

Countries participated in the pilot study for mercury monitoring in ambient air and human biomonitoring

The key deliverables included:

- A report on elements to consider when designing monitoring plan for Mercury;
- · A global review of monitoring networks and worldwide laboratory capacities
- Standards Operating Procedures (SOPs) for the assessment of prenatal exposure to mercury including survey protocols;
- · Guidance for passive air sampling of mercury in ambient air;
- A global assessment of laboratories analysing mercury;
- · A report on the review of technical information on mercury monitoring in biota;
- A report on the review of technical information on mercury monitoring in soil.

Mercury Monitoring

Soil-2019

Air-2018

Humans—2018

Interlaboratory 2018

Global Assessment of Laboratories Analysing Mercury

Laboratories from all UN Regions participated in the first round interlaboratory assessment—2018

Results received per matrix, and percentage of laboratories reporting satisfactory results

Type of samples	Labs delivering data	% of satisfactory results*
standard solution	34	79.4 %
fish sample	32	84.4 %
human scalp hair	28	82.1 %

^{*}Considered satisfactory results if the z-scores were in the interval > -2 and < +2.

Worldwide Capacities to Analyse Mercury

210

laboratories from all 5 UN regions registered in the mercury laboratory databank.

Access the databank using the QR code:

Laboratories with Quality Control System: 182

Laboratories with Quality Assurance Programme: 152

More details can be found at the Information document: UNEP/COP.3/INF/19

Highlights and Conclusions of the Project

- Biota is a key bioindicator that reflect the potential harm of emissions and releases of mercury to air, water and land;
- Soil is a very complex matrix, mercury monitoring in soil need further science-based development for achieving comparable and cost-effective data;
- Cost-effective methodologies to assess human exposure (human biomonitoring) to and environmental (air sampling) concentration of mercury are well-established;
- A global monitoring plan for mercury can be built on already existing initiatives, however long-term capacity building strategies, especially in some regions, (i.e. Africa, South Asia, Pacific and Latin America) and due consideration of long-term sustainability are still needed; and

