

Results of the pilot field study on air (PAS/PUF and water

Heidelore Fiedler Örebro University School of Science and Technology, MTM Research Centre SE-701 82 Örebro, Sweden

Pilot testing of new POPs in air

Experiments undertaken in 2013/2104

- Air sampling with PAS / PUF in four countries:
 - Fiji, **Kenya, Mali**, Uruguay
- 3 months each (October-December 2013)
- Analysis for new POPs in expert laboratories for
 - POPs pesticides
 - Brominated flame retardants
 - PFAS
- Analysis of retained samples for polybrominated flame retardants
 - GRULAC and Africa

Analysis of PBDEs in Passive Air Samples to Support the Global Monitoring Plan under the Stockholm Convention on Persistent Organic Pollutants

- Martrat MG¹, Parera J¹, Adrados MA¹, Abalos M¹, Fiedler H^{2*},
 E. Abad¹
- ¹ IDAEA-CSIC, Barcelona, Spain, ² UNEP/DTIE Chemicals Branch, Geneva, Switzerland

Organohalogen Compd. **74**, 1308-1311 (2012)

Dioxin2011, Cairns-AUS

"New" POPs in African Air Samples – Chlorinated Pesticides Are Dominant

Heather Leslie and Jacob de Boer IVM VU Amsterdam, Amsterdam, the Netherlands

Organohalogen Compd. **76**, 1533-1536 (2014)

Dioxin2014, Madrid

New POPs in Ambient Air Samples Using Passive Air Samplers

- H. Fiedler¹, E. Abad², G. Martrat², B. van Bavel³,
 I. Ericson Jogsten³, J. de Boer⁴
- ¹ UNEP/DTIE Chemicals Branch, Geneva, Switzerland, ² IDAEA-CSIC, Barcelona, Spain, ³MTM Centre Örebro University, Örebro, Sweden, ³ IVM VU Amsterdam, Amsterdam, the Netherlands

Organohalogen Compd. **76**, 1533-1536 (2014)

Dioxin2014, Madrid

Analytes

- Endosulfans include α -endosulfan, β -endosulfan, endosulfan sulfate;
- PBDE₈ included the congeners PBDE-17, PBDE-28, PBDE-47,
 PBDE-99, PBDE-100, PBDE-153, PBDE-154, and PBDE-183;
- HxBB consisted of congener PBB-153;
- HBCD (α, β, γ) was only screened by GC/MS (non-diastereomer-specific);
- PFAS included PFOS, FOSA, NMeFOSA, NEtFOSA, NMeFOSE, NEtFOSE.

Analysis of pesticides and BFR

- PUFs extracted over-night (ca. 16 h) with dichloromethane in pre-cleaned Soxhlet glassware;
- Before extraction, internal standards were added
 - PCB 103, PCB 198 for chlorinated pesticides,
 - $^{13}C_{10}$ -Kepone, $^{13}C_{8}$ -mirex for toxaphene , and
 - PBDE 58 for the brominated flame retardants
- For determination of pentachlorobenzene, HCHs and endosulfans, extracts were cleaned by applying alumina and silica gel column chromatography;
- Other analytes were determined in the second extract;
- Fractions were treated with sulphuric acid before measurement of BFRs and toxaphene;
- Pentachlorobenzene, HCHs, endosulfans: GC-ECD/ECD using CPSil8 and CPSil19 columns (60 m x 0.25 mm x 0.25 μm);
- BFRs and toxaphene: GC-MS operating in the electron-capture negative ion mode using DB-5HT columns, and
- Chlordecone by GC-MS (ECI) using CPSil8CB column (60 m x 0.25 mm x 0.25 μm)

Analysis of perfluoroalkyl substances

Extraction method

¹³C labeled standards of PFASs (PFCAs, PFSAs and FASA/FASE)

Condition with water and MeOH. Load sample.

Washing with 4 ml NaAc (pH 4), 4 ml 20% MeOH.

Eluate with 4 ml MeOH, 4 ml NH₄OH, combine extracts.

