PFAS in Water by Expert Laboratory

Heidelore Fiedler
Örebro University
School of Science and Technology, MTM Research Centre
SE-702 18 Örebro, Sweden

E-mail: heidelore.fiedler@oru.se

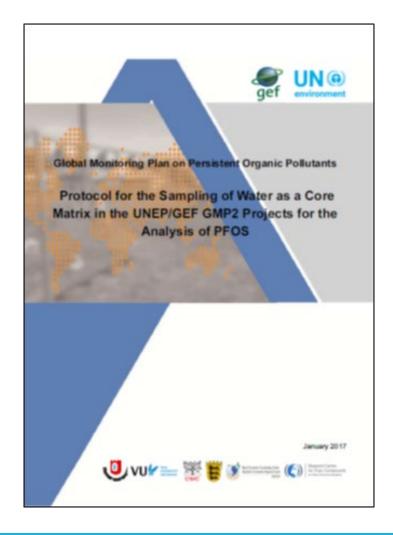
Core matrix "water" – for PFAS only

- Water is a new core matrix and was not included in UNEP/GEF GMP1 projects;
- The guideline states: active sampling, 4-times per year, at mouth of river or estuaries;
- Analytes: PFOS; amended by PFOA (through listing at COP-9 in 2019) and PFHxS (through recommendation by POPRC in 2019);
- PFOS separated into linear and branched isomers (L-PFOS and br-PFOS); to follow EPA methods 533 and 537.1

UNEP guidance documents

PFAS analysis in water for the Global Monitoring Plan of the Stockholm Convention

Set-up and guidelines for monitoring


Jana Weiss, Jacob de Boer, Urs Berger, Derek Muir, Ting Ruan, Alejandra Torre, Foppe Smedes, Branislav Vrana, Fabrice Clavien, Heidelore Fiedler

Chemicals Branch

United Nations Environment Programme (UNEP)
Division of Technology, Industry and Economics

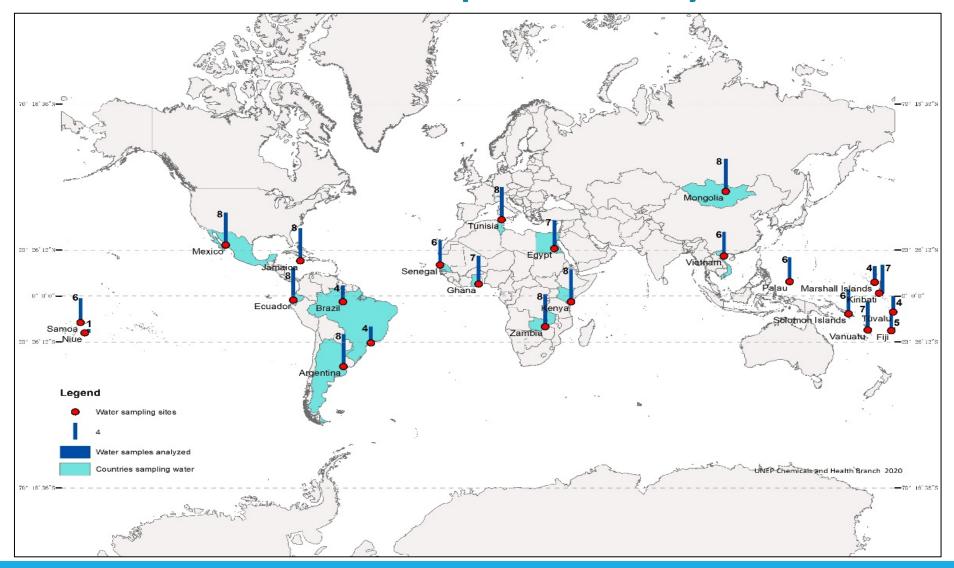
Geneva

April 2015

Procedure for the Analysis of Persistent Organic Pollutants in Environmental and Human Matrices to Implement the Global Monitoring Plan under the Stockholm Convention

Protocol 1:

The Analysis of Perfluorooctane Sulfonic Acid (PFOS) in Water and Perfluorooctane Sulfonamide (FOSA) in Mothers' Milk, Human Serum and Air, and the Analysis of Some Perfluorooctane Sulfonamides (FOSAS) and Perfluorooctane Sulfonamido Ethanols (FOSES) in Air


Chemicals Branch
United Nations Environment Programme (UNEP)
Division of Technology, Industry and Economics

