Decoupling natural resource use and environmental impacts from economic growth

www.unep.org/resourcepanel/decoupling

The structure of the report

- Defining decoupling and its importance.
- Long-term trends in resource use and negative environmental impacts, including scenarios
- Decoupling and the need for system innovations
- Decoupling and development dynamics
- Case studies from Germany, South Africa, China, and Japan
- Conclusions and challenges

Four categories of primary raw materials

Fossil fuels

Construction minerals

Metal Ores & industrial minerals

Resource Use & Decoupling

Figure 1. Global material extraction in billion tons, 1900-2005

Long-term trends in resource use

Figure 4. Global metabolic rates 1900-2005, and income

Source: Krausmann *et al.*, 2009; based on Sec Database "Growth in global materials use, GDP and population during the 20th century", Version 1.0 (June 2009): http://uni-klu.ac.at/socec/inhalt/3133.htm)

Long-term trends in resource use

Figure 2.3. Gross Domestic Production and Domestic Material Consumption in OECD countries, 1980–2000

Source: OECD, 2008b. Data update provided by OECD on 1 April 2011, http://www.oecd.org/dataoecd/55/12/40464014.pdf

Figure 2.6. The global interrelation between resource use and income (175 countries in the year 2000)

Interrelation between resource use & income

Average metabolic rates by development status and population density

Figure 2.7. Average metabolic rates (resource use in tons/capita) by development status and population density

High-density means a population density of 50 people/km² or higher. Share in world population: 13% industrial, high density, 6% industrial, low density, 6% rest of the world, high density, 6% rest of the world, low density.

Source: Krausmann et al., 2008

Global shift in the extraction of minerals and ores

Figure 2.11. Global extraction of industrial minerals and ores 1980 and 2006, by type of country

Source: SERI, Mosus data base, own calculation, http://seri.at/projects/completed-projects/mosus

A hundred years of decline of resource prices

Figure 2.4. Composite resource price index (at constant prices, 1900-2000)

Source: Wagner et al., 2002

Resource prices on the rise, recently

Source: World Bank Commodity Price Data (Pink Sheet), historical price data, available from http://blogs.worldbank.org/prospects/global-commodity-watch-march-2011

Declining Ore Grades

Figure 2.14. Ore grades of nickel and copper mines, 1885-2010 Australia (%Cu) Australia (%NI) Canada (%Cu) Metal ore grade KCu, KNi Canada (%NI) USA (%Cu)

Three future scenarios for 2050

Figure 2.15. Resource use according to three different scenarios up to 2050

- Development 1900–2005
- Freeze and catching up
- Factor 2 and catching up
- Freeze global material consumption

Average global metabolic rate Metabolic scale Metabolic rate Gigatons t/cap/yr

Source: Krausmann et al., 2009 (Development 1900-2005) and own calculations (see text)

Global metabolic scale

The concept of decoupling

Figure 1. Two aspects of 'decoupling'

The life cycle of resources

Figure 3. The life cycle of resource extraction and use

- Recycling flows
- Flows of energy carriers (biomass and fossil fuels)
- Other material flows (ores, construction minerals)

Decoupling affects different parts of the life cycle in different ways

Note: flows of resources, emissions and wastes according to European $\dot{\mbox{}}$

proportions

Source: Fischer-Kowalski, 2011

Labour, materials & energy productivity

Figure 3.2. Resource productivity, labour productivity and energy productivity in EU-15

Note: Labour productivity in GDP per annual working hours; material productivity in GDP per domestic consumption (DMC) and energy productivity in GDP per total primary energy supply (TPES). Source: EEA, 2011

Sustainability-Oriented Innovation will be key

Figure 3.4. Conceptual model of innovations

Decoupling and system innovations

Innovation is key to decoupling from escalating resource-use & environmental impacts

3 key issues

- □ Trade, special case of Africa
- Rethinking growth
- □ Role of cities

÷

Decoupling, trade and development dynamics

Figure 4.2. Raw material extraction and trade by country type

Source: Drawn from SEC database, http://www.uni-klu.ac.at/socec/inhalt/3812.htm, see Steinberger et al., 2010

Economic structure and trade

Figure 4.1. Composition of exports (in monetary units) by world regions, 2006

Source: WTO, 2008

Material intensity of economies

Source: Behrens et al., 2007

Africa – resource curse or leapfrogging?

- Growing faster than ever before
- □ Diversification, resource sector down to 24%
- But primary resources still 80% of exports
- Prices are too low, resource rents not properly invested
- In a world of depleting resources, resource wars on the rise (Sudan, W. Sahara, DRC, Nile region, etc) – failing states
- Decoupling helps Africa to rethink development

Rethinking growth

Figure 3.1. The different guises of development

Source: Redrawn from Gallopin, 2003, p. 27

Government investments

Figure 4.7. Eco-friendly spending, total amount and percentage of total fiscal stimulus package

Source: HSBC, 2009

Cities as innovation centers for decoupling

The country case studies

- . Germany
- 2. China
- 3. South Africa
- 4. Japan

Lessons learned from the 4 case studies

- Governments are responding to concerns about increasing resource scarcity that is affecting economic growth.
- None have full-fledged policies for achieving comprehensive resource and impact decoupling, but all are taking significant steps toward more sustainable use of resources and reduced environmental impacts.
- The language of resource efficiency, resource productivity, dematerialization, and material flows has entered mainstream policy development, in different ways in each country.
- Diversity in approaches to decoupling is to be expected, but the general logic of the approach is appealing.

Major policy challenges 1

- How can decoupling resource flows and associated environmental impacts be linked to related challenges, such as climate change, degrading ecosystem services, and pollution?
- How can the absolute physical limits of non-renewable resources best be communicated?
- How can current decoupling trends be accelerated, for example through improved innovation?
- What market signals can be used to give resource productivity increases a higher priority?

Major policy challenges 2

- What will convince governments and financial institutions to adopt sustainable resource management as essential to a "Green Economy"?
- How can cities become centers for innovation in practical decoupling?
- How can decoupling contribute to reducing levels of global inequality and help fight poverty?

Decoupling & the Green Economy

Decoupling is about shifting from debt-financed consumption (which is unsustainable) as the primary economic driver of our economies, to sustainability-oriented investments in innovation as the primary economic driver of our economies.

This unites the developed & developing world:

- provides developed economies with a way out of the recession by creating new opportunities for investment, &
- it ensures that poverty is eradicated in the developing world using policies that result in real resource efficient growth rather elite consumption premised on new infrastructures that foster resource & energy intensive growth

