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Climate change is shifting the rhythm of nature
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1. 
Timing is everything 
for ecosystem harmony

Timing is critical in the natural world. Birds’ chicks must be hatched when 
there is food to nourish them, pollinators must be active when their host 
plants flower, and snow hares must change their colour from white to 
brown as the snow disappears. Phenology examines the timing of recurring 
life-cycle stages, driven by environmental forces, and how interacting 
species respond to changes in timing within an ecosystem.1,2 Plants and 
animals often use temperature, daylength, the arrival of rains, or other 
physical changes as cues for the next stage in their seasonal cycle. When 
spring arrives earlier, many birds react by breeding sooner, matching 
the advanced emergence of food for their nestlings as temperatures 
warm. Because temperature is such a strong influence on these cues, 
phenological shifts over the past decades are among the most visible 
consequences of global climate change, at least in temperate and polar 
regions of the world. 

Temperature is not the only environmental variable that affects phenology. 
At higher latitudes, another critical variable is photoperiod, or daylength, 
varying at different times of year.3-5 While photoperiod itself is not affected 
by climate change, the degree to which temperature affects phenology 
can depend on it: in some systems, high temperatures will cue the next 
stage during a long photoperiod, but not during a shorter one.3,6,7 At higher 
latitudes, some plants and insects also need a spell of low temperature, 
called winter chilling, to respond well to warmer temperatures once they 
arrive.8-10 Some species depend on fire to cue life-cycle stages, such as fire-
stimulated seed release from cones and seed germination.11,12 An aquatic 
example is the influence of rain on river discharges that in turn influence 
the timing and duration of the migration of fishes, along with water 
temperature and photoperiod factors.13-15 

Understanding phenology in tropical regions is more complicated than in 
regions that have clear annual seasonal cycles, due to less variations in 
temperature and daylight.16-18 Tropical species show diverse phenological 
strategies, individuals within a population may not synchronize, and cycles 
can be shorter than 12 months. Different factors, including rain, drought, 
moisture availability and abundant exposure to sunlight, can trigger the 
next life-cycle stage in tropical regions.17-21 

A major concern with phenological changes in response to climate change 
is that not all interdependent species in a particular ecosystem shift in 
the same direction or at the same rate.16,22-26 The reason for varying shifts 
is that each organism is sensitive to different environmental drivers, or 
shows different levels of sensitivity to a single environmental driver.5,17,27,28 
Within food chains, plants may shift their development more quickly than 
animals that feed on them, leading to phenological mismatches. Detailed 
studies on various life-cycle stages across a wide range of plant and animal 
species have detected significant phenological mismatches.16,22,30-34 These 
mismatches between predator and food source within a food web will 
affect individuals’ growth, reproduction and survival rates, with eventual 
repercussions for whole populations and ecosystems. 

Phenology in the tropics 
A key feature of tropical climates is the lack of distinct 
seasonal temperature variations.18 In contrast, changes in 
rainfall and the switch between dry and wet seasons define 
clearer phases within annual cycles of the tropics.16,18 The 
frequency and intensity of rainfall, or its absence, is a crucial 
driver of phenological changes in tropical plants, as well as 
sunlight, humidity, and the subtle temperature changes.16-21 

Given the high species diversity in tropical ecosystems, 
phenological responses to those drivers are various and 
complex, within species and communities.19,35 

Rainfall patterns in tropical regions are highly influenced 
by the El Niño/La Niña Southern Oscillation (ENSO), 
characterized by its alternating warm and cool phases of 
sea surface temperature in the equatorial Pacific Ocean.36 
These anomalies occur every 2-7 years and typically last 
for 9-12 months.36 Tropical plant communities respond to 
ENSO events, such as El Niño-induced mass flowering or 
drought-affected fruiting.17,18,20,37 More frequent and more 
intense extreme weather events, delivered by ENSO and 
climate change, are likely to further disrupt the timing of 
leafing, flowering and fruit production.17,18 Such phenological 
changes will have cascading effects on dependent herbivores, 
nectarivores and frugivores, as well as other functional 
groups within the ecosystems.17,19 Long-term observations 
of phenological change in the tropics are still scarce, 
and predicting the magnitude of phenological shifts and 
mismatches remains a challenge.18 