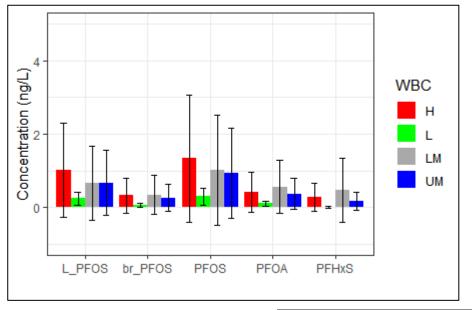
Geneva

April 2015

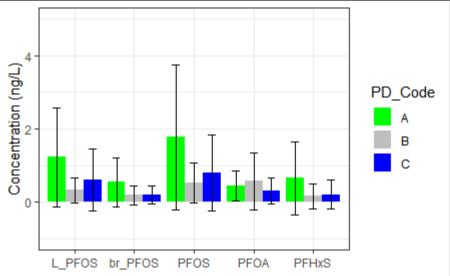
Results PFAS in water 1. Across all projects

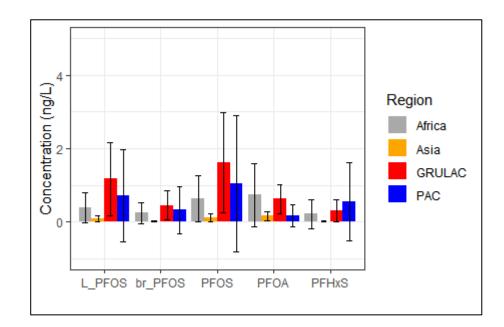
Number of water samples analyzed for PFAS

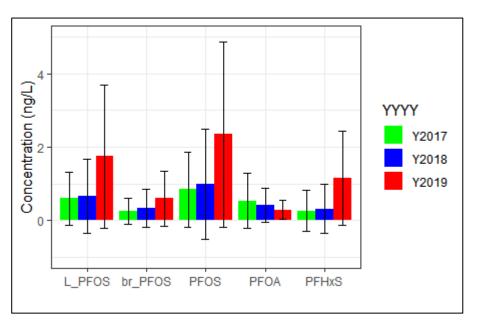
Summary (n=144)

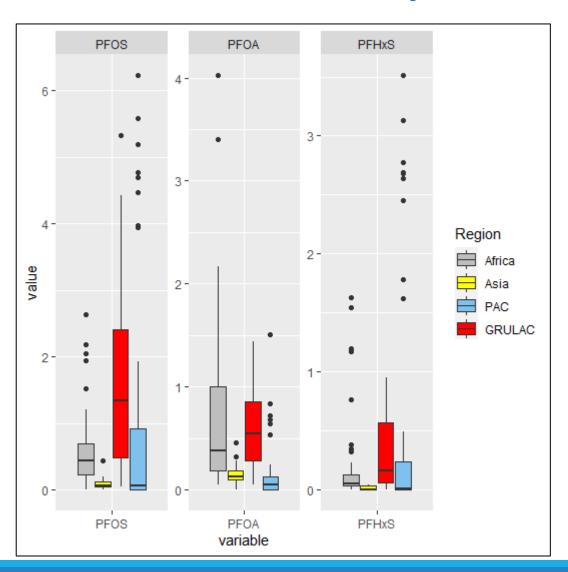

Distribution of sample origin and characteristics of the countries submitting water samples
Concentrations in ng/L

