

Prioritization of technologies/Infrastructure

Multi Criteria Decision Analysis

Sudhir Sharma

UNEP Risoe Centre on Energy, Climate and Sustainable Development Denmark

Capacity Building Workshop for Low-Carbon Comprehensive Mobility Plans for Indian Cities April, 11 – 13 New Delhi, India

- Overview of MCA
- Steps in Applying MCDA
- MCA in prioritizing options for LCMP
- Scoring
- Weight

A simple hypothetical example entwined with the explanation of the steps

What is MCA?

- A Decision Analysis Technique
- It is a subjective analysis based on:
 - Criteria, scores and weights;
 - Human judgment in determining the criteria, scores and weights
 - Documented process to enable ex-post review and could be used for public scrutiny of assessment
- Allows comparison of apples and oranges.

Detailed Steps in MCA

1. Establish the decision context.

- 1.1 Establish aims of the MCDA, and identify decision makers and other key players.
- 1.2 Design the socio-technical system for conducting the MCDA.
- 1.3 Consider the context of the appraisal.
- 2. Identify the options to be appraised.
- 3. Identify objectives and criteria.
 - 3.1 Identify criteria for assessing the consequences of each option.
 - 3.2 Organise the criteria by clustering them under high-level and lower-level objectives in a hierarchy.
- 'Scoring'. Assess the expected performance of each option against the criteria. Then assess the value associated with the consequences of each option for each criterion.
 - 4.1 Describe the consequences of the options.
 - 4.2 Score the options on the criteria.
 - 4.3 Check the consistency of the scores on each criterion.
- 'Weighting'. Assign weights for each of the criterion to reflect their relative importance to the decision.
- 6. Combine the weights and scores for each option to derive an overall value.
 - 6.1 Calculate overall weighted scores at each level in the hierarchy.
 - 6.2 Calculate overall weighted scores.
- 7. Examine the results.
- 8. Sensitivity analysis.
 - 8.1 Conduct a sensitivity analysis: do other preferences or weights affect the overall ordering of the options?
 - 8.2 Look at the advantage and disadvantages of selected options, and compare pairs of options.
 - 8.3 Create possible new options that might be better than those originally considered.
 - 8.4 Repeat the above steps until a 'requisite' model is obtained.

UNEP RISØ centre

- The Context: Urban population growth and resultant demand for mobility a challenge now and into the future.
- AIM: Recommend to urban authorities prioritized options for safe access and economic mobility with minimal environmental impacts.
- Setting up the system for conducting MCD
 - Process steps
 - Information package for assessment who and how
 - Whom to and how to consult
 - Who's perspective and who decides
 - Decision makers
 - Stakeholders

- General criteria for selecting options:
 - be comprehensive in assessing the options.
 - be open to possibility of adding dropping options.
 - contribute to the objectives
- Source of options identification:
 - Primarily will come from the needs of mobility/accessibility to addressed based on analysis
 - Relevant literature, e.g., GIZ literature on issue, Publication on options for mitigating emissions from transport sector by UNEP Risoe
 - Expert Judgment

The Objective and Criteria

- A clear objective most critical to a clear framework for assessment.
- Objectives define the criteria which are the measures to assess or evaluate the contribution of option to the objective.
- Criteria should be operational specific and measurable
- Options that
 - provide easy access and economic mobility;
 - safe and secure travel;
 - minimal environmental impacts; and
 - least carbon footprint

Assessing the options

- ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT
- Evaluate each option on the identified criteria and sub-criteria
- Evaluation could be monetary, non-monetary, or qualitative
- A starting point for assessment could be qualitative description of each option on all criteria
- An evaluation summary sheet of each option could be useful
 - in providing a comprehensive information to policy/decision makers.
 - enhancing the transparency of the process.

Scoring the options

- First step in comparing apples and oranges: assigning scores.
- Score based on scale representing preference of option wrt a criteria: normally scale is 0 - 100
 - 100 Most preferred option
 - 0 Least preferred option
 - Other options are relatively ranked linear or non-linear
- Scoring dependent on qualitative or quantitative assessment of options on a criteria.
- Process
 - Record individual scores.
 - Analyse extreme scores to understand the reasons and develop consensus

Scoring

- Input data that can be accommodated in MCDA:
 - Monetary data
 - Non-monetary data (without unit)
 - Percentage
 - Qualitative data
 - Rating scales, i.e., 1 (not at all important) to 5 (very important) scale
 - Directly assessed preferences
 - Model derived performance measures

	Cost (cents/km)	GHG Reduction (gm CO ₂ e/km)
Two wheeler	1.2	15
PT – Metro	1.3	4
PT - BRT	0.8	6
4 wheeler	1.7	35

Weighting Criteria

- Weights to criteria enables all scores to be converted to a common scale.
- Weights reflect both the relative importance of criteria as well as difference in unit of preference on different scales.
- <u>Swing weighting</u>: Equating the units is accomplished by judging the relative swing in preference from the bottom to the top of one preference scale as compared to another.

Weighting Criteria

- Weighting can be done as follows:
 - Compare the difference between the least and the most preferred options.
 - Low weight will be given to a criteria if the difference between the lowest and the highest options is small.
 - Compare the difference in absolute value
 - The highest difference is given 100. The rest is calculated based on the absolute value compared to the highest value
 - Ask the stakeholders or judged by the groups
- Intuitive, ad hoc approach

Example: Weighting

	Cost (cents/km)		GHG Reduction (gm CO ₂ e/km)	
Two wheeler		1.2 15		
PT – Metro	1.3		4	
PT - BRT	0.8		6	
4 wheeler		1.7	35	
		Cost (cents/kn	n) (gm CO ₂ e/km)	
Most preferred o	ost preferred option PT – BR		PT - Metro	
Least preferred option		4 wheele	er 4 wheeler	
	Di Co	fference in ost: 0.9	Difference in GH Reduction: 31	

Example: Weighting

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Swing Weighting

	Cost (cents/km)	GHG Reduction (gm CO ₂ e/km)
Swing	(1.7 – 0.8)/0.8 = 1.125	(35 - 4)/4 = 7.75
Weight	0.145	1
Normalized weight	0.126	0.874
	↓ ¥1.125/7.75	\checkmark
=1.125/(1.125 + 7.75) =	=7.75/(1.125 + 7.75)

Assuming equal weight to both criteria

=2*′	1.125/(2*1.125 + 7.75) Cost (cents/km)	GHG Reduction (gm CO ₂ e/km)	
	Swing	(1.7 - 0.8)/0.8 = 1.125	(35 - 4)/4 = 7.75	
	Normalized weight	0.25	0.75	TU
				ΠIΠ

Assuming cost twice as important as GHG

Overall Weighted Scores

	Weight		Overall	Prioritization
	Cost (0.25)	GHG Reduction (0.75)	Weighted Scores	
Two wheeler	56	65	63	
PT – Metro	45	100	86	II
PT - BRT	100	94	96	I
4 wheeler	0	0	0	IV

some issues

- Significant subjective judgment involved process/measures to bring enhanced understanding of individuals scoring important.
- Whose judgment and perspective important at start to define actors who will be involved in the process.
- Important to ensure common information base among all participants.
- Sensitivity analysis important can also address assessing uncertainties.
- Applicable to options that are mutually independent.

Thank You!