The blooming of cherry blossom (Prunus jamasakura) 
marks the arrival of springtime in Japan and is central to 
Japanese culture. Celebration of cherry blossom has been 
traced back to around 712 A.D.38 Phenological observations 
in Kyoto have been historically recorded in old diaries and 
chronicles.39-41 Researchers have assembled a phenological 
data series of full-flowering dates of cherry blossom from 
these documents, dating back as early as 812 A.D.39-41 

Over 1,200 years, the full-flowering dates started as early as 
late March and as late as early May.42 

Blooming of cherry blossom over 1,200 years
Trendline is 50-year moving average

Blossoming has 
advanced progressively 
to earlier dates since 
1830s, which also 
coincided with rising 
temperatures based 
on meteorological 
observations, with 
the bias effects of 
urban heat already 
eliminated.41,42 

Data source:  
Historical data courtesy of  
Dr. Yasuyuki Aono, Osaka Prefecture 
University, Japan, available at  
http://atmenv.envi.osakafu-u.ac.jp/
aono/kyophenotemp4/

Data from 1950 courtesy of Japan 
Meteorological Agency, available at 
http://www.data.jma.go.jp/sakura/
data/index.html

April 4th  
Predicted full bloom 
for 2022

March 26th, 2021 
Earliest full bloom  
on record

Image credit: Meyers Lexicon book from 1908 and Nicku / Shutterstock.com.
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2.  
Disruption in 
ecosystem harmony 

Shifts in phenology due to climate change have been detected at a variety 
of stages: reproduction, flowering, leaf-out, onset of larval development, 
moult, hibernation, migration, and others. Supporting data come from 
studies comparing phenological shifts among large sets of species 
– plants, insects, fish, amphibians, birds and mammals, for which 
phenological events have been recorded over the long term through 
observations in both hemispheres.16,23,29-33,43-51 Researchers have also 
tracked an increasing probability of phenological mismatches across 
multiple regions, including through 10,000 data sets on plants and animals 
across the United Kingdom, terrestrial species in the Alps, over 1,200 time 
series of phenological trends in the southern hemisphere, and marine 
species across different oceans, among others.16,19,23,32,43,51 
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Studies on birds provide ample evidence of mismatches affecting 
successful breeding. Species such as pied flycatchers (Ficedula hypoleuca) 
and great tits (Parus major) need their chicks to hatch when their normal 
food supply of caterpillars is most abundant.52-55 This peak food-supply 
period is short, covering only a few weeks, so the correct timing is crucial. 
Other birds, like the common murres (Uria aalge), need to precisely time their 
reproduction to the inshore migration of their main prey, small forage fish.56 

Within the annual cycle, different life stages need to synchronize. For 
migratory species, annual cycles involve stages of moving to breeding 
grounds, reproducing, moulting and returning to wintering grounds. Some 
life-cycle stages, like reproduction, are highly temperature-sensitive. With 
warming temperatures, reproductive phenology is shifting, while other 
stages, like moult, are more sensitive to photoperiods, so they are not 
occurring in synchrony.57,58 

Phenological responses differ throughout marine ecosystems and seasonal 
cycles, leading to mismatches between species and among groups in the 
food web.31,32,43,59 Research shows that phenological responses to climate 
change happen faster in marine environments than on land.31,32  The 
different marine groups, from plankton to higher-up predators, all shift their 
phenology at different rates, indicating that climate change can cause 
mismatches in whole oceanic communities as well.31,32,60,61 

Differences in the rates of phenological responses to warming across 
terrestrial, freshwater and marine ecosystems could ultimately affect 
species that depend on different ecosystems to host phenological 
transitions to the next life-cycle stage. Examples include fish that 
migrate between marine and freshwater ecosystems, and many insects, 
amphibians and birds whose life-cycle stages depend on both terrestrial 
and aquatic ecosystems.24,62-64 Mismatched phenological shifts could cause 
widespread food-web disruptions and ecological consequences.26