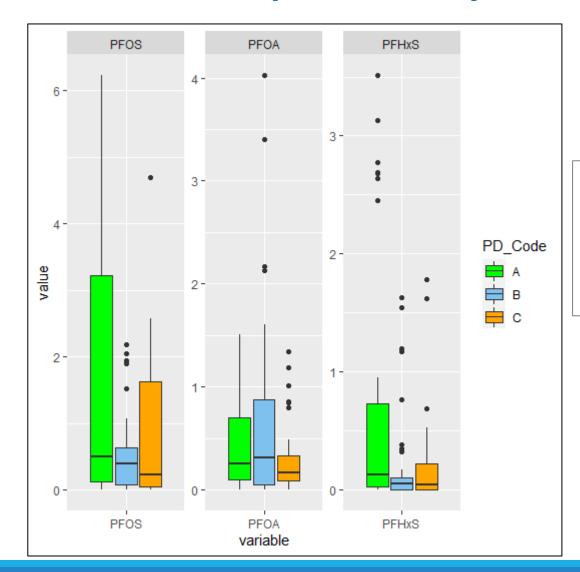
	Africa (N=44)	Asia (N=14)	GRULAC (N=40)	PAC (N=46)	Overall (N=144)		
PFOS							
Mean (SD)	0.637 (0.637)	0.107 (0.111)	1.61 (1.35)	1.04 (1.85)	0.985 (1.39)		
Median	0.446	0.0688	1.35	0.0688	0.370		
[Min, Max]	[0, 2.64]	[0, 0.441]	[0.0443, 5.32]	[0, 6.23]	[0, 6.23]		
PFOA							
Mean (SD)	0.732 (0.854)	0.166 (0.118)	0.621 (0.396)	0.161 (0.302)	0.464 (0.599)		
Median	0.377	0.132	0.551	0.0526	0.225		
[Min, Max]	[0.0521, 4.02]	[0, 0.459]	[0.0506, 1.44]	[0, 1.51]	[0, 4.02]		
PFHxS							
Mean (SD)	0.217 (0.403)	0.0132 (0.0189)	0.305 (0.295)	0.552 (1.05)	0.329 (0.670)		
Median	0.0570	0	0.166	0.0129	0.0550		
[Min, Max]	[0, 1.63]	[0, 0.0474]	[0, 0.952]	[0, 3.51]	[0, 3.51]		

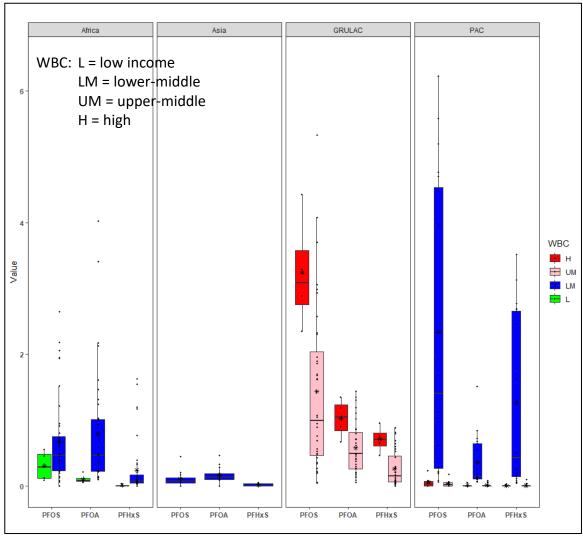

	A fuise (NI - 4.4)	Asia (NI-14)	CDLU AC (N=40)	DAC (NI-4C)	Overell (NI=144)
	Africa (N=44)	Asia (N=14)	GRULAC (N=40)	PAC (N=46)	Overall (N=144)
Region					
Africa	44 (100%)	0 (0%)	0 (0%)	0 (0%)	44 (30.6%)
Asia	0 (0%)	14 (100%)	0 (0%)	0 (0%)	14 (9.7%)
GRULAC	0 (0%)	0 (0%)	40 (100%)	0 (0%)	40 (27.8%)
PAC	0 (0%)	0 (0%)	0 (0%)	46 (100%)	46 (31.9%)
Year					
Y2017	24 (54.5%)	6 (42.9%)	20 (50.0%)	14 (30.4%)	64 (44.4%)
Y2018	20 (45.5%)	7 (50.0%)	20 (50.0%)	27 (58.7%)	74 (51.4%)
Y2019	0 (0%)	1 (7.1%)	0 (0%)	5 (10.9%)	6 (4.2%)
WBC					
L	4 (9.1%)	0 (0%)	0 (0%)	0 (0%)	4 (2.8%)
LM	40 (90.9%)	14 (100%)	0 (0%)	20 (43.5%)	74 (51.4%)
H	0 (0%)	0 (0%)	4 (10.0%)	6 (13.0%)	10 (6.9%)
UM	0 (0%)	0 (0%)	36 (90.0%)	20 (43.5%)	56 (38.9%)
PD_Code					
Α	8 (18.2%)	8 (57.1%)	16 (40.0%)	14 (30.4%)	46 (31.9%)
В	29 (65.9%)	0 (0%)	16 (40.0%)	17 (37.0%)	62 (43.1%)
С	7 (15.9%)	6 (42.9%)	8 (20.0%)	15 (32.6%)	36 (25.0%)