Instrumental analysis

UPLC-MS/MS, ESI-

Gradient separation of 10 μ L injections BEH C18 column (100 mm x 2.1 mm, 1.7 μ m)

Sampling scheme

PUF Code	Country of origin	PAS site name	GPS coordinates of site	Sampler No.	Analytes	Actual exposure start date (d-mmm-yyyy)	Actual exposure end date (d-mmm-yyyy)	Effective days of exposure
URY-1	Uruguay			1	New pesticides	8-Oct-2013	8-Jan-2014	92
URY-2	Uruguay	Facultat de	240 50′ 12 1 1 5	2	New pesticides	8-Oct-2013	8-Jan-2014	92
URY-3	Uruguay	Agronomia,	34° 50′ 13.1"S 56° 13′ 20.8"N	3	BFR	8-Oct-2013	8-Jan-2014	92
URY-4	Uruguay	Montevideo	30 13 20.0 N	4	BFR	8-Oct-2013	8-Jan-2014	92
URY-5	Uruguay			5	PFAS	8-Oct-2013	8-Jan-2014	92
KEN-1	Kenya	Meteorological		1	New pesticides	1-Oct-2013	2-Jan-2014	93
KEN-2	Kenya	station,	049 451 6	2	New pesticides	1-Oct-2013	2-Jan-2014	93
KEN-3	Kenya	University of Nairobi, Upper	01° 15' S 36° 44' E	3	BFR	1-Oct-2013	2-Jan-2014	93
KEN-4	Kenya	Kabete Campus.		4	BFR	1-Oct-2013	2-Jan-2014	93
KEN-5	Kenya	Nairobi		5	PFAS	1-Oct-2013	2-Jan-2014	93
MLI-1	Mali			1	New pesticides	4-Oct-2013	7-Jan-2014	95
MLI-2	Mali	Mali Damalia	12°20 1551 N	2	New pesticides	4-Oct-2013	7-Jan-2014	95
MLI-3	Mali	Mali Bamako ACI2000	12°38.155' N, 008° 01.352' W	3	BFR	4-Oct-2013	7-Jan-2014	95
MLI-4	Mali	ACIZOOO	000 01.332 **	4	BFR	4-Oct-2013	7-Jan-2014	95
MLI-5	Mali			5	PFAS	4-Oct-2013	7-Jan-2014	95
FJI-1	Fiji			1	New pesticides	2-Oct-2013	2-Jan-2014	92
FJI-2	Fiji		sori airport 18°02'48.2"S 178°33'33.3"E	2	New pesticides	2-Oct-2013	2-Jan-2014	92
FJI-3	Fiji	Nausori airport		3	BFR	2-Oct-2013	2-Jan-2014	92
FJI-4	Fiji			4	BFR	2-Oct-2013	2-Jan-2014	92
FJI-5	Fiji			5	PFAS	2-Oct-2013	2-Jan-2014	92

Sampling sites (1)

Fiji, Nausori airport 18°02'48.2"S, 178°33'33.3"E Exposure: 2 Oct 2013-2 Jan 2014

Mali, Bamako Centre 12°38.155' N, 008° 01.352' W Exposure: 4 Oct 2013-7 Jan 2014

Sampling sites (2)

Kenya Meteorological station, Nairobi 01° 15' S, 36° 44' E

Exposure: 1 Oct 2013-2 Jan 2014

Uruguay

Facultat Agronómica, Montevideo 34° 50′ 13.1″ S, 56° 13′ 20.8″ W Exposure: 1 Oct 2013-2 Jan 2014

HF, New POPs Tools, Accra – Jul 2016

New POPs pesticides in PUFs

3 months exposure

In all samples, γ -HCH was the predominant congener within the HCHs

In all samples, α -endosulfan was dominating within the three endosulfans.

HF, New POPs Tools, Accra – Jul 2016

Endosulfans in PUFs

Sample ID	FJI	KEN	MLI	URY
Unit	ng PUF ⁻¹	ng PUF ⁻¹	ng PUF ⁻¹	ng PUF ⁻¹
α-endosulfan	<0.10	2.40	5.20	12
β-endosulfan	0.03	0.22	1.1	1.6
Endosulfan sulfate	<0.1	1.0	<0.1	1.9
Σ endosulfans	0.03	3.62	6.30	15.5

	FJI	KEN	MLI	URY
Unit	ng PUF ⁻¹	ng PUF ⁻¹	ng PUF ⁻¹	ng PUF ⁻¹
Σ PBDE(8)	5.71	1.49	4.21	2.89
PBB-153	0.06	<0.03	0.03	<0.03

PBDE₈ and PBB in PUFs

3 months exposure

- $\Sigma PBDE_8$ were at similar concentrations in all four countries;
- In all samples, PBDE-47 was the predominant congener HF, New POPs Tools, Accra Jul 2016

PFASs in PUFs

Samples from Mali and Uruguay needed additional clean-up steps; therefore, poor recoveries.

