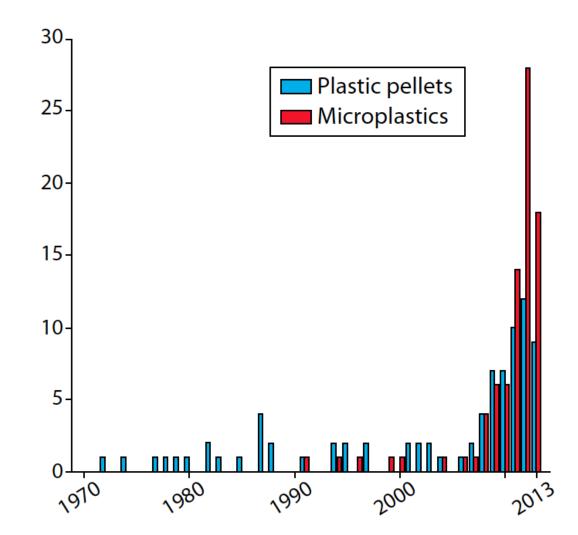
Plastic resin beads, used in plastics manufacture (Ogata)

Beach sample of microplastics, Hawaii (NOAA Marine Debris Program)

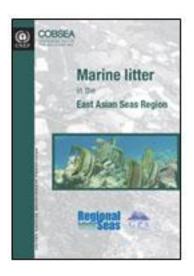
Polyethylene microplastics extracted from shower gel (A. Bakir and RC Thompson)

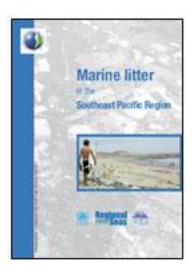
Microplastics as an emerging issue?

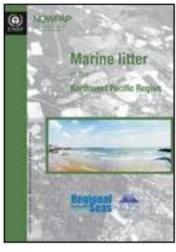
- Increasing in abundance
- Ingested by large variety of organisms
- Intrinsic additives *may* have an ecotoxicological effect
- Microplastics absorb organic contaminants which may have an ecotoxicological effect
- Some evidence of transfer of chemicals from plastic particles to tissue
- Cannot remove them from the environment in significant quantities

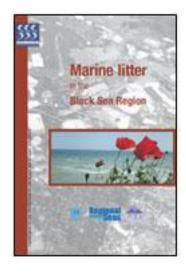

GESAMP Working Group 40 – 'Sources, fate & effects of microplastics in the marine environment – a global assessment'

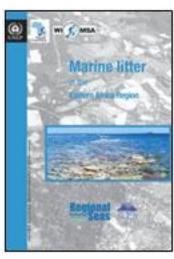
Reporting: November 2014

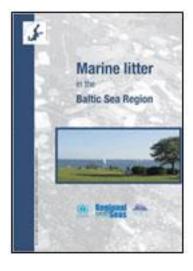

Supported by: UNESCO-IOC, UNEP, IMO, UNIDO, UNDP, NOAA, ACC, Plastics Europe

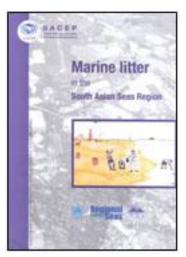

Charting the growing interest in microplastics

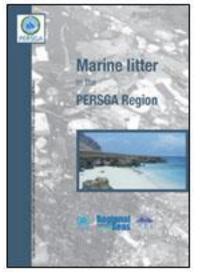

Number of scientific publications and reports describing studies of 'microsized' plastics

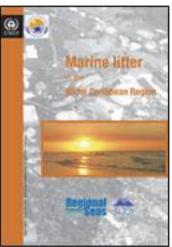



Getting the message across – the 'normal' route

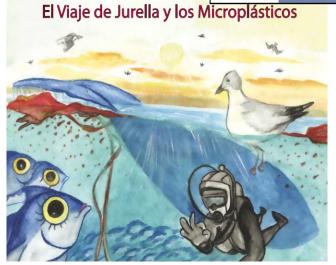








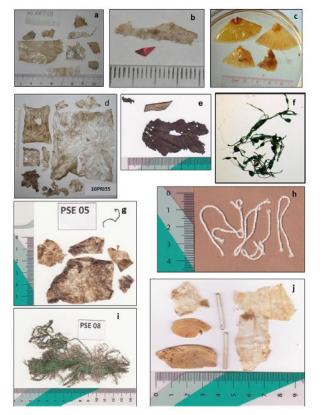
Getting the message across – more focused approach



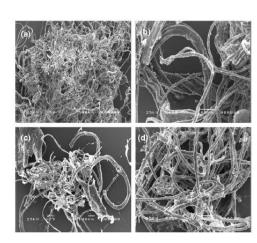
Getting the message across – involving artists

Some essential requirements for tackling marine litter

- Education public, managers, policy-makers, financial
- Cooperation
- Collaboration
- Harmonisation
- Capacity building
- Sharing good practice
- Forming partnerships between industry/business sectors, policy makers, managers, school education, NGOs, funding agencies & academia covering land- and sea-based activities,
- Recognising this is a shared problem required a shared response


Final thoughts

- Aim to significantly reduce generation of ML, with particular focus on reducing plastic
- ➤ We need to be realistic in what we can do solutions have to be appropriate for different situations, specific & cost-effective
- We have to recognise pressures on budgets and conflicting priorities facing politicians and make sure advice is policyrelevant
- Sometimes it is justified to act before all information we would like is available – but needs to be proportionate and adaptive, as some proposed 'solutions' may make the MI situation worse
- Scientists have a moral responsibility to help inform the public, decision makers, politicians and others—that ML is important and needs to be dealt with


Thank you

peter@pjkershaw.com

Magellanic penguin, *Spheniscus* magellanicus, Brazilian coastal waters

Brandao et al., 2011

Gut contents - Nephrops norvegicus

UNEP