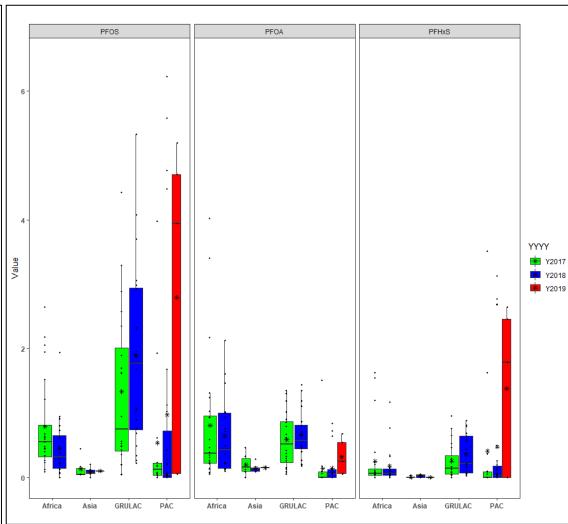

Statistical summary of results for PFOS, PFOA and PFHxS according to project region

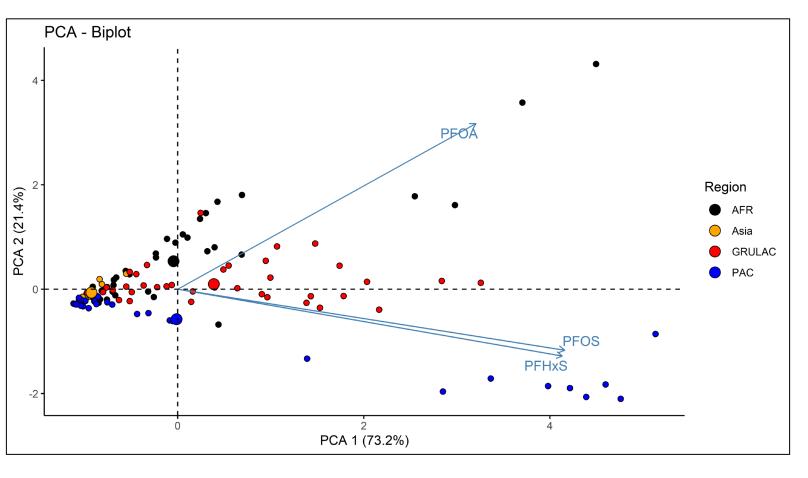

Mean values and SD (n=144)

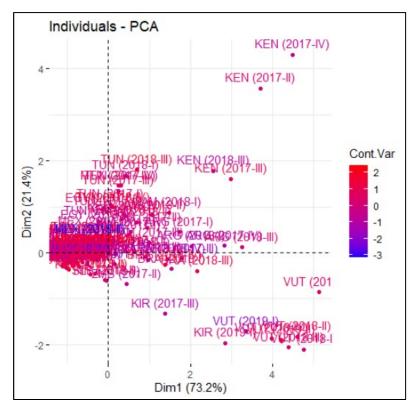

PD_Code: Population density code using World Bank indicator; WBC = World Bank classification of income