	FJI	KEN	MLI	URY
PFOS	1.95	0.30	0.38	0.30
FOSA	1.98	<0.386	<0.386	0.78
NMeFOS				
Α	0.16	<0.031	<0.031	<0.031
NEtFOSA	0.10	0.03	<0.023	<0.023
NMeFOSE	2.70	0.64	<0.15	<0.15
NEtFOSE	0.69	0.53	<0.003	<0.003

HF, New POPs Tools, Accra – Jul 2016

Comparison: Initial POPs (2010) vs. new POPs (2013)

"Snapshot" measurement (3 m):

Pesticides: Endosulfans lower concentrations than DDTs and drins; **Industrial chemicals**:

Pentachlorobenzene similarly low as HCB;

PBDE₈ lower than PCB₆

HF, New POPs Tools, Accra – Jul 2016

HBCD

- HBCD was screened in all four samples but was not quantifiable;
- Isomer-specific determination (α, β, γ) was not performed.

Conclusions air testing (1)

- The pilot testing of a proposed sampling and analysis scheme was very helpful – and necessary;
- PUF-PAS suitable to sample for all POPs presently listed in annexes of the Stockholm Convention;
- Clean-up of PUFs for analysis of PFOS/PFASs needs modification;
- Quantification of chlordecone was not possible due to the strong polar character of compound; it could not be separated from the matrix;
- Analysis of endosulfans and chlordecone in the same extract was not possible (baseline too high for proper quantification);
- The experiences did feed into the guidance document for the Global Monitoring Plan and UNEP/GEF GMP2 projects.

Conclusions air testing (2)

HBCD analysis

Tiered approach

- Screening step for the sum of three congeners (α , β , γ) with GC/(HR)MS as part of the PBDE analysis;
- If positive, isomer-specific analysis with LC/MS-MS in expert laboratory (IVM VU Amsterdam)

Analysis of sum HBCD:

- The three HBCD congeners could not be quantified as sum parameter using LRMS detection at a detection limit of 0.33 ng PUF⁻¹.
- Using HRGC-HRMS with an EI+ source, the peaks were close to the LOD; therefore, APGC-MS/MS developed

Proposed PAS/PUF sampling scheme

Assignment	of samplers,	PUFs, and analytes according to laboratory per country)	No. analyses per year
Sampler 1:	PUFs 1-4:	For basic POPs pesticides in expert back-up laboratory	4
		drins, chlordanes, DDTs, HCHs, heptachlors, mirex, HCB, pentachlorobenzene, endosulfans,	
		toxaphenes, chlordecone	toxaphene, annual sample only
Sampler 2:	PUFs 1-4:	For basic POPs in national POPs laboratory	4
		drins, chlordanes, DDTs, HCHs, heptachlors, mirex, HCB, pentachlorobenzene, endosulfans,	
		toxaphenes, chlordecone	toxaphene, annual sample only
Sampler 3:	PUFs 1-4:	For indicator PCB in expert back-up laboratory	4
		6 indicator PCB	
Sampler 4:	PUFs 1-4:	For indicator PCB in national POPs laboratory	4
		6 indicator PCB	
Sampler 5:	PUFs 1-4:	For dioxin-like POPs in expert back-up laboratory (combined into one extract as annual average)	1
		17 PCDD/PCDF, 12 dI-PCB	
Sampler 6:	PUFs 1-4:	For dioxin-like POPs in national dioxin laboratory (combined into one extract as annual average)	1
		17 PCDD/PCDF, 12 dl-PCB	
		For dioxin-like POPs in expert back-up laboratory (each exposure to generate one seasonal data point;	
Sampler 7:	PUFs 1-4:	total of 4 per year and country)	4
		17 PCDD/PCDF, 12 dI-PCB	
		For dioxin-like POPs in national laboratory (each exposure to generate one seasonal data point; total of 4	
Sampler 8:	PUFs 1-4:	per year and country)	4
		17 PCDD/PCDF, 12 dI-PCB	
Sampler 9:	PUFs 1-4:	For PBDE in expert laboratory	4
		8 PBDE, HBCD, PBB	
Sampler 10:	PUFs 1-4:	For PBDE in national laboratory	4
		8 PBDE, HBCD, PBB	
Sampler 11:	PUFs 1-4:	For PFOS in expert laboratory	4
		6 PFAS	
Sampler 12:	PUFs 1-4:	For PFOS in national laboratory	4
		6 PFAS	

Color codes:

