

Trace Metal Content of Lignite Coal from Western Balkans Exacerbates Air-Pollution-Related-Health Risk

Introduction

• The region heavily depends on lignite coal for electricity and household heating, which poses serious threats to the environment and public health

- Financing new electricity systems could significantly impact exposure pathways for trace metals in coal
- Combustion processes and particulate matter pose public health concern¹
- Lack of consideration of these metals leads to incomplete estimation of external costs to pollution²
 - 1. Jr, R. E. L.; Lehmden, D. J. von. Trace Metal Pollution in the Environment. *J. Air Pollut. Cotrol Assoc.* **1973**, *23* (10) 853-857 DOI: 10.1080/00022470.1973.10469854 Finkelman, R. M.; Gross, P. M. The types of data needed for assessing the environmental and human health impacts of coal. *Int. J. Coal Geol.* 1999, 40 (2-3), 91-101 DOI: 10.1016/S0166-5162(98)00061-5.

Noah Kittner^{1,2,3}, Raj Fadadu¹, Heather Buckley¹, Daniel Kammen^{2,3,4}

1-Berkeley Center for Green Chemistry UC Berkeley, Berkeley, CA; 2-Energy & Resources Group UC Berkeley, Berkeley, CA; 3-Renewable and Appropriate Energy Laboratory UC Berkeley, Berkeley, CA; 4-Goldman School of Public Policy UC Berkeley, Berkeley, CA

Discussion and Recommendations

- Arsenic and chromium concentrations in pre-combusted coal exceed IEA averages and are of special concern; presence of all metals poses harmful human and environmental health impacts
- Improving grid efficiency not enough to significantly reduce exposure to toxic heavy metals— need to completely and quickly phase out coal use for energy generation
- "Solar + Natural Gas" path provides best public health outcomes by mitigating risk from coal
- Reappraisal of financing options by multi-lateral development banks and more comprehensive risk assessment to include analysis of heavy metals and composition of particulate matter

Acknowledgements

Megan Schwarzman, Martin Mulvihill, Thomas McKone, Thomas McKeag, SEE Change NET, Rockefeller Brothers Fund, Berkeley Center for Green Chemistry, and Institute of International Studies

Results							
Heavy Metal	Content in Balkan Coal	International Energy Agency Global Average	Content in coals from China ^{38,39}		Content in coals from USA ³⁷		Content in coals
			Bai et al. (2007)	Dai et al. (2012)	Arithmet ic mean	Geomet ric mean	around the world ³⁷
Arsenic	9.6 ± 1.6	2.69	4.09	3.79	24	6.5	8.3
Chromi um	19 ± 1.7	17.6	16.94	15.4	15	10	16
Mercur Y	0.035 ± 0.020	0.091	0.154	0.163	0.17	0.10	0.10
Nickel	8.5 ± 1.7	11.1	14.44	13.7	14	9	13
	20 10 0	[As]	tra vo 🔳 Kosovo Effi	[Cr] ce metal cient China IEA		I I I I I I I I I I I I I I I I I I I	
	Air pollution-related risk						
Energy Scenario Base		Deaths	Serious Illness		Minor Illness		
		2,100 (520-8,200)	19,000 (4	ł,700-57,000)	1,100,000 (280,00-4,500,000))00)
E	Energy Efficient 1,900 (480-7		17,000 (4,300-69,000)		1,000,000 (250,000-4,100,000)		000)
So	olar	1,800 (460-7,200)	17,000 (4	4,200-66,000)	980,000 (2	50,000-3,900,0	000)
So	olar + Natural Gas	1,300 (330-5,100)	12,000 (3	3,000-48,000)	680,000 (1	70,000-2,700,0	00)