While phenological responses to climate change are well-documented, 
remaining questions about links to populations and consequences for 
ecosystems deserve greater attention.34,51 In the Arctic, after snowmelt, the 
vegetation that caribou (Rangifer tarandus) mothers and calves depend on 
has advanced significantly due to higher temperatures. Now caribou calves 
are born too late, leading to a 75 per cent decrease in offspring.65 In roe 
deer (Capreolus capreolus), the increased mismatch between birth date and 
food availability also decreases calves’ survival chances.66 

Asynchronous changes in the phenology of a broad range of interacting 
species have the potential to disrupt the functioning of whole ecosystems 
and the provision of ecosystem services on which human systems 
depend.34,61 Shifts in the phenology of commercially important marine 
species and their prey have significant consequences for all aspects of 
fisheries.47,67-69 Phenological responses in crops to seasonal variations 
will be challenging food production in the face of climate change. For 
example, fruit trees that bloom early and then experience late-season 
frosts result in large economic losses for orchards.70 Phenological shifts 
are already complicating climate-smart agricultural adaptation for major 
crops around the world.71 

Hungry birds  
and early caterpillars 
A long-standing, well-known example of 
phenological mismatch is between the great tit 
(Parus major) and its caterpillar food.54,55 This 
small hole-nesting songbird is found across 
Asia and Europe and produces unusually large 
broods. The parents must provide large amounts 
of nourishment for fast-growing nestlings in the 
18 days it takes for their full development. Adults 
may deliver caterpillars at the rate of almost one 
per minute during that period.72 To ensure this 
level of food supply, the birds use temperature 
as a cue to time their breeding so the nestlings 
arrive at the peak abundance of caterpillars on 
oak trees. For similar reasons, the hatching of 
caterpillar eggs is timed with the emergence of 
oak trees’ young foliage.73 

Field observations show varying phenological 
responses in these two interacting species across 
different sites.54,55,74,75 The great tit population 
in the Netherlands has advanced its egg-laying 
in response to warming trends, but the shift is 
not enough to match the peak of the caterpillar 
population.54,55,74 Forecasts indicate that the 
caterpillars’ phenology will continue to advance 
faster than the birds’ in the coming decades, 
further increasing the mismatch.76 In contrast,  
a 47-year population study in the United Kingdom 
found that both birds and caterpillars shift their 
timing at approximately the same rate, keeping 
the interaction in synchrony.75 Similar results were 
found in Belgium and the Czech Republic.77,78  
These findings demonstrate the complexity in 
phenological responses among species and 
populations in different environments.27,80 

Each circle represents a quantified rate of phenological 
response of a particular species as it shifts a life-cycle stage 
to earlier or later by a number of days per decade. Circles 
appear as overlapping when two or more species in the same 
taxonomic group shift at similar rates.

Identifying shifts, 
tracking trends 

days per decade

days per decade

In the early 2000s, researchers published a few pioneering broad-
scale assessments of phenological shifts that became models for 

ongoing work.22,29,30 A synthesis of those databases indicate that the 
life stages of 203 plant and animal species advanced by about 2.8 
days per decade.30 Since then, additional ecosystems and biomes 

have been assessed for phenological trends. The visualization  
below presents the observed phenological shifts within taxonomic 

groups tracked in recent assessments.31-33,49 See page 57 for complete references.
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Incredible journeys: 
The challenge of mistimed migration  

Migration is a behavioural adaptation to seasonality.81 Periodic movements 
of animals between habitats allows them to optimize resources in multiple 
locations at different times of year. Migration is also necessary when 
seasonal air or water temperatures become unfavourable for breeding 
or rearing offspring. Most migratory species are therefore from high-
latitude regions where changes in season and available resources are 
most marked.81 Diverse species of insects, crustaceans, reptiles, fish and 
mammals migrate, and many cover remarkable distances. Some avian 
migrants nest in the high Arctic and escape its winter to lower latitudes; 
cetaceans migrate between the equator and polar feeding grounds; and 
migrating herbivorous mammals follow seasonal changes in vegetation 
across continents.81,82 