Green Analysis in expert back-up laboratory

No Fill Analysis in national laboratory

Yellow Groups of chemicals recommended for analysis

HF, New POPs Tools, Accra - Jul 2016

Pilot testing of new POPs in water

Experiments undertaken in 2014

- Water sampling in six countries:
 - Fiji, **Kenya, Mali**, Uruguay, and
 - -the Netherlands and Sweden
- Sampling procedure:
 - 1 day sampling;
 - Several grab samples merged into one;
- PFOS analysis:
 - Analysis for PFOS in expert laboratory

Guidance for Global Monitoring Plan

UNITED NATIONS

SC

UNEP/POPS/COP.6/INF/31

Distr.: General 4 February 2013 English only

Stockholm Convention on Persistent Organic Pollutants

Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants Sixth meeting

Geneva, 28 April-10 May 2013 Item 5 (i) of the provisional agenda*

Matters related to the implementation of the Convention: effectiveness evaluation

Guidance on the global monitoring plan for persistent organic pollutants

Water as a core matrix for PFOS/PFOSA

POPs listed at COP-4				
	Air	Human Milk	Human Blood	Water
Chlordecone	Chlordecone	Chlordecone	Chlordecone	
α-НСН	α-НСН	α-НСН	α-НСН	
β-НСН	β-НСН	β-нсн	β-нсн	
ү-НСН	ү-НСН	γ-НСН	γ-НСН	
Hexabromobiphenyl	PBB 153	PBB 153	PBB 153	
Pentachlorobenzene	PeCBz	PeCBz	PeCBz	
c-penta BDE	BDE 47, 99, 153, 154,	BDE 47, 99, 153, 154,	BDE 47, 99, 153, 154,	
c-octa BDE	175/183 (co-eluting) Optional BDE 17 28 100	175/183 (co-eluting) Optional BDE 100	175/183 (co-eluting) Optional: BDE 100	
PFOS ⁷	PFOS, PFOSA, NMeFOSA, NEtFOSA, NMeFOSE, NEtFOSE	PFOS, PFOSA	PFOS, PFOSA	PFOS, PFOS

HF, New POPs

Sampling site and sampling - Fiji

Samplers and instructions were sent by IVM VU Amsterdam and MTM Research Centre Örebro University

GPS coordinates of

site

18.026698°S

178.368659°E

HF, New POPs Tools, Accra – Jul 2016

Sampling site and sampling - Kenya

Figure 14: Water collection at Sabaki River mouth

Water site name	GPS coordinates of site	
Sabaki River Mouth	3° 09′ 41.0" S	
close to Indian Ocean	40° 07′ 50.0" E	

Sampling site and sampling - Mali

Water site name	GPS coordinates of site	
Sotuba/Mali	12°40.095′ N	
Sotuba/Mali		
Sotuba/Mali	007°55.0034' W	

Sampling site and sampling - Uruguay

Water site name	GPS coordinates of site	Sampler origin	sampling depth (m)	Distance from shore (m)
Río de la Plata	34° 12′ 22.29"S	1	6	50
Río de la Plata	58° 04′ 38.32"W	2	6	50

GMP pilot monitoring

- Fiji, Mali, Kenya and Uruguay were invited to participate
- Background samples, rivers
- LOD ~1 ng/mL
- 100 mL/analysis
- HDPE bottles
- Duplicate analysis
- Reference material

By IVM VU Amsterdam

Results PFOS in water

Expert workshop held in Amsterdam to discuss amendments to the guide on POPs monitoring to include PFOS and precursors

Sampler type	Grab IVMVU					
Year-season	2014-W-IVM	2014-W-IVM	2014-W-IVM	2014-W-IVM	2014-W-IVM	2014-W-IVM
Start	30/04/2014		30/04/2014	04/09/2014	11/05/2014	
Country name	Fiji	Kenya	Mali	Uruguay	Netherlands	Netherlands
Latitude	18° 026.698' S	3° 09′ 41.0" S	12°40.095′ N	34° 12′ 22.29" S	52° 33'45.53'' N	51°01.05"N
Longitude	178° 368.659' E	40° 07′ 50.0" E	007°55.0034' W	58° 04′38.32" W	5° 54'39.95'' E	E4°29'00.70''
Site name	Waimanu River	Sabaki River Mouth	Sotuba/Mali	Río de la Plata	Kampen, IJssel	Rotterdam, Nieuwe Maas
Sample ID	FJI-W-IVM-1	KEN-W-IVM-1	MLI-W-IVM-1	URY-W-IVM-1	NLD-W-IVM-1	NLD-W-IVM-1
Unit	ng L ⁻¹					
PFOS anion	1.1	4.6	5.7	<1.0	9.9	11

Thank you very much