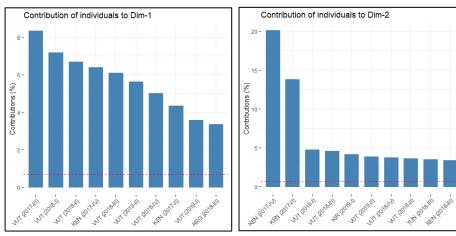


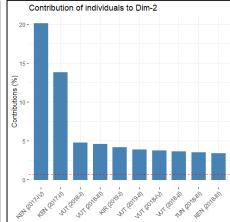



Overview PFAS per Region and PopDensity

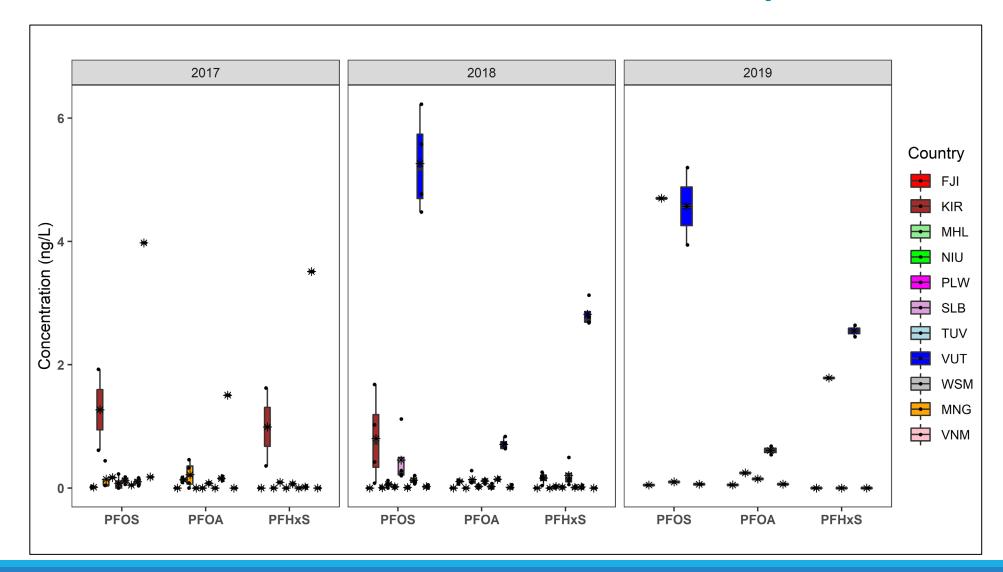



Overview according to income and year

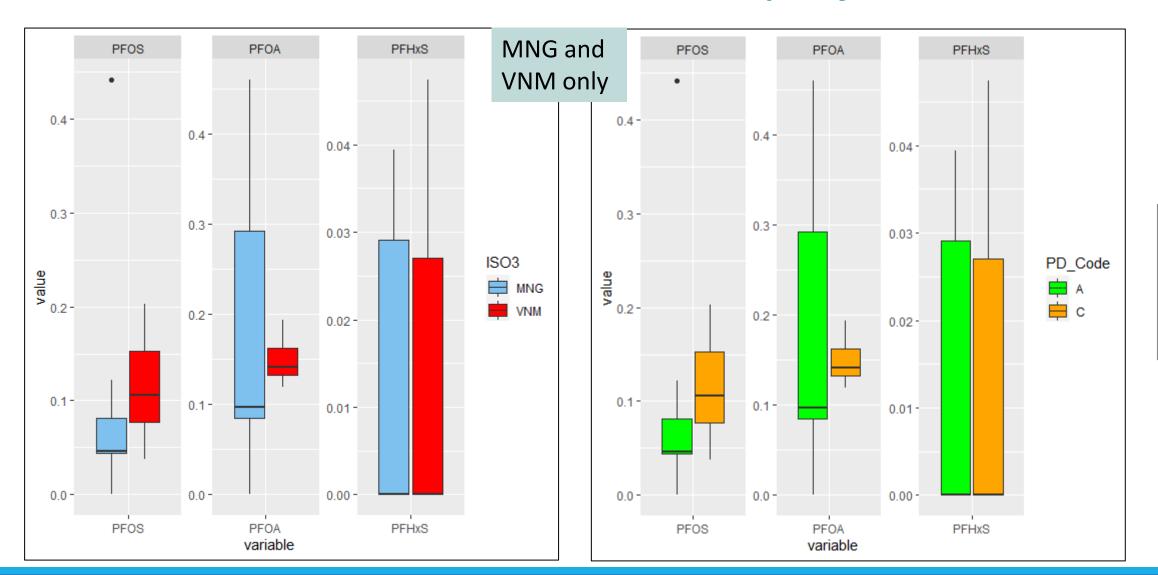


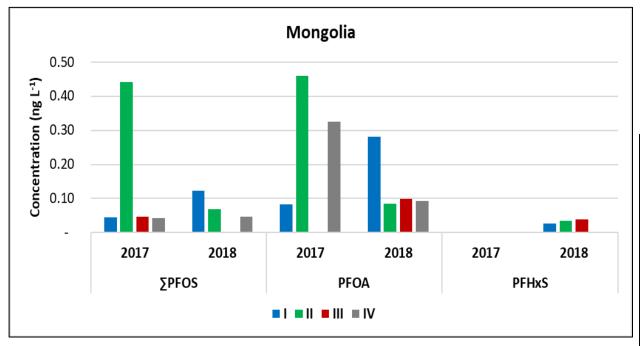


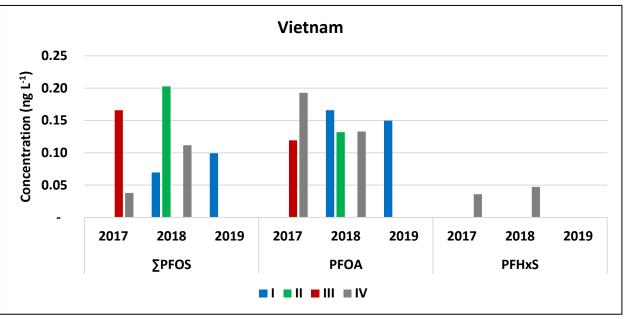
PCA biplot for region (n=144)