Long-distance migrants are particularly vulnerable to phenological 
change caused by climate warming effects, which are not uniform across 
regions. Local climatic cues that normally trigger migration may no longer 
accurately predict conditions at both destination and stopover sites along 
the route. The challenge is even greater for migrants returning to polar 
regions where the speed and magnitude of climate change are greatest.83,84 
Consequently, many migratory species struggle to arrive when quality 
food is still abundant, weather is suitable for specific life-cycle stages, 
predation or competition pressure is lower, or parasites and pathogens 
are fewer.34,81,85,86 Advancing spring phenology in high latitudes has caused 
increasing degrees of ecological mismatch for migratory species, with 
potential demographic consequences.81,86,87 

Species have demonstrated the ability to modify their migratory behaviour, 
from adjusting the timing to changing routes and locations.81,85,88,89 But their 
adaptive capacity in response to climate change is already compromised 
by other ongoing threats. Ecological degradation, fragmentation and 
loss of feeding, breeding and resting habitats, hunting, pollution, plus 
other hazards on long journeys, are threatening migratory species with 
increasing pressure to adapt to rapid environmental changes.88,90

Provisions to maximize adaptive potential and build resilience in species 
populations require a reduction in conventional threats and modification of 
existing conservation policies and strategies in light of climate change.81,91 
An extensive network of diverse critical sites and protected habitats 
could maximize the adaptation potential of migratory species.88 It is also 
imperative to ensure and enhance the connectivity of land and marine 
habitats critical for dispersal, now and in the future.88,92 Increasing habitat 
connectivity will help maintain adaptive genetic variation and population 
viability needed for species survival.  

European migratory birds
Analysis of spring arrival times of 117 European 
migratory bird species over 5 decades suggests 
increasing levels of phenological mismatch to 
spring events. This has contributed to population 
decline in some migrants, particularly those 
wintering in sub-Saharan Africa.87 

White stork (Ciconia ciconia)

The white stork is a long-lived migratory bird that 
overwinters throughout Africa.93 They adapt their 
migratory timing to advance arrival at breeding 
grounds in different parts of Europe and nest 
early to avoid mismatch with food supply. 

Early breeding exposes hatchlings to 
unfavourable conditions, such as strong wind 
and heavy rainfall. With extreme weather events 
expected to become more frequent under 
changing climate, white stork hatchling mortality 
may increase in the future.94,95

Monarch butterfly (Danaus plexippus)

The North American monarch butterfly is renowned for its 4,300 km journey 
between summer breeding grounds across southern Canada and northern 
United States, and overwintering sites in central Mexico.96 

Shortened daylength and lower temperatures in autumn usually prompt 
them to fly south. Analysis over 29 years shows that they have delayed 
migration by 6 days/decade due to warmer-than-normal temperatures. 
Late-season migrants appear less likely to reach overwintering sites 
than those migrating earlier in the season, possibly from encountering 
mismatches in food availability along the way.97

Barnacle geese (Branta leucopsis)

Flocks of barnacle geese usually migrate from 
their wintering ground on North Sea coastlines 
to spring breeding grounds in northern Russia 
and Svalbard. Adjusting for climate changes, 
they have begun migrating earlier to avoid 
mismatches with food at destination, and to 
accelerate the journey, they tend to skip stopover 
feeding sites along the Baltic Sea.98 Despite 
arriving early, they cannot lay until they have 
built sufficient reserves for egg production. 
Consequently, their goslings hatch late and often 
do not survive.

Sea turtles
A range of migratory sea turtles have responded to rising seawater 
temperatures by shifting their timing of nesting. Loggerhead sea turtles 
(Caretta caretta) are found to nest earlier, while leatherback sea turtles 
(Dermochelys coriacea) have delayed nesting.99-102 

However, the observed shifts in nesting phenology are likely insufficient 
to track optimal environmental conditions.101-103 Beach temperatures 
during incubation influence hatching success and directly determine 
the sex of hatchling – females are produced in higher temperatures. In a 
rapidly changing climate, hatching success and biased sex ratio will have 
implications for sea turtle populations.  

Baleen whales

Most baleen whales migrate seasonally between low-latitude calving 
grounds and higher-latitude feeding grounds, where they prey on dense 
concentrations of krill or forage fishes.85,104,105

Many baleen species are known to shift migratory timings, depending 
on prey availability. In the past 27 years, fin and humpback whales have 
advanced their arrival by 1 day/year at the Gulf of St. Lawrence feeding 
grounds off eastern Canada. This is likely due to earlier ice break-up and 
rising sea surface temperature, which triggers earlier plankton bloom and 
influences prey abundance.85 Shorter-distance migrants like fin whales 
may reduce migration due to temperature changes and less winter sea 
ice, but it is harder for long-distance migrants like humpback whales to 
correctly time their arrival for abundant prey.85

Colombia’s Gorgona National Natural Park is an important breeding and 
calving ground for Eastern South Pacific humpback whales. Their arrival 
has shifted up to 1 month earlier over the last 3 decades. This is likely due 
to changes in sea ice formation in Antarctic feeding grounds affecting 
krill availability, and less prey being a cue to return to tropical waters.105 

Eastern North Pacific blue whales are also known to alter migration, 
arriving at their feeding grounds off California approximately 42 days 
earlier than 10 years ago. This shift was associated with at least a 2°C 
increase in sea surface temperature, and the resultant krill abundance.106  

Although phenotypic plasticity – the ability to adapt in response to 
changing environmental signals – allows these species to adjust 
migratory timings, modifying the timing of a life stage can negatively 
affect another within the annual life cycle. Remaining longer on feeding 
grounds can cut reproduction time, and vice versa.106 Adaptation in human 
activities, including fisheries, maritime traffic, and exploratory seismic 
testing, is also needed to accommodate whales’ changing sojourns within 
and outside protected areas.105 



3.  
Evolving toward  
new synchronies 

Climate change attribution for observed mismatches depends upon 
long-term research on the phenology of interacting species within an 
ecosystem. Long-term studies are essential, but the major challenge is 
proving causality. Climate change may influence temperatures and rainfall, 
but other factors may simultaneously influence species responses, such 
as land-use change, resource overexploitation, invasive species, and other 
ecological stressors. Uncertainty around causality can be partly addressed 
by minimizing variables: observing responses either in different locations, 
comparing populations in areas with a lot of warming to those with a 
little, or in different time periods, comparing populations in years with 
rapidly increasing temperatures to years with slower increases.76,107 These 
approaches allow a better estimate of the specific effect of temperature 
increase on species’ phenology, although they do not solve issues involving 
other environmental factors influenced by temperature. For instance, in 
many regions, precipitation patterns change dramatically with varying 
climatic conditions, altering the timing, frequency and intensity of rainy 
seasons.108,109 As data accumulate, researchers realize that combinations 
of phenological mechanisms – temperature, photoperiod and precipitation, 
for instance – may need to align for the phenological cue to take effect.

A strong phenological shift in a population in response to environmental 
change indicates a large proportion of the individuals have the ability to 
change timing in the same direction, known as phenological plasticity.110 
Empirical evidence suggests that this plasticity is the main source of 
observed climate-related phenological shifts.111 But individual or population 
plasticity may not be able to keep up with the rapid environmental changes 
we are experiencing.112 Species also require genetic change to adapt 
successfully, which is more likely in species with short generation time,  
like insects, than in trees that regenerate over decades.113  There are a 
handful of examples where genetic change, as a response to climate 
change, can be recognized as microevolution, mainly in insects and some 
birds.114,115 Overall, genetic changes are happening at a much slower rate 
than the climate is changing. 