Results 2. Asia-Pacific Region

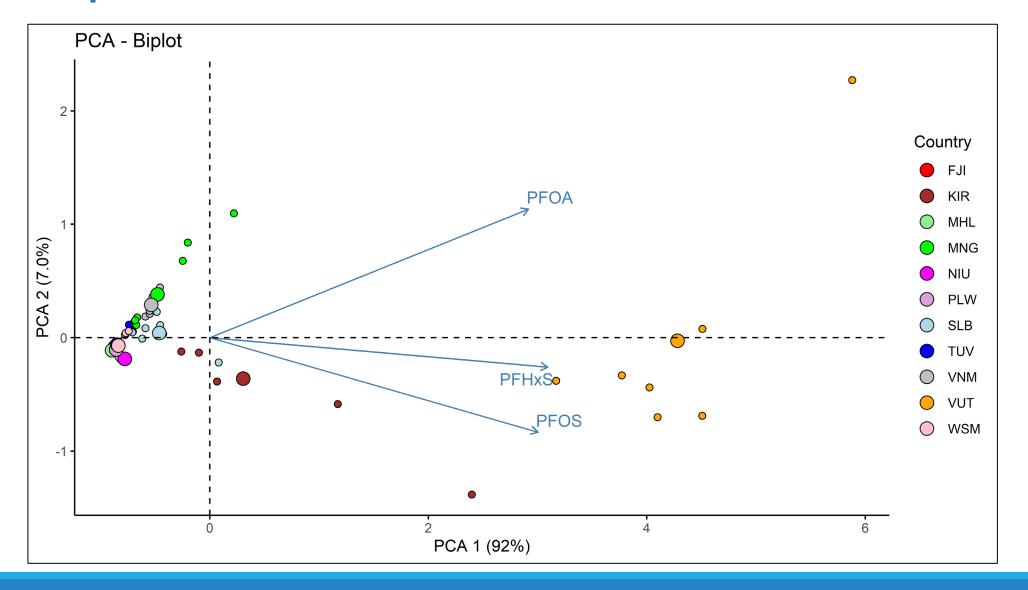

Overview on concentrations per country


Asia-Pacific region:


- 2 from Asia project
- 9 from PAC project

Concentrations of 3 PFAS in Asia project countries

PFAS in surface water Asia


Season codes (sampling date): I = March 31, II = June 30; III = Sep 30; IV = Dec 31

Mean values for PFAS in surface water Asia-Pacific region

n=60 Concentrations in ng/L

Year/Country	#Results	Average SPFOS	Average PFOA	Average PFHxS	
2017	20	0.49	0.31	0.82	
FJI	2	0.03	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
KIR	2	1.27	0.13	0.99	
MNG	4	0.14	0.29	<loq< td=""></loq<>	
NIU	1	0.17	<loq< td=""><td>0.09</td></loq<>	0.09	
PLW	4	0.15	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
SLB	2	0.12	0.08	0.07	
TUV	1	0.05	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
VNM	2	0.10	0.16	0.04	
VUT	1	3.98	1.51	3.51	
WSM	1	0.18	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
2018	34	1.17	0.22	0.72	
FJI	2	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
KIR	4	0.80	0.11	0.16	
MHL	4	0.03	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
MNG	4	0.08	0.14	0.03	
PLW	2	0.04	0.05	0.03	
SLB	4	0.46	0.11	0.20	
TUV	3	0.03	0.07	0.03	
VNM	3	0.13	0.14	0.05	
VUT	4	5.26	0.71	2.82	
WSM	4	0.04	0.05	<loq< td=""></loq<>	
2019	6	2.34	0.29	2.29	
FJI	1	0.05	0.05	<loq< td=""></loq<>	
KIR	1	4.70	0.25	1.79	
VNM	1	0.10	0.15	<loq< td=""></loq<>	
VUT	2	4.57	0.61	2.55	
WSM	1	0.06	0.06	<loq< td=""></loq<>	
Grand Total	60	1.07	0.26	0.91	

PCA biplot for Asia-Pacific countries

Acknowledgment:

- This work was funded through a grant from UN Environment (funds from the Global Environment Facility – GEF) "Supporting implementation of the Global Monitoring Plan on POPs" to Örebro University;
- Thanks to Dr. Leo W.Y. Yeung for PFASs QA/QC, Siamak Sobhanei, Mohammad Sadia, and Abeer Baabish for PFAS lab work;
- Thanks to all national teams for providing the samples.

Thank you!