Phenological microevolution, the process of natural selection where 
genetic changes shift the phenology of species to better fit the changed 
climate, most likely played an important role in species and ecosystem 
adaptation to past warming periods.113 Still, as the rate of warming is much 
faster now – perhaps by as much as a factor of 100 – even microevolution 
will likely emerge too slowly for current rates of climate change.116 

In practice, conservation and ecosystem management measures could 
be taken to encourage favourable conditions for microevolution.117 One 
measure is to support and nurture the genetic diversity of populations, as 
this is the crucial prerequisite for microevolution and natural selection. 
Increasing ecological connectivity through habitat corridors would enable 
plant colonization and movement of animal species with novel genetic 
material within a particular ecosystem, promoting genetic diversity and 
increasing the chances of successful adaptation.118 

Out of reach

The red knot (Calidris canutus) is a medium-sized shorebird in the 
sandpiper family. The global population is in decline and considered 
Near Threatened. The 6 subspecies of red knot migrate remarkably long 
distances from the high Arctic breeding grounds to wintering grounds 
across different continents.119 

A subspecies, Calidris canutus canutus, breeds 
in central and northern Siberia, and migrates 
to warmer areas along the coast of Mauritania, 
notably Banc d’Arguin National Park. As the 
snow starts to melt, they mate and lay eggs. 
Red knot chicks feed on insects that seasonally 
emerge from thawing tundra permafrost, in 
preparation for the long voyage to Africa.120 

In the last 3 decades, snowmelt duration in 
the high Arctic has progressively advanced 
by 0.5 days/year, resulting in the early 
emergence and abundance of insects. This 
shift in insect phenology causes a series of 
consequences for the red knots in later life 
stages.120,121 

Since the birds have not adjusted their 
breeding phenology, offspring miss the peak 
of their food abundance. Poor food resources 
mean poor growth. Juvenile red knots become 
smaller and have shorter bills during summers 
with early snowmelt.120 

Once in West Africa, their main food source changes to mollusc buried in 
intertidal sediments. These shorter-billed birds have less access to highly 
abundant bivalve species (Loripes lucinalis) buried deeper in the sediments. 
Instead, they can only consume shallowly buried rhizomes of seagrass 
(Zostera noltii) and rare species of bivalve (Dosinia isocardia). 

This knock-on effect leads to increased mortality 
of the short-billed red knots, which demonstrates 
the complex implications of a mismatch in one 
location and one part of the life cycle with another 
part that takes place halfway across the globe.120

Note: The illustration is not drawn to scale.

Loripes lucinalis

Dosinia isocardia
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4.  
Bridges to  
new harmonies 

Phenological shifts can only be determined from long-term records. Data 
collection is conducted by scientific institutions, universities, governments, 
and NGOs. Initiatives such as the African Phenology Network, Australia’s 
TERN project, India’s SeasonWatch, the UK Nature’s Calendar, and the 
USA National Phenology Network include observations by citizens to 
track plants, insects, birds and mammals. These comprehensive data sets 
allow scientists to single out species and locations most at risk. They also 
provide data for IPCC estimates of tolerable warming rates for ecosystems, 
underpinning governmental objectives to reduce global warming to limits 
set by the Paris Agreement.122 

Farmers, gardeners and nature-lovers have been applying their 
understanding of phenological stages all around the world, for 
centuries. Regional and local networks allow participants to 
exchange knowledge and advice on diverse environments and 
ecosystems. With modern communication tools, identifying and 
tracking the development of plants and animals has become a 
common pastime in many countries.123

Formal phenological gardens contain a selected array of plants to 
monitor their responses to changing local conditions. Scientists 
working with national botanical gardens and other long-established 
efforts set up areas within those confines to grow the same 
selection of plants across different latitudes, longitudes and 
elevations, and collect data to compare phenological responses 
over time. These large-scale plant-behaviour observation systems 
offer data sets for other researchers to establish baselines and track 
trends for their own work.124 

By studying the phenology and adaptive changes of keystone 
species, the collected data provide solid biological evidence of 
climate changes and adaptive responses from living collections that 
supports long-term monitoring of climate change biology.125

Less formal phenological gardens are an important teaching tool 
about the crucial timing in the life cycles of species, but they too 
must follow certain protocols for data quality. The Global Learning 
and Observations to Benefit the Environment (GLOBE) Program 
offers guidelines for thousands of participating schools in 125 
countries.126 After three decades, the GLOBE Program is now 
expanding its methods, protocols, and databases to also include 
citizen scientists’ observations.127 Citizen science contributions 
to phenological knowledge span from noting flowering dates in 
their gardens to observations of migrating herds for verifying aerial 
and satellite images.128 An enduring citizen science project, the 
Christmas Bird Count initiated by the US National Audubon Society 
in 1900, covers most of North America and has provided solid data 
on the decline of bird populations over more than a century.129

Phenological monitoring and citizen science

A selection of phenology citizen science 
projects and activities

Phenological shifts and mismatches, attributed to climate change, have 
been affecting agricultural ecosystem services for decades.1,71,130-132  To 
ameliorate problems of advanced growing seasons, growing stages 
curtailed by heat or drought, and other climate-change repercussions, 
farmers have been selecting more climate-resilient cultivars.133 Adopting 
new techniques, trying new seeds, sharing seed banks, and exploiting 
extension services are all aspects of climate-smart agriculture, promoted 
by the Food and Agriculture Organization of the United Nations, many 
NGOs, and national and sub-national agencies.134 

Limited research has studied how phenological shifts and mismatches 
affect natural resource management and biodiversity conservation, with 
managers often unclear on how to incorporate the data into practice.135,136 
Phenological data could inform climate response, optimize implementation 
of monitoring, and support climate change vulnerability assessment.135 

This is especially important in less-studied areas, such as many southern 
hemisphere locations.18,19 Managers need to consider how phenological 
changes affect their current strategies. For example, fisheries managers 
typically survey fish populations annually, targeting dates when populations 
were most abundant in an area historically. Phenological shifts could result 
in surveys conducted at the wrong time of the year, which would skew 
population estimates and catch allowances.60

Recent reviews of multiple specific case studies have mapped out 
examples of phenology, phenological shifts, and phenological mismatches 
in extended coverage.27,32,33,49 This wider perspective considering larger 
numbers of species, ecosystems and regions and diverse phenological 
mechanisms at work can inform the approaches needed to help human 
communities and ecosystems adapt to climate-changed conditions.

Larger-scale efforts to strengthen the integrity of biological diversity will 
build resilience and adaptability throughout ecosystems.137 Rehabilitating 
habitats, building habitat corridors to enhance ecological connectivity 
and genetic diversity, adjusting protected-area boundaries as species’ 
ranges shift, and conserving biodiversity in productive landscapes are all 
necessary immediate management interventions.138,139

In conclusion, anthropogenic climate change leads to phenological 
shifts in both terrestrial and aquatic ecosystems. These shifts can lead 
to mismatches, with major consequences for individuals, populations, 
communities and whole ecosystems. Climate change is accelerating 
too quickly for many species to adapt through their natural phenological 
capacity.140 Preserving the integrity of functioning biological diversity, 
ending habitat destruction, and pursuing ecosystem restoration will bolster 
the natural systems upon which we depend. However, without continued 
efforts to drastically reduce greenhouse gas emissions, these conservation 
measures will only delay the loss of those essential ecosystem services. 
For species and ecosystems to match accelerated rhythms set by climate 
change, time and opportunity to achieve new harmonies will be needed.

All season-dependent activities are inherently risky, from hot spells 
causing a poor wheat harvest or marine heatwaves affecting local 
fish stocks, to unseasonal weather impinging on travel and tourism. 
But food production is the most critical socioeconomic activity 
affected by phenological shifts as climate change accelerates.2 

Warming trends have shifted the phenological stages of a variety 
of staple crops over decades and across continents.71,141-145 The 
change in growth stages has consequences on crop yields and 
quality. 144-147 The shifts have been observed in crops ranging from 
cereals such as barley, maize, rice, rye, sorghum, soybean and 
wheat, to cotton, grapevines, and fruit trees such as apple, cherry, 
pear and mango.71,143,148-154  At the same time, crop management 
decisions on sowing date and cultivar choice have direct effects on 
crop phenology.71,155 They are often used as adaptation strategies to 
counteract climate-induced phenological changes.71 

Fisheries
Successful growth to maturity and production of fish stocks is 
strongly affected by any climate-induced changes to the phenology 
and distribution of both fish and prey.67 For many marine fish species, 
spawning phenology is sensitive to temperature cues.69,163 Spawning 
time, subsequent transport of fish larvae during the planktonic stage, 
and abundance of suitable food are critical factors for early development 
and survival.43,67,164,165 Reduced survival at early life stages leads to fewer 
additions to the adult stock.59 Changes in the timing of reproduction and 
migration and resulting phenological mismatches with prey availability 
have been observed in and projected for species that are important to 
inland and marine fisheries in some regions.166 

Shifting species’ phenologies and environmental conditions under climate 
change present challenges for fisheries management.166 With observed 
shifts in timing of critical life stages and geographic distribution, common 
practices used by fisheries authorities, such as closed fishing seasons 
and areas, may not provide adequate protection.59,163,166  Management 
measures and restrictions should consider existing and emergent 
critical habitats, and changes in spawning sites, nursery grounds and 
migratory corridors. An ecosystem-wide approach that is adaptive to both 
climate and environmental changes is essential for sustainable fisheries 
management within resilient ecosystems.166

Inland fisheries
Patterns of rainfall and snowfall altered by 
climate change affect the availability, quality 
and flow regime of fresh water. These are 
important phenological cues for species in 
freshwater habitats, and modifications in water 
flow and levels, as well as flood events, affect 
the timing of migration and spawning.166-168

With the constant introduction of new varieties and variations in the 
sowing calendar, farming practices and climate have a combined 
influence on diverse changes in crop phenology.71,151,155-160 

Many highly productive regions suffer more frequent, extreme 
climate-related events that also interfere with critical growth 
stages.161 Climate-scenario crop models project that many global 
regions will experience reductions in yields, with additional 
challenges from soil degradation, unsustainable farming, pests, and 
water scarcity.162 

Adaptation practices focus on implementing sustainable 
management, including organic fertilizer use, combining legumes 
with grasses, optimizing irrigation, breeding plants selectively, 
and choosing more resilient cultivars.71 Projections of agricultural 
productivity often incorporate adaptation to climate change in their 
predictions, with the call for more observational evidence on the 
effectiveness of adaptation practices.161 

Food production and phenology 

Marine heatwaves 
The 2012 intense marine heatwave warmed 
north Atlantic waters by 1-3°C, inducing a 
phenological response in lobsters and majorly 
affecting fisheries in the Gulf of Maine. Cued 
by rising temperatures, lobsters migrated 
inshore earlier, moulted faster, and reached 
legal fishing size sooner. The longer fishing 
season, overharvesting, and unmet market 
demand led to a price collapse.169

The Sardine Run
A seasonal mass migration of sardines 
(Sardinops sagax) from the temperate waters 
of the Agulhas Bank towards the sub-tropical 
waters off the northern coast of KwaZulu-Natal, 
South Africa, occurs annually. From May to July, 
the phenomenon attracts many opportunistic 
marine predators, as well as fishing activities 
and tourism.170 

Records over 60 years show a progressive delay 
in arrival of sardines off Durban by 1.3 days/
decade. This delay coincided with a change in the 
threshold thermal range for sardines as the 21°C 
isotherm shifted south.170 If the shifting trends 
continue, the sardine run may no longer extend 
as far north, or the run may collapse in the long 
term, with implications for predators, fisheries 
and tourism.170,171
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http://gpm.hu-berlin.de/gpm/faces/index.xhtml
https://www.globe.gov/do-globe/globe-teachers-guide/biosphere
https://www.wetlands.org/knowledge-base/international-waterbird-census/
https://worldbirds.com/
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